
Chapter 3
Hessian Structures and Divergence Functions
on Deformed Exponential Families

Hiroshi Matsuzoe and Masayuki Henmi

Abstract A Hessian structure (∇, h) on a manifold is a pair of a flat affine con-
nection ∇ and a semi-Riemannian metric h which is given by a Hessian of some
function. In information geometry, it is known that an exponential family natu-
rally has dualistic Hessian structures and their canonical divergences coincide with
the Kullback-Leibler divergences, which are also called the relative entropies. A
deformed exponential family is a generalization of exponential families. A deformed
exponential family naturally has two kinds of dualistic Hessian structures and confor-
mal structures of Hessian metrics. In this paper, geometry of such Hessian structures
and conformal structures are summarized. In addition, divergence functions on these
Hessian manifolds are constructed from the viewpoint of estimating functions. As an
application of such Hessian structures to statistics, a generalization of independence
and geometry of generalized maximum likelihood method are studied.

Keywords Hessianmanifold · Statistical manifold ·Deformed exponential family ·
Divergence · Information geometry · Tsallis statistics
3.1 Introduction

In information geometry, an exponential family is a useful statistical model and it
is applied to various fields of statistical sciences (cf. [1]). For example, the set of
Gaussian distributions is an exponential family. It is known that an exponential family
can be naturally regarded as a Hessianmanifold [28], which is also called a dually flat
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space [1] or a flat statistical manifold [12]. A pair of dually flat affine connections has
essential roles in geometric theory of statistical inferences. In addition, a Hessian
manifold has an asymmetric squared-distance like function, called the canonical
divergence. On an exponential family, the canonical divergence coincides with the
Kullback-Leibler divergence or the relative entropy. (See Sect. 3.3.)

A deformed exponential family is a generalization of exponential families, which
was introduced in anomalous statistical physics [22]. (See also [23, 32] and [33].)
A deformed exponential family naturally has two kinds of dualistic Hessian struc-
tures, and such geometric structures are independently studied in machine learning
theory [21] and statistical physics [3, 26], etc. For example, a q-exponential family
is a typical example of deformed exponential families. One of Hessian structures on
a q-exponential family is related to geometry of β-divergences (or density power di-
vergences [5]). The other Hessian structure is related to geometry of α-divergences.
(In the q-exponential case, these geometry are studied in [18].) In addition, confor-
mal structures of statistical manifolds play important roles in geometry of deformed
exponential families.

In this paper, we summarize such Hessian structures and conformal structures on
deformed exponential families. Thenweconstruct a generalized relative entropy from
the viewpoint of estimating functions. As an application, we consider generalization
of independence of random variables, then elucidate geometry of the maximum
q-likelihood estimator. This paper is written based on the proceeding [19].

3.2 Preliminaries

In this paper, we assume that all objects are smooth, and a manifold M is an open
domain in Rn.

Let (M, h) be a semi-Riemannian manifold, that is, h is assumed to be nonde-
generate, which is not necessary to be positive definite (e.g. the Lorentzian metric in
relativity). Let ∇ be an affine connection on M. We define the dual connection ∇∗
of ∇ with respect to h by

Xh(Y , Z) = h(∇XY , Z) + h(Y ,∇∗
XZ),

where X, Y and Z are arbitrary vector fields on M. It is easy to check that (∇∗)∗ = ∇.
For an affine connection ∇, we define the curvature tensor field R and the torsion

tensor field T by

R(X, Y)Z := ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z,

T(X, Y) := ∇XY − ∇Y X − [X, Y ],

where [X, Y ] := XY −YX. We say that ∇ is curvature-free if R vanishes everywhere
on M, and the one is torsion-free if T vanishes everywhere.

For pair of dual affine connections, the following proposition holds (cf. [16]).
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Proposition 1 Consider the conditions below:

1. ∇ is torsion-free.
2. ∇∗ is torsion-free.
3. ∇(0) = (∇ + ∇∗)/2 is the Levi-Civita connection with respect to h.
4. ∇h is totally symmetric, where ∇h is the (0, 3)-tensor field defined by

(∇Xh)(Y , Z) := Xh(Y , Z) − h(∇XY , Z) − h(Y ,∇XZ).

Assume any two of the above conditions, then the others hold.

From now on, we assume that an affine connection ∇ is torsion-free.
We say that an affine connection∇ is flat if∇ is curvature-free. For a flat affine con-

nection∇, there exists a coordinate system {θi} onM locally such that the connection
coefficients {Γ ∇ k

ij } (i, j, k = 1, . . . , n) of∇ vanish on its coordinate neighbourhood.

We call such a coordinate system {θi} an affine coordinate system.
Let (M, h) be a semi-Riemannian manifold, and let ∇ be a flat affine connection

onM. We say that the pair (∇, h) is aHessian structure onM if there exists a function
ψ, at least locally, such that h = ∇dψ [28]. In the coordinate form, the following
formula holds:

hij(p(θ)) = ∂2

∂θi∂θj
ψ(p(θ)),

where p is an arbitrary point in M and {θi} is a ∇-affine coordinate system around p.
Under the same assumption, we call the triplet (M,∇, h) a Hessian manifold. For a
Hessian manifold (M,∇, h), we define a totally symmetric (0, 3)-tensor field C by
C := ∇h. We call C the cubic form for (M,∇, h).

For a semi-Riemannian manifold (M, h) with a torsion-free affine connection ∇,
the triplet (M,∇, h) is said to be a statistical manifold if∇h is totally symmetric [12].
Originally, the triplet (M, g, C) is called a statistical manifold [14], where (M, g)

is a Riemannian manifold and C is a totally symmetric (0, 3)-tensor field on M.
From Proposition 1, these definitions are essentially equivalent. In fact, for a semi-
Riemannian manifold (M, h) with a totally symmetric (0, 3)-tensor field C, we can
define mutually dual torsion-free affine connections ∇ and ∇∗ by

h(∇XY , Z) := h(∇(0)
X Y , Z) − 1

2
C(X, Y , Z), (3.1)

h(∇∗
XY , Z) := h(∇(0)

X Y , Z) + 1

2
C(X, Y , Z), (3.2)

where ∇(0) is the Levi-Civita connection with respect to h. In this case, ∇h and ∇∗h
are totally symmetric. Hence (M,∇, h) and (M,∇∗, h) are statistical manifolds.

A triplet (M,∇, h) is a flat statisticalmanifold if and only if it is aHessianmanifold
(cf. [28]). Suppose that R and R∗ are curvature tensors of ∇ and ∇∗, respectively.
Then we have

h(R(X, Y)Z, V) = −h(Z, R∗(X, Y)V).
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Hence the condition that the triplet (M,∇, h) is a Hessian manifold is equivalent to
that the quadruplet (M, h,∇,∇∗) is a dually flat space [1].

For a Hessian manifold (M,∇, h), we suppose that {θi} is a ∇-affine coordinate
system on M. Then there exists a ∇∗-affine coordinate system {ηi} such that

h

(
∂

∂θi
,

∂

∂ηj

)
= δi

j .

We call {ηi} the dual coordinate system of {θi} with respect to h.

Proposition 2 Let (M,∇, h) be a Hessian manifold. Suppose that {θi} is a ∇-affine
coordinate system, and {ηi} is the dual coordinate system of {θi}. Then there exist
functions ψ and φ on M such that

∂ψ

∂θi
= ηi,

∂φ

∂ηi
= θi, ψ(p) + φ(p) −

n∑
i=1

θi(p)ηi(p) = 0, (p ∈ M), (3.3)

hij = ∂2ψ

∂θi∂θj
, hij = ∂2φ

∂ηi∂ηj
,

where (hij) is the component matrix of a semi-Riemannian metric h with respect to
{θi}, and (hij) is the inverse matrix of (hij). Moreover,

Cijk = ∂3ψ

∂θi∂θj∂θk
(3.4)

is the cubic form of (M,∇, h).

For proof, see [1] and [28]. The functions ψ and φ are called the θ-potential and
the η-potential, respectively. From the above proposition, the Hessians of θ-potential
and η-potential coincide with the semi-Riemannian metric h:

∂ηi

∂θj
= ∂2ψ

∂θi∂θj
= hij,

∂θi

∂ηj
= ∂2φ

∂ηi∂ηj
= hij. (3.5)

In addition, we obtain the original flat connection∇ and its dual∇∗ from the potential
function ψ. From Eq. (3.4), we have the cubic form of Hessian manifold (M,∇, h).
Then we obtain two affine connections ∇ and ∇∗ by Eqs. (3.1), (3.2) and (3.4).

Under the same assumptions as in Proposition 2, we define a functionD onM ×M
by

D(p, r) := ψ(p) + φ(r) −
n∑

i=1

θi(p)ηi(r), (p, r ∈ M).

We call D the canonical divergence of (M,∇, h). The definition is independent of
choice of an affine coordinate system. The canonical divergence is an asymmetric
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squared distance like function on M. In particular, the canonical divergence D is
non-negative if the metric h is positive definite. However, we assumed that h is a
semi-Riemannian metric, hence D can take negative values. (cf. [12] and [15].)

We remark that the canonical divergence induces the original Hessian manifold
(M,∇, h) by Eguchi’s relation [7]. Suppose thatD is a function onM ×M. We define
a function on M by the following formula:

D[X1, . . . , Xi|Y1, . . . , Yj](p) := (X1)p · · · (Xi)p(Y1)r · · · (Yj)rD(p, r)|p=r,

where X1, . . . , Xi and Y1, · · · , Yj are vector fields on M. We say that D is a contrast
function on M × M if

1. D[ | ](p) = D(p, p) = 0,

2. D[X| ](p) = D[ |X](p) = 0,

3. h(X, Y) := −D[X|Y ] (3.6)

is a semi-Riemannian metric on M.

For a contrast function D on M × M, we define a pair of affine connections by

h(∇XY , Z) = −D[XY |Z],
h(Y ,∇∗

XZ) = −D[Y |XZ].

By differentiating Eq. (3.6), two affine connections ∇ and ∇∗ are mutually dual with
respect to h. We can check that∇ and∇∗ are torsion-free, and∇h and∇∗h are totally
symmetric. Hence triplets (M,∇, h) and (M,∇∗, h) are statistical manifolds.We call
(M,∇, h) the induced statistical manifold from a contrast function D. If (M,∇, h) is
a Hessian manifold, we say that (M,∇, h) is the induced Hessian manifold from D.

Proposition 3 Suppose that D is the canonical divergence on a Hessian manifold
(M,∇, h). Then D is a contrast function on M × M which induces the original
Hessian manifold (M,∇, h).

Proof From the definition andEq. (3.3), we haveD[ | ] = 0 andD[X| ] = D[ |X] = 0.
Let {θi} be a ∇-affine coordinate and {ηj} the dual affine coordinate of {θj}. Set
∂i = ∂/∂θi. From Eqs. (3.3) and (3.5), we have

D[∂i|∂j](p) = (∂i)p(∂j)rD(p, q)|p=r = (∂j)r {ηi(p) − ηi(r)} |p=r

= −(∂j)rηi(r)|p=r = −hij(p).

This implies that the canonical divergenceD is a contrast function onM×M. Induced
affine connections are given by

Γij,k = −D[∂i∂j|∂k] = (∂i)p(∂k)r
{
ηj(p) − ηj(r)

} |p=r

= −(∂i)p(∂k)rηj(r)|p=r = 0,
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Γ ∗
ik,j = −D[∂j|∂i∂k] = (∂i)r(∂k)r

{
ηj(p) − ηj(r)

} |p=r

= −(∂i)r(∂k)rηj(r)|p=r = −(∂i)r(∂k)r(∂j)rψ(r)|p=r

= Cikj,

where Γij,k and Γ ∗
ik,j are Christoffel symbols of the first kind of ∇ and ∇∗, respec-

tively. From Eqs. (3.1) and (3.2), since h is nondegenerate, the affine connection ∇
coincides with the original one of (M,∇, h). �

At the end of this section, we review generalized conformal equivalence for statis-
tical manifolds. Fix a number α ∈ R. We say that two statistical manifolds (M,∇, h)

and (M, ∇̄, h̄) are α-conformally equivalent if there exists a function ϕ on M such
that

h̄(X, Y) = eϕh(X, Y),

∇̄XY = ∇XY − 1 + α

2
h(X, Y)gradhϕ + 1 − α

2
{dϕ(Y) X + dϕ(X) Y} ,

where gradhϕ is the gradient vector field of ϕ with respect to h, that is,

h(gradhϕ, X) := Xϕ.

(The vector field gradhϕ is often called the natural gradient of ϕ in neurosciences,
etc.) We say that a statistical manifold (M,∇, h) is α-conformally flat if it is locally
α-conformally equivalent to some Hessian manifold [12].

Suppose that D and D̄ are contrast functions on M × M. We say that D and D̄ are
α-conformally equivalent if there exists a function ϕ on M such that

D̄(p, r) = exp

[
1 + α

2
ϕ(p)

]
exp

[
1 − α

2
ϕ(r)

]
D(p, r).

In this case, induced statistical manifolds (M,∇, h) and (M, ∇̄, h̄) from D and D̄,
respectively, are α-conformally equivalent.

Historically, conformal equivalence of statistical manifolds was introduced in
asymptotic theory of sequential estimation [27]. (See also [11].) Then it is generalized
in affine differential geometry (e.g. [10, 12, 13] and [17]). As wewill see in Sects. 3.5
and 3.6, conformal structures on a deformed exponential family play important roles.
(See also [2, 20, 24] and [25].)

3.3 Statistical Models

Let (Ω,F , P) be a probability space, that is, Ω is a sample space, F is a completely
additive class on Ω , and P is a probability measure on Ω . Let Ξ be an open subset
in Rn. We say that S is a statistical model if S is a set of probability density functions
on Ω with parameter ξ = t(ξ1, . . . , ξn) ∈ Ξ such that
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S :=
⎧⎨
⎩p(x; ξ)

∣∣∣∣∣∣
∫
Ω

p(x; ξ)dx = 1, p(x; ξ) > 0, ξ ∈ Ξ ⊂ Rn

⎫⎬
⎭.

Under suitable conditions, S can be regarded as a manifold with local coordinate
system {ξi} [1]. In particular, we assume that we can interchange differentials and
integrals. Hence, the equation below holds

∫
Ω

(
∂

∂ξi
p(x; ξ)

)
dx = ∂

∂ξi

∫
Ω

p(x; ξ)dx = ∂

∂ξi
1 = 0.

For a statisticalmodel S, we define the Fisher informationmatrix gF(ξ) = (gF
ij (ξ))

by

gF
ij (ξ) :=

∫
Ω

(
∂

∂ξi
log p(x; ξ)

)(
∂

∂ξj
log p(x; ξ)

)
p(x; ξ) dx (3.7)

= Ep[∂ilξ∂jlξ],

where ∂i = ∂/∂ξi, lξ = l(x; ξ) = log p(x; ξ), and Ep[f ] is the expectation of f (x)
with respect to p(x; ξ). The Fisher information matrix gF is semi-positive definite
in general. Assuming that gF is positive definite and all components are finite, then
gF can be regarded as a Riemannian metric on S. We call gF the Fisher metric on S.
The Fisher metric gF has the following representations:

gF
ij (ξ) =

∫
Ω

(
∂

∂ξi
p(x; ξ)

)(
∂

∂ξj
log p(x; ξ)

)
dx (3.8)

=
∫
Ω

1

p(x; ξ)

(
∂

∂ξi
p(x; ξ)

)(
∂

∂ξj
p(x; ξ)

)
dx. (3.9)

Next, let us define an affine connection on S. For a fixed α ∈ R, an α-
connection ∇(α) on S is defined by

Γ
(α)

ij,k (ξ) := Ep

[(
∂i∂jlξ + 1 − α

2
∂ilξ∂jlξ

)
(∂klξ)

]
,

where Γ
(α)

ij,k is the Christoffel symbol of the first kind of ∇(α).

We remark that ∇(0) is the Levi-Civita connection with respect to the Fisher
metric gF . The connection ∇(e) := ∇(1) is called the the exponential connection and
∇(m) := ∇(−1) is called the mixture connection. Two connections ∇(e) and ∇(m) are
expressed as follows:
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Γ
(e)

ij,k = Ep[(∂i∂jlξ)(∂klξ)] =
∫
Ω

∂i∂j log p(x; ξ)∂kp(x; ξ)dx, (3.10)

Γ
(m)

ij,k = Ep[((∂i∂jlξ + ∂ilξ∂jlξ)(∂klξ)] =
∫
Ω

∂i∂jp(x; ξ)∂k log p(x; ξ)dx. (3.11)

We can check that the α-connection ∇(α) is torsion-free and ∇(α)gF is totally
symmetric. These imply that (S,∇(α), gF) forms a statistical manifold. In addition,
it is known that the Fisher metric gF and the α-connection ∇(α) are independent
of choice of dominating measures on Ω . Hence we call the triplet (S,∇(α), gF) an
invariant statistical manifold. The cubic form CF of the invariant statistical manifold
(S,∇(e), gF) is given by

CF
ijk = Γ

(m)
ij,k − Γ

(e)
ij,k .

A statistical model Se is said to be an exponential family if

Se :=
{

p(x; θ)

∣∣∣∣∣ p(x; θ) = exp

[
n∑

i=1

θiFi(x) − ψ(θ)

]
, θ ∈ Θ ⊂ Rn

}
,

under a choice of suitable dominatingmeasure, whereF1(x), . . . , Fn(x) are functions
on the sample spaceΩ , θ = (θ1, . . . , θn) is a parameter, andψ(θ) is a function of θ for
normalization. The following proposition iswell-known in information geometry [1].

Theorem 1 (cf. [1]) For an exponential family Se, the following hold:

1. (Se,∇(e), gF) and (Se,∇(m), gF) are mutually dual Hessian manifolds, that is,
(Se, gF ,∇(e),∇(m)) is a dually flat space.

2. {θi} is a ∇(e)-affine coordinate system on Se.
3. For the Hessian structure (∇(e), gF) on Se, ψ(θ) is the potential of gF and CF

with respect to {θi}:

gF
ij (θ) = ∂i∂jψ(θ), (∂i = ∂/∂θi),

CF
ijk(θ) = ∂i∂j∂kψ(θ).

4. Set the expectation of Fi(x) by ηi := Ep[Fi(x)]. Then {ηi} is the dual affine
coordinate system of {θi} with respect to gF.

5. Set φ(η) := Ep[log p(x; θ)]. Then φ(η) is the potential of gF with respect to {ηi}.
Since (Se,∇(e), gF) is a Hessian manifold, the formulas in Proposition 2 hold.
For a statistical model S, we define a Kullback-Leibler divergence (or a relative

entropy) by
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DKL(p, r) :=
∫
Ω

p(x) log
p(x)

r(x)
dx

= Ep[log p(x) − log r(x)], (p(x), r(x) ∈ S).

The Kullback-Leibler divergence DKL on an exponential family Se coincides with
the canonical divergence D on (Se,∇(m), gF).

We define an Rn valued function s(x; ξ) = (s1(x; ξ), . . . , sn(x; ξ))T by

si(x; ξ) := ∂

∂ξi
log p(x; ξ).

Wecall s(x; ξ) the score functionofp(x; ξ)with respect to ξ. In information geometry,
si(x; ξ) is called the e-(exponential) representation of ∂/∂ξi, and ∂/∂ξip(x; ξ) is
called the m-(mixture) representation. The duality of e- and m-representations is
important. In fact, Eq. (3.8) implies that the Fisher metric gF is nothing but an L2

inner product of e- and m-representations.
Construction of the Kullback-Leibler divergence is as follows. We define a cross

entropy dKL(p, r) by
dKL(p, r) := −Ep[log r(x)].

A cross entropy dKL(p, r) gives a bias of information− log r(x)with respect to p(x).
A cross entropy is also called a yoke on S [4]. Intuitively, a yoke measures a dissim-
ilarity of two probability density functions on S. We should also note that the cross
entropy is obtained by taking the expectation with respect to p(x) of the integrated
score function at r(x). Then we have the Kullback-Leibler divergence by

DKL(p, r) = −dKL(p, p) + dKL(p, r)

= Ep[log p(x) − log r(x)].

The Kullback-Leibler divergence DKL is a normalized yoke on S, which satisfies
DKL(p, p) = 0. This argument suggests how to construct divergence functions. Once
a function like the cross entropy is defined, we can construct divergence functions in
the same way.

3.4 The Deformed Exponential Family

In this section, we review the deformed exponential family. For more details, see
[3, 22, 23] and [26]. Geometry of deformed exponential families relates to so-called
U-geometry [21].

Letχbe a strictly increasing function from (0,∞) to (0,∞).Wedefine adeformed
logarithm function (or a χ-logarithm function) by
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logχ(s) :=
s∫

1

1

χ(t)
dt.

We remark that logχ(s) is strictly increasing and satisfies logχ(1) = 0. The do-
main and the target of logχ(s) depend on the function χ(t). Set U = {s ∈
(0,∞) | | logχ(s)| < ∞} and V = {logχ(s) | s ∈ U}. Then logχ(s) is a function
from U to V . We also remark that the deformed logarithm is usually called the
φ-logarithm [23]. However, we use φ as the dual potential on a Hessian manifold.

A deformed exponential function (or a χ-exponential function) is defined by the
inverse of the deformed logarithm function logχ(s):

expχ(t) := 1 +
t∫

0

λ(s)ds,

where λ(s) is defined by the relation λ(logχ(s)) := χ(s).
Whenχ(s) is a power functionχ(s) = sq, (q > 0, q �= 1), the deformed logarithm

and the deformed exponential are given by

logq(s) := s1−q − 1

1 − q
, (s > 0),

expq(t) := (1 + (1 − q)t)
1

1−q , (1 + (1 − q)t > 0).

The function logq(s) is called the q-logarithm and expq(t) the q-exponential. Taking
the limit q → 1, the standard logarithm and the standard exponential are recovered,
respectively.

A statistical model Sχ is said to be a deformed exponential family (or a χ-
exponential family) if

Sχ :=
{

p(x; θ)

∣∣∣∣∣p(x; θ) = expχ

[
n∑

i=1

θiFi(x) − ψ(θ)

]
, θ ∈ Θ ⊂ Rn

}
,

under a choice of suitable dominatingmeasure, whereF1(x), . . . , Fn(x) are functions
on the sample spaceΩ , θ = {θ1, . . . , θn} is a parameter, andψ(θ) is the function of θ
for normalization.We assume that Sχ is a statistical model in the sense of [1]. That is,
p(x; θ) has support entirely on Ω , there exits a one-to-one correspondence between
the parameter θ and the probability distribution p(x; θ), and differentiation and inte-
gration are interchangeable. In addition, functions {Fi(x)},ψ(θ) and parameters {θi}
must satisfy the anti-exponential condition. For example, in the q-exponential case,
these functions satisfy

n∑
i=1

θiFi(x) − ψ(θ) <
1

q − 1
.
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Then we can regard that Sχ is a manifold with local coordinate system {θi}. We also
assume that the function ψ is strictly convex since we consider Hessian metrics on
Sχ later. A deformed exponential family has several different definitions. See [30]
and [34], for example.

For a deformed exponential probability density p(x; θ) ∈ Sχ, we define the escort
distribution Pχ(x; θ) of p(x; θ) by

Pχ(x; θ) := 1

Zχ(θ)
χ{p(x; θ)},

where Zχ(θ) is the normalization defined by

Zχ(θ) :=
∫
Ω

χ{p(x; θ)}dx.

The χ-expectation Eχ,p[f ] of f (x) with respect to Pχ(x; θ) is defined by

Eχ,p[f ] :=
∫
Ω

f (x)Pχ(x; θ) dx = 1

Zχ(θ)

∫
Ω

f (x)χ{p(x; θ)}dx.

When χ is a power function χ(s) = sq, (q > 0, q �= 0), we denote the escort
distribution of p(x; θ) by Pq(x; θ), and the χ-expectation with respect to p(x; θ) by
Eq,p[∗].
Example 1 (discrete distributions [3]) The set of discrete distributions Sn is a
deformed exponential family for an arbitrary χ. Suppose that Ω is a finite set:
Ω = {x0, x1, . . . , xn}. Then the statistical model Sn is given by

Sn :=
{

p(x; η)

∣∣∣∣∣ ηi > 0, p(x; η) =
n∑

i=0

ηiδi(x),
n∑

i=0

ηi = 1

}
,

where η0 := 1 − ∑n
i=1 ηi and

δi(x) :=
{
1 (x = xi),

0 (x �= xi).

Set θi = logχ p(xi) − logχ p(x0) = logχ ηi − logχ η0, Fi(x) = δi(x) and ψ(θ) =
− logχ η0. Then the χ-logarithm of p(x) ∈ Sn is written by
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logχ p(x) =
n∑

i=1

(
logχ ηi − logχ η0

)
δi(x) + logχ(η0)

=
n∑

i=1

θiFi(x) − ψ(θ).

This implies that Sn is a deformed exponential family.

Example 2 (q-normal distributions [20]) A q-normal distribution is the probability
distribution defined by the following formula:

pq(x;μ,σ) := 1

Zq(σ)

[
1 − 1 − q

3 − q

(x − μ)2

σ2

] 1
1−q

+
,

where [∗]+ := max{0, ∗}, {μ,σ} are parameters −∞ < μ < ∞, 0 < σ < ∞, and
Zq(σ) is the normalization defined by

Zq(σ) :=

⎧⎪⎪⎨
⎪⎪⎩

√
3 − q√
1 − q

B

(
2 − q

1 − q
,
1

2

)
σ, (−∞ < q < 1),

√
3 − q√
q − 1

B

(
3 − q

2(q − 1)
,
1

2

)
σ, (1 ≤ q < 3).

Here, B (∗, ∗) is the beta function. We restrict ourselves to consider the case q ≥ 1.
Then the probability distribution pq(x;μ,σ) has its support entirely on R and the set
of q-normal distributions Sq is a statistical model. Set

θ1 := 2

3 − q
{Zq(σ)}q−1 μ

σ2 , θ2 := − 1

3 − q
{Zq(σ)}q−1 1

σ2 ,

ψ(θ) := − (θ1)2

4θ2
− {Zq(σ)}q−1 − 1

1 − q
,

then we have

logq pq(x; θ) = 1

1 − q
({pq(x; θ)}1−q − 1)

= 1

1 − q

{
1

{Zq(σ)}1−q

(
1 − 1 − q

3 − q

(x − μ)2

σ2

)
− 1

}

= 2μ{Zq(σ)}q−1

(3 − q)σ2 x − {Zq(σ)}q−1

(3 − q)σ2 x2

− {Zq(σ)}q−1

3 − q
· μ2

σ2 + {Zq(σ)}q−1 − 1

1 − q

= θ1x + θ2x2 − ψ(θ).
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This implies that the set of q-normal distributions Sq is a q-exponential family.
For a q-normal distribution pq(x;μ,σ), the q-expectation μq and a q-variance σ2

q are
given by

μq = Eq,p[x] = μ,

σ2
q = Eq,p

[
(x − μ)2

]
= σ2.

We remark that a q-normal distribution is nothing but a three-parameter version of
Student’s t-distribution when q ≥ 1. In fact, if q = 1, then the q-normal distribution
is the normal distribution. If q = 2, then the distribution is the Cauchy distribution.
We also remark that mathematical properties of q-normal distributions have been
obtained by several authors. See [29, 31], for example.

3.5 Geometry of Deformed Exponential Families Derived
from the Standard Expectation

In this section, we consider geometry of deformed exponential families by general-
izing the e-representation with the deformed logarithm function. For more details,
see [21, 26].

Let Sχ be a deformed exponential family. We define an Rn valued function

sχ(x; θ) = (
(sχ)1(x; θ), . . . , (sχ)n(x; θ)

)T
by

(sχ)i(x; θ) := ∂

∂θi
logχ p(x; θ), (i = 1, . . . , n). (3.12)

We call sχ(x; θ) the χ-score function of p(x; θ). Using the χ-score function, we
define a (0, 2)-tensor field gM on Sχ by

gM
ij (θ) :=

∫
Ω

∂ip(x; θ)∂j logχ p(x; θ) dx,

(
∂i = ∂

∂θi

)
. (3.13)

Lemma 1 The tensor field gM on Sχ is semi-positive definite.

Proof From the definitions of gM and logχ, the tensor field gM is written as

gM
ij (θ) =

∫
Ω

χ(p(x; θ)) (Fi(x) − ∂iψ(θ))
(
Fj(x) − ∂jψ(θ)

)
dx. (3.14)

Since χ is strictly increasing, gM is semi-positive definite. �
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From now on, we assume that gM is positive definite. Hence gM is a Riemannian
metric on Sχ. This assumption is same as in the case of Fishermetric. TheRiemannian
metric gM is a generalization of the Fisher metric in terms of the representation (3.8).

We can consider other types of generalizations of the Fisher metric as follows.

gE
ij (θ) :=

∫
Ω

(
∂i logχ p(x; θ)

) (
∂j logχ p(x; θ)

)
Pχ(x; θ)dx

= Eχ,p[∂ilχ(θ)∂jlχ(θ)],
gN

ij (θ) :=
∫
Ω

1

Pχ(x; θ)
(∂ip(x; θ))

(
∂jp(x; θ)

)
dx,

where lχ(θ) = logχ p(x; θ). Obviously, gE and gN are generalizations of the Fisher
metic with respect to the representations (3.7) and (3.9), respectively.

Proposition 4 Let Sχ be a deformed exponential family. Then Riemannian metrics
gE, gM and gN are mutually conformally equivalent. In particular, the following
formulas hold:

Zχ(θ)gE(θ) = gM(θ) = 1

Zχ(θ)
gN (θ),

where Zχ(θ) is the normalization of the escort distribution Pχ(x; θ).

Proof For a deformed exponential family Sχ, the differentials of probability density
functions are given as follows:

∂

∂θi
p(x; θ) = χ(p(x; θ))

(
Fi(x) − ∂

∂θi
ψ(θ)

)
,

∂

∂θi
logχ p(x; θ) = Fi(x) − ∂

∂θi
ψ(θ).

From the above formula and the definitions of Riemannian metrics gE and gN , we
have

gE
ij (θ) = 1

Zχ(θ)

∫
Ω

χ(p(x; θ)) (Fi(x) − ∂iψ(θ))
(
Fj(x) − ∂jψ(θ)

)
dx,

gN
ij (θ) = Zχ(θ)

∫
Ω

χ(p(x; θ)) (Fi(x) − ∂iψ(θ))
(
Fj(x) − ∂jψ(θ)

)
dx.

These equations and Eq. (3.14) imply that Riemannian metrics gE, gM and gN are
mutually conformally equivalent. �

Among the three possibilities of generalizations of the Fisher metric, gM is espe-
cially associated with a Hessian structure on Sχ, as we will see below. Although the
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meaning of gE is unknown, gN gives a kind of Cramér-Rao lower bound in statistical
inferences. (See [22, 23].)

By differentiating Eq. (3.13), we can define mutually dual affine connections
∇M(e) and ∇M(m) on Sχ by

Γ
M(e)

ij,k (θ) :=
∫
Ω

∂kp(x; θ)∂i∂j logχ p(x; θ)dx,

Γ
M(m)

ij,k (θ) :=
∫
Ω

∂i∂jp(x; θ)∂k logχ p(x; θ)dx.

From the definitions of the deformed exponential family and the deformed log-
arithm function, Γ

M(e)
ij,k vanishes identically. Hence the connection ∇M(e) is flat,

and (∇M(e), gM) is a Hessian structure on Sχ. Denote by CM the cubic form of
(Sχ,∇M(e), gM), that is,

CM
ijk = Γ

M(m)
ij,k − Γ

M(e)
ij,k = Γ

M(m)
ij,k .

For t > 0, set a function Vχ(t) by

Vχ(t) :=
t∫

1

logχ(s) ds.

We assume that Vχ(0) = limt→+0 Vχ(t) is finite. Then the generalized entropy
functional Iχ and the generalized Massieu potential Ψ are defined by

Iχ(pθ) := −
∫
Ω

{
Vχ(p(x; θ)) + (p(x; θ) − 1)Vχ(0)

}
dx,

Ψ (θ) :=
∫
Ω

p(x; θ) logχ p(x; θ)dx + Iχ(pθ) + ψ(θ),

respectively, where ψ is the normalization of the deformed exponential family.

Theorem 2 (cf. [21, 26]) For a deformed exponential family Sχ, the following hold:

1. (Sχ,∇M(e), gM) and (Sχ,∇M(m), gM) are mutually dual Hessian manifolds, that
is, (Sχ, gM ,∇M(e),∇M(m)) is a dually flat space.

2. {θi} is a ∇M(e)-affine coordinate system on Sχ.
3. Ψ (θ) is the potential of gM and CM with respect to {θi}, that is,

gM
ij (θ) = ∂i∂jΨ (θ),

CM
ijk(θ) = ∂i∂j∂kΨ (θ).
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4. Set the expectation of Fi(x) by ηi := Ep[Fi(x)]. Then {ηi} is a ∇M(m)-affine
coordinate system on Sχ and the dual of {θi} with respect to gM.

5. Set Φ(η) := −Iχ(pθ). Then Φ(η) is the potential of gM with respect to {ηi}.
Let us construct a divergence function which induces the Hessian manifold

(Sχ,∇M(e), gM). We define the bias corrected χ-score function uχ
p (x; θ) of p(x; θ)

by

(uχ
p )i(x; θ) := ∂

∂θi
logχ p(x; θ) − Ep

[
∂

∂θi
logχ p(x; θ)

]
.

Set a function Uχ(t) by

Uχ(s) :=
s∫

0

expχ(t) dt.

Then we have

Vχ(s) = s logχ(s) −
s∫

1

t

(
d

dt
logχ(t)

)
dt

= s logχ(s) −
logχ(s)∫
0

expχ(u)du

= s logχ(s) − Uχ(logχ(s)).

Since ∂/∂θiVχ(p(x; θ)) = (∂/∂θip(x; θ)) logχ p(x; θ), we have

p(x; θ)

(
∂

∂θi
logχ p(x; θ)

)
= ∂

∂θi
Uχ(logχ p(x; θ)).

Hence, by integrating the bias correctedχ-score function at r(x; θ) ∈ Sχ with respect
to θ, and by taking the standard expectation with respect to p(x; θ), we define a
χ-cross entropy of Bregman type by

dM
χ (p, r) = −

∫
Ω

p(x) logχ r(x)dx +
∫
Ω

Uχ(logχ r(x))dx.

Then we obtain the χ-divergence (or U-divergence) by

Dχ(p, r) = −dM
χ (p, p) + dM

χ (p, r)

=
∫
Ω

{
Uχ(logχ r(x)) − Uχ(logχ p(x))

−p(x)(logχ r(x) − logχ p(x))
}

dx.
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In the q-exponential case, the bias corrected q-score function is given by

ui
q(x; θ) = ∂

∂θi
logq p(x; θ) − Ep

[
∂

∂θi
logq p(x; θ)

]

= ∂

∂θi

⎧⎨
⎩

1

1 − q
p(x; θ)1−q − 1

2 − q

∫
Ω

p(x; θ)2−qdx

⎫⎬
⎭

= p(x; θ)1−qsi(x; θ) − Ep[p(x; θ)1−qsi(x; θ)].

This score function is nothing but a weighted score function in robust statistics. The
χ-divergence constructed from the bias corrected q-score function coincides with
the β-divergence (β = 1 − q):

D1−q(p, r) = −d1−q(p, p) + d1−q(p, r)

= 1

(1 − q)(2 − q)

∫
Ω

p(x)2−qdx

− 1

1 − q

∫
Ω

p(x)r(x)1−qdx + 1

2 − q

∫
Ω

r(x)2−qdx.

3.6 Geometry of Deformed Exponential Families Derived
from the χ-Expectation

Since Sχ is linearizable by the deformed logarithm function, we can naturally define
geometric structures from the potential function ψ.

A χ-Fisher metric gχ and a χ-cubic form Cχ are defined by

gχ
ij(θ) := ∂i∂jψ(θ),

Cχ
ijk(θ) := ∂i∂j∂kψ(θ),

respectively [3]. In the q-exponential case, we denote the χ-Fisher metric by gq, and
the χ-cubic form by Cq. We call gq and Cq a q-Fisher metric and a q-cubic form,
respectively.

Let ∇χ(0) be the Levi-Civita connection with respect to the χ-Fisher metric gχ.
Then aχ-exponential connection∇χ(e) and aχ-mixture connection∇χ(m) are defined
by

gχ(∇χ(e)
X Y , Z) := gχ(∇χ(0)

X Y , Z) − 1

2
Cχ(X, Y , Z),

gχ(∇χ(m)
X Y , Z) := gχ(∇χ(0)

X Y , Z) + 1

2
Cχ(X, Y , Z),
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respectively. The following theorem is known in [3].

Theorem 3 (cf. [3]) For a deformed exponential family Sχ, the following hold:

1. (Sχ,∇χ(e), gχ) and (Sχ,∇χ(m), gχ) are mutually dual Hessian manifolds, that
is, (Sχ, gχ,∇χ(e),∇χ(m)) is a dually flat space.

2. {θi} is a ∇χ(e)-affine coordinate system on Sχ.
3. ψ(θ) is the potential of gχ and Cχ with respect to {θi}.
4. Set the χ-expectation of Fi(x) by ηi := Eχ,p[Fi(x)]. Then {ηi} is a ∇χ(m)-affine

coordinate system on Sχ and the dual of {θi} with respect to gχ.
5. Set φ(η) := Eχ,p[logχ p(x; θ)]. Then φ(η) is the potential of gχ with respect to

{ηi}.
Proof Statements 1, 2 and 3 are easily obtained from the definitions of χ-Fisher
metric and χ-cubic form. From Eq. (3.3) and ηi = Eχ,p[Fi(x)], Statements 4 and 5
follow from the fact that

Eχ,p[logχ p(x; θ)] = Eχ,p

[
n∑

i=1

θiFi(x) − ψ(θ)

]
=

n∑
i=1

θiηi − ψ(θ). �

Suppose that sχ(x; θ) is the χ-score function defined by (3.12). The χ-score is unbi-
ased with respect to χ-expectation, that is, Eχ,p[(sχ)i(x; θ)] = 0. Hence we regard
that sχ(x; θ) is a generalization of unbiased estimating functions.

By integrating a χ-score function, we define the χ-cross entropy by

dχ(p, r) := −Eχ,p[logχ r(x)]
= −

∫
Ω

P(x) logχ r(x)dx.

Then we obtain the generalized relative entropy Dχ(p, r) by

Dχ(p, r) := −dχ(p, p) + dχ(p, r)

= Eχ,p[logχ p(x) − logχ r(x)]. (3.15)

The generalized relative entropyDχ(p, r) coincides with the canonical divergence
D(r, p) for (Sχ,∇χ(e), gχ). In fact, from (3.15), we can check that

Dχ(p(θ), p(θ′)) = Eχ,p

[(
n∑

i=1

θiFi(x) − ψ(θ)

)
−

(
n∑

i=1

(θ′)iFi(x) − ψ(θ′)
)]

= ψ(θ′) +
n∑

i=1

θiηi − ψ(θ) −
n∑

i=1

(θ′)iηi = D(p(θ′), p(θ)).

Let us consider the q-exponential case. We assume that a q-exponential family Sq

admits an invariant statistical manifold structure (Sq,∇(α), gF).
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Theorem 4 ([20]) For a q-exponential family Sq, the invariant statistical manifold
(Sq,∇(2q−1), gF) and the Hessian manifold (Sq,∇q(e), gq) are 1-conformally
equivalent. In this case, the invariant statistical manifold (Sq,∇(2q−1), gF) is
1-conformally flat.

Divergence functions for (Sq,∇q(e), gq) and (Sq,∇(2q−1), gF) are given as fol-
lows. The α-divergence D(α)(p, r) with α = 1 − 2q is defined by

D(1−2q)(p, r) := 1

q(1 − q)

⎧⎨
⎩1 −

∫
Ω

p(x)qr(x)1−qdx

⎫⎬
⎭.

On the other hand, the normalized Tsallis relative entropy DT
q (p, r) is defined by

DT
q (p, r) :=

∫
Ω

Pq(x)
(
logq p(x) − logq r(x)

)
dx

= Eq,p[logq p(x) − logq r(x)].

We remark that the invariant statistical manifold (Sq,∇(1−2q), gF) is induced from
the α-divergence with α = 1 − 2q, and that the Hessian manifold (Sq,∇q(e), gq)

is induced from the dual of the normalized Tsallis relative entropy. In fact, for a
q-exponential family Sq, divergence functions have the following relations:

D(r, p) = DT
q (p, r)

=
∫
Ω

p(x)q

Zq(p)

(
logq p(x) − logq r(x)

)
dx

= 1

Zq(p)

∫
Ω

(
p(x) − p(x)q

1 − q
− p(x)qr(x)1−q − p(x)q

1 − q

)
dx

= 1

(1 − q)Zq(p)

⎧⎨
⎩1 −

∫
Ω

p(x)qr(x)1−qdx

⎫⎬
⎭

= q

Zq(r)
D(1−2q)(p, r),

where D is the canonical divergence of the Hessian manifold (Sq,∇q(e), gq).



76 H. Matsuzoe and M. Henmi

3.7 Maximum q-Likelihood Estimators

In this section, we generalize the maximum likelihood method from the viewpoint of
generalized independence. To avoid complicated arguments, we restrict ourselves to
consider the q-exponential case. However, we can generalize it to the χ-exponential
case (cf. [8, 9]).

Let X and Y be random variables which follow probability distributions p1(x) and
p2(y), respectively. We say that two random variables X and Y are independent if the
joint probability p(x, y) is decomposed by a product of marginal distributions p1(x)
and p2(Y):

p(x, y) = p1(x)p2(y).

When p1(x) > 0 and p2(y) > 0, the independence can be written with an exponential
function and a logarithm function by

p(x, y) = exp
[
log p1(x) + log p2(x)

]
.

Wegeneralize thenotionof independenceusing theq-exponential andq-logarithm.
Suppose that x > 0, y > 0 and x1−q + y1−q − 1 > 0 (q > 0). We say that x ⊗q y is
a q-product [6] of x and y if

x ⊗q y :=
[
x1−q + y1−q − 1

] 1
1−q

= expq

[
logq x + logq y

]
.

In this case, the following low of exponents holds:

expq x ⊗q expq y = expq(x + y),

in other words,

logq(x ⊗q y) = logq x + logq y.

LetXi be a random variable onXi which follows pi(x) (i = 1, 2, . . . , N). We say that
X1, X2, . . . , XN are q-independent with m-normalization (mixture normalization) if

p(x1, x2, . . . , xN ) = p1(x1) ⊗q p2(x2) ⊗q · · · ⊗q pN (xN )

Zp1,p2,··· ,pN

where p(x1, x2, . . . , xN ) is the joint probability density of X1, X2, . . . , XN and
Zp1,p2,··· ,pN is the normalization of p1(x1) ⊗q p2(x2) ⊗q · · · ⊗q pN (xN ) defined by

Zp1,p2,··· ,pN :=
∫

· · ·
∫

X1···XN

p1(x1) ⊗q p2(x2) ⊗q · · · ⊗q pN (xN )dx1 · · · dxN .
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Let Sq = {p(x; ξ)|ξ ∈ Ξ} be a q-exponential family, and let {x1, . . . , xN } be
N-observations from p(x; ξ) ∈ Sq. We define a q-likelihood function Lq(ξ) by

Lq(ξ) = p(x1; ξ) ⊗q p(x2; ξ) ⊗q · · · ⊗q p(xN ; ξ).

Equivalently, a q-log-likelihood function is given by

logq Lq(ξ) =
N∑

i=1

logq p(xi; ξ).

In the case q → 1, Lq is the standard likelihood function on Ξ .
The maximum q-likelihood estimator ξ̂ is the maximizer of the q-likelihood func-

tions, which is defined by

ξ̂ := argmax
ξ∈Ξ

Lq(ξ)

(
= argmax

ξ∈Ξ

logq Lq(ξ)

)
.

Let us consider geometry of maximum q-likelihood estimators. Let Sq be a
q-exponential family. Suppose that {x1, . . . , xN } are N-observations generated from
p(x; θ) ∈ Sq.

The q-log-likelihood function is calculated as

logq Lq(θ) =
N∑

j=1

logq p(xj; θ) =
N∑

j=1

{
n∑

i=1

θiFi(xj) − ψ(θ)

}

=
n∑

i=1

θi
N∑

j=1

Fi(xj) − Nψ(θ).

The q-log-likelihood equation is

∂i logq Lq(θ) =
N∑

j=1

Fi(xj) − N∂iψ(θ) = 0.

Thus, the maximum q-likelihood estimator for η is given by

η̂i = 1

N

N∑
j=1

Fi(xj).

On the other hand, the canonical divergence for (Sq,∇q(e), gq) can be calculated
as
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DT
q (p(η̂), p(θ)) = D(p(θ), p(η̂))

= ψ(θ) + φ(η̂) −
n∑

i=1

θiη̂i

= φ(η̂) − 1

N
logq Lq(θ).

This implies that the q-likelihood attains the maximum if and only if the normalized
Tsallis relative entropy attains the minimum.

LetM be a curved q-exponential family in Sq, that is,M is a submanifold in Sq and
is a statistical model itself. Suppose that {x1, . . . , xN } are N-observations generated
from p(x; u) = p(x; θ(u)) ∈ M. The above arguments implies that the maximum q-
likelihood estimator for M is given by the orthogonal projection of data with respect
to the normalized Tsallis relative entropy.

We remark that the maximum q-likelihood estimator can be generalized by
U-geometry. (See [8, 9] by Fujimoto and Murata.) However, their approach and
ours are slightly different. They applied the χ-divergence (U-divergence) projection
for a parameter estimation, whereas we applied the generalized relative entropy. As
we discussed in this paper, the induced Hessian structures from those divergences
are different.

3.8 Conclusion

In this paper, we considered two Hessian structures from the viewpoints of the stan-
dard expectation and theχ-expectation. Though the former and the later are known as
U-geometry ([21, 26]) andχ-geometry ([3]), respectively, they turn out to be different
Hessian structures in the same deformed exponential family through a comparison
of each other.

We note that, from the viewpoint of estimating functions, the former is geometry
of bias-corrected χ-score functions with the standard expectation, whereas the later
is geometry of unbiased χ-score functions with the χ-expectation.

As an application to statistics, we considered generalization of maximum like-
lihood method for q-exponential family. We used the normalized Tsallis relative
entropy for orthogonal projection, whereas the previous results used χ-divergences
of Bregman type.

Acknowledgments The authors would like to express their sincere gratitude to the anonymous
reviewers for constructive comments for preparation of this paper. The first named author is partially
supported by JSPS KAKENHI Grant Number 23740047.



3 Hessian Structures and Divergence Functions on Deformed Exponential Families 79

References

1. Amari, S., Nagaoka, H.: Method of Information Geometry. American Mathematical Society,
Providence, Oxford University Press, Oxford (2000)

2. Amari, S., Ohara, A.: Geometry of q-exponential family of probability distributions. Entropy
13, 1170–1185 (2011)

3. Amari, S., Ohara, A., Matsuzoe, H.: Geometry of deformed exponential families: invariant,
dually-flat and conformal geometry. Phys. A. 391, 4308–4319 (2012)

4. Barondorff-Nielsen, O.E., Jupp, P.E.: Statistics, yokes and symplectic geometry. Ann. Facul.
Sci. Toulouse 6, 389–427 (1997)

5. Basu, A., Harris, I.R., Hjort, N.L., Jones, M.C.: Robust and efficient estimation by minimising
a density power divergence. Biometrika 85, 549–559 (1998)

6. Borgesa, E.P.: A possible deformed algebra and calculus inspired in nonextensive thermosta-
tistics. Phys. A 340, 95–101 (2004)

7. Eguchi, S.: Geometry of minimum contrast. Hiroshima Math. J. 22, 631–647 (1992)
8. Fujimoto, Y., Murata, N.: A generalization of independence in naive bayes model. Lect. Notes

Comp. Sci. 6283, 153–161 (2010)
9. Fujimoto Y., Murata N.: A generalisation of independence in statistical models for categorical

distribution. Int. J. Data Min. Model. Manage. 2(4), 172–187 (2012)
10. Ivanov, S.: On dual-projectively flat affine connections. J. Geom. 53, 89–99 (1995)
11. Kumon, M., Takemura, A., Takeuchi, K.: Conformal geometry of statistical manifold with

application to sequential estimation. Sequential Anal. 30, 308–337 (2011)
12. Kurose, T.: On the divergences of 1-conformally flat statistical manifolds. Tôhoku Math. J. 46,

427–433 (1994)
13. Kurose, T.: Conformal-projective geometry of statistical manifolds. Interdiscip. Inform. Sci.

8, 89–100 (2002)
14. Lauritzen, S. L.: Statistical Manifolds, Differential Geometry in Statistical Inferences, IMS

Lecture Notes Monograph Series, vol. 10, pp. 96–163. Hayward, California (1987)
15. Matsuzoe, H.: Geometry of contrast functions and conformal geometry. Hiroshima Math. J.

29, 175–191 (1999)
16. Matsuzoe, H.: Geometry of statistical manifolds and its generalization. In: Proceedings of the

8th International Workshop on Complex Structures and Vector Fields, pp. 244–251. World
Scientific, Singapore (2007)

17. Matsuzoe, H.: Computational geometry from the viewpoint of affine differential geometry.
Lect. Notes Comp. Sci. 5416, 103–113 (2009)

18. Matsuzoe, H.: Statistical manifolds and geometry of estimating functions, pp. 187–202. Recent
Progress in Differential Geometry and Its Related Fields World Scientific, Singapore (2013)

19. Matsuzoe, H., Henmi, M.: Hessian structures on deformed exponential families. Lect. Notes
Comp. Sci. 8085, 275–282 (2013)

20. Matsuzoe, H., Ohara, A.: Geometry for q-exponential families. In: Recent progress in differ-
ential geometry and its related fields, pp. 55–71. World Scientific, Singapore (2011)

21. Murata, N., Takenouchi, T., Kanamori, T., Eguchi, S.: Information geometry of u-boost and
bregman divergence. Neural Comput. 16, 1437–1481 (2004)

22. Naudts, J.: Estimators, escort probabilities, and φ-exponential families in statistical physics. J.
Ineq. Pure Appl. Math. 5, 102 (2004)

23. Naudts, J.: Generalised Thermostatistics, Springer, New York (2011)
24. Ohara, A.: Geometric study for the legendre duality of generalized entropies and its application

to the porous medium equation. Euro. Phys. J. B. 70, 15–28 (2009)
25. Ohara, A., Matsuzoe H., Amari S.: Conformal geometry of escort probability and its applica-

tions. Mod. Phys. Lett. B. 10, 26:1250063 (2012)
26. Ohara A., Wada, T.: Information geometry of q-Gaussian densities and behaviors of solutions

to related diffusion equations. J. Phys. A: Math. Theor. 43, 035002 (2010)
27. Okamoto, I., Amari, S., Takeuchi, K.: Asymptotic theory of sequential estimation procedures

for curved exponential families. Ann. Stat. 19, 961–961 (1991)



80 H. Matsuzoe and M. Henmi

28. Shima, H.: The Geometry of Hessian Structures, World Scientific, Singapore (2007)
29. Suyari, H., Tsukada, M.: Law of error in tsallis statistics. IEEE Trans. Inform. Theory 51,

753–757 (2005)
30. Takatsu, A.: Behaviors ofϕ-exponential distributions in wasserstein geometry and an evolution

equation. SIAM J. Math. Anal. 45, 2546–2546 (2013)
31. Tanaka, M.: Meaning of an escort distribution and τ -transformation. J. Phys.: Conf. Ser. 201,

012007 (2010)
32. Tsallis, C.: Possible generalization of boltzmann—gibbs statistics. J. Stat. Phys. 52, 479–487

(1988)
33. Tsallis, C.: Introduction toNonextensiveStatisticalMechanics:Approaching aComplexWorld.

Springer, New York (2009)
34. Vigelis, R.F., Cavalcante, C.C.: On φ-families of probability distributions. J. Theor. Probab.

21, 1–25 (2011)


	3 Hessian Structures and Divergence Functions  on Deformed Exponential Families
	3.1 Introduction
	3.2 Preliminaries
	3.3 Statistical Models
	3.4 The Deformed Exponential Family
	3.5 Geometry of Deformed Exponential Families Derived  from the Standard Expectation
	3.6 Geometry of Deformed Exponential Families Derived  from the χ-Expectation
	3.7 Maximum q-Likelihood Estimators
	3.8 Conclusion
	References


