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Abstract
Heavy-tailed autoregressive processes defined with minimum or maximum
operator are good alternatives to classic linear ARMA with heavy tail noises,
in what concerns extreme values modeling. In this paper we present a full
characterization of the tail dependence of the autoregressive minima process,
Yeh–Arnold–Robertson Pareto(III).

1 Introduction

Extreme value theory (EVT) provides tools that enable to estimate the probability
of events that are more extreme than any that have already been observed.
The classical result in EVT states that if the maximum of an independent and
identically distributed (i.i.d.) sequence of random variables (r.v.’s) converges to
some nondegenerate function G� , then it must be the generalized extreme value
(GEV) function,

G�.x/ D exp.�.1C �x/�1=� /, 1C �x > 0, � 2 R;

with the usual continuity correction G0.x/ D exp.�e�x/. The shape parameter � ,
known as the tail index, determines the tail behavior: if � > 0 we have a heavy
tail (Fréchet max-domain of attraction), � D 0 means an exponential tail (Gumbel
max-domain of attraction) and � < 0 indicates a short tail (Weibull max-domain of
attraction).
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The first results in EVT were developed under independence but, more recently,
models for extreme values have been constructed under more realistic assumption
of temporal dependence.

MARMA processes (maximum autoregressive moving average) with Fréchet
marginals, in particular ARMAX [or MARMA(1,0)], given by,

Xi D max.c Xi�1;Wi /;

with 0 < c < 1 and fWigi�1 i.i.d., have been successfully applied to time
series modeling in alternative to classical linear heavy-tailed ARMA (see [2]
and references therein). Generalizations of MARMA processes and respective
applications to financial time series can be seen in, e.g., [13] and [4]. Here we
shall focus on autoregressive Pareto processes, i.e., an autoregressive process whose
marginal distributions are of the Pareto or generalized Pareto form. As Pareto
observed [10], many economic variables have heavy-tailed distributions not well
modeled by the normal curve. Instead, he proposed a model, subsequently called, in
his honor, the Pareto distribution, whose tail function decreases at a negative power
of x as x ! 1, i.e., 1 � F.x/ � cx�˛; as x ! 1. Generalizations of Pareto’s
distribution have been proposed for modeling economic variables (a survey can be
seen in [1]).

We consider autoregressive Pareto(III) processes, more precisely, the
Yeh–Arnold–Robertson Pareto(III) [12], in short YARP(III)(1), given by

Xn D min
�
p�1=˛Xn�1;

1

1 � Un

"n

�
;

where innovations f"ngn�1 are i.i.d. r.v.’s with distribution Pareto(III)(0,� ,˛), i.e., a
generalized type III Pareto, such that

1 � F".x/ D
h
1C

�x
�

�˛i�1

; x > 0:

with �; ˛ > 0. The sequence fUngn�1 has i.i.d. r.v.’s with a Bernoulli.p/ distribution
(independent of the innovations). We interpret 1=0 as C1. By conditioning on Un,
it is readily verified that the YARP(III)(1) process has a Pareto(III)(0,� ,˛) stationary
distribution and will be completely stationary if the distribution of the starting r.v.
X0 is also Pareto(III)(0,� ,˛).

In this paper we analyze the dependence behavior of the YARP(III)(1) process
in the right tail (the most used for applications). This process is almost unknown
in literature but has large potential as it presents a quite similar tail behavior to
ARMAX and more robust parameters estimation [3]. We characterize the lag-m
tail dependence (m D 1; 2; : : :) by computing several coefficients considered in
[5, 6], defined under a temporal approach. The lag-m tail dependence allows a
characterization of the process in time, analogous to the role of the ACF of a linear
time series. In addition, these measures are also important in applications, such as
risk assessment in financial time series or in engineering, to investigate how the best
performer in a system is attracted by the worst one.
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2 Measures of Tail Dependence

The tail-dependence coefficient (TDC), usually denoted �, was the first tail
dependence concept appearing in literature in a paper by Sibuya, who has shown
that, no matter how high we choose the correlation of normal random pairs, if we
go far enough into the tail, extreme events tend to occur independently in each
margin [11]. It measures the probability of occurring extreme values for one r.v.
given that another assumes an extreme value too. More precisely,

� D lim
t#0

P.F1.X1/ > 1 � t jF2.X2/ > 1 � t /;

where F1 and F2 are the distribution functions (d.f.’s) of r.v.’s X1 and X2,
respectively. It characterizes the dependence in the tail of a random pair .X1;X2/, in
the sense that, � > 0 corresponds to tail dependence whose degree is measured by
the value of �, whereas � D 0 means tail independence. Modern risk management
is highly interested in assessing the amount of tail dependence. As an example, the
Value-at-Risk at probability level 1 � t (VaR1�t ) of a random asset Z is given by
the quantile function evaluated at 1� t , F �1

Z .1� t / D inffx W FZ.x/ � 1� tg, and
estimation is highly sensitive towards the tail behavior and the tail dependence of
the portfolio’s asset-return distribution. Observe that the TDC can be formulated as

� D lim
t#0

P.X1 > VaR1�t .X1/jX2 > VaR1�t .X2//:

Generalizations of the TDC have been considered with several practical applica-
tions. In [6], for integers s and k such that 1 � s < d�kC1 � d , it was considered
the upper s; k-extremal coefficient of random vector X D .X1; : : : ; Xd /, defined by

�U .XsWd jXd�kC1Wd / � �U .UsWd jUd�kC1Wd /

D lim
t#0

P.UsWd > 1 � t jUd�kC1Wd > 1 � t /;

where U1Wd � : : : � Ud Wd are the order statistics of .F1.X1/; : : : ; Fd .Xd // and Xi Wd
the inverse probability integral transform of Ui Wd . In engineering, the coefficient
�U .XsWd jXd�kC1Wd / can be interpreted as the limiting probability that the sth worst
performer in a system is attracted by the kth best one, provided the latter has an
extremely good performance. In mathematical finance, �U .XsWd jXd�kC1Wd / can be
viewed as the limiting conditional probability that XsWd violates its value-at-risk at
level 1 � t , given that Xd�kC1Wd has done so. If s D k D 1, we obtain the upper
extremal dependence coefficient, �U , considered in [7].

The study of systemic stability is also an important issue within the context of
extreme risk dependence. The fragility of a system has been addressed through
the Fragility Index (FI) introduced in [8]. More precisely, consider a random
vector X D .X1; : : : ; Xd / with d.f. F and Nx WD Pd

iD1 1fXi>xg the number of
exceedances among X1; : : : ; Xd above a threshold x. The FI corresponding to X
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is the asymptotic conditional expected number of exceedances, given that there
is at least one exceedance, i.e., FI D limx!1 E.NxjNx > 0/. The stochastic
system fX1; : : : ; Xd g is called fragile whenever FI > 1. In [5] it can be seen as
a generalization of the FI that measures the stability of a stochastic system divided
into blocks. More precisely, the block-FI of a random vector X D .X1; : : : ; Xd /

relative to a partition D D fI1; : : : ; Isg of D D f1; : : : ; dg is

FI.X;D/ D lim
x!1E.NxjNx > 0/;

where Nx is the number of blocks where it occurs at least one exceedance of x, i.e.,

Nx D
sX

jD1

1fXIj 6�xIj g;

and where XIj is a sub-vector of X whose components have indexes in Ij , with j D
1; : : : ; s (i.e., XIj is the j th block of random vector X) and xIj is a vector of length
jIj j with components equal to x 2 R. Observe that if we consider a partition D� D
fIj D fj g W j D 1; : : : dg, then the coefficient FI.X;D�/ is the FI introduced
in [8]. All operations and inequalities on vectors are meant componentwise.

Here we shall consider the abovementioned tail dependence coefficients defined
in a time series perspective. More precisely, consider a stationary process fXigi�1

with marginal d.f. FX . The lag-m TDC (m D 1; 2; : : :) is given by

�m D lim
t#0

P.FX.X1Cm/ > 1 � t jFX.X1/ > 1 � t /;

measuring the probability of occurring one extreme value observation given that
another assumes an extreme value too, whenever separated in time by a lag-m.
Analogously, we define the lag-m upper s; k-extremal coefficient,

�U .XsWmjXm�kC1Wm/ � �U .UsWmjUm�kC1Wm/

D lim
t#0

P.UsWm > 1 � t jUm�kC1Wm > 1 � t /;

a measure of the probability that, for a horizon of m successive time instants, the
sth worst performer is attracted by the kth best one, provided the latter has an
extremely good performance. If s D k D 1, we obtain the lag-m upper extremal
dependence coefficient, �Um . Finally, the lag-m block-FI relative to a partition Dm of
Dm D f1; : : : ; mg is

FI.X;Dm/ D lim
x!1E.NxjNx > 0/;

where, for a horizon of m successive time instants, Nx is the number of blocks
where it occurs at least one exceedance of x. Hence it measures the stability within
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m successive time instants of a stochastic process divided into blocks. Analogously
we define the FI.X;D�

m/ for a partition D� D fIj D fj g W j D 1; : : : mg as the
lag-m FI version of [8].

3 Tail Dependence of YARP(III)(1)

In this section we shall present a characterization of the dependence structure and
tail behavior of the YARP(III)(1) process. We start with the reference to some
existing results and then we compute the above mentioned measures.

In order to determine the distribution of the maximum, Mn D max0�i�n Xi , it
is convenient to consider a family of level crossing processes fZn.x/g indexed by
x > 0, defined by

Zn.x/ D
�
1 if Xn > x

0 if Xn � x:

These two processes are themselves Markov chains with corresponding transition
matrices given by

P D �
1C �

x
�

�˛��1

�
p C �

x
�

�˛
1 � p

.1 � p/
�
x
�

�˛
1C p

�
x
�

�˛
�
:

Hence, we have

FMn.x/ D P.Mn � x/ D P.Z0.x/ D 0;Z1.x/ D 0; : : : ; Zn.x/ D 0/

D P.X0 � x/P.Zi .x/ D 0jZi�1.x/ D 0/n D
�
x
�

�˛
1C
�
x
�

�˛
�
pC

�
x
�

�˛
1C
�
x
�

�˛
�n

and n�1=˛

�
Mn

d! FrKechet.0; .1 � p/�1; ˛/.

In [3] it was proved that the YARP(III)(1) process presents a ˇ-mixing depen-
dence structure. Hence, it satisfies the local dependence condition D.un/ of
Leadbetter [9] for any real sequence fungn�1 and so, for each � > 0 such that
n.1 � FX.un// ! � , as n ! 1, we have P.Mn � un/ ! e��� as n ! 1, with
� D 1�p (Proposition 2.2 of [3]). The parameter � , known in literature as extremal
index, is associated with the tendency of clustering of high levels: in case � < 1

large values tend to occur in clusters, i.e., near each other and tail dependence takes
place. Indeed, the YARP(III)(1) process presents tail dependence with lag-m TDC,
�m D pm (see Proposition 2.8 of [3]).
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The one-step transition probability function (tpf) of the YARP(III)(1) process is
given by:

Q.x; �0; y�/ D P.Xn � yjXn�1 D x/ D P.min.p�1=˛x; "n
1�Un

/ � y/

D
(
1 � P. "n

1�Un
> y/ ; x > yp1=˛

1 ; x � yp1=˛
D

�
.1 � p/F".y/ ; x > yp1=˛

1 ; x � yp1=˛:

Similarly, we derive the m-step tpf:

Qm.x; �0; y�/ D
(
1 �Qm�1

jD0ŒF ".p
j=˛y/.1 � p/C p� ; x > ypm=˛

1 ; x � ypm=˛:
(1)

In the sequel we shall denote at the quantile function at 1 � t , i.e.,

at � F �1
X .1 � t / D �.t�1 � 1/1=˛ (2)

and, for a set A, ˛.A/ and 	.A/ denote the maximum and the minimum of A,
respectively.

Proposition 1. The YARP(III)(1) process has lag-m upper s; k-extremal coefficient,

�U .XsWmjXm�kC1Wm/

D

s�1X
iD0

X
I2Fi

X
J�I

.�1/jJ jp˛.I[J /�	.I[J /

�
X

;6DJ�Dm

.�1/jJ jp˛.J /�	.J /�
k�1X
iD1

X
I2Fi

X

J�I

.�1/jJ jp˛.I[J /�	.I[J /

;

where Fi denotes the family of all subsets of Dm D f1; : : : ; mg with cardinal equal
to i and I the complement set of I 2 Fi in Dm.

Proof. Consider notation PA.t/ D P
�T

a2AfFX.Xa/ > 1 � tg�, for any set A.
From Propositions 2.1 and 2.9 in [6], we have

�U .XsWmjXm�kC1Wm/ D lim
t#0

s�1X
iD0

X
I2Fi

X
J�I

.�1/jJ jPI[J .t/=t

�
X

;6DJ�f1;:::;mg
.�1/jJ jPJ .t/=t�

k�1X
iD1

X
I2Fi

X

J�I

.�1/jJ jPI[J .t/=t

:
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Now just observe that, for i1 < i2 < i3, we have successively

Pfi1;i2;i3g.t/ D
Z 1

at

P.Xi3 > at ; Xi2 > at jXi1 D u1/dFX.u1/

D
Z 1

at

Z 1

at

P.Xi3 > at jXi2 D u2/Q.u1; du2/dFX.u1/

D
Z 1

at

Z 1

at

Œ1 �Qi3�i2 .u2; �0; at �/�Q
i2�i1 .u1; du2/dFX.u1/;

where at is given in (2). Applying (1), we obtain

Pfi1;i2;i3g.t/ D t Œt C pi3�i2 .1 � t /�

Z 1

at

Z 1

at

Qi2�i1 .u1; du2/dFX.u1/

D t Œt C pi3�i2 .1 � t /�

Z 1

at

Œ1 �Qi2�i1 .u1; �0; at �/�dFX.u1/

D Œt C pi3�i2 .1 � t /�Œt C pi2�i1 .1 � t /�t:

A similar reasoning leads us to, for i1 < i2 < : : : < ik ,

P
fi1;:::;ikg.t/

D
Z

1

at

: : :

Z
1

at

�
1 �Qik�ik�1

�
uik�1 ; �0; at �

��k�1Y
jD2

Qik�j�ik�jC1 .uik�j ; duik�jC1
/dFX.ui1 /

D Qk
jD2.t C pij�ij�1 .1 � t //t ;

and hence

lim
t#0

Pfi1;:::;ikg.t/=t D lim
t#0

kY
jD2

.t C pij�ij�1 .1 � t // D pik�i1 : (3)

ut

Corollary 1. The YARP(III)(1) process has lag-m upper extremal dependence
coefficient,

�Um D pm�1

m � .m � 1/p
:

A positive �Um means the existence of extremal dependence on a time horizon of m
time instants.

Proposition 2. The YARP(III)(1) process has lag-m block-FI, relative to a partition
Dm of Dm D f1; : : : ; mg, given by
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FI.X;Dm/ D
Ps

jD1

P
k2Ij .�1/k�1

P
J�Ij IjJ jDk p

˛.J /�	.J /

m � .m � 1/p
:

Proof. Based on Propositions 3.1 and 5.2 in [5], we have

FI.X;Dm/ D lim
t#0

Ps
jD1 P.

S
i2Ij fFX.Xi / > 1 � tg/

1 � P.
T

i2f1;:::mgfFX.Xi / < 1 � tg/
D lim

t#0

Ps
jD1

P
k2Ij .�1/k�1

P
J�Ij IjJ jDk P.

T
i2J fFX.Xi / > 1�tg/

1 � FMm�1 .at /
:

Now observe that, from (3), we have

lim
t#0

P.\i2J fFX.Xi / > 1 � tg/=t D p˛.J /�	.J /

and from (1) and (2), we have

lim
t#0

.1�FMm�1 .at //=t D lim
t#0

1

t

	
1� t�1 � 1

t�1

�p C t�1 � 1

t�1

�m�1


D m�.m�1/p :

ut

Corollary 2. The YARP(III)(1) process has lag-m FI,

FI.X;D�
m/ D

m

m � .m � 1/p
:

Therefore, on a time horizon of m (m > 1) time instants the process is strongly
fragile since FI > 1.

We remark that the tail measures given above only depend on the parameter p of
the YARP(III)(1) process and thus can be estimated through this latter. For a survey
on the estimation of p, see [3].
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