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Abstract. Several alert correlation approaches have been proposed to
date to reduce the number of non-relevant alerts and false positives
typically generated by Intrusion Detection Systems (IDS). Inspired by
the mental process of the contextualisation used by security analysts
to weed out less relevant alerts, some of these approaches have tried
to incorporate contextual information such as: type of systems, applica-
tions, users, and networks into the correlation process. However, these
approaches are not flexible as they only perform correlation based on the
narrowly defined contexts. information resources available to the secu-
rity analysts while preserving the maximum flexibility and the power of
abstraction in both the definition and the usage of such concepts, we
propose ONTIDS, a context-aware and ontology-based alert correlation
framework that uses ontologies to represent and store the alerts infor-
mation, alerts context, vulnerability information, and the attack scenar-
ios. ONTIDS employs simple ontology logic rules written in Semantic
Query-enhance Web Rule Language (SQWRL) to correlate and filter
out non-relevant alerts. We illustrate the potential usefulness and the
flexibility of ONTIDS by employing its reference implementation on two
separate case studies, inspired from the DARPA 2000 and UNB ISCX
IDS evaluation datasets.

Keywords: Intrusion detection ·Alert correlation ·Ontology · Context-
aware

1 Introduction

IDS collect data from the IT infrastructure and analyse it to identify ongoing
attacks. Various IDS types have been proposed in the past two decades and
commercial off-the-shelf (COTS) IDS products have found their way into Secu-
rity Operations Centres (SOC) of many large organisations. Nonetheless, the use-
fulness of the single-source IDS has remained relatively limited due to two main
factors: their inability to detect new types of attacks (for which new detection rules
or training data are unavailable) and their often very high false positive rates.
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One of the approaches that has been suggested to address these challenges is
the alert correlation, where the alert streams from several different IDS or more
generally various alert sensors are jointly considered and analysed to provide a
more accurate picture of the threats. When individual IDS examine the same
type of data, their alert correlations is called the homogeneous IDS correlation.
In fact, the majority of the research projects and real-world deployments of the
correlation approaches involve the analysis of the alerts generated by different
network IDS (NIDS), such as: SNORT or Bro, examining network traffic streams
at different network locations.

Nonetheless, most of the attacks, whether automated malware infections or
manual network intrusions, do not leave traces only on the captured network
traffic but also on the host-based IDS (HIDS), on other security products, and
sometimes even on non security-related logs of commodity or corporate applica-
tions. This fact has been successfully exploited by security analysts worldwide
to detect sophisticated attacks by automatically or manually correlating these
versatile information and alert sources. Since various sensors examine different
types of events and raw data sources, their alert correlations is called the het-
erogeneous alert correlation.

One of the main challenges for heterogeneous correlation is the integration of
data from various alert sources with potentially different formats and semantics.
At the same time, sensor-specific attributes must also be retained in order to
preserve the ability for the security analyst to drill down and refine his analysis.
For instance, for finding root causes, determining attack type, attack objectives,
and etc.

Moreover, one of the fundamental alert management principles is that the
security analysts must be able to understand the alerts and the context they
are generated in. This is what allows one to consider the relevance and relative
importance of the alerts. Unfortunately, security analysts often need to manually
gather such information from multiple systems to feed the correlation process in
order to integrate and validate the alerts and identify the consequences of any
intrusion. This is why certain researchers have proposed approaches to auto-
matically include such contextual information into the alert correlation process,
approaches that are referred to as the context-aware alert correlation approaches.
The simple and intuitive idea here to reduce the false positive is that the alerts
that are related to a certain type of attack are only relevant if the context in
which they happen is indeed vulnerable to that type of attack. Hence, the con-
text aware alert correlation must consider the vulnerability information, and
potentially the attack models in order to be useful.

The difficulty in implementing the aforementioned approaches resides in inte-
grating the information into a data model that is generic enough to allow the global
view of the data while retaining maximum data granularity for drill-down analy-
sis. The flexibility and extensibility of the data model is thus a key requirement
of any such approaches. Finally, the method by which security analysts extract
information and intelligence from such data stores must itself also be flexible and
extensible. It must support generic simple queries and detailed analysis.
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To this purpose, in this paper, we present ONTIDS that relies heavily on
the ontologies and the ontology description logic to accomplish these goals. We
mainly describe how ONTIDS addresses the high positive rate problem of the
existing IDS. ONTIDS has the following characteristics:

1. It performs heterogeneous alert correlation to detect complex attacks that
might leave traces in different types of sensors.

2. It includes a set of comprehensive but extensible ontologies, allowing correla-
tion and reasoning with information collected from various resources, includ-
ing context information, vulnerability databases and assessments, and attack
models.

3. It can be used to seamlessly and automatically implement various alert cor-
relation approaches on the same data model.

4. It can be applied in different deployment and analysis contexts, from simple
to complex IT infrastructures, generic threat detection to complex attack
forensics analysis.

The rest of this paper is organized as follows. In Sect. 2, we discuss the related
work. In Sect. 3, we present our framework in detail. In Sect. 4, we demonstrate
the flexibility of our framework by describing a reference implementation and
applying it to the analysis of two different case studies. We conclude, in Sect. 5,
by describing the limitations of these case studies to conclusively demonstrate
the reduction of the non-relevant alerts and the false positives.

2 Related Work

In a keynote publication, Valeur et al. propose a correlation approach consisting
of ten steps, which we will use later to exemplify our generic framework in
Sect. 3.5. This is perhaps the most comprehensive approach, with other work
concentrating only on one particular aspect of the correlation process, such as
the alert fusion [1,2] or the attack thread reconstruction [3]. From a classification
point of view, Cuppens et al. classify the attack reconstruction approaches into
two categories [4]:

1. Explicit alarm correlation, which relies on the capabilities of security admin-
istrators to express logical and temporal relationships between alerts in order
to detect complex multi-step attacks. For instance, Morin et al. propose an
explicit correlation scheme based on the formalism of the chronicles [5].

2. Implicit alarm correlation, which is based on employing the machine learn-
ing and the data mining techniques to fuse, aggregate, and cluster the alerts
for the alert correlation and the intrusion detection purposes. For instance,
Chen et al. employ the Support Vector Machine (SVM) and the co-occurrence
matrix in order to propose a masquerade detection method [6]. In [7],
Raftopoulos performs the log correlation using C4.5 decision tree classifiers
after analysing the diagnosis of 200 infections that were detected within a
large operational network.
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One of the shortcomings of the approaches in both categories is that they
do not take into account all the available and important information resources
such as contextual and vulnerability information. The contextual information
has proved to be useful in better identifying specific alerts or in improving the
IDS efficiency. Gagnon et al., in [8], have studied the use of target configura-
tion as the context information in order to identify the non-critical alerts. The
Workload-aware Intrusion Detection (WIND) proposal by Sinha et al. combines
the network workload information with the Snort rules to improve Snort’s effi-
ciency [9]. Unfortunately, these studies only consider partial contextual infor-
mation such as target configuration or network traffic and do not allow for the
inclusion of other types of contextual concepts.

Ontologies are knowledge representation models that allow the description
of the concepts, their attributes, and the inheritance or the association relation-
ships between them. In addition, various types of ontologies have formal descrip-
tion languages that allow for the definition of the complete reasoning logic that
are machine-interpretable and solvable. Hence, some researchers have proposed
the ontology-based alert correlation approaches for the alert correlation process.
capabilities for detecting new types of attacks such as multi-step distributed
attacks and various distributed denial of service (DDoS) attacks. The proposed
ontologies, however, only include general security concepts and no discussion
on how they can be adapted to different contexts. The Intrusion Detection and
Diagnosis System (ID2S) proposed by Coppolino et al. uses ontologies as well
to correlate the detection information at several architectural levels for further
intrusion symptom analysis [11].

In summary, while Valeur et al. [12] provides a good generic framework for
alert correlation into which various other attack reconstruction approaches can
be incorporated [3,6,7,13], none of these attacks contrast the alert information
with the context. On the other hand, those alert correlation approaches have
limited notions of the context that cannot be readily extended and they do
not perform attack reconstruction. Finally, the correlation approaches that have
employed ontologies have not fully taken the advantage of their expressive power
in terms of data modelling and logic reasoning.

Motivated by these shortcomings and in order to provide a common solution
encompassing the advantages of all of these approaches, we design and pro-
pose henceforth the ONTIDS alert correlation framework that address the data
integration problems while attaining the flexibility and extensibility objectives
mentioned in Sect. 1.

3 The ONTIDS Alert Correlation Framework

The ONTIDS framework was made context-aware in order to take full advantage
of the context information typically available to security analysts have typically
access to prioritise alerts, and ontology-based in order to provide a technolog-
ical solution to the problem of heterogeneous data integration and retrieval.
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Fig. 1. The ONTIDS ontology-based context-aware alert correlation framework

The ONTIDS framework is depicted in Fig. 1. In its first step, the alerts gener-
ated via distributed homogeneous or heterogeneous IDS are collected and trans-
fered into the alert integration component. Also in this step, all the information
required for reasoning on these alerts is gathered from three different informa-
tion resources namely: Context Sensors (CS), common vulnerability databases,
and attack databases.

The second step consists of the following two tasks: (i) integrating and
converting all the alerts generated by the various IDS into a unified format
analysable by the alert correlation unit, and (ii) integrating all the contextual
information received implicitly or explicitly from the various tools implemented
in the system.

In the third step, the alert and context ontologies are populated based on
the integrated and converted alert and context information. In order to fully
automate the alert correlation process, we have designed a group of comprehen-
sive and extensible ontologies, namely alert, context, attack and vulnerability
ontologies. The explicit relationships between these ontologies reasoning on the
information gathered from various resources, including the (mostly) static attack
and vulnerability databases.

The last step consists in correlating the existing information within the
ontologies, which is done via the correlation engine using ontology description
logic.

3.1 Information Resources

Alert sensors generate alerts based on the suspected malicious behaviours
that they observe on the systems they monitor. The most typical and commonly
deployed type of sensor are NIDS that generate alerts by examining individ-
ual network traffic packets. They can also include host-based IDS that generate
alerts based on system or application activity observed on a particular machine.
Finally, it can also include other type of non security-related sensors such as
application and system logs that are not generating alerts per se, but rather sys-
tem events that the security analyst consider important enough to be correlated
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with other sources of alert. The difficulty here is that while many NIDS and
HIDS will generate IDMEF-compliant alerts by filling generic attributes (e.g.
time, severity, etc.), there might some sensor- or log-specific attributes that we
might want to correlate on, and that must therefore be integrated also. This is
what ontologies are particularly suited for.

Context sensors is a generic term for any information source that can provide
contextual information about the systems that are being monitored. The concept
of context is purposefully vague to allow analysts to define and use the particular
aspects that they think is suitable for monitoring of their systems. This can
include different types of information such as configuration (network, host or
application), vulnerabilities, user role and profile, location, and even criticality of
the corresponding IT asset. Contextual information can be implicitly collected by
methods such as vulnerability scanning, network fingerprinting, passive network
monitoring tools, or they can be explicitly provided by system administrators
through tools such as Configuration Management Systems (CMS), for example.

Known vulnerabilities. At first, we gather information about vulnerabilities
from the well-known public databases such as the Common Vulnerabilities and
Exposures (CVE) [14] or the NVD. Then, vulnerabilities can be associated to
context instances (e.g. hosts, networks, applications) through vulnerability scan-
ning or asset management. Severity information from these databases, in combi-
nation with information on asset criticality, can then be used to help prioritise
alerts occurring in these contexts.

Attack scenarios and models. Attack information and models can obtained
from standardised databases such as the Common Attack Pattern Enumeration
and Classification (CAPEC) [15] or expert knowledge. In order to model attacks,
any of the existing attack modelling languages such as LAMBDA [13] or STATL
[16] could be used. However, it is outside of the scope of this work to implement
these formalisms within the ontology description logics that we use.

3.2 Alert and Context Integration

Different types of IDS sensors produce alerts in various formats that might not
be natively interpretable by the correlation unit. Hence, it is necessary to pre-
process these alert streams and export them in a format that is understandable
by the correlation unit. In following good ontological engineering practises, all
alert sensor-specific fields should be translated into class attributed at the high-
est possible class in the taxonomy of alerts, i.e. that where all subclasses contain
that type of information (or an equivalent one). The use of standard representa-
tions such as IDMEF [17] or the Common Event Expression (CEE) [18] should be
encouraged, but not at the detriment of not integrating sensor-specific informa-
tion that is not standard-compliant; that is what sensor-specific alert subclasses
are for. For simplicity of presentation and for illustrative purposes, we use an
IDMEF-specific ontology in the rest of this paper.

The context integration component of our framework also integrates all the
contextual information in various formats received implicitly or explicitly from
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various tools implemented in the system. In this component, the contextual
information gathered using our designed drivers is converted into a unified format
analysable by the other components, i.e. into instances in the context ontology.
Once the integration process is complete, the correlation process can start.

3.3 Description of the Ontologies

We chose to use ontologies because they provide a powerful knowledge repre-
sentation information structure in a unified format that is understandable by
both machines and humans. The use of ontologies and ontology description logic
enables us to fully automate the correlation process that is typically done manu-
ally by security analysts, and this uniformly considering all relevant information,
no matter what its original format or source.

In order to integrate the data inputs to the correlation process and allow
generic correlation reasoning, independent of specificities of information re-
sources, we have constructed basic ontologies capturing the essence of the con-
cepts of alert, context, vulnerability, and attack. Essentially, they correspond to
the following intuitive security facts:

1. Attack scenarios will generate system events that might in turn trigger sensors
to cause related alerts. Depending on the attack model, an attack scenario
might be described as linear sequence of events, or a partial ordering of events
with pre- and post-conditions, an attack graph, etc.

2. Alerts happen in a context, whether this is an IT asset, network location,
application, user, etc. In our case this relationship will be made explicit
through information provided by the sensor with the alert (e.g. IP address).

3. Vulnerabilities are always associated to a context, whether to high-level con-
text concepts (e.g. an asset or service type) or to lower-level context subclasses
(e.g. particular versions of OS or applications). Conversely, explicit context
instances can be linked to specific or generic vulnerabilities, through vulner-
ability assessment or CMS information.

4. (Most) attack scenarios will require certain vulnerabilities to be present on
the systems (context) so that they can exploited by that attack.

Figure 2 illustrates these class relationships and some of the subclasses of the
basic ontology. These “starter” ontologies are not meant to be the end state of
knowledge representation that security analysts would need in using our frame-
work, but rather a starting point or template from which to build on, depending
on the kind of sensors, context information or granularity of vulnerabilities and
attack modelling desired. We now describe each of these ontologies in more detail.

Alert ontology. All the integrated alerts are transferred into this ontology as its
instances. Alert ontology has dependency relationship with the context ontology
and an association relationship with the attack ontology, since usually each alert
a is typically by a (suspected) attack at in a particular context c. The generic
base class Alert in Fig. 2 includes generic alert attributes such as source, target,
time, and analyser (i.e. sensor). It is important to note that because the concept
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Fig. 2. Class diagram relationship of the designed ontologies

of context is potentially very rich and multifaceted, it is likely that a single alert
might have to be linked to multiple context instances from various subclasses
(e.g. a user, a network segment, an application), and thus the association between
alert and context will be many-to-many at the Context base class level.

Context ontology. The integrated contextual information is transferred into
the context ontology. We split contextual information into two categories: (i)
static context information that rarely changes over time (e.g. network architec-
ture, host/user profiles, and OS type), and (ii) dynamic context information
that changes continuously over time (e.g. traffic type, system usage, time of
day/week). As depicted in Fig. 2, the context ontology includes a Context base
class and User, Host, Network and Service subclasses with their corresponding
attributes.

Vulnerability ontology. This ontology represents the list of vulnerabilities
related to the existing assets in the underlying context. This ontology has a
part-whole relationship (composition) with the context ontology, since every
vulnerability v is specific to a particular type of system, which is represented as
a subclass of Context (typically Host). Thus, v can be associated with all the
asset (context) instances [c1, . . . , cn] that are vulnerable to it, by querying the
ontology for Host instances whose applications (App) or OS are those associated
to that vulnerability. This ontology also has an association relationship with
attack ontology, since usually every vulnerability v is exploitable by one or more
attacks.

Attack ontology. The attack ontology includes information related to the
known attack scenarios, and it includes generic attack attributes such as vec-
tors, objectives, and so on. The Vector class represents the method that is used
by an attack to infect computer systems, with subclasses in Fig. 2 including social
engineering, phishing and removable media are examples of such methods. The
Objective class includes subclasses such as information leakage, remote core exe-
cution, spamming and privilege escalation. The attack ontology has dependency
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relationships with the context ontology, and association relationship with the
alert and vulnerability ontologies, since basically every attack at needs a par-
ticular context c to proceed, it might need to exploit particular vulnerabilities
[v1, . . . , vn], and it results in triggers some alerts [a1, . . . , an].

3.4 Correlation Engine

In order to implement the correlation logic, we employ Ontology Web Language-
Description Logic (OWL-DL) to design and populate an ontology for each of the
above four inputs. The use of generic language like OWL-DL provides significant
flexibility to the framework by allowing the reuse or adaptation of data queries
expressed in that logic to various deployment and security monitoring scenarios,
e.g. on-line detection or after-the-fact network forensics analysis.

The correlation process is two-fold and can be viewed as two independent
traversals on the core ontology classes:

1. Context- and vulnerability-based filtering. Given an alert (or alerts) determine
which contexts instances are involved, what are their associated known vul-
nerabilities, and finally determine which attack scenarios could be exploiting
them.

2. Attack reconstruction. For each possible attack scenario related to this (or
these) alert(s), try to match the sequence of previous alerts with the steps of
the attack.

The outcome of this process should hopefully provide the security analyst
with a reduced list of high level descriptions of potential ongoing (or completed)
attacks that includes few redundancies, non relevant scenarios and false positives.

In order to implement both components of this alert correlation approach
we use a set of logic rules expressed in Semantic Web Rule Language (SWRL)
and Semantic Query-Enhanced Web Rule Language (SQWRL). While various
specific correlation approaches could be implemented within the above generic
model, we use certain aspects of the approach described in [12] to illustrate the
use of our framework.

3.5 Example Implementation of Valeur et al .’s Approach

The alert correlation approach proposed in [12], includes a comprehensive set
of steps that covers various aspects of the alert correlation process. In order to
show how ONTIDS automatically implement these steps, in the following, we
explain the implementation details of some of these steps employing ONTIDS.

Alert fusion. Alert fusion is the process of merging alerts that represent the
independent detection of the same malicious event by different IDS. An impor-
tant condition in order to fuse two or more alerts is that they should be in the
same time window. We have defined Rule 1 within the correlation engine in order
to perform alert fusion:
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Rule 1

ALERT(?a1) ∧ ALERT(?a2) ∧ ANALYSER(?an1) ∧ ANALYSER(?an2) ∧ DetectTime(?dt1) ∧ DetectTime(?dt2)∧
SOURCE(?s1) ∧ SOURCE(?s2) ∧ TARGET(?tar1) ∧ TARGET(?tar2) ∧ CLASSIFIC(?cl1) ∧ CLASSIFIC(?cl2)∧
ASSESSMENT(?as1) ∧ ASSESSMENT(?as2) ∧ stringEqual(?s1,?s2) ∧ stringEqual(?tar1,?tar2)∧
stringEqual(?cl1,?cl2) ∧ stringEqual(?as1,?as2) ∧ subtractTimes(?td,?dt1,?dt2)∧
lessThan(?td,"5s") −→ sqwrl:select(?a1)

Alert Verification. Alert verification is the process of recognising and reducing
non-relevant alerts which refer to the failed attacks. The major reason of attack
failure is the unavailability of the contextual requirements of the attack, i.e.
the absence of required vulnerabilities in the attack context. Identifying failed
attacks allows the correlation engine to reduce the effects of non-relevant alerts in
its decision process. Rules 2 and 3 within the correlation engine of our framework
perform alert verification based on the targeted system vulnerabilities:

Rule 2

ALERT(?a) ∧ HOST(?h) ∧ OS(?o) ∧ VULNERABILITY(?v) ∧ CLASSIFICATION(?cl) ∧ REFERENCE(?ref)∧
hasTarget(?a,?h) ∧ hasClassific(?a,?cl) ∧ hasOS(?h,?o) ∧ hasReference(?c,?ref)∧
hasVulnerability(?o,?v) ∧ hasName(?ref,?n1) ∧ hasName(?v,?n2) ∧ stringEqual(?n1,?n2)

−→ sqwrl:select(?a)

Rule 3

ALERT(?a) ∧ HOST(?h) ∧ APP(?ap) ∧ VULNERABILITY(?v) ∧ CLASSIFICATION(?cl) ∧ REFERENCES(?ref)∧
hasTarget(?a,?h) ∧ hasClassific(?a,?cl) ∧ hasApp(?h,?ap) ∧ hasReference(?c,?ref)∧
hasVulnerability(?ap,?v) ∧ hasName(?ref,?n1) ∧ hasName(?v,?n2) ∧ stringEqual(?n1,?n2)

−→ sqwrl:select(?a)

Attack thread reconstruction. Thread reconstruction is the process of merg-
ing a series of alerts that refer to an attack launched by one attacker against a
single target, and is another step in the alert correlation process of [12]. Similarly
to the alert fusion process, the alerts should happen in the same time window
to be correlated. Rule 4 performs the thread reconstruction process:

Rule 4

ALERT(?a) ∧ HOST(?h1) ∧ HOST(?h2) ∧ TIME(?t1) ∧ TIME(?t2) ∧ hasSource(?a,?h1)

∧ hasTarget(?a,?h2) ∧ hasDetectTime(?a,?dt) ∧ greaterThanOrEqual(?dt,?t1)∧
lessThanOrEqual(?dt,?t2) −→ sqwrl:select(?a,?h1,?h2)

In summary, we can see how the first component of our canonical description
is implemented by the correlation engine by applying first Rules 1, 2 and 3 to
reduce non-relevant alerts. For this purpose, it retrieves required information
from the alert, context, and vulnerability ontologies. Next, and for those alerts
and scenarios that are relevant attack thread reconstruction is performed by
applying Rule 4, where the engine attempts to make a mapping between the
filtered alerts and the steps of attacks in the attack ontology. Once it finds any
mapping between the two ontologies, it will output the whole attack scenario.
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4 Implementation and Evaluation

In order to illustrate and validate our approach, we constructed an example refer-
ence implementation using various ontology representation and reasoning tools,
and used it to conduct some simple security analysis on the well-known UNB
ISCX and DARPA 2000 datasets. the capabilities and flexibility of framework,
by describing how it is used in two distinct case studies.

4.1 Reference Implementation

To illustrate the integration of distinct IDS, we have selected the Snort [19]
and IBM RealSecure [20] NIDS as our alert sensors. As an alert integration
tool, we use Prelude [21], which is an agent-less, universal, Security Information
Management System (SIM, a.k.a SIEM).

We use the Protégé ontology editor and knowledge acquisition system to
design and implement the ontologies using the Ontology Web Language Descrip-
tion Logic (OWL-DL). We instantiate the above-mentioned ontologies from
information coming from the alert integration component, the contextual infor-
mation gathering sensors such as Nessus [22] and Nmap [23], the CVE vulner-
ability database, and the designed attack scenarios. and relational databases.
We use the DataMaster plug-in [24] in order to transfer data from relational
databases and the XML Tab plug-in to transfer data from a XML files.

Finally, we utilise the Pellet plug-in [25] as a reasoner for OWL-DL, the Jess
rule engine [26] as SWRL rule compiler, and SQWRL [27] in order to query the
ontologies for various purposes.

4.2 Case Study 1: Island-Hopping Attacks

As our first case study, we describe an instance of island-hopping attack scenario
described in [12] which is part of the UNB ISCX Intrusion Detection Evalua-
tion Dataset [28]. As shown Fig. 3, in this scenario the attacker employs the
Adobe Reader util.printf() buffer overflow vulnerability (CVE-2008-2992)
to execute arbitrary code with the same privileges as the user running it.

To launch the attack, the attacker creates a malicious PDF file using Metas-
ploit (for example), and embeds a Meterpreter reverse TCP shell on port 5555
inside it. Then, the attacker sends a system upgrade email including the PDF
file on behalf of admin@[. . . ] to all the users of the testbed. Through user5, who
initiates the first session (alert 1), the attacker starts to scan potential hosts on
two subnets 192.168.1.0/24 and 192.168.2.0/24 (alert 2). User12 is identified as
running Windows XP SP1 with a vulnerable SMB authentication protocol on
port 445 (CVE-2008-4037) (alerts 3 and 4). The attacker exploits this vulnera-
bility to capture user12 (alert 5), and a scan is performed from this user to the
server subnet (192.168.5.0/24) (alert 6). This scan identifies a Windows Server
2003 running an internal Web application using MS SQL Server as its backend
database with only port 80 opened. This leads to the use of Web application
hacking techniques such as SQL injection. Finally, the attacker compromises the
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Fig. 3. An instance of island-hopping attack

Table 1. Alerts generated by alert sensors in the island-hopping attack scenario

Alert Name Sensor Date Source Target Tag
ID

1 Local exploit HIDS 6/13/10 16:02:20 192.168.1.105 192.168.1.105 Step 1
2 Scanning NIDS 6/13/10 16:42:24 192.168.1.105 192.168.1.0/24 Step 2

192.168.2.0/24
3 Windows file NIDS 6/13/10 17:20:32 192.168.1.105 192.168.2.112 Step 3

sharing
4 Windows file NIDS 6/13/10 17:34:32 192.168.1.105 192.168.2.112 Step 3

sharing
5 Local exploit HIDS 6/13/10 17:50:24 192.168.2.112 192.168.2.112 Step 3
6 Scanning NIDS 6/13/10 18:02:37 192.168.2.112 192.168.5.0/24 Step 4
7 HTTPWeb NIDS 6/13/10 18:19:41 192.168.2.112 192.168.5.123 Step 4
8 SQLInjection AIDS 6/13/10 18:20:19 192.168.5.123 192.168.5.123 Step 5

target system (alerts 7 and 8). Table 1 presents a summary of the alerts, and
indicates their corresponding steps.

In order to correlate the alerts generated by alert sensors during the above
scenario, first, the alert integration component integrates all received alerts.
Then, the integrated alerts are transferred into the alert ontology. Addition-
ally, we manually populate vulnerability and context ontologies based on the
published documents related to the UNB ISCX dataset. Therefore, the Adobe
Reader util.printf() vulnerability and others that might be present in the IT
infrastructure are input into the vulnerability ontology. Contextual information
about the existing hosts (IP addresses, open ports, available services, etc.), ser-
vices and users are also manually input into the context ontology. In this case,
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Fig. 4. The island-hopping attack graph detected by the proposed framework

this includes the information about the three compromised hosts (IP addresses
192.168.1.105, 192.168.2.112, and 192.168.5.123), their open ports (i.e. 5555 and
445).

Next, the correlation engine correlates the existing information within the
ontologies. For this purpose, we first use the Rules 1, 2 and 3 to eliminate non-
relevant alerts. Then, using the following rule we reconstruct the attack scenario.

Rule 5

ATTACK(?at) ∧ hasName(?at,"InsiderAttack1") ∧ ALERT(?a1) ∧ CLASSIFICATION(?cl1) ∧ HOST(?h1)∧
REFERENCE(?ref1) ∧ hasTarget(?a1,?h1) ∧ hasClassific(?a1,?cl1) ∧ hasReference(?cl1,"CVE-2008-2992")

∧ ALERT(?a2) ∧ hasSource(?a2,?h1) ∧ hasName(?a2,"Scanning") ∧ ALERT(?a3) ∧ HOST(?h2)∧
CLASSIFICATION(?cl2) ∧ REFERENCE(?ref2) ∧ hasTarget(?a2,?h2) ∧ hasClassific(?a2,?cl2)∧
hasReference(?cl2,"CVE-2008-4037") ∧ ALERT(?a4) ∧ hasSource(?a4,?h2) ∧ hasName(?a4,"Scanning")∧
ALERT(?a5) ∧ hasSource(?a5,?h2) ∧ hasName(?a5,"SQLInjection")

−→ sqwrl:select(?a1,?a2,?a3,?a4,?a5,?at)

Rule 5 correlates alert and attack ontologies, and attempts to discover corre-
sponding alerts for each step of the attack. If it finds at least one match regard-
ing each step, the rule will be successful in detecting the whole attack scenario.
Figure 4 represents the result of applying Rule 5 to the ontologies, showing that
ONTIDS should be able to reconstruct the attack.

4.3 Case Study 2: Recon-Breakin-Escalate Attacks

As the second case study, we evaluate the proposed alert correlation framework
using the DARPA 2000 dataset LLDDOS 1.0 scenario [29]. LLDDOS 1.0 is a
multi-step scenario corresponding to a Distributed Denial of Service (DDoS)
flooding attack. The attack has 5 phases and it takes about three hours to
be completed. We again use both the RealSecure and Snort NIDS as base our
alerts sensors to detect all the steps of the attack. Snort outputs around 1,211
raw alerts for the LLDDOS 1.0 dataset, but it does not detect the installation
phase of the DDoS attack (i.e. phase 4). On the other hand, and as is described
in [30], RealSecure outputs 924 raw alerts for the same dataset, corresponding
to the 22 alert types shown in Table 2. However, it does not output any alerts
related to ICMP pings (i.e. phase 1). Consequently, the combination of Snort
and RealSecure can detect all phases of the attack. Nonetheless, just using a
combination of both IDS alerts with a simple OR rule will result in a significant
number of redundant alerts and false positives, as we will see. With ONTIDS,
we expect to have lower redundancy, and fewer non-relevant alerts and false
positives.
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Table 2. Alert types generated by ISS RealSecure based on the DARPA 2000 dataset

ID AlertType ID AlertType ID AlertType

1 RIPExpire 9 Admind 17 SSH Detected
2 RIPAdd 10 Sadmind Ping 18 Email Debug
3 Email Ehlo 11 Email Almail Overflow 19 TelnetXdisplay
4 TelnetTerminaltype 12 HTTP Java 20 TelnetEnvAll
5 FTP User 13 Sadmind Amslverify Overflow 21 Port Scan
6 FTP Pass 14 Mstream Zombie 22 Stream DoS
7 FTP Syst 15 Rsh
8 HTTP Shells 16 HTTP Cisco Catalyst Exec

In the second step, Prelude converts all the received alerts into the IDMEF
format, and transfers the integrated alerts into the alert ontology as its instances.
We manually populate the context and vulnerability ontologies based on the
information existing in the published documents related to the DARPA 2000
dataset. Thus, the Solaris sadmind vulnerability (CVE-1999-0977) and others
existing vulnerabilities in the underlying network are transferred into the vul-
nerability ontology. The same is done with contextual information about the
existing hosts and users, in this case including the three compromised hosts (IP
addresses 172.16.115.20, 172.16.112.50, 172.16.112.10), and their open ports (i.e.
telnet port 23) and users (e.g. hacker2).

As before, the correlation engine uses Rules 1–3, to eliminate redundant and
non-relevant alerts. Based on our analysis, 32.7 % of all alerts were generated by
both Snort and IIS RealSecure. In our case, we report these alerts as a single
alert (in order to reduce redundancy) since both IDS agree. Alerts reported by
only one IDS are then further analysed by attempting attack reconstruction on
the 5 phases of the LLDDOS 1.0 attack scenario, by using the following rule:

Rule 6

ATTACK(?at) ∧ hasName(?at,"LLDDOS1") ∧ ALERT(?a1) ∧ ALERT(?a2) ∧ ALERT(?a3) ∧ ALERT(?a4)∧
ALERT(?a5) ∧ ALERT(?a6) ∧ ALERT(?a7) ∧ HOST(?h1) ∧ hasName(?a1,"Scanning") ∧ hasTarget(?a1,?h1)∧
hasService(?h1,"ICMP")∧hasName(?a2,"Sadmind Ping")∧hasName(?a3,"Sadmind Amslverify Overflow")∧
hasName(?a4,"Admind") ∧ hasName(?a4,"Rsh") ∧ hasName(?a4,"MStream Zombie")∧
hasName(?a4,"Stream DOS") −→ sqwrl:select(?a1,?a2,?a3,?a4,?a5,?a6,?a7,?at)

Rule 6 correlates alert and attack ontologies, and discovers corresponding
alerts for the each step of the attack. If at least one match is found for each step,
the rule will be successful in detecting the whole attack scenario. According to
this rule, our results indicate that 91.08 % of the alerts were false positives, and
only 8.92 % of the alerts were true positives.

Table 3 summarises our results. Since both Snort and ISS RealSecure only
detect a few of the 33,787 attack events in Phase 5 (launching DDoS), their
total false negative rates are quite high. The recall column consequently reports
low values for both sensors and ONTIDS. On the other hand, ONTIDS does
considerably well at reducing false positives, in fact reducing it to 0.
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Table 3. Experimental results based on the DARPA 2000 dataset

IDS Redundant alerts (%) FP TP FN Precision Recall F-measure

Snort 0.00 1118 93 33814 0.07 2 × 10−3 2 × 10−3

RealSecure 0.00 870 54 33853 0.05 10−3 10−3

ONTIDS 32.7 0 123 33784 1.00 3 × 10−3 5 × 10−3

5 Conclusions

In this paper, we introduced ONTIDS an ontology-based automated alert cor-
relation framework to try to benefit from the combined advantages of previous
alert correlation approaches (including context awareness), while providing a
level of flexibility that would allow it to be used in the many different deploy-
ment scenarios that security analysts are likely to face.

The main idea behind ONTIDS is to use and leverage a template ontology
containing base classes and some subclasses for the concepts of IT asset con-
text, alert, vulnerability and attack. The correlation engine is then implemented
using logic rules written in Semantic Web Rule Language (SWRL) and Semantic
Query-Enhanced Web Rule Language (SQWRL) based on the OWL description
logic (OWL-DL). The ontologies and correlation rules described here are generic
enough to (i) implement as special cases other existing correlation approaches
such as that of Valeur et al., and, (ii) be applied with minimal changes to dif-
ferent analysis scenarios, such as in the two case studies demonstrated.

We have demonstrated the use of the ONTIDS alert correlation framework in
two quite different case studies involving considerably distinct attack scenarios.
More important than the reduction in false positives (in this somewhat contrived
evaluation scenario), the point of this exercise was to show the level of flexibility
of such an approach. The fact that the same correlation Rules 1–3 are used for
the context-based alert filtering in both scenarios deceptively hides the fact that
the vulnerability and context instances in both cases are quite different as they
come from different sources, and hence have different attributes and properties.
As security analysts start to use ONTIDS, we expect that these ontologies will
naturally expand to include new subclasses capturing the idiosyncrasies of the
systems being monitored, the various types of sensors monitoring them, and
richer and more complex attack models and vulnerabilities.

In conclusion, we hope to continue to evaluate its viability and usefulness
by conducting field studies with data collected from real-world systems and
analysed by real security analysts. On the one hand, this will force us to test the
flexibility of the framework by incorporating richer context and sensor ontologies
(possibly stretchning the limits of abstraction), while also having to express
richer correlation algorithms, possibly based on more sophisticated attack models
and description languates such as LAMBDA or STATL.
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