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Abstract
In the field of statistics of univariate extremes, we deal with the importance of
resampling methodologies, such as the generalised jackknife and the bootstrap in
the derivation of a reliable semi-parametric estimate of a parameter of extreme or
even rare events. Among those parameters, we can refer high quantiles, expected
shortfalls, return periods of high levels or the primary parameter of extreme
events, the extreme value index (EVI), the parameter considered in this article.
In order to illustrate such topics, we consider minimum-variance reduced-bias
estimators of a positive EVI.

1 Extreme Value Theory: A Brief Introduction

We use the notation � for the extreme value index (EVI), the shape parameter in the
extreme value distribution function (d.f.),

EV� .x/ D
�

expf�.1C �x/�1=�g; 1C �x > 0 if � 6D 0

expf� exp.�x/g; x 2 R if � D 0;
(1)

and we consider models with a heavy right-tail. Note that in the area of statistics
of extremes, and with the notation RVa standing for the class of regularly varying
functions at infinity with an index of regular variation equal to a 2 R, i.e. positive
measurable functions g.�/ such that for any x > 0; g.tx/=g.t/ ! xa, as t ! 1 (see
[3], for details on regular variation), we usually say that a model F has a heavy right-
tail F WD 1 � F whenever F 2 RV�1=� ; for some � > 0: Then, as first proved in
[14], F is in the domain of attraction for maxima of a Fréchet-type d.f., the EV� d.f.
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in (1), but with � > 0, and we use the notation F 2 DM.EV�>0/ DW DCM . This
means that given a sequence fXngn�1 of independent and identically distributed
random variables (r.v.’s), it is possible to normalise the sequence of maximum
values, fXnWn WD max.X1; : : : ; Xn/gn�1 so that it converges weakly to an r.v. with
the d.f. EV� , with � > 0.

In this same context of heavy right-tails, and with the notation U.t/ WD F .1�
1=t/; t � 1; being F .y/ WD inffx W F.x/ � yg the generalised inverse function
of F , we can further say that

F 2 DCM ” F 2 RV�1=� ” U 2 RV� ; (2)

the so-called first-order condition. The second equivalence in (2), F 2 DCM if and
only if U 2 RV� , was first derived in [7].

For a consistent semi-parametric EVI-estimation, in the whole DCM , we merely
need to assume the validity of the first-order condition, in (2), and to work with
adequate functionals, dependent on an intermediate tuning parameter k, related
to the number of top order statistics involved in the estimation. To say that k is
intermediate is equivalent to say that

k D kn ! 1 and kn D o.n/; i.e. k=n ! 0; as n ! 1: (3)

To obtain information on the non-degenerate asymptotic behaviour of semi-
parametric EVI-estimators, we further need to work in DCM j2, assuming a second-
order condition, ruling the rate of convergence in the first-order condition, in (2).
The second-order parameter �.� 0/ rules such a rate of convergence, and it is the
parameter appearing in the limiting result,

lim
t!1

lnU.tx/ � lnU.t/ � � ln x

A.t/
D
(

x��1
�

if � < 0

ln x if � D 0;
(4)

which we often assume to hold for all x > 0, and where jAj must be in RV�

[13]. For technical simplicity, we usually further assume that � < 0, and use the
parameterisation

A.t/ DW �ˇt�: (5)

We are then working with a class of Pareto-type models, with a right-tail function

F .x/ D Cx�1=�
�
1CD1x

�=� C o
�
x�=�

��
; (6)

as x ! 1, with C > 0, D1 6D 0 and � < 0.
In order to obtain full information on the asymptotic bias of corrected-bias EVI-

estimators, it is further necessary to work in DCM j3, assuming a general third-order
condition, which guarantees that, for all x > 0,
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lim
t!1

lnU.tx/�lnU.t/�� ln x
A.t/

� x��1
�

B.t/
D x�C�0 � 1

�C �0
; (7)

where jBj must then be in RV�0 . More restrictively, and equivalently to the
aforementioned third-order condition, in (7), but with � D �0 < 0, we often consider
a Pareto third-order condition, i.e. a class of Pareto-type models, with a right-tail
function

F .x/ D Cx�1=�
�
1CD1x

�=� CD2x
2�=� C o

�
x2�=�

��
;

as x ! 1, with C > 0;D1; D2 6D 0 and � < 0, a large sub-class of the classes of
models in [26, 27]. Then we can choose in the general third-order condition, in (7),

B.t/ D ˇ0 t � D ˇ0A.t/
ˇ�

DW � A.t/

�
; ˇ; ˇ0 6D 0; � D ˇ0

ˇ
; (8)

with ˇ and ˇ0 “scale” second and third-order parameters, respectively.

2 EVI-Estimators Under Consideration

For models in DCM , the classical EVI-estimators are the Hill estimators [28],
averages of the scaled log-spacings or of the log-excesses, given by

Ui WD i

�
ln

Xn�iC1Wn
Xn�i Wn

�
and Vik WD ln

Xn�iC1Wn
Xn�kWn

; 1 � i � k < n;

respectively. We thus have

H.k/ � Hn.k/ WD 1
k

kX
iD1

Ui D 1
k

kX
iD1

Vik; 1 � k < n: (9)

But these EVI-estimators have often a strong asymptotic bias for moderate up
to large values of k, of the order of A.n=k/, with A.�/ the function in (4).
More precisely, for intermediate k, i.e. if (3) holds, and under the validity of the
general second-order condition in (4),

p
k .H.k/ � �/ is asymptotically normal

with variance �2 and a non-null mean value, equal to �=.1 � �/, wheneverp
k A.n=k/ ! � 6D 0, finite, the type of k-values which lead to minimal mean

square error (MSE). Indeed, it follows from the results in [8] that under the second-
order condition in (4), and with the notation N .�; �2/ standing for a normal r.v.
with mean � and variance �2,

p
k .H.k/ � �/

dD N .0; �2
H
/C bH

p
k A.n=k/C op

�p
k A.n=k/

�
;
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where �2
H

D �2, and the bias bH

p
k A.n=k/, equal to � ˇ

p
k .n=k/�=.1 � �/,

whenever (5) holds, can be very large, moderate or small (i.e. go to infinity,
constant or zero) as n ! 1. This non-null asymptotic bias, together with a rate
of convergence of the order of 1=

p
k, leads to sample paths with a high variance for

small k, a high bias for large k, and a very sharp MSE pattern, as a function of k.
The optimal k-value for the EVI-estimation through the Hill estimator, i.e. k0jH WD
arg mink MSE.H.k//, is well approximated by kAjH WD arg mink AMSE.H.k//,
with AMSE standing for asymptotic MSE, defined by

AMSE.H.k// D �2

k
C b2

H
A2.n=k/ DW AVAR.k/C ABIAS2.k/;

with AVAR and ABIAS standing for asymptotic variance and asymptotic bias. Then,
we can easily see that k0jH is of the order of n�2�=.1�2�/ due to the fact that

kAjH D arg min
k

�
1

k
C b2

H
ˇ2.n=k/2�

�
D
�

n�2�

ˇ2.�2�/.1 � �/�2

	1=.1�2�/
:

The adequate accommodation of this bias has recently been extensively
addressed. We mention the pioneering papers [1, 11, 18, 29], among others. In
these papers, authors are led to second-order reduced-bias (SORB) EVI-estimators,
with asymptotic variances larger than or equal to .� .1 � �/=�/2, where �.< 0/ is
the aforementioned “shape” second-order parameter, in (4). Recently, the authors
in [4, 19, 21] considered, in different ways, the problem of corrected-bias EVI-
estimation, being able to reduce the bias without increasing the asymptotic variance,
which was shown to be kept at �2, the asymptotic variance of Hill’s estimator. Those
estimators, called minimum-variance reduced-bias (MVRB) EVI-estimators, are all
based on an adequate “external” consistent estimation of the pair of second-order
parameters, .ˇ; �/ 2 .R;R�/, done through estimators denoted by . Ǒ; O�/. For
algorithms related to such estimation, see [17]. The estimation of ˇ has been
done through the class of estimators in [15]. The estimation of � has been usually
performed though the simplest class of estimators in [12].

We now consider the simplest class of MVRB EVI-estimators in [4], defined as

H.k/ � H Ǒ; O�.k/ WD H.k/
�
1 � Ǒ

1�O�
�
n
k

� O� �
: (10)

Under the same conditions as before, i.e. if as n ! 1,
p
k A.n=k/ ! �,

finite, possibly non-null,
p
k
�
H.k/ � �

�
is asymptotically normal with variance

also equal to �2 but with a null mean value. Indeed, from the results in [4], we know
that it is possible to adequately estimate the second-order parameters ˇ and �, so
that we get

p
k
�
H.k/ � �

� dD N .0; �2/C op

�p
k A.n=k/

�
:
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Fig. 1 Typical patterns of
variance, bias and MSE of H
and H , as a function of the
sample fraction r D k=n

Consequently, H.k/ outperforms H.k/ for all k. Indeed, under the validity of the
aforementioned third-order condition related to the class of Pareto-type models, we
can then adequately estimate the vector of second-order parameters, .ˇ; �/, and
write [5],

p
k
�
H.k/ � �

� dD N .0; �2/C b
H

p
k A2.n=k/C op

�p
k A2.n=k/

�
;

where, with � defined in (8), b
H
D �

�=.1 � 2�/ � 1=.1 � �/2
�
=�:

In Fig. 1 we picture the comparative behaviour of the bias, variance and MSE of
H and H , in (9) and (10), respectively.

Now, k0jH WD arg mink MSE.H.k// can be asymptotically approximated by

kAjH D �
n�4�=

�
ˇ2.�2�/b2

H

��1=.1�4�/
; i.e. k0jH is of the order of n�4�=.1�4�/, and

depends not only on .ˇ; �/, as does k0jH , but also on .�; �/. Recent reviews on
extreme value theory and statistics of univariate extremes can be found in [2,20,31].

3 ResamplingMethodologies

The use of resampling methodologies (see [10]) has revealed to be promising in the
estimation of the tuning parameter k, and in the reduction of bias of any estimator
of a parameter of extreme events. For a recent review on the subject, see [30].

If we ask how to choose k in the EVI-estimation, either through H.k/ or through
H.k/, we usually consider the estimation of k0jH WD arg mink MSE.H.k// or
k0jH D arg mink MSE.H.k//. To obtain estimates of k0jH and k0jH one can then
use a double-bootstrap method applied to an adequate auxiliary statistic which tends
to be zero and has an asymptotic behaviour similar to either H.k/ (see [6, 9, 16],
among others) or H.k/ (see [22, 23], also among others). Such a double-bootstrap
method will be sketched in Sect. 3.2.

But at such optimal levels, we still have a non-null asymptotic bias. If we still
want to remove such a bias, we can make use of the generalised jackknife (GJ).
It is then enough to consider an adequate pair of estimators of the parameter of
extreme events under consideration and to build a reduced-bias affine combination
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of them. In [18], among others, we can find an application of this technique to
the Hill estimator, H.k/, in (9). In order to illustrate the use of these resampling
methodologies in the field of univariate extremes, we shall consider, in Sect. 3.1
and just as in [24], the application of the GJ methodology to the MVRB estimators
H.k/, in (10).

3.1 The Generalised Jackknife Methodology and Bias Reduction

The GJ-statistic was introduced in [25], and the main objective of the method is
related to bias reduction. Let T .1/

n and T
.2/
n be two biased estimators of � , with

similar bias properties, i.e. Bias
�
T

.i/
n

� D �.�/di .n/; i D 1; 2. Then, if q D qn D
d1.n/=d2.n/ 6D 1, the affine combination T GJ

n WD �
T

.1/
n � qT

.2/
n

�
=.1 � q/ is an

unbiased estimator of � .
Given H , and with bxc denoting the integer part of x, the most natural GJ r.v. is

the one associated with the random pair
�
H.k/;H.bk=2c/�, i.e.

H
GJ.q/

.k/ WD H.k/ � q H.bk=2c/
1 � q

; q > 0;

with

q D qn D ABIAS
�
H.k/

�
ABIAS

�
H.bk=2c/� D A2.n=k/

A2.n=bk=2c/ �!
n=k!1 2�2�:

It is thus sensible to consider q D 2�2�, and, with O� a consistent estimator of �, the
approximate GJ estimator,

H
GJ
.k/ WD 22 O� H.k/ �H.bk=2c/

22 O� � 1
: (11)

Then, and provided that O� � � D op.1/,

p
k
�
H

GJ
.k/ � �

�
dD N .0; �2

GJ
/C op

�p
k A2.n=k/

�
;

with �2
GJ

D �2
�
1 C 1=.2�2� � 1/2

�
: Further details on the estimators in (11) can

be found in [24]. As expected, we have again a trade-off between variance and bias.
The bias decreases, but the variance increases, and to try solving such a trade-off, an
adequate estimation of third-order parameters, still an almost open topic of research
in the area of statistics of extremes, would be needed. Anyway, at optimal levels,

H
GJ

can outperform H , as it is theoretically illustrated in Fig. 2.
A Monte-Carlo simulation of the mean value (E) and the root MSE (RMSE) of

the estimators under consideration have revealed similar patterns. On the basis of
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Fig. 2 Typical patterns of variance, bias and MSE of H , H and H
GJ

, as a function of the sample
fraction r D k=n

Fig. 3 Simulated mean values (left) and RMSEs (right) of the estimators under study, for a sample
of size n D 1;000 from an underlying Burr.�; �/ model, with .�; �/ D .1;�0:5/

5,000 runs, and for a Burr.�; �/ parent, with d.f. F.x/ D 1� .1Cx��=� /1=�, x � 0,
with � D 1 and � D �0:5, we present Fig. 3, as an illustration of the results obtained
for different underlying parents and different sample sizes.

As usual, we define the relative efficiency of any EVI-estimator as the quotient
between the simulated RMSE of the H -estimator and the one of any of the
estimators under study, both computed at their optimal levels, i.e. for any T -statistic,
consistent for the EVI-estimation,

REFFT0jH0
WD RMSE.H0/

RMSE.T0/
;

with T0 WD T .k0jT / and k0jT WD arg mink MSE.T .k//.
The simulation of those efficiencies for the same Burr model is based on 20 �

5;000 replicates and, as shown in Fig. 4, the REFF-indicators as a function of n,

are always larger than one, both for H , in (10) and for H
GJ

, in (11). Moreover,

H
GJ

, computed at its optimal level, in the sense of minimal MSE, just as mentioned
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Fig. 4 Simulated REFF
indicators, as a function of
the sample size n, for the
same Burr parent

above, attains the highest REFF for this Burr underlying parent, as well as for other
simulated parents with � > �1, unless n is very large. Details on multi-sample
Monte-Carlo simulation can be found in [16].

Some General Comments:
• The GJ-estimator has a bias always smaller than the one of the original estimator.
• Regarding MSE, we are able to go below the MSE of the MVRB H -estimator

for a large variety of underlying parents and small values of j�j, as was illustrated
here and can be further seen in [24].

• Apart from what happens for very small values of �, there is a high reduction in
the MSE of the GJ-estimator, at optimal levels, comparatively with the one of the
original H -estimator, despite the already nice properties of the H EVI-estimator.

3.2 The BootstrapMethodology for the Estimation of Sample
Fractions

As already mentioned in Sect. 2,

kAjH.n/ D arg min
k

AMSE
�
H.k/

� D arg min
k

��2

k
C b2

H
A4.n=k/

�

D k0jH.n/.1C o.1//:

The bootstrap methodology enables us to estimate the optimal sample fraction,
k0jH.n/=n in a way similar to the one used for the classical EVI estimation, in
[6, 9, 16], now through the use of any auxiliary statistic, such as

Tn.k/ � T H
n .k/ WD H.bk=2c/ �H.k/; k D 2; : : : ; n � 1;

which converges in probability to the known value zero, for intermediate k.
Moreover, under the third-order framework, in (7), we get:
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Tn.k/
dD � Pkp

k
C b

H
.22� � 1/ A2.n=k/COp

�
A.n=k/=

p
k
�
;

with Pk asymptotically standard normal. The AMSE of Tn.k/ is thus minimal at a
level k such that

p
k A2.n=k/ ! �0

A
6D 0. Consequently, denoting

kAjT .n/ WD arg min
k

AMSE
�
T H
n .k/

� D k0jT .1C o.1//;

we have

k0jH.n/ D k0jT .n/
�
1 � 22�

� 2
1�4� .1C o.1//: (12)

Note also that, with the adequate simple modifications, a similar comment applies

to the GJ EVI-estimator H
GJ
.k/, in (11).

Given the sample Xn D .X1; : : : ; Xn/ from an unknown model F , and the
functional Tn.k/ DW �k.Xn/, 1 � k < n, consider for any n1 D O.n1�	/,
0 < 	 < 1, the bootstrap sample X�n1 D .X�1 ; : : : ; X�n1/; from the model
F �n .x/ D Pn

iD1 IŒXi�x
=n; the empirical d.f. associated with our sample Xn.
Next, consider T �n1.k1/ WD �k1.X

�
n1
/; 1 < k1 < n1: Then, with k�

0jT .n1/ D
arg mink1 MSE

�
T �n1.k1/

�
,

k�0jT .n1/=k0jT .n/ D .n1=n/
4�

1�4� .1C o.1//; as n ! 1:

To get a simpler way of computing k0jT .n/ it is then sensible to use a double
bootstrap, based on another sample size n2. Then for every ˛ > 1,

�
k�
0jT .n1/

�˛
k�
0jT .n2/

�
n˛1
n˛

n

n2

	� 4�
1�4�

D ˚
k0jT .n/


˛�1
.1C o.1//:

It is then enough to choose n2 D �
n
�
n1
n

�˛˘
, in order to have independence of �. If

we put n2 D bn21=nc, i.e. ˛ D 2, we have

�
k�0jT .n1/

�2
=k�0jT .n2/ D k0jT .n/.1C o.1//;

and the possibility of estimating k0jT .n/ on the basis of k�
0jT .n1/ and k�

0jT .n2/ only.
We are next able to estimate k0jH.n/, on the basis of (12) and any estimate O� of the

second-order parameter �. Then, with Ok�
0jT denoting the sample counterpart of k�

0jT ,
we have the estimate

Ok�
0jH.nIn1/ WD min

 
n � 1;

$
c O� . Ok�0jT .n1//2

Ok�
0jT .bn21=nc C 1/

%
C 1

!
; c O� D

�
1 � 22 O�

� 2
1�4 O�

:
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Fig. 5 Sample paths of the
EVI-estimators under study
and bootstrap estimates of the
k0j�-values, for a Burr
random sample with � D 1

and � D �0:5

The final estimate of � is then given by H
� � H

�
n;n1jT WD H Ǒ; O�. Ok0jH.nIn1//: And

a similar procedure can be used to estimate any other parameter of extreme events,

as well as the EVI, either through H or through H
GJ

.
The application of the associated bootstrap algorithm, with n1 D n0:975 and

B D 250 generations, to the first randomly generated Burr.�; �/ sample of size
n D 1;000, with � D 1 and � D �0:5 led us to Ok�

0jH D 76, Ok�
0jH D 157, and

Ok�
0jHGJ D 790. The bootstrap EVI-estimates were H� D 1:259, H

� D 1:108 and

H
GJ� D 1:049, a value indeed closer to the target value � D 1. In Fig. 5 we present

the sample paths of the EVI-estimators under study.

4 Concluding Remarks

A few practical questions and final remarks can now be raised.
• How does the asymptotic method work for moderate sample sizes? Is the method

strongly dependent on the choice of n1? Although aware of the theoretical need
of n1 D o.n/, what happens if we choose n1 D n � 1? Answers to these
questions have not yet been fully given for the class of GJ EVI-estimators, in (11),
but will surely be similar to the ones given for classical estimation and for the
MVRB estimation. Usually, the method does not depend strongly on n1 and
practically we can choose n1 D n � 1. And here we can mention again the
old controversy between theoreticians and practioners: The value n1 D bn1�	c
can be equal to n � 1 for small 	 and a large variety of values of n, finite. Also,
kn D Œc lnn
 is intermediate for every constant c, and if we take, for instance,
c D 1=5, we get kn D 1 for every n � 22;026. And Hall’s formula of the
asymptotically optimal level for the Hill EVI-estimation (see [26]), given by

k0jH.n/ D
j�
.1 � �/2n�2�=

� � 2 � ˇ2
��1=.1�2�/k

and valid for models in (6),

may lead, for a fixed n, and for several choices of .ˇ; �/, to k0jH.n/ either equal
to 1 or to n � 1 according as � is close to 0 or quite small, respectively.
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• Note that bootstrap confidence intervals as well as asymptotic confidence
intervals are easily associated with the estimates presented, and the smallest size

(with a high coverage probability) is usually related to the EVI-estimator H
GJ

,
in (11), as expected.
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