
Chapter 7
Performance Estimation and Probably
Approximately Correct Computation

The analysis phase of a problem aims at evaluating, given a computation, its
performance. Performance can be intended in several ways depending on the specific
target problem as well as the abstraction level where it is carried out. For instance,
at the device level we have cost, latency, throughput, power, energy, complexity to
name some major performance design indexes. At the algorithm level we have accu-
racy, confidence, energy, and complexity. Not rarely we constrain such indexes and
we saw in Chap. 4 how it is possible to evaluate their satisfaction level.

Performance and design indexes are evaluated through suitable figures of merit
applied to architectural and functional elements of the embedded system or the algo-
rithm. Despite the fact that the provided methodological analysis is able to address
all figures of merit and architectural aspects, we will mainly focus on accuracy as a
case study of a performance/design index without any loss in generality. As a con-
sequence, we look at algorithms to be executed on embedded systems whereas the
embedded system being characterized by finite resources introduces physical con-
straints which, in turn, affect the algorithm itself and its performance. At the same
time, as already pointed out in the introduction, we discover that it is too expensive,
andmost of times not necessary, to provide a worst-case analysis for accuracy. In line
with approximate computation and probabilistic computation, we are here interested
in an algorithm that, mounted in the embedded system, provides an outcome correct
in probability.

The chapter introduces at first methods for assessing the accuracy of a computa-
tion, then formalizes the concept of Probably Approximately Correct Computation
PACC. Finally, it provides techniques for accuracy assessment in terms of PACC and
methods for answering to the following questions:

1. Which are the performances of my algorithm?
2. If I simplify my algorithm, which is the introduced performance loss?
3. I have different algorithms solving my problem. Which one is the best?
4. I have different algorithms solving my problem. Which one is the best on a given

embedded system?
5. Shall I use a floating point unit or a cheaper fixed point representation suffices?

C. Alippi, Intelligence for Embedded Systems, DOI: 10.1007/978-3-319-05278-6_7, 133
© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-05278-6_4

134 7 Performance Estimation and Probably Approximately Correct Computation

7.1 Accuracy Estimation: Figures of Merit

Different figures of merit can be considered to evaluate the discrepancy between two
functions which, here, must be intended as the optimal—ideal—solution for a given
problem and the approximated solution proposed as the candidate to be implemented
in the embedded system. The discrepancy can be intended as a performance loss,
difference in accuracy between an identified model and the true one or, simply, a
measure of the “distance” between the two. The figure of merit depends on the
specific application and the goodness of a solution also depends on the chosen figure
of merit in the sense that the same solution can be more or less good depending on
the chosen performance evaluation tool.

Since our goal is to provide a function approximating the real one, in the fol-
lowing we consider assessing the discrepancy between two functions according to
figure of merit u ∈ R. The evaluation is carried out by taking into account the punc-
tual discrepancy of two functions u(x) = u(y(x), ŷ(x)) ∈ R,1 where we assume
x ∈ X ⊂ R

d . X is a probability space, whose probability measure μ induces pdf fx

over it, and y(x), ŷ(x) ∈ R, which we assume to be measurable functions according
to Lebesgue. By applying an aggregation operator to the punctual discrepancy u(x)

to x ∈ X we obtain the discrepancy u. In the sequel, we indicate as y the refer-
ence function and ŷ the approximating one. Two interesting cases arise from the
applications:

• Functions y(x) and ŷ(x) are given. The figure of merit u evaluates the discrepancy
over the whole input space X . Again, if fx is unknownwe shall consider a uniform
distribution for its worst case properties.

• Function y(x) is not given, but can be queried, i.e., once a sample xi is drawn from
the input space, function y(x) acts as an oracle and provides value y(xi), possibly
affected by uncertainty. The number of samples can be finite or infinite depending
on the nature of the application, thus xi ∈ X̃ ⊂ X, i ∈ N are sampled according
to the pdf fx induced by the probability measure over X and are subsequently
considered for the discrepancy computation. In this situation also function ŷ(x) is
not known, therefore it must be at first identified, by considering a suitable model
family function ŷ(x, θ) parametric in the vector of parameters θ ∈ Θ ⊂ R

l . Then,
with abuse of notation ŷ(x, θ̂) = ŷ(x) once θ̂ has been provided.

The first case arises in all those applications for which the theory provides the
optimal solution to the problem and we need to approximate it for several reasons,
e.g., because our embedded system is not able to host the high accurate solution
for its complexity and an approximation needs to be considered instead. As an
example, we have the optimal design of filters and representation of a complex
numerical algorithm. The second case is what the theory of system identification
and learning is about: starting from a sequence of input/output pairs we determine

1 With an abuse of notation that eases the understanding, we consider the punctual discrepancy as
a function of x , since y and ŷ are fixed.

7.1 Accuracy Estimation: Figures of Merit 135

the approximating function. This topic, which is fundamental in this book, has been
addressed in Sect. 3.4.1.

In the following we will present, without the intent to be exhaustive, three inter-
esting u figures of merit. We recall that it is the application designer who identifies
the right figure of merit for a given problem based on a priori knowledge, experience,
and application constraints. However, when one does not know which figure of merit
to consider, it is a rather common approach to use the mean squared one.

7.1.1 Squared Error

The Squared Error (SE) is a rather common quadratic figure of merit adopted to
quantify the difference between two functions. The corresponding discrepancy uSE

is a risk function, corresponding to the expected value of the squared punctual dis-
crepancy u(x) = (y(x) − ŷ(x))2

uSE = E[u(x)] = E
[
(y(x) − ŷ(x))2

]

which represents the second order moment of the error (considering a zero mean
error). It is worth observing that the discrepancy between the two functions is
weighted by the probability density function fx over the input space.

Its empirical version evaluated over a finite number of n points drawn according
to fx (i.e., considering a finite space X̃ = {x1, . . . , xn} where xi is a realization of a
random variable x ∈ X with pdf fx), provides the empirical estimate of the quadratic
error or a Mean Squared Error (MSE)

uM SE = 1

n

n∑
i=1

u(xi) = 1

n

n∑
i=1

(
y(xi) − ŷ(xi)

)2
.

We have been using uSE and uM SE widely over the book for their intriguing
structure that makes the mathematics amenable. Moreover, despite the fact that the
use of a SE loss function has been criticized, e.g., in speech and image applications
for its quadratic behavior which amplifies large point-wise discrepancies more than
small ones and is not a perception-based figure of merit [41, 42], it is commonly
adopted since it is easy to use [40]. Moreover, a quadratic function is a natural way
to measure the energy of the discrepancy function u(x) and, thanks to the Parseval
theorem, the energy of the signal can be equivalently computed in the signal space
or frequency domain. It is clear that, if functions y(x) and ŷ(x) are deterministic,
then the uSE simply evaluates the approximation risk (model bias), namely the
integral of the squared discrepancy. In this case, the smaller the uM SE the better the
approximating function. Conversely, if y(x) is affected by noise and ŷ(x) is learned
as proposed in Sect. 3.4.1, then expectation must be extended to the noise as well.
Results presented in Sect. 3.4.1 hold.

http://dx.doi.org/10.1007/978-3-319-05278-6_3
http://dx.doi.org/10.1007/978-3-319-05278-6_3
http://dx.doi.org/10.1007/978-3-319-05278-6_3

136 7 Performance Estimation and Probably Approximately Correct Computation

7.1.2 Kullback–Leibler

The Kullback–Leibler divergence [43, 44] measures the distance between two
probability density functions, which, in the following, we denote as y(x) and ŷ(x).

More specifically, if the densities y(x) and ŷ(x) exist then the Kullback–Leibler
divergence is

uK L =
∫

X
y(x) log

y(x)

ŷ(x)
dx (7.1)

The figure of merit, also known as information divergence and relative entropy,
is not a metric (and this is the reason why it is called divergence), since it does not
satisfy the symmetry property, i.e., uK L

(
y(x), ŷ(x)

) �= uK L
(
ŷ(x), y(x)

)
. However,

uK L
(
y(x), ŷ(x)

) ≥ 0 and assumes value zero only when ŷ(x) = y(x), ∀x ∈ X ,
that is to say when the two distributions are equal.

In the machine learning field, the Kullback–Leibler divergence plays a lead-
ing role. For instance, in Bayesian machine learning it is used to approximate an
intractable density model [48]. In other application scenarios, the divergence is used
for parameter estimation [46], text classification [45] and, again multimedia appli-
cations [47] just to name the few.

7.1.3 L p Norms and Other Figures of Merit

Several other figures of merit can be designed to asses the discrepancy between two
functions based on the L p norms. For instance, ifwe consider as punctual discrepancy
u(x) = y(x) − ŷ(x), we can use its L p norm as figure of merit

uL p = ‖u(x)‖p = ‖y(x) − ŷ(x)‖p =
(∫

X
|y(x) − ŷ(x)|p fx (x)dx

) 1
p

. (7.2)

where fx (x)dx = dμ(x) is the differential of the probability measure over X . Of
particular interest are the L1, L2 (equivalent to the SE approach, since uSE = uL2)
and L∞ norms.

In somecases, the punctual discrepancy isweightedby agiven functionw(x) ≥ 0,
∀x ∈ X and (7.2) becomes discrepancy induced by the weighted L p norm

uL p, w =
(∫

X
w(x)|y(x) − ŷ(x)|p fx (x)dx

) 1
p

Other figures of merits may be derived by taking into account the mutual informa-
tion [49], cross entropy [49], or maximum likelihood. However, whatever the chosen
figure of merit is, the designer has solely to provide a Lebesgue measurable function
with domain in a probability space, which is the unique requirement we ask for in
subsequent analyses.

7.2 Probably Approximately Correct Computation 137

7.2 Probably Approximately Correct Computation

Consider given algorithm A associated with function y(x), x ∈ X measurable
according to Lebesgue and X a probability space. Denote as ŷ(x), x ∈ X a given
function approximating the y(x) implementing algorithm Â. Let fx be the probabil-
ity density function associatedwith themeasure over X . As previouslymentionedwe
can relax the assumption by assuming that function y(x) is not known but operates
as an oracle providing value y(xi) once queried on xi .

Definition We say that function ŷ(x) is a Probably Approximately Correct Computa-
tion (PACC) of function y(x) at accuracy τ and confidence η when, given a Lebesgue
measurable discrepancy function u

(
y(x), ŷ(x)

) ∈ R, we have that

Pr
(
u

(
y(x), ŷ(x)

) ≤ τ
) ≥ η, ∀x ∈ X. (7.3)

In other terms,we are requesting that the two functions are close enough according
to function u(x); closeness must be intended in probabilistic terms within accuracy τ

on the discrepancy satisfied with probability η,∀x ∈ X . The computation provided
by function ŷ(x) is approximately correct in the sense that it approximates y(x)

according to u(·) at level τ ; such a statement holds at least with probability η.
From the definition, we derive several interesting cases. Consider at first u(x) =

|y(x) − ŷ(x)|. Given this loss function (7.3) can be expressed as

Pr
(|y(x) − ŷ(x)| ≤ τ

) ≥ η, ∀x ∈ X (7.4)

Since

Pr
(−τ ≤ y(x) − ŷ(x) ≤ τ

) ≥ η, ∀x ∈ X

if we assume that τ is small then (7.4) can be cast in a more immediate and intuitive,
yet less formal, form

Pr
(
y(x)
 ŷ(x)

) ≥ η, ∀x ∈ X.

The computation provided by our algorithm is approximately correct, i.e., it pro-
vides a value which nicely approximates the true one with high probability.

Example: Scalar product

As a first example of a PACC consider the error free set-up where

y(x) = xT θo (7.5)

with X = [−1, 1]d , fx is uniform and x and θo ⊂ R
d represent the column vectors

of inputs and coefficients, respectively. The scalar product computed in (7.5) can be

138 7 Performance Estimation and Probably Approximately Correct Computation

a linear filter of coefficients θo, as those used in the waivelets, e.g., see [27, 30, 31],
in a Cordic computer [28, 29] or a filter bank [32]. We request function y(x) to be
either implemented in a digital hardware or executed on a microcontroller. Assume
for simplicity that no overflow/underflow occurs in the computation and that the trun-
cation operator has been envisaged to reduce the number of bits needed to represent
the coefficients. Finite precision representation can be modeled as the perturbation
vector δθ affecting coefficients θo and leading to approximated computation

ŷ(x) = xT (θo − δθ).

Assume that d >> 1 and that inputs are mutually independent. If we consider the

u(x) = u(y(x), ŷ(x)) = y(x) − ŷ(x)

loss function, then the point-wise discrepancy is the variable

u(x) = xT δθ

which, from the central limit theorem, is asymptotically Gaussian with mean

Ex [u(x)] = 0 and variance Ex [u2(x)] = σ 2 = δθT δθ
3 . Finally,

Pr

(
|u(x) − Ex [u(x)]| ≤ λ

σ√
d

)
= erf

(
λ√
2

)

i.e.,

Pr

(
|y(x) − ŷ(x)| ≤ λ

σ√
d

)
= erf

(
λ√
2

)
.

The PACC computation is characterized τ = λ σ√
d
and η = er f

(
λ√
2

)
.

Example: linear regression

Consider function y(x) = xT θo + ζ where x and θo are the d-dimensional column
vectors of inputs and given—but unknown—parameters, respectively. ζ is a zero
mean white noise of variance σ 2

ζ ruled by Gaussian pdf fζ . Inputs are zero centered
and independent and identically distributed, extracted according to probability den-
sity function fx of diagonal covariance σ 2

x Id . Consider the n samples training set
Zn = {(x1, y(x1)), · · · (x1, y(xn))}.

Define χ = [x1, . . . , xn] to be the (n, d) dimensional matrix containing the input
vectors and Y = [y(x1), . . . , y(xn)] the (n, 1) vector of associated outputs.

If we define

u(y(x), ŷ(x)) = ŷ(x) − y(x)

7.2 Probably Approximately Correct Computation 139

the least mean squared error estimate

ŷ(x) = xT θ̂

can be obtained by minimizing the

uM SE = Ên(u(x)) = 1

n

n∑
i=1

(
y(xi) − ŷ(xi)

)2

and provides the parameter estimate

θ̂ =
(
χT χ

)−1
χT Y.

We know from Sect. 3.4.4 that the distribution of θ̂ is centered in θo. θ̂ can then
be seen as a perturbed value of θo so that θ̂ + δθ = θo. We can repeat the derivation
carried out in the previous experiment and the point-wise error

u(x) = xT δθ + ζ

converges to a Gaussian distribution of zero mean and variance σ 2 = σ 2
x δθT δθ +σ 2

ζ

provided that d is large enough.
As before, we can then write

Pr

(
|ŷ(x) − y(x)| ≤ λ

σ√
n

)
= er f

(
λ√
2

)
(7.6)

With the choice τ = λ σ√
n
and η = er f

(
λ√
2

)
, ŷ(x) represents a PACC computa-

tion of y(x) at level τ and probability η.

Example: Maximum value estimate

Another interesting case emerging from applications is the one where we aggregate
punctual discrepancies with the maximum operator. Define

umax = max
x∈X

u(x)

with ûmax being the estimate of such amaximum as provided by a suitable algorithm.
We have a good estimate ûmax when

Pr
(
umax − ûmax ≤ τ

) ≥ η (7.7)

In other terms, the (7.7) states that estimate ûmax is a good estimate when the
probability of having the true value within distance τ is high. In a way, (7.7) is
closely related to the weak law of empirical maximum.

http://dx.doi.org/10.1007/978-3-319-05278-6_3

140 7 Performance Estimation and Probably Approximately Correct Computation

While the (7.7) is a well-posed formulation from the mathematical point of view
it is of scarce use in the practice apart from very simple cases. In fact, for a generic
u(x) loss function, we cannot guarantee, even in probability, that given ûmax belongs
to a neighborhood of umax within distance below τ .

As we have seen in Chap. 4, this is a well-known problem whose solution within
a PACC framework requires introduction of an additional level of probability.

Comments

The probabilistic theory behind the PACC well describes the operational modality
of those applications for which an exact computation suffice. If an embedded system
is considered, and given the comments raised in Chap.3, we discover that very few
applications require a high accuracy in the computation, e.g., those involvingfinancial
data, all the others being affected by uncertainty that affects the correctness of the
computation output.

However, the use of the PACC theory appears to be of limited use in practical cases
for generic y(x) and ŷ(x) functions due to the difficulty in providing (or determining)
the η and τ values requested by (7.4) or identifying a ûmax that satisfies the (7.7).

Fortunately, thanks to the procedures based on randomized algorithms we intro-
duce in the sequel, we will be able to provide estimates for both η and τ and ûmax,
hence making effective and operational the PACC framework. The main outcome
is that any computation, under the very weak hypothesis of Lebesgue measurabil-
ity, can be effectively cast into the PACC framework that makes available a set of
algorithms able to identify η, τ , and ûmax.

7.3 The Performance Verification Problem

The performance verification problem aims at verifying to which degree a perfor-
mance level is attained, computing the probability that an inequality on performance
is satisfied or estimating the maximum value associated with a performance discrep-
ancy loss function.

In the following, the key actors will be the given functions y(x) and ŷ(x) and the
Lebesgue measurable figure of merit u

(
y(x), ŷ(x)

)
. It is recalled that a probability

density function fx is induced by the measure of probability space X . We already
pointed out in Chap. 4 that if fx is unknown the user should consider a uniform
distribution which, under mild hypotheses about the regularity of functions y(x) and
ŷ(x), acts as a worst case scenario (e.g., derived bounds tend to be overestimated).

The computationally difficult problem of evaluating the different performance
associated with a given figure of merit over the whole input space X can be tamed
by resorting to probability and accepting a PACC computation.

We will address in the sequel the following problems

• The performance satisfaction problem. Given a tolerated performance loss τ for
an application, compute the probability that the discrepancy u

(
y(x), ŷ(x)

) ≤ τ,

∀x ∈ X ;

http://dx.doi.org/10.1007/978-3-319-05278-6_4
http://dx.doi.org/10.1007/978-3-319-05278-6_3
http://dx.doi.org/10.1007/978-3-319-05278-6_4

7.3 The Performance Verification Problem 141

• Figure of merit expectation problem. Provide an estimate of the expected value
E

[
u

(
y(x), ŷ(x)

)]
at arbitrary accuracy and confidence levels;

• The maximum performance problem. The goal is to provide an estimate ûmax for
the maximum value umax = maxx∈X u

(
y(x), ŷ(x)

)
;

• The PACC problem. Compute those η and τ characterizing the PACC degree for
the given application;

• The minimum(maximum)-perturbed expectation problem. Estimate the
minimum/maximum value performance function u(x) assumes when perturba-
tions affect it.

Clearly, u
(
y(x), ŷ(x)

)
can degenerate to ŷ(x).When this happens, the considered

problems must be intended as applied to function ŷ(x).

7.3.1 The Performance Satisfaction Problem

The performance satisfaction problem aims at assessing the level of performance
satisfaction of a given ŷ(x) function in approximating y(x) according to figure of
merit u

(
y(x), ŷ(x)

)
and a tolerated performance loss τ .

Examples of applications

• We designed application ŷ(x) solving my problem. Is that satisfying the accuracy
constraint set at level τ requested by the application?

• We designed solution y(x) which is working well in a high performance machine
where it satisfies the requested real time performance. We port it on our embedded
system where it becomes solution ŷ(x). Is porting granting a loss in execution
time between the two platforms below τ?

• We designed solution to our problem y(x) within a high resolution platform (e.g.,
Matlab,Mathematica, Simulink). Thenweneed to port the solution to an embedded
system characterized by a given finite precision representation (limited word-
length for data and inner variables, truncation mechanisms and look up tables). Is
the performance loss in accuracy we are introducing tolerable if τ is what we are
willingly to loose?

• Our application solution ŷ(x) has an accuracy scalable with complexity in the
sense that the solution performance (accuracy, execution performances, power
consumption) scales with the solution complexity (the higher the complexity the
better the performance). We would like to minimize complexity provided that
performance loss τ is attained.

The above problems can be formalized as follows: Given a tolerated performance
loss τ we wish to estimate the satisfaction level

u
(
y(x), ŷ(x)

) ≤ τ, ∀x ∈ X

that is to say, determine the percentage of points of X satisfying the inequality. The
problem can be immediately related to the algorithm verification problem presented

142 7 Performance Estimation and Probably Approximately Correct Computation

in Sect. 4.4.1 by simply substituting x to each occurrence of ψ . We recall the main
operational steps.

The percentage of points x ∈ X satisfying u(x) ≤ τ is simply the ratio

nu(x)≤τ =
∫

X I (x)dx∫
X dx

where

I (x) =
{
1 if u(x) ≤ τ

0 otherwise

Since determination of nu(x)≤τ is a computationally hard problem for a generic
function we move to a probabilistic problem.

In order to do that, consider the probability density function fx defined over X
and request to evaluate the probability

pτ = Pr (u(x) ≤ τ) =
∫

X I (x) fxdx∫
X fxdx

=
∫

X
I (x) fxdx

since
∫

X fxdx = 1. We have seen in Chap.4 that pτ can be evaluated through
randomization and that, given τ , we can compute the estimate p̂n of pτ by drawing
n samples x1, . . . xn according to fx and evaluate the indicator function

I (u(x) ≤ τ) =
{
1 if u(x) ≤ τ

0 if u(x) > τ

and the estimate

p̂n = 1

n

n∑
i=1

I (u(xi) ≤ τ) .

By selecting a number of samples according to the Chernoff bound

n ≥ 1

2ε2
ln

2

δ

we have that

Pr
(| p̂n − pτ | ≤ ε

) ≥ 1 − δ

holds for any accuracy level ε ∈ (0, 1) and confidence δ ∈ (0, 1). Value p̂n is the
probabilistic outcome of the performance satisfaction problem provided that small
ε and confidence δ values are set. The randomized algorithm solving the problem is
Algorithm 6.

http://dx.doi.org/10.1007/978-3-319-05278-6_4
http://dx.doi.org/10.1007/978-3-319-05278-6_4

7.3 The Performance Verification Problem 143

7.3.2 The Figure of Merit Expectation Problem

The performance satisfaction problem returns the percentage of points satisfying
a given bound on the tolerated performance associated with my solution. The expec-
tation problem aims at evaluating the expected value of the loss function.

The problem solves the cases where

• Weare interested in quantifying the expected performance loss havingmoved from
solution y(x) to ŷ(x).

• We are interested in quantifying the expected performance of our application ŷ(x)

for a given problem, e.g., in execution on our embedded system. In such a case
u

(
y(x), ŷ(x)

) = u
(
ŷ(x)

)
.

In the following to ease the derivation assume that u(x) is defined in the [0, 1]
interval. This normalization operation is simply done with a rescaling of function
u(x).

Define E[u(x)] to be the expectation of function u(x) according to fx and follow
the derivation given in Sect. 4.4.3 for the evaluation of the expectation problem with
randomization. Briefly, set accuracy level ε ∈ (0, 1), confidence δ ∈ (0, 1) and draw

n ≥ 1

2ε2
ln

2

δ

i.i.d. samples x1, . . . , xn from random variable x defined over X according to fx and
generate the estimate

Ên(u(x)) = 1

n

n∑
i=1

u(xi)

then,

Pr
(
|Ên(u(x)) − E[u(x)]| ≤ ε

)
≥ 1 − δ.

Value Ên(u(x)) is the probabilistic outcome of the algorithm. By selecting small
ε and δ, we obtain a good approximation. The randomized algorithm solving the
problem is given in Algorithm 9.

The interesting reader should refer to Sect. 4.4.3 for the interesting relationships
between the needed samples requested by the Chernoff bound and those needed from
the central limit theorem.

7.3.3 The Maximum Performance Problem

Themaximum performance problem aims at estimating themaximum value function
u(x) can assume. Its relevance in many application cases is immediate. As we have
seen in Sect. 4.4.2 (were all details are given) the problem requires evaluation of

http://dx.doi.org/10.1007/978-3-319-05278-6_4
http://dx.doi.org/10.1007/978-3-319-05278-6_4
http://dx.doi.org/10.1007/978-3-319-05278-6_4

144 7 Performance Estimation and Probably Approximately Correct Computation

umax = max
x∈X

u(x)

and its analytical determination is impossible for most of functions. We saw in
Sect. 4.4.2 that a manageable probabilistic version of it requires two levels of prob-
ability. From the operational point of view, once fixed accuracy ε and confidence δ,
we have to draw

n ≥ ln δ

ln(1 − ε)

i.i.d. samples x1, . . . , xn and generate the estimate ûmax

ûmax = max
i=1,...,n

u(xi)

then,

Pr
(
Pr

(
u(x) ≥ ûmax

) ≤ ε
) ≥ 1 − δ.

The estimate of the maximum performance level is ûmax. All comments raised in
Sect. 4.4.2 hold. The reference randomized algorithm solving the maximum perfor-
mance problem is given in Algorithm 8.

7.3.4 The PACC Problem

We have seen that the PACC problem requires the evaluation of τ and η so that

Pr
(|y(x) − ŷ(x)| ≤ τ

) ≥ η (7.8)

holds. Then, if τ is small y(x)
 ŷ(x)with probability η. The problem can be solved
by considering the figure of merit u(x) = |y(x) − ŷ(x)|, although a more general
discrepancy function could be considered.

Solution of the PACC problem for a given function requires the evaluation of τ for
which (7.8) holds with high probability. This problem can be addressed by using the
method proposed in Sect. 4.4.1 and here reproposed in its main steps. Define p(γ)

as

p(γ) = Pr (u(x) ≤ γ) = Pr
(|y(x) − ŷ(x)| ≤ γ

)

for an arbitrary but given γ . Estimate p(γ) according to method given in Algorithm
6 which returns p̂n(γ). Explore the γ s by selecting arbitrary incremental points and
generate set Γ = {γ1, . . . , γk} s.t. γi < γ j ∀i < j . For all γ ∈ Γ evaluate p̂n(γ) so
as to build

http://dx.doi.org/10.1007/978-3-319-05278-6_4
http://dx.doi.org/10.1007/978-3-319-05278-6_4
http://dx.doi.org/10.1007/978-3-319-05278-6_4

7.3 The Performance Verification Problem 145

p̂Γ = { p̂n(γ1), . . . , p̂n(γk)}

as done in Algorithm 7.
Define γ̄ to be the smallest value for the finite sequence {γ1, . . . , γk} for which

p̂n(γi) = 1,∀γi ≥ γ̄ , γi ∈ Γ . Having selected k according to the Chernoff bound
discrepancy

|p(γ) − p̂n(γ)| ≤ ε

holds with probability 1− δ and is satisfied for all γ . As such, it also holds for p̂(γ̄).
We have that

p̂n(γ̄) − ε ≤ p(γ̄) ≤ p̂n(γ̄) + ε,

i.e.,

1 − ε ≤ p(γ̄) ≤ 1

from which p(γ̄) ≥ 1 − ε. The PACC problem is solved and provides η = 1 − ε

and τ = γ̄ .

7.3.5 The Minimum(Maximum)-Perturbed Expectation
Problem

The minimum (maximum) expectation problem aims at estimating the minimum
(maximum) value of the expectation of u(x)when perturbationsΔ affects u(x), thus
providing a perturbed version of the performance function u(x,Δ). Examples of
applications are the following

• Part of my embedded application has been designed with an analog technology
which is subject to electronic noise. I would like to know theminimum(maximum)
performance of my device subject to the fact perturbations affect it. I am happy to
know the minimum(maximum) performance by taking expectation of the pertur-
bation space.

• There is a source of uncertainty affecting my embedded system and I would like
to obtain an estimate of the performance loss by taking the average over the per-
turbation space.

The formalization of the problem is as follows:
Consider u(x,Δ) ∈ [0, 1], x ∈ X ⊂ R

d and Δ ∈ D ⊂ R
k (being X and Δ

probability spaces) and focus, e.g., on the minimum problem

146 7 Performance Estimation and Probably Approximately Correct Computation

umin = min
x∈X

EΔ[u(x,Δ)]

which is equivalent to
{

φ(x) = EΔ[u(x,Δ)]
umin = minx∈X φ(x)

solution to this computationally demanding problem is given in Sect. 4.4.4 and
addressed by randomized algorithm given in Algorithm 10.

7.4 Accuracy Estimation: A Given Dataset Case

In some of previously discussed performance verification problems we were able to
assess the quality of an estimator in probabilistic terms. For instance, in the figure of
merit expectation problem discussed in Sect. 7.3.2, by extracting n data

x1, . . . , xn

from random variable x according to fx over X , wewhere able to provide an estimate
Ên(u(x)) for the true unknown expectation E[u(x)]. At the same time, we provided
a quality assessment of the estimator since we wrote that

Pr
(
|Ên(u(x)) − E[u(x)]| ≤ ε

)
≥ 1 − δ. (7.9)

The designed framework implicitly permits that we can extract sequences of
arbitrary length n from X so that we can meet both accuracy ε and confidence δ

according to (7.9).
However, in the real life we generally encounter situations where n is given (e.g.,

we have n finite samples from an industrial process, n models built on the sensor data
stream, etc). Whenever that is the case, (7.9) clearly must hold but n is now given
and δ and ε cannot assume any arbitrary values any more. If we assume that δ must
be fixed since we want our results to hold at some confidence level, e.g., δ = 0.95,
then, accuracy is no more arbitrary and is set as

ε =
√

1

2n
ln

2

δ

by simply inverting the Chernoff bound. Unfortunately, if n is not large enough the
accuracy we should expect might be poor.

Two comments need to be made at this point. The first is that results derived by
invoking bounds such as the Chernoff one are pdf free and, as such, the bound might
be rather conservative. As a consequence, the derived ε might be hardly usable if the
number of samples is fixed and not large enough. Second, we should remind that,

http://dx.doi.org/10.1007/978-3-319-05278-6_4

7.4 Accuracy Estimation: A Given Dataset Case 147

given a finite number of samples, we cannot pretend to have an arbitrary accuracy
since the amount of information carried by the data set is finite and depends on n.
As an example, we recall that the estimated standard deviation of mean x̂ based on
n i.i.d scalar data x1, . . . , xn extracted from a distribution of unknown mean μ and

known variance σ 2, is
√

σ 2

n . The quality of the estimator x̂ scales with n
1
2 and cannot

be improved unless we increase the number of samples n. In following subsections,
we wish to assess the quality of an estimate in the case n is given.

7.4.1 Problem Formalization

Consider a data set Zn obtained by extracting n i.i.d. samples x1, . . . , xn from random
variable x defined over X , i.e., Zn = {x1 . . . , xn} and construct the estimator Φn =
Φ(Zn). We are interested in providing an indication of the quality ζ of Φn , e.g., we
wish to provide a confidence interval for Φn .

The problem is of extreme relevance in many applications and, in particular, in
embedded systems where we wish to carry out the performance evaluation of a figure
of merit (estimator) having a finite and given data set to be used to compute ζ . The
performance verification problem is the same introduced in this chapter with the
unique difference that, here, n is fixed, e.g., we have only n i.i.d. data from sensors,
n i.i.d. parameter models or extracted features, n time measurements related to the
execution of a thread.

Clearly, the ideal framework would recommend to carry out the following proce-
dure

1. Extract m independent data sets of cardinality n from X so as to generate datasets
Z1

n, . . . , Zm
n ;

2. Evaluate, in correspondence of the generic i-th data set Zi
n the estimator Φ i

n =
Φ(Zi

n). Repeat this procedure for all i = 1, . . . , m.;
3. Estimate the quality ζ

(
Φ1

n , . . . , Φm
n

)
of the estimator Φn based on the m realiza-

tions Φ i
n = Φ(Zi

n), i = 1, . . . , m.

Unfortunately, the above framework is mostly theoretical: if we have m indepen-
dent datasets Zn we should use all nm data to provide a better estimate. This means
that in practical applications we have only a dataset but, at the same time, we are
interested in evaluating the quality ζ of the estimator Φn .

The literature introduces interesting approaches for providing an assessment ζ of
the quality of an estimator Φ given a limited data set n.

7.4.2 The Bootstrap Method

In the bootstrap method [236] the needed m data sets Zi
n, i = 1, . . . , m are extracted

from Zn with replacement. It means that, once a sample x j has been extracted and

148 7 Performance Estimation and Probably Approximately Correct Computation

inserted in the generic Zi
n set, x j is also placed back in Zn that keeps all its original

n data. Once all estimates Φ i
n, i = 1, . . . , m have been generated they are used to

compute ζ
(
Φ1

n , . . . , Φm
n

)
.

The Bootstrap algorithm is given in Algorithm 15. Efron and Tibshirani [236]
proves that the distinct number of samples we should expect in Zi

n is ≈ 0.632n.
This comment allows us for reducing the computational load associated with the
execution of the algorithm. In fact, if we are expecting to receive approximatively
0.632n independent samples and the estimator requires to compute point wise terms,
e.g., u(xi) for sample xi given a generic u(·) function, then, there is no need to
compute all n values and a weighting approach can be consider.

Example: The Bootstrap Method

Consider, as a straight example, the figure of merit expectation problem discussed at
the beginning of the section. Differently from the derivation based on the Chernoff
bound, we do not need to require here that the Lebesgue measurable function u(x)

is defined in interval [0, 1] but it is sufficient that u(x) is bounded for some value
(not to be necessarily known).

Select Φ = E[u(x)] and Φn = Ên(u(x)) evaluated on Zn . The estimate of
E[u(x)] we have is Ên(u(x)). We are now interested in evaluating the quality of
the estimate ζ , e.g., by evaluating the variance of the estimates generated with the
bootstrap method. This is done by invoking Algorithm 15.

For instance, the quality of the estimator, here considered to be the variance of
the estimator evaluated according to the bootstrap method V arB , can be estimatedas

V arB = ζ
(
Φ1

n , . . . , Φm
n

)
= 1

m − 1

m∑
i=1

(
Φ i

n − Φn

)2
.

The bootstrap algorithm shows to be accurate for a wide range of estimators but
is also characterized by a significant computational load. Variants of the bootstrap
method have been suggested in the literature, e.g., the m out of n bootstrap [237] to
solve the consistency issue in applications where the bootstrap fails. The computa-
tional issue has been addressed, among the others, in the m out of n bootstrap where
Zi

n′ sets are chosen to have a smaller cardinality than Zi
n , i.e., n′ < n, and in [238]

where a method aiming at using a small m and extrapolation techniques has been
proposed and in the bag of little bootstrap method [239], which will be detailed in
the next subsection.

7.4 Accuracy Estimation: A Given Dataset Case 149

7.4.3 The Bag of Little Bootstraps Method

The Bag of Little Bootstraps (BLB) method is a bootstrap-inspired method proposed
in [239] to mitigate the problem posed by Bootstrap and associated with the required
computational complexity. BLB shows to be accurate and appears to over-perform
all other bootstrap methods in terms of computational complexity, hence becoming
a very appealing method for Big Data.

The BLB algorithm is given inAlgorithm 16. The starting point of BLB is to select
a smaller data set of cardinality n′ < n. Authors select n′ = nγ , e.g., with γ = 0.6.
Then, m subsets Zi

n′ , i = 1, . . . , n′ are extracted from Zn without replacement. For
each subset Zi

n′ r subsets Zi
n, j , j = 1, . . . , r are generated with replacement (little

bootstraps) and the corresponding estimators Φ i
n, j = Φ(Zi

n, j) evaluated. Finally,
the quality of the estimator is evaluated for each little bootstrap and yields ζi =
ζ

(
Φ i

n,1, . . . , Φ
i
n,r

)
. At the end of the procedure, we end with m “bags”, the i-th

one associated with quality assessment ζi . The final assessment ζ of the quality
of the estimator Φn is considered to be the ensemble of the little bootstrap one as

ζ =
∑m

i=1 ζi
m . r is generally chosen so that ζi ceases to fluctuate and, in general, this

happens in correspondence with small values of r , e.g., refer to [239].
As mentioned, the BLB shares the consistency properties of the bootstrap and

higher order correctness under the same hypotheses assumed by the bootstrap.
As claimed in [239], the BLB shares the fast convergence rate of the bootstrap

where the procedure’s output scales as O(1n) instead of the O(1√
n
) rate achieved by

asymptotic approximations. This fast convergence rate assumes that n′ = Ω(
√

n),
i.e, limn→∞ sup| n′√

n
| > 0, and m is large enough compared with the variability

observed in data samples. Satisfaction of such assumption grants that n′ is signifi-
cantly smaller than n (but larger than

√
n). Moreover, as shown in [239], the BLB is

faster than the bootstrap even in a serial execution. We comment that the algorithm
can be easily made parallel since each little bootstrap procedure can be parallelized.

150 7 Performance Estimation and Probably Approximately Correct Computation

7.5 Cognitive Processes and PACC

Allmechanisms involving cognitive processing, e.g., those carried out byVM-PFC—
ACC are real and, although complex and mostly unknown to us in detail, Lebesgue
measurable. The PACC theory can hence be applied to cognitive processing. It is
extremely natural to assume that those (sub)systems operate in probability given the
highly uncertainty associated with the processing. Our actions are, in fact, mostly
correct and the output to an emotion or an actionmostly correct,with high probability:
exactly what the PACC theory is about.

7.6 Example: Accuracy Assessment in Embedded Systems

The section aims at showing how the accuracy assessment framework can be utilized
in embedded systems to assess the quality of a proposed solution and drive the
designer toward the identification of the most appropriate one within a given set.
The reference application is based on a neural network that, once designed in a high
precision framework, needs to be ported onto an embedded system. The relevance of
the example is in the diversified computation carried out by the neural computation
that requires evaluation of scalar products as well as nonlinear functions.

The porting operation introduces several sources of structural perturbationswhose
impact on accuracy can be effectively evaluated with the framework presented in the
chapter.

In particular, the chosen application refers to a neural network designed to provide
a virtual sensor for the chemical process described in the Mathworks Matlab
neural network toolbox (chemical_dataset).

The virtual sensor is inferred from the readings of other eight sensors, whose val-
ues provide the inputs of the network. The chosen network topology is feedforward,
with 8 inputs (x ∈ X ⊂ R

8), 10 neurons in the hidden layer characterized by a
hyperbolic tangent activation function, and a single linear output neuron. Once the
neural network was successfully trained, neural function f (θ, x) was requested to
be implemented on the embedded systems.

To illustrate the effect of structural perturbations induced by the embedded system
architecture on function f (θ̂ , x), we consider two different digital embedded imple-
mentations for the neural network that, once ported, become the approximated
f̂ (θ, x). The first implementation is based on a 16 bits word-length solution, the
second on a 8 bits one.

In this way, we investigate the performance in accuracy of the two architectural
solutions, an operation which also allow us for selecting the final target platform
depending on the requested accuracy, the power consumption aswell as the requested
area (e.g., think of an ASIC or a FPGA implementation).

Results were emulated on a 32 bits ARM Cortex M3 microcontroller. Since the
ARM Cortex M3 microcontroller is not equipped with a Floating Point Unit (FPU),

7.6 Example: Accuracy Assessment in Embedded Systems 151

x: Q6.10 x 8

Win: Q6.10 x 10 x 8

Q12.20 x 10Q12.20 x 10

Bin: Q12.20 x 10

Q6.10 x 10

Wout: Q6.10 x 1 x 10

Q12.20 x 1 Q12.20 x 1

Bout: Q12.20 x 1

LUT
Tanh

Q2.4 x10

: Q6.10 x 1

Fig. 7.1 The neural network data flow ported on a 16 bits architecture. The activation value u
feeding the hidden units can be obtained with a matrix product between the 10 × 8 matrix Win
containing the weights between the input and the hidden layer and the input column vector x ; the
bias value Bin is then added so that u = Win x + Bin. Inputs composing x are represented with
a Q6.10 notation, weights Win with a Q6.10 notation, the outcome of their product on a Q12.20
notation. The bias term coded as Q12.20 is added and the outcome u on Q12.20 is reduced to Q2.4
to feed the LUT. The T h(u) value coming from the LUT is defined on Q6.10 and multiplied by
the weights connecting the hidden layer with the output neuron. The bias is added and the output
defined on a Q12.20 notation reduced to a 16 bits output in the form Q6.10

all computationsmust be performedwith a fixed point 2cp representation as presented
in Sect. 3.2.4.

In the following, a fixed point number is represented with the Qx .y notation,
which implies a 2cp representation on x + y bits with x bits to the left of the fixed
point (integer part, sign bit included) and y bits after the point (fractional part).

We recall that a sum between two numbers defined on Qx .y does not modify
the position of the radix point, but overflow might occur. Instead, a multiplication
between numbers Qx .y and Qk.z generates a value represented as Q(x + k).(y + z)
whose radix point is shifted to the left of y positions compared to z. This effect
must be taken into account if the final value needs to be brought back to a Qx .y
notation. Usually, multiplications take placewith operands characterized by the same
Q representation.

The data flows associated with the two 16 bits and 8 bits implementations are
shown in Figs. 7.1 and 7.2, respectively. The complete description of the architectural
operations is detailed in the caption of Fig. 7.1.

The 16 bit implementation uses the same Q6.10 representation for inputs, out-
put, and weights. With such a choice, we are safe from any possible occurrence of
overflows. The sum following the product of the generic input by the corresponding
weight is still performed at the full resolution of Q12.20 bits. Differently, in the 8
bits implementation, we adopt different resolutions for inputs, outputs, and weights
(input and output values are represented using a Q2.6 coding, while weights are
represented with a Q5.3 one). The neuron biases are still represented at the full reso-
lution of Q7.9. After the operations shifts are introduced to bring back the obtained

http://dx.doi.org/10.1007/978-3-319-05278-6_3

152 7 Performance Estimation and Probably Approximately Correct Computation

x: Q2.6 x 8

Win: Q5.3 x 10 x 8

Q7.9 x 10Q7.9 x 10

Bin: Q7.9 x 10

Q2.6 x 10

Wout: Q5.3 x 1 x 10

Q7.9 x 1 Q7.9 x 1

Bout: Q7.9 x 1

LUT
Tanh

Q2.4 x10

: Q2.6 x 1

Fig. 7.2 The neural network data flow ported on a 8 bits architecture. The description of the flow
is similar to that given in the caption of Fig. 7.1 with the suitable change of word length for the
involved entities

numbers to the envisaged word-length. The embedded code for implementing the
neural activation value ready to feed the nonlinear activation function of the hidden
layer is given in Listing 7.1.

The evaluation of the nonlinear hyperbolic tangent function is particularly costly
from the computational point of view. To deal with the issue, the best solution is to
rely on a Look Up Table (LUT) memory enumerating the input–output relationship
in correspondence of some points. The input of the memory is the neural activation
value (i.e., the scalar product between the neuron inputs and the associated weights),
the output is the content stored in the memory cells which represents the value
the activation function assumes in correspondence of the input value. We aimed at
keeping the size of the LUT as small as possible. As such, the input values where
coded as unsigned Q2.4 values for a total of a 64 cells LUT memory; the output
values follow the encoding used for the inputs and, as such, depend on the chosen
architecture (Q6.10 and Q2.6 for the 16 and 8 bits architectures, respectively). We
comment that the input of the LUT is unsigned. The reason is that the hyperbolic
tangent (Th) is an odd function for which T h(−u) = −T h(u). As such, we can
represent the inputs by uniformly subdividing the interval [0, 4] (values above input
4 provide a saturated output at 1): there is no need to represent the full [−4, 4] interval
with an immediate memory saving.

The approximation ability of the solution is given in Fig. 7.3 for the Q6.10 coding
of the output.

The embedded code implementing the LUT is shown in Listing 7.2. As it can be
noted in Fig. 7.3, the quantization error does not introduce a bias in the approximated
function, since we opted for a rounding of the reduced argument instead of a simple
truncation of the value. The cost of an extra shift and the sum needed to implement
the rounding operator is well compensated by the disappearing of the bias term in
the approximating the hyperbolic tangent function.

7.6 Example: Accuracy Assessment in Embedded Systems 153

Figures 7.4 and 7.5 compare the output of the virtual sensor in its two implemen-
tations with that evaluated on a high precision platform. As expected, the higher the
number of bits made available the better the reconstruction performance. However,
we comment that the 8 bits architecture provides a good reconstruction ability which
lowers in correspondence with high peeks.

To quantify the accuracy level of the porting of the algorithm on the embedded
systems, we considered the figure of merit

ÊN (u(x)) = 1

N

N∑
i=1

| f (xi , θ) − f̂ (xi , θ)|.

154 7 Performance Estimation and Probably Approximately Correct Computation

4 3 2 1 0 1 2 3 4
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

x

ta
nh

(x
)

tanh
LUT

Fig. 7.3 The approximation accuracy of the hyperbolic tangent with a 64 cells LUT in the 16 bits
representation for the output value

The accuracy performance assessment was carried out by following the figure of
merit expectation problem delineated in Sect. 7.3.2 after rescaling the u(·) function.
The input space was explored with a number of samples N drawn according to the
Chernoff bound.

7.6 Example: Accuracy Assessment in Embedded Systems 155

0 50 100 150 200 250 300 350 400 450 500
480

485

490

495

500

505

510

515

520

525

530

samples

ou
tp

ut
 o

f t
he

 v
irt

ua
l s

en
so

r

f (θ ,x)
f̂ (θ ,x)

Fig. 7.4 The accuracy of the virtual sensor data stream provided by the 16 bits embedded archi-
tecture (function f̂ (θ, x)) compared with the reference one (function f (θ, x))

0 50 100 150 200 250 300 350 400 450 500
480

485

490

495

500

505

510

515

520

525

530

samples

ou
tp

ut
 o

f t
he

 v
irt

ua
l s

en
so

r

f (θ ,x)
f̂ (θ ,x)

Fig. 7.5 The accuracy of the virtual sensor data streamprovided by the 8 bits embedded architecture
(function f̂ (θ, x)) compared with the reference one (function f (θ, x))

The figure ofmerit expectation problemwas solved by considering an incremental
accuracy ε (the confidence value δ was fixed to 0.05). The numbers of points drawn
according to Chernoff are given in Table 7.1. Since the distribution induced on the
8th dimensional input space in unknown we considered an uniform distribution.
Each experiment was repeated 40 times. The expected value of the performance loss
is given in Fig. 7.6 for the 16 bits architecture. Results show also the confidence
interval based on one standard deviation. As expected, the larger the N the smaller
the confidence interval.

Similar results are given in Fig. 7.7 for the 8 bits embedded architecture. As
expected, the average error is higher for the 8 bits implementation.

156 7 Performance Estimation and Probably Approximately Correct Computation

Table 7.1 The number of points chosen to address the figure of merit expectation problem.

δ ε N

0.05 0.061 500
0.05 0.043 1000
0.05 0.035 1500
0.05 0.030 2000
0.05 0.025 3000
0.05 0.021 4000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.402

0.4025

0.403

0.4035

0.404

0.4045

0.405

0.4055

0.406

0.4065

0.407

N

1 N
N i
=
1
f
(x

i)
−

f̂
(x

i)

Fig. 7.6 The figure ofmerit expectation problem. The figure shows the performance loss associated
with the porting of the virtual sensor neural network-based code on the 16 bits embedded architec-
ture. Expected values and the confidence intervals are given

0 500 1000 1500 2000 2500 3000 3500 4000 4500
2.316

2.318

2.32

2.322

2.324

2.326

2.328

2.33

N

1 N
N i
=
1

f
(x

i)
−

f̂
(x

i)

Fig. 7.7 The figure ofmerit expectation problem. The figure shows the performance loss associated
with the porting of the virtual sensor neural network-based code on the 8 bits embedded architecture.
Expected values and the confidence intervals are given

7.6 Example: Accuracy Assessment in Embedded Systems 157

500 1000 1500 2000 3000 4000
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

iteration

m
ax

i
f
(x

i)
−

f̂
(x

i)

Fig. 7.8 The maximum performance problem for the 16 bits architecture. The experiment is
repeated 40 times and each estimate of the maximum coming from the particular realization on
N inputs is plotted

500 1000 1500 2000 3000 4000
6

6.5

7

7.5

8

8.5

9

9.5

10

iteration

m
ax

i
f
(x

i)
−
f̂(
x
i)

Fig. 7.9 Themaximumperformance problem for the 8 bits architecture. The experiment is repeated
40 times and each estimate of the maximum coming from the particular realization on N inputs is
plotted

Figures 7.8 and 7.9 present the the maximum performance problem presented in
Sect. 7.3.3 for the two embedded implementations. The experiment was carried out
40 times in correspondence with each chosen N (δ = 0.05, N ≥ ln δ

ln(1−ε)
); estimates

of the maximum value ûmax, u(x) = | f (θ, x) − f̂ (θ, x)| are plot (one for each
experiment run). No scaling to the [0, 1] interval is requested for u(x). We comment

158 7 Performance Estimation and Probably Approximately Correct Computation

that the variability of the estimates reduce as N increases and that the maximum
error introduced by the 8 bits architecture is about four times that introduced by the
16 bits one. Depending on the tolerated accuracy loss and the given constraints on
cost and power consumption, the designer might decide which architecture should
be considered between the 16 and the 8 bits one.

	7 Performance Estimation and Probably Approximately Correct Computation
	7.1 Accuracy Estimation: Figures of Merit
	7.1.1 Squared Error
	7.1.2 Kullback--Leibler
	7.1.3 Lp Norms and Other Figures of Merit

	7.2 Probably Approximately Correct Computation
	7.3 The Performance Verification Problem
	7.3.1 The Performance Satisfaction Problem
	7.3.2 The Figure of Merit Expectation Problem
	7.3.3 The Maximum Performance Problem
	7.3.4 The PACC Problem
	7.3.5 The Minimum(Maximum)-Perturbed Expectation Problem

	7.4 Accuracy Estimation: A Given Dataset Case
	7.4.1 Problem Formalization
	7.4.2 The Bootstrap Method
	7.4.3 The Bag of Little Bootstraps Method

	7.5 Cognitive Processes and PACC
	7.6 Example: Accuracy Assessment in Embedded Systems

