
Chapter 13
Dimensionality Reduction for Classification
of Stochastic Texture Images

C. T. J. Dodson and W. W. Sampson

Abstract Stochastic textures yield images representing density variations of differ-
ing degrees of spatial disorder, ranging from mixtures of Poisson point processes
to macrostructures of distributed finite objects. They arise in areas such as sig-
nal processing, molecular biology, cosmology, agricultural spatial distributions,
oceanography, meteorology, tomography, radiography and medicine. The new con-
tribution here is to couple information geometry with multidimensional scaling, also
called dimensionality reduction, to identify small numbers of prominent features
concerning density fluctuation and clustering in stochastic texture images, for clas-
sification of groupings in large datasets. Familiar examples of materials with such
textures in one dimension are cotton yarns, audio noise and genomes, and in two
dimensions paper and nonwoven fibre networks for which radiographic images are
used to assess local variability and intensity of fibre clustering. Information geom-
etry of trivariate Gaussian spatial distributions of mean pixel density with the mean
densities of its first and second neighbours illustrate features related to sizes and den-
sity of clusters in stochastic texture images. We derive also analytic results for the
case of stochastic textures arising from Poisson processes of line segments on a line
and rectangles in a plane. Comparing human and yeast genomes, we use 12-variate
spatial covariances to capture possible differences relating to secondary structure.
For each of our types of stochastic textures: analytic, simulated, and experimental,
we obtain dimensionality reduction and hence 3D embeddings of sets of samples to
illustrate the various features that are revealed, such as mean density, size and shape
of distributed objects, and clustering effects.
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13.1 Introduction

The new contribution in this paper is to couple information geometrywith dimension-
ality reduction, to identify small numbers of prominent features concerning density
fluctuation and clustering in stochastic texture images, for classification of group-
ings in large datasets. Our methodology applies to any stochastic texture images,
in one, two or three dimensions, but to gain an impression of the nature of exam-
ples we analyse some familiar materials for which we have areal density arrays, and
derive analytic expressions of spatial covariance matrices for Poisson processes of
finite objects in one and two dimensions. Information geometry provides a natural
distance structure on the textures via their spatial covariances, which allows us to
obtain multidimensional scaling or dimensionality reduction and hence 3D embed-
dings of sets of samples. See Mardia et al. [14] for an account of the original work
on multidimensional scaling.

The simplest one-dimensional stochastic texture arises as the density variation
along a cotton yarn, consisting of a near-Poisson process of finite length cotton
fibres on a line, another is an audio noise drone consisting of a Poisson process of
superposed finite length notes or chords. A fundamental microscopic 1-dimensional
stochastic process is the distribution of the 20 amino acids along protein chains in a
genome [1, 3]. Figure 13.1 shows a sample of such a sequence of the 20 amino acids
A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y mapped onto the 20 grey
level values 0.025, 0.075, . . . , 0.975 from the database [19], so yielding a grey-level
barcode as a 1-dimensional texture. We analyse such textures in Sect. 13.6.5.

The largest 3-dimensional stochastic structure is the cosmological void distribu-
tion, which is observable via radio astronomy [1]. More familiar three-dimensional
stochastic porous materials include metallic (Fig. 13.2) and plastic solid foams,
geological strata and dispersions in gels, observable via computer tomography [1].
Near-planar, non-woven stochastic fibre networks are manufactured for a variety of
applications such as, at the macroscale for printing, textiles, reinforcing, and fil-
tration and at the nanoscale in medicine. Figure13.3 shows a selection of electron
micrographs for networks at different scales. Radiography or optical densitometry
yield areal density images of the kinds shown in Fig. 13.4.

Much analytic work has been done onmodelling of the statistical geometry of sto-
chastic fibrous networks [1, 6, 7, 17]. Using complete sampling by square cells, their
areal density distribution is typically well represented by a log-gamma or a (trun-
cated)Gaussian distribution of variance that decreasesmonotonicallywith increasing
cell size; the rate of decay is dependent on fibre and fibre cluster dimensions. They
have gamma void size distributions with a long tail. Clustering of fibres is well-
approximated by Poisson processes of Poisson clusters of differing density and size.
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SaccharomycesCerevisiaeAmino Acids SC1

Fig. 13.1 Example of a 1-dimensional stochastic texture, a grey level barcode for the amino acid
sequence in a sample of the Saccharomyces cerevisiae yeast genome from the database [19]

Fig. 13.2 Aluminium foam with a narrow Gaussian-like distribution of void sizes of around 1cm
diameter partially wrapped in fragmented metallic shells, used as crushable buffers inside vehicle
bodies. The cosmological void distribution is by contrast gamma-like with a long tail [8], inter-
spersed with 60% of galaxies in large-scale sheets, 20% in rich filaments and 20% in sparse
filaments [12]. Such 3D stochastic porous materials can both be studied by tomographic meth-
ods, albeit at different scales by different technologies, yielding sequences of 2D stochastic texture
images

An unclustered Poisson process of single fibres is the standard reference structure
for any given size distribution of fibres; its statistical geometry is well-understood
for finite and infinite fibres. Note that any skewness associated with the underlying
point process of fibre centres becomes negligible through the process of sampling
by square cells [18].

Many stochastic textures arise from spatial processes thatmay be approximated by
mixtures of Poisson or other distributions of finite objects or clusters of objects, in an
analogous way to that which has been used for the past 50years for the study of fibre
networks. The Central Limit Theorem suggests that often such spatial processes may
be represented by Gaussian pixel density distributions, with variance decreasing as
pixel size increases, the gradient of this decrease reflecting the size distributions and
abundances of the distributed objects and clusters, hence indicating the appropriate
pixel size to choose for feature extraction. Once a pixel size has been chosen then
we are interested in the statistics of three random variables: the mean density in
such pixels, and the mean densities of its first and second neighbouring pixels. The
correlations among these three random variables reflect the size and distribution of
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Fig. 13.3 Electron micrographs of four stochastic fibrous materials. Top left Nonwoven carbon
fibre mat; top right glass fibre filter; bottom left electrospun nylon nanofibrous network (Courtesy
S. J. Eichhorn and D. J. Scurr); bottom right paper using wood cellulose fibres—typically flat
ribbonlike, of length 1–2mm and width 0.02–0.03mm

Fig. 13.4 Areal density radiographs of three paper networks made from natural wood cellulose
fibres, with constant mean coverage, c̄ ≈ 20 fibres, but different distributions of fibres. Each image
represents a square region of side length 5 cm; darker regions correspond to higher coverage. The
left image is similar to that expected for a Poisson process of the same fibres, so typical real samples
exhibit clustering of fibres
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Fig. 13.5 Trivariate distribution of pixel density values for radiograph of a 5cm square newsprint
sample. Left source density map; centre histogram of β̃i , β̃1,i and β̃2,i ; right 3D scatter plot of β̃i ,

β̃1,i and β̃2,i

density clusters; this may be extended to more random variables by using also third,
fourth, etc., neighbours. In some cases, of course, other pixel density distributions
may be more appropriate, such as mixtures of Gaussians.

13.2 Spatial Covariance

The mean of a random value p is its average value, p̄, over the population. The
covariance Cov(p, q) of a pair of random variables, p and q is a measure of the
degree of association between them, the difference between their mean product and
the product of their means:

Cov(p, q) = p q − p̄ q̄ . (13.1)

In particular, the covariance of a variable with itself is its variance. From the array of
local average pixel density values β̃i , we generate two numbers associated with each:
the average density of the six first-neighbour pixels, β̃1,i and the average density of
the 16 second-neighbour pixels, β̃2,i . Thus, we have a trivariate distribution of the
random variables (β̃i , β̃1,i , β̃2,i ) with β̄2 = β̄1 = β̄.

Figure13.5 provides an example of a typical data set obtained from a radiograph
of a 5cm square commercial newsprint sample; the histogram and three-dimensional
scatter plot show data obtained for pixels of side 1mm.

From the Central Limit Theorem, we expect the marginal distributions of β̃i ,
β̃1,i and β̃2,i to be well approximated by Gaussian distributions. For the example in
Fig. 13.5, these Gaussians are represented by the solid lines on the histogram; this
Gaussian approximation holds for all samples investigated in this study.

We have a simulator for creating stochastic fibre networks [10]. The codeworks by
dropping clusters of fibres within a circular region where the centre of each cluster is
distributed as a point Poisson process in the plane and the number of fibres per cluster,
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Fig. 13.6 Simulated areal density maps each representing a 4cm× 4cm region formed from fibres
with length λ = 1 mm, to a mean coverage of 6 fibres

nc, is a Poisson distributed random variable. The size of each cluster is determined
by an intensity parameter, 0 < I ≤ 1 such that the mean mass per unit area of the
cluster is constant and less than the areal density of a fibre. Denoting the length and
width of a fibre by λ and ω respectively, the radius of a cluster containing nc fibre
centres is

r =
√

nc λω

π I
. (13.2)

Figure 13.6 shows examples of density maps generated by the simulator. We
observe textures that increase in ‘cloudyness’ with nc and increase in ‘graininess’
with I .

13.3 Analytic Covariance for Spatial Poisson Processes of Finite
Objects

Consider a Poisson process in the plane for finite rectangles of length λ and width
ω ≤ λ,with uniform orientation of rectangle axes to a fixed direction. The covariance
or autocorrelation function for such objects is known and given by [7]:
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For 0 < r ≤ ω
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Then, the coverage c at a point is the number of rectangles overlapping that point,
a Poisson variable with grand mean value c̄, and the average coverage or density
in finite pixels c̃ tends to a Gaussian random variable. For sampling of the process
using, say square inspection pixels of side length x, the variance of their density c̃(x)

is

V ar(c̃(x)) = V ar(c(0))

√
2x∫

0

α(r,ω,λ) b(r) dr (13.6)

where b is the probability density function for the distance r between two points
chosen independently and at random in the given type of pixel; it was derived by
Ghosh [13].

Using square pixels of side length x, for 0 ≤ r ≤ x

b(r, x) = 4r

x4

(
πx2

2
− 2r x + r2
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)
. (13.7)
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Fig. 13.7 Probability density function b(r, 1) from Eqs. (13.7), (13.8) for the distance r between
two points chosen independently and at random in a unit square

A plot of this function is given in Fig. 13.7. Observe that, for vanishingly small
pixels, that is points, b degenerates into a delta function on r = 0. Ghosh [13] gave
also the form of b for other types of pixels; for arbitrary rectangular pixels those
expressions can be found in [7]. For small values of r, so r � D, the formulae for
convex pixels of area A and perimeter P all reduce to

b(r, A, P) = 2πr

A
− 2Pr2

A2

which would be appropriate to use when the rectangle dimensions ω,λ are small
compared with the dimensions of the pixel.

It helps to visualize practical variance computations by considering the case of
sampling using large square pixels of side mx say, which themselves consist of
exactly m2 small square pixels of side x . The variance V ar(c̃(mx)) is related to
V ar(c̃(x)) through the covariance Cov(x, mx) of x-pixels in mx-pixels [7]:

V ar(c̃(mx)) = 1

m2 V ar(c̃(x)) + m2 − 1

m2 Cov(x, mx).

As m → ∞, the small pixels tend towards points, 1
m2 V ar(c̃(x)) → 0 soV ar(c̃(mx))

admits interpretation as Cov(0, mx), the covariance among points inside mx-pixels,
the intra-pixel covariance, precisely V ar(c̃(mx)) from Eq. (13.6).

The fractional between pixel variance for x-pixels is

ρ̃(x) = Cov(0, x)

V ar(c(0))
= V ar(c̃(x))

V ar(c(0))
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which increases monotonically with λ and with ω but decreases monotonically with
mx , see Deng and Dodson [6] for more details. In fact, for a Poisson process
of rectangles the variance of coverage at points is precisely the mean coverage,
V ar(c(0)) = c̄, so if we agree to measure coverage as a fraction of the mean cover-
age then Eq. (13.6) reduces to the integral

V ar(c̃(x))

c̄
=

√
2x∫

0

α(r,ω,λ) b(r) dr = ρ̃(x). (13.9)

Now, the covariance among points inside mx-pixels, Cov(0, mx), is the expec-
tation of the covariance between pairs of points separated by distance r, taken over
the possible values for r in an mx-pixel; that amounts to the integral in Eq. (13.6).
By this means we have continuous families of 2× 2 covariance matrices for x ∈ R

+
and 2 < m ∈ Z

+ given by

�x,m =
(

σ11 σ12
σ12 σ22

)
=

(
V ar(c̃(x)) Cov(x, mx)

Cov(x, mx) V ar(c̃(x))

)

=
(

ρ̃(x) ρ̃(mx)

ρ̃(mx) ρ̃(x)

)
. (13.10)

which encodes information about the spatial structure formed from the Poisson
process of rectangles, for each choice of rectangle dimensionsω ≤ λ ∈ R

+.This can
be extended to includemixtures of different rectangleswith given relative abundances
and processes of more complex objects such as Poisson clusters of rectangles.

There is a one dimensional version of the above that is discussed in [6, 7], with
point autocorrelation calculated easily as

α(r) =
{
1 − r

λ 0 ≤ r ≤ λ
0 λ < r.

(13.11)

Also, the probability density function for points chosen independently and at
random with separation r in a pixel, which is here an interval of length x, is

b(r) = 2

x

(
1 − r

x

)
(0 ≤ r ≤ x). (13.12)

Then the integral (13.6) gives the fractional between pixel variance as

ρ̃(x,λ) =
{
1 − x

3λ 0 ≤ x ≤ λ
λ
x

(
1 − λ

3x

)
λ < x .

(13.13)

So in the case of a one dimensional stochastic texture from a Poisson process of
segments of length λ we have the explicit expression for the covariance matrices in
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Eq. (13.10):

�x,m(λ) =
(

ρ̃(x,λ) ρ̃(mx,λ)

ρ̃(mx,λ) ρ̃(x,λ)

)
. (13.14)

In particular, if we take unit length intervals as the base pixels, for the Poisson
process of unit length line segments, x = λ = 1 we obtain

�1,m(1) =
(

(1 − 1
3 )

1
m

(
1 − 1

3m

)
1
m

(
1 − 1

3m

) (
1 − 1

3

)
)

for m = 2, 3, . . . . (13.15)

13.4 Information Distance

Given the family of pixel density distributions, with associated spatial covariance
structure among neighbours, we can use the Fisher metric [1] to yield an arc length
function on the curved space of parameters which represent mean and covariance
matrices. Then the information distance between any two such distributions is given
by the length of the shortest curve between them, a geodesic, in this space. The
computational difficulty is in finding the length of this shortest curve since it is the
infimum over all curves between the given two points. Fortunately, in the cases we
need, multivariate Gaussians, this problem has been largely solved analytically by
Atkinson and Mitchell [2].

Accordingly, some of our illustrative examples use information geometry of
trivariate Gaussian spatial distributions of pixel density with covariances among
first and second neighbours to reveal features related to sizes and density of clusters,
which could arise in one, two or three dimensions. For isotropic spatial processes,
which we consider here, the variables are means over shells of first and second neigh-
bours, respectively. For anisotropic networks the neighbour sets would be split into
more newvariables to pick up the spatial anisotropy in the available spatial directions.

Other illustrations will use the analytic bivariate covariances given in Sect. 13.3
by Eq. (13.10).

What we know analytically is the geodesic distance between two multivariate
Gaussians, A, B, of the same number n of variables in two particular cases [2]:

1. μA 	= μB,�A = �B = � : f A = (n,μA, �), f B = (n,μB, �)

Dμ( f A, f B) =
√(

μA − μB
)T · �−1 · (

μA − μB
)
. (13.16)

2. μA = μB = μ,�A 	= �B : f A = (n,μ, �A), f B = (n,μ, �B)

D�( f A, f B) =
√√√√1

2

n∑
j=1

log2(λ j ), (13.17)
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Fig. 13.8 Plot of D�( f A, f B) from (13.17) against ��( f A, f B) from (13.18) for 185 different
trivariate Gaussian covariance matrices

with {λ j } = Eig(�A−1/2 · �B · �A−1/2
).

In the present paper we use Eqs. (13.16) and (13.17) and take the simplest choice
of a linear combination of both when both mean and covariance are different.

However, from the formof D�( f A, f B) in (13.17)we deduce that an approximate
monotonic relationship arises with a more easily computed symmetrized log-trace
function given by

��( f A, f B)

=
√
log

(
1

2n

(
T r(�A−1/2 · �B · �A−1/2

) + T r(�B−1/2 · �A · �B−1/2))
.

(13.18)

This is illustrated by the plot in Fig. 13.8 of D�( f A, f B) from Eq. (13.17) on
��( f A, f B) fromEq. (13.18) for 185 trivariateGaussian covariancematrices,where
we see that

D�( f A, f B) ≈ 1.7��( f A, f B).

A commonly used approximation for information distance is obtained from the
Kullback–Leibler divergence, or relative entropy. Between two multivariate Gaus-
sians f A = (n,μA, �A), f B = (n,μB, �B) with the same number n of variables,
its square root gives a separation measurement [16]:
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K L( f A, f B) = 1

2
log

(
det�B

det�A

)
+ t

1

2
Tr[�B−1 · �A]

+ 1

2

(
μA − μB

)T · �B−1 ·
(
μA − μB

)
− n

2
. (13.19)

This is not symmetric, so to obtain a distance we take the average KL-distance in
both directions:

DK L( f A, f B) =
√

|K L( f A, f B)| + |K L( f B, f A)|
2

(13.20)

The Kullback–Leibler distance tends to the information distance as two distributions
become closer together; conversely it becomes less accurate as they move apart.

For comparing relative proximity, ��( f A, f B) is a better measure near zero
than the symmetrizedKullback–Leibler DK L ( f A, f B) distance in thosemultivariate
Gaussian cases so far tested and may be computationally quicker for handling large
batch processes.

13.5 Dimensionality Reduction of Spatial Density Arrays

We shall illustrate the differences of spatial features in given data sets obtained
from the distribution of local density for real and simulated planar stochastic fibre
networks. In such cases there is benefit inmutual information difference comparisons
of samples in the set but the difficulty is often the large number of samples in a set
of interest—perhaps a hundred or more. Human brains can do this very well; the
enormous numbers of optical sensors that stream information from the eyes into the
brain with the result that we have a 3-dimensional reduction which serves to help us
‘see’ the external environment. We want to see a large data set organised in such a
way that natural groupings are revealed and quantitative dispositions among groups
are preserved. The problem is how to present the information contained in the whole
data set, each sample yielding a 3×3 covariancematrix� andmeanμ.The optimum
presentation is to use a 3-dimensional plot, but the question is what to put on the
axes.

To solve this problemwe use multi-dimensional scaling, or dimensionality reduc-
tion, to extract the three most significant features from the set of samples so that all
samples can be displayed graphically in a 3-dimensional plot. The aim is to reveal
groupings of data points that correspond to the prominent characteristics; in our
context we have different former types, grades and differing scales and intensities
of fibre clustering. Such a methodology has particular value in the quality control
for processes with applications that frequently have to study large data sets of sam-
ples from a trial or through a change in conditions of manufacture or constituents.
Moreover, it can reveal anomalous behaviour of a process or unusual deviation in a
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product. The raw data of one sample from a study of spatial variability might typi-
cally consist of a spatial array of 250×250 pixel density values, so what we solve
is a problem in classification for stochastic image textures.

Themethod,whichwe introduced in a preliminary report [11], depends on extract-
ing the three largest eigenvalues and their eigenvectors from amatrix of mutual infor-
mation distances among distributions representing the samples in the data set. The
number in the data set is unimportant, except for the computation time in finding
eigenvalues. This follows the methods described by Carter et al. [4, 5]. Our study
is for datasets of pixel density arrays from complete sampling of density maps of
stochastic textures which incorporate spatial covariances. We report the results of
such work on a large collection of radiographs from commercial papers made from
continuous filtration of cellulose and other fibres, [9].

The series of computational stages is as follows:

1. Obtain mutual ‘information distances’ D(i, j) among the members of the data set
of N textures X1, X2, . . . , X N using the fitted trivariate Gaussian pixel density
distributions.

2. The array of N × N differences D(i, j) is a real symmetric matrix with zero
diagonal. This is centralized by subtracting row and column means and then
adding back the grand mean to give CD(i, j).

3. The centralized matrix CD(i, j) is again a real symmetric matrix with zero diag-
onal. We compute its N eigenvalues ECD(i), which are necessarily real, and the
N corresponding N -dimensional eigenvectors VCD(i).

4. Make a 3 × 3 diagonal matrix A of the first three eigenvalues of largest absolute
magnitude and a 3 × N matrix B of the corresponding eigenvectors. The matrix
product A · B yields a 3× N matrix and its transpose is an N ×3 matrix T,which
gives us N coordinate values (xi , yi , zi ) to embed the N samples in 3-space.

Example: Bivariate Gaussians

f (x, y) = 1

2π
√

�
exp

−1

�2 (y − μ2)
2σ11 + (x − μ1)[(x − μ1)σ22 + 2(−y + μ2))σ12],

μ = (μ1,μ2),

� = Det[�] = σ11σ22 − σ2
12,

� =
(

σ11 σ12

σ12 σ22

)
= σ11

(
1 0
0 0

)
+ σ12

(
0 1
1 0

)
+ σ22

(
0 0
0 1

)
,

�−1 =
( σ22

�
−σ12

�−σ12
�

σ11
�

)
.

Put δμi = (μA
i − μB

i ).

Then we have
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Dμ( f A, f B) =
√

δμT · �−1 · δμ

=
√

δμ2 (σ11δμ2 − σ12δμ1)

�
+ δμ1 (σ22δμ1 − σ12δμ2)

�
.

Numerical example:

�A =
(
1 0
0 1

)
, �B =

(
3 2
2 6

)
, �B−1 =

(
3/7 −1/7

−1/7 3/14

)

�A−1/2 · �B · �A−1/2 =
(
1 0
0 1

)(
3 2
2 6

)(
1 0
0 1

)
=

(
3 2
2 6

)
,

with eigenvalues: λ1 = 7,λ2 = 2.

D�(�A, �B) =
√√√√1

2

n∑
j=1

log2(λ j ) ≈ 1.46065

��(�A, �B) =
√
log

7 + 2

4
≈ 0.9005.

For comparison, the symmetrized Kullback–Leibler distance [16] is given by

DK L(�A, �B) = 1

2

(√
1

2
log 14 − 19

28
+

√
1

2
log

1

14
+ 7

2

)
≈ 1.1386.

13.6 Analysis of Samples

13.6.1 Analytic Results for Poisson Processes of Line Segments
and Rectangles

We provide here some graphics showing three dimensional embeddings of Pois-
son processes that yield stochastic textures of pixel density, using the analysis in
Sect. 13.3.

Figure 13.9 shows an embedding of 20 samples calculated for a Poisson line
process of line segments, (13.15), with x = λ = 1 and m = 2, 3, . . . 21. The starting
green point in the lower right is for m = 2 and the red end point is for m = 21.
Figure 13.10 shows an embedding of 18 samples calculated for a planar Poisson
process of unit squares, from (13.10), with ω = λ = 1. It shows the separation into
two groups of samples: analysed with small base pixels, x = 0.1 right, and with large
base pixels, x = 1 left. Figure 13.11 shows an embedding of 18 samples calculated
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Fig. 13.9 Embedding of 20 evaluations of information distance for the bivariate covariances arising
from a Poisson line process of line segments, (13.15), with x = λ = 1 and m = 2, 3, . . . 21. The
starting green point in the lower right is for m = 2 and the red end point is for m = 21

Fig. 13.10 Embedding of 18 evaluations of information distance for the bivariate covariances
arising from a planar Poisson process of squares, (13.10), with ω = λ = 1. The two groups arise
from different schemes of inspection pixels. Right group used small base pixels with x = 0.1, from
blue to pink m = 2, 3, . . . , 10; left group used large base pixels with x = 1, from green to red
m = 2, 3, . . . , 10
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Fig. 13.11 Embedding of 22 evaluations of information distance for the bivariate covariances
arising from a planar Poisson process of rectangles, (13.10), with ω = 0.2,λ = 1. The two groups
arise from different schemes of inspection pixels. Left group used large base pixels x = 1, from
green to red m = 2, 3, . . . , 10; right group used small base pixels x = 0.1, from blue to pink
m = 2, 3, . . . , 10

for a planar Poisson process of rectangles with aspect ratio 5:1, from (13.10), with
ω = 0.2,λ = 1. Again it shows the separation into two groups of samples analysed
with small pixels, right, and with large pixels, left.

13.6.2 Deviations from Poisson Arising from Clustering

Our three spatial variables for each spatial array of data are the mean density in a cen-
tral pixel, mean of its first neighbours, and mean of its second neighbours. We begin
with analysis of a set of 16 samples of areal density maps for simulated stochastic
fibre networks made from the same number of 1mm fibres but with differing scales
(clump sizes) and intensities (clump densities) of fibre clustering. Among these is the
standard unclustered Poisson fibre network; all samples have the same mean density.

Figure 13.12 gives analyses for spatial arrays of pixel density differences from
Poisson networks. It shows a plot of D�( f A, f B) as a cubic-smoothed surface (left),
and the same data grouped by numbers of fibres in clusters and cluster densities
(right), for geodesic information distances among 16 datasets of 1mm pixel density
differences between a Poisson network and simulated networks made from 1mm
fibres. Each network has the samemean density butwith different scales and densities
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Fig. 13.12 Pixel density differences from Poisson networks. Left plot of D�( f A, f B) as a cubic-
smoothed surface, for trivariate Gaussian information distances among 16 datasets of 1mm pixel
density differences between a Poisson network and simulated networks made from 1mm fibres,
each network has the same mean density but with different clustering. Right embedding of the same
data grouped by numbers of fibres in clusters and cluster densities

of clustering; thus themean difference is zero in this case. Using pixels of the order of
fibre length is appropriate for extracting information on the sizes of typical clusters.
The embedding reveals the clustering features as orthogonal subgroups.

Next, Fig. 13.13 gives analyses for pixel density arrays of the clustered networks.
It shows on the left the plot of D�( f A, f B) as a cubic-smoothed surface (left)
for trivariate Gaussian information distances among the 16 datasets of 1mm pixel
densities for simulated networks made from 1mmfibres, each network with the same
mean density but with different clustering. In this case the trivariate Gaussians all
have the same mean vectors. Shown on the right is the dimensionality reduction
embedding of the same data grouped by numbers of fibres in clusters and cluster
densities; the solitary point is a Poisson network of the same fibres.

13.6.3 Effect of Mean Density in Poisson Structures

Figure 13.14 gives analyses for pixel density arrays for Poisson networks of different
mean density. It shows the plot of D�( f A, f B) as a cubic-smoothed surface (left),
for trivariate Gaussian information distances among 16 simulated Poisson networks
made from 1mm fibres, with different mean density, using pixels at 1mm scale. Also
shown is, (right) dimensionality reduction embedding of the same Poisson network
data, showing the effect of mean network density.
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Fig. 13.13 Pixel density arrays for clustered networks: Left plot of D�( f A, f B) as a cubic-
smoothed surface, for trivariate Gaussian information distances among 16 datasets of 1mm pixel
density arrays for simulated networks made from 1mm fibres, each network with the same mean
density but with different clustering. Right embedding of the same data grouped by numbers of
fibres in clusters and cluster densities; the solitary point is an unclustered Poisson network
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Fig. 13.14 Pixel density arrays for Poisson networks of different mean density. Left plot of
D�( f A, f B) as a cubic-smoothed surface (left), for trivariate Gaussian information distances
among 16 simulated Poisson networks made from 1mm fibres, with different mean density, using
pixels at 1mm scale. Right embedding of the same Poisson network data, showing the effect of
mean network density
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Fig. 13.15 Embedding using 182 trivariate Gaussian distributions for samples from the data set [9].
Blue points are from gap formers; orange are various handsheets, purple are from pilot paper
machines and green are from hybrid formers. The embedding separates these different forming
methods into subgroups

13.6.4 Analysis of Commercial Samples

Figure 13.15 shows a 3-dimensional embedding for a data set from [9] including
182 paper samples from gap formers, handsheets, pilot machine samples and hybrid
formers. We see that to differing degrees the embedding separates these different and
very disparate forming methods by assembling them into subgroups. This kind of
discrimination could be valuable in evaluating trials, comparing different installations
of similar formers and for identifying anomalous behaviour.

The benefit from these analyses is the representation of the important structural
features of number of fibres per cluster and cluster density, by almost orthogonal
subgroups in the embedding.

13.6.5 Analysis of Saccharomyces Cerevisiae Yeast and Human
Genomes

This yeast is the genome studied in [3] for which we showed that all 20 amino
acids along the protein chains exhibited mutual clustering, and separations of 3–12
are generally favoured between repeated amino acids, perhaps because this is the
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Fig. 13.16 Determinants of 12-variate spatial covariances for 20 samples of yeast amino acid
sequences, black Y, together with three Poisson sequences of 100,000 amino acids with the yeast
relative abundances, blue RY. Also shown are 20 samples of human sequences, red H, and three
Poisson sequences of 100,000 amino acids with the human relative abundances, green RH.
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Fig. 13.17 Twelve-variate spatial covariance embeddings for 20 samples of yeast amino acid
sequences, small black points, together with three Poisson sequences of 100,000 amino acids with
the yeast relative abundances, large blue points. Also shown are 20 humanDNA sequences,medium
red points, and three Poisson sequences of 100,000 amino acidswith the human relative abundances,
large green points
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usual length of secondary structure, cf. also [1]. The database of sample sequences
is available on the Saccharomyces Genome Database [19]. Here we mapped the
sequences of the 20 amino acids A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V,
W, Y onto the 20 grey-level values 0.025, 0.075, . . . , 0.975 so yielding a grey-level
barcode for each sequence, Fig. 13.1. Given the usual length of secondary structure
to range from 3 to 12 places along a sequence, we used spatial covariances between
each pixel and its successive 12 neighbours. Figure 13.16 plots the determinants of
the 12-variate spatial covariances of 20 for yeast, blackY, togetherwith three Poisson
random sequences of 100,000 amino acids with the yeast relative abundances, blue
RY. Also shown are 20 samples of human sequences, red H, and three Poisson
sequences of 100,000 amino acids with the human relative abundances, green RH.
Figure 13.17 shows an embedding of these 20 12-variate spatial covariances for yeast,
small black points, together with three Poisson sequences of 100,000 amino acids
with the yeast relative abundances, large blue points, and 20 human DNA sequences,
medium red points using data from the NCBI Genbank Release 197.0 [15], and three
Poisson sequences of 100,000 amino acids with the human relative abundances,
large green points. The sequences ranged in length from 340 to 1,900 amino acids.
As with the original analysis of recurrence spacings [3] which revealed clustering,
the difference of the yeast and human sequence structures from Poisson is evident.
However, it is not particularly easy to distinguish yeast from human sequences by
this technique, both lie in a convex region with the Poisson sequences just outside,
but there is much scatter. Further analyses of genome structures will be reported
elsewhere.
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