
Chapter 1
Divergence Functions and Geometric Structures
They Induce on a Manifold

Jun Zhang

Abstract Divergence functions play a central role in information geometry. Given a
manifoldM, a divergence functionD is a smooth, nonnegative function on the prod-
uct manifold M × M that achieves its global minimum of zero (with semi-positive
definite Hessian) at those points that form its diagonal submanifold ΔM ⊂ M×M.
In this chapter, we review how such divergence functions induce (i) a statistical
structure (i.e., a Riemannian metric with a pair of conjugate affine connections) on
M; (ii) a symplectic structure on M × M if they are “proper”; (iii) a Kähler struc-
ture on M × M if they further satisfy a certain condition. It is then shown that the
class of DΦ -divergence functions [23], as induced by a strictly convex function Φ

on M, satisfies all these requirements and hence makes M × M a Kähler manifold
(with Kähler potential given by Φ). This provides a larger context for the α-Hessian
structure induced by theDΦ -divergence onM, which is shown to be equiaffine admit-
ting α-parallel volume forms and biorthogonal coordinates generated by Φ and its
convex conjugate Φ∗. As the α-Hessian structure is dually flat for α = ±1, theDΦ -
divergence provides richer geometric structures (compared to Bregman divergence)
to the manifold M on which it is defined.

1.1 Introduction

Divergence functions (also called “contrast functions”, “york”) are non-symmetric
measurements of proximity. They play a central role in statistical inference, machine
learning, optimization, and many other fields. The most familiar examples
include Kullback-Leibler divergence, Bregman divergence [4], α-divergence [1],
f -divergence [6], etc. Divergence functions are also a key construct of information
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geometry. Just as L2-distance is associated with Euclidean geometry, Bregman
divergence and Kullback-Leibler divergence are associated with a pair of flat struc-
tures (where flatness means free of torsion and free of curvature) that are “dual” to
each other; this is called Hessian geometry [18, 19] and it is the dualistic extension of
the Euclidean geometry. So just as Riemannian geometry extends Euclidean geom-
etry by allowing non-trivial metric structure, Hessian geometry extends Euclidean
geometry by allowing non-trivial affine connections that come in pairs. The pairing
of connections are with respect to a Riemannianmetric g, which is uniquely specified
in the case of Hessian geometry; yet the metric-induced Levi-Civita connection has
non-zero curvature in general. The apparent inconvenience is offset by the existence
of biorthogonal coordinates in any dually flat (i.e., Hessian) structure and a canon-
ical divergence, along with the tools of convex analysis which is powerful in many
practical applications.

In a quite general setting, any divergence function induces a Riemannian metric
and a pair of torsion-free connections on themanifoldwhere they are defined [8]. This
so-called statistical structure is at the core of information geometry. Recently, other
geometric structures induced by divergence functions are being investigated, includ-
ing conformal structure [17], symplectic structure [3, 28], and complex structures
[28].

The goal of this chapter is to review the relationship between divergence function
and various information geometric structures. In Sect. 1.2, we provide background
materials of various geometric structures on a manifold. In Sect. 1.3, we show how
these structures can be induced from a divergence function. Starting from a gen-
eral divergence function which always induces a statistical structure, we define the
notion of “properness” for it to be a generating function of a symplectic structure.
Imposing a further condition leads to complexification of the productmanifoldwhere
divergence functions are defined. In Sect. 1.4, we show that a quite broad class of
divergence functions, DΦ -divergence functions [23] as induced by a strictly convex
function, satisfies all these requirements and induces a Kähler structure (Riemannian
and complex structures simultaneously) on the tangent bundle. Therefore, just as the
full-fledgedα-Hessian geometry extends the dually-flat Hessianmanifold (α = ±1),
DΦ -divergence generalizes Bregman divergence in the “nicest” way possible.
Section 1.5 closes with a summary of this approach to information geometric struc-
tures through divergence functions.

1.2 Background: Structures on Smooth Manifolds

1.2.1 Differentiable Manifold: Metric and Connection Structures
on TM

A differentiable manifold M is a space which locally “looks like” a Euclidean
space Rn. By “looks like”, we mean that for any base (reference) point x ∈ M, there
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exists a bijective mapping (“coordinate functions”) between the neighborhood of x
(i.e., a patch of the manifold) and a subset V of Rn. By locally, we mean that various
such mappings must be smoothly related to one another (if they are centered at the
same reference point) or consistently glued together (if they are centered at different
reference points). Globally, they must cover the entire manifold. Below, we assume
that a coordinate system is chosen such that each point is indexed by a vector in V ,
with the origin as the reference point.

A manifold is specified with certain structures. First, there is an inner-product
structure associated with tangent spaces of the manifold. This is given by the metric
2-tensor field g which is, when evaluated at each location x, a symmetric bilinear
form g(·, ·) of tangent vectors X, Y ∈ Tx(M) � R

n such that g(X, X) is always
positive for all non-zero vector X ∈ V . In local “holonomic” coordinates1 with bases
∂i ≡ ∂/∂xi, i = 1, . . . , n, (i.e., X, Y are expressed as X = ∑

i Xi∂i, Y = ∑
i Y i∂i),

the components of g are denoted as

gij(x) = g(∂i, ∂j). (1.1)

Metric tensor allows us to define distance on a manifold as shortest curve (called
“geodesic”) connecting two points, to measure angle and hence define orthogonal-
ity of vectors—projections of vectors to a lower dimensional submanifold become
possible once a metric is given. Metric tensor also provides a linear isomorphism of
tangent space with cotangent space at any point on the manifold.

Second, there is a structure implementing the notion of “parallelism” of vector
fields and curviness of a manifold. This is given by the affine (linear) connection ∇,
mapping two vector fields X and Y to a third one denoted by ∇Y X: (X, Y) �→ ∇Y X.
Intuitively, it represents the “intrinsic” difference of a tangent vector X(x) at point
x and another tangent vector X(x′) at a nearby point x′, which is connected to x in
the direction given by the tangent vector Y(x). Here “intrinsic” means that vector
comparison across two neighboring points of themanifold is through a process called
“parallel transport,” whereby vector components are adjusted as the vector moves
across points on the basemanifold.Under the local coordinate systemwith bases∂i ≡
∂/∂xi, components of∇ can be written out in its “contravariant” form denoted Γ l

ij(x)

∇∂i∂j =
∑

l

Γ l
ij ∂l. (1.2)

Under coordinate transform x �→ x̃, the new coefficients Γ̃ are related to old ones
Γ via

Γ̃ l
mn(x̃) =

∑

k

⎛

⎝
∑

i,j

∂xi

∂x̃m

∂xj

∂x̃n
Γ k

ij (x) + ∂2xk

∂x̃m∂x̃n

⎞

⎠ ∂x̃l

∂xk
; (1.3)

1 A holonomic coordinate system means that the coordinates have been properly “scaled” in unit-
length with respect to each other such that the directional derivatives commute: their Lie bracket
[∂i, ∂j] = ∂i∂j − ∂j∂i = 0, i.e., the mixed partial derivatives are exchangeable in their order of
application.
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A curve whose tangent vectors are parallel along the curve is said to be
“auto-parallel”.

As a primitive on a manifold, affine connections can be characterized in terms of
their (i) torsion and (ii) curvature. The torsion T of a connection Γ , which is a tensor
itself, is given by the asymmetric part of the connection T(∂i, ∂j) = ∇∂i∂j −∇∂j∂i =
∑

k Tk
ij∂k , where Tk

ij is its local representation given as

Tk
ij(x) = Γ k

ij (x) − Γ k
ji (x).

The curviness/flatness of a connection Γ is described by the Riemann curvature
tensor R, defined as

R(∂i, ∂j)∂k = (∇∂i∇∂j − ∇∂j∇∂i)∂k .

Writing R(∂i, ∂j)∂k = ∑
l Rl

kij∂l and substituting (1.2), the components of the

Riemann curvature tensor are2

Rl
kij(x) = ∂Γ l

jk(x)

∂xi
− ∂Γ l

ik(x)

∂xj
+

∑

m

Γ l
im(x)Γ m

jk (x) −
∑

m

Γ l
jm(x)Γ m

ik (x).

By definition, Rl
kij is anti-symmetric when i ←→ j.

A connection is said to be flat when Rl
kij(x) ≡ 0 and Tk

ij ≡ 0. Note that this is a
tensorial condition, so that the flatness of a connection∇ is a coordinate-independent
property even though the local expression of the connection (in terms of Γ ) is
coordinate-dependent. For any flat connection, there exists a local coordinate system
under which Γ k

ij (x) ≡ 0 in a neighborhood; this is the affine coordinate for the given
flat connection.

In the above discussions, metric and connections are treated as separate structures
on a manifold. When both are defined on the same manifold, then it is convenient to
express affine connection Γ in its “covariant” form

Γij,k = g(∇∂i∂j, ∂k) =
∑

l

glkΓ
l

ij. (1.4)

ThoughΓ k
ij is themore primitive quantity that does not involvemetric,Γij,k represents

the projection of Γ onto the manifold spanned by the bases ∂k . The covariant form
of Riemann curvature is (c.f. footnote 2)

Rlkij =
∑

m

glm Rm
kij.

2 This component-wise notation of Riemann curvature tensor followed standard differential geome-
try textbook, such as [16]. On the other hand, information geometers, such as [2], adopt the notation
that R(∂i, ∂j)∂k = ∑

l Rl
ijk∂l , with Rijkl = ∑

l Rm
ijkgml .



1 Divergence Functions and Geometric Structures 5

When the connection is torsion free, Rlkij is anti-symmetric when i ←→ j or when
k ←→ l, and symmetric when (i, j) ←→ (l, k). It is related to the Ricci tensor Ric
via Rickj = ∑

i,l Rlkijg
il.

1.2.2 Coupling Between Metric and Connection: Statistical
Structure

A fundamental theorem of Riemannian geometry states that given a metric, there is
a unique connection (among the class of torsion-free connections) that “preserves”
the metric, i.e., the following condition is satisfied

∂kg(∂i, ∂j) = g(∇̂∂k ∂i, ∂j) + g(∂i, ∇̂∂k ∂j). (1.5)

Such a connection, denoted as ∇̂, is called the Levi-Civita connection. Its component
forms, called Christoffel symbols, are specified by the components of the metric
tensor as (“Christoffel symbols of the second kind”)

Γ̂ k
ij =

∑

l

gkl

2

(
∂gil

∂xj
+ ∂gjl

∂xi
− ∂gij

∂xl

)

.

and (“Christoffel symbols of the first kind”)

Γ̂ij,k = 1

2

(
∂gik

∂xj
+ ∂gjk

∂xi
− ∂gij

∂xk

)

.

TheLevi-Civita connection Γ̂ is compatiblewith themetricg, in the sense that it treats
tangent vectors of the shortest curves on a manifold as being parallel (equivalently
speaking, it treats geodesics as auto-parallel curves).

It turns out that one can define a kind of “compatibility” relation more general
than expressed by (1.5), by introducing the notion of “conjugacy” (denoted by ∗)
between two connections. A connection ∇∗ is said to be conjugate (or dual) to ∇
with respect to g if

∂kg(∂i, ∂j) = g(∇∂k ∂i, ∂j) + g(∂i,∇∗
∂k

∂j). (1.6)

Clearly, (∇∗)∗ = ∇. Moreover, ∇̂, which satisfies (1.5), is special in the sense that
it is self-conjugate (∇̂)∗ = ∇̂.

Because metric tensor g provides a one-to-one mapping between points in the
tangent space (i.e., vectors) and points in the cotangent space (i.e., co-vectors), (1.6)
can also be seen as characterizing how co-vector fields are to be parallel-transported
in order to preserve their dual pairing 〈·, ·〉 with vector fields.
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Writing out (1.6):
∂gij

∂xk
= Γki,j + Γ ∗

kj,i, (1.7)

where analogous to (1.2) and (1.4),

∇∗
∂i

∂j =
∑

l

Γ ∗l
ij ∂l

so that
Γ ∗

kj,i = g(∇∗
∂j

∂k, ∂i) =
∑

l

gilΓ
∗l

kj .

There is an alternative way of imposing “compatibility” condition between a
metric g and a connection ∇, through investigating the behavior of how the metric
tensor g behaves under ∇. We introduce a 3-tensor field, called “cubic form”, as the
covariant derivative of g: C = ∇g, or in component forms

C(∂i, ∂j, ∂k) = (∇∂k g)(∂i, ∂j) = ∂kg(∂i, ∂j) − g(∇∂k ∂i, ∂j) − g(∂i,∇∂k ∂j).

Writing out the above:

Cijk = ∂gij

∂xk
− Γki,j − Γkj,i(= Γ ∗

kj,i − Γkj,i).

From its definition, Cijk = Cjik , that is, symmetric with respective to its first two
indices. It can be further shown that:

Cijk − Cikj =
∑

l

gil (T
l
jk − T∗l

jk )

where T , T∗ are torsions of ∇ and ∇∗, respectively. Therefore, Cijk = Cikj,
and hence C is totally symmetric in all (pairwise permutation of) indices, when
Tl

jk = T∗l
jk . So conceptually, requiring Cijk to be totally symmetric imposes a com-

patibility condition between g and ∇, making them the so-called “Codazzi pair”
(see [20]). The Codazzi pairing generalizes the Levi-Civita coupling whose corre-
sponding cubic form Cijk is easily seen to be identically zero. Lauritzen [10] defined
a “statistical manifold” (M, g,∇) to be a manifold M equipped with g and ∇ such
that (i) ∇ is torsion free; (ii) ∇g ≡ C is totally symmetric. Equivalently, a manifold
is said to have statistical structure when the conjugate connection ∇∗ (with respect
to g) of a torsion-free connection ∇ is also torsion-free. In this case, ∇∗g = −C,
and that the Levi-Civita connection ∇̂ = (∇ + ∇∗)/2.

Two torsion-free connections Γ and Γ ′ are said to be projectively equivalent if
there exists a function τ such that:

Γ ′k
ij = Γ k

ij + δk
i (∂jτ ) + δk

j (∂iτ ),
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where δk
i is the Kronecker delta. When two connections are projectively equivalent,

their corresponding auto-parallel curves have identical shape (i.e., considered as
unparameterized curves); these so-called “pre-geodesics” differ only by a change of
parameterization τ .

Two torsion-free connections Γ and Γ ′ are said to be dual-projectively equivalent
if there exists a function τ such that:

Γ ′
ij,k = Γij,k − gij(∂kτ ).

When two connections are dual-projectively equivalent, then their conjugate con-
nections (with respect to g) have identical pre-geodesics (identical shape).

Recall that when the two Riemannian metric g, g′ are conformally equivalent, i.e.,
there exists a function τ such that

g′
ij = e2τ gij,

then their respective Levi-Civita connections Γ̂ ′ and Γ̂ are related via

Γ̂ ′
ij,k = Γ̂ij,k − (∂kτ )gij + (∂jτ )gik + (∂iτ )gjk .

(This relation is obtained by directly substituting in the expressions of the corre-
sponding Levi-Civita connections.) This motivates the definition of the more general
notion of conformally-projectively equivalent of two statistical structures (M, g, Γ )

and (M, g′, Γ ′), through the existence of two functions ψ,φ such that:

g′
ij = eψ+φgij (1.8)

Γ ′
ij,k = Γij,k − (∂kψ)gij + (∂jφ)gik + (∂iφ)gjk . (1.9)

Whenφ = const (orψ = const), then the corresponding connections are projectively
(dual-projectively, resp) equivalent.

1.2.3 Equiaffine Structure and Parallel Volume Form

For a restrictive set of connections, called “equiaffine” connections, the manifold
M may admit, in a unique way, a volume form Ω(x) that is “parallel” under the
given connection. Here, a volume form is a skew-symmetric multilinear map from n
linearly independent vectors to a non-zero scalar at any point x ∈ M, and “parallel”
is in the sense that ∇Ω = 0, or (∂iΩ)(∂1, . . . , ∂n) = 0 where

(∂iΩ)(∂1, . . . , ∂n) ≡ ∂i(Ω(∂1, . . . , ∂n)) −
n∑

l=1

Ω(. . . ,∇∂i∂l, . . .).
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Applying (1.2), the equiaffine condition becomes

∂i(Ω(∂1, . . . , ∂n)) =
n∑

l=1

Ω

(

. . . ,

n∑

k=1

Γ k
il ∂k, . . .

)

=
n∑

l=1

n∑

k=1

Γ k
il δl

k Ω(∂1, . . . , ∂n) = Ω(∂1, . . . , ∂n)

n∑

l=1

Γ l
il

or
∑

l

Γ l
il(x) = ∂ logΩ(x)

∂xi
. (1.10)

Whether or not a connection is equiaffine is related to the so-called Ricci tensor
Ric, defined as the contraction of the Riemann curvature tensor R

Ricij(x) =
∑

k

Rk
ikj(x). (1.11)

For a torsion-free connection Γ k
ij = Γ k

ji , we can verify that

Ricij − Ricji = ∂

∂xi

(
∑

l

Γ l
jl(x)

)

− ∂

∂xj

(
∑

l

Γ l
il(x)

)

(1.12)

=
∑

k

Rk
kij.

One immediately sees that the existence of a functionΩ satisfying (1.10) is equivalent
to the right side of (1.12) to be identically zero.

Making use of (1.10), it is easy to show that the parallel volume form of a
Levi-Civita connection Γ̂ is given by

Ω̂(x) =
√
det[gij(x)].

Making use of (1.7), the parallel volume forms Ω,Ω∗ associated with Γ and Γ ∗
satisfy (apart from a multiplicative constant which must be positive)

Ω(x)Ω∗(x) = (Ω̂(x))2 = det[gij(x)]. (1.13)

The equiaffine condition can also be expressed using a quantity related to the
cubic form Cijk . We may introduce the Tchebychev form (also known as the first
Koszul form), expressed in the local coordinates,

Ti =
∑

j,k

Cijkg
jk . (1.14)
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A tedious calculation shows that

∂Ti

∂xj
− ∂Tj

∂xi
= ∂

∂xj

(
∑

l

Γ l
li

)

− ∂

∂xi

(
∑

l

Γ l
lj

)

,

the righthand side of (1.12). Therefore, an equivalent requirement for equiaffine
structure is that Tchebychev 1-form T is “closed”:

∂Ti

∂xj
= ∂Tj

∂xi
. (1.15)

This expresses the integrability condition. When Eq. (1.15) is satisfied, there exits a
function φ such that Ti = ∂iτ . Furthermore, it can be shown that

τ = −2 log(Ω/Ω̂).

Proposition 1 ([13, 25]) The necessary and sufficient condition for a torsion-free
connection ∇ to be equiaffine is for any of the following to hold:

1. There exists a ∇-parallel volume element Ω : ∇Ω = 0.
2. Ricci tensor of ∇ is symmetric: Ricij = Ricji.
3. Curvature tensor

∑
k Rk

kij = 0.
4. The Tchebychev 1-form T is closed, dT = 0.
5. There exists a function τ , called Tchebychev potential, such that Ti = ∂iτ .

It is known that the Ricci tensor of the Levi-Civita connection is always
symmetric—this is why Riemannian volume form Ω̂ always exists.

1.2.4 α-Structure and α-Hessian Structure

On a statistical manifold, one can define a one-parameter family of affine connections
Γ (α), called “α-connections” (α ∈ R):

Γ
(α)k

ij = 1 + α

2
Γ k

ij + 1 − α

2
Γ ∗k

ij . (1.16)

Obviously, Γ (0) = Γ̂ is the Levi-Civita connection. Using cubic form, this amounts
to ∇(α)g = αC. The α-parallel volume element is given by:

Ω(α) = e− α
2 τ Ω̂

where τ is the Tchebychev potential. The Riemannian volume element Ω̂ is only
parallel with respect to the Levi-Civita connection ∇̂ of g, that is, ∇̂Ω̂ = 0, but not
other α-connections (α �= 0). Rather, ∇(α)Ω(α) = 0.
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It can be further shown that the curvatures Rlkij, R∗
lkij for the pair of conjugate

connections Γ, Γ ∗ satisfy
Rlkij = R∗

lkij.

So, Γ is flat if and only if Γ ∗ is flat. In this case, the manifold is said to be “dually
flat”. When Γ, Γ ∗ are dually flat, then Γ (α) is called “α-transitively flat” [21]. In
such case, {M, g, Γ (α), Γ (−α)} is called an α-Hessian structure [26]. They are all
compatible with a metric g that is induced from a strictly convex (potential) function,
see next subsection.

For an α-Hessian manifold, the Tchebychev form (1.14) is given by

Ti = ∂ log(det[gkl])
∂xi

and its derivative (known as the second Koszul form) is

βij = ∂Ti

∂xj
= ∂2 log(det[gkl])

∂xi∂xj
.

1.2.5 Biorthogonal Coordinates

A key feature for α-Hessian manifolds is biorthogonal coordinates, as we shall dis-
cuss now. They are the “best” coordinates one can have when the Riemannian metric
is non-trivial.

Consider coordinate transform x �→ u,

∂i ≡ ∂

∂ui
=

∑

l

∂xl

∂ui

∂

∂xl
=

∑

l

Fli∂l

where the Jacobian matrix F is given by

Fij(x) = ∂ui

∂xj
, Fij(u) = ∂xi

∂uj
,

∑

l

FilF
lj = δl

i (1.17)

where δ
j
i is Kronecker delta (taking the value of 1 when i = j and 0 otherwise). If the

new coordinate system u = [u1, . . . , un] (with components expressed by subscripts)
is such that

Fij(x) = gij(x), (1.18)

then the x-coordinate system and the u-coordinate system are said to be “biorthogo-
nal” to each other since, from the definition of metric tensor (1.1),
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g(∂i, ∂
j) = g(∂i,

∑

l

Flj∂l) =
∑

l

Fljg(∂i, ∂l) =
∑

l

Fljgil = δ
j
i .

In such case, denote
gij(u) = g(∂i, ∂j), (1.19)

which equals Fij, the Jacobian of the inverse coordinate transform u �→ x. Also
introduce the (contravariant version) of the affine connection Γ under u-coordinate
and denote it by an unconventional notation Γ rs

t defined by

∇∂r ∂s =
∑

t

Γ rs
t ∂t;

similarly Γ ∗rs
t is defined via

∇∗
∂r ∂s =

∑

t

Γ ∗rs
t ∂t .

The covariant version of the affine connections will be denoted by superscripted Γ

and Γ ∗
Γ ij,k(u) = g(∇∂i∂j, ∂k), Γ ∗ij,k(u) = g(∇∗

∂i∂
j, ∂k). (1.20)

The affine connections inu-coordinates (expressed in superscript) and in x-coordinates
(expressed in subscript) are related via

Γ rs
t (u) =

∑

k

⎛

⎝
∑

i,j

∂xr

∂ui

∂xs

∂uj
Γ k

ij (x) + ∂2xk

∂ur∂us

⎞

⎠ ∂uk

∂xt
(1.21)

and

Γ rs,t(u) =
∑

i,j,k

∂xr

∂ui

∂xs

∂uj

∂xt

∂uk
Γij,k(x) + ∂2xt

∂ur∂us
. (1.22)

Similarly relations hold between Γ ∗rs
t (u) and Γ ∗k

ij (x), and between Γ ∗rs,t(u) and
Γ ∗

ij,k(x).
In analogous to (1.7), we have the following identity

∂2xt

∂us∂ur
= ∂grt(u)

∂us
= Γ rs,t(u) + Γ ∗ts,r(u).

Therefore, we have

Proposition 2 Under biorthogonal coordinates, a pair of conjugate connections
Γ, Γ ∗ satisfy
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Γ ∗ts,r(u) = −
∑

i,j,k

gir(u)gjs(u)gkt(u)Γij,k(x) (1.23)

and
Γ ∗ ts

r (u) = −
∑

j

gjs(u)Γ t
jr(x). (1.24)

Let us now express parallel volume forms Ω(x),Ω(u) under biorthogonal coor-
dinates x or u. Contracting the indices t with r in (1.24), and invoking (1.10), we
obtain

∂ logΩ∗(u)

∂us
+

∑

j

∂xj

∂us

∂ logΩ(x)

∂xj
= ∂ logΩ∗(u)

∂us
+ ∂ logΩ(x)

∂us
= 0.

After integration,
Ω∗(u)Ω(x) = const. (1.25)

From (1.13) and (1.25),
Ω(u)Ω∗(x) = const. (1.26)

The relations (1.25) and (1.26) indicate that the volume forms of the pair of conjugate
connections, when expressed in biorthogonal coordinates respectively, are inversely
proportional to each other.

The Γ (α)-parallel volume element Ω(α) can be shown to be given by (in either x
and u coordinates)

Ω(α) = Ω
1+α
2 (Ω∗)

1−α
2 .

Clearly,

Ω(α)(x)Ω(−α)(x) = det[gij(x)] ←→ Ω(α)(u)Ω(−α)(u) = det[gij(u)].

1.2.6 Existence of Biorthogonal Coordinates

From its definition (1.18), we can easily show that

Proposition 3 A Riemannian manifold with metric gij admits biorthogonal

coordinates if and only if
∂gij

∂xk is totally symmetric

∂gij(x)

∂xk
= ∂gik(x)

∂xj
. (1.27)

That (1.27) is satisfied for biorthogonal coordinates is evident by virtue of (1.17)
and (1.18). Conversely, given (1.27), there must be n functions ui(x), i = 1, 2, . . . , n
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such that
∂ui(x)

∂xj
= gij(x) = gji(x) = ∂uj(x)

∂xi
.

The above identity implies that there exist a function Φ such that ui = ∂iΦ and, by
positive definiteness of gij, Φ would have to be a strictly convex function! In this
case, the x- and u-variables satisfy (1.37), and the pair of convex functions, Φ and
its conjugate Φ̃, are related to gij and gij by

gij(x) = ∂2Φ(x)

∂xi∂xj
←→ gij(u) = ∂2Φ̃(u)

∂ui∂uj
.

It follows from the above Lemma that a necessary and sufficient condition for
a Riemannian manifold to admit biorthogonal coordinates it that its Levi-Civita
connection is given by

Γ̂ij,k(x) ≡ 1

2

(
∂gik

∂xj
+ ∂gjk

∂xi
− ∂gij

∂xk

)

= 1

2

∂gij

∂xk
.

From this, the following can be shown:

Proposition 4 A Riemannian manifold {M, g} admits a pair of biorthogonal coor-
dinates x and u if and only if there exists a pair of conjugate connections γ and γ∗
such that γij,k(x) = 0, γ∗rs,t(u) = 0.

In other words, biorthogonal coordinates are affine coordinates for the dually-flat
pair of connections. In fact, we can now define a pair of torsion-free connections by

γij,k(x) = 0, γ∗
ij,k(x) = ∂gij

∂xk

and show that they are conjugate with respect to g, that is, they satisfy (1.6). This is
to say that we select an affine connection γ such that x is its affine coordinate. From
(1.22), when γ∗ is expressed in u-coordinates,

γ∗rs,t(u) =
∑

i,j,k

gir(u)gjs(u)
∂xk

∂ut

∂gij(x)

∂xk
+ ∂gts(u)

∂ur

=
∑

i,j

gir(u)

(

−∂gjs(u)

∂ut
gij(x)

)

+ ∂gts(u)

∂ur

= −
∑

j

δr
j
∂gjs(u)

∂ut
+ ∂gts(u)

∂ur
= 0.

This implies that u is an affine coordinate system with respect to γ∗. Therefore,
biorthogonal coordinates are affine coordinates for a pair of dually-flat connections.



14 J. Zhang

1.2.7 Symplectic, Complex, and Kähler Structures

Symplectic structure on amanifold refers to the existence of a closed, non-degenerate
2-tensor, i.e., a skew-symmetric bilinear map ω: W × W → R, with ω(X, Y) =
−ω(Y , X) for all X, Y ∈ W ⊆ R

2n. For ω to be well-defined, the vector space
W is required to be orientable and even-dimensional. In this case, there exists a
base {e1, . . . , en, f1, . . . , fn} of W , dim(W) = 2n such that ω(ei, ej) = 0,ω(fi, fj) =
0,ω(ei, fj) = δij for all indices i, j taking values in 1, . . . , n.

Symplectic structure is closely related to inner-product structure (the existence of
a positive-definite symmetric bilinear map G: W × W → R) and complex structure
(linear mapping J: W → W such that J2 = −Id) on an even-dimensional vector
space W . The complex structure J on W is said to be compatible with a symplectic
structureω ifω(JX, JY) = ω(X, Y) (symplectomorphismcondition) andω(X, JY) >

0 (taming condition) for any X, Y ∈ W . With ω, J given, G(X, Y) ≡ ω(X, JY) can
be shown to be symmetric and positive-definite, and hence an inner-product on W .

The cotangent bundle T ∗M of any manifold M admits a canonical symplectic
form written as

ω =
n∑

i=1

dxi ∧ dpi,

where (x1, . . . , xn, p1, . . . , pn) are coordinates of T ∗M. That ω is closed can be
shown by the existence of the tautological (or Liouville) 1-form

α =
n∑

i=1

pidxi

(which can be checked to be coordinate-independent on T ∗M) and then verifying
ω = −dα. Hence,ω is also coordinate-independent. Denote ∂i = ∂/∂xi, ∂̃i = ∂/∂pi

as the base of the tangent bundle T M, then

ω(∂i, ∂j) = ω(∂̃i, ∂̃j) = 0; ω(∂i, ∂̃j) = −ω(∂̃j, ∂i) = ωij. (1.28)

That is, when viewed as 2× 2 blocks of n × n matrix, ω vanishes on diagonal blocks
and has non-zero entries ωij and −ωij only on off-diagonal blocks.

The aforementioned linear map J of the tangent space TxM � W at any point
x ∈ M

J : J∂i = ∂̃j, J∂̃j = −∂i,

gives rise to an “almost complex structure” on TxM. For T M to be complex, that
is, admitting complex coordinates, an integrable condition needs to be imposed for
the J-maps at various base points x ofM, and hence at various tangent spaces TxM,
to be “compatible” with one another. The condition is that the so-called Nijenhuis
tensor N
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N(X, Y) = [JX, JY ] − J[X, JY ] − J[JX, Y ] − [X, Y ]

must vanish for arbitrary tangent vector fields X, Y .
The Riemannian metric tensor G on T M compatible with ω has the form

Gij′ ≡ G(∂i, ∂̃j) = 0;
Gi′j ≡ G(∂̃i, ∂j) = 0;
Gij ≡ G(∂i, ∂j) = gij

Gi′j′ ≡ G(∂̃i, ∂̃j) = gij.

where i′ = n + i, j′ = n + j and i, j takes values in 1, . . . , n. When viewed as
2×2 blocks of n×n matrix, G vanishes on the off-diagonal blocks and has non-zero
entries gij only on the two diagonal blocks. Such a metric on T M is in the form of
Sasaki metric, which can also result from an appropriate “lift” of the Riemannian
metric on M into T M, via an affine connection on T M which induces a splitting
of T T M, the tangent bundle of T M as the base manifold. We omit the technical
details here, but refer interested readers to Yano and Ishihara [22] and, in the context
of statistical manifold, to Matsuzoe and Inoguchi [12].

It is a basic conclusion in symplectic geometry that for any symplectic form, there
exists a compatible almost complex structure J . Along with the Riemannian metric,
the three structures (G,ω, J) are said to form a compatible triple if any two gives
rise to the third one. When a manifold has a compatible triple (G,ω, J) in which
J is integrable, it is called a Kähler manifold. On a Kähler manifold, using complex
coordinates, the metric G̃ associated with the complex line-element

ds2 = G̃ijdzidz̄j,

is given by

G̃ij(z, z̄) = ∂2Φ

∂zi∂z̄j
.

Here the real-valued function Φ (of complex variables) is called the “Kähler poten-
tial”.

It is known that the tangent bundle T M of a manifold M with a flat connection
on it admits a complex structure [7]. As [18] pointed out, Hessian manifold can be
seen as the “real” Kähler manifold.

Proposition 5 ([7]) (M, g,∇) is a Hessian manifold if and only if (TM, J, G) is a
Kähler manifold, where G is the Sasaki lift of g.
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1.3 Divergence Functions and Induced Structures

1.3.1 Statistical Structure Induced on TM

A divergence function D:M × M → R≥0 on a manifold M under a local chart
V ⊆ R

n is defined as a smooth function (differentiable up to third order) which
satisfies

(i) D(x, y) ≥ 0 ∀x, y ∈ V with equality holding if and only if x = y;
(ii) Di(x, x) = D,j(x, x) = 0,∀i, j ∈ {1, 2, . . . , n};
(iii) −Di,j(x, x) is positive definite.

Here Di(x, y) = ∂xiD(x, y), D,i(x, y) = ∂yiD(x, y) denote partial derivatives with
respect to the i-th component of point x and of point y, respectively, Di,j(x, y) =
∂xi∂yjD(x, y) the second-order mixed derivative, etc.

On a manifold, divergence functions act as “pseudo-distance” functions that are
non-negative but need not be symmetric. That dualistic Riemannian manifold struc-
ture (i.e., statistical structure) can be induced from a divergence function was first
demonstrated by S. Eguchi.

Proposition 6 ([8, 9]) A divergence function D induces a Riemannian metric g and
a pair of torsion-free conjugate connections Γ, Γ ∗ given as

gij(x) = − Di,j(x, y)
∣
∣
x=y ;

Γij,k(x) = − Dij,k(x, y)
∣
∣
x=y ;

Γ ∗
ij,k(x) = − Dk,ij(x, y)

∣
∣
x=y .

It is easily verifiable that Γij,k, Γ
∗

ij,k as given above are torsion-free3 and satisfy
the conjugacy condition with respect to the induced metric gij. Hence {M, g, Γ, Γ ∗}
as induced is a “statistical manifold’ [10].

A natural question is whether/how the statistical structures induced from different
divergence functions are related. The following is known:

Proposition 7 ([14]) Let D be a divergence function and ψ,φ be two arbitrary
functions. IfD′(x, y) = eψ(x)+φ(y)D(x, y), thenD′(x, y) is also a divergence function,
and the induced (M, g′, Γ ′) and (M, g, Γ ) induced from D(x, y) are conformally-
projectively equivalent. In particular, when φ(x) = const, then Γ ′ and Γ are
projectively equivalent; when ψ(y) = const, then Γ ′ and Γ are dual-projectively
equivalent.

3 Conjugate connections which admit torsion has been recently studied by Calin et al. [5] and
Matsuzoe [15].
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1.3.2 Symplectic Structure Induced on M×M

Adivergence functionD is given as a bi-variable function onM (of dimension n).We
now view it as a (single-variable) function onM×M (of dimension 2n) that assumes
zero value along the diagonal ΔM ⊂ M×M. In this subsection, we investigate the
condition under which a divergence function can serve as a “generating function”
of a symplectic structure on M × M. A compatible metric on M × M will also be
derived.

First, we fix a particular y or a particular x in M × M—this results in two
n-dimensional submanifolds ofM×M that will be denoted, respectively,Mx � M
(with y point fixed) andMy � M (with x point fixed). Let us write out the canonical
symplectic form ωx on the cotangent bundle T ∗Mx given by

ωx = dxi ∧ dξi.

Given D, we define a map LD from M × M → T ∗Mx, (x, y) �→ (x, ξ) given by

LD: (x, y) �→ (x,Di(x, y)dxi).

(Recall that the comma separates the variable being in the first slot versus the second
slot for differentiation.) It is easy to check that in a neighborhood of the diagonal
ΔM ⊂ M × M, the map LD is a diffeomorphism since the Jacobian matrix of the
map (

δij Dij

0 Di,j

)

is non-degenerate in such a neighborhood of the diagonal ΔM.
We calculate the pullback of this symplectic form (defined on T ∗Mx) toM×M:

L∗
D ωx = L∗

D (dxi ∧ dξi) = dxi ∧ dDi(x, y)

= dxi ∧ (Dij(x, y)dxj + Di,jdyj) = Di,j(x, y)dxi ∧ dyj.

(Here Dijdxi ∧ dxj = 0 since Dij(x, y) = Dji(x, y) always holds.)
Similarly, we consider the canonical symplectic form ωy = dyi ∧ dηi onMy and

define a map RD fromM × M → T ∗My, (x, y) �→ (y, η) given by

RD: (x, y) �→ (y,D,i(x, y)dyi).

Using RD to pullback ωy toM × M yields an analogous formula:

R∗
D ωy = −Di,j(x, y)dxi ∧ dyj.
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Therefore, based on canonical symplectic forms on T ∗Mx and T ∗My, we
obtained the same symplectic form onM × M

ωD(x, y) = −Di,j(x, y)dxi ∧ dyj. (1.29)

Proposition 8 A divergence function D induces a symplectic form ωD (1.29) on
M × M which is the pullback of the canonical symplectic forms ωx and ωy by the
maps LD and RD

L∗
D ωy = Di,j(x, y)dxi ∧ dyj = −R∗

D ωx (1.30)

It was Barndorff-Nielsen and Jupp [3] who first proposed (1.29) as an induced
symplectic form onM×M, apart from a minus sign; the divergence functionD was
called a “york”. As an example, Bregman divergence BΦ (given by (1.33) below)
induces the symplectic form

∑
Φijdxi ∧ dyj.

1.3.3 Almost Complex Structure and Hermite Metric on M×M

An almost complex structure J onM×M is defined by a vector bundle isomorphism
(from T (M × M) to itself), with the property that J2 = −Id. Requiring J to be
compatible with ωD, that is,

ωD(JX, JY) = ωD(X, Y), ∀X, Y ∈ T(x,y)(M × M),

we may obtain a constraint on the divergence function D. From

ωD
(

∂

∂xi
,

∂

∂yj

)

= ωD
(

J
∂

∂xi
, J

∂

∂yj

)

= ωD
(

∂

∂yi
,− ∂

∂xj

)

= ωD
(

∂

∂xj
,

∂

∂yi

)

,

we require
Di,j = Dj,i, (1.31)

or explicitly
∂2D

∂xi∂yj
= ∂2D

∂xj∂yi
.

Note that this condition is always satisfied on ΔM, by the definition of a diver-
gence function D, which has allowed us to define a Riemannian structure on ΔM

(Proposition 6). We now require it to be satisfied onM×M (at least a neighborhood
of ΔM).

For divergence functions satisfying (1.31), we can consider inducing a metric GD
onM × M—the induced Riemannian (Hermit) metric GD is defined by

GD(X, Y) = ωD(X, JY).



1 Divergence Functions and Geometric Structures 19

It is easy to verify GD is invariant under the almost complex structure J . The metric
components are given by:

Gij = GD
(

∂

∂xi
,

∂

∂xj

)

= ωD
(

∂

∂xi
, J

∂

∂xj

)

= ωD
(

∂

∂xi
,

∂

∂yj

)

= −Di,j,

Gi′j′ = gD
(

∂

∂yi
,

∂

∂yj

)

= ωD
(

∂

∂yi
, J

∂

∂yj

)

= ωD
(

∂

∂yi
,− ∂

∂xj

)

= −Dj,i,

Gij′ = gD
(

∂

∂xi
,

∂

∂yj

)

= ωD
(

∂

∂xi
, J

∂

∂yj

)

= ωD
(

∂

∂xi
,− ∂

∂xj

)

= 0.

Gi′j = gD
(

∂

∂yi
,

∂

∂xj

)

= ωD
(

∂

∂yi
, J

∂

∂xj

)

= ωD
(

∂

∂yi
,− ∂

∂yj

)

= 0.

So the desired Riemannian metric on M × M is

GD = −Di,j

(
dxidxj + dyidyj

)
.

So for GD to be a Riemannian metric, we require −Di,j to be positive-definite.
We call a divergence function D proper if and only if −Di,j is symmetric and

positive-definite onM × M. Just as any divergence function induces a Riemannian
structure on the diagonal manifold ΔM ofM × M, any proper divergence function
induces a Riemannian structure on M × M that is compatible with the symplectic
structure ωD on it.

1.3.4 Complexification and Kähler Structure on M×M

We now discuss possible existence of a Kähler structure on the product manifold
M × M. By definition,

ds2 = GD − √−1ωD
= −Di,j

(
dxi ⊗ dxj + dyi ⊗ dyj

)
+ √−1Di,j

(
dxi ⊗ dyj − dyi ⊗ dxj

)

= −Di,j

(
dxi + √−1dyi

)
⊗

(
dxj − √−1dyj

)
= −Di,jdzi ⊗ dz̄j.

Now introduce complex coordinates z = x + √−1y,

D(x, y) = D
(

z + z̄

2
,

z − z̄

2
√−1

)

≡ D̂(z, z̄),
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so
∂2D

∂zi∂z̄j
= 1

4
(Dij + D,ij) = 1

2

∂2D̂
∂zi∂z̄j

.

If D satisfies
Dij + D,ij = κDi,j (1.32)

where κ is a constant, then M × M admits a Kähler potential (and hence D̂ is a
Kähler manifold)

ds2 = κ

2

∂2D̂
∂zi∂z̄j

dzi ⊗ dz̄j.

1.3.5 Canonical Divergence for Hessian Manifold

On dually flat (i.e., Hessian) manifold, there is a canonical divergence as shown
below. Recall that the Hessian metric

gij(x) = ∂2Φ(x)

∂xi∂xj

and the dual connections

Γij,k(x) = 0, Γ ∗
ij,k(x) = ∂3Φ(x)

∂xi∂xj∂xk

are induced from a convex potential functionΦ. In the (biorthogonal) u-coordinates,
these geometric quantities can be expressed as

gij(u) = ∂2Φ̃(u)

∂ui∂uj
, Γ ∗ ij,k(u) = 0, Γ ij,k(u) = ∂3Φ̃(u)

∂ui∂uj∂uk
,

where Φ̃ is the convex conjugate of Φ.
Integrating the Hessian structure reveals the so-called Bregman divergence

BΦ(x, y) [4] as the generating function:

BΦ(x, y) = Φ(x) − Φ(y) − 〈x − y, ∂Φ(y)〉 (1.33)

where ∂Φ = [∂1Φ, . . . , ∂nΦ] with ∂i ≡ ∂/∂xi denotes the gradient valued in
the co-vector space R̃

n, and 〈·, ·〉n denotes the canonical pairing of a point/vector
x = [x1, . . . , xn] ∈ R

n and a point/co-vector u = [u1, . . . , un] ∈ R̃n (dual to Rn):

〈x, u〉n =
n∑

i=1

xiui. (1.34)
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(Where there is no danger of confusion, the subscript n in 〈·, ·〉n is often omitted.)
A basic fact in convex analysis is that the necessary and sufficient condition for a
smooth function Φ to be strictly convex is

BΦ(x, y) > 0 (1.35)

for x �= y.
Recall that, when Φ is convex, its convex conjugate Φ̃: Ṽ ⊆ R̃n → R is defined

through the Legendre transform:

Φ̃(u) = 〈(∂Φ)−1(u), u〉 − Φ((∂Φ)−1(u)), (1.36)

with ˜̃Φ = Φ and (∂Φ) = (∂Φ̃)−1. The function Φ̃ is also convex, and through
which (1.35) precisely expresses the Fenchel inequality

Φ(x) + Φ̃(u) − 〈x, u〉 ≥ 0

for any x ∈ V , u ∈ Ṽ , with equality holding if and only if

u = (∂Φ)(x) = (∂Φ̃)−1(x) ←→ x = (∂Φ̃)(u) = (∂Φ)−1(u), (1.37)

or, in component form,

ui = ∂Φ

∂xi
←→ xi = ∂Φ̃

∂ui
. (1.38)

With the aid of conjugate variables, we can introduce the “canonical divergence”
AΦ : V × Ṽ → R+ (and AΦ̃ : Ṽ × V → R+)

AΦ(x, v) = Φ(x) + Φ̃(v) − 〈x, v〉 = AΦ̃ (v, x).

They are related to the Bregman divergence (1.33) via

BΦ(x, (∂Φ)−1(v)) = AΦ(x, v) = BΦ̃ ((∂Φ̃)(x), v).

1.4 DΦ-Divergence and Its Induced Structures

In this section, we study a particular parametric family of divergence functions,
called DΦ , induced by a strictly convex function Φ, with α as the parameter. This
familywas first introduced by Zhang [23], who showed that it includedmany familiar
families (see also [27]). The resulting geometric structures will be studied below.
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1.4.1 DΦ-Divergence Functions

Recall that, by definition, a strictly convex function Φ: V ⊆ R
n → R, x �→ Φ(x)

satisfies

1 − α

2
Φ(x) + 1 + α

2
Φ(y) − Φ

(
1 − α

2
x + 1 + α

2
y

)

> 0 (1.39)

for all x �= y for any |α| < 1 (the inequality sign is reversed when |α| > 1). Assume
Φ to be sufficiently smooth (differentiable up to fourth order).

Zhang [23] introduced the following family of function on V × V as indexed by
α ∈ R

D(α)
Φ (x, y) = 4

1 − α2

(
1 − α

2
Φ(x) + 1 + α

2
Φ(y) − Φ

(
1 − α

2
x + 1 + α

2
y

))

.

(1.40)
From its construction, D(α)

Φ (x, y) is non-negative for |α| < 1 due to Eq. (1.39), and
for |α| = 1 due to Eq. (1.35). For |α| > 1, assuming ( 1−α

2 x + 1+α
2 y) ∈ V , the

non-negativity ofD(α)
Φ (x, y) can also be proven due to the inequality (1.39) reversing

its sign. Furthermore, D(±1)
Φ (x, y) is defined by taking limα→±1:

D(1)
Φ (x, y) = D(−1)

Φ (y, x) = BΦ(x, y),

D(−1)
Φ (x, y) = D(1)

Φ (y, x) = BΦ(y, x).

Note that D(α)
Φ (x, y) satisfies the relation (called “referential duality” in [24])

D(α)
Φ (x, y) = D(−α)

Φ (y, x),

that is, exchanging the asymmetric status of the two points (in the directed distance)
amounts to α ↔ −α.

1.4.2 Induced α-Hessian Structure on TM

We start by reviewing a main result from [23] linking the divergence function
D(α)

Φ (x, y) defined in (1.40) and the α-Hessian structure.

Proposition 9 ([23]) The manifold {M, g(x), Γ (α)(x), Γ (−α)(x)}4 associated with
D(α)

Φ (x, y) is given by
gij(x) = Φij (1.41)

4 The functional argument of x (or u-below) indicates that x-coordinate system (or u-coordinate
system) is being used. Recall from Sect. 1.2.5 that under x (u, resp) local coordinates, g and Γ , in
component forms, are expressed by lower (upper, resp) indices.
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and

Γ
(α)

ij,k (x) = 1 − α

2
Φijk, Γ

∗(α)
ij,k (x) = 1 + α

2
Φijk . (1.42)

Here, Φij , Φijk denote, respectively, second and third partial derivatives of Φ(x)

Φij = ∂2Φ(x)

∂xi∂xj
, Φijk = ∂3Φ(x)

∂xi∂xj∂xk
.

Recall that an α-Hessian manifold is equipped with an α-independent metric and
a family ofα-transitively flat connectionsΓ (α) (i.e.,Γ (α) satisfying (1.16) andΓ (±1)

are dually flat). From (1.42),
Γ

∗(α)
ij,k = Γ

(−α)
ij,k ,

with the Levi-Civita connection given as:

Γ̂ij,k(x) = 1

2
Φijk .

Straightforward calculation shows that:

Proposition 10 ([26]) For α-Hessian manifold {M, g(x), Γ (α)(x), Γ (−α)(x)},
(i) the Riemann curvature tensor of the α-connection is given by:

R(α)
μνij(x) = 1 − α2

4

∑

l,k

(ΦilνΦjkμ − ΦilμΦjkν)�
lk = R∗(α)

ijμν (x),

with � ij being the matrix inverse of Φij;
(ii) all α-connections are equiaffine, with the α-parallel volume forms (i.e., the

volume forms that are parallel under α-connections) given by

ω(α)(x) = det[Φij(x)] 1−α
2 .

It is worth pointing out that whileDΦ -divergence induces theα-Hessian structure,
it is not unique, as the same structure can arise from the followingdivergence function,
which is a mixture of Bregman divergences in conjugate forms:

1 − α

2
BΦ(x, y) + 1 + α

2
BΦ(y, x).
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1.4.3 The Family of α-Geodesics

The family of auto-parallel curves on α-Hessian manifold have analytic expression.
From

d2xi

ds2
+

∑

j,k

Γ
i(α)

jk
dxj

ds

dxk

ds
= 0

and substituting (1.42), we obtain

∑

i

Φki
d2xi

ds2
+ 1 − α

2

∑

i,l

Φkij
dxj

ds

dxk

ds
= 0 ←→ d2

ds2
Φk

(
1 − α

2
x

)

= 0.

So the auto-parallel curves of an α-Hessian manifold all have the form

Φk

(
1 − α

2
x

)

= aks(α) + bk

where the scalar s is the arc length and ak, bk, k = 1, 2 . . . , n are constant vectors
(determined by a point and the direction along which the auto-parallel curve flows
through). For α = −1, the auto-parallel curves are given by uk = Φk(x) = aks + bk

are affine coordinates as previously noted.

1.4.3.1 Related Divergences and Geometries

Note that the metric and conjugated connections in the forms (1.41) and (1.42) are
induced from (1.40). Using the convex conjugate Φ̃: Ṽ → R given by (1.36), we
introduce the following family of divergence functions D̃(α)

Φ̃
(x, y) defined by

D̃(α)

Φ̃
(x, y) ≡ D(α)

Φ̃
((∂Φ)(x), (∂Φ)(y)).

Explicitly written, this new family of divergence functions is

D̃(α)

Φ̃
(x, y) = 4

1 − α2

(
1 − α

2
Φ̃(∂Φ(x)) + 1 + α

2
Φ̃(∂Φ(y))

− Φ̃

(
1 − α

2
∂Φ(x) + 1 + α

2
∂Φ(y)

))

.

Straightforward calculation shows that D̃(α)

Φ̃
(x, y) induces the α-Hessian structure

{M, g, Γ (−α), Γ (α)} where Γ (∓α) are given by (1.42); that is, the pair of
α-connections are themselves “conjugate” (in the sense ofα ↔ −α) to those induced
by D(α)

Φ (x, y).
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If, instead of choosing x = [x1, . . . , xn] as the local coordinates for the manifold
M, we use its biorthogonal counterpart u = [u1, . . . , un] related to x via (1.38) to
index points on M. Under this u-coordinate system, the divergence function D(α)

Φ

between the same two points on M becomes

D̃(α)
Φ (u, v) ≡ D(α)

Φ ((∂Φ̃)(u), (∂Φ̃)(v)).

Explicitly written,

D̃(α)
Φ (u, v) = 4

1 − α2

(
1 − α

2
Φ((∂Φ)−1(u)) + 1 + α

2
Φ((∂Φ)−1(v))

−Φ

(
1 − α

2
(∂Φ)−1(u) + 1 + α

2
(∂Φ)−1(v)

))

.

Proposition 11 ([23]) The α-Hessian manifold {M, g(u), Γ (α)(u), Γ (−α)(u)}
associated with D̃(α)

Φ (u, v) is given by

gij(u) = Φ̃ ij(u), (1.43)

Γ (α)ij,k(u) = 1 + α

2
Φ̃ ijk, Γ ∗(α)ij,k(u) = 1 − α

2
Φ̃ijk, (1.44)

Here, Φ̃ ij , Φ̃ ijk denote, respectively, second and third partial derivatives of Φ̃(u)

Φ̃ ij(u) = ∂2Φ̃(u)

∂ui∂uj
, Φ̃ ijk(u) = ∂3Φ̃(u)

∂ui∂uj∂uk
.

We remark that the same metric (1.43) and the same α-connections (1.44) are
induced byD(−α)

Φ̃
(u, v) ≡ D(α)

Φ̃
(v, u)—this follows as a simple application of Eguchi

relation.
An application of (1.23) gives rise to the following relations:

Γ (α)mn,l(u) = −
∑

i,j,k

gim(u)gjn(u)gkl(u)Γ
(−α)

ij,k (x),

Γ ∗(α)mn,l(u) = −
∑

i,j,k

gim(u)gjn(u)gkl(u)Γ
(α)

ij,k (x),

R(α)klmn(u) =
∑

i,j,μ,ν

gik(u)gjl(u)gμm(u)gνn(u)R(α)
ijμν(x).

The volume form associated with Γ (α) is

ω(α)(u) = det[Φ̃ ij(u)] 1+α
2 .
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Table 1.1 Various
divergence functions under
biorthogonal coordinates x or
u and their induced
geometries

Divergence function Induced geometry

D(α)
Φ (x, y)

{
Φij(x), Γ (x)(α), Γ (x)(−α)

}

D(α)

Φ̃
((∂Φ)(x), (∂Φ)(y))

{
Φij(x), Γ (x)(−α), Γ (x)(α)

}

D(α)

Φ̃
(u, v)

{
Φ̃ ij(u), Γ (u)(−α), Γ (u)(α)

}

D(α)
Φ ((∂Φ̃)(x), (∂Φ̃)(y))

{
Φ̃ ij(u), Γ (u)(α), Γ (u)(−α)

}

When α = ±1, D̃(α)
Φ (u, v), as well as D̃(α)

Φ̃
(x, y) introduced earlier, take the form

of Bregman divergence (1.33). In this case, the manifold is dually flat, with Riemann
curvature tensor R(±1)

ijμν (u) = R(±1)klmn(x) = 0.
We summarize the relations between the convex-based divergence functions and

the geometry they generate in Table 1.1. The duality associated with α ↔ −α is
called “referential duality” whereas the duality associated with x ↔ u is called
representational duality [23, 24, 27].

1.4.4 Induced Symplectic and Kähler Structures on M×M

With respect to the DΦ -divergence (1.40), observe that

Φ

(
1 − α

2
x + 1 + α

2
y

)

= Φ
(
(
1 − α

4
+ 1 + α

4
√−1

)z + (
1 − α

4
− 1 + α

4
√−1

)z̄
)

≡ Φ̂(α)(z, z̄),

(1.45)
we have

∂2Φ̂(α)

∂zi∂z̄j
= 1 + α2

8
Φij

((
1 − α

4
+ 1 + α

4
√−1

)

z +
(
1 − α

4
− 1 + α

4
√−1

)

z̄
)

which is symmetric in i, j. Both (1.31) and (1.32) are satisfied. The symplectic form,
under the complex coordinates, is given by

ω(α) = Φij

(
1 − α

2
x + 1 + α

2

)

dxi ∧ dyj = 4
√−1

1 + α2

∂2Φ̂(α)

∂zi∂z̄j
dzi ∧ dz̄j

and the line-element is given by

ds2 = 8

1 + α2

∂2Φ̂(α)

∂zi∂z̄j
dzi ⊗ dz̄j.

Proposition 12 ([28]) A smooth, strictly convex function Φ: dom(Φ) ⊂ M → R

induces a a family of Kähler structure (M,ω(α), G(α)) defined on dom(Φ) ×
dom(Φ) ⊂ M × M with
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1. the symplectic form ω(α) is given by

ω(α) = Φ
(α)
ij dxi ∧ dyj

which is compatible with the canonical almost complex structure J

ω(α)(JX, JY) = ω(α)(X, Y),

where X, Y are vector fields on domΦ × dom(Φ);
2. the Riemannian metric G(α), compatible with J and ω(α) above, is given by Φ

(α)
ij

G(α) = Φ
(α)
ij (dxidxj + dyidyj);

3. the Kähler structure

ds2(α) = Φ
(α)
ij dzi ⊗ dz̄j = 8

1 + α2

∂2Φ̂(α)

∂zi∂z̄j
,

with the Kähler potential given by

2

1 + α2 Φ̂(α)(z, z̄).

Here, Φ
(α)
ij = Φij

( 1−α
2 x + 1+α

2 y
)
.

For the diagonal manifold ΔM = {(x, x) : x ∈ M}, a basis of its tangent space
T(x,x)ΔM can be selected as

ei = 1√
2
(

∂

∂xi
+ ∂

∂yi
).

The Riemannian metric on the diagonal, induced from G(α) is

G(α)(ei, ej)|x=y = 〈G(α), ei ⊗ ej〉
= 〈Φ(α)

kl (dxk ⊗ dxl + dyk ⊗ dyl),
1√
2
(

∂

∂xi
+ ∂

∂yi
) ⊗ 1√

2
(

∂

∂xj
+ ∂

∂yj
)〉

= Φ
(α)
ij (x, x) = Φij(x),

where 〈α, a〉 denotes a form α operating on a tensor field a. Therefore, restricting to
the diagonal ΔM, g(α) reduces to the Riemannian metric induced by the divergence
D(α)

Φ through the Eguchi method.
We next calculate the Levi-Civita connection Γ̃ associated with G(α). Denote

xi′ = yi, and that
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Γ̃i′jk′ = G(α)

(

∇ ∂

∂xi′
∂

∂xj
,

∂

∂xk′

)

= G(α)

(

∇ ∂
∂yi

∂

∂xj
,

∂

∂yk

)

,

and so on. The Levi-Civita connection on M × M is

Γ̃ijk = 1

2

(∂G(α)
ik

∂xj
+ ∂G(α)

jk

∂xi
− ∂G(α)

ij

∂xk

)
= 1 − α

4
Φ

(α)
ijk .

Γ̃ijk′ = 1

2

(∂G(α)

ik′
∂xj

+ ∂G(α)

jk′

∂xi
− ∂G(α)

ij

∂xk′
)

= −1 + α

4
Φ

(α)
ijk .

Γ̃i′jk′ = Γ̃ij′k′ = 1

2

(∂G(α)

ik′
∂xj′ + ∂G(α)

j′k′

∂xi
− ∂G(α)

ij′

∂xk′
)

= 1 − α

4
Φ

(α)
ijk .

Γ̃i′jk = Γ̃ij′k = 1

2

(∂G(α)
ik

∂xj′ + ∂G(α)

j′k
∂xi

− ∂G(α)

ij′

∂xk

)
= 1 + α

4
Φ

(α)
ijk .

Γ̃i′j′k = 1

2

(∂G(α)

i′k
∂xj′ + ∂G(α)

j′k
∂xi′ − ∂G(α)

i′j′

∂xk

)
= −1 − α

4
Φ

(α)
ijk .

Γ̃i′j′k′ = 1

2

(∂G(α)

i′k′
∂xj′ + ∂G(α)

j′k′

∂xi′ − ∂G(α)

i′j′

∂xk′
)

= 1 + α

4
Φ

(α)
ijk .

1.5 Summary

In order to construct divergence functions in a principled way, this chapter consid-
ered the various geometric structures on the underlying manifold M induced from
a divergence function. Among the geometric structures considered are: statistical
structure (Riemannian metric with a pair of torsion-free dual connections, or by
simple construction, a family of α-connections), equiaffine structure (those connec-
tions that admit parallel volume forms), and Hessian structure (those connections
that are dually flat)—they are progressively more restrictive: while any divergence
function will induce a statistical manifold, only canonical divergence (i.e., Bregman
divergence) will induce a Hessian manifold. Lying in-between these extremes is the
equiaffine α-Hessian geometry induced from, say, the class of DΦ -divergence. The
α-Hessian structure has the advantage of the existence of biorthogonal coordinates,
induced from the convex function Φ and its conjugate; these coordinates are conve-
nient for computation. It should be noted that the above geometric structures, from
statistical to Hessian, are all induced on the tangent bundle T M of the manifold M
on which the divergence function is defined.
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On the cotangent bundle T ∗M side, a divergence function can be viewed as a
generating function for a symplectic structure onM×M that can be constructed in
a “canonical” way. This imposes a “properness” condition on divergence function,
stating that the mixed second derivatives of D(x, y) with respect to x and y must
commute. For such divergence functions, a Riemannian structure on M × M can
be constructed, which can be seen as an extension of the Riemannian structure on
ΔM ⊂ M × M. If a further condition on D is imposed, then M × M may be
complexified, so it becomes a Kähler manifold. It was shown that DΦ -divergence
[23] satisfies this Kählerian condition, in addition to itself being proper—the Kähler
potential is simply given by the real-valued convex function Φ. These properties,
along with the α-Hessian structure it induces on the tangent bundle, makes DΦ

a class of divergence functions that enjoy a special role with “nicest” geometric
properties, extending the canonical (Bregman) divergence for dually flat manifolds.
This will have implications for machine learning, convex optimization, geometric
mechanics, etc.
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