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Abstract. In the paper the problem of minimum energy control of fractional 
discrete-time linear system with multiple delays in state and control are 
addressed. General form of solution of the state equation of the system is given 
and conditions for reachability and minimum energy control are established. 
The considerations are illustrated by numerical example. 
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1 Introduction 

Dynamical systems described by fractional order differential or difference equations 
have been investigated in several areas such as viscoelasticity, electrochemistry, 
diffusion processes, automatic control, etc. (see [4, 8, 19, 20, 22], for example). The 
problem of controllability and reachability of dynamical systems without delays or 
with delays for standard or fractional order systems have been considered in [2, 3, 5, 
15, 18, 21, 23]. The problem of minimum energy control for standard systems has 
been firstly introduced and solved in [12]. This problem has been investigated in [6, 
13, 14] for standard systems and in [3, 9, 10, 16, 17] for fractional order systems. The 
problem of minimum energy control with bounded inputs has been recently examined 
in [3, 11]. 

The main purpose of the paper is to give the general form of solution of the state 
equation of fractional discrete-time linear system with multiple delays in state and 
control and solution of the minimum energy control problem for this systems. 

2 Problem Formulation 

Let us consider the discrete-time linear system with delays described by the state 
equation 
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with the initial conditions  
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is the fractional difference of order ℜ∈α  of the discrete-time function ix  and 
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Substituting of (3) for 1+i  into (1) we obtain 
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where 

 ,00 αnIAF +=   ( nI  is the nn ×  identity matrix) (6) 

and 
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The coefficients (7) we can compute by the use of the formulas [3]: 
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Now we shall formulate the fundamental definitions for the reachability of the 

system (1) which is necessary to the further considerations about the minimum energy 
control problem of the fractional system (1).  
 
Definition 1. A state n

fx ℜ∈ is called reachable in N steps if there exists a sequence 

of inputs ,m
iu ℜ∈  ,1,...,1,0 −= Ni  that transfers the fractional system with delays 

(1) from zero initial conditions (2) to the state .fx  
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If every state n
fx ℜ∈  is reachable in N steps, according to the above definition, then 

we can say that the fractional system (1) is reachable in N steps. 
 

Definition 2. If  for every state n
fx ℜ∈  there exists a natural number N such that the 

state fx  is reachable in N steps then the system is called reachable. 

 
The general problem of minimum energy control of the fractional system (1) we 

can formulate in the same manner as for the fractional discrete-time systems without 
delays. This problem can be stated as follows: 

Find a control sequence ,m
iu ℜ∈  ,1,...,1,0 −= Ni  which transfers the fractional 

system (1) from zero initial conditions (2) to the desired final state n
fx ℜ∈  and 

minimizes the performance index 
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where nmQ ×ℜ∈  is a symmetric positive definite weighting matrix.  

 

The control sequence ,m
iu ℜ∈  1,...,1,0 −= Ni  that minimizes the performance 

index (9) is called minimal one. 
 
The aim of this paper is to give the general form of solution of the state equation 

(1) of the fractional discrete-time linear system with delays, the condition of 
reachability, and in consequence the solution of the minimum energy problem of the 
fractional system with delays in state and control (1). 

3 Problem solution 

Taking the Z-transform (similarly as in [1]) to both sides of the equation (5) with (2) 
we obtain 
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where 

 },{)( ixzX Z=  }.{)( iuzU Z=  (11) 

The equation (10) can be written in the form  
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where )(zΔ  is the characteristic matrix and has the form [3] 
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Solving the equation (13) for )(zX  we obtain 
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Taking the inverse Z -transform to (14) gives the solution of the equation (5) (and the 
state equation (1)) in the form 
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where 

 )}({ 11 zzi
−− Δ=Φ Z  (16) 

is the state-transition matrix for the equation (5). From (16) and (13) it follows that 
the state-transition matrix satisfies the equation 
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with the initial conditions 

 ,0 nI=Φ   0=Φ i  for .0<i  (18) 

From (16) it follows that the solution of the equation (5) for Ni =  with the zero 
conditions (2)  has the form 

 N
NN uRx =  (19) 

where 

 ]...[ 0121 ΨΨΨΨ= −− NNNR  (20) 

is called the reachability matrix, and 
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The matrix iΦ  in (21) has the form (17). 

 
The following condition for the fractional system (1) can be proved in the same 

manner as for the positive system with 1=α  (see [18], for example).  
 
Theorem 1. The fractional system with delays (1) is reachable in N steps if and only if 
there exists integer number N such that rank of the reachability matrix (20) is equal to 

n. If this holds, then control Nu  which transfers the fractional system (1) from zero 

initial conditions (2) to the desired final state ,n
fx ℜ∈  can be computed from the 

formula 
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where ,][ 1TT
fNNNf xRRRx −=  NNNNNm RRRRIH 1TT ][ −−=  and nNmK ×ℜ∈  is an 

arbitrary matrix, but  such that 0]det[ ≠KRN .    ■ 

 
The formula (23) is based on the right-inverse of the reachability matrix (20). 

Using another forms of the right-inverse of the rectangular matrix (see [7], for 
example) we can write the following formulas 
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where NmK ℜ∈1  ( nNmK ×ℜ∈1 ) is an arbitrary vector (matrix), nnNmK ×−ℜ∈ )(
2  is 

also an arbitrary matrix, G is a permutation matrix of columns of matrix (21) such that 
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and 10 ,..., −naa  are coefficients of  polynomial of  matrix 1A  in the form 
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Optimal control which minimizes performance index (9) depends on the 

weighting matrix Q ( 0TQQ =  – symmetric and positive defined). If we assume 

that 
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then we can write the following condition. 
 
Theorem 2. Let the fractional system (1) be reachable in N steps. The control 

sequence Nu0ˆ  that minimizes the performance index 
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which steers the state of the system (1) from zero initial conditions to any desired 
final state fx  has the form 
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0 fNNN
N xRRRu −=  (30) 

 
Proof. The performance index (30) for (23) we can write in the form 
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Let us notice that 
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Taking into account the above formulas we obtain the performance index in the form  
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The performance index (33) achieves minimum for 0=K , therefore for the sequence 
of controls (30).    ■ 
 

Let us notice that if T
NRK =1  then from (24) we obtain (30). 

 
The minimum energy problem can be solved by the use of the following procedure. 
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Procedure 

Step1. Knowing ,nn
kA ×ℜ∈ ),,...,1,0( hk =  mn

jB ×ℜ∈  ),,...,1,0( qj =  ,α  N and 

using (20) find the matrix NR  (20). 

Step 2. Knowing the matrix NR  (20), and using (30) compute sequence of inputs 

10 ˆ,...,ˆ −Nuu . 

Step 3. Knowing v  and using (29) compute the value of the index )ˆ(uI . 

4 Example 

Consider fractional system (1) with 2== qh  delays, 8.0=α  and the matrices 
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Find an optimal control (sequence of inputs) that steers the state of the system from 

zero initial condition (2) to the state T
fx ]989[=  in 8=N  steps and minimizes 

the performance index (29) for .4.0=v  
 

Using Procedure we obtain the following. 
 
Step 1. The condition of reachability in 8=N  is satisfied because the reachability 
matrix NR (20) 
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has rank equal to 3. The matrices 70 ...ΨΨ  we compute from (21), where 71...ΦΦ  are 

computed from recursive formula (17). 
 
Step 2. The optimal sequence 70 ˆ,...,ˆ uu  computed from (30) with (35) has the form 
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Step 3. The minimal value of the performance index is equal to 

 08.35]ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ[)4.0()ˆ( 7766554433221100
2 =+++++++= uuuuuuuuuuuuuuuuu TTTTTTTTTI  (37) 

Let us check obtained results. Computing of the solution (17) for 7,...,1,0=i with 
(34) and zero initial conditions (2) we obtain 
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The optimal control sequence was computed correctly, because .8xx f =  The 

trajectory of the considered fractional system is shown on Fig 1, where 321 ,, xxx  are 

components of the vectors (38) ( 8,...,2,1,][ 321 == kxxxx T
k ). 
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Fig. 1. Trajectory of the considered fractional system with order 8.0=α , and the matrices 
(34) and delays (h = q = 2) (‘o’ are the states (38)) 
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5 Concluding Remarks 

The problem reachability and minimum energy control of fractional discrete-time 
system with delays (1) have been addressed. The general form of solution of state 
equation (1) is given. Necessary and sufficient conditions for reachability and 
minimum energy control have been established and illustrated by numerical example. 

The considerations can be extended to fractional positive discrete-time linear 
systems with delays and for the minimum energy control for that class of dynamical 
systems with bounded controls. 
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