
Chapter 11
Hartigan’s Method for k-MLE: Mixture
Modeling with Wishart Distributions
and Its Application to Motion Retrieval

Christophe Saint-Jean and Frank Nielsen

Abstract We describe a novel algorithm called k-Maximum Likelihood Estimator
(k-MLE) for learning finite statistical mixtures of exponential families relying on
Hartigan’s k-means swap clustering method. To illustrate this versatile Hartigan
k-MLE technique, we consider the exponential family of Wishart distributions and
show how to learn their mixtures. First, given a set of symmetric positive definite
observation matrices, we provide an iterative algorithm to estimate the parameters
of the underlying Wishart distribution which is guaranteed to converge to the MLE.
Second, two initialization methods for k-MLE are proposed and compared. Finally,
we propose to use the Cauchy-Schwartz statistical divergence as a dissimilarity mea-
sure between two Wishart mixture models and sketch a general methodology for
building a motion retrieval system.

Keywords Mixture modeling ·Wishart · k-MLE · Bregman divergences ·Motion
retrieval

11.1 Introduction and Prior Work

Mixture models are a powerful and flexible tool to model an unknown probability
density function f (x) as a weighted sum of parametric density functions p j (x; θ j ):
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f (x) =
K∑

j=1

w j p j (x; θ j ), with w j > 0 and
K∑

j=1

w j = 1. (11.1)

By far, the most common case are mixtures of Gaussians for which the Expectation-
Maximization (EM)method is used for decades to estimate theparameters {(w j , θ j )} j

from the maximum likelihood principle. Many extensions aimed at overcoming its
slowness and lack of robustness [1]. From the seminal work of Banerjee et al. [2], sev-
eral methods have been generalized for the exponential families in connection with
the Bregman divergences. In particular, the Bregman soft clustering provides a unify-
ing and elegant framework for the EM algorithm with mixtures of exponential fam-
ilies. In a recent work [3], the k-Maximum Likelihood Estimator (k-MLE) has been
proposed as a fast alternative to EM for learning any exponential family mixtures:
k-MLE relies on the bijection of exponential families with Bregman divergences to
transform the mixture learning problem into a geometric clustering problem. Thus
we refer the reader to the review paper [4] for an introduction to clustering.

This paper proposes several variations around the initial k-MLE algorithm with
a specific focus on mixtures of Wishart [5]. Such a mixture can model complex
distributions over the set Sd++ of d × d symmetric positive definite matrices. Data of
this kind comes naturally in some applications like diffusion tensor imaging, radar
imaging but also artificially as signature for a multivariate dataset (region of interest
in an multispectral image or a temporal sequence of measures for several sensors).

In the literature, theWishart distribution is rarely used for modeling data but more
often in bayesian approaches as a (conjugate) prior for the inverse covariance-matrix
of a gaussian vector. This justifies that few works concern the estimation of the
parameters of Wishart from a set of matrices. To the best of our knowledge, the only
and most related work is the one of Tsai [6] concerning MLE and Restricted-MLE
with ordering constraints. From the application viewpoint, one may cite polarimetric
SAR imaging [7], bio-medical imaging [8]. Another example is a recent paper on
people tracking [9] which applies Dirichlet process mixture model (infinite mixture
model) to the clustering of covariance matrices.

The paper is organized as follows: Sect. 11.2 recalls the definition of an expo-
nential family (EF), the principle of maximum likelihood estimation in EFs and
how it is connected with Bregman divergences. From these definitions, the com-
plete description of k-MLE technique is derived by following the formalism of the
Expectation-Maximization algorithm in Sect. 11.3. In the same section, the Hartigan
approach for k-MLE is proposed and discussed as well as how to initialize it properly.
Section11.4 concerns the learning of a mixture ofWishart with k-MLE. For this pur-
pose, a iterative procedure that converges to theMLEwhen it exists. In Sect. 11.5, we
describe an application scenario to motion retrieval before concluding in Sect. 11.6.

11.2 Preliminary Definitions and Notations

An exponential family is a set of probability distributions admitting the following
canonical decomposition:
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pF (x; θ) = exp {〈t (x), θ〉 + k(x) − F(θ)}

with t (x) the sufficient statistic, θ the natural parameter, k the carrier measure and
F the log-normalizer [10]. Most of commonly used distributions such Bernoulli,
Gaussian, Multinomial, Dirichlet, Poisson, Beta, Gamma, von Mises are indeed ex-
ponential families (see above reference for a complete list). Later on in the chapter,
a canonical decomposition of the Wishart distribution as an exponential family will
be detailed.

11.2.1 Maximum Likelihood Estimator

The framework of exponential families gives a direct solution for finding the max-
imum likelihood estimator θ̂ from a set of i.i.d observations χ = {x1, . . . , xN }.
Denoting L the likelihood function

L(θ;χ) =
N∏

i=1

pF (xi ; θ) =
N∏

i=1

exp {〈t (xi ), θ〉 + k(xi ) − F(θ)} (11.2)

and l̄ the average log-likelihood function

l̄(θ;χ) = 1

N

N∑

i=1

(〈t (xi ), θ〉 + k(xi ) − F(θ)) . (11.3)

It follows that the MLE θ̂ = argmaxΘ l̄(θ;χ) for θ satisfies

∇F(θ̂) = 1

N

N∑

i=1

t (xi ). (11.4)

Recall that the functional reciprocal (∇F)−1 of ∇F is also ∇F∗ for F∗ the convex
conjugate of F [11]. It is a mapping from the expectation parameter space H to the
natural parameter space Θ . Thus, the MLE is obtained by mapping (∇F)−1 on the
average of sufficient statistics:

θ̂ = (∇F)−1

(
1

N

N∑

i=1

t (xi )

)
. (11.5)

Whereas determining (∇F)−1 may be trivial for some univariate distributions like
Bernoulli, Poisson, Gaussian, multivariate case is much challenging and lead to
consider approximate methods to solve this variational problem [12].
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11.2.2 MLE and Bregman Divergence

In this part, the link betweenMLE and Kullback-Leibler (KL) divergence is recalled.
Banerjee et. al. [2] interpret the log-density of a (regular) exponential family as a
(regular) Bregman divergence:

log pF (x; θ) = −BF∗(t (x) : η) + F∗(t (x)) + k(x), (11.6)

where F∗ is the convex conjugate (Legendre transform) of F . Skipping a formal
definition, a Bregman divergence for a strictly convex and differentiable function
ϕ : Ω �→ R is

Bϕ(ω1 : ω2) = ϕ(ω1) − ϕ(ω2) − 〈ω1 − ω2,∇ϕ(ω2)〉. (11.7)

From a geometric viewpoint, Bϕ(ω1 : ω2) is the difference between the value of ϕ at
ω1 and its first-order Taylor expansion around ω2 evaluated at ω1. Since ϕ is convex,
Bϕ is positive, zero if and only if (iff) ω1 = ω2 but not symmetric in general. The
expression of F∗ (and thus of BF∗) follows from (∇F)−1

F∗(η) = 〈(∇F)−1(η), η〉 − F((∇F)−1(η)). (11.8)

In Eq.11.6, term BF∗(t (x) : η) says howmuch sufficient statistic t (x) on observation
x is dissimilar to η ∈ H.

The Kullback-Leibler divergence on twomembers of the same exponential family
is equivalent to the Bregman divergence of the associated log-normalizer on swapped
natural parameters [10]:

KL(pF (.; θ1)||pF (.; θ2)) = BF (θ2 : θ1) = BF∗(η1 : η2). (11.9)

Let us remark that BF is always known in a closed-form using the canonical decom-
position of pF whereas BF∗ requires the knowledge of F∗. Finding the maximizer
of the log likelihood on Θ amounts to find the minimizer η̂ of

N∑

i=1

BF∗(t (xi ) : η) =
N∑

i=1

KL (pF∗(.; t (xi ))||pF∗(.; η))

on H since the two last terms in Eq. (11.6) are constant with respect to η.

11.3 Learning Mixtures with k-MLE

This section presents how to fit a mixture of exponential families with k-MLE.
This algorithm requires to have a MLE (see previous section) for each component
distribution pFj of the considered mixture. As it shares many properties with the EM
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algorithm for mixtures, this latter is recalled first. The heuristics Lloyd and Hartigan
for k-MLE are completely described. Also, two methods for the initialization of
k-MLE are proposed depending whether or not component distributions are known.

11.3.1 EM Algorithm

Mixture modeling is a convenient framework to address the problem of cluster-
ing defined as the partitioning of a set of i.i.d observations χ = {xi }i=1,..,N into
“meaningful” groups regarding to some similarity. Consider a finite mixture model
of exponential families (see Eq.11.1)

f (x) =
K∑

j=1

w j pFj (x; θ j ), (11.10)

where K is the number of components and w j are the mixture weights which sum
up to unity. Finding mixture parameters {(w j , θ j )} j can be again addressed by max-
imizing the log likelihood of the mixture distribution

L({(w j , θ j )} j ;χ) =
N∑

i=1

log
K∑

j=1

w j pFj (xi ; θ j ). (11.11)

For K > 1, a sum of terms appearing inside a logarithm makes optimization much
more difficult than the one of Sect. 11.2.1 (K = 1). A classical solution, also well
suitable for clustering purpose, is to augment model with indicatory hidden vector
variables zi where zi j = 1 iff observation xi is generated for j th component and 0
otherwise. Previous equation is now replaced by the complete log likelihood of the
mixture distribution

Lc({(w j , θ j )} j ; {(xi , zi )}i ) =
N∑

i=1

K∑

j=1

zi j log
(
w j pFj (xi ; θ j )

)
. (11.12)

This is typically the framework of the Expectation-Maximization (EM) algorithm
[13] which optimizes this function by repeating two steps:

1. Compute Q({(w j , θ j )} j , {(w(t)
j , θ

(t)
j )} j ) the conditional expectation of Lc w.r.t.

the observed data χ given an estimate {(w(t)
j , θ(t)

j )} j for mixture parameters. This

step amounts to compute ẑ(t)
i = E{(w(t)

j ,θ
(t)
j )} j

[zi |xi ], the vector of responsibilities
for each component to have generated xi .
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ẑ(t)
i j = w

(t)
j pFj (xi ; θ

(t)
j )

∑
j ′ w

(t)
j ′ pFj ′ (xi ; θ

(t)
j ′ )

. (11.13)

2. Updatemixture parameters bymaximizingQ (i.e. Eq. (11.12)where hiddenvalues
zi j are replaced by ẑ(t)

i j ).

ŵ
(t+1)
j =

∑N
i=1 ẑ(t)

i j

N
, θ̂

(t+1)
j = argmax

θ j ∈Θ j

N∑

i=1

ẑ(t)
i j log

(
pFj (xi ; θ j )

)
. (11.14)

While ŵ
(t+1)
j is always known in closed-formwhatever Fj are, θ̂

(t+1)
j are obtained

by component-wise specific optimization involving all observations.

Many properties of this algorithm are known (e.g. maximization of Q implies max-
imization of L, slow convergence to local maximum, etc...). In a clustering per-
spective, components are identified to clusters and values ẑi j are interpreted as soft
membership of xi to cluster C j . In order to get a strict partition after the convergence,
each xi is assigned to the cluster C j iff ẑi j is maximum over ẑi1, ẑi2, . . . , ẑi K .

11.3.2 k-MLE with Lloyd Method

A main reason for the slowness of EM is that all observations are taken into account
for the update of parameters for each component since ẑ(t)

i j ∈ [0, 1]. A natural idea is

then to generate smaller sub-samples of χ from ẑ(t)
i j in a deterministic manner.1 The

simplest way to do this is to get a strict partition of χ with MAP assignment:

z̃(t)
i j =

{
1 if ẑ(t)

i j = maxk ẑ(t)
ik

0 otherwise
.

Whenmultiplemaxima exist, the component with the smallest index is chosen. If this
classification step is inserted between E-step and M-step, Classification EM (CEM)
algorithm [14] is retrieved. Moreover, for isotropic gaussian components with fixed
unit variance, CEM is shown to be equivalent to the Lloyd K-means algorithm [4].
More recently, CEM was reformulated in a close way under the name k-MLE [3]
for the context of exponential families and Bregman divergences. In the following
of the paper, we will refer only to this latter. Replacing z(t)

i j by z̃(t)
i j in Eq. (11.12), the

criterion to be maximized in the M-step can be reformulated as

1 Otherwise, convergence to a pointwise estimate of the parameters would be replaced by conver-
gence in distribution of a Markov chain.
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L̃c({(w j , θ j )} j ; {(xi , z̃(t)
i )}i ) =

K∑

j=1

N∑

i=1

z̃(t)
i j log

(
w j pFj (xi ; θ j )

)
. (11.15)

Following CEM terminology, this quantity is called the “classification maximum

likelihood”. Letting C (t)
j =

{
xi ∈ χ|z̃(t)

i j = 1
}
, this equation can be conveniently

rewritten as

L̃c({(w j , θ j )} j ; {C(t)
j } j ) =

∑

x∈C(t)
1

log
(
w1 pF1(x; θ1)

)

+ · · · +
∑

x∈C(t)
K

log
(
wK pFK (x; θK )

)
. (11.16)

Each term leads to a separate optimization to get the parameters of the corresponding
component:

ŵ
(t+1)
j = |C(t)

j |
N

, θ̂
(t+1)
j = argmax

θ j ∈Θ j

∑

x∈C(t)
j

log pFj (x; θ j ). (11.17)

Last equation is nothing but the equation of the MLE for the j-th component with
a subset of χ. Algorithm 1 summarizes k-MLE with Lloyd method given an initial
description of the mixture.

Algorithm 1: k-MLE (Lloyd method)

Input: A sample χ = {x1, x2, ..., xN }, initial mixture parameters {ŵ(0)
j , θ̂

(0)
j } j , {Fj } j

log-normalizers of exponential families
Output: Ending values for {ŵ(t)

j , θ̂
(t)
j } j are estimates of mixture parameters,

C(t)
j a partition of χ

t = 0;1
repeat2

repeat3
// Partition χ in K disjoint subsets with MAP assignment

foreach xi ∈ χ do z̄(t)
i = argmax j log ŵ

(t)
j pFj (xi ; θ̂

(t)
j );4

C(t)
j = {xi ∈ χ|z̄(t)

i = j};5
// Update parameters {θ j } j with MLE ({w j } j unchanged)

foreach j ∈ 1, ..., K do θ̂
(t+1)
j = argmaxθ j ∈Θ j

∑
x∈C(t)

j
log pFj (x; θ j );6

t = t +1;7
until Convergence of the classification maximum likelihood (Eq. 11.16);8
// Update mixture weights {w j } j

foreach j ∈ 1, ..., K do ŵ
(t+1)
j = |C(t)

j |/N ;9
until Further convergence of the classification maximum likelihood (Eq. 11.16);10
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Contrary to CEM algorithm, k-MLE algorithm updates mixture weights after the
convergence of the L̃c (line 8) and not simultaneously with component parameters.
Despite this difference, both algorithms can be proved to converge to a local maxi-
mum of L̃c with same kind of arguments (see [3, 14]). In practice, the local maxima
(and also the mixture parameters) are not necessary equal for the two algorithms.

11.3.3 k-MLE with Hartigan Method

In this section, a different optimization of the classification maximum likelihood is
presented. A drawback of previous methods is that they can produce empty clusters
without any mean of control. It occurs especially when observations are in a high
dimensional space. A mild solution is to discard empty clusters by setting their
weights to zero and their parameters to∅. A better approach, detailed in the following,
is to rewrite the k-MLE following the same principle as Hartiganmethod for k-means
[15]. Moreover, this heuristic is preferred to Lloyd’s one since it generally provides
better local maxima [16].

Hartigan method is generally summarized by the sentence “Pick an observation,
say xc in cluster Cc, and optimally reassign it to another cluster.” Let us first consider
as “optimal” the assignment xc to its most probable cluster, say C j∗ :

j∗ = argmax
j

log ŵ
(t)
j pFj (xc; θ̂

(t)
j ),

where ŵ
(t)
j , and θ̂

(t)
j denote the weight and the parameters of the j-th component at

some iteration. Then, parameters of the two components are updated with MLE:

θ̂(t+1)
c = argmax

θc∈Θc

∑

x∈C(t)
c \{xc}

log pFc(x; θc) (11.18)

θ̂
(t+1)
j∗ = argmax

θ j∗∈Θ j∗

∑

x∈C(t)
j∗ ∪{xc}

log pFj∗ (x; θ j∗). (11.19)

The mixture weights ŵc and ŵ j∗ remain unchanged in this step (see line 9 of
Algorithm1). Consequently, L̃c increases byΦ(t)(xc, Cc, C j∗)whereΦ(t)(xc, Cc, C j )
is more generally defined as

Φ(t)(xc, Cc, C j ) =
∑

x∈C(t)
c \{xc}

log pFc (x; θ̂
(t+1)
c ) −

∑

x∈C(t)
c ∪{xc}

log pFc (x; θ̂
(t)
c ) − log

ŵc

ŵ j

+
∑

x∈C(t)
j ∪{xc}

log pFj (x; θ̂
(t+1)
j ) −

∑

x∈C(t)
j \{xc}

log pFj (x; θ̂
(t)
j ).

(11.20)
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This procedure is nothing more than a partial assignment (C-step) in the Lloyd
method for k-MLE. This is an indirect way to reach our initial goal which is the
maximization of L̃c.

FollowingTelgarsky andVattani [16], a better approach is to consider as “optimal”
the assignment to cluster C j which maximizes Φ(t)(xc, Cc, C j )

j∗ = argmax
j

Φ(t)(xc, Cc, C j ). (11.21)

SinceΦ(t)(xc, Cc, Cc) = 0, such assignment satisfiesΦ(t)(xc, Cc, C j∗) ≥ 0 and there-
fore the increase of L̃c. As the optimization space is finite (partitions of {x1, ..., xN }),
this procedure converges to a local maximum of L̃c. There is no guarantee that C j∗
coincides with the MAP assignment for xc.

For the k-means loss function, Hartigan method avoids empty clusters since any
assignment to one of those empty clusters decreases it necessarily [16]. Analo-
gous property will be now studied for k-MLE through the formulation of L̃c with
η-coordinates:

L̃c({(w j , η j )} j ; {C(t)
j } j ) (11.22)

=
K∑

j=1

∑

x∈C(t)
j

[
F∗

j (η j ) + k j (x) + 〈t j (x) − η j ,∇F∗
j (η j )〉 + logw j

]
.

Recalling that the MLE satisfies η̂
(t)
j = |C(t)

j |−1 ∑
x∈C(t)

j
t j (x), dot product vanishes

when η j = η̂
(t)
j and it follows after small calculations

Φ(t)(xc, Cc, C j ) = (|C(t)
c | − 1)F∗

c (η̂(t+1)
c ) − |C(t)

c |F∗
c (η̂(t)

c )

+ (|C(t)
j | + 1)F∗

j (η̂
(t+1)
j ) − |C(t)

j |F∗
j (η̂

(t)
j )

+ k j (xc) − kc(xc) − log
ŵc

ŵ j
. (11.23)

As far as F∗
j is known in closed-form, this criterion is faster to compute than

Eq. (11.20) since updates of component parameters are immediate

η̂(t+1)
c = |C(t)

c |η̂(t)
c − tc(xc)

|C(t)
c | − 1

, η̂
(t+1)
j = |C(t)

j |η̂(t)
j + t j (xc)

|C(t)
j | + 1

. (11.24)

When C(t)
c = {xc}, there is no particular reason for Φ(t)(xc, {xc}, C j ) to be always

negative. Simplications occurring for the k-means in euclidean case (e.g. k j (xc) = 0,
clusters have equal weight w j = K −1, etc...) do not exist in this more general case.
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Thus, in order to avoid to empty a cluster, it is mandatory to reject every outgoing
transfer for a singleton cluster (cf. line 8).

Algorithm 2 details k-MLE algorithm with Hartigan method when F∗
j are avail-

able. When only Fj are known, Φ(t)(xc, Cc, C j ) can be computed with Eq. (11.20).
In this case, the computation ofMLE θ̂ j is much slower and is an issue for a singleton
cluster. Its existence and possible solutions will be discussed later for the Wishart
distribution. Further remarks on Algorithm 2:

(line 1) When all F∗
j = F∗ are identical, this partitioning can be understood as

geometric split in the expectation parameter space induced by divergence
BF∗ and additive weight − logw j (weighted Bregman Voronoi diagram
[17]).

(line 4) This permutation avoids same ordering for each loop.
(line 6) A weaker choice may be done here: any cluster C j (for instance the first)

which satisfies Φ(t)(xi , Cz̄i , C j ) > 0 is a possible candidate still guar-
anteeing convergence of the algorithm. For such clusters, it may be also
advisable to select C j with maximum ẑ(t)

i j .

(line 12) Obviously, this criterion is equivalent to local convergence of L̃c.

As said before, this algorithm is faster when components parameters η j can be
updated in the expectation parameter space H j . But the price to pay is the memory
needed to keep all sufficient statistics t j (xi ) for each observation xi .

11.3.4 Initialization with DP-k-MLE++

To complete the description of k-MLE, it remains the problem of the initialization
of the algorithm: choice of the exponential family for each component, initial values
of {(ŵ(0)

j , η(0)
j )} j , number of components K . Ideally, a good initialization would be

fast, select automatically the number of components (unknown formost applications)
and provide initial mixture parameters not too far from a good local minimum of the
clustering criterion. The choice ofmodel complexity (i.e. the number K of groups) is a
recurrent problem in clustering since a compromise has to be done between genericity
and goodness of fit. Since the likelihood increases with K , many criteria such as
BIC, NEC are based on the penalization of likelihood by a function of the degree
of freedom of the model. Other approaches include MDL principle, Bayes factor
or simply a visual inspection of some plottings (e.g. silhouette graph, dendrogram
for hierarchical clustering, Gram matrix, etc...). The reader interested by this topic
may refer to section M in the survey of Xu and Wunsch [18]. Proposed method,
inspired by the algorithms k-MLE++ [3] and DP-means [19], will be described in
the following.

At the beginning of a clustering, there is no particular reason for favoring one
particular cluster among all others. Assuming uniform weighting for components,
L̃c simplifies to
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Algorithm 2: k-MLE (Hartigan method)

Input: Sample χ = {x1, .., xN }, initial mixture parameters {(ŵ(0)
j , η̂

(0)
j )} j=1,..,K , {(t j , F∗

j )} j
sufficient statistics and dual log-normalizers of exponential families

Output: Ending values for {(ŵ(t)
j , η̂

(t)
j )} j are estimates of mixture parameters, C(t)

j a
partition of χ

// Partition χ in K disjoint subsets with MAP assignment

foreach xi ∈ χ do z̄(0)
i = argmin j (BF∗

j
(t j (xi ) : η̂(0)

j ) − log ŵ
(0)
j );1

foreach j ∈ 1, ..., K do C(0)
j = {xi ∈ χ|z̄(0)

i = j};2

repeat3
done_transfer = False;4

Random permute (x1, z̄(t)
1 ), ..., (xN , z̄(t)

N );5

foreach xi ∈ χ such that |C(t)

z̄(t)
i

| > 1 do
6

// Test optimal transfer for xi (see Eqs. 11.23 or 11.20)
j∗ = argmin j Φ

(t)(xi , Cz̄(t)
i

, C j );7

if Φ(t)(xi , Cz̄(t)
i

, C j∗ ) > 0 then8
// Update clusters and membership of xi

9

C(t+1)

z̄(t)
i

= C(t)

z̄(t)
i

\{xi }, C(t+1)
j∗ = C(t)

j∗ ∪ {xi }, z̄(t+1)
i = j∗

// Update only ηz̄i , η j∗ with MLE ({w j } j unchanged)
10

η̂
(t+1)

z̄(t)
i

=
|C(t)

z̄(t)
i

|η̂(t)

z̄(t)
i

− t
z̄(t)

i
(xi )

|C(t+1)

z̄(t)
i

|
, η̂

(t+1)

z̄(t+1)
i

=
|C(t)

z̄(t+1)
i

|η̂(t)

z̄(t+1)
i

+ t
z̄(t+1)

i
(xi )

|C(t+1)

z̄(t+1)
i

|
done_transfer = True; t = t +1;

if done_transfer is True then11
// Update mixture weights {w j } j

foreach j ∈ 1, ..., K do ŵ
(t)
j = N−1|C(t)

j |;12

until done_transfer is False;13

L̊c({θ j } j ; {C(t)
j } j ) =

K∑

j=1

∑

x∈C(t)
j

log pFj (x; θ j ) or equivalently to (11.25)

L̊c({η j } j ; {C(t)
j } j ) =

K∑

j=1

∑

x∈C(t)
j

[
F∗

j (η j ) + k j (x) + 〈t j (x) − η j ,∇F∗
j (η j )〉

]
.

(11.26)

When all F∗
j = F∗ are identical and the partition {C(t)

j } j corresponds to MAP

assignment, L̊ is exactly the objective function L̆ for the Bregman k-means [2].
Rewriting L̆ as an equivalent criterion to be minimized, it follows
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L̆({η j } j ) =
N∑

i=1

K
min
j=1

BF∗(t (xi ) : η j ). (11.27)

Bregman k-means++ [20, 21] provides initial centers {η(0)
j } j which guarantee to find

a clustering that isO(log K )-competitive to the optimalBregman k-means clustering.
The k-MLE++ algorithm amounts to use Bregman k-means++ on the dual log-
normalizer F∗ (see Algorithm 3).

Algorithm 3: k-MLE++
Input: A sample χ = {x1, ..., xN }, t the sufficient statistics and F∗ the dual log-normalizer

of an exponential family, K the number of clusters
Output: Initial mixture parameters {(w(0)

j , η
(0)
j } j )

w
(0)
1 = 1/K ;1

Choose first seed η(0)
1 = t (xi ) for i uniformly random in {1, 2, . . . , N };2

for j = 2, ..., K do3

w
(0)
j = 1/K ;4

// Compute relative contributions to L̆({η j } j )

foreach xi ∈ χ do pi = min j
j ′=1

BF∗ (t (xi ):η j ′ )
∑N

i ′=1 min j
j ′=1

BF∗ (t (xi ′ ):η j ′ )
;

5

Choose η
(0)
j ∈ {t (x1), ..., t (xN )} with probability pi ;6

When K is unknown, same strategy can still be applied but a stopping criterion
has to be set. Probability pi in Algorithm 3 is a relative contribution of observation xi

through t (xi ) to L̆({η1, ..., ηK }) where K is the number of already selected centers.
A high pi indicates that xi is relatively far from these centers, thus is atypic to the
mixture {(w(0)

1 , η
(0)
1 ), ..., (w

(0)
K , η

(0)
K ), } for w

(0)
j = w(0) an arbitrary constant. When

selecting a new center, pi necessarily decreases in the next iteration. A good covering
of χ is obtained when all pi are lower than some threshold λ ∈ [0, 1]. Algorithm 4
describes the initialization named after DP-k-MLE++.

The higher the threshold λ, the lower the number of generated centers. In partic-
ular, the value 1

N should be considered as a reasonable minimum setting for λ. For
λ = 1, the algorithm will simply return one center. Since pi = 0 for already selected
centers, this method guarantees all centers to be distinct.

11.3.5 Initialization with DP-comp-k-MLE

Although k-MLE can be used with component-wise exponential families, previous
initialization methods yield components of same exponential family. Component
distribution may be chosen simultaneously to a center selection when additional
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Algorithm 4: DP-k-MLE++
Input: A sample χ = {x1, ..., xN }, t the sufficient statistics and F∗ the dual log-normalizer

of an exponential family, λ ∈ [0, 1]
Output: Initial mixture parameters {w(0)

j , η
(0)
j } j , K the number of clusters

Choose first seed η
(0)
1 = t (xi ) for i uniformly random in {1, 2, . . . , N };1

K=1;2
repeat3

// Compute relative contributions to L̆({η1, ..., ηK })
foreach xi ∈ χ do pi = minK

j=1 BF∗ (t (xi ):η j )
∑N

i ′=1 minK
j=1 BF∗ (t (xi ′ ):η j ′ )

;
4

if ∃ pi > λ then5
K = K+1;6
// Select next seed
Choose η(0)

K ∈ {t (x1), ..., t (xN )} with probability pi ;7

until all pi ≤ λ;8

for j = 1, ..., K do w
(0)
j = 1/K ;9

knowledge ξi about xi is available (seeSect. 11.5 for an example).Given such a choice
function H , Algorithm 5 called “DP-comp-k-MLE” describes this new flexible ini-
tialization method. DP-comp-k-MLE is clearly a generalization of DP-k-MLE++
when H always returns the same exponential family. However, in the general case, it
remains to be provedwhether aDP-comp-k-MLEclustering isO(log K )-competitive
to the optimal k-MLEclustering (with equalweight).Without this difficult theoretical
study, suffix “++” is carefully omitted in the name DP-comp-k-MLE.

To end up with this section, let us recall that all we need to know for using
proposed algorithms is the MLE for the considered exponential family, whether it is
available in a closed-form or not. In many exponential families, all details (canonical
decomposition, F,∇F, F∗,∇F∗ = (∇F)−1) are already known [10]. The next
section focuses on the case of the Wishart distribution.

11.4 Learning Mixtures of Wishart with k-MLE

This section recalls the definition of Wishart distribution and proposes a maximum
likelihood estimator for its parameters. Some known facts such as the Kullback-
Leibler divergence between twoWishart densities are recalled. Its use with the above
algorithms is also discussed.

11.4.1 Wishart Distribution

The Wishart distribution [5] is the multidimensional version of the chi-square dis-
tribution and it characterizes empirical scatter matrix estimator for the multivariate
gaussian distribution. Let X be a n-sample consisting in independent realizations of
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Algorithm 5: DP-comp-k-MLE
Input: A sample χ = {x1, ..., xN } with extra knowledge ξ = {ξ1, ..., ξN }, H a choice

function of an exponential family, λ ∈ [0, 1]
Output: Initial mixture parameters {(w(0)

j , η(0)
j )} j , {(t j , F∗

j )} j sufficient statistics and dual
log-normalizers of exponential families, K the number of clusters

// Select first seed and exponential family
for i uniformly random in {1, 2, . . . , N } do1

Obtain t1, F∗
1 from H(xi , ξi );2

Select first seed η
(0)
1 = t1(xi );3

K=1;4
repeat5

foreach xi ∈ χ do pi =
minK

j=1 BF∗
j
(t j (xi ):η j )

∑N
i ′=1 minK

j=1 BF∗
j
(t j (xi ′ ):η j ′ )

;
6

if ∃ pi > λ then7
K = K+1;8
// Select next seed and exponential family
for i with probability pi in {1, 2, . . . , N } do9

Obtain tK , F∗
K from H(xi , ξi );10

Select next seed η
(0)
K = tK (xi );11

until all pi ≤ λ;12

for j = 1, ..., K do w
(0)
j = 1/K ;13

a random gaussian vector with d dimensions, zero mean and covariance matrix S.
Then scatter matrix X = t

XX follows a centralWishart distribution with scale matrix
S and degree of freedom n, denoted by X ∼ Wd(n, S). Its density function is

Wd(X; n, S) = |X | n−d−1
2 exp

{ − 1
2 tr(S−1X)

}

2
nd
2 |S| n

2 Γd
( n
2

) ,

where for y > 0, Γd(y) = π
d(d−1)

4
∏d

j=1 Γ
(

y − j−1
2

)
is the multivariate gamma

function. Let us remark immediately that this definition implies that n is constrained
to be strictly greater than d − 1.

Wishart distribution is an exponential family since

Wd (X; θn, θS) = exp

{
< θn, log |X | >R + < θS,−1

2
X >H S + k(X) − F(θn, θS)

}
,

where (θn, θS) = ( n−d−1
2 , S−1), t (X) = (log |X |,− 1

2 X), 〈, 〉H S denotes theHilbert-
Schmidt inner product and
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F(θn, θS) =
(

θn + (d + 1)

2

)
(d log(2) − log |θS|) + logΓd

(
θn + (d + 1)

2

)
.

(11.28)
Note that this decomposition is not unique (see another one in [22]). Refer to
Appendix A.1 for detailed calculations.

11.4.2 MLE for Wishart Distribution

Let us recall (see Sect. 11.2.1) that the MLE is obtained by mapping (∇F)−1 on the
average of sufficient statistics. Finding (∇F)−1 amounts to solve here the following
system (see Eqs. 11.5 and 11.28):

⎧
⎨

⎩
d log(2) − log |θS| + Ψd

(
θn + (d+1)

2

)
= ηn,

−
(
θn + (d+1)

2

)
θ−1

S = ηS .
(11.29)

with ηn = E[log |X |] and ηS = E[− 1
2 X ] the expectation parameters and Ψd the

derivative of the logΓd . Unfortunately, variables θn and θS are not separable so
that no closed-form solution is known. Instead, as pointed out in [23], it is possible
to adopt an iterative scheme that alternatively yields maximum likelihood estimate
when the other parameter is fixed. This is equivalent to consider two sub-families
Wd,n and Wd,S of Wishart distribution Wd which are also exponential families.
For the sake of simplicity, natural parameterizations and sufficient statistics of the
decomposition in the general case are kept (see Appendices A.2 and A.3 for more
details).
Distribution Wd,n (n = 2θn + d + 1): kn(X) = n−d−1

2 log |X | and

Fn(θS) = nd

2
log(2) − n

2
log |θS| + logΓd

(n

2

)
. (11.30)

Using classical results for matrix derivatives, (Eq.11.5) can be easily solved:

− n

2
θ̂−1

S = 1

N

N∑

i=1

−1

2
Xi =⇒ θ̂S = Nn

(
N∑

i=1

Xi

)−1

. (11.31)

Distribution Wd,S (S = θ−1
S ): kS(X) = − 1

2 tr(S−1X) and

FS(θn) =
(

θn + d + 1

2

)
log

∣∣2S
∣∣ + logΓd

(
θn + d + 1

2

)
(11.32)

Again, Eq. (11.5) can be numerically solved:
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θ̂n = Ψ −1
d

(
1

N

N∑

i=1

log |Xi | − log
∣∣2S

∣∣
)

− d + 1

2
, θ̂n > −1 (11.33)

with Ψ −1
d the functional reciprocal of Ψd . This latter can be computed with any

optimization method on bounded domain (e.g. Brent method [24]). Let us mention
that notation is simplified here since θ̂S and θ̂n should have been indexed by their
corresponding family. Algorithm 6 summarizes the estimate θ̂ for parameters of

theWishart distribution. By precomputing N
(∑N

i=1 Xi

)−1
and N−1 ∑N

i=1 log |Xi |,
much computation time can be saved. The computation of the Ψ −1

d remains an
expensive part of the algorithm.

Let us now prove the convergence and the consistency of this method. Maximiz-
ing l̄ amounts to minimize equivalently E(θ) = F(θ) − 〈 1

N

∑N
i=1 t (Xi ), θ〉. The

following properties are satisfied by E :

• The hessian ∇2E = ∇2F of E is positive definite on Θ since F is convex.
• Its unique minimizer on Θ is the MLE θ̂ = ∇F∗( 1

N

∑N
i=1 t (Xi )) whenever it

exists (although F∗ is not known for Wishart, and F is not separable).

Algorithm 6: MLE for the parameters of a Wishart distribution

Input: A sample χ = {X1, X2, . . . , X N } of Sd++ with N > 1

Output: Estimate θ̂ is the terminal values of MLE sequences {θ̂(t)
n } and {θ̂(t)

S }
// Initialization of the {θ̂(t)

n } sequence

θ̂
(0)
n = 1; t = 0;1

repeat2
// Compute MLE in Wd,n using Eq. 11.31

θ̂(t+1)
S = Nn

(
N∑

i=1

Xi

)−1

with n = 2θ̂(t)
n + d + 1

// Compute MLE in Wd,S using Eq. 11.33

θ̂(t+1)
n = Ψ −1

d

(
1

N

N∑

i=1

log |Xi | − log
∣∣2S

∣∣
)

− d + 1

2
with S =

(
θ̂
(t+1)
S

)−1

t = t + 1;
until convergence of the likelihood;3

Therefore, Algorithm 6 is an instance of the group coordinate descent algorithm of
Bezdek et al. (Theorem 2.2 in [25]) for θ = (θn, θS):

θ̂
(t+1)
S = argmax

θS

E(θ̂(t)
n , θS) (11.34)

θ̂(t+1)
n = argmax

θn

E(θn, θ̂
(t+1)
S ) (11.35)
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Resulting sequences {θ̂(t)
n } and {θ̂(t)

S } are shown to converge linearly to the coordinates
of θ̂.

By looking carefully at the previous algorithms, let us remark that the initialization
methods require to able to compute the divergence BF∗ between two elements η1 and
η2 in the expectation space H. Whereas F∗ is known forWd,n andWd,S , Eq. (11.9)
gives a potential solution forWd by considering BF on natural parameters θ2 and θ1
in Θ . Searching the correspondence H �→ Θ is analogous to compute the MLE for
a single observation...

The previous MLE procedure does not converge with a single observation X1.
Bogdan and Bogdan [26] proved that MLE exists and is unique in an exponential
family off the affine envelope of the N points t (X1), ..., t (X N ) is of dimension D, the
order of this exponential family. Since the affine envelope of t (X1) is of dimension
d ×d (instead of D = d ×d +1), the MLE does not exists and the likelihood function
goes to infinity.2 Unboundedness of likelihood function is well known problem that
can be tackled by adding a penalty term to it [27]. A simpler solution is to take the
MLE in family Wd,n for some n (known or arbitrary fixed above d − 1) instead
of Wd .

11.4.3 Divergences for Wishart Distributions

For two Wishart distributions W1
d = Wd(X; n1, S1) and W2

d = Wd(X; n2, S2), the
KL divergence is known [22] (even if F∗ is unknown):

KL(W1
d ||W2

d ) = − log

(
Γd

( n1
2

)

Γd
( n2
2

)
)

+
(

n1 − n2

2

)
Ψd

(n1

2

)

+ n1

2

(
− log

|S1|
|S2| + tr(S−1

2 S1) − d

)
(11.36)

Looking the KL divergences of the two Wishart sub-families Wd,n and Wd,S gives
an interesting perspective to this formula. Applying Eqs. 11.9 and 11.8, it follows

KL(W1
d,n||W2

d,n) = n

2

(
− log

|S1|
|S2| + tr(S−1

2 S1) − d

)
(11.37)

KL(W1
d,S||W2

d,S) = − log

(
Γd

( n1
2

)

Γd
( n2
2

)
)

+
(

n1 − n2

2

)
Ψd

(n1

2

)
(11.38)

Detailed calculations can be found in the Appendix. Notice that KL(W1
d ||W2

d ) is
simply the sum of these two divergences

2 Product θ̂(t)
n θ̂

(t)
S is constant through iterations.
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Fig. 11.1 20 random matrices from Wd (.; n, S) from n = 5 (left), n = 50 (right)

KL(W1
d ||W2

d ) = KL(W1
d,S1 ||W2

d,S1) + KL(W1
d,n1 ||W2

d,n1) (11.39)

and that KL(W1
d,S||W2

d,S) does not depend on S.

DivergenceKL(W1
d,n||W2

d,n), commonly used as a dissimilaritymeasure between
covariance matrices, is sometimes referred as the log-Det divergence due to the form
of ϕ(S) = Fn(S) ∝ log |S| (see Eq.11.30). However, the dependency on term n
should be neglected only when the two empirical covariance matrices comes from
samples of the same size. In this case, log-Det divergence between two covariance
matrices is the KL divergence in the sub-familyWd,n .

11.4.4 Toy Examples

In this part, some simple simulations are given for d = 2. Since the observations are
positive semi-definite matrices, it is possible to visualize them with ellipses para-
metrized by their eigen decompositions. For example, Fig. 11.1 shows 20 matrices
generated from Wd(.; n, S) for n = 5 and for n = 50 with S having eigenvalues
{2, 1}. This visualization highlights the difficulty for the estimation of the parameters
(even for d small) when n is small.

Then, a dataset of 60 matrices is generated from a three components mix-
ture with parametersWd(.; 10, S1),Wd(.; 20, S2),Wd(.; 30, S3) and equal weights
w1 = w2 = w3 = 1/3. The respective eigenvalues for S1, S2, S3 are in turn
{2, 1}, {2, 0.5}, {1, 1}. Figure11.2 illustrates this dataset. To study the influence of
a good initialization for k-MLE, the Normalized Mutual Information (NMI) [28]
is computed between the final partition and the ground-truth partition for different
initializations. This value between 0 and 1 is higher when the two partitions are more
similar. Following table gives average and standard deviation of NMI over 30 runs:

Rand. Init/Lloyd Rand. Init/Hartigan k-MLE++/Hartigan

NMI 0.229 ± 0.279 0.243 ± 0.276 0.67 ± 0.083
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Fig. 11.2 Dataset: 60 ma-
trices generated from a three
components mixture of W2

0

Fig. 11.3 DP-k-MLE++:
Influence of λ on K and on
the average log-likelihood

From this small experiment, we can easily verify the importance of a good initial-
ization. Also, the partitions having the highest NMI are reported in Fig. 11.4 for each
method. Let us mention that Hartigan method gives almost always a better partition
than the Lloyd’s one for the same initial mixture.

A last simulation indicates that the initialization with DP-k-MLE++ is very
sensible to its parameter λ. Again with the same set of matrices, Fig. 11.3 shows how
the number of generated clusters K and the average log-likelihood evolve with λ.
Not surprisingly, both quantities decrease when λ increases.
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Fig. 11.4 Best partitions with Rand. Init/Lloyd (left), Rand. Init/Hartigan (middle), k-MLE++
Hartigan (right)

11.5 Application to Motion Retrieval

In this section, a potential application to motion retrieval is proposed following our
previous work [23]. Raw motion-captured movement can be identifiable to a ni × d
matrix Xi where each row corresponds to captured locations of a set of sensors.

11.5.1 Movement Representation

When the aim is to provide a taxonomy of a set of movements, it is difficult to
compare varying-size matrices. Cross-product matrices Xi = t

XiXi is a possible
descriptor3 of Xi . Denoting N the number of movements, set {X1, ..., X N } of d × d
matrix is exactly the input of k-MLE. Note that d can easily be of high dimension
when the number of sensors is large.

The simplest way to initialize k-MLE in this setting is to apply DP-k-MLE++
for Wd . But when ni are known, it is better not to estimate them. In this case, DP-
comp-k-MLE is appropriate for a function H selecting Wd,ni given ξi = ni . When
learning algorithm is fast enough, it is common practice to restart it for different
initializations and to keep the best output (mixture parameters).

To enrich the description of a single movement, it is possible to define a mixture
mi per movement Xi . For example, several subsets of successive observations with
different sizes can be extracted and their cross-product matrices used as inputs for
k-MLE (andDP-comp-k-MLE).Mixturemi can be viewed as a sparse representation
of local dynamics of Xi through their local second-order moments.

While these two representations are of different kind, it is possible to encompass
both in a common framework for Xi described by a mixture of a single component
{(wi,1 = 1, ηi,1 = t (Xi ))}. Algorithm k-MLE applied on such input for all move-
ments (i.e. {t (Xi )}i ) provides then another set of mixture parameters {(ŵ j , η̂ j )} j .
Note that the general treatment of arbitrary mixtures of mixtures of Wishart is not
claimed to be addressed here.

3 For translation invariance, Xi are column centered before.
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11.5.2 Querying with Cauchy-Schwartz Divergence

Let us consider a movement X (a n × d matrix) and its mixture representation m.
Without loss of generality, let us denote {(w j , θ j )} j=1..K the mixture parameters for
m. The problem of comparing two movements amounts to compute a appropriate
dissimilarity between m and another mixture m′ of such a kind with parameters
{(w′

j , θ
′
j )} j=1..K ′ .

When bothmixtures have a single component (K=K’= 1), an immediate solution
is to consider the Kullback-Leibler divergence KL(m : m) for two members of
the same exponential family. Since it is the Bregman divergence on the swapped
natural parameters BF (θ′ : θ), a closed form is always available from Eq. (11.7). It
is important to mention that this formula holds for θ and θ′ viewed as parameters for
Wd even if they are estimated in sub-families Wd,n and Wd,n′ .

For general mixtures of the same exponential family (K > 1 or K ′ > 1), KL
divergence admits no more a closed form and has to be approximate with numerical
methods. Recently, other divergences such as the Cauchy-Schwartz divergence (CS)
[29] were shown to be available in a closed form:

CS(m : m′) = − log

∫
m(x)m′(x)dx

√∫
m(x)2dx

∫
m′(x)2dx

. (11.40)

Within the same exponential family pF , the integral of the product of mixtures is

∫
m(x)m′(x)dx =

K∑

j=1

K ′∑

j ′=1

w jw
′
j ′

∫
pF (x; θ j )pF (x; θ′

j ′)dx . (11.41)

When carrier measure k(X) = 0, as it is for Wd but not for Wd,n and Wd,S , the
integral can be further expanded as

∫
pF (x; θ j )pF (x; θ′

j ′)dX =
∫

e〈θ j ,t (X)〉−F(θ j )e
〈θ′

j ,t (X)〉−F(θ′
j ′ )dX

=
∫

e
〈θ j +θ′

j ′ ,t (X)〉−F(θ j )−F(θ′
j ′ )dX

= e
F(θ j +θ′

j ′ )−F(θ j )−F(θ′
j ′ )

∫
e
〈θ j +θ′

j ′ ,t (X)〉−F(θ j +θ′
j ′ )dX

︸ ︷︷ ︸
=1

.

Note that θ j + θ′
j ′ must be in the natural parameter spaceΘ to ensure that F(θ j + θ′

j ′)
is finite. An equivalent condition is that Θ is a convex cone.

When pF = Wd , space Θ =] − 1;+∞[×S p
++ is not a convex cone since

θn j + θ′
n j ′ < −1 for n j and n′

j ′ smaller than d + 1. Practically, this constraint
is tested for each parameter pairs before going on with the computation the CS
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divergence. A possible fix, not developed here, would be to constraint n to be greater
than d + 1 (or equivalently θn > 0). Such a constraint amounts to take a convex
subset ]0;+∞[×S p

++ of Θ . Denoting Δ(θ j , θ
′
j ′) = F(θ j + θ′

j ′) − F(θ j ) − F(θ′
j ′),

the CS divergence is also

CS(m : m′) = 1

2
log

K∑

j=1

K∑

j ′=1

[
w jw j ′ exp

Δ(θ j ,θ j ′ )
]

(wi thin m)

+ 1

2
log

K ′∑

j=1

K ′∑

j ′=1

[
w′

jw
′
j ′ exp

Δ(θ′
j ,θ

′
j ′ )
]

(wi thin m′)

− log
K∑

j=1

K ′∑

j ′=1

[
w jw

′
j ′ exp

Δ(θ j ,θ
′
j ′ )
]

(between m and m′)

(11.42)

Note that CS divergence is symmetric since Δ(θ j , θ
′
j ′) is. A numeric value of

Δ(θ j , θ
′
j ′) can be computed for Wd from Eq.11.28 (see Eq.11.45 or 11.46 in the

Appendix).

11.5.3 Summary of Proposed Motion Retrieval System

To conclude this section, let us recall the elements of our proposal for a motion
retrieval system. Movement is represented by a Wishart mixture model learned by
k-MLE initialized by DP-k-MLE++ or DP-comp-k-MLE. In the case of a mixture
of a component, a simple application of the MLE forWd,n is sufficient. Although a
Wishart distribution appears inadequate model for the scatter matrix X of a move-
ment, it has been shown that this crude assumption provides a good classification rates
on a real data set [23]. Learning representations of the movements may be performed
offline since it is computational demanding. Using CS divergence as dissimilarity, we
can then extract a taxonomyofmovementswith any spectral clustering algorithm. For
a query movement, its representation by a mixture has to be computed first. Then it is
possible to search the database for themost similarmovements according to theCSdi-
vergence or to predict its type by amajority vote among them.More details of the im-
plementation and results for the real dataset will be in a forthcoming technical report.

11.6 Conclusions and Perspectives

Hartigan’s swap clustering method for k-MLE was studied for the general case of
an exponential family. Unlike for k-means, this method does not guarantee to avoid
empty clusters but achieves generally better performance than the Lloyd’s heuristic.
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Two methods DP-k-MLE and DP-comp-k-MLE are proposed to initialize k-MLE
automatically by setting the number of clusters. While the former shares the good
properties of k-MLE, the latter selects the component distributions given some extra
knowledge. A small experiment indicates these methods appear to be quite sensible
to their only parameter.

We recalled the definition and some properties of the Wishart distribution Wd ,
especially its canonical decomposition as a member of an exponential family.By
fixing either one of its two parameters n and S, two other (nested) exponential (sub-)
familiesWd,n andWd,S may be defined. From their respective MLEs, it is possible
to define an iterative process which provably converges to the MLE for Wd . For a
single observation, the MLE does not exist.Then a crude solution is to replace the
MLE inWd by the MLE in one of the two sub-families.

The MLE is an example of a point estimator among many others (e.g. method of
moments, minimax estimators, Bayesian point estimators). This suggests as future
work many other learning algorithms such as k-MoM, k-Minimax [30], k-MAP
following the same algorithmic scheme as k-MLE.

Finally, an application to the retrieval motion-captured motions is proposed.Each
motion is described by aWishart mixture model and the Cauchy-Schwarz divergence
is used as a dissimilarity measure between twomixture models.As the CS divergence
is always available in closed-form, such divergence is fast to compute compared to
stochastic integration estimation schemes.This divergence can be used in spectral
clustering methods and for visualization of a set of motions in an Euclidean embed-
ding.

Another perspective is the connection between the closed-form divergences be-
tween mixtures and kernels based on divergences [31]: The CS divergence looks
similar to the Normalized Correlation Kernel [32].This could lead to a broader class
of methods (e.g., SVM) using these divergences.

Appendix A

This Appendix details some calculations for distributionsWd ,Wd,n ,Wd,S .

A.1 Wishart Distribution Wd

Wd (X; n, S) = |X | n−d−1
2 exp{− 1

2 tr(S−1X)}
2

nd
2 |S| n

2 Γd ( n
2 )

= exp

{
n − d − 1

2
log |X | − 1

2
tr(S−1X) − nd

2
log(2) − n

2
log |S| − logΓd

(n

2

)}
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Letting (θn, θS) = ( n−d−1
2 , S−1) ←→ (n, S) = (2θn + d + 1, θ−1

S )

Wd (X; θn, θS) = exp

{
2θn + d + 1 − d − 1

2
log |X | − 1

2
tr(θS X) − (2θn + d + 1)d

2
log(2)

− (2θn + d + 1)

2
log |θ−1

S | − logΓd

(
2θn + d + 1

2

)}

= exp

{
θn log |X | − 1

2
tr(θS X) −

(
θn + (d + 1)

2

)
(d log(2) − log |θS |)

− logΓd

(
θn + (d + 1)

2

)}

= exp

{
< θn, log |X | >R + < θS,−1

2
X >H S −F(Θ)

}

with F(Θ) =
(

θn + (d + 1)

2

)
(d log(2) − log |θS |) + logΓd

(
θn + (d + 1)

2

)

= exp {< Θ, t (X) > −F(Θ) + k(X)}
witht (X) = (log |X |,−1

2
X) and k(X) = 0

F(Θ) =
(

θn + (d + 1)

2

)
(d log(2) − log |θS|) + logΓd

(
θn + (d + 1)

2

)

∂F

∂θn
(θn, θS) = d log(2) − log |θS| + Ψd

(
θn + (d + 1)

2

)
(11.43)

where Ψd is the multivariate Digamma function (or multivariate polygamma of
order 0).

∂F

∂θS
(θn, θS) = −

(
θn + (d + 1)

2

)
θ−1

S (11.44)

Dissimilarity Δ(θ, θ′) between natural parameters θ = (θn, θS) and θ′ = (θ′
n, θ′

S) is

Δ(θ, θ′) = F(θ + θ′) − (F(θ) + F(θ′)) =
(

θn + θ′
n + (d + 1)

2

) (
d log(2) − log |θS + θ′

S |)

−
(

θn + (d + 1)

2

)
(d log(2) − log |θS |) −

(
θ′

n + (d + 1)

2

) (
d log(2) − log |θ′

S |)

+ logΓd

(
θn + θ′

n + (d + 1)

2

)
− logΓd

(
θn + (d + 1)

2

)
− logΓd

(
θ′

n + (d + 1)

2

)

= − (d + 1)

2
d log(2) +

(
θn + (d + 1)

2

)
log |θS | +

(
θ′

n + (d + 1)

2

)
log |θ′

S |

−
(

θn + θ′
n + (d + 1)

2

)
log |θS + θ′

S | + log

⎛

⎝
Γd

(
θn + θ′

n + (d+1)
2

)

Γd

(
θn + (d + 1)

2

)
Γd

(
θ′

n + (d + 1)
2

)

⎞

⎠

(11.45)
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Remark Δ(θ, θ) �= 0. Same quantity with source parameters λ = (n, S) and λ′ =
(n′, S′) is

Δ(λ,λ′) = − (d + 1)

2
d log(2) − n

2
log |S| − n′

2
log |S′| − n + n′ − d − 1

2
log |S−1

+ S′−1| + log

⎛

⎝
Γd

(
n+n′−d−1

2

)

Γd
( n
2

)
Γd

(
n′
2

)

⎞

⎠ (11.46)

A.2 Distribution Wd,n

Wd (X; n, S) = |X | n−d−1
2 exp{− 1

2 tr(S−1X)}
2

nd
2 |S| n

2 Γd (
n
2 )

= exp

{
n − d − 1

2
log |X | − 1

2
tr(S−1X) − nd

2
log(2) − n

2
log |S| − logΓd

(n

2

)}

Letting θS = S−1,

Wd (X; n, θS) = exp

{
−1

2
tr(θS X) + n − d − 1

2
log |X | − nd

2
log(2) − n

2
log |θ−1

S | − logΓd

(n

2

)}

= exp

{
< θS,−1

2
X >H S +k(X) − Fn(θS)

}

with Fn(θS) = nd

2
log(2) − n

2
log |θS | + logΓd

(n

2

)

with kn(X) = n − d − 1

2
log |X |

Using the rule ∂log|X |
∂X =t (X−1) [33] and the symmetry of θS , we get

∇θS Fn(θS) = −n

2
θ−1

S

The correspondence between natural parameter θS and expectation parameter ηS is

ηS = ∇θS Fn(θS) = −n

2
θ−1

S ←→ θS = ∇ηS F∗
n (ηS) = (∇θS Fn)

−1(ηS) = −n

2
η−1

S

Finally, we obtain the MLE for θS in this sub family:

θ̂S = −n

2

(
1

N

N∑

i=1

−1

2
Xi

)−1

= nN

(
N∑

i=1

Xi

)−1
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Same formulation with source parameter S:

Ŝ = θ̂−1
S =

⎛

⎝nN

(
N∑

i=1

Xi

)−1⎞

⎠
−1

=
∑N

i=1 Xi

nN

Dual log-normalizer F∗
n forWd,n is

F∗
n (ηS) = 〈(∇Fn)−1(ηS), ηS〉 − Fn((∇Fn)

−1(ηS))

= 〈−n

2
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2
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S )
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2
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2
log(2) + n

2
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2
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= −nd

2
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2
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KL(W1
d,n||W2

d,n) = BFn (θS2 : θS1)

= Fn(θS2) − Fn(θS1) − <θS2 − θS1 ,∇θS Fn(θS1)>
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2
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) + n

2
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−1
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= n

2
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− log

|θS2 |
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+ tr(θS2θ
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)

also with source parameter

KL(W1
d,n||W2

d,n) = n

2

(
− log

|S1|
|S2| + tr(S−1

2 S1) − d

)

Let’s remark that KL divergence depends now on n.

BF∗
n
(ηS1 : ηS2) = F∗

n (ηS1) − F∗
n (ηS2) − <ηS1 − ηS2 ,∇F∗

n (ηS2)>H S

= n
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(
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S2
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2
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>H S
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log

| − η−1
S1

|
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| + tr(ηS1η

−1
S2

) − d

)
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A.3 Distribution Wd,S

For fixed S, the p.d.f of Wd,S can be rewritten4 as

Wd(X; n, S) = |X | n−d−1
2 exp{− 1

2 tr(S−1X)}
|2S| n

2 Γd( n
2 )

= exp

{
n − d − 1

2
log |X | − 1

2
tr(S−1X) − n

2
log |2S| − logΓd

(n

2

)}

Letting θn = n−d−1
2 (n = 2θn + d + 1)

Wd (X; θn, S) = exp

{
θn log |X | − 1

2
tr(S−1X) −

(
θn + d + 1

2

)
log

∣∣2S
∣∣ − logΓd

(
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2

)}

= exp
{
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}

with FS(θn) =
(

θn + d + 1

2

)
log

∣∣2S
∣∣ + logΓd

(
θn + d + 1

2

)

with kS(X) = −1

2
tr(S−1X)

The correspondence between natural parameter θn and expectation parameter ηn is

ηn = ∇θn FS(θn) = log
∣∣2S

∣∣ + Ψd

(
θn + (d + 1)

2

)

⇔ Ψd

(
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2
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= ηn − log

∣∣2S
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⇔ θn = Ψ −1
d

(
ηn − log

∣∣2S
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2 = (∇FS)−1(ηn) = ∇F∗
S (ηn)

Finally, we obtain the MLE for θn in this sub family:

θ̂n = Ψ −1
d

([
1

N

N∑

i=1

log |X |
]

− log
∣∣2S
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)

− (d + 1)

2

Same formulation with source parameter n:

4 Since |2S| = 2d |S|, we have 2 nd
2 |S| n

2 that is equivalent to |2S| n
2 .
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n̂ − d − 1

2
= Ψ −1

d

([
1

N

N∑

i=1

log |X |
]

− log
∣∣2S

∣∣
)

− (d + 1)

2

n̂ = 2Ψ −1
d

([
1

N

N∑

i=1

log |X |
]

− log
∣∣2S

∣∣
)

Dual log-normalizer F∗
S forWd,S is

F∗
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Let us remark that this quantity does not depend on S.
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