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Abstract. A security enforcement mechanism runs in parallel with a
system to check and modify its run-time behaviour, so that it satis-
fies some security policy. For each policy, several enforcement strategies
are possible, usually reflecting trade-offs one has to make to satisfy the
policy. To evaluate them, multiple dimensions, such as security, cost of
implementation, or cost of attack, must be taken into account. We pro-
pose a formal framework for the quantification of enforcement strategies,
extending the notion of controller processes (mimicking the well-known
edit automata) with weights on transitions, valued in a semiring.

Keywords: Enforcement mechanisms · Quantitative process algebra ·
Semiring

1 Introduction

Security is often regarded as a binary concept, as it usually strictly depends
on satisfaction of a boolean policy. However, in a broader sense, security has
several dimensions e.g., secrecy, anonymity, enforceability, availability, risk, trust.
These interesting features give rise to a multi-dimensional solution space for the
construction of a “secure program”. Functional requirements add to the picture
costs, execution times, rates, etc. All these dimensions make it meaningless to
talk about a “secure” program, shifting the focus to the definition of a globally
optimal solution, which easily fails to exist.
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In this work, we consider security as a quantitative, multi-dimensional mea-
sure of a system, and investigate possible answers to the question of what it
means to enforce a security policy in this new setting. Our main actors will be
controllers that constrain targets to obey to policies, using enforcement strate-
gies. The ultimate goal of the proposed research direction is to define quanti-
tative evaluation of enforcement strategies, that would provide analysis tools to
compare and select different controllers, according to several metrics. Instead of
asking if a controller enforces a policy or not, one can ask if a controller is the
optimal one for a certain combination of metrics. The plethora of dimensions
demands for a parametric approach. We address this aspect by adopting semi-
rings, that are well-known domains for optimization problems (see e.g., [1]) and
permit multi-dimensional valuations by composition.

Summing up, beyond the state of the art (Sect. 2), in this paper we make a
distinction between monitors and controllers. Monitors (Sect. 4) associate quan-
tities to an existing system without changing its behaviour. Controllers (Sect. 5)
modify the behaviour of a target, using control actions for suppressing or insert-
ing possible incorrect actions. In Sect. 6 we propose a formal approach to evaluate
and compare controllers in the quantitative, multi-dimensional setting.

2 State of the Art

Runtime enforcement is a well-studied problem [2–4], in particular with security
automata [2], designed to prevent bad executions, and edit automata [5], that
can suppress, insert or replace observed actions. Concurrent languages (e.g.,
process algebras) can also model both the target and the controlled system
within the same formalism [3,6]. As a prototypical example, we chose the process
algebra GPA [7], featuring CSP-style synchronization, with actions weighted over
a semiring. We add to it control operators in the style of edit automata, in order
to study enforcement strategies from the quantitative standpoint. Compared to
the existing literature, our work identifies an abstract approach to quantitative
and multi-dimensional aspects of security, by introducing semirings. The quest
for a unifying formalism is witnessed by the significant amount of inhomogeneous
work in quantitative notions of security and enforcement.

The problem of finding an optimal control strategy is considered in [8] in the
context of software monitoring, taking into account rewards and penalties, and
can be solved using a Markov Decision Process [9]. Bielova and Massacci propose
in [10] a notion of edit distance among traces, that extends to an ordering over
controllers.

Metrics can be used for evaluating the correctness of a mechanism, such as
More Corrective, Permissiveness, Memory Use, and Versatility [11]. Addition-
ally, mechanisms can be compared with respect to their cost [12]. In this work,
we follow some intuitive leads from [13] to move from qualitative to quantita-
tive enforcement, and generalise that idea using semirings. We also consider the
possibility for a controller not to be correct, i.e., to allow for some violations
of the policy. Such a possibility is quantified over traces in [14] for non-safety
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policies, where a controller cannot be both correct and fully transparent. In [15],
the authors use a notion of lazy controllers, which only check the security of a
system at some points in time, proposing a probabilistic quantification of the
expected risk.

3 Quantitative Processes

In a quantitative process, observable transitions are labelled with some quantity,
denoting a cost or a benefit associated to a step in the behaviour of a system. We
use semirings to model two fundamental modes of composing observable behav-
iour, either by combination of different traces, or by sequential composition. As
a syntax to describe such behaviour, we adopt GPA from [7]. We first provide
the definition of a semiring.

Definition 1. A semiring K = (K,+, ∗,0,1) consists of a set K with two binary
operations +, ∗, and two constants 0,1, such that + is associative, with neutral
element 0; ∗ is associative, with neutral and absorbing elements 1,0; ∗ distributes
over +.

Examples of semirings are natural numbers, the positive real numbers, boolean
algebras, that may denote, e.g., time, costs, lattices of values. Semirings have
a partial order �, such that k1 � k2 if, and only if k1 + k2 = k2. Intuitively,
� indicates preference, that is, k1 � k2 can be read as k2 is “better” than
k1. Sometimes, the + operation is idempotent, and it extends to an operation∑

{S} defined over an arbitrary, possibly infinite subset S of K. The well-known
C-semirings [1] are of this form. For the sake of simplicity, when needed, we
silently assume that this is the case.

The cartesian product of semirings is a semiring; thus, multi-dimensional
notions of cost can be modelled. The partial order of values in the product does
not prioritize dimensions. Further composite semirings exist, such as the lexico-
graphic semiring, the expectation semiring, etc. When the specific composition
operator is not relevant, we shall indicate a composite semiring by K1� . . .�Kn.

Process algebras are simple languages with precise mathematical semantics,
tailored to exhibit and study specific features of computation. Typically, a process
P , specfied by some syntax, may non-deterministically execute several labelled
transitions of the form P

a→ P ′, where a is an observable effect and P ′ is a
new process. In quantitative process algebras, transitions are labelled by pairs
(a, x) where x is a quantity associated to the effect a. We now define Generalized
Process Algebra (GPA).

Definition 2. The set L of agents, or processes, in GPA over a countable set
of transition labels Act and a semiring K is defined by the grammar

A :: = 0 | (a, k).A | A + A | A‖S A | X

where a ∈ Act, k ∈ K, S ⊆ Act, and X belongs to a countable set of process
variables, coming from a system of co-recursive equations of the form X � A.
We write GPA[K] for the set of GPA processes labelled with weights in K.
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Process 0 describes inaction or termination; (a, k).A performs a with weight k
and evolves into A; A+A′ non-deterministically behaves as either A or A′; A‖S A′

describes the process in which A and A′ proceed concurrently and independently
on all actions which are not in S, and synchronize over actions in S.

As we are dealing with run-time enforcement, we work with traces, or paths,
of processes. A path is a sequence (a1, k1) · · · (an, kn), and we call T (A) the
set of paths rooted in A. Given a path (a1, k1) · · · (an, kn), we define its label
l(t) = a1 · · · an, and its run weight |t| = k1 ∗ . . . ∗ kn ∈ K. Finally, the valuation
of a process A is given by [[A]] =

∑
{t∈T (A)} |t|.

4 Quantitative Monitor Operators

A system, hereafter named target, does not always come with the quantities we
are interested in evaluating, and might even be not labelled at all. Hence, in
the most general case, the security designer must provide a labelling function
λ : GPA[K1] → GPA[K2], such that given any process A labelled in K1, λ(A)
represents the process A labelled with a quantity in K2. A simple example is the
function λv, which assign any transition with the value v ∈ K2, thus erasing any
previous quantity.

In practice, a monitor often measures a particular aspect, by probing the
system and indicating the weight of each operation. In terms of security, a mon-
itor is usually passive, i.e., it does not effectively modify the behaviour of the
considered target, and thus does not prevent violation of a security policy. On
the other hand, a controller is able to modify the behaviour of a target in order
to guarantee security requirements. A security monitor and a security controller
are often merged into a single entity, responsible both for deciding whether an
action would violate the policy and what corrective action should be taken if nec-
essary. We propose to make an explicit distinction between these two processes
and to extend the monitoring to measures other than security. In this section we
investigate quantitative monitors. Controllers are detailed in Sect. 5.

Intuitively, a monitor measures a quantity not already present in the moni-
tored target. Since the target might be already equipped with some quantities,
coming for instance from another monitor, we need to merge the quantities from
the monitor with those of the target. Given a process A labelled with K, a process
A′ labelled with L and a composition operator �, we write A�A′ for the merged
process, defined as:

A
a,k→ A1 A′ a,l→ A′

1

A � A′ a,k�l→ A1 � A′
1

A merged process can only move on when both of its components can move on
with the same action. We are now able to define a monitor, which is a process
that can be composed with a target without affecting its behaviour.

Definition 3. Given a composition operator � and a process A, a process M is
a monitor for A if and only if {l(t) | t ∈ T (A � M)} = {l(t) | t ∈ T (A)).
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Given any process A labelled with K1, any monitor M for A labelled with K2 and
any composition operator �, we can define the labelling function λ : GPA[K1] →
GPA[K1 � K2] as λ(A) = A � M .

Example 1. Let us define an energy monitor using KC = 〈R+
0 ,min,+,+∞, 0〉

for the alphabet Σ = {a, b}, such that the action a consumes 3 units, and the
action b consumes 2n units, where n is the number of times b has been performed
(i.e., b has an increasing energy cost). Hence, for n > 0, we define the monitor:

Mn = (a, 3).Mn + (b, 2n).Mn+1

For instance, the process A = a.b.b.a.b can be monitored with

A � M1 = (a, 3).(b, 2).(b, 4).(a, 3).(b, 6)

The valuation of the monitored process corresponds to the total energy con-
sumed, i.e., [[A � M1]] = 18. Similarly, the monitored process of B = a + b is
B � M1 = (a, 3) + (b, 2), and its valuation [[B � M1]] = 2, since the valuation
returns the best quantity.

Clearly, finer-grained approaches can be used to monitor a security policy. Note
that a monitor is only one possible way to build a labeling function λ. Although
monitors are expressive enough for the examples, in this paper, we consider more
complex labeling functions may also be of interest.

5 Quantitative Control Operators

The role of the monitor is to observe the actions from a target, and not to prevent
a target system from performing any. For instance, given a policy P , a monitor can
observe the target actions, labelling them with true when they obey to the policy
P or false when they violate P . On the contrary, a controller can decide not only to
accept but also to change target traces, which result in a controlled process E �F ,
where F denotes the target system, following the semantics in Fig. 1.

Intuitively speaking, each rule corresponds to a different controlling behav-
iour. The alphabets of E, F , and of the resulting process E � F are different,
as E may perform control actions that regulate the actions of F , and E � F
may perform internal actions, denoted by τ , as a consequence of suppression.
Let Act be the alphabet of (the GPA describing) F , and let {a,�a.b,�a}, for
a, b ∈ Act, be the alphabet of E, respectively denoting acceptance, suppression,
and insertion; the alphabet of E � F is Act ∪ {τ}.

E
a,k→ E′ F

a,k′
→ F ′

E � F
a,k∗k′
→ E′ � F ′

E
�a,k→ E′ F

a,k′
→ F ′

E � F
τ,k∗k′
→ E′ � F ′

E
�a.b,k→ E′ F

a,k′
→ F ′

E � F
b,k→ E′ � F

Fig. 1. MLTS rules for quantitative control operators.
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The acceptance rule (A) constrains the controller and the target to perform
the same action, in order for it to be observed in the resulting behaviour; the
observed weight is the product of those of the controller and the target. Given
two processes A and B, the semantics of truncation is equivalent to that of CSP-
style parallel composition of A and B, where synchronisation is forced over all
actions of the two processes.

The suppression rule (S) allows the controller to hide target actions. The
target performs the action, but the controlled system does not, and the observed
result is a τ action, with the weight given as the product of the suppressing and
the target action.

The insertion rule (I) describes the capability of correcting some bad behav-
iour of the target, by inserting another action in its execution trace. The weight
of insertion is only the weight provided by the controller; this accounts for the
fact that the target does not perform any action, but rather stays in its current
state, as in [5].

Interestingly, monitoring a target F inside a controlled system E � F or
monitoring E � F leads to different valuations. For instance, monitoring F for a
policy P will associate with false each trace where F tried to violate P , even
though the action was corrected by E; on the other hand, monitoring E � F
for P associates each trace with true if E correctly enforces P . In other words,
the nesting of monitors impacts the valuation of processes, and we therefore
introduce the notion of matching operator ��:

E �� F = λT (λE(E) � λF (F ))

where λE labels the controller, λF labels the target and λT labels the controlled
target.

For instance, we can consider the following evaluation strategies:

E ��D F = λtrue(E) � (F � MP ) E ��P F = (E � F ) � MP

E ��C F = (E � Mc) � (F � M1) E ��G F = MP �L (E ��C F )

where MP stands for the monitor for the policy P , ��D detects policy violations,
even if they are corrected by the controller, ��P monitors the satisfaction of the
policy by the controlled target, ��C monitors the energy of both the controller
and the target, and ��G defines a lexicographic measure of the cost and the
satisfaction of the policy.

6 Ordering Controller Strategies

The matching operator defined provides a simple way to compare controllers,
for any considered semiring.

Definition 4. Given a target F and a matching operator ��, a controller E2

is better than a controller E1 with respect to F , and in this case, we write
E1 ���,F E2, if and only if [[E1 �� F ]] � [[E2 �� F ]]. Furthermore, we write
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E1 ��� E2 and say that E1 is always better than E2 if and only if E1 ���,F E2,
for any target F . Finally, if E1 ��� E2 and there exists at least one target F
such that [[E1 �� F ]] � [[E2 �� F ]], we write E1 ��� E2.

This definition does not directly depend on the semiring used to quantify the
controlled target, and it is therefore possible to use the same definition to say
that a controller is better than another one with respect to a security monitor,
a cost monitor or any other measure. Note that since each individual trace can
be represented as a target, E1 ��� E2 implies that the valuation of E1 should
be lower than that of E2 for every possible trace.

Example 2. Let us extend the example described in Sect. 4, such that we have
now three actions {a, b, c}, and a policy P stating that any trace should start
with at least one action b. Now, consider the four following controllers:

E1 = a.E1 + b.E1 + c.E1 E2 = �a.E2 + b.E1 + c.E2

E3 = �a.E3 + b.E1 + �c.E3 E4 = �a.b.E1 + b.E1 + �c.b.E1

Intuitively, E1 accepts all actions, E2 suppresses all initial actions a, but accepts
c, E3 suppresses both actions a and c, and E4 inserts a b before any initial a or
c. As soon as an action b is performed, all processes are equivalent to E1, and
accept all actions.

Since E3 and E4 are sound, we have [[E3 ��P F ]] = [[E4 ��P F ]] = true, for
any target F . In addition, given any target F such that [[E2 ��P F ]] = false, we
also have [[E1 ��P F ]] = false. Since there are also targets F such that [[E2 ��P

F ]] = true and [[E1 ��P F ]] = false, we have E1 ���P
E2 ���P

E3 ≡��P
E4,

where ≡�� is the equivalence relation induced by the partial order ��� . In other
words, E3 and E4 are maximal, and E1 is strictly worse than E2.

However, it is worth observing that E1 is not the worst possible controller.
Indeed, E1 leaves unchanged the correct traces of F , meaning that there exists
some targets F such that [[E1 ��P F ]] = true. The worst controller always outputs
incorrect traces, even when the target is correct. For instance, we can define the
controller E0 = �b.a.E1 + a.E0 + c.E0, which satisfies [[E0 ��P F ]] = false, for
any target F , and therefore E0 ���P

E1.

In some cases, controllers can be incomparable. In the previous example, the
controller that only suppresses bad actions a is incomparable with the one that
only suppresses bad actions c. Furthermore, the choice of the controlling oper-
ators can have an impact on the overall evaluation. For instance, if one cannot
implement the controlling strategy E3 because the action c is uncontrollable [16],
i.e., cannot be suppressed or protected, then a security designer may prefer to
choose E2 over E1, and over E0 even if they are incorrect. The controllers E3 and
E4 are equivalent with respect to ��P , since they are both correct, and, if policy
satisfaction is the only criterion, a security designer might choose either. How-
ever, other dimensions can easily be included within our framework, with the
intuition that the more accurate is the quantification of the controlled system,
the more informed is the security designer to choose a controller.
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Example 3. In order to compare the previous controllers E3 and E4, let us con-
sider the extended cost monitor Mc = (x, 0).Mc + (�y, 1).Mc + (�w.v, 2).Mc

with the matching operator ��G. First, it is worth observing that since we use
the lexicographic ordering, the relations E0 ���G

E1 ���G
E2 ���G

E3 and
E0 ���G

E1 ���G
E2 ���G

E4 still hold. However, E3 and E4 are no longer
equivalent, and as a matter of fact, they become incomparable. Indeed, consider
the target F1 = a: we have [[E3 ��G F1]] = (true, 1) and [[E4 ��G F1]] = (true, 2),
meaning that E4 ���G,F1 E3. On the other hand, given the target F2 = a.a.a,
we have [[E3 ��G F1]] = (true, 3) and [[E4 ��G F1]] = (true, 2), meaning that
E3 ���G,F2 E4, and therefore that E3 and E4 are incomparable.

The previous example illustrates that, in general, there might not be a strictly
best strategy. In some cases, it might be possible to define an optimal strat-
egy, which is best in average. Another possibility is to prioritize one dimension
over another (depending on the order of the components in the lexicographic
order itself). According to which dimension is prioritized, we are able to classify
controllers into categories. For instance, we have a secure controller, when the
controllers are ordered based on their security or an economical controller when
the priority is given to the dimension of cost.

7 Discussion – Future Work

Our framework allows a system designer to consider security as yet another
dimension to measure. Instead of a binary classification between sound/unsound
controllers, we provide a finer-grained ordering, distinguishing between different
degrees of soundness.

The valuation of processes is currently done on the best-case scenario. It is
not difficult to focus instead on the worst-case scenario, thus following a rather
traditional, pessimistic approach to security. In the presence of an inverse to
addition in the considered semiring, the two kind of valuations could be mixed.
As we saw, some controllers are incomparable over the set of all targets. To
improve the situation, one can consider small subsets of possible targets (e.g.,
typical behaviours, or even single use-cases).

Adding non-deterministic choice to the controller itself always improves secu-
rity. Clearly, this characteristic is mostly of theoretical importance, but it raises
the interesting question whether, given some quantities, there exists a determin-
istic maximal controller or not. For instance, if we only monitor security, we can
build an optimal deterministic controller for any safety property, as described in
the literature [5]. However, adding a notion of cost can lead to two incomparable
deterministic controllers, which are strictly worse than their non-deterministic
composition.

Finally, our notion of a security policy is just a boolean predicate, that could
be specified by e.g., automata or logics. Predicates, and formulas specifying them,
could also be quantitative by themselves, e.g., employing logics with valuations in
a semiring, e.g., [17,18]. In this paper, we do not yet investigate this aspect of the
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framework; this is left as future work. In particular, we plan to use quantitative
evaluation of security policies, specified by logic formulas, in order to extend previ-
ous work on automated verification and synthesis of (qualitative) controllers [19].
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