
Chapter 8
Distances on Spaces of High-Dimensional
Linear Stochastic Processes: A Survey

Bijan Afsari and René Vidal

Abstract In this paper we study the geometrization of certain spaces of stochastic
processes. Our main motivation comes from the problem of pattern recognition in
high-dimensional time-series data (e.g., video sequence classification and clustering).
In the first part of the paper, we provide a rather extensive review of some existing
approaches to defining distances on spaces of stochastic processes. The majority
of these distances are, in one way or another, based on comparing power spectral
densities of the processes. In the second part, we focus on the space of processes
generated by (stochastic) linear dynamical systems (LDSs) of fixed size and order,
for which we recently introduced a class of group action induced distances called
the alignment distances. This space is a natural choice in some pattern recognition
applications and is also of great interest in control theory, where it is often convenient
to representLDSs in state-space form. In this case the space (morepreciselymanifold)
of LDSs can be considered as the base space of a principal fiber bundle comprised
of state-space realizations. This is due to a Lie group action symmetry present in the
state-space representation of LDSs. The basic idea behind the alignment distance is
to compare two LDSs by first aligning a pair of their realizations along the respective
fibers. Upon a standardization (or bundle reduction) step this alignment process can
be expressed as a minimization problem over orthogonal matrices, which can be
solved efficiently. The alignment distance differs from most existing distances in
that it is a structural or generative distance, since in some sense it compares how two
processes are generated.We also briefly discuss averaging LDSs using the alignment
distance via minimizing a sum of the squares of distances (namely, the so-called
Fréchet mean).
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8.1 Introduction and Motivation

Pattern recognition (e.g., classification and clustering) of time-series data is important
in many real world data analysis problems. Early applications include the analysis of
one-dimensional data such as speech and seismic signals (see, e.g., [48] for a review).
More recently, applications in the analysis of video data (e.g., activity recognition
[1]), robotic surgery data (e.g., surgical skill assessment [12]), or biomedical data
(e.g., analysis of multichannel EEG signals) have motivated the development of
statistical techniques for the analysis of high-dimensional (or vectorial) time-series
data.

The problem of pattern recognition for time-series data, in its full generality, needs
tools from the theory of statistics on stochastic processes or function spaces. Thus
it bears relations with the general problem of inference on (infinite dimensional)
spaces of stochastic processes, which requires a quite sophisticated mathematical
theory [30, 59]. However, at the same time, the pattern recognition problem is more
complicated since, in general, it involves not only inference but also learning. Learn-
ing and inference on infinite dimensional spaces obviously can be daunting tasks. In
practice, there have been different grand strategies proposed to deal with this prob-
lem (e.g., see [48] for a review). In certain cases it is reasonable and advantageous
from both theoretical and computational points of view to simplify the problem
by assuming that the observed processes are generated by models from a specific
finite-dimensional class of models. In other words, one could follow a parametric
approach based on modeling the observed time series and then performing statisti-
cal analysis and inference on a finite dimensional space of models (instead of the
space of the observed raw data). In fact, in many real-world instances (e.g., video
sequences [1, 12, 22, 60] or econometrics [7, 20, 24]), one couldmodel the observed
high-dimensional time series with low-order Linear Dynamical Systems (LDSs). In
such instances the mentioned strategy could prove beneficial, e.g., in terms of imple-
mentation (due to significant compression achieved in high dimensions), statistical
inference, and synthesis of time series. For 1-dimensional time-series data the suc-
cess of Linear Predictive Coding (i.e., auto-regressive (AR) modeling) modeling and
its derivatives inmodeling speech signals is a paramount example [26, 49, 58]. These
motivations lead us to state the following prototype problem:

Problem 1 (Statistical analysis on spaces of LDSs) Let { yi }N
i=1 be a collection of

p-dimensional time series indexed by time t . Assume that each time series yi =
{ yi

t }∞t=1 can be approximately modeled by a (stochastic) LDS Mi of output-input
size (p, m) and order n1 realized as

1 Typically in video analysis: p ≈ 1000–10000, m, n ≈ 10 (see e.g., [1, 12, 60]).
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xi
t = Ai xi

t−1 + Bivt ,

yi
t = Ci xi

t + Divt , (Ai , Bi , Ci , Di ) ∈ ˜SLm,n,p = R
n×n × R

n×m × R
p×n × R

p×m

(8.1)

where vt is a common stimulus process (e.g., white Gaussian noise with identity
covariance)2 and where the realization Ri = (Ai , Bi , Ci , Di ) is learnt and assumed
tobeknown.Theproblem is to: (1)Choose an appropriate spaceS ofLDSs containing
the learnt models {Mi }N

i=1, (2) geometrize S, i.e., equip it with an appropriate geom-
etry (e.g., define a distance on S), (3) develop tools (e.g., probability distributions,
averages or means, variance, PCA) to perform statistical analysis (e.g., classification
and clustering) in a computationally efficient manner.

The first question to ask is: why model the processes using the state-space model
(representation) (8.1)? Recall that processes have equivalent ARMA and state-space
representations. Moreover, model (8.1) is quite general and with n large enough it
can approximate a large class of processes. More importantly, state-space represen-
tations (especially in high dimensions) are oftenmore suitable for parameter learning
or system identification. In important practical cases of interest such models con-
veniently yield more parsimonious parametrization than vectorial ARMA models
which suffer from the curse of dimensionality [24]. The curse of dimensionality in
ARMA models stems from the fact that for p-dimensional time series if p is very
large the number of parameters of an ARMA model is roughly proportional to p2,
which could be much larger than the number of data samples available pT , where T
is the observation time period (note that the autoregressive coefficient matrices are
very large p × p matrices). However, in many situations encountered in real world
examples, state-space models are more effective in overcoming the curse of dimen-
sionality [20, 24]. The intuitive reason, as already alluded to, is that often (very)
high-dimensional time series can be well approximated as being generated by a low
order but high-dimensional dynamical system (which implies small n despite large
p in the model (8.1)). This can be attributed to the fact that the components of the
observed time series exhibit correlations (cross sectional correlation). Moreover, the
contaminating noises also show correlation across different components (see [20, 24]
for examples of exact and detailed assumptions and conditions to formalize these
intuitive facts). Therefore, overall the number of parameters in the state-space model
is small compared with p2 and this is readily reflected in (or encoded by) the small
size of the dynamicsmatrix Ai and the thinness of the observationmatrixCi in (8.1).3

2 Note that in a different ormore general setting the noise at the output could be a processwt different
(independent) from the input noise vt . This does not causemajor changes in our developments. Since
the output noise usually represents a perturbation which cannot be modeled, as far as Problem 1 is
concerned, one could usually assume that Di = 0.
3 Note that we are not implying that ARMA models are incapable of modeling such time series.
Rather the issue is that general or unrestrictedARMAmodels suffer from the curse of dimensionality
in the identification problem, and the parametrization of a restricted class of ARMA models with a
small number of parameters is complicated [20]. However, at the same time, by using state-space
models it is easier to overcome the curse of dimensionality and this approach naturally leads to
simple and effective identification algorithms [20, 22].
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Also, in general, state-space models are more convenient for computational purposes
than vectorial ARMA models. For example, in the case of high-dimensional time
series most effective estimation methods are based on state-space domain system
identification rooted in control theory [7, 41, 51]. Nevertheless, it should be noted
that, in general, the identification of multi-input multi-output (MIMO) systems is a
subtle problem (see Sect. 8.4 and e.g., [11, 31, 32]). However, for the case where
p > n, there are efficient system identification algorithms available for finding the
state-space parameters [20, 22].

Notice that in Problem1 we are assuming that all the LDSs have the same order
n (more precisely the minimal order, see Sect. 8.3.3.1). Such an assumption might
seem rather restrictive and a more realistic assumption might be that all systems be
of order not larger than n (see Sect. 8.5.1). Note that since in practice real data can be
only approximately modeled by an LDS of fixed order, if n is not chosen too large,
then gross over-fitting of n is less likely to happen. From a practical point of view
(e.g., implementation) fixing the order for all systems results in great simplification in
implementation. Moreover, in classification or clustering problems one might need
to combine (e.g., average) such LDSs for the goal of replacing a class of LDSs
with a representative LDS. Ideally one would like to define an average in a such a
way that LDSs of the same order have an average of the same order and not higher,
otherwise the problem can become intractable. In fact, most existing approaches tend
to dramatically increase the order of the average LDS, which is certainly undesirable.
Therefore, intuitively, we would like to consider a space S in which the order of the
LDSs is fixed or limited. From a theoretical point of view also this assumption allows
us to work with nicer mathematical spaces namely smooth manifolds (see Sect. 8.4).

Amongst the most widely used classification and clustering algorithms for static
data are the k-nearest neighborhood and k-means algorithms, both of which rely
on a notion of distance (in a feature space) [21]. These algorithms enjoy certain
universality properties with respect to the probability distributions of the data; and
hence in many practical situations where one has little prior knowledge about the
nature of the data, they prove to be very effective [21, 35]. In view of this fact,
in this paper we focus on the notion of distance between LDSs and the stochastic
processes they generate. Hence, a natural question is what space we should use and
what type of distance we should define on it. In Problem1, obviously, the first two
steps (which are the focus of this paper) have significant impacts on the third one.
One has different choices for the space S, as well as, for geometries on that space.
The gamut ranges from an infinite dimensional linear space to a finite dimensional
(non-Euclidean) manifold, and the geometry can be either intrinsic or extrinsic. By
an intrinsic geometry we mean one in which a shortest path between two points in
a space stays in the space, and by an extrinsic geometry we mean one where the
distance between the two points is measured in an ambient space. In the second part
of this paper, we study our recently developed approach, which is somewhere in
between: to design an easy-to-compute extrinsic distance, while keeping the ambient
space not too large.

This paper is organized as follows: In Sect. 8.2, we review some existing
approaches in geometrization of spaces of stochastic processes. In Sect. 8.3, we focus
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on processes generated by LDSs of fixed order, and in Sect. 8.4, we study smooth
fiber bundle structures over spaces of LDSs generating such processes. Finally, in
Sect. 8.5, we introduce our class of group action induced distances namely the align-
ment distances. The paper is concluded in Sect. 8.6. To avoid certain technicalities
and just to convey the main ideas the proofs are omitted and will appear elsewhere.
We should stress that the theory of alignment distances on spaces of LDSs is still
under development; however, its basics have appeared in earlier papers [1–3]. This
paper for most parts is an extended version of [3].

8.2 A Review of Existing Approaches to Geometrization
of Spaces of Stochastic Processes

This review, in particular, since the subject appears in a range of disciplines is non-
exhaustive. Our emphasis is on the core ideas in defining distances on spaces of
stochastic processes rather than enumerating all such distances. Other sources to
consult may include [9, 10, 25]. In view of Problem1, our main interest is in the
finite dimensional spaces of LDSs of fixed order and the processes they generate.
However, since such a space can be embedded in the larger infinite dimensional space
of “virtually all processes,” first we consider the latter.

Remark 1 We shall discuss several “distance-like” measures some of which are
known as “distance” in the literature. We will try to use the term distance exclusively
for a true distance namely one which is symmetric, positive definite and obeys the tri-
angle inequality.Due to convention or convenience,we stillmay use the termdistance
for somethingwhich is not a true distance, but the contextwill be clear.Adistance-like
measures is called a divergence it is only positive definite and it is called pseudo-
distance, if it is symmetric and obeys the triangle inequality but it is only positive
semi-definitive (i.e., a zero distance between two processes does not imply that they
are the same). As mentioned above, our review is mainly to show different schools of
thought and theoretical approaches in defining distances. Obviously, when it comes
to comparing these distances and their effectiveness (e.g., in terms of recognition
rate in a pattern recognition problem) ultimately things very much depend on the
specific application at hand. Although we should mention that for certain 1D spectral
distances there has been some research about their relative discriminative properties,
especially for applications in speech processing, the relation between such distances
and the human auditory perception system has been studied (see e.g., [9, 25, 26,
29, 49, 54]). Perhaps one aspect that one can judge rather comfortably and indepen-
dently of the specific problem is the associated computational costs of calculating the
distance and other related calculations (e.g., calculating a notion of average). In that
regard, for Problem1, when the time-series dimension p is very large (e.g., in video
classification problems) our introduced alignment distance (see Sect. 8.5) is cheaper
to calculate relative to most other distances and also renders itself quite effective in
defining a notion of average [1].
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Remark 2 Throughout the paper, unless otherwise stated, by a process we mean
a (real-valued) discrete-time wide-sense (or second order) stationary zero mean
Gaussian regular stochastic process (i.e., one with no deterministic component).
Some of the language used in this paper is borrowed from the statistical signal
processing and control literature forwhich standard references include [40, 56]. Since
we use the Fourier and z-transforms often and there are some disparities between the
definitions (or notations) in the literature we review some terminologies and estab-
lish some notations. The z-transform of a matrix sequence {ht }+∞−∞(ht ∈ R

p×m) is
defined as H(z) = ∑+∞

−∞ ht z−t for z in the complex plane C. By evaluating H(z)
on the unit circle in the complex plane C (i.e., by setting z = eiω,ω ∈ [0, 2π])
we get H(eiω), the Fourier transform of {ht }+∞−∞, which sometimes we denote by
H(ω). Note that the z-transform of {h−t }+∞−∞ is H(z−1) and its Fourier transform

is H(e−iω), and since we deal with real sequences it is the same as H(eiω), the
complex conjugate of H(eiω). Also any matrix sequence {ht }+∞

0 defines (causal) a
linear filter via the convolution operation yt = ht ∗ et = ∑∞

τ=0 hτεt−τ on the m-
dimensional sequence εt . In this case, we call H(ω) or H(z) the transfer function of
the filter and {ht }+∞

0 the impulse response of the filter. We also say that εt is filtered
by H to generate yt . If H(z) is an analytic function of z outside the unit disk in the
complex plane, then the filter is called asymptotically stable. If the transfer function
H(z) is a rational matrix function of z (meaning that each entry of H(z) is a rational
function of z), then the filter has a finite order state-space (LDS) realization in the
form (8.1). The smallest (minimal) order of such an LDS can be determined as the
sum of the orders of the denominator polynomials (in z) in the entries appearing in a
specific representation (factorization) of H(z), known as the Smith-McMillan form
[40]. For a square transfer function this number (known as the McMillan degree) is,
generically, equal to the order of the denominator polynomial in the determinant of
H(z). The roots of these denominators are the eigenvalues of the A matrix in the
minimal state-space realization of H(z) and the system is asymptotically stable if all
these eigenvalues are inside the unit disk in C.

8.2.1 Geometrizing the Space of Power Spectral Densities

A p-dimensional process { yt} can be identified with its p × p covariance sequence
sequences C y(τ ) = E{ yt y�

t−τ } (τ ∈ Z), where � denotes matrix transpose and
E{·} denotes the expectation operation under the associated probability measure.
Equivalently, the process can be identified by the Fourier (or z) transform of its
covariance sequence, namely the power spectral density (PSD) Py(ω), which is a
p × p Hermitian positive semi-definite matrix for every ω ∈ [0, 2π].4 We denote
the space of all p × p PSD matrices by Pp and its subspace consisting of elements

4 Strictly speaking, in order to be the PSD matrix of a regular stationary process, a matrix function
on [0, 2π] must satisfy other mild technical conditions (see [62] for details).
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that are full-rank for almost every ω ∈ [0, 2π] by P+
p . Most of the literature prior to

2000 is devoted to geometrization of P+
1 .

Remark 3 It is worth mentioning that the distances we discuss below here are blind
to correlations, meaning that two processes might be correlated but their distance can
be large or they can be uncorrelated but their distance can be zero. For us the starting
point is the identification of a zero-mean (Gaussian) process with its probability
distribution and hence its PSD. Consider the 1D case for convenience. Then in the
Hilbert space geometry a distance between processes y1t and y2t can be defined
as E{( y1t − y2t )

2} in which case the correlation appears in the distance and a zero
distance means almost surely equal sample paths, whereas in PSD-induced distances
yt and − yt which have completely different sample paths have zero distance. In a
more technical language, the topology induced by the PSD-induced distances on
stochastic processes is coarser than the Hilbert space topology. Hence, perhaps to be
more accurate we should further qualify the distances in this paper by the qualifier
“PSD-induced”. Obviously, theHilbert space topologymay be too restrictive in some
practical applications. Interestingly, in the derivation of the Hellinger distance (see
below) based on the optimal transport principle the issue of correlation shows up
and there optimality is achieved when the two processes are uncorrelated (hence
the distance is computed as if the processes were uncorrelated, see [27, p. 292]
for details). In fact, this idea is also present in our approach (and most of the other
approaches), where in order to compare twoLDSswe assume that they are stimulated
with the same input process, meaning uncorrelated input processes with identical
probability distributions (see Sect. 8.3).

The space Pp is an infinite dimensional cone which also has a convex linear
structure coming from matrix addition and multiplication by nonnegative reals. The
most immediate distance on this space is the standard Euclidean distance:

d2
E( y1, y2) =

∫

‖Py1(ω) − Py2(ω)‖2dω, (8.2)

where ‖ · ‖ is a matrix norm (e.g., the Frobenius norm ‖ · ‖F ). In the 1-dimensional
case (i.e., P1) one could also define a distance based on the principle of optimal
decoupling or optimal (mass) transport between the probability distributions of the
two processes [27, p. 292]. This approach results in the formula:

d2
H( y1, y2) =

∫

∣

∣

√

Py1(ω) −
√

Py2(ω)
∣

∣

2dω, (8.3)

This distance is derived in [28] and is also called the d̄2-distance (see also [27, p. 292]).
In view of the Hellinger distance between probability measures [9], the above
distance, in the literature, is also called the Hellinger distance [23]. Interestingly,
dH remains valid as the optimal transport-based distance for certain non-Gaussian
processes, as well [27, p. 292]. The extension of the optimal transport-based defini-
tion to higher dimensions is not straightforward. However, note that inP1, dH can be
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thought of as a square root version of dE. In fact, the square root based definition can
be easily extended to higher dimensions, e.g., in (8.3) one could simply replace the
scalar square roots with the (matrix) Hermitian square roots of Pyi (ω), i = 1, 2 (at
each frequency ω) and use a matrix norm. Recall that the Hermitian square root of
the Hermitian matrix Y is the unique Hermitian solution of the equation Y = X X H ,
where H denotes conjugate transpose. We denote the Hermitian square root of Y as
Y 1/2. Therefore, we could define the Hellinger distance in higher dimensions as

d2
H( y1, y2) =

∫

‖P1/2
y1 (ω) − P1/2

y2 (ω)‖2Fdω, (8.4)

However note that, for any unitary matrix U , X = Y 1/2U is also a solution to
Y = X X H (but not Hermitian if U differs from the intensity). This suggests that,
one may be able to do better by finding the best unitary matrix U (ω) to minimize
‖P1/2

y1 (ω)− P1/2
y2 (ω)U (ω)‖F (at each frequency ω). In [23] this idea has been used to

define the (improved) Hellinger distance onPp, which can be written in closed-form
as

d2
H′( y1, y2) =

∫

‖P1/2
y1 − P1/2

y2
(

P1/2
y2 Py1 P1/2

y2
)−1/2

P1/2
y2 P1/2

y1 ‖2Fdω, (8.5)

where dependence of the terms onω has been dropped.Notice that thematrixU (ω) =
(

P1/2
y2 Py1 P1/2

y2
)−1/2

P1/2
y2 P1/2

y1 is unitary for everyω and in fact it is a transfer function
of an all-pass possibly infinite dimensional linear filter [23]. Here, by an all-pass
transfer function or filterU (ω)wemean one for whichU (ω)U (ω)H = Ip. Also note
that (8.5) seemingly breaks down if either of the PSDs is not full-rank. However,
solving the related optimization shows that by continuity the expression remains
valid.We should point out that recently a class of distances onP1 has been introduced
byGeorgiou et al. based on the notion of optimalmass transport ormorphismbetween
PSDs (rather than probability distributions, as above) [25]. Such distances enjoy some
nice properties, e.g., in terms of robustness with respect tomultiplicative and additive
noise [25]. An extension to Pp also has been proposed [53]; however, the extension
is no longer a distance and it is not clear if it inherits the robustness property.

Another (possibly deeper) aspect of working with the square root of the PSD
is related to the ideas of spectral factorization and the innovations process. We
review some basics, which can be found, e.g., in [6, 31, 32, 38, 62, 65]. The
important fact is that the PSD Py(ω) of a regular process yt in Pp is of constant
rank m ≤ p almost everywhere in [0, 2π]. Moreover, it admits a factorization
of the form Py(ω) = Pl y(ω)Pl y(ω)H , where Pl y(ω) is p × m-dimensional and
uniquely determines its analytic extension Pl y(z) outside the unit disk in C. In
this factorization, Pl y(ω), itself, is not determined uniquely and any two such fac-
tors are related by an m × m-dimensional all-pass filter. However, if we require
the extension Pl y(z) to be in the class of minimum phase filters, then the choice
of the factor Pl y(ω) becomes unique up to a constant unitary matrix. A p × m
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(m ≤ p) transfer function matrix H(z) is called minimum phase if it is analytic
outside the unit disk and of constant rank m there (including at z = ∞). Such a
filter has an inverse filter, which is asymptotically stable. We denote this particular
factor of Py by P+ y and call it the canonical spectral factor. The canonical factor is
still not unique, but the ambiguity is only in a constant m × m unitary matrix. The
consequence is that yt can be written as yt = ∑∞

τ=0 p+τεt−τ , where the p × m
matrix sequence {p+t }∞t=0 is the inverse Fourier transform of P+ y(ω) and εt is an
m-dimensional white noise process with covariance equal to the identity matrix Im .
This means that yt is the output of a linear filter (i.e., an LDS of possibly infinite
order) excited by a white noise process with standard covariance. The process εt

is called the innovations process or fundamental process of yt . Under the Gaussian
assumption the innovation process is determined uniquely, otherwise it is determined
up to an m × m unitary factor. The important case is when Py(z) is full-rank outside
the unit disk, in which case the inverse filter P−1+ y is well-defined and asymptotically
stable, and one could recover the innovations process by filtering yt by its whitening
filter P−1+ y .

Now, to compare two processes, one could somehow compare their canonical
spectral factors5 or if they are in P+

p their whitening filters. In [38] a large class
of divergences based on the idea of comparing associated whitening filters (in the
frequency domain) have been proposed. For example, let P+ yi

be the canonical
factor of Pyi

, i = 1, 2. If one filters yi
t , i = 1, 2, with P−1

+ y j , j = 1, 2, then the

output PSD is P−1
+ y j Pyi P−H

+ y j . Note that when i = j then the output PSD is Ip across

every frequency. It can be shown that dI ( y1, y2) = ∫

tr(P−1
+ y1 Py2 P−H

+ y1 − Ip) +
tr(P−1

+ y2 Py1 P−H
+ y2 − Ip)dω is a symmetric divergence [38]. Note that dI ( y1, y2) is

independent of the unitary ambiguity in the canonical factor and in fact

dI ( y1, y2) =
∫

tr(P−1
y1 Py2 + P−1

y2 Py1 − 2Ip)dω. (8.6)

Such divergences enjoy certain invariance properties, e.g., if we filter both processes
with a common minimum phase filter, then the divergence remains unchanged. In
particular, it is scale-invariant. Such properties are shared by the distances or diver-
gences that are based on the ratios of PSDs (see below for more examples). Scale
invariance in the case of 1D PSDs has been advocated as a desirable property, since in
many cases the shape of the PSDs rather than their relative scale is the discriminative
feature (see e.g., [9, 26]).

One can arrive at similar distances from other geometric or probabilistic paths.
One example is the famous Itakura-Saito divergence (sometimes called distance)

5 In fact, our approach (in Sects. 8.3–8.5) is also based on the idea of comparing the minimum phase
(i.e., canonical) filters or factors in the case of processes with rational spectra. However, instead of
comparing the associated transfer functions or impulse responses, we try to compare the associated
state-space realizations (in a specific sense). This approach, therefore, is in some sense structural or
generative, since it tries to compare how the processes are generated (according to the state-space
representation) and the model order plays an explicit role in it.
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between PSDs in P+
1 which is defined as

dIS( y1, y2) =
∫ (

Py1

Py2
− log

Py1

Py2
− 1

)

dω. (8.7)

This divergence has been used in practice, at least, since the 1970s (see [48] for
references). The Itakura-Saito divergence can be derived from the Kullback-Leibler
divergence between (infinite dimensional) probability densities of the two processes
(The definition is a time-domain based definition, however, the final result is read-
ily expressible in the frequency domain).6 On the other hand, Amari’s information
geometry-based approach [5, Chap. 5] allows to geometrize P+

1 in various ways and
yields different distances including the Itakura-Saito distance (8.7) or a Riemannian
distance such as

d2
R( y1, y2) =

∫ (

log
( Py1

Py2

)

)2

dω. (8.8)

Furthermore, in this framework one can define geodesics between two processes
under various Riemannian or non-Riemannian connections. The high-dimensional
version of the Itakura-Saito distance has also been known since the 1980s [42] but
is less used in practice:

dIS( y1, y2) =
∫

(

trace(P−1
y2 Py1) − log(det(P−1

y2 Py1)) − p
)

dω. (8.9)

Recently, in [38] a Riemannian framework for geometrization of P+
p for p ≥ 1 has

been proposed, which yields Riemannian distances such as:

d2
R( y1, y2) =

∫

‖ log (

P−1/2
y1 Py2 P−1/2

y1
)‖2Fdω, (8.10)

where log is the standardmatrix logarithm. In general, such approaches are not suited
for large p due to computational costs and the full-rankness requirement. We should
stress that in (very) high dimensions the assumption of full-rankness of PSDs is not
a viable one, in particular because usually not only the actual time series are highly
correlated but also the contaminating noises are correlated, as well. In fact, this has
lead to the search for models capturing this quality. One example is the class of
generalized linear dynamic factor models, which are closely related to the tall, full
rank LDS models (see Sect. 8.3.3 and [20, 24]).

Letting the above mentioned issues aside, for the purposes of Problem1, the space
Pp (or evenP+

p ) is too large. The reason is that it includes, e.g., ARMA processes of
arbitrary large orders, and it is not clear, e.g., how an average of someARMAmodels

6 Notice that defining distances between probability densities in the time domain is a more general
approach than the PSD-based approaches, and it can be employed in the case of nonstationary as
well as non-Gaussian processes. However, such an approach, in general, is computationally difficult.
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or processes of equal order might turn out. As mentioned before, it is convenient or
reasonable to require the average to be of the same order.7

8.2.2 Geometrizing the Spaces of Models

Any distance on Pp (or P+
p ) induces a distance, e.g., on a subspace corresponding

to AR or ARMAmodels of a fixed order. This is an example of an extrinsic distance
induced from an infinite dimensional ambient space to a finite dimensional subspace.
In general, this framework is not ideal and we might try to, e.g., define an intrinsic
distance on the finite dimensional subspace. In fact, Amari’s original paper [4] lays
down a framework for this approach, but lacks actual computations. For the one-
dimensional case in [61], based on Amari’s approach, distances between models in
the space of ARMA models of fixed order are derived. For high order models or
in high dimensions, such calculations are, in general, computationally difficult [61].
The main reason is that the dependence of PSD-based distances on state-space or
ARMA parameters is, in general, highly nonlinear (the important exception is for
parameters of AR models, especially in 1D).

Alternative approaches have also been pursued. For example, in [57] the main
idea is to compare (based on the �2 norm) the coefficients of the infinite order AR
models of two processes. This is essentially the same as comparing (in the time
domain) the whitening filters of the two processes. This approach is limited to P+

p
and computationally demanding for large p. See [19] for examples of classification
and clustering of 1D time-series using this approach. In [8], the space of 1D AR
processes of a fixed order is geometrized using the geometry of positive-definite
Toeplitz matrices (via the reflection coefficients parameterization), and, moreover,
L p averaging on that space is studied. In [50] a (pseudo)-distance between two
processes is defined through a weighted �2 distance between the (infinite) sequences
of the cepstrum coefficients of the two processes. Recall that the cepstrum of a 1D
signal is the inverse Fourier transformof the logarithmof themagnitude of the Fourier
transform of the signal. In the frequency domain this distance (known as the Martin
distance) can be written as (up to a multiplicative constant)

d2
M( y1, y2) =

∫ (

D
1
2 log

(

Py1

Py2

) )2

dω, (8.11)

where Dλ is the fractional derivative operator in the frequency domain interpreted
as multiplication of the corresponding Fourier coefficients in the time domain by
eπiλ/2nλ for n ≥ 0 and by e−πiλ/2(−n)λ for n < 0. Notice that dM is scale-invariant
in the sense described earlier and also it is a pseudo-distance since it is zero if the
PSDs are multiple of each other (this is a true scale-invariance property, which in

7 Interestingly, for an average defined based on the Itakura-Saito divergence in the space of 1D AR
models this property holds [26], see also [5, Sect. 5.3].
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certain applications is highly desirable).8 Interestingly, in the case of 1D ARMA
models, dM can be expressed conveniently in closed form in terms of the poles and
zeros of the models [50]. Moreover, in [18] it is shown that dM can be calculated
quite efficiently in terms of the parameters of the state-space representation of the
ARMA processes. In fact, the Martin distance has a simple interpretation in terms
of the subspace angles between the extended observability matrices (cf. Sect. 8.4.3)
of the state-space representations [18]. This brings about important computational
advantages and has allowed to extend a form ofMartin distance to higher dimensions
(see e.g., [16]). However, it should be noted that the extension of the Martin distance
to higher dimensions in such a way that all its desirable properties carry over has
proven to be difficult [13].9 Nevertheless, some extensions have been quite effective
in certain high-dimensional applications, e.g., video classification [16]. In [16], the
approach of [18] is shown to be a special case of the family of Binet-Cauchy kernels
introduced in [64], and this might explain the effectiveness of the extensions of the
Martin distance to higher dimensions.

In summary, we should say that the extensions of the geometrical methods dis-
cussed in this section to Pp for p > 1 do not seem obvious or otherwise they are
computationally very expensive. Moreover, these approaches often yield extrinsic
distances induced from infinite dimensional ambient spaces, which, e.g., in the case
of averaging LDSs of fixed order can be problematic.

8.2.3 Control-Theoretic Approaches

More relevant to us are [33, 46], where (intrinsic) state-space based Riemannian dis-
tances betweenLDSsof fixed size andfixedorder have been studied. Such approaches
ideally suit Problem1, but they are computationally demanding. More recently, in
[1] and subsequently in [2, 3], we introduced group action induced distances on
certain spaces of LDSs of fixed size and order. As it will become clear in the next
section, an important feature of this approach is that the LDS order is explicit in the
construction of the distance, and the state-space parameters appear in the distance
in a simple form. These features make certain related calculations (e.g., optimiza-
tion) much more convenient (compared with other methods). Another aspect of our
approach is that, contrary to most of the distances discussed so far, which compare
the PSDs or the canonical factors directly, our approach amounts to comparing the

8 It is interesting to note that by a simple modification some of the spectral-ratio based distances

can attain this property, e.g., by modifying dR in (8.8) as d2
RI( y1, y2) = ∫ (

log
( Py1

Py2

))2dω −
( ∫

log
( Py1

Py2

)

dω
)2 (see also [9, 25, 49]).

9 This and the results in [53] underline the fact that defining distances on Pp for p > 1 may
be challenging, not only from a computational point of view but also from a theoretical one. In
particular, certain nice properties in 1D do not automatically carry over to higher dimensions by a
simple extension of the definitions in 1D.
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generative or the structural models of the processes or how they are generated. This
feature also could be useful in designingmore application-specific or structure-aware
distances.

8.3 Processes Generated by LDSs of Fixed Order

Consider an LDS, M , of the form (8.1) with a realization R = (A, B, C, D) ∈
˜SLm,n,p.10 In the sequel, for various reasons,wewill restrict ourselves to increasingly
smaller submanifolds of ˜SLm,n,p, which will be denoted by additional superscripts.
Recall that the p × m matrix transfer function is T (z) = D + C(In − z−1A)−1B,
where z ∈ C and In is the n-dimensional identitymatrix.We assume that all LDSs are
excited by the standard white Gaussian process.Hence, the output PSDmatrix (in the
z-domain) is the p × p matrix function P(z) = T (z)T �(z−1). The PSD is a rational
matrix function of z whose rank (a.k.a. normal rank) is constant almost everywhere
in C. Stationarity of the output process is guaranteed if M is asymptotically stable.
We denote the submanifold of such realizations by ˜SLa

m,n,p ⊂ ˜SLm,n,p.

8.3.1 Embedding Stochastic Processes in LDS Spaces

Two (stochastic) LDSs are indistinguishable if their output PSDs are equal. Using this
equivalence on the entire set of LDSs is not useful, because, as mentioned earlier two
transfer functions which differ by an all-pass filter result in the same PSD. Therefore,
the equivalence relation could induce a complicated many-to-one correspondence
between theLDSs and the subspace of stochastic processes they generate.However, if
we restrict ourselves to the subspace ofminimum phase LDSs the situation improves.
Let us denote the subspace of minimum-phase realizations by ˜SLa,mp

m,n,p ⊂ ˜SLa
m,n,p.

This is clearly an open submanifold of ˜SLa
m,n,p. In ˜SLa,mp

m,n,p, the canonical spectral
factorization of the output PSD is unique up to an orthogonal matrix [6, 62, 65]: let
T1(z) andT2(z)have realizations in ˜SLa,mp

m,n,p and letT1(z)T �
1 (z−1) = T2(z)T �

2 (z−1),
then T1(z) = T2(z)Θ for a uniqueΘ ∈ O(m), where O(m) is the Lie group ofm×m
orthogonal matrices. Therefore, any p-dimensional processes with PSD of normal
rank m can be identified with a simple equivalent class of stable and minimum-phase
transfer functions and the corresponding LDSs.11

10 It is crucial to have in mind that we explicitly distinguish between the LDS, M , and its
realization R, which is not unique. As it will become clear soon, an LDS has an equivalent class of
realizations.
11 These rank conditions, interestingly, have differential geometric significance in yielding nice
quotient spaces, see Sect. 8.4.
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8.3.2 Equivalent Realizations Under Internal and External
Symmetries

Afundamental fact is that there are symmetries or invariances due to certainLiegroup
actions in the model (8.1). Let GL(n) denote the Lie group of n × n non-singular
(real) matrices. We say that the Lie group GL(n) × O(m) acts on the realization
space ˜SLm,n,p (or its subspaces) via the action • defined as12

(P,Θ) • (A, B, C, D) = (P−1AP, P−1BΘ, C P, DΘ). (8.12)

One can easily verify that under this action the output covariance sequence (or PSD)
remains invariant. In general, the converse is not true. That is, two output covariance
sequences might be equal while their corresponding realizations are not related via
• (due to non-minimum phase and the action not being free [47], also see below).
Recall that the action of a group on a set is called free if every element of the set is
fixed only by the identity element of the group. For the converse to hold we need to
impose further rank conditions, as we will see next.

8.3.3 From Processes to Realizations (The Rank Conditions)

Now, we study some rank conditions (i.e., submanifolds of ˜SLm,n,p on) under which
• is a free action.

8.3.3.1 Observable, Controllable, and Minimal Realizations

Recall that the controllability and observability matrices of order k associated with
a realization R = (A, B, C, D) are defined as Ck = [B, AB, . . . , Ak−1B] and
Ok = [C�, (C A)�, . . . , (C Ak−1)�]�, respectively. A realization is called control-
lable (resp. observable) if Ck (resp. Ok) is of rank n for k = n. We denote the

subspace of controllable (resp. observable) realizations by ˜SLco
m,n,p (resp. ˜SLob

m,n,p).

The space ˜SLmin
m,n,p = ˜SLco

m,n,p ∩ ˜SLob
m,n,p is called the space ofminimal realizations.

An important fact is that we cannot reduce the order (i.e., the size of A) of a minimal
realization without changing its input-output behavior.

8.3.3.2 Tall, Full Rank LDSs

Another (less studied) rank condition is when C is of rank n (here p ≥ n is required).

Denote by ˜SLtC
m,n,p ⊂ ˜SLob

m,n,p the subspace of such realizations and call a cor-
responding LDS tall and full-rank. Such LDSs are closely related to generalized

12 Strictly speaking • is a right action; however, it is notationally convenient to write it as a left
action in (8.12).
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linear dynamic factor models for (very) high-dimensional time series [20] and also
appear in video sequence modeling [1, 12, 60]. It is easy to verify that all the above
realization spaces are smooth open submanifolds of ˜SLm,n,p. Their corresponding
submanifolds of stable or minimum-phase LDSs (e.g., ˜SLa,mp,co

m,n,p ) are defined in an
obvious way.

The following proposition forms the basis of our approach to defining distances
between processes: any distance on the space of LDSs with realizations in the above
submanifolds (with rank conditions) can be used to define a distance on the space of
processes generated by those LDSs.

Proposition 1 Let Σ̃m,n,p be ˜SLa,mp,co
m,n,p , ˜SLa,mp,ob

m,n,p , ˜SLa,mp,min
m,n,p , or ˜SLa,mp,tC

m,n,p .

Consider two realizations R1, R2 ∈ Σ̃m,n,p excited by the standard white Gaussian
process. Then we have:

1. If (P,Θ)• R1 = R2 for some (P,Θ) ∈ GL(n)× O(m), then the two realizations
generate the same (stationary) output process (i.e., outputs have the same PSD
matrices).

2. Conversely, if the outputs of the two realizations are equal (i.e., they have the same
PSD matrices), then there exists a unique (P,Θ) ∈ GL(n) × O(m) such that
(P,Θ) •
R1 = R2.

8.4 Principal Fiber Bundle Structures over Spaces of LDSs

As explained above, an LDS, M , has an equivalent class of realizations related by
the action •. Hence, M sits naturally in a quotient space, namely ˜SLm,n,p/(GL(n)×
O(m)). However, this quotient space is not smooth or even Hausdorff. Recall that if
a Lie group G acts on a manifold smoothly, properly, and freely, then the quotient
space has the structure of a smooth manifold [47]. Smoothness of • is obvious. In
general, the action of a non-compact group such as GL(n) × O(m) is not proper.
However, one can verify that the rank conditions we imposed in Proposition1 are
enough to make • both a proper and free action on the realization submanifolds
(see [2] for a proof). The resulting quotient manifolds are denoted by dropping the
superscript ∼, e.g., SLa,mp,min

m,n,p . The next theorem, which is an extension of existing
results, e.g., in [33] shows that, in fact, we have a principal fiber bundle structure.

Theorem 1 Let Σ̃m,n,p be as in Proposition1 and Σm,n,p = Σ̃m,n,p/(GL(n) ×
O(m)) be the corresponding quotient LDS space. The realization-system pair
(Σ̃m,n,p,Σm,n,p) has the structure of a smooth principal fiber bundle with structure

group GL(n) × O(m). In the case of SLa,mp,tC
m,n,p the bundle is trivial (i.e., diffeomor-

phic to a product), otherwise it is trivial only when m = 1 or n = 1.

The last part of the theorem has an important consequence. Recall that a principal
bundle is trivial if it diffeomorphic to global product of its base space and its structure
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group. Equivalently, this means that a trivial bundle admits a global smooth cross
section or what is known as a smooth canonical form in the case of LDSs, i.e., a
globally smooth mapping s : Σm,n,p → ˜Σm,n,p which assigns to every system a
unique realization. This theorem implies that the minimality condition is a compli-
cated nonlinear constraint, in the sense that it makes the bundle twisted and nontrivial
for which no continuous canonical form exists. Establishing this obstruction put an
end to control theorists’ search for canonical forms for MIMO LDSs in the 1970s
and explained why system identification for MIMO LDSs is a challenging task [11,
15, 36].

On the other hand, one can verify that (˜SLa,mp,tC
m,n,p ,SLa,mp,tC

m,n,p ) is a trivial bundle.
Therefore, for such systems global canonical forms exist and they can be used to

define distances, i.e., if s : SLa,mp,tC
m,n,p → ˜SLa,mp,tC

m,n,p is such a canonical form then

dSLa,mp,tC
m,n,p

(M1, M2) = d̃
˜SLa,mp,tC

m,n,p
(s(M1), s(M2)) defines a distance on SLa,mp,tC

m,n,p for

any distance d̃
˜SLa,mp,tC

m,n,p
on the realization space. In general, unless one has some

specific knowledge there is no preferred choice for a section or canonical form. If
one has a group-invariant distance on the realization space, then the distance induced
from using a cross section might be inferior to the group action induced distance, in
the sense it may result in an artificially larger distance. In the next section we review
the basic idea behind group action induced distances in our application.

8.4.1 Group Action Induced Distances

Figure8.1a schematically shows a realization bundle ˜Σ and its base LDS space
Σ . Systems M1, M2 ∈ Σ have realizations R1 and R2 in ˜Σ , respectively. Let us
assume that a G = GL(n)× O(n)-invariant distance d̃G on the realization bundle is
given. The realizations, R1 and R2, in general, are not aligned with each other, i.e.,
d̃G(R1, R2) can be still reduced by sliding one realization along its fiber as depicted
in Fig. 8.1b. This leads to the definition of the group action induced distance:13

dΣ(M1, M2) = inf(P,Θ)∈Gd̃Σ̃ ((P,Θ) • R1, R2). (8.13)

In fact, one can show that dΣ(·, ·) is a true distance on Σ , i.e., it is symmetric and
positive definite and obeys the triangle inequality (see e.g., [66]).14

Themain challenge in the above approach is the fact that, due to non-compactness
of GL(n), constructing a GL(n) × O(n)-invariant distance is computationally dif-

13 We may call this an alignment distance. However, based on the same principle in Sect. 8.5 we
define another group action induced distance, which we explicitly call the alignment distance. Since
our main object of interest is that distance, we prefer not to call the distance in (8.13) an alignment
distance.
14 It is interesting to note that some of the good properties of the k-nearest neighborhood algorithms
on a general metric space depend on the triangle inequality [21].
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(a) (b)

Fig. 8.1 Over each LDS in Σ sits a realization fiber. The fibers together form the realization space
(bundle) ˜Σ . If given a G-invariant distance on the realization bundle, then one can define a distance
on the LDS space by aligning any realizations R1, R2 of the two LDSs M1, M2 as in (8.13)

ficult. The construction of such a distance can essentially be accomplished by
defining a GL(n) × O(n)-invariant Riemannian metric on the realization space and
solving the corresponding geodesic equation, as well as searching for global min-
imizers.15 Such a Riemannian metric for deterministic LDSs was proposed in [45,
46]. One could also start from (an already invariant) distance on a large ambient
space such as Pp and specialize it to the desired submanifold Σ of LDSs to get a
Riemannian manifold on Σ and then thereon solve geodesic equations, etc. to get an
intrinsic distance (e.g., as reported in [33, 34]). Both of these approaches seem very
complicated to implement for the case of very high-dimensional LDSs. Instead, our
approach is to use extrinsic group action induced distances, which are induced from
unitary-invariant distances on the realization space. For that we recall the notion of
reduction of structure group on a principal fiber bundle.

8.4.2 Standardization: Reduction of the Structure Group

Next, we recall the notion of reducing a bundle with non-compact structure group
to one with a compact structure group. This will be useful in our geometrization
approach in the next section. Interestingly, bundle reduction also appears in statistical
analysis of shapes under the name of standardization [43]. The basic fact is that any
principal fiber G-bundle (Σ̃,Σ) can be reduced to an OG-subbundle ÕΣ ⊂ Σ̃ ,
where OG is the maximal compact subgroup of G [44]. This reduction means that
Σ is diffeomorphic to ÕΣ/OG (i.e., no topological information is lost by going to
the subbundle and the subgroup). Therefore, in our cases of interest we can reduce
a GL(n) × O(m)-bundle to an OG(n, m) = O(n) × O(m)-subbundle. We call

15 This problem, in general, is difficult, among other things, because it is a non-convex (infinite-
dimensional) variational problem. Recall that in Riemannian geometry the non-convexity of the arc
length variational problem can be related to the non-trivial topology of the manifold (see e.g., [17]).



236 B. Afsari and R. Vidal

(a) (b)

Fig. 8.2 A standardized subbundle ˜OΣm,n,p of ˜Σm,n,p is a subbundle on which G acts via its

compact subgroup OG. The quotient space˜OΣm,n,p/OG still is diffeomorphic to the base space
˜Σm,n,p . One can define an alignment distance on the base space by aligning realizations R1, R2 ∈
˜OΣm,n,p of M1, M2 ∈ Σm,n,p as (8.15)

such a subbundle a standardized realization space or (sub)bundle. One can perform
reduction to various standardized subbundles and there is no canonical reduction.
However, in each application one can choose an interesting one. A reduction is in
spirit similar to the Gram-Schmidt orthonormalization [44, Chap. 1]. Figure8.2a
shows a standardized subbundle ÕΣ in the realization bundle ˜Σ .

8.4.3 Examples of Realization Standardization

As an example consider R = (A, B, C, D) ∈ ˜SLa,mp,tC
m,n,p , and let C = U P be

an orthonormalization of C , where U�U = In and P ∈ GL(n). Now the new

realization R̂ = (P−1, Im) • R belongs to the O(n)-subbundle ÕSLa,mp,tC
m,n,p = {R ∈

˜SLa,mp,tC
m,n,p |C�C = In}.
Other forms of bundle reduction, e.g., in the case of the nontrivial bundle

˜SLa,mp,min
m,n,p are possible. In particular, via a process known as realization balanc-

ing (see [2, 37]), we can construct a large family of standardized subbundles. For

example, a more sophisticated one is in the case of ˜SLa,mp,min
m,n,p via the notion of

(internal) balancing. Consider the symmetric n × n matrices Wc = C∞C�∞ and
Wo = O�∞O∞, which are called controllability and observability Gramians, respec-
tively, and where C∞ and O∞ are called extended controllability and observability
matrices, respectively (see the definitions in Sect. 8.3.3.1 with k = ∞). Due to the
minimality assumption, both Wo and Wc are positive definite. Notice that under the
action •, Wc transforms to P−1Wc P−� and Wo to P�Wo P . Consider the function
h : GL(n) → R defined as h(P) = trace(P−1Wc P−� + P�Wo P). It is easy to
see that h is constant on O(n). More importantly, it can be shown that any critical
point P1 of h is global minimizer and if P2 is any other minimizer then P1 = P2Q
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for some Q ∈ O(n) [37]. Minimizing h is called balancing (in the sense of Helmke
[37]). One can show that balancing is, in fact, a standardization in the sense that we
defined (a proof of this fact will appear elsewhere). Note that a more specific form
of balancing called diagonal balancing (due to Moore [52]) is more common in the
control literature, however, that cannot be considered as a form of reduction of the
structure group. The interesting intuitive reason is that it tries to reduce the structure
group beyond the orthogonal group to the identity element, i.e., to get a canonical
form (see also [55]). However, it fails in the sense that, as mentioned above, it cannot
give a smooth canonical form, i.e., a section which is diffeomorphic to SLa,mp,min

m,n,p .

8.5 Extrinsic Quotient Geometry and the Alignment Distance

In this section,we propose to use the large class of extrinsic unitary invariant distances
on a standardized realization subbundle to build distances on the LDS base space.
The main benefits are that such distances are abundant, the ambient space is not
too large (e.g., not infinite dimensional), and calculating the distance in the base
space boils down to a static optimization problem (albeit non-convex). Specifically,
let d̃̃OΣm,n,p

be a unitary invariant distance on a standardized realization subbundle

ÕΣm,n,p with the base Σm,n,p (as in Theorem1). One example of such a distance is

d̃2
˜OΣm,n,p

(

R1,R2)=λA‖A1− A2‖2F + λB‖B1−B2‖2F + λC‖C1−C2‖2F + λD‖D1−D2‖2F ,

(8.14)

where λA,λB,λC ,λD > 0 are constants and ‖ · ‖F is the matrix Frobenius norm.
A group action induced distance (called the alignment distance) between two LDSs
M1, M2 ∈ Σm,n,p with realizations R1, R2 ∈ ÕΣm,n,p is found by solving the
realization alignment problem (see Fig. 8.2b)

d2
Σm,n,p

(M1, M2) = min
(Q,Θ)∈O(n)×O(m)

d̃2
˜OΣm,n,p

(

(Q,Θ) • R1, R2
)

. (8.15)

In [39] a fast algorithm is developed which (with little modification) can be used to
compute this distance.

Remark 4 We stress that, via the identification of a process with its canonical spec-
tral factors (Proposition1 and Theorem1), dΣm,n,p (·, ·) is (or induces) a distance on
the space of processes generated by the LDSs in Σm,n,p. Therefore, in the sprit
of distances studied in Sect. 8.2 we could have written dΣm,n,p ( y1, y2) instead of
dΣm,n,p (M1, M2), where y1 and y2 are the processes generated by M1 and M2 when
excited by the standard Gaussian process. However, the chosen notation seems more
convenient.

Remark 5 Calling the static global minimization problem (8.15) “easy” in an
absolute term is an oversimplification. However, even this global minimization
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over orthogonal matrices is definitely simpler than solving the nonlinear geodesic
ODEs and finding shortest geodesics globally (an infinite-dimensional dynamic
programming problem). It is our ongoing research to develop fast and reliable algo-
rithms to solve (8.15). Our experiments indicate that the Jacobi algorithm in [39] is
quite effective in finding global minimizers.

In [1], this distance was first introduced on SLa,mp,tC
m,n,p with the standardized

subbundle ÕSLa,mp,tC
m,n,p . The distance was used for efficient video sequence clas-

sification (using 1-nearest neighborhood and nearest mean methods) and clustering
(e.g., via defining averages or a k-means like algorithm). However, it should be men-
tioned that in video applications (for reasons which are not completely understood)
the comparison of LDSs based on the (A, C) part in (8.1) has proven quite effective
(in fact, such distances are more commonly used than distances based on compar-
ing the full model). Therefore, in [1], the alignment distance (8.15) with parameters
λB = λD = 0 was used, see (8.14). An algorithm called the align and average is
developed to do averaging on SLa,mp,tC

m,n,p (see also [2]). One defines the average M̄ of

LDSs {Mi }N
i=1 ⊂ SLa,mp,tC

m,n,p (the so-called Fréchet mean or average) as a minimizer
of the sum of the squares of distances:

M̄ = argminM

N
∑

i=1

d2
SLa,mp,tC

m,n,p
(M, Mi ). (8.16)

The align and average algorithm is essentially an alternating minimization algorithm
to find a solution. As a result, in each step it aligns the realizations of the LDSs
Mi to that of the current estimated average, then a Euclidean average of the aligned
realizations is found and afterwards the found C matrix is orthonormalized, and the
algorithm iterates these steps till convergence (see [1, 2] for more details). A nice
feature of this algorithms is that (generically) the averageLDS M̄ by constructionwill
be of order n andminimumphase (and under certain conditions stable).An interesting
question is whether the average model found this way is asymptotically stable, by
construction. The most likely answer is, in general, negative. However, in a special
case it can be positive. Let ‖A‖2 denote the 2-norm (i.e., the largest singular value)

of the matrix A. In the case the standardized realizations Ri ∈ ÕSLa,mp,tC
m,n,p , (1 ≤

i ≤ N ) are such that ‖Ai‖2 < 1(1 ≤ i ≤ N ), then by construction the 2-norm of
the A matrix of the average LDS will also be less than 1. Hence, the average LDS
will be asymptotically stable. Moreover, as mentioned in Sect. 8.4.3, in the case of
SLa,mp,min

m,n,p wemayemploy the subbundle of balanced realizations as the standardized
subbundle. It turns out that in this case preserving stability (by construction) can be
easier, but the averaging algorithmgetsmore involved (see [2] for somemore details).

Obviously, the above alignment distance based on (8.14) is only an example. In a
pattern recognition application, a large class of such distances can be constructed and
among them a suitable one can be chosen or they can be combined in amachine learn-
ing framework (such distances may even correspond to different standardizations).
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8.5.1 Extensions

Now, we briefly point to some possible directions along which this basic idea can
be extended (see also [2]). First, note that the Frobenius norm in (8.14) can be
replaced by any other unitary invariant matrix norm (e.g., the nuclear norm). A less
trivial extension is to get rid of O(m) in (8.15) by passing to covariance matri-

ces. For example, in the case of ÕSLa,mp,tC
m,n,p it is easy to verify that SLa,mp,tC

m,n,p =
ÕSLa,mp,tC,cv

m,n,p /(O(n)× Im), where ÕSLa,mp,tC,cv
m,n,p = {(A, Z , C, S)|(A, B, C, D) ∈

ÕSLa,mp,tC
m,n,p , Z = B B�, S = DD�}. On this standardized subspace one only has the

action of O(n) which we denote as Q � (A, Z , C, S) = (Q� AQ, Q�Z Q, C Q, S).
One can use the same ambient distance on this space as in (8.14) and get

d2
Σm,n,p

(M1, M2) = min
Q∈O(n)

d̃2
˜OΣm,n,p

(

Q � R1, R2
)

, (8.17)

for realizations R1, R2 ∈ ÕSLa,mp,tC,cv
m,n,p . One could also replace the ‖ · ‖F in the

terms associated with B and D in (8.14) with some known distances in the spaces
of positive definite matrices or positive-semi-definite matrices of fixed rank (see
e.g., [14, 63]). Another possible extension is, e.g., to consider other submanifolds

of ÕSLa,mp,tC
m,n,p , e.g., a submanifold where ‖C‖F = ‖B‖F = 1. In this case the

corresponding alignment distance is essentially a scale invariant distance, i.e., two
processes which are scaled version of one another will have zero distance. A more
significant and subtle extension is to extend the underlying space of LDSs of fixed
size and order n to that of fixed size but (minimal) order not larger than n. The details
of this approach will appear elsewhere.

8.6 Conclusion

In this paper our focus was the geometrization of spaces of stochastic processes
generated by LDSs of fixed size and order, for use in pattern recognition of high-
dimensional time-series data (e.g., in the prototype Problem1). We reviewed some
of the existing approaches. We then studied the newly developed class of group
action induced distances called the alignment distances. The approach is a general
and flexible geometrization framework, based on the quotient structure of the space
of such LDSs, which leads to a large class of extrinsic distances. The theory of
alignment distances and their properties is still in early stages of development and
we are hopeful to be able to tackle some interesting problems in control theory as
well as pattern recognition in time-series data.
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