
Chapter 4
Harmonic Maps Relative to α-Connections

Keiko Uohashi

Abstract In this paper, we study harmonic maps relative to α-connections, but not
necessarily relative to Levi-Civita connections, onHessian domains. For the purpose,
we review the standard harmonic map and affine harmonic maps, and describe the
conditions for harmonicity of maps between level surfaces of a Hessian domain in
terms of the parameter α and the dimension n. To illustrate the theory, we describe
harmonic maps between the level surfaces of convex cones.

4.1 Introduction

Harmonic maps are important objects in certain branches of geometry and physics.
Geodesics on Riemannian manifolds and holomorphic maps between Kähler man-
ifolds are typical examples of harmonic maps. In addition a harmonic map has a
variational characterization by the energy of smooth maps between Riemannian
manifolds and several existence theorems for harmonic maps are already known. On
the other hand the notion of a Hermitian harmonic map from a Hermitian manifold
to a Riemannian manifold was introduced and investigated by [4, 8, 10]. It is not
necessary a harmonic map if the domain Hermitian manifold is non-Kähler. The sim-
ilar results are pointed out for affine harmonic maps, which is analogy to Hermitian
harmonic maps [7].

Statistical manifolds have mainly been studied in terms of their affine geome-
try, information geometry, and statistical mechanics [1]. For example, Shima estab-
lished conditions for harmonicity of gradient mappings of level surfaces on a Hessian
domain, which is a typical example of a dually flat statistical manifold [14]. Level
surfaces on a Hessian domain are known as 1- and (−1)-conformally flat statistical
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manifolds for primal and dual connections, respectively [17, 19]. The gradient
mappings are then considered to be harmonic maps relative to the dual connection,
i.e., the (−1)-connection [13].

In this paper, we review the notions of harmonic maps, affine harmonic maps
and α-affine harmonic maps, and investigate different kinds of harmonic maps rela-
tive to α-connections. In Sect. 4.2, we give definitions of an affine harmonic map, a
harmonic map and the standard Laplacian. In Sect. 4.3, we explain the generalized
Laplacian which defines a harmonicmap relative to an affine connection. In Sect. 4.4,
we present the Laplacian of a gradient mapping on a Hessian domain, as an example
of the generalized Laplacian. Moreover, we compare the harmonic map defined by
Shima with an affine harmonic map defined in Sect. 4.2. In Sect. 4.5, α-connections
of statistical manifolds are explained. In Sect. 4.6, we define α-affine harmonic maps
which are generalization of affine harmonic maps and also a generalization of har-
monic maps defined by Shima. In Sect. 4.7, we describe the α-conformal equiva-
lence of statistical manifolds and a harmonic map relative to two α-connections. In
Sect. 4.8, we review α-conformal equivalence of level surfaces of a Hessian domain.
In Sect. 4.9, we study harmonic maps of level surfaces relative to two α-connections,
for examples of a harmonic map in Sect. 4.7, and provide examples on level surfaces
of regular convex cones.

Shima [13] investigated harmonic maps of n-dimensional level surfaces into
an (n + 1)-dimensional dual affine space, rather than onto other level surfaces.
Although Nomizu and Sasaki calculated the Laplacian of centro-affine immer-
sions into an affine space, which generate projectively flat statistical manifolds
(i.e. (−1)-conformally flat statistical manifolds), they did not discuss any harmonic
maps between two centro-affine hypersurfaces [12]. Then, we study harmonic maps
between hypersurfaces with the same dimension relative to general α-connections
that may not satisfy α = −1 or 0 (where the 0-connection implies the Levi-Civita
connection). In particular, we demonstrate the existence of non-trivial harmonicmaps
between level surfaces of a Hessian domain with α-parameters and the dimension n.

4.2 Affine Harmonic Maps and Harmonic Maps

First, we recall definitions of an affine harmonic map and a harmonic map.
LetM anm-dimensional affinemanifold and {x1, . . . , xm} a local affine coordinate

system of M. If there exist a symmetric tensor field of degree 2

g = gijdxidxj

on M satisfying locally

gij = ∂2ϕ

∂xi∂xj
(4.1)
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for a convex functionϕ,M is said to be aKähler affine manifold [2, 7].Amatrix [gij] is
positive definite and defines aRiemannianmetric. Then for theKähler affinemanifold
M, (M, D, g) is a Hessian manifold, where D is a canonical flat affine connection for
{x1, . . . , xm}. We will mention details of Hessian manifolds and Hessian domains in
later sections of this paper.

The Kähler affine structure (4.1) defines an affinely invariant operator L by

L =
m∑

i,j=1

gij
∂2

∂xi∂xj
. (4.2)

A smooth function f : M → R is said to be affine harmonic if

Lf = 0.

For a Kähler affine manifold (M, g) and a Riemannian manifold (N, h), a smooth
map φ : M → N is said to be affine harmonic if

m∑

i,j=1

gij

⎛

⎝ ∂2φγ

∂xi∂xj
+

n∑

δ,β=1

Γ̂
γ
δβ

∂φδ

∂xi

∂φβ

∂xj

⎞

⎠ = 0, γ = 1, . . . , n, (4.3)

where Γ̂ is the Christoffel symbol of the Levi-Civita connection for a Riemannian
metric h, and n = dim N .

Let us compare an affine harmonicmapwith a harmonicmap. For this purpose, we
give a definition of a harmonic function at first. For a Riemannian manifold (M, g),
a smooth function f : M → R is said to be a harmonic function if

Δf = 0,

where Δ is the standard Laplacian, i.e.,

Δf = div grad f = 1√
g

m∑

i,j=1

∂

∂xi

(√
ggij ∂f

∂xj

)
(4.4)

=
m∑

i,j=1

gij

(
∂2f

∂xi∂xj
−

m∑

k=1

Γ k
ij

∂f

∂xk

)
(4.5)

=
m∑

i=1

{ei(eif ) − (∇LC
ei

ei)f },

g = det[gij],
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{e1, . . . , em} is a local orthogonal frame on a neighborhood of x ∈ M, and ∇LC , Γ
are the Levi-Civita connection, the Christoffel symbol of ∇LC , respectively. Remark
that the sign of definition (4.4) is inverse to the sign of the Laplacian in [3, 21].

For Riemannian manifolds (M, g), (N, h), a smooth map φ : M → N is said to
be a harmonic map if

τ (φ) ≡ 0; theEuler-Lagrange equation,

where τ (φ) ∈ Γ (φ−1TN) is the standard tension field of φ defined by

τ (φ)(x) =
m∑

i=1

(∇̃LC
ei

φ∗ei − φ∗∇LC
ei

ei)(x), x ∈ M, (4.6)

∇̃LC
ei

φ∗ei = ∇̂LC
φ∗ei

φ∗ei; the pull-back connection,

and ∇LC, ∇̂LC are the Levi-Civita connections for g, h, respectively. For local coor-
dinate systems {x1, . . . , xm} and {y1, . . . , yn} on M and N , the γ-th component of
τ (φ) at x ∈ M is described by

τ (φ)γ(x) =
m∑

i,j=1

gij

⎧
⎨

⎩
∂2φγ

∂xi∂xj
−

m∑

k=1

Γ k
ij (x)

∂φγ

∂xk
+

n∑

δ,β=1

Γ̂
γ
δβ(φ(x))

∂φδ

∂xi

∂φβ

∂xj

⎫
⎬

⎭

(4.7)

= Δφγ +
m∑

i,j=1

n∑

δ,β=1

gijΓ̂
γ
δβ (φ(x))

∂φδ

∂xi

∂φβ

∂xj
,

φδ = yδ ◦ φ, γ = 1, . . . , n,

where

τ (φ)(x) =
n∑

γ=1

τ (φ)γ(x)
∂

∂yγ
,

and Γ k
ij , Γ̂

γ
δβ are the Christoffel symbols of ∇LC, ∇̂LC , respectively. The original

definition of a harmonic map is described in [3, 21], and so on.

Remark 1 Term (4.5) is not equal to the definition (4.2). Hence an affine harmonic
function is not necessary a harmonic function.

Remark 2 Term (4.7) is not equal to the definition (4.3). Hence an affine harmonic
map is not necessary a harmonic map.
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4.3 Affine Harmonic Maps and Generalized Laplacians

In Sect. 4.2, the Laplacian is defined for a function on a Riemannian manifold. In
this section, we treat Laplacians for maps between Riemannian manifolds.

For Riemannian manifolds (M, g) and (N, h), a tension field of a smooth map
φ : M → N is defined by

τ (φ) =
m∑

i=1

(∇̂ei(φ∗ei) − φ∗(∇LC
ei

ei)) ∈ Γ (φ−1TN) (4.8)

=
m∑

i,j=1

gij
{
∇̂ ∂

∂xi

(
φ∗

∂

∂xj

)
− φ∗

(
∇LC

∂
∂xi

∂

∂xj

)}
,

where {e1, . . . , em} is a local orthonormal frame for g, {x1, . . . , xm} is a local coor-
dinate system on M, ∇LC is the Levi-Civita connection of g, and ∇̂ is a torsion free
affine connection on N [12]. The affine connection ∇̂ does not need to be the Levi-
Civita connection. We also denote by ∇̂ the pull-back connection of ∇̂ to M. Then
φ is said to be a harmonic map relative to (g, ∇̂) if

τ (φ) =
m∑

i=1

(∇̂ei(φ∗ei) − φ∗(∇LC
ei

ei)) ≡ 0.

If a Riemannian manifold N is an finite dimensional real vector space V , the
tension field τ (φ) is said to be a Laplacian of a map φ : M → V . Then a notation Δ

for the standard Laplacian is often used for the Laplacian of a map as the following;

Δφ = Δ
(g,∇̂)

φ = τ (φ) : M → V . (4.9)

For V = R,Δφ defined by Eqs. (4.8) and (4.9) coincides with the standard Laplacian
for a function defined by (4.4).

See in [12] for an affine immersion and the Laplacian of a map, and see in [13,
14] for the gradient mapping and the Laplacian on a Hessian domain.

4.4 Gradient Mappings and Affine Harmonic Maps

In this section,we investigate theLaplacianof a gradientmapping inviewof geometry
of affine harmonic maps.

Let D be the canonical flat affine connection on an (n+1)-dimensional real affine
spaceAn+1 and let {x1, . . . , xn+1} be the canonical affine coordinate system onAn+1,
i.e., Ddxi = 0. If the Hessian Ddϕ = ∑n+1

i,j=1(∂
2ϕ/∂xi∂xj)dxidxj of a function ϕ is



86 K. Uohashi

non-degenerate on a domainΩ in An+1, then (Ω, D, g = Ddϕ) is a Hessian domain
[14].

For the dual affine spaceA∗
n+1 and the dual affine coordinate system {x∗

1 , . . . , x∗
n+1}

of An+1 , the gradient mapping ι from a Hessian domain (Ω, D, g = Ddϕ) into
(A∗

n+1, D∗) is defined by

x∗
i ◦ ι = − ∂ϕ

∂xi
.

The dually flat affine connection D′ on Ω is given by

ι∗(D′
XY) = D∗

X ι∗(Y) for X, Y ∈ Γ (TΩ), (4.10)

where D∗
X ι∗(Y) denotes the covariant derivative along ι induced by the canonical flat

affine connection D∗ on A∗
n+1.

The Laplacian of ι with respect to (g, D∗) is given by

Δ(g,D∗)ι =
∑

i,j

gij
{

D∗
∂

∂xi

(
ι∗

∂

∂xj
− ι∗

(
∇LC

∂
∂xi

∂

∂xj

))}

= ι∗

⎧
⎨

⎩
∑

i,j

gij(D′ − ∇LC) ∂
∂xi

∂

∂xj

⎫
⎬

⎭ (4.11)

= ι∗

⎧
⎨

⎩
∑

i,j

gij(∇LC − D) ∂
∂xi

∂

∂xj

⎫
⎬

⎭ (4.12)

= ι∗

(
∑

i

αKi ∂

∂xi

)
,

where ∇LC is the Levi-Civita connection for g and Γ is the Christoffel symbol of
∇LC , and where αK is the Koszul form, i.e.,

αK = d log |det[gij]| 12 , αK
i =

∑

r

Γ r
ri, αKi =

∑

j

gijαK
j

([13], p. 93 in [14]). We have the deformation from (4.11) to (4.12) by

D + D′

2
= ∇LC .

Details of dual affine connections are described in later sections.
Let∇LC∗ be the Levi-Civita connection for theHessianmetric g∗ = D∗dϕ∗ on the

dual domainΩ∗ = ι(Ω), whereϕ∗ = ∑
i xi(∂ϕ/∂xi)−ϕ is the Legendre transform

of ϕ. Then the term (4.12) is described as the follows:
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Δ(g,D∗)ι =
∑

i,j

gij{∇LC∗
∂

∂xi
(ι∗

∂

∂xj
) − ι∗(D ∂

∂xi

∂

∂xj
)}.

Moreover the γ-th component of Δ(g,D∗)ι is

(Δ(g,D∗)ι)
γ =

∑

i,j

gij

⎛

⎝ ∂2ιγ

∂xi∂xj
+

∑

δ,β

Γ
γ
δβ

∂ιδ

∂xi

∂ιβ

∂xj

⎞

⎠ , γ = 1, . . . , n + 1

where ιi(x) = x∗
i ◦ ι(x). Therefore, if the gradient mapping ι is a harmonic map with

respect to (g, D∗), i.e., if Δ(g,D∗)ι ≡ 0, we have

∑

i,j

gij

⎛

⎝ ∂2ιγ

∂xi∂xj
+

∑

δ,β

Γ
γ
δβ

∂ιδ

∂xi

∂ιβ

∂xj

⎞

⎠ = 0, γ = 1, . . . , n + 1. (4.13)

Equation (4.13) is obtained by putting ι on φ of Eq. (4.3). Thus considering a Hessian
domain Ω as a Kähler affine manifold, we have the next proposition.

Proposition 1 The followings are equivalent:

(i) the gradient mapping ι is a harmonic map with respect to (g, D∗);
(ii) the gradient mapping ι : (Ω, D) → (A∗

n+1,∇LC∗) is an affine harmonic map.

In [13, 14], Shima studied an affine harmonic map with the restriction of the
gradient mapping ι to a level surface of a convex function ϕ.

The author does not clearly distinguish a phrase “relative to something” with a
phrase “with respect to something”.

4.5 α-Connections of Statistical Manifolds

We recall some definitions that are essential to the theory of statistical manifolds and
relate α-connections to Hessian domains.

Given a torsion-free affine connection ∇ and a pseudo-Riemannian metric h on a
manifoldN , the triple (N,∇, h) is said to be a statistical manifold if∇h is symmetric.
If the curvature tensor R of ∇ vanishes, (N,∇, h) is said to be flat.

Let (N,∇, h) be a statistical manifold and let ∇′ be an affine connection on N
such that

Xh(Y , Z) = h(∇XY , Z) + h(Y ,∇′
XZ) for X, Y and Z ∈ Γ (TN),

where Γ (TN) is the set of smooth tangent vector fields on N . The affine connection
∇′ is torsion free and ∇′h is symmetric. Then ∇′ is called the dual connection of
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∇. The triple (N,∇′, h) is the dual statistical manifold of (N,∇, h), and (∇,∇′, h)

defines the dualistic structure onN . The curvature tensor of∇′ vanishes if and only if
the curvature tensor of ∇ also vanishes. Under these conditions, (∇,∇′, h) becomes
a dually flat structure.

Let N be a manifold with a dualistic structure (∇,∇′, h). For any α ∈ R, an affine
connection defined by

∇(α) := 1 + α

2
∇ + 1 − α

2
∇′ (4.14)

is called an α-connection of (N,∇, h). The triple (N,∇(α), h) is also a statistical
manifold, and ∇(−α) is the dual connection of ∇(α). The 1-connection ∇(1), the
(−1)-connection ∇(−1), and the 0-connection ∇(0) correspond to the ∇, ∇′, and the
Levi-Civita connection of (N, h), respectively. An α-connection does not need to be
flat.

A Hessian domain is a flat statistical manifold. Conversely, a local region of a
flat statistical manifold is a Hessian domain. For the dual connection D′ defined by
(4.10), (Ω, D′, g) is the dual statistical manifold of (Ω, D, g) if a Hessian domain
(Ω, D′, g) is a statistical manifold [1, 13, 14].

4.6 α-Affine Harmonic Maps

In this section, we give a generalization of an affine harmonic map.
Considering a Hessian domain (Ω, D, g) as a statistical manifold, we have the

α-connection of (Ω, D, g) by

D(α) = 1 + α

2
D + 1 − α

2
D′

for each α ∈ R. Let D(α)∗ be an α-connection of (Ω∗, D∗, g∗) which is the dual
statistical manifold of (Ω, D, g). Then the Laplacian of the gradient mapping ι with
respect to (g, D(α)∗) is given by

Δ(g,D(α)∗)ι =
∑

i,j

gij
{

D(α)∗
∂

∂xi

(
ι∗

∂

∂xj

)
− ι∗

(
∇LC

∂
∂xi

∂

∂xj

)}

= ι∗

⎧
⎨

⎩
∑

i,j

gij(D(−α) − ∇LC) ∂
∂xi

∂

∂xj

⎫
⎬

⎭

= ι∗

⎧
⎨

⎩
∑

i,j

gij(∇LC − D(α)) ∂
∂xi

∂

∂xj

⎫
⎬

⎭
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=
∑

i,j

gij
{
∇LC∗

∂
∂xi

(ι∗
∂

∂xj
) − ι∗

(
D(α)

∂
∂xi

∂

∂xj

)}
.

If Δ(g,D(α)∗)ι ≡ 0, we have

∑

i,j

gij

⎧
⎨

⎩
∂2ιγ

∂xi∂xj
− (1 − α)

∑

k

Γ k
ij

∂ιγ

∂xk
+

∑

δ,β

Γ̂
γ
δβ

∂ιδ

∂xi

∂ιβ

∂xj

⎫
⎬

⎭ = 0,

γ = 1, . . . , n + 1.

In general, we define the notion of α-affine harmonic maps as follows:

Definition 1 For aKähler affinemanifold (M, g) and aRiemannianmanifold (N, h),
a map φ : M → N is said to be an α-affine harmonic map if

∑

i,j

gij

⎛

⎝ ∂2φγ

∂xi∂xj
− (1 − α)

∑

k

Γ k
ij

∂φγ

∂xk
+

∑

δ,β

Γ̂
γ
δβ

∂φδ

∂xi

∂φβ

∂xj

⎞

⎠ = 0, (4.15)

γ = 1, . . . , dim N .

Then we obtain that the gradient mapping ι is a harmonic map with respect to
(g, D(α)∗) if and only if themap ι : (Ω, D(α)) → (A∗

n+1,∇∗) is anα-affine harmonic
map.

Remark 3 For α = 1, a 1-affine harmonic map is an affine harmonic map.

Remark 4 For α = 0, a 0-affine harmonic map is a harmonic map in the standard
sense.

They are problems to find applications of α-affine harmonic maps and to investi-
gate them.

4.7 Harmonic Maps for α-Conformal Equivalence

In this section, we describe harmonic maps with respect to α-conformal equivalence
of statistical manifolds.

For a real number α, statistical manifolds (N,∇, h) and (N, ∇̄, h̄) are regarded
as α-conformally equivalent if there exists a function φ on N such that
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h̄(X, Y) = eφh(X, Y), (4.16)

h(∇̄XY , Z) = h(∇XY , Z) − 1 + α

2
dφ(Z)h(X, Y)

+ 1 − α

2
{dφ(X)h(Y , Z) + dφ(Y)h(X, Z)} (4.17)

for X, Y and Z ∈ Γ (TN). Two statistical manifolds (N,∇, h) and (N, ∇̄, h̄) are
α-conformally equivalent if and only if the dual statistical manifolds (N,∇′, h) and
(N, ∇̄′, h̄) are (−α)-conformally equivalent. A statistical manifold (N,∇, h) is said
to be α-conformally flat if (N,∇, h) is locally α-conformally equivalent to a flat
statistical manifold [19].

Let (N,∇, h) and (N, ∇̄, h̄) be α-conformally equivalent statistical manifolds of
dim n ≥ 2, and {x1, . . . xn} a local coordinate system on N . Suppose that h and h̄
are Riemannian metrices. We set hij = h(∂/∂xi, ∂/∂xj) and [hij] = [hij]−1. Let
πid : (N,∇, h) → (N, ∇̄, h̄) be the identity map, i.e., πid(x) = x for x ∈ N , and πid∗
the differential of πid .

We define a harmonic map relative to (h,∇, ∇̄) as follows:

Definition 2 ([16, 18]) If a tension field τ(h,∇,∇̄)(πid) vanishes on N , i.e.,

τ(h,∇,∇̄)(πid) ≡ 0,

the map πid : (N,∇, h) → (N, ∇̄, h̄) is said to be a harmonic map relative to
(h,∇, ∇̄), where the tension field is defined by

τ(h,∇,∇̄)(πid) : =
n∑

i,j=1

hij
{
∇̄ ∂

∂xi

(
πid∗(

∂

∂xj
)

)
− πid∗

(
∇ ∂

∂xi

∂

∂xj

)}
∈ Γ (π−1

id TN)

=
n∑

i,j=1

hij(∇̄ ∂
∂xi

∂

∂xj
− ∇ ∂

∂xi

∂

∂xj
) ∈ Γ (TN). (4.18)

Then the next theorem holds.

Theorem 1 ([16, 18]) For α-conformally equivalent statistical manifolds (N,∇, h)

and (N, ∇̄, h̄) of dim N ≥ 2 satisfying Eqs. (4.16) and (4.17), if α = −(n−2)/(n+2)
or φ is a constant function on N, the identity map πid : (N,∇, h) → (N, ∇̄, h̄) is a
harmonic map relative to (h,∇, ∇̄).

Proof By Eqs. (4.17) and (4.18), for k ∈ {1, . . . , n} we have

h

(
τ(h,∇,∇̄) (πid) ,

∂

∂xk

)

= h

⎛

⎝
n∑

i,j=1

hij
(

∇̄ ∂
∂xi

∂

∂xj
− ∇ ∂

∂xi

∂

∂xj

)
,

∂

∂xk

⎞

⎠
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=
n∑

i,j=1

hij
{
−1 + α

2
dφ

(
∂

∂xk

)
h

(
∂

∂xi
,

∂

∂xj

)

+ 1 − α

2

{
dφ

(
∂

∂xi

)
h

(
∂

∂xj
,

∂

∂xk

)

+ dφ

(
∂

∂xj

)
h

(
∂

∂xi
,

∂

∂xk

)}}

=
n∑

i,j=1

hij
{
−1 + α

2

∂φ

∂xk
hij + 1 − α

2

(
∂φ

∂xi
hjk + ∂φ

∂xj
hik

)}

=
⎧
⎨

⎩−1 + α

2
· n · ∂φ

∂xk
+ 1 − α

2

⎛

⎝
n∑

i=1

∂φ

∂xi
δik +

n∑

j=1

∂φ

∂xj
δjk

⎞

⎠

⎫
⎬

⎭

=
(

−1 + α

2
· n + 1 − α

2
· 2

)
∂φ

∂xk

= −1

2
{(n + 2) α + (n − 2)} ∂φ

∂xk
,

where δij is the Kronecker’s delta. Therefore, if τ(h,∇,∇̄)(πid) ≡ 0, it holds that

(n + 2)α + (n − 2) = 0 or ∂φ/∂xk = 0 for all k ∈ {1, . . . , n} at each point in N .
Thus we obtain Theorem 1. ��

4.8 α-Conformal Equivalence of Level Surfaces

We show our previous results of α-conformal equivalence of level surfaces.
The next theorem holds for a 1-conformally flat statistical submanifold.

Theorem 2 ([19]) Let M be a simply connected n-dimensional level surface of ϕ
on an (n + 1)-dimensional Hessian domain (Ω, D, g = Ddϕ) with a Riemannian
metric g, and suppose that n ≥ 2. If (Ω, D, g) is a flat statistical manifold, then
(M, DM , gM) is a 1-conformally flat statistical submanifold of (Ω, D, g), where DM

and gM are the connection and the Riemannian metric on M induced by D and g,
respectively.

See in [15, 17–19] for realization problems relatedwithα-conformal equivalence.
We now consider two simply connected level surfaces of dim n ≥ 2 (M, D, g) and

(M̂, D̂, ĝ), which are 1-conformally flat statistical submanifolds of (Ω, D, g). Let λ
be a function on M such that eλ(p)ι(p) ∈ ι̂(M̂) for p ∈ M, where ι̂ is the restriction
of the gradient mapping ι to M̂, and set (eλ)(p) = eλ(p). Note that the function eλ

projects M to M̂ with respect to the dual affine coordinate system on Ω .
We define a mapping π : M → M̂ by

ι̂ ◦ π = eλι,
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where ι (as denoted above) is the restriction of the gradient mapping ι to M. Let D̄′
be an affine connection on M defined by

π∗(D̄′
XY) = D̂′

π∗(X)π∗(Y) for X, Y ∈ Γ (TM),

and ḡ be a Riemannian metric on M such that

ḡ(X, Y) = eλg(X, Y) = ĝ(π∗(X),π∗(Y)).

The following theorem has been proposed elsewhere (cf. [9, 11]).

Theorem 3 ([20]) For affine connections D′ and D̄′ on M, the following are true:

(i) D′ and D̄′ are projectively equivalent.
(ii) (M, D′, g) and (M, D̄′, ḡ) are (−1)-conformally equivalent.

Let D̄ be an affine connection on M defined by

π∗(D̄XY) = D̂π∗(X)π∗(Y) for X, Y ∈ Γ (TM).

From the duality of D̂ and D̂′, D̄ is the dual connection of D̄′ on M. Then the next
theorem holds (cf. [6, 9]).

Theorem 4 ([20]) For affine connections D and D̄ on M, we have that

(i) D and D̄ are dual-projectively equivalent.
(ii) (M, D, g) and (M, D̄, ḡ) are 1-conformally equivalent.

For α-connections D(α) and D̄(α) = D(−α) defined similarly to (4.14), we obtain
the following corollary by Theorem 3, Theorem 4, and Eq. (4.17) with φ = λ [15].

Corollary 1 For affine connections D(α) and D̄(α) on M, (M, D(α), g) and (M, D̄(α),

ḡ) are α-conformally equivalent.

4.9 Harmonic Maps Relative to α-Connections on Level
Surfaces

We denote D̂(α)
π∗(X)π∗(Y) by D̂(α)

X π∗(Y), considering it in the inverse-mapped section

Γ (π−1TM̂). Let {x1, . . . , xn} be a local coordinate system on M. The notion of a
harmonic map between two level surfaces (M, D(α), g) and (M̂, D̂(α), ĝ) is defined
as follows:

Definition 3 ([16, 18]) If a tension field τ
(g,D(α),D̂(α))

(π) vanishes on M, i.e.,

τ
(g,D(α),D̂(α))

(π) ≡ 0,
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the map π : (M, D(α), g) → (M̂, D̂(α), ĝ) is said to be a harmonic map relative to
(g, D(α), D̂(α)), where the tension field is defined by

τ
(g,D(α),D̂(α))

(π) :=
n∑

i,j=1

gij

{
D̂(α)

∂
∂xi

(
π∗(

∂

∂xj
)

)
− π∗

(
D(α)

∂
∂xi

∂

∂xj

)}
∈ Γ (π−1TM̂).

(4.19)

We now specify the conditions for harmonicity of a map π : M → M̂ relative to
(g, D(α), D̂(α)).

Theorem 5 ([16, 18]) Let (M, D(α), g) and (M̂, D̂(α), ĝ) be simply connected
n-dimensional level surfaces of an (n + 1)-dimensional Hessian domain (Ω, D, g)

with n ≥ 2. If α = −(n − 2)/(n + 2) or λ is a constant function on M, a map
π : (M, D(α), g) → (M̂, D̂(α), ĝ) is a harmonic map relative to (g, D(α), D̂(α)),
where

ι̂ ◦ π = eλι, (eλ)(p) = eλ(p), eλ(p)ι(p) ∈ ι̂(M̂), p ∈ M,

and ι, ι̂ are the restrictions of the gradient mappings on Ω to M and M̂, respectively.

Proof The tension field of the map π relative to (g, D(α), D̂(α)) is described by the
pull-back of (M̂, D̂(α), ĝ), namely (M, D̄(α), ḡ), as follows:

τ
(g,D(α),D̂(α))

(π) =
n∑

i,j=1

gij
{

D̂(α)
∂

∂xi

(
π∗

(
∂

∂xj

))
− π∗

(
D(α)

∂
∂xi

∂

∂xj

)}

=
n∑

i,j=1

gij
{
π∗

(
D̄(α)

∂
∂xi

∂

∂xj

)
− π∗

(
D(α)

∂
∂xi

∂

∂xj

)}

= π∗

⎛

⎝
n∑

i,j=1

gij
(

D̄(α)
∂

∂xi

∂

∂xj
− D(α)

∂
∂xi

∂

∂xj

)⎞

⎠

Identifying Tπ(x)M with TxM and considering the definition of π, we obtain

τ
(g,D(α),D̂(α))

(π) = eλ
n∑

i,j=1

gij
(

D̄(α)
∂

∂xi

∂

∂xj
− D(α)

∂
∂xi

∂

∂xj

)
.

By Corollary 1, (M, D(α), g) and (M, D̄(α), ḡ) are α-conformally equivalent, so that
Eq. (4.17) holds with φ = λ, h = g, ∇ = D(α), and ∇̄ = D̄(α) for X, Y and
Z ∈ Γ (TM). Thus, for all k ∈ {1, . . . , n},

g

(
τ
(g,D(α),D̂(α))

(π) ,
∂

∂xk

)
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= g

⎛

⎝eλ
n∑

i,j=1

gij
(

D̄(α)
∂

∂xi

∂

∂xj
− D(α)

∂
∂xi

∂

∂xj

)
,

∂

∂xk

⎞

⎠

= eλ
n∑

i,j=1

gij
{
−1 + α

2
dλ

(
∂

∂xk

)
g

(
∂

∂xi
,

∂

∂xj

)

+ 1 − α

2

{
dλ

(
∂

∂xi

)
g

(
∂

∂xj
,

∂

∂xk

)

+ dλ

(
∂

∂xj

)
g

(
∂

∂xi
,

∂

∂xk

)}}

= eλ
n∑

i,j=1

gij
{
−1 + α

2

∂λ

∂xk
gij + 1 − α

2

(
∂λ

∂xi
gjk + ∂λ

∂xj
gik

)}

= eλ

⎧
⎨

⎩−1 + α

2
· n · ∂λ

∂xk
+ 1 − α

2

⎛

⎝
n∑

i=1

∂λ

∂xi
δik +

n∑

j=1

∂λ

∂xj
δjk

⎞

⎠

⎫
⎬

⎭

=
(

−1 + α

2
· n + 1 − α

2
· 2

)
eλ ∂λ

∂xk

= −1

2
{(n + 2) α + (n − 2)} eλ ∂λ

∂xk
.

Therefore, if τ
(g,D(α),D̂(α))

(π) ≡ 0, then (n + 2)α + (n − 2) = 0 or ∂λ/∂xk = 0 for
all k ∈ {1, . . . , n} at each point in N . Thus we obtain Theorem 5. ��
Remark 5 If n = 2, harmonic maps π with non-constant functions λ exist if and
only if α = 0.

Remark 6 If n ≥ 3, and a map π is a harmonic map with a non-constant function
λ, then −1 < α < 0.

Remark 7 For α ≤ −1 and α > 0, harmonic maps π with non-constant functions λ
do not exist.

Definition 3 and Theorem 5 are special cases of harmonic maps between
α-conformally equivalent statistical manifolds discussed in our previous study [16].

We now provide specific examples of harmonic maps between level surfaces
relative to α-connections.

Example 1 (Regular convex cone) Let Ω and ψ be a regular convex cone and its
characteristic function, respectively. On the Hessian domain (Ω, D, g = Dd logψ),
d logψ is invariant under a 1-parameter group of dilations at the vertex p of Ω , i.e.,
x −→ et(x − p) + p, t ∈ R [5, 14]. Then, under these dilations, each map between
level surfaces of logψ is also a dilated map in the dual coordinate system. Hence,
each dilated map between level surfaces of logψ in the primal coordinate system is
a harmonic map relative to an α-connection for any α ∈ R.
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Example 2 (Symmetric cone) Let Ω and ψ = Det be a symmetric cone and its
characteristic function, respectively, where Det is the determinant of the Jordan
algebra that generates the symmetric cone. Then, similar to Example 1, each dilated
map at the origin between level surfaces of logψ on the Hessian domain (Ω, D, g =
Dd logψ) is a harmonic map relative to an α-connection for any α ∈ R

It is an important problem to find applications of non-trivial harmonic maps rel-
ative to α-connections.

Acknowledgments The author thanks the referees for their helpful comments.
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