
Chapter 6
Computational Algebraic Methods
in Efficient Estimation

Kei Kobayashi and Henry P. Wynn

Abstract A strong link between information geometry and algebraic statistics is
made by investigating statisticalmanifoldswhich are algebraic varieties. In particular
it is shown how first and second order efficient estimators can be constructed, such as
bias corrected Maximum Likelihood and more general estimators, and for which the
estimating equations are purely algebraic. In addition it is shown how Gröbner basis
technology, which is at the heart of algebraic statistics, can be used to reduce the
degrees of the terms in the estimating equations. This points the way to the feasible
use, to find the estimators, of special methods for solving polynomial equations,
such as homotopy continuation methods. Simple examples are given showing both
equations and computations.

6.1 Introduction

Information geometry gives geometric insights and methods for studying the statis-
tical efficiency of estimators, testing, prediction and model selection. The field of
algebraic statistics has proceeded somewhat separately but recently a positive effort
is being made to bring the two subjects together, notably [15]. This paper should be
seen as part of this effort.

A straightforward way of linking the two areas is to ask how far algebraic methods
can be used when the statistical manifolds of information geometry are algebraic,
that is algebraic varieties or derived forms, such as rational quotients. We call such
models “algebraic statistical models” and will give formal definitions.
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In the standard theory for non-singular statistical models, maximum likeli-
hood estimators (MLEs) have first-order asymptotic efficiency and bias-corrected
MLEs have second-order asymptotic efficiency. A short section covers briefly the
basic theory of asymptotic efficiency using differential geometry, necessary for our
development.

We shall show that for some important algebraic models, the estimating equations
of MLE type become polynomial and the degrees usually become very high if the
model has a high-dimensional parameter space. In this paper, asymptotically efficient
algebraic estimators, a generalization of bias corrected MLE, are studied. By alge-
braic estimators we mean estimators which are the solution of algebraic equations.
Amain result is that for (algebraic) curved exponential family, there are second-order
efficient estimators whose polynomial degree is at most two. These are computed
by decreasing the degree of the estimating equations using Gröbner basis methods,
the main tool of algebraic statistics. We supply some the basic Gröbner theory in
Appendix A. See [22].

The reduction of the degree saves computational costs dramatically when we use
computational methods for solving the algebraic estimating equations. Here we use
homotopy continuation methods of [19, 24] to demonstrate this effect for a few
simple examples, for which we are able to carry out the Gröbner basis reduction.
Appendix B discusses homotopy continuation methods.

Although, as mentioned, the links between computational algebraic methods and
the theory of efficient estimators based on differential geometry are recent, two
other areas of statistics, not covered here, exploit differential geometry methods.
The first is tube theory. The seminal paper by Weyl [26] has been used to give exact
confidence level values (size of tests), and bounds, for certain Gaussian simultaneous
inference problems: [17, 20]. This is very much related to the theory of up-crossings
ofGaussian processes using expectedEuler characteristicmethods, see [1] and earlier
papers. The second area is the use of the resolution of singularities (incidentally
related to the tube theory) in which confidence levels are related to the dimension
and the solid angle tangent of cones with apex at a singularity in parameters space
[12, 25]. Moreover, the degree of estimating equations for MLE has been studied
for some specific algebraic models, which are not necessarily singular [11]. In this
paper we cover the non-singular case, for rather more general estimators than MLE,
and show that algebraic methods have a part to play.

Most of the theories in the paper can be applied to a wider class of Multivariate
Gaussian models with some restrictions on their covariance matrices, for example
models studied in [6, 14]. Though the second-order efficient estimators proposed in
the paper can be applied to them potentially, the cost for computing Gröbner basis
prevents their direct application. Further innovation in the algebraic computation is
required for real applications, which is a feature of several other areas of algebraic
statistics.

Section6.2 gives some basic background in estimation and differential geome-
try for it. Sections6.3 and 6.4, which are the heart of the paper, give the algebraic
developments and Sect. 6.5 gives some examples. Section6.6 carries out some com-
putation using homotopy continuation.
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6.2 Statistical Manifolds and Efficiency of Estimators

In this section, we introduce the standard setting of statistical estimation theory, via
information geometry. See [2, 4] for details. It is recognized that the ideas go back to
at least the work of Rao [23], Efron [13] and Dawid [10]. The subject of information
geometry was initiated by Amari and his collaborators [3, 5].

Central to this family of ideas is that the rates of convergence of statistical esti-
mators and other test statistics depend on the metric and curvature of the parametric
manifolds in a neighborhood of the MLE or the null hypothesis. In addition Amari
realized the importance of two special models, the affine exponential model and the
affine mixture model, e and m frame respectively. In this paper we concentrate on
the exponential family model but also look at curved subfamilies. By extending the
dimension of the parameter space of the exponential family, we are able to cover
some classes of mixture models. The extension of the exponential model to infinite
dimensions is covered by [21].

6.2.1 Exponential Family and Estimators

A full exponential family is a set of probability distributions {dP(x |θ) | θ ∈ Θ} with
a parameter space Θ ⊂ R

d such that

dP(x |θ) = exp(xiθ
i − ψ(θ))dν,

where x ∈ R
d is a variable representing a sufficient statistic and ν is a carrier measure

on Rd . Here xiθ
i means

∑
i xiθ

i (Einstein summation notation).
We call θ a natural parameter and η = η(θ) := E[x |θ] an expectation parameter.

Denote E = E(Θ) := {η(θ) | θ ∈ Θ} ⊂ R
d as the corresponding expectation

parameter space. Note that the relation η(θ) = ∇θψ(θ) holds. If the parameter space
is restricted to a subset VΘ ⊂ Θ , we obtain a curved exponential family

{dP(x |θ) | θ ∈ VΘ }.

The corresponding space of the expectation parameter is denoted by VE := {η(θ) |
θ ∈ VΘ } ⊂ E .

Figure6.1 explains how to define an estimator by a local coordinate. Let (u, v) ∈
R

p × R
d−p with a dimension p of VΘ be a local coordinate system around the true

parameter θ∗ and define U ⊂ R
p such that {θ(u, 0)|u ∈ U} = VΘ . For a full expo-

nential model with N samples obtained by composing a map (X (1), . . . , X (N )) �→
θ(η)|η=X̄ and a coordinate projection map θ(u, v) �→ u, we can define a (local)

estimator (X (1), . . . , X (N )) �→ u. We define an estimator by η(u, v) similarly. Since
X̄ is a sufficient statistic of θ (and η) in the full exponential family, every estimator
can be computed by X̄ rather than the original data {Xi }. Therefore in the rest of the
paper, we write X as shorthand for X̄ .
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Fig. 6.1 A projection to the
model manifold according to
a local coordinate defines an
estimator

6.2.2 Differential Geometrical Entities

Let w := (u, v) and use indexes {i, j, . . .} for θ and η, {a, b, . . .} for u, {κ,λ, . . .}
for v and {α,β, . . .} for w. The following are used for expressing conditions for
asymptotic efficiency of estimators, where Einstein notation is used.

Differential geometrical entities

– ηi (θ) = ∂

∂θi
ψ(θ),

– Fisher metric G = (gi j ) w.r.t. θ: gi j (θ) = ∂2ψ(θ)

∂θi∂θ j
,

– Fisher metric Ḡ = (gi j ) w.r.t. η: Ḡ = G−1,

– Jacobian: Biα(θ) := ∂ηi (w)

∂wα
,

– e-connection: Γ (e)
αβ,γ =

(
∂2

∂wα∂wβ
θi (w)

)(
∂

∂wγ
ηi (w)

)

,

– m-connection: Γ (m)
αβ,γ =

(
∂2

∂wα∂wβ
ηi (w)

)(
∂

∂wγ
θi (w)

)

,

6.2.3 Asymptotic Statistical Inference Theory

Under some regularity conditions on the carrier measure ν, potential function ψ and
the manifolds VΘ or VE , the asymptotic theory below is available. These condi-
tions are for guaranteeing the finiteness of the moments and the commuting of the
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expectation and the partial derivative ∂
∂θ Eθ[ f ] = Eθ[∂ f

∂θ ]. For more details of the
required regularity conditions, see Sect. 2.1 of [4].

1. If û is a consistent estimator (i.e. P(‖û − u‖ > ε) → 0 as N → ∞ for any
ε > 0), the squared error matrix of û is

Eu[(û − u)(û − u)
] = Eu[(ûa − ua)(ûb − ub)]
= N−1[gab − gaκgκλgbλ]−1 + O(N−2).

Here [·]−1 means the matrix inverse. Thus, if gaκ = 0 for all a and κ, the main
term in the r.h.s. becomes minimum. We call such an estimator as a first-order
efficient estimator.

2. The bias term becomes

Eu[ûa − ua] = (2N )−1ba(u) + O(N−2)

for each a where ba(u) := Γ (m)a
cd(u)gcd(u). Then, the bias corrected estimator

ǔa := ûa − ba(û) satisfies Eu[ǔa − ua] = O(N−2).
3. Assume gaκ = 0 for all a and κ, then the square error matrix is represented by

Eu[(ǔa − ua)(ǔb − ub)] = 1

N
gab + 1

2N 2

(
(m)

Γ 2ab
M +2

(e)

H2ab
M +

(m)

H2ab
A

)

+ o(N−2).

See Theorem 5.3 of [4] and Theorem 4.4 of [2] for the definition of the terms in
the r.h.s. Of the four dominating terms in the r.h.s., only

(m)

H2ab
A := gκμgλν H (m)a

κλ H (m)b
μν

depends on the selection of the estimator.

Here H (m)a
κλ is an embedding curvature and equal to Γ (m)a

κλ when gaκ = 0 for

every a and κ. Since H2ab
A

(m)
is the square of Γ (m)a

κλ, the square error matrix
attains the minimum in the sense of positive definiteness if and only if

Γ (m)
κλ,a(w)

∣
∣
∣
v=0

=
(

∂2

∂vκ∂vλ
ηi (w)

)(
∂

∂ua
θi (w)

)∣
∣
∣
∣
v=0

= 0. (6.1)

Therefore the elimination of the m-connection (6.1) implies second-order
efficiency of the estimator after a bias correction, i.e. it becomes optimal among
the bias-corrected first-order efficient estimators up to O(N−2).
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6.3 Algebraic Models and Efficiency of Algebraic Estimators

This section studies asymptotic efficiency for statistical models and estimators which
are defined algebraically.Manymodels in statistics are defined algebraically. Perhaps
most well known are polynomial regression models and algebraic conditions on
probability models such as independence and conditional independence. Recently
there has been considerable interest in marginal models [7] which are typically linear
restrictions on raw probabilities. In time series autoregressive models expressed by
linear transfer functions induce algebraic restrictions on covariance matrices. Our
desire is to have a definition of algebraic statistical model which can be expressed
from within the curved exponential family framework but is sufficiently broad to
cover cases such as those justmentioned.Our solution is to allow algebraic conditions
in the natural parameter θ, mean parameter η or both. The second way in which
algebra enters is in the form of the estimator.

6.3.1 Algebraic Curved Exponential Family

We say a curved exponential family is algebraic if the following two conditions are
satisfied.

(C1) VΘ or VE is represented by a real algebraic variety, i.e. VΘ := V( f1, . . . , fk)

= {θ ∈ R
d | f1(θ) = · · · = fk(θ) = 0} or similarly VE := V(g1, . . . , gk) for

fi ∈ R[θ1, . . . , θd ] and gi ∈ R[η1, . . . , ηd ].
(C2) θ �→ η(θ) or η �→ θ(η) is represented by some algebraic equations, i.e. there are

h1, . . . , hk ∈ R[θ, η] such that locally in VΘ × VE , hi (θ, η) = 0 iff η(θ) = η
or θ(η) = θ.

Here R[θ1, . . . , θd ] means a polynomial of θ1, . . . , θd over the real number field R

and R[θ, η] means R[θ1, . . . , θd , η1, . . . , ηd ]. The integer k, the size of the genera-
tors, is not necessarily equal to d − p but we assume VΘ (or VE ) has dimension p
around the true parameter. Note that if ψ(θ) is a rational form or the logarithm of a
rational form, (C2) is satisfied.

6.3.2 Algebraic Estimators

The parameter set VΘ (or VE ) is sometimes singular for algebraic models. But
throughout the following analysis, we assume non-singularity around the true para-
meter θ∗ ∈ VΘ (or η∗ ∈ VE respectively).

Following the discussion at the end of Sect. 6.2.1. We call θ(u, v) or η(u, v) an
algebraic estimator if

(C3) w �→ η(w) or w �→ θ(w) is represented algebraically.
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We remark that the MLE for an algebraic curved exponential family is an algebraic
estimator.

If conditions (C1), (C2) and (C3) hold, then all of the geometrical entities in
Sect. 6.2.2 are characterized by special polynomial equations. Furthermore, ifψ(θ) ∈
R(θ) ∪ logR(θ) and θ(w) ∈ R(w) ∪ logR(w), then the geometrical objects have
the additional property of being rational.

6.3.3 Second-Order Efficient Algebraic Estimators,
Vector Version

Consider an algebraic estimator η(u, v) ∈ R[u, v]d satisfying the following vector
equation:

X = η(u, 0) +
d∑

i=p+1

vi−pei (u) + c ·
p∑

j=1

f j (u, v)e j (u) (6.2)

where, for each u, {e j (u); j = 1, . . . , p} ∪ {ei (u); i = p + 1, . . . , d} is a complete
basis of Rd such that 〈e j (u), (uη)〉g = 0 and f j (u, v) ∈ R[u][v]≥3, namely a
polynomial whose degree in v is at least 3 with coefficients polynomial in u, for
j = 1, . . . , p. Remember we use a notation X = X̄ = 1

N

∑
i Xi . The constant c is

to control the perturbation (see below).
A straightforward computation of the m-connection in (6.1) at v = 0 for

η(w) = η(u, 0) +
d∑

i=p+1

vi−pei (u) + c ·
p∑

j=1

f j (u, v)e j (u)

shows it to be zero. This gives

Theorem 1 Vector equation (6.2) satisfies the second-order efficiency (6.1).

We call (6.2) a vector version of a second-order efficient estimator. Note that if
c = 0, (6.2) gives an estimating equation for the MLE. Thus the last term in (6.2)
can be recognized as a perturbation from the MLE.

Figure6.2 is a rough sketch of the second-order efficient estimators. Here the
model is embedded in an m-affine space. Given a sample (red point), the MLE
is an orthogonal projection (yellow point) to the model with respect to the Fisher
metric. But a second-order efficient estimator maps the sample to the model along a
“cubically” curved manifold (red curve).
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Fig. 6.2 Image of the vector
version of the second-order
efficient estimators

6.3.4 Second-Order Efficient Algebraic Estimators,
Algebraic Version

Another class of second-order efficient algebraic estimators we call the algebraic
version, which is defined by the following simultaneous polynomial equations with
ηu = η(u, 0).

(X − ηu)
ẽ j (u, ηu) + c · h j (X, u, ηu, X − ηu) = 0 for j = 1, . . . , p (6.3)

where {ẽ j (u, ηu) ∈ R[u, ηu]d; j = 1, . . . , p} span ((∇uη(u, 0))⊥Ḡ )⊥E for every
u and h j (X, u, ηu, t) ∈ R[X, u, ηu][t]3 (degree = 3 in t) for j = 1, . . . , p. The
constant c is to control the perturbation. The notation Ḡ represents the Fisher metric
on the full-exponential family with respect to η. The notation (∇uη(u, 0))⊥Ḡ means
the subspace orthogonal to span(∂aη(u, 0))p

a=1 with respect to Ḡ and (·)⊥E means
the orthogonal complement in the sense of Euclidean vector space. Here, the term
“degree” of a polynomial means the maximum degree of its terms. Note that the
case (X − ηu)
ẽ j (u, ηu) = 0 for j = 1, . . . , p gives a special set of the estimating
equations of the MLE.

Theorem 2 An estimator defined by a vector version (6.2) of the second-order effi-
cient estimators is also represented by an algebraic version (6.3) where h j (X, u,

ηu, t) = f̃ j (u, (ẽ

i t)p

i=1, (ẽ


i (X −ηu))

p
i=1) with a function f̃ j (u, v, ṽ) ∈ R[u, ṽ][v]3

such that f̃ (u, v, v) = f (u, v).

Proof Take the Euclidean inner product of both sides of (6.2) with each ẽ j which is
a vector Euclidean orthogonal to the subspace span({ei |i �= j}) and obtain a system
of polynomial equations. By eliminating variables v from the polynomial equations,
an algebraic version is obtained. �



6 Computational Algebraic Methods in Efficient Estimation 127

Theorem 3 Every algebraic equation (6.3) gives a second-order efficient estimator
(6.1).

Proof Writing X = η(u, v) in (6.3), we obtain

(η(u, v) − η(u, 0))
ẽ j (u) + c · h j (η(u, v), u, η(u, 0), η(u, v) − η(u, 0)) = 0.

Partially differentiate this by v twice, we obtain

(
∂2η(u, v)

∂vλ∂vκ

)

ẽ j (u)

∣
∣
∣
∣
∣
v=0

= 0,

since each term of h j (η(u, v), u, η(u, 0), η(u, v) − η(u, 0)) has degree more than 3
in its third component (ηi (u, v)−ηi (u, 0))d

i=1 and η(u, v) − η(u, 0)|v=0 = 0. Since
span{ẽ j (u); j = 1, . . . , p} = ((∇uη(u, 0))⊥Ḡ )⊥E = span{Ḡ∂ua η; a = 1, . . . , p},
we obtain

Γ
(m)
κλa

∣
∣
∣
v=0

= ∂2ηi

∂vλ∂vκ
gi j ∂η j

∂ua

∣
∣
∣
∣
v=0

= 0.

This implies the estimator is second-order efficient. �

By Theorems 1, 2 and 3, the relationship between the three forms of the second-
order efficient algebraic estimators is summarized as

(1) ⇐ (2) ⇒ (3) ⇒ (1).

Furthermore, if we assume the estimator has a form η ∈ R(u)[v], that is a polynomial
in v with coefficients rational in u, every first-order efficient estimator satisfying (6.1)
can bewritten in a form (6.2) after resetting coordinates v for the estimatingmanifold.
In this sense, we can say (1) ⇒ (2) and the following corollary holds.

Corollary 1 If η ∈ R(u)[v], the forms (1), (2) and (3) are equivalent.

6.3.5 Properties of the Estimators

The following theorem is a straightforward extension of the local existence of MLE.
That is to say, the existence for sufficiently large sample size. The regularity con-
ditions are essentially the same as for the MLE but with an additional condition
referring to the control constant c.

Proposition 1 (Existence and uniqueness of the estimate) Assume that the Fisher
matrix is non-degenerate around η(u∗) ∈ VE . Then the estimate given by (6.2) or
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(6.3) locally uniquely exists for small c, i.e. there is a neighborhood G(u∗) ⊂ R
d of

η(u∗) and δ > 0 such that for every fixed X ∈ G(u∗) and −δ < c < δ, a unique
estimate exists.

Proof Under the condition of the theorem, the MLE always exists locally. Further-
more, because of the nonsingular Fisher matrix, the MLE is locally bijective (by the
implicit representation theorem). Thus (u1, . . . , u p) �→ (g1(x−ηu), . . . , gp(x−ηu))

for g j (x − ηu) := (X − ηu)
ẽ j (u, ηu) in (6.3) is locally bijective. Since {gi } and
{hi } are continuous, we can select δ > 0 for (6.3) to be locally bijective for every
−δ < c < δ. �

6.3.6 Summary of Estimator Construction

We summarize how to define a second-order efficient algebraic estimator (vector
version) and how to compute an algebraic version from it.

Input:
• a potential function ψ satisfying (C2),
• polynomial equations of η, u and v satisfying (C3),
• m1, . . . , md−p ∈ R[η] such that VE = V (m1, . . . , md−p) gives the model,
• f j ∈ R[u][v]≥3 and c ∈ R for a vector version

Step 1 Compute ψ and θ(η), G(η), (Γ (m)(η) for bias correction)
Step 2 Compute fai ∈ R[η][ξ11, . . . , ξpd ]1 s.t. fa j (ξ11, . . . , ξpd) :=

∂ua m j for ξbi := ∂ubηi .

Step 3 Find ep+1, . . . , ed ∈ (∇uη)⊥Ḡ by eliminating {ξaj } from
〈ei , ∂ua η〉Ḡ = eik(η)gk j (η)ξaj = 0 and fa j (ξ11, . . . , ξpd) = 0.

Step 4 Select e1, . . . , ep ∈ R[η] s.t. e1(η), . . . , ed(η) are linearly
independent.

Step 5 Eliminate v from

X = η(u, 0) +
∑d

i=p+1
vi−pei + c ·

∑p

j=1
f j (u, v)e j

and compute (X − η)
ẽ j and h ∈ (R[η][X − η]3)p, given by
Theorem 2.

Output(Vector version):

X = η(u, 0) +
∑d

i=p+1
vi−pei (η) + c ·

∑p

j=1
f j (u, v)e j (η).
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Output(Algebraic version):

(X − η)
ẽ + c · h(X − η) = 0.

6.3.7 Reduction of the Degree of the Estimating Equations

Aswe noted in Sect. 6.3.4, if we set h j = 0 for all j , the estimator becomes theMLE.
In this sense, ch j can be recognized as a perturbation from the likelihood equations.
If we select each h j (X, u, ηu, t) ∈ R[X, u, ηu][t]3 tactically, we can reduce the
degree of the polynomial estimating equation. For algebraic background, the reader
refers to Appendix A.

Here, we assume u ∈ R[ηu]. For example, we can set ui = ηi . Then ẽ j (u, ηu) is
a function of ηu , so we write it as ẽ j (η). Define an ideal I3 of R[X, η] as

I3 := 〈{(Xi − ηi )(X j − η j )(Xk − ηk) | 1 ≤ i, j, k ≤ d}〉.

Select a monomial order ≺ and set η1 � · · · � ηd � X1 � · · · � Xd . Let
G≺ = {g1, . . . , gm} be a Gröbner basis of I3 with respect to ≺. Then the remainder
(normal form) r j of (X − η)
ẽ j (η), the first term of the l.h.s. of (6.3), with respect
to G≺, is uniquely determined for each j .

Theorem 4 If the monomial order ≺ is the pure lexicographic,

1. r j for j = 1, . . . , p has degree at most 2 with respect to η, and
2. r j = 0 for j = 1, . . . , p are the estimating equations for a second-order efficient

estimator.

Proof Assume r j has a monomial term whose degree is more than 2 with respect
to η and represent the term as ηaηbηcq(η, X) with a polynomial q ∈ R(η, X) and a
combination of indices a, b, c. Then {ηaηbηc+(Xa −ηa)(Xa −ηa)(Xa −ηa)}q(η, X)

has a smaller polynomial order than ηaηbηcq(η, X) since ≺ is pure lexicographic
satisfying η1 � · · · � ηd � X1 � · · · � Xd . Therefore by subtracting
(Xa−ηa)(Xa−ηa)(Xa−ηa)}q(η, X) ∈ I3 from r j , the polynomial degree decreases.
This contradicts the fact r j is the normal form so each r j has degree at most 2.

Furthermore each polynomial in I3 is in R[X, u, ηu][X − η]3 and therefore by
taking the normal form, the condition for the algebraic version (6.3) of second-order
efficiency still holds. �

The reduction of the degree is important when we use algebraic algorithms such
as homotopy continuation methods [18] to solve simultaneous polynomial equations
since computational cost depends highly on the degree of the polynomials.
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6.4 First-Order Efficiency

It is not surprising that, for first-order efficiency, almost the same arguments hold as
for second-order efficiency.

By Theorem 5.2 of [4], a consistent estimator is first-order efficient if and only if

gκa = 0. (6.4)

Consider an algebraic estimator η(u, v) ∈ R[u, v]d satisfying the following vector
equation:

X = η(u, 0) +
d∑

i=p+1

vi−pei (u) + c ·
p∑

j=1

f j (u, v)e j (u) (6.5)

where, for each u, {e j (u); j = 1, . . . , p} ∪ {ei (u); i = p + 1, . . . , d} is a complete
basis ofRd s.t. 〈e j (u), (uη)〉g = 0 and f j (u, v) ∈ R[u][v]≥2, a polynomial whose
degree of v is at least 2, for j = 1, . . . , p. Similarly, c ∈ R is a constant for
perturbation. Here, the only difference between (6.2) for the second-order efficiency
and (6.5) for the first-order efficiency is the degree of the f j (u, v) with respect to v.

The algebraic version of the first-order efficient algebraic estimator is defined by
the following simultaneous polynomial equalities with ηu = η(u, 0).

(X − ηu)
ẽ j (u, ηu) + c · h j (X, u, ηu, X − ηu) = 0 for j = 1, . . . , p (6.6)

where {ẽ j (u, ηu) ∈ R[u, ηu]d; j = 1, . . . , p} span ((∇uη(u, 0))⊥Ḡ )⊥E for every u
and h j (X, u, ηu, t) ∈ R[X, u, ηu][t]2 (degree = 2 w.r.t. t) for j = 1, . . . , p. Here,
the only difference between (6.3) for the second-order efficiency and (6.6) for the
first-order efficiency is the degree of the h j (X, u, ηu, t) with respect to t .

Then the relation between the three different forms of first-order efficiency can
be proved in the same way manner as for Theorem 1, 2 and 3.

Theorem 5 (i) Vector version (6.5) satisfies the first-order efficiency.
(ii) An estimator defined by a vector version (6.5) of the first-order efficient estimators
is also represented by an algebraic version (6.6).
(iii) Every algebraic version (6.6) gives a first-order efficient estimator.

The relationship between the three forms of the first-order efficient algebraic esti-
mators is summarized as (4) ⇐ (5) ⇒ (6) ⇒ (4). Furthermore, if we assume the
estimator has a form η ∈ R(u)[v], the forms (6.4), (6.5) and (6.6) are equivalent.

Let R := Z[X, η] and define

I2 := 〈{(Xi − ηi )(X j − η j ) | 1 ≤ i, j ≤ d}〉
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as an ideal ofR. In a similar manner, let≺ be a monomial order such that η1 � · · · �
ηd � X1 � · · · � Xd . Let G≺ = {g1, . . . , gm} be a Gröbner basis of I2 with respect
to ≺. The properties of the normal form ri of (X − η(u, 0))
ẽi (u) with respect to
G≺ are then covered by the following:

Theorem 6 If the monomial order ≺ is the pure lexicographic,
(i) ri for i = 1, . . . , d has degree at most 1 with respect to η, and
(ii) ri = 0 for i = 1, . . . , d are the estimating equations for a first-order efficient
estimator.

6.5 Examples

In this section, we show how to use the algebraic computation to design asymptoti-
cally efficient estimators for two simple examples. The examples satisfy the algebraic
conditions (C1), (C2) and (C3) so it is verified that necessary geometric entities have
an algebraic form as mentioned in Sect. 6.3.2.

6.5.1 Example: Periodic Gaussian Model

The following periodic Gaussian model shows how to compute second-order effi-
cients estimators and their biases.

• Statistical Model:

X ∼ N (μ,Σ(a))withμ =

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦ andΣ(a) =

⎡

⎢
⎢
⎣

1 a a2 a
a 1 a a2

a2 a 1 a
a a2 a 1

⎤

⎥
⎥
⎦ for 0 ≤ a < 1.

Here, the dimension of the full exponential family and the curved exponential
family are d = 3 and p = 1, respectively.

• Curved exponential family:

log f (x |θ) = 2 (x1x2 + x2x3 + x3x4 + x4x1) θ2 + 2 (x3x1 + x4x2) θ3 − ψ(θ),

• Potential function:

ψ(θ) = −1/2 log(θ1
4 −4 θ1

2θ2
2 +8 θ1θ2

2θ3 −2 θ1
2θ3

2 −4 θ2
2θ3

2 +θ3
4)+2 log(2 π),

• Natural parameter:

θ(a) =
[

1

1 − 2a2 + 4a4 ,− a

1 − 2a2 + 4a4 ,
a2

1 − 2a2 + 4a4

]

,
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• Expectation parameter: η(a) = [−2,−4a,−2a2]
,

• Fisher metric with respect to η:

(gi j ) =
[
2 a4 + 4 a2 + 2 8 a

(
1 + a2

)
8 a2

8 a
(
1 + a2

)
4 + 24 a2 + 4 a4 8 a

(
1 + a2

)

8 a2 8 a
(
1 + a2

)
2 a4 + 4 a2 + 2

]

,

• A set of vectors ei ∈ R
3:

e0(a) := [0,−1, a]
 ∈ ∂aη(a),

e1(a) := [3a2 + 1, 4a, 0]
, e2(a) := [−a2 − 1, 0, 2]
 ∈ (∂aη(a))⊥Ḡ .

• A vector version of the second-order efficient estimator is, for example,

x − η + v1 · e1 + v2 · e2 + c · v31 · e0 = 0.

• Acorresponding algebraic version of the second-order efficient estimator: by elim-
inating v1 and v2, we get g(a) + c · h(a) = 0 where

g(a) := 8(a − 1)2(a + 1)2(1+ 2a2)2(4a5 −8a3 + 2a3x3 − 3x2a2 + 4a + 4ax1 + 2ax3−x2)

and
h(a) := (2a4 + a3x2 − a2x3 + 2a2 + ax2 − 2x1 − x3 − 4)3.

• An estimating equation for MLE:

4a5 − 8a3 + 2a3x3 − 3x2a2 + 4a + 4ax1 + 2ax3 − x2 = 0.

• Bias correction term for an estimator â: â(â8−4â6+6â4−4â2+1)/(1+2â2)2.

6.5.2 Example: Log Marginal Model

Here, we consider a log marginal model. See [7] for more on marginal models.

• Statistical model (Poisson regression):

Xi j
i.i.d∼ Po(N pi j ) s.t. pi j ∈ (0, 1) for i = 1, 2 and j = 1, 2, 3 with model con-

straints:

p11 + p12 + p13 + p21 + p22 + p23 = 1,

p11 + p12 + p13 = p21 + p22 + p23,

p11/p21
p12/p22

= p12/p22
p13/p23

. (6.7)
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Condition (6.7) can appear in a statistical test of whether acceleration of the ratio
p1 j/p2 j is constant.

In this case, d = 6 and p = 3.
• Log density w.r.t. the point mass measure on Z6≥0:

log f (x |p) = log

⎧
⎨

⎩

∏

i j

e−N pi j (N pi j )
Xi j

⎫
⎬

⎭
= −N +

∑

i j

Xi j log(N pi j ).

• The full expectation family is given by

[
X1 X2 X3
X4 X5 X6

]

:=
[

X11 X12 X13
X21 X22 X23

]

,

[
η1 η2 η3
η4 η5 η6

]

= N

[
p11 p12 p13
p21 p22 p23

]

,

θi = log(ηi ) and ψ(θ) = N .

• The Fisher metric w.r.t. θ: gi j = ∂2ψ
∂θi ∂θ j = δi jηi .

• Selection of the model parameters:

[u1, u2, u3] := [η1, η3, η5] and [v1, v2, v3] := [η2, η4, η6].

• A set of vectors ei ∈ R
6:

e0 :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

η22(η4 − η6)
−η22(η4 − η6)

0
−η3η

2
5 − 2η2η4η6

0
η3η

2
5 + 2η2η4η6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ (∇uη),

[e1, e2, e3] : =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

η1
η2
η3
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

η1(−η1η
2
5 + η3η

2
5)

η2(−η1η
2
5 − 2η2η4η6)
0

η4(η
2
2η4 − η22η6)

η5(η
2
2η4 + 2η1η3η5)

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

η1(η1η
2
5 − η3η

2
5)

η2(η1η
2
5 + 2η2η4η6)

0
η4(2η1η3η5 + η22η6)

0
η6(η

2
2η4 + 2η1η3η5)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ((∇uη)⊥Ḡ )3
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• A vector version of the second-order efficient estimator is, for example,

X − η + v1 · e1 + v2 · e2 + v3 · e3 + c · v31 · e0 = 0.

• The bias correction term of the estimator = 0.
• A set of estimating equations for MLE:

{x1η22η42η6 − x1η22η4η62 − x2η1η2η42η6 + x2η1η2η4η62 − 2 x4η1η2η4η62 −
x4η1η3η52η6 + 2 x6η1η2η42η6 + x6η1η3η4η52,
−x2η2η3η42η6 + x2η2η3η4η62 + x3η22η42η6 − x3η22η4η62 − x4η1η3η52η6 −
2 x4η2η3η4η62 + x6η1η3η4η52 + 2 x6η2η3η42η6,
−2 x4η1η3η52η6 − x4η22η4η5η6 + x5η22η42η6 − x5η22η4η62 + 2 x6η1η3η4η52 +
x6η22η4η5η6,
η1η3η5

2−η2
2η4η6, η1+η2+η3−η4−η5−η6,−η1−η2−η3−η4−η5−η6+1}

The total degree of the equations is 5 × 5 × 5 × 4 × 1 × 1 = 500.
• A set of estimating equations for a 2nd-order efficient estimator with degree at
most 2:

{−3 x1x2x42x6η2+6 x1x2x42x6η6+x1x2x42η2η6−2 x1x2x42η62+3 x1x2x4x62η2−
6 x1x2x4x62η4+2 x1x2x4x6η2η4−2 x1x2x4x6η2η6− x1x2x62η2η4+2 x1x2x62η42 +
3 x1x3x4x52η6 −2 x1x3x4x5η5η6 −3 x1x3x52x6η4 +2 x1x3x5x6η4η5 + x1x42x6η22 −
2 x1x42x6η2η6 − x1x4x52η3η6 − x1x4x62η22 + 2 x1x4x62η2η4 + x1x52x6η3η4 +
3 x22x42x6η1 − x22x42η1η6 − 3 x22x4x62η1 − 2 x22x4x6η1η4 + 2 x22x4x6η1η6 +
x22x62η1η4 − x2x42x6η1η2 − 2 x2x42x6η1η6 + x2x4x62η1η2 + 2 x2x4x62η1η4 −
x3x4x52η1η6 + x3x52x6η1η4,
3 x1x3x4x52η6−2 x1x3x4x5η5η6−3 x1x3x52x6η4+2 x1x3x5x6η4η5−x1x4x52η3η6+
x1x52x6η3η4 + 3 x22x42x6η3 − x22x42η3η6 − 3 x22x4x62η3 − 2 x22x4x6η3η4 +
2 x22x4x6η3η6 + x22x62η3η4 − 3 x2x3x42x6η2 + 6 x2x3x42x6η6 + x2x3x42η2η6 −
2 x2x3x42η62+3 x2x3x4x62η2−6 x2x3x4x62η4+2 x2x3x4x6η2η4−2 x2x3x4x6η2η6−
x2x3x62η2η4 + 2 x2x3x62η42 − x2x42x6η2η3 − 2 x2x42x6η3η6 + x2x4x62η2η3 +
2 x2x4x62η3η4+x3x42x6η22−2 x3x42x6η2η6−x3x4x52η1η6−x3x4x62η22+2 x3x4x62

η2η4 + x3x52x6η1η4,
6 x1x3x4x52η6−4 x1x3x4x5η5η6−6 x1x3x52x6η4+4 x1x3x5x6η4η5−2 x1x4x52η3η6+
2 x1x52x6η3η4 + 3 x22x42x6η5 − x22x42η5η6 − 3 x22x4x5x6η4 + 3 x22x4x5x6η6 +
x22x4x5η4η6 − x22x4x5η62 − 3 x22x4x62η5 − x22x4x6η4η5 + x22x4x6η5η6 + x22x5
x6η42 − x22x5x6η4η6 + x22x62η4η5 −2 x2x42x6η2η5 +2 x2x4x5x6η2η4 −2 x2x4x5x6
η2η6 + 2 x2x4x62η2η5 − 2 x3x4x52η1η6 + 2 x3x52x6η1η4,
η1η3η5

2 −η2
2η4η6, η1 +η2 +η3 −η4 −η5 −η6 , −η1 −η2 −η3 −η4 −η5 −η6 +1}.

The total degree of the polynomial equations is 32.
• A set of estimating equations for a first-order-efficient estimator with degree at
most 1:
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Table 6.1 Computational
time for each estimate by the
homotopy continuation
methods

Algorithm Estimator #Paths Running time (s)
(avg. ± std.)

Linear MLE 500 1.137 ± 0.073
Homotopy 2nd eff. 32 0.150 ± 0.047
Polyhedral MLE 64 0.267 ± 0.035
Homotopy 2nd eff. 24 0.119 ± 0.027

{−x52x4η6x1x3+x52x6η4x1x3+2 x62η4x1x2x4−2 x42η6x1x2x6−x62x1x2η2x4+
x42x1x2η2x6 + x22x62η1x4 − x42x22η1x6,
−x52x4η6x1x3+x52x6η4x1x3+2 x62η4x2x3x4−2 x42η6x2x3x6−x62x2x3η2x4+
x42x2x3η2x6 + x22x62η3x4 − x42x22η3x6,
−2 x52x4η6x1x3 + 2 x52x6η4x1x3 − x4x6x5x22η6 + x4x5x22η4x6 − x42x22η5x6 +
x4x62x22η5,
η1η3η5

2−η2
2η4η6, η1+η2+η3−η4−η5−η6 ,−η1−η2−η3−η4−η5−η6+6}.

The estimating equations for a second-order-efficient estimator above look much
more complicated than the estimating equation for the MLE, but each term of the
first three polynomials are at most degree 2. Thanks to this degree reduction, the
computational costs for the estimates becomemuch smaller aswewill see in Sect. 6.6.

6.6 Computation

To obtain estimates based on the method of this paper, we need fast algorithms to
find the solution of polynomial equations. The authors have carried out computations
using homotopy continuation method (matlab program HOM4PS2 by Lee, Li and
Tsuai [18]) for the log marginal model in Sect. 6.5.2 and a data X̄ = (1, 1, 1, 1, 1, 1).

The run time to compute each estimate on a standard laptop (Intel(R) Core (TM)
i7-2670QM CPU, 2.20GHz, 4.00GB memory) is given by Table 6.1. The computa-
tion is repeated 10 times and the averages and the standard deviations are displayed.
Note the increasing of the speed for the second-order efficient estimators is due to
the degree reduction technique. The term “path” in the table heading refers to a prim-
itive iteration step within the homotopy method. In the faster polyhedron version,
the solution region is subdivided into polyhedral domains.

Figure6.3 shows the mean squared error and the computational time of the MLE,
the first-order estimator and the second-order efficient estimator of Sect. 6.5.2. The
true parameter is set η∗ = (1/6, 1/4, 1/12, 1/12, 1/4, 1/6), a point in the model
manifold, and N random samples are generated i.i.d. from the distribution with the
parameter. The computation is repeated for exponentially increasing sample sizes
N = 1, . . . , 105. In general, there are multiple roots for polynomial equations
and here we selected the root closest to the sample mean by the Euclidean norm.
Figure6.3(1) also shows that the mean squared error is approximately the same for
the three estimators, but (2) shows that the computational time is much more for the
MLE.
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(a) (b)

Fig. 6.3 The mean squared error and computation time for each estimate by the homotopy contin-
uation method

6.7 Discussion

In this paper we have concentrated on reduction of the polynomial degree of the
estimating equations and shown the benefits in computation of the solutions. We do
not expect the estimators to be closed form, such as a rational polynomial form in
the data. The most we can expect is they are algebraic, that is they are the solution
of algebraic equations. They lie on a zero dimensional algebraic variety. It is clear
that there is no escape from using mixed symbolic-numerical methods. In algebraic
statistics the number of solution of the ML equation is called the ML degree. Given
that we have more general estimating equations than pure ML equations this points
to an extended theory or “quasi” ML degree of efficient estimator degree. The issue
of exactly which solution to use as our estimators persists. In the paper we suggest
taking the solution closest to the sufficient statistic in the Euclidian metric. We could
use other metrics and more theory is needed.

Herewe have put forward estimating equationswith reduced degree and shown the
benefits in terms of computation. But we could have used other criteria for choosing
the equations, while remaining in the efficient class. We might prefer to choose an
equation which reduces the bias further via decreasing the next order term. There
may thus be some trade off between degree and bias.

Beyond the limited ambitions of this paper to look at second-order efficiency lie
several other areas, notably hypothesis testing and model selection. But the question
is the same: towhat extent canwe bring the algebraicmethods to bear, for example by
expressing additional differential forms and curvatures in algebraic terms. Although
estimation typically requires a mixture of symbolic and numeric methods in some
cases only the computation of the efficient estimate requires numeric procedures and
the other computations can be carrying out symbolically.
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A Normal Forms

A basic text for the materials in this section is [9]. The rapid growth of modern
computational algebra can be credited to the celebrated Buchberger’s algorithm [8].

A monomial ideal I in a polynomial ring K [x1, . . . , xn] over a field K is an ideal
for which there is a collection of monomials f1, . . . , fm such that any g ∈ I can be
expressed as a sum

g =
m∑

i=1

gi (x) fi (x)

with some polynomials gi ∈ K [x1, . . . , xn]. We can appeal to the representation of
a monomial xα = xα1

1 . . . xαn
n by its exponent α = (α1, . . . ,αn). If β ≥ 0 is another

exponent then
xαxβ = xα+β,

and α + β is in the positive (shorthand for non-negative) “orthant” with corner at
α. The set of all monomials in a monomial ideal is the union of all positive orthants
whose “corners” are given by the exponent vectors of the generating monomial
f1, . . . , fm . A monomial ordering written xα ≺ xβ is a total (linear) ordering on
monomials such that for γ ≥ 0, xα ≺ xβ ⇒ xα+γ ≺ xβ+γ . Any polynomial f (x)

has a leading terms with respect to ≺, written LT ( f ).
There are, in general, many ways to express a given ideal I as being generated

from a basis I = 〈 f1, . . . , fm〉. That is to say, there are many choices of basis. Given
an ideal I a set {g1, . . . gm} is called a Gröbner basis (G-basis) if:

〈LT (g1), . . . , LT (gm)〉 = 〈LT (I )〉,

where 〈LT (I )〉 is the ideal generated by all the monomials in I . We sometimes
refer to 〈LT (I )〉 as the leading term ideal. Any ideal I has a Gröbner basis and any
Gröbner basis in the ideal is a basis of the ideal.

Given a monomial ordering and an ideal expressed in terms of the G-basis, I =
〈g1, . . . , gm〉, any polynomial f has a unique remainder with respect the quotient
operation K [x1, . . . , xk]/I . That is
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f =
m∑

i=1

si (x)gi (x) + r(x).

We call the remainder r(x) the normal form of f with respect to I and write N F( f ).
Or, to stress the fact that it may depend on≺, we write N F( f,≺). Given a monomial
ordering≺, a polynomial f = ∑

α∈L θαxα for some L is a normal formwith respect
to ≺ if xα /∈ 〈LT ( f )〉 for all α ∈ L . An equivalent way of saying this is: given an
ideal I and a monomial ordering ≺, for every f ∈ K [x1, . . . , xk] there is a unique
normal form N F( f ) such that f − N F( f ) ∈ I .

B Homotopy Continuation Method

Homotopy continuation method is an algorithm to find the solutions of simultaneous
polynomial equations numerically. See, for example, [19, 24] for more details of the
algorithm and theory.

We will explain the method briefly by a simple example of 2 equations with 2
unknowns

Input: f, g ∈ R[x, y]

Output: The solutions of f (x, y) = g(x, y) = 0.

Step 1 Select arbitrary polynomials of the form:

f0(x, y) := f0(x) := a1xd1 − b1 = 0,

g0(x, y) := g0(y) := a2yd2 − b2 = 0 (6.8)

where d1 = deg( f ) and d2 = deg(g). Polynomial equations in this form are
easy to solve.

Step 2 Take the convex combinations:

ft (x, y) := t f (x, y) + (1 − t) f0(x, y),

gt (x, y) := tg(x, y) + (1 − t)g0(x, y)

then our target becomes the solution for t = 1.
Step 3 Compute the solution for t = δ for small δ by the solution for t = 0 numer-

ically.
Step 4 Repeat this until we obtain the solution for t = 1.

Figure6.4 shows a sketch of the algorithm. This algorithm is called the (linear)
homotopy continuation method and justified if the path connects t = 0 and t = 1
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Fig. 6.4 Paths for the homotopy continuation method

continuously without an intersection. That can be proved for almost all a and b.
See [19].

For each computation for the homotopy continuation method, the number of the
paths is the number of the solutions of (6.8). In this case, the number of paths is d1d2.
In general case with m unknowns, it becomes

∏m
i=1 di and this causes a serious

problem for computational cost. Therefore decreasing the degree of second-order
efficient estimators plays an important role for the homotopy continuation method.

Note that in order to solve this computational problem, the authors of [16] pro-
posed the nonlinear homotopy continuation methods (or the polyhedral continuation
methods). But as we can see in Sect. 6.5.2, the degree of the polynomials still affects
the computational costs.
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