
Chapter 9
Learning in Nonstationary and Evolving
Environments

Previous chapters have developed methods and methodologies for solving specific
aspects involving intelligent processing on embedded systems and presented tech-
niques for their performance assessment. However, if we look carefully at those
methods, we can observe that we have commonly assumed that the process gener-
ating the data acquired by our sensors was not changing with time (stationarity or
time invariance assumption).

We say that a data-generating process is stationary when generated data are i.i.d.
realizations of a unique random variable whose distribution does not change with
time. Thus, stationarity applies to stochastic processes. We say that a process is time
invariant when its outputs do not explicitly depend on time. Less formally, in the
former case the parameters characterizing the pdf do not change over time, in the
latter, the transfer function of the-possibly dynamic-system does not have an explicit
time dependency.

In some cases, nonstationarity and time invariance are related concepts. For
instance, we will see in the chapter that inspection for time variance in some cases
can be achieved by extracting features from the transfer function and verifying a
potential change in stationarity. Stationarity was requested either directly by requir-
ing i.i.d data streams or features, or indirectly, by requesting that the application or
the model learned from the data was fixed before being implemented in the embed-
ded system. Stationarity/time invariance is requested by performance assessment
methods, e.g., the PACC framework, where the given Lebesgue measurable func-
tion, albeit affected by uncertainty, is fixed. The same holds for a robustness analysis
that initially operates on a stationary/time invariant processing flow.

All in all, we mainly assume stationarity/time-invariance in our applications but
are aware that such an assumption represents a first order, yet in many cases, a
reasonable hypothesis for the data-generating process.

However, real-world processes are often affected by concept drift, i.e., changes in
their inherent structure, which results in having the process departing from its initial,
stationary (or time invariant) conditions. Concept drift could be due, for example, to a
natural evolution of the environment, changes in the operational schema of a system,

C. Alippi, Intelligence for Embedded Systems, DOI: 10.1007/978-3-319-05278-6_9, 211
© Springer International Publishing Switzerland 2014

212 9 Learning in Nonstationary and Evolving Environments

aging effects (e.g., structural changes in the transduction mechanism of a sensor),
as well as faults affecting a cyber-physical system (e.g., abrupt or slowly developing
drift). Nonstationarity and time variance can then be modeled as instances of concept
drift. We have gradual concept drift when concept drift continuously evolves with
time (e.g., a drift type of evolution). Conversely,we have an abrupt concept driftwhen
concept drift is characterized by a sudden abrupt type of change (e.g., an abrupt type
of evolution).

As an example, assume that the data-generating process admits a specific para-
metric expression f (θ, x) ∈ Y ⊂ R, θ ∈ Θ ⊂ R

d , x ∈ X ⊂ R
l , which can be

either the transfer function of the system or the pdf in case of random variables. Let
us consider the situation where the parameter vector is affected by a slowly devel-
oping concept drift, that shifts a given θ0 toward a perturbed state, characterized by
parameter vector θ0 + δθ belonging to the neighborhood of θ0. By expanding with
Taylor differentiable f (θ, x) in θ0 we have that

f (θ0 + δθ, x) = f (θ0, x) + ∂ f

∂θ

T

|θ0δθ + O(δ2θ) (9.1)

with ∂ f
∂θ

and θ column vectors. The stationarity/time invariance hypothesis assumes
that no perturbations affect the system or that the perturbation is negligible (the
gradient term is negligible compared with the driving term f (θ0, x)). Expansion
given in (9.1) has been written for a slowly developing concept drift continuously
affecting the parameters. However, nothing changes if concept drift introduces an
abrupt type of perturbation of small magnitude on θ0.

Clearly, if we want to design effective intelligent embedded systems they must be
able to deal with time invariant/nonstationary situations to guarantee good perfor-
mance also in situations where the system or the environment where they operate in
evolves with time. We name learning in a nonstationary or evolving environments
all those aspects involving learning mechanisms for evolving environments.

The literature addressing learning in nonstationary or evolving environments clas-
sifies existing approaches as passive or active depending on the learning mechanism
adopted to deal with the process evolution, e.g., [77].We say that the approach is pas-
sivewhen the application undergoes a continuous trainingwithout explicitly knowing
whether concept drift has occurred or not. Differently, within an active approach a
triggering mechanism, e.g., a Change Detection Test (CDT), is considered to detect
a change in the process generating the data and the application evolves and adapts
only when the change has been detected.

This chapter presents passive and active methods for learning in an evolving
environment. At first we introduce the learning approaches, detailing afterwards the
key elements needed for a successful adaptation.

9.1 Passive and Active Learning 213

9.1 Passive and Active Learning

Learning in an evolving environment is specialized in the literature according to the
chosen learning method, the way available data instances are used in the training
process, and the type of envisioned application. Most learning methods follow either
the active or the passive approach, depending on the way the available data instances
are used both in the training phase and in the operational life. In nonstationary envi-
ronments, both passive and active methods can be pursued to cope with concept drift:
the most suitable method typically depends on the type of envisioned application.

9.1.1 Passive Learning

Since in passive approaches neither a priori nor derived information is available about
the potential concept drift, we are completely blind about the fact a concept drift had,
has, or will happen. Adaptation strategies must then be compulsive and carried out
passively, without taking advantage of the information provided by incoming data.
In fact, as new data come the application is reconfigured, adapted, or relearned
depending on its nature and constraints. For instance, if a model M1 is initially built
from data, then a sequence of models M2, . . . Mt is generated over time as data come
during the operational life.

Passive methods can now be classified depending on the way incoming data are
processed:

• Online learning. In online learning the new model Mt is obtained by updating the
previous model Mt−1 with data acquired at time t . To derive the online learning
procedure we consider at first the traditional, offline, training mechanism given in
Sect. 3.4.1. There the model parameters in θ are estimated over a training set Z N

by minimizing the empirical risk

VN (θ, Z N) = 1

N

N∑

i=1

L (yi , f (θ, xi))

leading to the estimate

θ̂ = argminθ∈Θ VN (θ, Z N).

Without any loss in generality, assume that function minimization is carried out
by considering the straight backpropagation procedure implementing a simple
gradient descent algorithm. Parameter θ at iteration i+1, i.e., θi+1 can be expressed
as

θi+1 = θi − η
∂VN (θ, Z N)

∂θ
|θi

http://dx.doi.org/10.1007/978-3-319-05278-6_3

214 9 Learning in Nonstationary and Evolving Environments

where η is the learning rate. Training stops when some terminal conditions are
met.
In online learning, the application-model is continuously trained by exploiting new
instances and VN (θ, Z N) simplifies as

VN (θ, {(xi , yi)}) = L (yi , f (θ, xi))

where (xi , yi) is the running supervised sample provided at time i . Parameters
update becomes

θi+1 = θi − η
∂L (yi , f (θ, xi))

∂θ
|θi (9.2)

and η is a sufficiently small positive scalar in the simplest version of backprop-
agation. Many variants exist; the interested reader can refer to [100] for further
details. Not rarely, the loss function is the squared function L(yi , f (θ, xi)) =
(yi − f (θ, xi))

2. It should be noted that, at each time instant i + 1, a new couple
(xi+1, yi+1) is given and the procedure is reiterated. The training algorithm is
shown to converge to the optimal value of parameters minimizing the empirical
risk, provided that the loss function is quadratic and a sufficiently small η is given.
Since a sample-by-sample training method can be a time-consuming opera-
tion, a batch modality can be introduced to mitigate such an issue and sta-
bilize the learning procedure. Thus, model parameters are updated asynchro-
nously, at specific time events when a batch of n data is made available. All
data instances in the batch are considered to have the same relevance and could
be gathered from—possibly overlapping—n-dimensional data windows, even if
the overlapping mechanism does not find any justifiable reason. If we denote by
Zn,i = {(xi , yi), (xi−1, yi−1), . . . (xi−n+1, yi−n+1)} the batch of n data at time
event i , then the learning procedure following the (9.2) becomes

θi+1 = θi − η
∂VN (θ, Zn,i)

∂θ
|θi . (9.3)

• Ensemble learning. In ensemble learning, several individual models are activated
at the same time instant, and the output of the ensemble is obtained by aggregating
the outputs of each individual model. There are no specific restrictions about the
individual models, which could be trained and updated during the operational life
according to an online learning scheme. We comment that models to be selected
neither need to belong to the same model family (the dimension of the parameter
vector θ may vary) nor the same model hierarchy (models are generic entities not
constrained to belong to the same model class).
Most often, the aggregation consists in averaging the models’ outputs, namely the
ensemble provides a weighted average of the outputs of the individual models.
However, several different aggregation mechanisms have been considered in the
rich literature, which does not necessarily address the issue of learning in evolving

9.1 Passive and Active Learning 215

environments. In fact, the use of ensemble of models is shown to be beneficial
in many circumstances and this claim has theoretical justifications, e.g., [240],
where it is proven that an ensemble of models behaves better than the single
generic model, even though not necessarily better than the best performing one
(which is however hard to identify in a noisy environment).
Let us denote by M = {Mi (·), i = 1, . . . , k} the set of individual models compos-
ing the ensemble. Since the simplest aggregation mechanism in ensemble learning
consists in a weighted average, the output of the ensemble in correspondence with
instance x is

y(x) =
k∑

i=1

wi Mi (x)

where {wi , i = 1, . . . , k} are suitably chosen weights typically yielding a linear
convex combination of the individual models’ outputs.
A viable option to cope with concept drift is to assign larger weights to the indi-
vidual models that have been more recently trained or updated. This method is
effective in developing gradual concept driftwhere the time locality property surely
holds. Differently, if we have an abrupt type of concept drift, then we introduce
a spurious effect due to the “step” introduced by the abrupt change. The spurious
effect vanishes after k time events if each time event is associatedwith a newmodel
(after k time events models will be associated with data affected by the concept
drift only and, therefore are coherent). In the specific case where each individual
model Mi is trained at time event i in an online learning manner, the ensemble
may act as a windowing over the k most recent models, mitigating or discarding
those models older than k events.
Weights aggregation can be set in different ways, depending on the a priori infor-
mation we have about the application or the developing class of concept drift.
Within an instance selection framework, it is possible to select at first the indi-
vidual models to be aggregated. For instance, we might select only l < k models
which are better suited for describing the current observation. The ensemble would
provide output

y(x) =
∑

i∈A
wi Mi (x),

where A is a set of cardinality l containing the indexes of the individual models
selected. In this case we are able to better deal with an abrupt type of concept drift,
still dealing with developing ones.
In other situations, we might set the weights depending on the accuracies of the
individual models evaluated on a common validation or test set. For instance, if
model Mi (x) is characterized by a mean squared error in validation or test σ 2

i then
the weight wi can be chosen as

216 9 Learning in Nonstationary and Evolving Environments

wi =
1
σ 2

i∑k
j=1

1
σ 2

j

.

When all the individual models need to be equally treated or when there is no a
priori information about the effectiveness of each individual model, all weights
are naturally set to 1

k .
Weights can undergo adaptation following the evolution of the environment.

9.1.2 Active Learning

Active learning is a learning paradigm that assumes interaction between the learner
and an oracle or some other information source. In the case of learning in nonstation-
ary environments the oracle can be an automatic triggering mechanism able to detect
concept drift. Such a triggering mechanism typically operates on features extracted
from the data, that are assumed to be stationary when the data-generating process
is stationary or time invariant, but are expected to propagate the effects of concept
drift once a change arises. Typically, such triggering methods are change-detection
tests (CDT) or Change-Point Methods (CPM), which will be described in detail in
the rest of the chapter.

Once concept drift is detected the application/model/service must be retrained.
We consider, as an illustrative example, the embedded system setup of Fig. 9.1 where
the data stream provided by sensors feeds the application/service and is inspected
by either a CDT or a CPM. When the trigger detects a change in the data stream,
the application/service is reconfigured/retrained by means of cognitive mechanisms,
possibly exploiting additional data coming from nearby sensors, when these are
inserted in a network. We refer to this paradigm as detect and react.

For instance, if an agent detects that the temperature sensor of my mobile is no
more accurate (as a consequence of concept drift) an information exchange modality
can be activated: the App will inspect nearby weather stations or other smartphones
composing the local network to provide an estimate of the correct temperature.
Calibration and compensation mechanisms are introduced as a reaction aspect on our
unit.Also, the triggeringmechanismmight need to be retrained since its configuration
might be obsolete having been configured in an old state. If no change is detected no
reconfiguration is requested at the triggering mechanism and the application level.

When a network of distributed embedded systems is available, the situation is
that depicted in Fig. 9.2. In such a case, intelligence can be present both at the
embedded system and at the uppermanagement level of the distributed system,where
the information is collected and processed for decision making. If this is the case,
communication among the components of the intelligent systemmust be present and
activated to deliver relevant information.

The most simple triggering mechanisms are deterministic and based on fixed
thresholds. When the features exceed the thresholds, a change is detected.

9.1 Passive and Active Learning 217

Fig. 9.1 The overall active
detect and react methodology
for an intelligent embed-
ded system. A triggering
mechanism inspects for con-
cept drift (e.g., through a
CDT). When concept drift
is detected the application in
execution must be adapted to
track the change and, conse-
quently, the CDT is reconfig-
ured on the new operational
state

Example: A Fixed Threshold

Consider a scalar feature x which is distributed as an i.i.d. random variable having
expectation μx and variance σ 2

x . The feature could be the average classification
error computed over time in a classification scenario, a measurement, or the result
of an uncertainty-affected computation. Changes could be detected in a straightfor-
ward manner by setting a threshold T = λσx , which, according to the Tchebychev
inequality, implies that the probability of x exceeding T in stationary conditions is
less than 1

λ2
. All comments and derivations given in Chap.3 also apply here.

That said, when |x −μx | > λσx the threshold is violated and the trigger provides
a positive response by detecting a change. The situation is that given in Fig. 9.3 where
a threshold (the dashed line) is set. Once instances (samples) are above the threshold
a change is detected.

However, since the realizations of x are independent, the probability of having
false positives after n observations is 1 − (1 − 1

λ2
)n , which rapidly tends to 1 as

n grows. By referring to Fig. 9.4 false positives are those data instances above the
threshold line not associated with a true change.

We comment that a false positive might be an unpleasant—but not dramatic
event—within a “detect and react” mechanismwhere the detection of concept drift is
followed by a reaction that forces the application to undergo an adaptation phase. In
fact, when false positives arise the activated reaction will introduce an unnecessary
and undue computation with the effect that a new model/application/service will be

http://dx.doi.org/10.1007/978-3-319-05278-6_3

218 9 Learning in Nonstationary and Evolving Environments

Fig. 9.2 The overall active detect and react methodology for a distributed intelligent system. The
application/service is distributed and takes advantage of the information provided by the units
composing the distributed platform. Adaptation can operate, with a simple strategy, at the embedded
systems level and, at the same time, at the distributed network layer where more sophisticated
algorithms can be executed. The outcome of the algorithm introduces adaptation at the distributed
application layer and, thanks to remote reprogrammability, to the embedded distributed units

Fig. 9.3 Triggering with a
fixed threshold: a change is
detected when observation x
is above a threshold value,
here set to 3

0 20 40 60 80 100 120 140 160 180 200

2

1

0

1

2

3

4

5

6

7

8

Sample

O
bs

er
va

tio
n

Observation

Threshold

configured even though it was not necessary. Running such unnecessary computation
might be not appealing in embedded systems driven by strict real-time execution con-
straints and/or whenever energy consumption is an issue. As such, we should try to
keep the false positive rate as small as possible.

In some other applications, a false positive might be a strongly unpleasant event.
For instance, think of the case where a vision system detected in an airport a face

9.1 Passive and Active Learning 219

Fig. 9.4 Triggering with a
fixed threshold: a false positive
arises in correspondence to
the sample over the threshold

0 20 40 60 80 100 120 140 160 180 200

3

2

1

0

1

2

3

Sample

O
bs

er
va

tio
n

Observation

Threshold

of a “dead or alive wanted” person that was you! Another situation where false
positives are not welcome is associated with fault detection. Here, false positives
will erroneously claim that concept drift is associated with a fault in the plant, in a
sensor, in a system module when the device is working properly. For the sensitivity
and relevance of the issue we will address the fault diagnosis aspect in Chap. 10
where intelligence will play a main role.

Tomitigate the above problemwemight decide to introduce filters, e.g., a median,
at the outputs of the triggering mechanism, hence implicitly assuming that if concept
drift arises it will be of permanent and not of transient type. Although this solution is
simple and might be effective in some applications and under specific assumptions
about the nature of the fault, for others we might need a more accurate statistic-based
triggering mechanism reducing false positives and negatives.

More sophisticated stochastic triggering mechanisms of CPM and CDT type will
be presented in Sect. 9.2. We anticipate that the main difference between the two
triggering methods resides in the way data are processed for decision making. CPMs
operate on a fixed set of data to take a decision about the presence of concept drift,
although some extensions have been proposed tomitigate the problem so as to address
a sequential analysis. As such they are mostly inadequate to process streams of data.
Moreover, the CPM computational cost might become prohibitive, making it hardly
usable in embedded systems. On the other hand, CPMs are very effective in detecting
concept drift, the false positive rate can be controlled at design time and latency in
detection is low (CPMs show to be very responsive). Conversely, CDTs are able to
operate at the data stream level, their computational cost is contained and, hence,
suitable for intelligent embedded systems. The cost we have to pay is associated with
an increased latency and the difficulty to guarantee a fixed false positive rate.

Tables9.1 and 9.2 list the main stochastic triggering methods suggested in the
related literature by classifying them according to the parametric/non parametric
feature, respectively. Parametric tests require knowledge of the probability density

http://dx.doi.org/10.1007/978-3-319-05278-6_10

220 9 Learning in Nonstationary and Evolving Environments

Table 9.1 Parametric triggering mechanisms for concept drift detection

Name Test family Change
(A/D)

Entity under
test

Type Notes

Z-test Statistical
hypothesis test

Abrupt Mean 1D Assumes normality
and known variance
[89]

t-test Statistical
hypothesis test

Abrupt Mean 1D Assumes normality
[89]

F-test Statistical
hypothesis test

Abrupt Variance 1D Assume normality
[89]

Hotellings
T-square
statistic

Statistical
hypothesis test

Abrupt Mean ND Assumes normality
[92]

SPRT Sequential
hypothesis
Test

Abrupt Pdf 1D Minimizes the stop-
ping time, nonpara-
metric extensions
are available [88]

CUSUM Sequential
change-point
detection

Abrupt Pdf ND Minimizes theworst
detection latency
[87]

Parametric
CPM

Sequential
change-point
detection

Abrupt Depends on
the statistics
used

1D/ND Sequential version
of a change-point
method [93]

function and/or prior information about the concept drift, whereas nonparametric
tests are more flexible and require little—mostly reasonable from the application
point of view—hypotheses.

In detail, the tables present the family to which the method belongs, either a
statistical hypothesis test designed on a given data set or sequential and, as such,
suitable to address data stream-based applications. The “change” column shows
which type of concept drift the method has been designed for while the “entity under
test” column presents the key features used by the test to operate. “Type” refers to
the nature of numerical data the test can receive, which is either scalar (univariate
test, 1D) or multidimensional (multivariate test, ND). Finally, key references to the
test as well as comments are given in the last column to complete the overview.

9.2 Change Point Methods

Change point methods inspect a given data sequence to check its stationary, i.e.,
whether the samples composing the sequence are independent realizations of a unique
random variable or not. The problem is solved by checking if the sequence contains
a change point, i.e., a specific time location beyond which the data distribution has
changed.

9.2 Change Point Methods 221

Table 9.2 Non parametric triggering mechanisms for concept drift detection

Name Test family Change
(A/D)

Entity under
test

Type Notes

Mann-Whitney
U test

Statistical
Hypothesis
test

Abrupt Median 1D Rank Test Error
based [186]

Kolmogorov-
Smirnov test

Statistical
Hypothesis
test

Abrupt Pdf 1D Also goodness of fit
test [90]

Mann Whitney
Wilcoxon test

Statistical
Hypothesis
test

Abrupt Pdf 1D Rank-based [186]

Kruskal-Wallis
test

Statistical
Hypothesis
test

Abrupt Median 1D Mann-Whitney
based [91]

Pearson’s chi-
squared test

Statistical
Hypothesis
test

Abrupt Pdf 1D Goodness of fit and
test of independence
[80]

Distribution-
Free CUSUM

Sequential
change-point
detection

Abrupt Median 1D Nonparametric
extension of the
CUSUM test [86]

Mann Kendall Sequential
change-point
detection

Abrupt Mean 1D Designed to analyze
climate change [79]

Multi-chart
detection algo-
rithm

Sequential
change-point
detection

Abrupt Median 1D / ND Detection of intru-
sion systems [85]

CI-CUSUM Sequential
change-point
detection

Abrupt,
Drift

PDF, sample
moments

1D/ND Computational
intelligence based
[84]

ICIchange
detection test

Sequential
change-point
detection

Abrupt,
Drift

Mean and
variance

1D Exploits the Inter-
section of Confi-
dence Interval (ICI)
rule [83, 94]

Hierarchical
change detec-
tion test

Sequential
change-point
detection

Abrupt,
Drift

Mean and
variance

1D Based on a hierar-
chy of change detec-
tion tests [82]

Shiryaev-
Robert Exten-
sion

Sequential
change-point
detection

Abrupt Median 1D Nonparametric
extension of the
Shiryaev-Robert
test [81]

Mood Statistical
Hypothesis
test

Abrupt Dispersion 1D Based on ranks [93]

Lepage Statistical
Hypothesis
test

Abrupt Location
and disper-
sion

1D sum of Mann-
Whitney and Mood
statistic [93]

Nonparametric
CPM

Sequential
change-point
detection

Abrupt Depends on
the statistic
used

1D Sequential version
of a change-point
method [93]

222 9 Learning in Nonstationary and Evolving Environments

9.2.1 Change Points

We say that given data sequence

X = {x(t), t = 1, . . . , n},

contains a change point at time/sample τ < n if subsequences

Aτ = {x(t), t = 1, . . . , τ }, (9.4)

Bτ = {x(t), t = τ + 1, . . . , n},

are distinct i.i.d. realizations of two different unknown random variables distributed
as F0 and F1. The problem detection can be rewritten as

τ is a change point if x(t) ∼
{
F0, for t < τ

F1, for t ≥ τ
, (9.5)

The change point problem is then converted into an equivalent problem asking if
Aτ and Bτ are sets generated from the same or different distributions.

9.2.2 Set Dissimilarity

A straightforward solution to determine whether a given τ is a change point or not
consists in formulating a two-sample hypothesis test on the subsequences Aτ and
Bτ . In the hypothesis test, the null (H0) and the alternative (H1) hypotheses are
composed as

H0 : x(t) ∼ F0 ∀t (9.6)

H1 : x(t) ∼
{
F0, if t < τ

F1, if t ≥ τ
. (9.7)

To test the above hypothesis we need a statistic T , assessing the dissimilarity
between Aτ and Bτ defined in (9.4). Denote by Tτ the value of such statistic T

Tτ = T (Aτ ,Bτ), (9.8)

in comparingAτ andBτ . Following a standard hypothesis testing procedure, H0 can
be rejected when the value of Tτ exceeds a suitable threshold hn,α , corresponding
to a given confidence level α and depending on n. In this case, it is possible to claim

9.2 Change Point Methods 223

that Aτ and Bτ are generated from different distributions (and X is, hence, not
stationary), taking into account the percentage α of false positives.

Example: Evaluating the Dissimilarity of Two Sets

Consider, as an example, the case where data inAτ andBτ are Gaussian distributed
with the same variance and we aim at investigating if they share the same expected
value. We choose as test statistic D the standardized difference between the two
sample means, which leads to a two-sample t test. The test statistic is

Dτ =
√

τ(n − τ)

n

¯Aτ − B̄τ

Sτ

(9.9)

where ¯Aτ and B̄τ denote the sample means evaluated on Aτ and Bτ respectively
and Sτ is the pooled sample variance evaluated on Aτ and Bτ . The threshold hn,α

for the statistic D is provided by the Student t distribution with n − 2 degrees of
freedom.

9.2.3 The Change Point Formulation

When the test statistic corresponding to a specific partitioning of X does not pro-
vide enough statistical evidence to reject H0 we can only claim that the particular
τ is not considered as a change point at the given confidence level, hence implying
that no change in stationarity happened at sample τ . All other points composing the
sequence need to be checked for being potential change points by considering all
possible partitions of X . The change point formulation provides a rigorous frame-
work for testing the presence of a change point in a sequence X . Within the CPM
framework, e.g., [183], the null and alternative hypotheses for change point method
are formulated as

H0 : ∀t, x(t) ∼ F0 (9.10)

H1 : ∃ τ x(t) ∼
{
F0, if t < τ

F1, if t ≥ τ
. (9.11)

Each feasible time location in X has to be considered as a candidate change
point. More in detail, for each candidate change point s ∈ {2, . . . , n − 1},1 the
sequenceX is partitioned into two nonoverlapping sets As = {x(t), t = 1, . . . , s}

1 The actual range of s depends on the minimum number of samples needed to compute T from
As and Bs .

224 9 Learning in Nonstationary and Evolving Environments

and Bs = {x(t), t = s + 1, . . . , n}. Set dissimilarity is measured as recommended
in Sect. 9.2.2 by means of a suitable test statistic T , which is evaluated for each
change point candidate, yielding {Ts, s = 2, . . . , n − 1}. The most likely change
point for sequence X is finally the one maximizing the statistic

M = argmax
s=2,...,n−1

(Ts) . (9.12)

corresponding to the value TM of T

TM = max
s=2,...,n−1

(Ts) . (9.13)

To finalize the test, TM has to be compared with a predefined threshold hn,α ,
which guarantees a controlled rate α of false positives. Besides α, the threshold
depends on the statistic T and the cardinality n of X .

WhenTM exceeds hn,α , the CPM rejects the null hypothesis, andX is claimed to
contain a change point at M , the location maximizing (9.13). In these circumstances,
besides claiming that X is not stationary, the CPM also provides M , an estimate
of the change point instant τ . Conversely, when TM < hn,α , there is not enough
statistical evidence to reject the null hypothesis, and no change point is identified
withinX . The above can be formalized in the final outcome of the CPM test

{
The estimated change point inX is M if TM ≥ hn,α

No change point identified inX , if TM < hn,α

. (9.14)

It is important to comment that, often, the major issue for a CPM is the definition
of the thresholds {hn,α}. In fact, evenwhen the distribution of the statisticT is known
for anypartitioning ofX , the distribution of itsmaximumTM is hard to be computed.
Asymptotic results are available for some test statistics which, however, are often
inaccurate at low sample size. We comment that also when it is possible to provide
an approximation for the distribution of the maximum, the outcome might not be
appropriate. For instance, as discussed in [183], the Bonferroni approximation tends
to be over-conservative as n grows. For these reasons, thresholds are often computed
with the Monte Carlo method or, even better, with randomized algorithms.

Example: The CPM

Figure9.5 illustrates the operating principle of aCPMrelying on theStudent t statistic
D (9.9). Figure9.5a presents a sequence X composed of 500 data. A change point
is injected at τ = 350, so that

x(t) ∼
{
N (0, 1), if t < 350

N (−1, 1), if t ≥ 350
. (9.15)

9.2 Change Point Methods 225

(a)

(b)

Fig. 9.5 An example of a CPM based on a Student t statistic. Data in (a) are distributed according
to (9.15). The values assumed by the corresponding test statistic {Ds , s = 2, . . . , 499} are reported
in (b). The estimated change point M , and the corresponding value of the test statistic TM are
also reported. For illustrative purpose the figure also shows the partition of X in As and Bs when
s = 200 together with the corresponding value of the statistic Ds=200

Figure9.5b illustrates the values of the statistics Ds as a function of s =
2, . . . , 499.

The threshold corresponding to α = 0.05, i.e., h500,0.05 = 3.225 was provided by
the CPM package [184], implemented in the statistical R language. Other CPMs can
be designed to detect shifts in the mean of a Gaussian random variable, e.g., [183].

9.2.4 Test Statistics Used in CPMs

Very often the test statistic T measures the dissimilarity between two sets by com-
paring the estimates for both expected value (sample mean) and variance (sample
variance). This choice is motivated by the fact that, in practice, a change in the dis-
tribution as per (9.5) would also affect its first moments [185]. It is also preferable
to employ nonparametric test statistic since, often, the distribution (even before the
change point) is unknown.

Several nonparametric statistics are based on the rank computation, such as the
Mann–Whitney [186] (to assess changes in the location), the Mood [187] (to assess
changes in the scale), and the Lepage ones [188] (to assess both changes affecting the

226 9 Learning in Nonstationary and Evolving Environments

location and the scale). A CPM based on theMann–Whitney statistic was introduced
in [189] together with a CPM for Bernoulli random variables.

A different approach consists in locating change points by comparing the empir-
ical distributions over two sets of data, as in the CPMs [190] that are based on the
Kolmogorov–Smirnov and the Cramer Von Mises [191] statistics. So far, we men-
tioned only test statistics for scalars, however, the change point formulation can be
used to analyze multivariate data, such as the CPM in [192], which relies on the
Hotelling T2 statistic.

9.2.5 Extensions Over the Basic Scheme

The change point formulation was originally presented as an offline processing tool.
However, the methods have recently gained a lot of attention and CPM solutions for
online and data streams have been provided. Such extensions basically consist in
iterating the CPM at each new sample arrival [205]. It comes out that the computa-
tional complexity of such CPMs would endlessly grow, hence pushing the research
toward the proposal of variants keeping in mind the computational complexity and
the memory requirement of the methods [185,190]. In particular, a streaming adap-
tation is required when the test statistic T is computationally demanding (such as
in test statistics based on the rank computation).

Another relevant issue is how to set the thresholds for online CPMs. First of
all, it does not make any sense to control the probability of a false positive as in a
hypothesis test. In fact, the test has to be iterated as a new sample arrives and the
control of false positives has to be intended within a sequential scenario. Therefore,
the thresholds have to be set to guarantee a fixed Average Run Length (ARL) of
the test [87], namely the expected number of samples before the test yields a false
positive during the operational life. Second, the probability that TM exceeds hn,α

at the n-th sample has to be here conditioned to the fact that T never exceeded
the threshold in previous n − 1 samples. For these reasons, thresholds {hn,α, n > 0}
have to be computed numerically, through simulations, as in [183]. The CPM package
[184] implements several CPMs based on different test statistics and provides also
the thresholds {hn,α} for both offline (traditional) CPMs and their online versions.
Such thresholds could be loaded in a LUT as we move the CPM to an embedded
system.

Any CPM (9.10) requires that data are either i.i.d. in the whole sequence (sta-
tionarity) or before and after the change point (nonstationarity). This may seem
a restrictive assumption, since in real applications data are often characterized by
different forms of dependence. When this happens, and we wish to operate with a
CPM, it is necessary to move in a feature space where the i.i.d. assumption is met.
A possibility is to operate in the model space by designing suitable models, e.g., of
regression or predictive type, to fit the observations, and then analyze the residuals,
see [193]. However, the residuals may not be i.i.d. since, quite often, the obtained

9.2 Change Point Methods 227

model has a model bias component: in this case it can be convenient to aggregate
several CPMs in an ensemble, as described in [204].

In what follows Change Detection Tests (CDTs) will be presented as statistical
techniques designed having in mind online and sequential monitoring.

9.3 Change Detection Tests

There exists a large literature for concept drift detection mostly based on statisti-
cal hypothesis tests which, generally, require knowledge of the probability density
function of the process generating the data and/or priors about the structure of the
concept drift, e.g., a fault or a change in the environment. Again, the reference is
that of Tables9.1 and 9.2. In the parametric class of CDTs we find classic textbook
tests such as the Student t-test and the Fisher f-test, addressing changes affecting the
mean and the variance of the extracted features, respectively.

Nonparametric tests are more flexible tools, which require weaker assumptions,
mostly tolerable at the application level. For instance, the Mann–Whitney U-test and
the Wilcoxon test are nonparametric tests designed to detect a single change point
and cannot support a sequential use, as sensing datastreams require. Differently,
MannKendall and CUSUM are widely used tests adequate for a sequential analysis
as the recently introduced ICI-based and hierarchical tests. In the section we present
and detail three CDTs representing effective sequential nonparametric solutions to
be implemented in embedded systems.

9.3.1 The CUSUM CDT Family

Complex and effective nonparametric tests generally require a configuration phase
to fix test parameters at design time. The traditional CUmulative SUM control chart
(CUSUM) is a sequential analysis technique designed for change detection that
guarantees an appreciable change detection accuracywhen a priori information about
concept drift and the process generating the data are available. We present in the
sequel two CDT methods that extend the traditional CUSUM by relaxing some
of its restrictive assumptions. The first test extends the CUSUM by allowing the
designer to automatically identify the configuration of the test parameters (adaptive
CUSUM). The change detection ability of the adaptive CUSUM is based on the
analysis of the evolution over time of the mean and the variance of some features
extracted from the data-generating process. The second test, named Computational
Intelligence CUSUM (CI-CUSUM), extends the first one by considering a richer set
of features to improve efficiency in detecting changes in stationarity.

228 9 Learning in Nonstationary and Evolving Environments

9.3.1.1 The Adaptive CUSUM CDT

Let X = {x(t), t = 1, . . . , N }, x(t) ∈ R be a sequence of instances coming from
the data generating process ruled by probability density function fθ (x), which we
assume to be unknown and parameterized in the parameter vector θ ∈ R

n .
Assume that the stochastic process changes its statistical behavior at unknown time

T o. This is generally modeled by considering a transition from parameter vector θ0
to θ1, associated with the pdfs fθ0(x) and fθ1(x), respectively. As with CUSUM,
we evaluate the discrepancy between the two pdfs at time t , by computing the log-
likelihood ratio

s(t) = ln
fθ1(x(t))

fθ0(x(t))
for each t = 1, . . . , N

and the cumulative sum

S(t) =
t∑

τ=1

s(τ).

CUSUMidentifies a change in X at time T̂ when g(t) = S(t)−m(t), the difference
between the value of the cumulative sum S(t) and its current minimum value m(t) =
minτ=1,...,t S(τ) exceeds a given threshold h, namely

T̂ is the earliest time when g(t) ≥ h

CUSUM assumes that key parameters θ0, θ1 and h are available at design
time. The assumption is generally hard to be satisfied but parameters can be esti-
mated with the following procedure. Generate at first the cumulative sequence
Y = {y(1), y(2), . . . , }, where each s-th instance y(s) represents the value of the
sample mean estimated over a sliding nonoverlapping window of width n taken
from X

y(s) = 1

n

sn∑

t=s(n−1)+1

x(t)

From the central limit theorem the distribution of Y can be approximated with a
Gaussian distribution provided that n is large enough. The basic CUSUM can then
be applied to sequence Y . The first K configuration instances of X constitute the
configuration set that is used to generate the training set of Y , whose cardinality is
K/n (K is conveniently selected among the multiples of n). The whole procedure
is depicted in Fig. 9.6. The parameters θ0 characterizing the Gaussian distribution
are the mean and variance of Y , i.e., θ = [μ, σ 2], estimated on the train set. The
parameters θ1 are obtained through the identification of a neighborhood confidence
for θ0.

9.3 Change Detection Tests 229

X
Cumulative
Sequence

1 K/n t

Configuration Data

Configuration Time

Statistical
Analysis

Test
parameter

configuration

Adaptive
CUSUM

test

Data to be inspected

TEST
RESULTS

Estimated
parametersµ,

{ 0, 1,h}

Y

Data generated by the process

1 K

1 K/n

Fig. 9.6 The operational procedure for the adaptive CUSUM test. Data stream X undergoes a
sequential windowing as data come in. When n samples are available, a data window is completed
and ready to be averaged to generate the transformed instance y(s). The distribution of y(s) is
approximately Gaussian, thanks to the central limit theorem, provided n is large enough. The basic
CUSUM test can be applied with parameters θ = [μ, σ 2]. Needed parameters θ0, θ1 and threshold
h are estimated on the training set

E
xten

d
ed

 F
eatu

re S
et

µ

pdf

cdf

| +/- |

(sign)

()

...

...

...

P
rin

cip
al C

o
m

p
o

n
en

t A
n

alysys

t

k

s

.

.

r

x(t)

XT XV

Fig. 9.7 The feature extraction and reduction phases of the CI-CUSUM. A rich set of features is
extracted from the input signal to compose the feature set ϕ. Features extracted from the operational
set X V are contrasted with those evaluated on the training configuration set X T . A PCA technique
yields the reduced feature vector ϕr

9.3.1.2 The CI-CUSUM CDT

The CI-CUSUM represents an interesting extension of the adaptive CUSUM and
turns to be much more powerful than the basic CUSUM and the Adaptive CUSUM
since any feature can be extracted from the data stream to take advantage of different
sensitivities in concept drift detection. The reference figure is Fig. 9.7.

230 9 Learning in Nonstationary and Evolving Environments

Features ϕ are selected to be sensitive to concept drift. In particular, since data
extracted from the training set XT are assumed to be i.i.d., the considered features
are evaluated in a differential way to amplify the discrepancy between the current
feature and the reference one associated with the training stationary state.

Envisaged features contain some well-known moments such as the mean μ, the
variance σ 2 (to assess changes in the mean and variance of the distribution), the
kurtosis kurt and skewness skew indexes (measuring how the distribution is peaked
or flat and the lack of symmetry of a distribution, respectively), as well as information
derived from the pdf and cumulative density function (cdf) of the signal. The running
index is then contrasted with the corresponding one evaluated on the training set and
features aim at amplifying the discrepancy between the two. For instance, feature
ϕ1(t) = |μ0 − μV | aims at amplifying discrepancies in the mean value. μ0 is the
value of the mean evaluated on the training set XT and subscript V refers to the test
set, i.e., the index must be evaluated on data up to the running one (training data
excluded). The basic features are

ϕ1(t) = |μ0 −μV |, ϕ2(t) = |σ0 −σV |, ϕ3(t) = |kurt0 − kurtV |, ϕ4(t) = |skew0 − skewV |

ϕ5(t) =
∫

x
|pd f0(x) − pd fV (x)|dx, ϕ6(t) =

∫

x
|cd f0(x) − cd fV (x)|dx

ϕ7≤ j≤12(t) =
{

t−1∑

v=1

sgn
(
ϕ j−6,v+1 − ϕ j−6,v

)}, ϕ13≤ j≤24(t) = {
t−1∑

v=1

(
ϕ j−12,v+1

ϕ j−12,v

)}
.

In particular, features ϕ5(t) and ϕ6(t) evaluate the discrepancy between the run-
ning pdf and cdf and that induced by the training set, respectively.

Features ϕ7(t) to ϕ12(t) investigate changes in the sequence of signs in consec-
utive elements and ϕ13,t to ϕ24,t the cumulative sum of the ratio of consecutive
elements. To reduce the complexity of the feature space we performed a PCA on ϕ

which provides a transformed feature ϕr . Since the pdf of ϕr is not a priori available,
we operate as in the adaptive CUSUM case. In detail, we take the average of ϕr

over nonoverlapping windows and invoke the central limit theorem which provides
an approximated multivariate Gaussian distribution for the transformed variable ϕ′
characterized by mean M and covariance matrix C . The mean M0 and covariance
matrix C0 of ϕr are estimated on the training set and provide the nominal reference
configuration θ0 = [M0, C0]. The adaptive CUSUM procedure is invoked that com-
putes the alternative hypothesis for the change detection test θ1 = [M1, C1]. The
CI-CUSUM is now configured and assesses over time ϕ′(t) by checking whether it
belongs to distributionN (M0, C0) or not bymeasuring the discrepancy between the

9.3 Change Detection Tests 231

two multivariate probability density functions at time t through the log-likelihood
ratio mechanism

s(t) = ln
NM0,C0(ϕ

′(l))
NM1,C1(ϕ

′(l))
for each l = 1, · · · , t.

The adaptive CUSUM test can now be applied and either returns detection of
concept drift or claims that concept drift is not present.

9.3.2 The Intersection of Confidence Intervals CDT Family

The Intersection of Confidence Intervals (ICI) CDT and its evolutions [94] detect
concept drift affecting a data stream by monitoring the evolution of suitable features
extracted from incoming data. Features must be i.i.d. and Gaussian distributed, at
least before concept drift occurs. The assumptions might appear strong and far from
any engineering reality, in particular the i.i.d. one. However, this is not the case in
many real applications provided that suitable transformations are invoked.

For instance, the method can be used to inspect sequences of residuals, e.g., asso-
ciated with the discrepancy between a predictive model describing the data stream
and the real data as they are acquired. When the test detects a change in the residual
then concept drift is detected. This issue will be further addressed in the sequel. We
now present the principal features of the ICI-CDT family.

9.3.2.1 The ICI-CDT

In the ICI-CDT, features are extracted by windowing the available data in disjoint
subsequences composedofn instances. For each subsequencewecompute the sample
mean and the sample variance which are Gaussian distributed thanks to the central
limit theorem for the former and and ad hoc transformation [95] the latter. More in
detail, named s the s-th subsequence, the extracted features are

M(s) =

ns∑
t=(s−1)n+1

x(t)

n
, and V (s) =

⎛

⎜⎜⎜⎜⎝

(
ns∑

t=(s−1)n+1
(x(t) − M(s))2

)

n − 1

⎞

⎟⎟⎟⎟⎠

h0

,

(9.16)

The parameter h0 is the exponent of the power-law transform devised in [95]
to generate an approximated Gaussian distribution for the sample variance. h0 is
estimated from the sample cumulants computed on training data OT0 .

The ICI-CDT is configured on the two sequences of features {M(s), s =
1, . . . , S0} and {V (s), s = 1, . . . , S0}, being S0 = T0/n extracted from OT0 ,

232 9 Learning in Nonstationary and Evolving Environments

We compute the means μ̂M
S0

, μ̂V
S0

and the standard deviations σ̂ M
S0

, σ̂ V
S0

of the two
features over the training set, i.e.,

μ̂M
S0 =

S0∑
s=1

M(s)

S0
, and σ̂ M

S0 =

√√√√√
S0∑

s=1
(M(s) − μ̂M

S0
)2

S0 − 1
. (9.17)

and

μ̂V
S0 =

S0∑
s=1

V (s)

S0
, and σ̂ V

S0 =

√√√√√
S0∑

s=1
(V (s) − μ̂V

S0
)2

S0 − 1
. (9.18)

These estimates define the confidence intervals for the mean and standard deviation
features that, under the stationary condition, are defined as

I M
S0 = [μ̂M

S0 − �σ̂ M
S0 , μ̂M

S0 + �σ̂ M
S0] , (9.19)

I V
S0 = [μ̂V

S0 − �σ̂ V
S0 , μ̂

V
S0 + �σ̂ V

S0] ,

with � > 0 controlling the amplitude of the confidence interval and, then, the
probability that features belong to the interval under the stationary assumption.

Once training is perfected the CDT becomes operational and can be used to assess
changes in stationarity in the data stream. Every time n data are made available, a
new sequence s is created and features extracted to populate the I M

s and I V
s .

The intersection of confidence intervals rule (ICI-rule) [96] can then be applied.
The ICI-rule verifieswhether the new feature instance can be intended as a realization
of the existingGaussiandistribution. If not, concept drift is detected in the data stream.

From the operational point of view, the sample mean of all the feature values
is computed, together with the confidence interval of the corresponding estimator
which is expressed as (9.19). As soon as the intersection of all the confidence intervals
up to the current one results in an empty set, the basic ICI-CDT detects a change.
Thus, we detect a concept drift in the subsequence ŝ if

⋂

s<ŝ

I M
s
= ∅ and

⋂

s≤ŝ

I M
s = ∅ or (9.20)

⋂

s<ŝ

I V
s
= ∅ and

⋂

s≤ŝ

I V
s = ∅

and the detection time T̂ = nŝ corresponds to the rightmost term of the subse-
quence ŝ.

Concept drift is associated with those feature(s) that yielded the empty intersec-
tion. Figure9.8 illustrates how the ICI-rule operates. To reduce the computational

9.3 Change Detection Tests 233

Fig. 9.8 An illustrative example of the ICI rule in the setting used for change detection: a feature
values and the set of intervals {[1, T0], [1, T1], [1, T2], [1, T3]}, b the corresponding polynomial
zeroth-order estimates and their confidence intervals. The ICI rule selects the interval [1, T2], since
I0 ∩ · · · ∩ I2
= ∅ and I0 ∩ · · · ∩ I3 = ∅. The brackets in (b) represent the confidence intervals;
the arrows their intersections

load, the average feature and the intersection of confidence intervals are computed
incrementally, and each feature is separately processed.

The whole procedure is summarized in Algorithm 20. As pointed out in [94] the
basic ICI-CDT is particularly effective but introduces a structural limitation inducing
a structural false positive when time passes.

Despite the fact that this problem can be tolerated inmany detect and react mecha-
nisms, it is important to design a test that does not introduce structural false positives
as time passes. This problem can be solved by considering a second test, built on
the top of the basic ICI-CDT that verifies, once activated, if a false positive has been
generated by the first CDT or the raised alarm should be considered a proper concept
drift. For its layered structure the test is named Hierarchical CDT.

9.3.2.2 The H-CDT

The Hierarchical CDT (H-CDT) has been designed to mitigate the structural prob-
lem posed by the ICI-CDT, for which false positives are generated as time passes.
The H-CDT is a hierarchical sequential change detection test structured into two
processing levels. The first level is composed of the ICI-CDT test and the second is
a statistical test validating/rejecting the change hypothesis. The ICI-CDT operates
sequentially as presented in the previous subsection and, when it detects a change
in the sequence x(t) at time T̂ , it activates the upper test to validate the detection
by checking if the data sets before and after the estimated T̂ are consistent with the
change hypothesis.

For such change validation purposes, we need to acquire a set of N additional
data OT̂ = {x(t), t = T̂ , . . . , T̂ + N } generated after T̂ , which are considered to
have been potentially generated from the new state of the data-generating process,
namely, after concept drift. The adjective “potentially” is appropriate since a false

234 9 Learning in Nonstationary and Evolving Environments

Algorithm 20: The basic ICI-CDT
1 Compute {M(s), s = 1, . . . , S0}, being S0 = T0/n;

2 μ̂M
S0

= ∑S0
s=1

M(s)
S0

;

3 σ̂ M =
√
∑S0

s=1

(
M(s)−μ̂M

S0

)2

S0−1 , σ̂ M
S0

= σ̂ M√
S0
;

4 Define I M
S0

=
[
μ̂M

S0
− �σ̂ M

S0
, μ̂M

S0
+ �σ̂ M

S0

]
;

5 Compute h0;
6 Compute {V (s), s = 1, . . . , S0};
7 μ̂V

S0
= ∑S0

s=1
V (s)

S0
;

8 σ̂ V =
√
∑S0

s=1

(
V (s)−μ̂V

S0

)2

S0−1 , σ̂ V
S0

= σ̂ V√
S0
;

9 Define I V
S0

=
[
μ̂V

S0
− �σ̂ V

S0
; μ̂V

S0
+ �σ̂ V

S0

]
;

10 Set s = S0;
11 while (I M

s
= ∅ and I V
s
= ∅) do

12 Set s = s + 1;
13 Wait for n observations, until a new subsequence is populated;
14 Compute M(s) and V (s) from observations in the subsequence according to 9.16;

15 Compute μ̂M
s = (s−1)μ̂M

s−1+M(s)
s and σ̂ M

s = σ̂ M√
s
;

16 Compute μ̂V
s = (s−1)μ̂V

s−1+V (s)
s and σ̂ V

s = σ̂ M√
s
;

17 I M
s = [

μ̂M
s − �σ̂ M

s ; μ̂M
s + �σ̂ M

s

] ∩ I M
s−1;

18 I V
s = [

μ̂V
s − �σ̂ V

s ; μ̂V
s + �σ̂ V

s

] ∩ I V
s−1;

end
19 Concept drift detected at s = ŝ within time interval

[
(ŝ − 1)n + 1, ŝn

]
,i.e., T̂ = nŝ

positive might arise and, hence the information present in the OT̂ set is compatible
with that provided by the training set OT0 onto which the method was configured (T0
refers to the last time instant associated with the training set).

We comment that, if estimate T̂ is highly accurate, then we might expect to
improve the accuracy of the method by considering the whole set {x(t), t < T̂ }
instead of OT0 . The reason behind the last statement is associated with the fact that if
T̂ is a good estimate for the concept drift time then, the presence of data associated
with new state in {x(t), t < T̂ } is likely to be negligible. In what follows, we rather
prefer to be conservative and consider OT0 instead: this choice goes also in the
direction of operating with a reduced computational load, which is a relevant issue
for embedded systems.

Statistical affinity between sets OT0 and OT̂ should be evaluated with a proper
statistical test, e.g., Kolmogorov–Smirnov test or other hypothesis tests such as those
given in Table9.2. However, the required computational load of the Kolmogorov–
Smirnov is too high and unfeasible for a large class of embedded systems where high
MIPS cannot be provided. The problem of comparingthe data distribution over OT0

9.3 Change Detection Tests 235

and OT̂ , can be conveniently simplified to the problem of comparing the expected
values of the features (9.16) of the ICI-CDT over OT0 and OT̂ by means of an
Hotelling’s test.

In particular, the Hotelling’s test is a multivariate hypothesis test, which we apply
to compare the values of the features (9.16) arranged in two-dimensional vectors
F = [M(s), V (s)]. These feature vectors are extracted from the time interval OT0
(ontowhich the ICI-CDTwas configured) and on the interval OT̂ (which are expected
to describe the new state of the process). From each of these sets, the sample means
F(OT0) and F(OT̂) and the pooled sample covariance matrix are computed. The
null hypothesis H0 is formulated as

H0 : F(OT0) − F(OT̂) = 0 (9.21)

where 0 represents the two-dimensional vector of null components. Finally, the
Hotelling T2 test [241] can be executed to reject the null hypothesis at a prede-
fined confidence level α. If the Hotelling test rejects the equivalence hypothesis then
a change is considered to be present in the feature set and the change hypothesis
raised by the ICI-CDT is validated. In turn, the hierarchical test detects concept drift.

Conversely, if there is not enough statistical evidence to reject the null hypothesis,
then the ICI-CDT introduced a false positive and must be retrained on the original
stationary state OT0 . The Hotelling’s test applied to the the features (9.16) shows to
be a particularly effective solution to assess changes detected by the ICI-CDT.

The H-CDT is therefore an adaptive test which reacts when false positives are
introduced by the ICI-CDT and shows to be a great test to be used in embedded
systems. The H-CDT algorithm describing from a high-level perspective is given in
Algorithm 21.

Interestingly, if we want the hierarchical test to operate in a sequential manner,
after each change validation, we are able to retrain the ICI-ICT andwe also update the
reference set OT0 used in the Hotelling test. In fact, if the change has been validated
at time T̂ , the set OT̂ contains instances associated with the new state of the data-
generating process, thus the inspection for concept drift proceeds. The algorithm is
summarized in Algorithm 22.

9.3.2.3 An Improved Estimate for the Concept Drift Detection Time

The H-CDT described in the previous section has the main drawback of having
to wait for N observations after T̂ before proceeding with the change-validation
phase. This is of course not appealing in an online monitoring scenario, also because
the detection T̂ is typically characterized by a structural delay (correct detections
provided bymost ofCDTs come typically after the unknown change-time instant T o).
The idea is hence to improve the estimate of T o once the change has been detected,
to recover part of the samples between T o and T̂ for improving change-validation
efficiency and possibly CDT reconfiguration. Therefore, the improved estimate of
T o, which we denote by t , is expected to satisfy T o ≤ t ≤ T̂ . Once t has been

236 9 Learning in Nonstationary and Evolving Environments

Algorithm 21:Thehierarchical change detection testH-CDT.The test is initially
configured on the training set OT0 . Once concept drift is detected by the ICI-
CDT, Hotelling test is activated. If the Hotelling test validates the concept-drift
hypothesis then an alarm is raised by the H-CDT and concept drift is validated.
When the ICI-CDTdetection is not validated, a false positive is found, no concept
drift alarm is raised, and the ICI-CDT needs to be reconfigured on the initial
training data.

1 Train the ICI-CDT on OT0 ;
2 while (1) do
3 Extract features M(s) and V (s) out of the data stream;
4 if (ICI-CDT detects a change in the features) AND (Hotelling test validates the change)

then
5 Conceptdrift= true;
6 retrain ICI-CDT onto OT0 = OT̂ ;

else
7 false positive: retrain ICI-CDT onto OT0

end
end

Algorithm 22: The H-CDT within the active learning modality. When con-
cept drift is validated at time T̂ the application is reconfigured and the H-CDT
retrained on the new instances.
1 Train the ICI-CDT on OT0 ;
2 while (1) do
3 Extract features M(s) and V (s) from the data stream;
4 if (ICI-CDT detects a change in the features) AND (Hotelling test validates the change)

then
5 Conceptdrift= true;
6 React on concept drift at the application level;
7 retrain ICI-CDT onto OT0 = OT̂ ;

else
8 false positive: retrain ICI-CDT onto OT0

end
end

computed, we could use the observations {x(t), t = t, . . . , T̂ } to define OT̂ without
delaying the validation procedure

OT̂ = {x(t), t = t̄, . . . , T̂ }

that contains more than n samples, thus increasing the significance during validation
and configuration w.r.t. the approach described in the previous section. However,
when the ICI-CDT is very quick OT̂ = {x(t), t = t̄, . . . , T̂ }may not contain enough
samples, and it would be preferable to wait for at least N sample before activating
the change-validation and reconfiguration procedures.

9.3 Change Detection Tests 237

Algorithm 23: The refinement procedure leading to the improved estimate for
the change time instant t .

1 Provide T̂ ;

2 Compute T1 = T0 + (T̂ − T0)/λ;
3 i = 1; continue = true;
4 while (continue = true) do
5 Apply the ICI-CDT to [0, T0] ∪ [Ti , T̂], detecting at T̂i ;

6 Compute Ti+1 = Ti + (T̂ − Ti)/λ;

7 Define Tmin = min
(

T̂ j

)
, j = 1, . . . , i ;

8 if (Tmin < Ti+1) then
9 continue = false;

end
10 i = i + 1;

end
11 Define t = Tmin.

The key point of the proposed solution is that the ICI-CDT introduces a structural
detection latency that increases as time passes [94]. This undesirable behavior can
be exploited to design a post-detection procedure that, starting from T̂ yields a better
estimate t as illustrated in Algorithm 23.

The algorithm operates as follows. Given concept drift detection from the ICI-
CDT at time instant T̂ split the interval [T0, T̂] in two intervals [T0, T1] and [T1, T̂],
with T1 = T0 + (T̂ − T0)/λ defined according to the user-set parameter λ > 1
(line 2). Apply the ICI-CDT to dataset [0, T0]∪[T1, T̂] (line 5), leading to a detection
at time T̂1 . Note that T̂1 is a more accurate estimate of the change time T0, since
the test operates on a shorter sequence w.r.t. the one which provided the initial
detection T̂ . Interval [T1, T̂] is further split into two intervals [T1, T2] and [T2, T̂]
where T2 = T1 + (T̂ − T1)/λ (line 6). If T2 > T̂1, the procedure stops, and t = T̂1.

Otherwise, the procedure iterates: at the i-th iteration, the ICI-CDT is executed on
[0, T0] ∪ [Ti , T̂], providing the estimate T̂ (line 5). The interval [Ti , T̂] is then split
by point Ti+1 = Ti + T̂ −Ti

λ
(line 6). The procedure ends when Ti+1 is larger than

Tmin, the earliest detection identified during the iteration of the procedure (line 7).
Finally, Tmin is the best estimate of T o obtainable according to this procedure, The
improved final estimate is hence t = Tmin.

The refinement procedure is visualized in Fig. 9.9.

Comments

The estimate t , which is provided by all the ICI-CDTs, makes it particularly appeal-
ing for active (detect and react) learning frameworks, since they provide set OT̂ that
contains instances associated with the new state of the process generating the data.
These instances, in the data stream domain, can now be used to reconfigure the appli-

238 9 Learning in Nonstationary and Evolving Environments

Fig. 9.9 The ICI-based time change estimate refinement procedure: an example with λ = 2.
Initially, (first line) a change is detected by the ICI-CDT in correspondence with time T̂ and the

procedure starts by computing T1 = T0 + T̂ −T0
λ

. The ICI-CDT is then executed onto interval

[0, T0] ∪ [T1, T̂], resulting in a detection at T̂1 (second line). This procedure iterates by computing

T2 = T1 + T̂ −T1
λ

and the test is executed on interval [0, T0] ∪ [T2, T̂]. The procedure terminates

when T3 > T̂2, being T2 = min{T̂ j }. The output is t = T̂2 , and [T̂2, T̂] is assumed to be generated
by the process in the novel state, i.e., after concept drift

cation, besides the CDT itself. Moreover, the H-CDT shows to be computationally
lighter than CI-CUSUM [101] and in most applications involving embedded systems
should be preferred. For this reason the code of the hierarchical CDT has been made
freely available and can be downloaded from the link given in [102].

We recall that insurgence of false positives introduces a processing load, since it
leads to unnecessary reconfiguration, and that this might also reduce the performance
of the application. In fact, if we mistakenly abandon the a priori rich training set OT0
for the new one OT̂ following the false positive we should expect to end up with a
consistent data set of lower cardinality.

At the same time, the presence of a false negative is also critical, since when no
concept drift is detected, the adaptation mechanism is not activated.

As a last note we investigate the effects induced by slowly developing gradual
concept drift. It is expected that this concept drift will not be detected in its early
stages, but most probably later, when the influence of the concept drift on the features
level grants detection. However, latency in detection is the cost we have to pay in
correspondence to slowly developing gradual concept drift. Moreover, given the type
of CDTs we are considering, a slowly developing concept drift results in a sequence
of concept drift detections, a detection profile being symptomatic of a gradual concept
drift evolution.

The literature has proposed CDTs specifically designed to manage situations with
slowly developing concept drift under some assumptions about the evolution model
for the concept drift, mostly following polynomial functions of a fixed order. The
interested readers can refer to [97].

9.3.3 Amygdala—VM-PFC: The H-CDT

TheH-CDT is a pure example of a cognitive mechanism. There, the lower processing
level based on an ICI-CDT quickly processes the input stimuli like in the amygdala

9.3 Change Detection Tests 239

and provides a first reaction outcome. A threat (perceived change) is immediately
detected (automatic process) and actions are promptly taken (e.g., we immediately
react when we see a gun oriented toward us irrespective of other extra information).
Afterwards, the emotional state is passed to the VM-PFC which perfects the taken
action with a more articulated processing and comes back to the amygdala with a
new control action (e.g., when we realize that the gun is indeed a fake water gun, held
by a kid). The counterpart of VM-PFC corresponds to the higher level of the H-CDT,
where the Hotelling test either validates or rejects the concept drift hypothesis raised
by the lower levelCDT.When the change hypothesis is rejected, the action invoked by
the ICI-CDT is aborted, the state rolled back, and the ICI-CDT is reconfigured after
the false positive detection. There is no evidence that the VM-PFC levels reconfigure
the amygdala even though a negative feedback is likely to be provided.

9.4 The Just-in-Time Learning Framework

Availability of a CDTwithin a sequential framework allows us for designing applica-
tions characterized by an active learning modality. The chosen CDT detects concept
drift (detection modality) and the application reacts accordingly (reaction modality)
by adapting to the new state. This active learning modality is known in the literature
as Just in Time (JIT) learning meaning that the application reconfiguration to track
changes in the environment is activated exactly when needed, i.e., in correspondence
with concept drift detection, in contrast with passive solutions where learning is
always enabled.

We instance the JIT mechanism to an application to ease the presentation and to
the classifier case for its relevance in applications. In JIT classifiers a CDT identifies
concept drift affecting incoming data and the classifier-based application undergoes
a reconfiguration phase to track the change in stationarity. A unique characteristic of
JIT classifiers compared with other classifiers following the active learning modality
is that,whenno change is detected, the classifier continues integrating new supervised
information made available to improve the classification accuracy.

A high level description of the JIT adaptive classification framework is given in
Algorithm 24. The framework is very general and can host any type of CDT and
classifier. Clearly, we should consider effective low complexity CDTs and classifiers
having in mind, as final target, embedded systems.

The JIT framework is very general and can deal with any type of concept drift
from abrupt concept drift to gradual concept drift. In the abrupt case we need to
release obsolete data used for training the classifier and replace them with novel
supervised instances characterizing the new operational condition, then the classifier
is trained on the new training set, e.g., [94]. Differently, a frequent management
activity involving both the update of the training set and retraining is needed when
we encounter gradual concept drift, which are seen as a sequence of abrupt concept
drifts following the detection mechanism. Extensions of the mechanism meant to
deal with gradual concept drift has been suggested in [97].

240 9 Learning in Nonstationary and Evolving Environments

Algorithm 24: The JIT adaptive classifier. New data instances are integrated in
the classifier as they come until concept drift is detected. When the CDT detects
a change the supervised instances associated with the OT̂ data set are used to
reconfigure the classifier.

1 Configure the JIT classifier and the CDT;
2 while (true) do
3 input receive new data;
4 if (CDT detects concept drift) then
5 Characterize the new process state;
6 Configure the JIT classifier and the CDT on the new process state;

else
7 integrate available extra information in the JIT;

end
8 Classify the new input samples;

end

In the sequel we focus at first on the core JIT for abrupt concept drift and address
afterwards the gradual concept drift case. We use, as reference CDT the ICI-based
family although any CDT can be adopted.

9.4.1 Observation Model

Consider, for sake of simplicity, a two-class classification problem. The operational
framework can be formalized as follows.

Let x ∈ X ⊂ R
d be an i.i.d. random variable and y ∈ {ω1, ω2} the associated

binary classification output. The pdf of the inputs at time t

p(x |t) = p(ω1|t)p(x |ω1, t) + p(ω2|t)p(x |ω2, t), (9.22)

depends on the pdfs of the outputs p(ω1|t) and p(ω2|t) = 1 − p(ω1|t) and the
conditional probability distributions p(x |ω1, t) and p(x |ω2, t). In general, these
distributions are unknown.

Let OT = {x(t), t = 1, , T } be the data sequence at time T and ZT =
{(x(t), y(t)), t ∈ IT } the knowledge base of the classifier at time T , which contains
the supervised couples (x(t), y(t)), i.e., y(t) is the classification label associated
with the observation x(t), and IT is the set containing the arrival times of supervised
samples up tp time T .

We further assume that the samples acquired before T0 have been generated
in stationary conditions. The set OT0 is then used to train the CDT, while Z0 =
{(x(t), y(t)), t ∈ I0} represents the initial knowledge base (KB) of the classifier,
being I0 the set of supervised samples in OT0 . Assume that at time instant T o > T0 a
change in stationarity occurs with a subsequent change in the distribution of x : also
the distribution after the change is unknown.

9.4 The Just-in-Time Learning Framework 241

In the JIT framework the CDT inspects the process by operating on the data
sequence OT and, in some of its variations, by also exploiting supervised sample
information.

9.4.2 The JIT Classifier

With reference to Algorithm 24, the JIT classifier undergoes an adaptation phase
whenever the CDT detects concept drift. Otherwise, it integrates available new infor-
mation in the training set to improve the classification accuracy over time.

9.4.2.1 React to the Change: Updating the Classifier

Retraining the adaptive JIT classifier requires learning the model of the data generat-
ing process after the change. Thus, the set of features Zs|t>t = Zs|[t,T̂], i.e., the data
observations in time interval [t, T̂], represent the new state of the process generating
the data following concept drift. Such instances must be used to retrain the classifier
(in the time domain t) and the ICI-CDT (in the s domain).

Any consistent classifier, where consistency requires as necessary sufficient that
the model family is a universal function approximator, can be considered in the JIT
framework. However, if we have embedded systems in mind, then not all classifiers
are equally valid. Computational complexity and memory usage must be taken into
account when designing the application also for the indirect effect on power con-
sumption in energy-aware applications. Feedforward neural networks, k-NN clas-
sifiers, Radial basis function neural networks are examples of consistent classifiers
[100], SVM and regularized kernel classifiers are consistent classifiers depending
on the particular choice of the loss function and the implementation algorithm [99].
However, the training phase is a costly operation for most classifiers, hence becom-
ing most likely to be prohibitive for embedded systems, in particular if big data are
involved. As shown in [101] k-NN classifier is a particularly appealing solution since
its training phase is immediate and reduces to the insertion of supervised couples in
a table representing the KB of the classifier.

We recall that the k-NN classifier provides a label to a new instance to be classified
as the label majority of the k closest instances. The figure of merit evaluating the
affinity between two instances—mostly based on an euclidean distance in the input
space—the inspection of instances in the KB and score ranking to identify the k
closest neighbors are the main computationally demanding parts of the algorithm. If
the cardinality of the KB is N the k-NN classifier is consistent [103] provided that

k

N
→ 0 as k → ∞, N → ∞.

However, k-NN classifiers are memory eager solutions—this is the price we have
to pay for a computational negligible training phase—since all N instances need to

242 9 Learning in Nonstationary and Evolving Environments

be stored in the memory, despite the fact that efficient solutions can be envisaged to
keep under control the memory request, e.g., those based on condensing or editing
techniques. Both condensing and editing techniques aim at reducing the cardinality
of the training set yet preserving the maximum classification accuracy. In partic-
ular, condensing techniques, e.g., Condensed Nearest Neighbor (CNN) [105], aim
at keeping in the training set only those samples fundamental to shape the decision
boundary.Differently, editing techniques, e.g., theWilsonEditingRule (WER) [106],
intervene on the training set by removing particularly noisy samples and request the
Bayes’s decision boundary to be smooth.

A better solution would involve thresholding the cardinality of KB by keeping a
maximum of NM instances. If they are in stationary conditions and N increases, N
will be buffered to NM supervised couples, for instance by keeping the most recent
NM instances. A simple circular buffer would solve the problem.

Wedetail the JIT classifier based on a k-NNstructure and theH-CDT; the reference
is Algorithm 25.

The initial knowledge base of the k-NN classifier is Z0 = {(x(t), y(t)), t ∈ I0}
(line 1), while the value of k is set to kLOO, estimated by means of the Leave-One-
Out (LOO) technique applied to Z0 (line 2). The H-CDT is configured on the initial
training set OT0 (line 3). After this configuration phase, the algorithmworks online by
classifying upcoming samples as they arrive and by introducing, whenever available
(line 7), new supervised information (x(t), y(t)) into the knowledge base of the
classifier KB. In this case, the algorithm stores in IT the time instant t when the
sample has been received (line 8), includes the pair (x(t), y(t)) in ZT (line 9), and
updates the parameter k so that consistency is granted. The reader should be aware
that k cannot be freely chosen as N increase to satisfy the consistency conditions;
an effective computational-aware method to estimate the appropriate k is given in
[104] and relies on the LOO performance evaluation method.

In stationary conditions, the classification accuracy always increases by introduc-
ing additional supervised samples during the operational life [103] butwhen available
x(t) is not supervised, It and Zt sets are not updated (lines 11-12).

When the H-CDT notifies concept drift in the subsequence containing x(t) (line
13), the refinement procedure also provides t (line 15). The H-CDT is then recon-
figured on features s associated with the new state of the process, i.e., those in time
interval [t, T̂] (line 16).

The t information allows the JIT for removing those training samples acquired
before t both from It and Zt (lines 17, 18). The new value of kLOO is then estimated
by means of the LOO procedure on the new knowledge-base (line 19) and k set to
it. Finally, x(t) is classified by relying on the updated knowledge-base Zt , and the
current value of k (line 20).

9.4.2.2 Example: JIT Learning in a Classification Systems

The experiment refers to a synthetic monodimensional classification problem with
two equiprobable classes {ω1, ω2} each of which ruled by a Gaussian distribution

9.4 The Just-in-Time Learning Framework 243

Algorithm 25: H-CDT-based JIT Adaptive Classifier

1 I0 = {1, . . . , T0} , Z0 = {(x(t), y(t)), t ∈ I0},OT0 ;
2 Estimate kLOO by means of LOO on Z0 and set k = kLOO;
3 Configure the ICI-CDT part of H-CDT using OT0 ;
4 Zt = Z0,It = I0,t = T0 + 1;
5 while (1) do
6 Acquire x(t) at time t ;
7 if (supervised information y(t) on x(t) is available) then
8 It = It−1 ∪ {t};
9 Zt = Zt−1 ∪ {(x(t), y(t))};

10 update k as in [104];
else

11 It = It−1;
12 Zt = Zt−1;

end
13 if (H-CDT detects concept drift on the sequence containing x(t)) then
14 Let T̂ be the concept-drift detection time;
15 Extract t from H-CDT (Algorithm 23);

16 Configure ICI-CDT on [t, T̂] and Hotelling on feature sequence s|t > t ;
17 It = {

t ∈ Tt , t > t
}
;

18 Zt = {(x(t), y(t)) , t ∈ It };
19 Estimate kLOO by means of LOO on Zt and set k = kLOO ;

end
20 Classify x(t) as k − N N (x(t), k, Zt);
21 t = t + 1;

end

p(x |ω1) = N (0, 4) and p(x |ω2) = N (2.5, 4). The experiment is composed of
N = 10, 000 scalar observations. An abrupt concept drift affects both classes at
time T o = 5000 by modifying the pdfs as p(x |ω1) = N (2, 4) and p(x |ω2) =
N (4.5, 4). Figure9.10a shows the data instances for the two classes over time.

The following adaptive classification frameworks have been considered for com-
parison:

• the proposed JIT classifier (green dashed line with a square marker).
• A classifier trained on all available data every time a new supervised couple is
provided (dotted black line). This classifier guarantees the best performance in
stationary conditions.

• A short memory classifier trained on a sliding window open over the latest 40
supervised samples (solid red line with circle marker).

All the considered adaptive classification frameworks rely on the k-NN classifier as
a base classifier.

A supervised sample out of m = 5 observations is provided to the classifiers.
The classification accuracy on unsupervised samples is the figure of merit used

to assess the performance of the considered adaptive classification framework. In

244 9 Learning in Nonstationary and Evolving Environments

(a)

(b)

Fig. 9.10 An example of the just-in-time learning mechanism applied to a classifier. Data instances
associated with the two classes are subject to a concept drift of abrupt type at T o =5,000 that affects
the mean of the distribution of classω2 (upper plot). The classification performance of the classifier
are then compared with a short memory classifier implementing a batch online passive learning
mechanism, the JIT classifier and the optimal Bays classifier (lower plot)

particular, Fig. 9.10b shows, at each time instant, the percentage of misclassified
samples in 2,000 runs, averaged over a sliding window of 40 samples.

The JIT classifier tends to the Bayes error both before and after the change thanks
to its ability to integrate fresh supervised samples during the operational life and
to remove obsolete samples after a detected change. In fact, before T o =5,000, the
JIT classifier guarantees performance in line with those provided by the classifier
trained on all available data (i.e., the black line) that, in stationary conditions, is able
to guarantee the best performance.

After the change, the JIT classifier is able to promptly react to the change and adapt
to the new working conditions thanks to its active detection/reaction approach. On
the contrary, the classifier trained on all available data requires much more samples
to adapt to the new working conditions since it is not endowed with a mechanism to
remove obsolete samples.

Interestingly, the short memory classifier guarantees the best performance after
the change since it is naturally able to remove obsolete samples through the window-
ing mechanism. Unfortunately, it is not able to improve its accuracy in stationary
conditions since the sliding window is open over a fixed amount of samples (and this
does not allow the base classifier to achieve the Bayes error).

9.4 The Just-in-Time Learning Framework 245

9.4.3 Gradual Concept Drift

The proposed JIT grants asymptotic optimality when the process generating the
data is affected by a sequence of abrupt concept drift [84] in the sense that, after
concept drift is detected, the classifier’s performance increases during operational
life with provided additional supervised samples. The classic example is that of a
quality inspection process where a supervisor is invoked time by time to provide an
external quality evaluation which is the fresh information (supervised couple) that
the JIT benefits to recover automatically from concept drift. Clearly, if the process
is characterized by a sequence of concept drift that are too close in time, then the
performance of the JIT might stay low even though the JIT classifier does its best to
keep the highest accuracy possible compatible with the circumstances. In this case a
passive-based classifier where k-NN is trained solely on the last N fixed data might
provide better performance and be simpler from the complexity point of view.

This situation might also arise with gradual concept drift, obviously seen as a
sequence of abrupt type of concept drift. Again, a passive solutionmight be preferable
to the adaptive one if concept drift is fast, in the sense that its gradient over time is
relevant (high developing concept drift). To address the gradual concept drift [97]
proposes an extended JIT classifier introducing

• a modification of the ICI-CDT outlined in Sect. 9.3.2 that makes the CDT able to
deal with a process whose expectation follows a polynomial trend.

• an adaptive classifier able to handle gradual concept drift affecting the process
expectation. The classifier integrates an index estimating the evolution dynamics
to improve classification accuracy.

Intuitively, the proposed extended classifier copes with gradual concept by esti-
mating the concept drift trend, detrending the data and consider now the process as
exhibiting a stationary state.

We model the gradual concept drift according to the formulation of equation
(9.22). In particular, we focus on gradual concept drift that is represented by a pos-
sibly slow-time-varying stochastic process, whose expectation E[p(x |t)] follows a
piecewise polynomial function fθ (t). The parametric description of fθ (t) is given by
{(θi , Ui)}where θi is a parameter vector characterizing the polynomial fθi (t) defined
on the i-th time interval Ui (i.e., a subsequence of consecutive time instants). The
expectations of the conditional probability distributions can be expressed as

E[p(x |ω1, t)] = fθi (t) + q1,i (9.23)

E[p(x |ω2, t)] = fθi (t) + q2,i (9.24)

where t ∈ Ui and q1,i and q2,i are the expectations of the two classes ω1 and ω2 in
stationary conditions. The process generating observations x(t) at time t becomes

x(t) =
{

fθi (t) + φ1,i , if y(t) = ω1
fθ2(t) + φ2,i , otherwise

(9.25)

246 9 Learning in Nonstationary and Evolving Environments

where φ1,i and φ2,i are random variables ruled by the pdfs characterizing the
distributions of their respective classes ω1 and ω2 in stationary conditions with
E[φ1,i] = q1,i and with E[φ2,i] = q2,i .

We further assume that the probabilities p(x |ω1, t) and p(x |ω2, t) do not change
within each interval defining the piecewise polynomial function, thus, the pdf of
x(t) is

p(x |t) = pi (ω1)p(x |ω1, t) + pi (ω2)p(x |ω2, t), t ∈ Ii .

The pdf of the inputs, the conditional distributions and the output distributions are
unknown. The piecewise-polynomial function within each interval Ui , i.e., fθi (t), is
also unknown, but common between the two classes, as expressed in (9.24).We com-
ment that the considered framework is an extension of the traditional one assuming
constant fθi (t).

9.4.4 JIT for Gradual Concept Drift

The key point of the proposed approach is to extend the observation model
traditionally assumed in classification problems by allowing the expectation of the
conditional probability density functions to evolve over time as a piecewise poly-
nomial function, as expressed in (9.24). Under such a hypothesis, we can develop a
CDT to assess variations in the (polynomial) trend of the process under monitoring,
rather than in the value of its expectation. If the test does not detect variations, we
perform a polynomial regression of the input samples and use the regression coef-
ficients to modify online the knowledge base of an adaptive classifier. Differently,
when a change is detected, the obsolete samples are removed from the knowledge
base and the change detection test is restarted.

Since the ICI-CDT is natively able to deal with polynomial trends in the process
under monitoring, it can be applied with minor modification at the feature level w.r.t.
what is presented in Sect. 9.3.2. A detailed description can be found in [97].

Differently, the k-NN classifier has to be slightly modified to coherently adapt to
gradual concept drift. Algorithm 26 presents the k-NN classifier able to deal with

Algorithm 26: Adaptive k-NN classifier for Gradual Concept drift

1- N = |ZT |;
2- i = 1;
3- while (i < N) do

4- di =
((

x(t) − f
θ̂ (t)(t)

)
−

(
x(ti) − f

θ̂ (t)(ti)
))

;

5- i = i + 1;
end

6- Identify the nearest k training samples according to the distances {di }i=1,...,N ;
7- Classify x(t) as the majority of labels in the k nearest training samples;

9.4 The Just-in-Time Learning Framework 247

gradual concept drift. It is easy to see that the only difference w.r.t. the traditional
k-NN classifier is the computation of the distance between the input sample and the
training samples (line 4). Here, the parameter vector θ̂ (t) represents the coefficients
of the best polynomial fit for the data during gradual concept drift. These coefficients
can be estimated from the observations using any regression technique.

The polynomial fit represents the gradual concept drift, and is used to correct
each term as function of the distance between the data and the fitted polynomial.
In particular, the distance between the current sample x(t) and the training sample
x(ti) is computed after subtracting the values of the (estimated) polynomial having
coefficients θ̂ (t) in their corresponding time instants (i.e., f

θ̂ (t)(t) and f
θ̂ (t)(ti)).

By replacing the CDT and the k-NN classifier it is then possible to formulate
the JIT classifier for gradual concept drift following a similar scheme of Algorithm
25. Note that the proposed JIT for gradual concept drift is indeed an extension of
Algorithm 25 as in absence of gradual concept drift, the higher order coefficients of
the polynomial approach zero and the whole JIT operates as in stationary conditions.

9.4.5 Amygdala—VM-PFC—LPAC- ACC: The JIT Approach

The just-in-time learning framework is an example of a complex mechanism that
founds its psychological roots in Piaget’s theory of childhood learning. Detecting
concept drift and reacting to it is aligned with Piagets psychological theory of human
cognition [157],where learning is described as a constant effort tomaintain or achieve
balance between prior and new knowledge. As pointed out in [77], when new knowl-
edge cannot be accommodated under existing schema because of severe conflict (i.e.,
nonstationarity), the need is to restructure the application to create new schemata that
supplement or replace the prior knowledge base. While the former detection issue
is addressed by the Amygdala—VM-PFC mechanism the need to supplement or
replace the prior knowledge base (reaction process) is carried out by the LPAC-ACC
layers.

	9 Learning in Nonstationary and Evolving Environments
	9.1 Passive and Active Learning
	9.1.1 Passive Learning
	9.1.2 Active Learning

	9.2 Change Point Methods
	9.2.1 Change Points
	9.2.2 Set Dissimilarity
	9.2.3 The Change Point Formulation
	9.2.4 Test Statistics Used in CPMs
	9.2.5 Extensions Over the Basic Scheme

	9.3 Change Detection Tests
	9.3.1 The CUSUM CDT Family
	9.3.2 The Intersection of Confidence Intervals CDT Family
	9.3.3 Amygdala---VM-PFC: The H-CDT

	9.4 The Just-in-Time Learning Framework
	9.4.1 Observation Model
	9.4.2 The JIT Classifier
	9.4.3 Gradual Concept Drift
	9.4.4 JIT for Gradual Concept Drift
	9.4.5 Amygdala---VM-PFC---LPAC- ACC: The JIT Approach

