
Chapter 4
Randomized Algorithms

There exists a very large class of problems that are computationally prohibitive when
formalized in deterministic terms, but may become manageable when a probabilistic
formulation can be derived and considered instead. For those problems, we are no
more requesting to find the problem solution but a solution that, according to some
probabilistic figure of merit, solves the problem.

Examples are the evaluation of the performance of a system when its computation
is affected by perturbations (robustness analysis), verification of the satisfaction of the
performance level of an embedded system or an algorithm (performance verification
problem), identification of extrema of functions (function optimization problem),
and design and analysis of robust controllers, just to name the few applications.
The cost we have to pay to abandon determinism is that derived results will hold in
probability.

Since the focus here is on embedded computation, we will see that there are some
particular cases that might arise during the operational life of the embedded system
violating the application constraints. However, such situations might be acceptable
provided that the constraints are violated for a short time and constraints violation is
a rare event. These aspects will be addressed in Chaps. 5 and 7.

Here, we request to be able to address a very large class of numerical-based
problems and applications and find in the space of Lebesgue measurable functions
the appropriate mathematical framework.

Definition: Lebesgue measurability

We say that a generic function u(ψ), ψ ∈ Ψ ⊆ R
l is Lebesgue measurable with

respect to Ψ when its generic step-function approximation SN obtained by partition-
ing Ψ in N arbitrary domains grants that

lim
N→∞ SN = u(ψ)

holds on set Ψ − Ω , Ω ⊆ R
l being a null measure set [20].

C. Alippi, Intelligence for Embedded Systems, DOI: 10.1007/978-3-319-05278-6_4, 53
© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-05278-6_5
http://dx.doi.org/10.1007/978-3-319-05278-6_7

54 4 Randomized Algorithms

We point out that no functions generated by a finite-step, finite-time algorithm,
such as any engineering-related mathematical computations, can be Lebesgue non-
measurable. Indeed (see, e.g., [21]), the only way to produce nonmeasurable func-
tions is to invoke the Axiom of Choice over an uncountable family of sets. This
procedure is purely theoretical, and the objects obtained in this fashion are necessar-
ily nonconstructible since the construction procedure would involve an uncountable
number of arbitrary choices.

Under the Lebesgue measurability hypothesis and by defining a probability den-
sity function fψ with support Ψ , it comes out that we can transform computationally
hard problems into manageable problems by sampling from Ψ and resorting to prob-
ability. Randomization comes as the main ingredient of the recipe and grants that
obtained results, valid in probability, are characterized by an arbitrary accuracy and
confidence levels function of the number of drawn samples. The loss in determinism
is largely paid back by the possibility to solve our problem with a polynomial time
algorithm.

In fact, all useful algorithms to be executed on embedded systems can be described
as Lebesgue measurable functions and many interesting problems can be cast in the
same formalism. However, by setting a general framework for a problem solution
we can neither expect to find results in a closed form for all Lebesgue measurable
applications nor pretend to solve deterministically the computationally hard problem
associated with the application solution. To tackle such an issue we reformulate the
deterministic problem in a probabilistic one which can be solved by Monte Carlo
sampling under the control of the probabilistic theory of learning.

The chapter introduces the randomization mechanism for problem solution whose
algorithmic description is known as Randomized algorithm.

The structure of the chapter is as follows: At first, we briefly introduce the com-
plexity aspect associated with algorithms and problems. Since solutions will mostly
be unmanageable given a generic problem described as a Lebesgue measurable func-
tion, we will resort to randomization to solve it. Monte Carlo is then presented fol-
lowed by such fundamental results that are asymptotic in the number of samples n
that grants convergence of some estimates to their expected values (laws of large
numbers). Since asymptotic results are of scarce use in real applications (we cannot
obtain a solution for a problem by taking an infinite number of sample), we need to
search for bounds that grant some results to hold for a finite n. This can be achieved
with randomized algorithms that integrate Monte Carlo with results coming from the
theory of learning.

4.1 Computational Complexity

The computational complexity theory studies the intrinsic difficulty associated with
the solution of a computable problem. Since for a computable problem an algorithm
exists, i.e., the problem solution can be obtained in a finite time with a finite num-
ber of steps, it is our interest to identify “the best” algorithm solving the problem,

4.1 Computational Complexity 55

with optimality intended according to a given figure of merit. The complexity of an
algorithm is generally evaluated as the time execution and memory resource required
by an abstract machine to execute it. If time execution and memory resources are
the figures of merit considered to assess the performance of the algorithm, say for
solving the sorting problem, we might be interested in

• evaluating the complexity of the sorting algorithm;
• asking whether it is possible to identify a better solution for it or not.

If we focus on memory and execution time we can ask several questions whose
answers are, a priori, not trivial. Which algorithm is using less memory among the
ones we have? Which one is best performing on the average (i.e., the expected execu-
tion time w.r.t. random data in the sequence)? And when the sequence is ordered in the
opposite way (worst case), which is the time complexity of our algorithm? Answer-
ing to these questions—and many others scholars or practitioners might raise—is
fundamental if we wish to execute the algorithm on a real machine characterized by
finite resources.

We comment that the questions posed above represent specific problems we wish
to solve either deterministically or in probability and are of paramount relevance.
In fact, even if a problem is computationally solvable in principle, it may not be
addressable in practice whenever the algorithm requires an unfeasible amount of
execution time or storage. The problem is general: any computer or embedded sys-
tem introduces at some point hardware constraints which might make the practical
execution of a given algorithm unfeasible.

4.1.1 Analysis of Algorithms

Computational complexity, in its analysis of an algorithm realm, approaches an
algorithm to be investigated by observing how some extensive variables scale, e.g.,
the cardinality of a data set n or the dimension of the input space n.

Do we need to store the whole data set? If the answer is positive then we need n
cells for storage and the Big Data paradigm is likely to become a problem. Do we
need extra data structures to execute the algorithm? Then the needed storage space
is the sum of all requested memory resources.

The algorithm time complexity can be decomposed in the time requested to
address the basic sequences of operations (or instructions) and similarly to the mem-
ory complexity case becomes function of extensive variables.

Consider, for instance, the algorithm A given in Algorithm 1 evaluating the scalar
product of two n-dimensional integer vectors x, y ∈ N

n.
The complexity of algorithm A can be computed by evaluating the memory

requirements M(A) and the abstract computation execution time C(A). For sim-
plicity, we do not consider the complexity associated with memory assignment to
the vectors and data acquisition since we wish to focus the attention on the algorithm
itself. The memory requirement is simply the sum of requested variables (e.g., in
memory cells, words, or bytes)

56 4 Randomized Algorithms

Algorithm 1: Algorithm A: a simple algorithm computing the scalar product
between two vectors

scalar_product = 0;
i = 0;
assign memory to vectors x and y and populate the content;
while i < n do

scalar_product = scalar_product + x[i]y[i];
i = i+1;

end

M(A) = 2n + 2

while the computational complexity is

C(A) = (2n + 2)Ta + (n + 1)Tc + n(2T+ + T∗)

where Ta is the time requested for an assignment, Tc that associated with the
evaluation of a condition, T+ and T∗ represent the times requested to execute an
addition and a multiplication, respectively.

We comment that all time components T assume constant values on a given
processor (to ease the understanding we assume a sequential execution on a single
core processor having independent instructions, e.g., for assignment, addition and
multiplication); the faster the processor the shorter the execution time. It is clear that
the average, the worst case or a generic case analysis coincide since complexity is
not dependent here on the specific data instances but solely on the cardinality of the
sequence.

The complexity of an algorithm is defined by means of the asymptotic character
of the complexity figures of merit when the extensive variable n goes to infinity.
The consequence is that the algorithm complexity is assessed by investigating how
it scales with the problem complexity. Here, dependencies introduced by a specific
machine assume constant values and can be neglected.

By referring to Algorithm 1, M(A) scales as 2n, that is to say its order is O(n),
while C(A) = n(2T+ + Tc + T∗ + 2Ta) yields to an O(n) order. It comes out that
both functions C and M are linear with n. When Big Data are available we know
that both the execution time and the memory complexity of the algorithm will scale
linearly with n.

The “big Oh” notation characterizes the complexity of a given algorithm by hiding
smaller terms contributions. The advantage in its use is that it makes the evaluation
of complexity independent of the specific hardware platform or the computational
model used. Other approaches evaluate the complexity of an algorithm by providing
lower and upper bounds for it [209].

Let us evaluate the scalar product in a different way, within a sequential approach.
The complexity of Algorithm 2 according to the two figures of merit is M(B) = O(1),
C(B) = O(n) since the memory occupation does not scale with n and the loop is
iterated n + 1 times.

4.1 Computational Complexity 57

Algorithm 2: Algorithm B: a sequential scalar product computation
scalar_product = 0;
i = 0;
assign memory to scalars x and y;
while i < n do

input x and y;
scalar_product = scalar_product + xy;
i = i+1;

end

The comparison between the two algorithms is then carried out at the big Oh
notation level by ordering their complexity according to the rank

· · · O(k−n) ≺ O(n−k) ≺ O(n−1) ≺ O(1) ≺ · · ·

≺ · · · O(log n) ≺ O(n) ≺ O(nk) ≺ O(kn) ≺ · · ·

where k is a strictly positive real value. Clearly, algorithms A and B have the same
computational complexity in terms of execution time but algorithm B does not require
storing the two vectors and, hence, is to be preferred to A if memory is a problem and
n increases. For a small number of data the opposite might hold since the constant
terms associated with arithmetic operations, the memory assignment and the input
readout operations might introduce a strong influence on the final time execution.
However, these situations are of no interest to computational complexity.

Complexity can be evaluated also by inspecting the behavior of the algorithm in
the worst or the average case; the worst case is generally considered to compare two
algorithms when their average complexity is identical.

4.1.2 P, NP-Complete, and NP-Hard Problems

We say that a problem A belongs to class P if its computational time complexity is
polynomial O(nk) with constant k. In other words, the algorithm solves the problem
in a polynomial execution time. Some authors, e.g., [23] claim that such a property
characterizes problems that can be considered “efficiently solvable” or “tractable.”
This statement is only qualitatively true but sheds some light on the intrinsic com-
plexity behind algorithms.

The problem of evaluating a scalar product belongs to class P. Many other algo-
rithms belong to the P class: from ordering a vector of finite dimension, to verifying
the presence of a given pattern within an image and carrying out a digital filtering of
a signal.

Consider, as an example, the problem of sorting a numerical vector of cardinality
n. Bubblesort shows complexity O(n2), merge sort O(n log n) both for the worst and

58 4 Randomized Algorithms

Fig. 4.1 The classes of
problems P, NP, NP-complete,
and NP-hard and their
inclusions provided that P �=
NP. The complexity increases
when we leave the P problems
and move toward the NP-hard
ones

NP

P

NP-
com
plete

NP-hard

Problem complexity

Fig. 4.2 The classes of
problems P, NP, NP-complete,
and NP-hard and their
inclusionsprovided that P =
NP. The complexity increases
when we move toward NP-
hard problems

NP

P
NP-
com
plete

NP-hard

Problem complexity

the average cases, quicksort O(n log n) for the average case, and O(n2) for the worst
case [24]; different algorithms have different complexities.

With reference to Fig. 4.1, the class of nondeterministic polynomial time problems
NP is larger than the P one. NP contains the class of decision problems for which,
given a candidate solution, we can verify in polynomial time if the solution solves
the problem or not (in other words, we sample a candidate solution from the solution
space and verify in polynomial time whether the selected solution is effective or
not). NP contains many important problems with the hardest called NP-complete.
For NP-complete problems no polynomial-time algorithms are known to solve them.
A different way to characterize a NP-complete problem is the following: a decision
problem is said to be NP-complete if it is NP and any other NP problem can be
reduced to it so that its complexity is bounded by a polynomial in the complexity of
the original problem.

A problem H is said to be NP-hard if and only if there exists a NP-complete
problem L that is reducible to H in polynomial time. In other words, problem L can
be solved in polynomial time by a machine which provides an oracle for H. Again,
a problem is NP-hard if each NP problem can be reduced to this problem. One of
the still open questions is whether P = NP or not, i.e., can a NP problem (and hence
any of the class) be solved in polynomial time? Were that be the case, then Fig. 4.1
would degenerate as depicted in Fig. 4.2.

Even if it is thought that the answer is negative, the problem is still without
a formal solution. The interested reader should consider [25] for a detailed analysis
about complexity issues.

4.1 Computational Complexity 59

An example of a NP hard problem of interest here is the following: Given a
Lebesgue measurable function u(ψ) ∈ [0, 1], ψ ∈ Ψ ⊂ R

l and a value γ ∈ [0, 1],
does inequality u(ψ) ≤ γ hold for any ψ ∈ Ψ ? The problem, which models the
situation where we wonder about the level of satisfaction of a constraint, is surely
computationally intractable for a generic u(·) function, since we should query the
oracle at each ψi and ask the question “is u(ψi) below γ ?” Even if the oracle responds
in a single time step (polynomial time response), the number of queries needed to
solve the whole problem is not polynomial for a continuous space Ψ .

We will see in subsequent sections that some hard problems can be addressed
and solved by resorting to probability. Such problems are known in the literature as
belonging to the class of Randomized Polynomial time (RP) problems.

4.2 Monte Carlo

Monte Carlo methods constitute a class of algorithms that use a repeated random
sampling approach and a probabilistic framework to compute the requested out-
put. Due to the possibly large sampling required to provide accurate results, their
full effectiveness became available thanks to advances in the computational power
exposed by current processors and supercomputers (even if the history of the method
dates back to the Manhattan project and it has been formalized in a seminal paper
by Metropolis and Ulam [8] already in 1949).

Monte Carlo is an effective tool for addressing problems which can hardly be
solved analytically for the mathematical complexity of the involved functions (e.g.,
integro-differential equations coming from physics and chemistry). It should be noted
that Monte Carlo is a set of methods more than a method, each of which personalized
to solve a specific class of applications. For instance, we have a method with its
own mathematical results to address the integration problem, another for dealing
with optimization or computational mathematics. The interested reader can refer to
[12, 13] for a comprehensive analysis and further advances. As mentioned above,
the core idea is that of sampling from a space and observing the satisfaction of
a property or generating an estimate based on the sample ensemble; results are
then aggregated to provide an approximated solution to the original problem. In the
following, we present at first the idea behind Monte Carlo and, then, the main results
the theory provides.

4.2.1 The Idea Behind Monte Carlo

To present the Monte Carlo method with a straight and widely used example: the
estimation of π .

60 4 Randomized Algorithms

Fig. 4.3 Circle C is inscribed
in square S representing the
sampling world. Defined
as PrC the probability of
extracting a point belonging
to the circle, then π = 4 PrC

S

C

2r

Example 1: a probabilistic estimate for π

Consider a square S of side length 2r and a circle C inscribed within the square (see
Fig. 4.3). Assume that a uniform distribution is induced on the square so that each
sample drawn from there is equiprobable. Draw then n points inside the square and
observe, for each point, whether it belongs to the circle or not. In doing this a straight
question would be to ask which is the probability PrC of extracting a point belonging
to the circle.

The answer is that such a probability is simply the ratio between the area of the
circle and that of the square, i.e., its value is π

4 . Then, 4 PrC is exactly π : we found
a way to compute π with a probabilistic approach.

The issue now becomes that of computing PrC which, a priori, is unknown. We
solve the problem with randomization by extracting n samples s1, . . . , sn from S
according to the uniform distribution, and evaluating the number of samples nC

falling within the circle and computing the empirical probability

p̂n = nC

n
.

The procedure is formalized as follows: Consider the indicator function IC

IC(si) =
{

1 if si ∈ C
0 if si /∈ C

The empirical probability p̂n can be computed as

p̂n = 1

n

n∑
i=1

IC(si)

and represents an approximation of PrC . Having an estimate for PrC , we generate an
estimate for π as

π̂n = 4p̂n = 4

n

n∑
i=1

IC(si).

4.2 Monte Carlo 61

How good is the approximation π̂n of π? It is intuitive to believe that the larger the
number of samples n the better the estimate (the smaller the error e(n) = |π̂n − π |).

As such, we should consider a “sufficiently large” n to obtain a good approxi-
mation according to some predefined accuracy level. Such aspect will be addressed
in Sect. 4.3. Instead, the convergence issue of π̂n to π will be studied in Sect. 4.2.2.
A high level algorithm for the Monte Carlo method is given in Algorithm 3.

Example 2: a different probabilistic approach to estimate π

Let us consider a different approach to estimate π with randomization. Consider the
equation of a sector of circumference y = f (x), x, y ∈ [0, 1]

y =
√

1 − x2

and observe that π can be obtained as

π = 4
∫ 1

0

√
1 − x2dx.

If we induce a uniform distribution fx on the input domain [0, 1] we have that π

can also be intended as the expected value of y

π = 4Ex[y(x)] = 4
∫ 1

0

√
1 − x2dx.

We comment that the variance σ 2
y of y is bound

σ 2
y =

∫ 1

0
(y(x) − Ex[y(x)])2 dx ≤ 1.

Extract then n samples xi from [0, 1] and evaluate the sample mean

Ên(y(x)) = 1

n

n∑
i=1

y(xi).

Then, by invoking the Tchebychev inequality in the form

Pr (|z − μ| ≥ α) ≤ σ 2

α2

where z is an i.i.d random variable of mean μ, variance σ 2, and α is a positive number
[2], we have that

62 4 Randomized Algorithms

Algorithm 3: The Monte Carlo algorithm

1- Identify the input space D of the algorithm and a random variable s, with probability density
function fs over D;

2- Extract n samples Sn = {s1, . . . , sn} from D according to fs;
3- Evaluate the algorithm on Sn;
4- Generate an estimate of the algorithm output.

Pr
(
|Ên(y(x)) − Ex[y(x)]| ≥ ε

)
≤ σ 2

y

nε2 ≤ 1

nε2 .

where the variance of the estimator is Var(Ên(y(x))) = σ 2
y
n . We can then select the

confidence δ as

1

nε2 < δ =⇒ n >
1

δε2 .

This says that, if we choose n ≥ 1
δε2 , then

Pr
(
|Ên(y(x)) − Ex[y(x)]| ≤ ε

)
≥ 1 − δ

holds with probability 1 − δ and we can estimate π as

Pr
(
|4Ên(y(x)) − 4Ex[y(x)]| ≤ 4ε

)
= Pr

(|π̂n − π | ≤ 4ε
) ≥ 1 − δ

from which we derive the number of points needed to estimate π at a given tolerated
level. For instance, if we select ε = 0.025 and δ = 0.01 we need n ≥ 1600. We
extracted n = 1600 samples from a uniform distribution fx and obtained the estimate
π̂n = 3.148 for which |π̂n − π | = 0.006 ≤ 0.1 = 4ε.

In the previous experiments, we have implicitly assumed that sampling is associ-
ated with a continuous random variable. However, similar results hold by sampling
over a discrete space (e.g., a regular grid over (0, 1)k, k ∈ N).

Interestingly, the second solution proposed to estimate π provides as well the
minimum number of samples satisfying a given accuracy and a confidence level. In
the sequel, we will be interested in this latter approach by improving bounds so as
to reduce the number of samples needed to solve a specific problem after having
investigated the asymptotic behavior of the estimate.

4.2.2 Weak and Strong Laws of Large Numbers

In Sect. 4.2.1 we have seen that, by extracting n samples from S it is possible to build
sequence π̂1, π̂2, . . . , π̂n; it would be appreciable to discover that such a sequence

4.2 Monte Carlo 63

converges to the expected value π as the second example showed provided that
n → ∞. This main result is known in the literature as the Law of large numbers; the
interested reader can refer to [14] for its proof.

4.2.2.1 Weak Law of Large Numbers

Let x ∈ D be a continuous scalar random variable of finite expectation μ and finite
variance σ 2

x and x1, . . . , xn a set of n independent and identically distributed samples
drawn from D (e.g., D = R) according to the continuous probability density function
fD. Generate the empirical mean μ̂n = 1

n

∑n
i=1 xi. Then, for any ε ∈ D, the weak

law of large numbers guarantees that

lim
n→+∞ Pr(|μ̂n − μ| ≥ ε) = 0.

An identical result also holds for the discrete random variable case.

4.2.2.2 Strong Law of Large Numbers

Let x ∈ D be a continuous random scalar variable of finite expectation μ and finite
variance σ 2

x and x1, . . . , xn a set of n independent and identically distributed samples
drawn from D (e.g., D = R) according to the continuous probability density function
fD. Generate the empirical mean μ̂n = 1

n

∑n
i=1 xi. Then, the strong law of large

numbers guarantees that relationship

lim
n→+∞ μ̂n = μ

holds with probability one.

Comments

The difference between the strong and the weak formulation of the laws of large
numbers is in the convergence modality. In the weak case, the probability of gen-
erating an estimate μ̂n so that |μ̂n − μ| ≥ ε decreases as the number of samples
increases. Differently, the strong law of large numbers implies that the sequence μ̂n

converges to μ with probability one.
When we apply the laws of large numbers to the Monte Carlo method, we have

that μ̂n converges to μ (and π̂n to π).
The assumption of finite variance is not truly necessary but makes the proof easier.

In fact, a large or infinite variance negatively affects the convergence rate. However,
the variance must exist. When this assumption does not hold, as it happens in example
3, the laws of large numbers cannot be applied.

64 4 Randomized Algorithms

Example 3: breaking the law of large numbers

Let x ∈ R be a continuous random variable characterized by the Cauchy density
function

fx = 1

π(1 + x2)
.

Then the expectation E[x] does not exist, because the integral

∫ +∞

−∞
x

π(1 + x2)
dx

diverges; likewise the variance does not exist, hence violating the assumptions
requested by the laws of large numbers. If we compute the sample mean by using
n samples drawn from the Cauchy density it can be proved that the average is still
ruled by a Cauchy probability density function [26].

A main consequence is that if the noise affecting measurements is ruled by a
Cauchy density and we average over a number of measurements (think of the esti-
mation module we introduced in Sect. 2.1.1) to mitigate the presence of uncertainty,
then the average cannot be expected to be more accurate than any individual mea-
surement!

4.2.3 Some Convergence Results

The laws of large numbers are rather general and can be applied to several interesting
cases among which those related to probability and expected value estimation.

Define the real function u(ψ), ψ ∈ Ψ ⊆ R
l to be measurable according to

Lebesgue in Ψ and denote by fψ the probability density function of a random variable
ψ with support on the input space Ψ . Assume that ψ has finite mean and variance.

4.2.3.1 Probability Function Estimation

The problem can be formalized as follows: Given a generic value γ ∈ R, evaluate
the probability p(γ) for which u(ψ) is below γ when ψ spans Ψ , i.e., compute

p(γ) = Pr(u(ψ) ≤ γ).

In other terms, we are asking if the embedded system is satisfying a given
constraint γ given performance function u(ψ). Formulation of probability p(γ) in a
closed form can be achieved only in particular cases, e.g., for very specific choices
of u(ψ) and fψ . However, the problem can be addressed and solved by resorting

http://dx.doi.org/10.1007/978-3-319-05278-6_2

4.2 Monte Carlo 65

Algorithm 4: Estimating the probability that a requested performance value is
attained

1- Extract n independent and identically distributed samples Zn = {ψ1, . . . , ψn} from Ψ

according to fψ ;
2- Evaluate, for the i-th sample ψi, the indicator function

I(ψi) =
{

1 if u(ψi) ≤ γ̄

0 if u(ψi) > γ̄ .

3- Construct the estimate p̂(γ̄) of p(γ̄) as

p̂n(γ̄) = 1

n

n∑
i=1

I(ψi)

to randomization. In the following, we aim at solving the problem with the laws of
large numbers and, to this end, we assume at first that γ is given and assumes value
γ̄ . However, obtained results are valid for any γ̄ .

Extract n independent and identically distributed samples Zn = {ψ1, . . . , ψn}
from ψ ∈ Ψ according to fψ and evaluate the indicator function

I(ψi) =
{

1 if u(ψi) ≤ γ̄

0 if u(ψi) > γ̄

The estimate p̂n(γ̄) of p(γ̄) is

p̂n(γ̄) = 1

n

n∑
i=1

I(ψi)

Algorithm 4 summarizes the needed steps to provide an estimate p̂n(γ̄) of p(γ̄).
The laws of large numbers hold under the respective hypotheses and, for any

ε ∈ (0, 1) we have that
weak law of large numbers

lim
n→+∞ Pr(|p̂n(γ̄) − p(γ̄)| ≥ ε) = 0

strong law of large numbers

lim
n→+∞ p̂n(γ̄) = p(γ̄)

with probability one.
In other terms p̂n(γ̄) converges to p(γ̄). The obtained results, evaluated for

a given γ̄ value, can now be extended to deal with any given γ value (different

66 4 Randomized Algorithms

γ s will experience different convergence rates). We can then write, for an arbitrary
given γ that

weak law of large numbers

lim
n→+∞ Pr(|p̂n(γ) − p(γ)| ≥ ε) = 0, ∀γ ∈ R

strong law of large numbers

lim
n→+∞ p̂n(γ) = p(γ), ∀γ ∈ R

with probability one.

4.2.3.2 Expected Value Estimation

Another interesting case, which can be immediately derived from the theory, refers
to the problem of evaluating the expected value

EΨ [u(ψ)] =
∫

Ψ

u(ψ)fψdψ

through the empirical mean

Ên(u(ψ)) = 1

n

n∑
i=1

u(ψi).

where ψis have been extracted according to fψ .
In this case, we wish to evaluate some expected performance the embedded system

should have based on measured instances telling us how the system performs for a
given input.

Convergence of Ên(u(ψ)) to EΨ [u(ψ)] is granted under the assumptions of the
laws of large numbers.

weak law

lim
n→+∞ Pr(|Ên(u(ψ)) − EΨ [u(ψ)]| ≥ ε) = 0

strong law

lim
n→+∞ Ên(u(ψ)) = EΨ [u(ψ)]

with probability one.

4.2 Monte Carlo 67

The goodness of the estimate can be evaluated by taking expectation with respect
to the sequence of n samples in Zn. In particular, it can be proved, e.g., by referring
to [22], that the variance of the estimate is

Var
(

Ên(u(ψ))
)

= EZn

[(
EΨ [u(ψ)] − Ên(u(ψ))

)2
]

= Var(u(ψ))

n
.

The result has a main conceptual impact and states that the variance of the estimate
is the variance of function u(ψ) scaled by n−1. The above expression states that if
Var(u(ψ)) and Var(Ên(u(ψ))) are bound, we can estimate a priori the number of sam-
ples needed to obtain a required accuracy in the estimate. In fact, if we know the vari-
ance Var(u(ψ)) (or it is possible to provide a bound for it) and we set Var(Ên(u(ψ)))

at a tolerated level c, then the number of samples to be drawn is

n ≥ Var (u(ψ))

c
.

4.2.4 The Curse of Dimensionality and Monte Carlo

The Curse of dimensionality refers to the bad scaling of the number of points n needed
to explore a space as its dimension d increases. Consider the segment Ψ = [0, 1)

and subdivide it into N = 10 points so that each segment has resolution of 0.1.
It comes out that, if we wish to keep the same grid resolution for a d dimensional
space, the number of points we need to consider to “explore” the space is n = Nd .
Such an exploration of the space grows exponentially with d and, soon, becomes
computationally prohibitive.

The “curse of dimensionality” represents a major problem every time we need to
sample a space and take future actions, e.g., if our task is to estimate the function
EΨ [u(ψ)] through Ên(u(ψ)).

However, as nicely pointed out in [2] the mean square error of the Monte Carlo
estimate of the expected value does not depend on the dimension d of the space
which, somehow, breaks the “curse of dimensionality.” As it will be clear in Sect. 4.3
this is a consequence of the fact that we associated a probability density function to
Ψ : instead of exploring Ψ with a uniformly-spaced grid we do that by extracting the
due number of points according to fψ . In other words, the curse of dimensionality
can be avoided if we move our analysis from a strictly deterministic to a probabilistic
framework.

4.3 Bounds on the Number of Samples

With Monte Carlo, we have seen that it is difficult to estimate the number of samples
n we should consider to solve a given problem. Results, e.g., see [15–17], exploit
some trial tests or a priori information about the specific problem to decide when

68 4 Randomized Algorithms

stopping the sampling procedure. In other cases, e.g., as it happens in Example 2, we
were able to identify the minimum number of points required to satisfy the accuracy
and confidence requirements.

However, this cannot be granted for a generic application, characterized by a
generic Lebesgue measurable function. Moreover, since we are looking for generality
so as to cover a large set of applications, a pdf-free approach must be considered.
The price we have to pay in a pdf-free framework is the a priori larger number of
samples needed to solve our problem compared with that we would need by knowing
the probability density function.

Several improved bounds on the number of samples n have been presented in the
literature to solve large classes of problems through randomization. We will review
such bounds starting from Bernoulli’s one.

The theoretical framework is that of a Bernoulli process where the random variable
x assumes value 1 with probability p and value 0 with probability 1−p. The expected
value is E[x] = p and the variance Var(x) = p(1 − p). Denote by x1, . . . , xn the
sequence of n independent samples drawn from x and compute the empirical mean

Ên = 1

n

n∑
i=1

xi

which represents the estimate of the probability that x = 1 in the n trials. Ên

is a binomially distributed variable with expected value E[Ên] = p and variance
Var(Ên) = p(1−p)

n .

4.3.1 The Bernoulli Bound

Inequality

Pr
(
|Ên − E[Ên]| < ε

)
> 1 − δ

holds for any accuracy level ε ∈ (0, 1) and confidence 1 − δ, δ ∈ (0, 1) provided
that at least n ≥ 1

4δε2 independent and identically distributed samples are drawn.

The proof follows by recalling the Tchebychev theorem in the form

Pr (|x − μ| ≥ α) ≤ σ 2

α2

where x is the random variable of mean μ, variance σ 2, and α is a positive number.
By substituting x with Ên and α with the accuracy variable ε, we obtain

Pr
(
|Ên − E[Ên]| ≥ ε

)
≤ p(1 − p)

nε2 . (4.1)

4.3 Bounds on the Number of Samples 69

Since p(1 − p) is maximized by 1
4 , we can be finally bound (4.1) as

Pr
(
|Ên − E[Ên]| ≥ ε

)
≤ 1

4nε2 . (4.2)

By introducing a confidence value δ ∈ (0, 1), we can rewrite (4.2) as

Pr
(
|Ên − E[Ên]| < ε

)
≥ 1 − δ. (4.3)

By setting
1

4nε2 ≤ δ

we derive the number of samples granting (4.3) to hold.

n ≥ 1

4δε2 (4.4)

Comments

The Bernoulli bound shows that the number of required samples grows quadratically
(inversely proportional) with the requested accuracy for the estimate ε and linearly
(inversely proportional) with the requested confidence δ. We can obtain a good esti-
mate of Ên with a polynomial sampling of the space. For instance, with the choice
ε = 0.05, δ = 0.01 we need to extract at least n = 10000 samples; with the choice
ε = 0.02, δ = 0.01 we need to extract at least n = 62500 samples. Figure 4.4 shows
how the Bernoulli bound scales with δ and ε. We recall we shall consider small values
for δ and ε to have enough confidence and accuracy.

The cost of sampling is the drawback we have to pay for generality (i.e., any p or
application). Fortunately, the Bernoulli bound can be tightened with the Chernoff’s
one.

4.3.2 The Chernoff Bound

The Chernoff bound [1] largely improves over the Bernoulli’s bound by reducing
the number of samples to be drawn. We study at first the case where variable x is a
Bernoulli random variable.

4.3.2.1 The Bernoulli Case

In the Bernoulli case, the main result states that

70 4 Randomized Algorithms

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

1

2

3

4

5

6

x 10
4

Accuracy

T
he

 n
um

be
r

of
 s

am
pl

es

 = 0.2
 = 0.1
 = 0.05
 = 0.01

Fig. 4.4 The number of samples requested by the Bernoulli bound

Inequality

Pr
(
|Ên − E[Ên]| < ε

)
> 1 − δ

holds for any accuracy level ε ∈ (0, 1) and confidence 1 − δ, δ ∈ (0, 1) provided
that at least

n ≥ 1

2ε2 ln
2

δ

independent and identically distributed samples x are drawn.

To prove the bound we recall that E[Ên] = p and

Pr
(
|Ên − E[Ên]| < ε

)
= Pr

(
|Ên − p| < ε

)
≤

Pr
(

Ên < p + ε
)

+ Pr
(

Ên > p − ε
)

.

By relying on the Binomial distribution, we can derive analytically those
probabilities

4.3 Bounds on the Number of Samples 71

Pr
(

Ên > p + ε
)

= Pr
(

nÊn > n(p + ε)
)

=
n∑

k>n(p+ε)

(
n

k

)
pk(1 − p)n−k

and

Pr
(

Ên < p − ε
)

= Pr
(

nÊn < n(p − ε)
)

=
k≤n(p−ε)∑

k=0

(
n

k

)
pk(1 − p)n−k .

From those expression it is possible to derive the smallest n such that the sum of
the two probabilities is greater than 1 − δ, but no close form solution is known for
the problem. Chernoff provided a bound for each of the above terms. In its additive
form, we have that

Pr
(

Ên ≥ p + ε
)

≤ e−2nε2

and
Pr

(
Ên ≤ p − ε

)
≤ e−2nε2

.

thus
Pr

(
|Ên − p| ≥ ε

)
≤ 2e−2nε2

i.e.,
Pr

(
|Ên − E[Ên]| < ε

)
> 1 − 2e−2nε2

.

It comes out that
Pr

(
|Ên − E[Ên]| < ε

)
> 1 − δ

holds if we extract at least n samples so that δ ≤ 2e−2nε2
. This happens if we select

n ≥ 1

2ε2 ln
2

δ
.

Results, obtained in the case of x distributed as a Bernoulli variable, can be
extended to cover the continuous case where the distribution is generic.

4.3.2.2 The General Case: The Hoeffding Inequality

The Chernoff bound for a generic probability density function and continuous
variable ψ can be derived from the Hoeffding inequality [18]

Hoeffding inequality

72 4 Randomized Algorithms

Let x1, . . . xn be a sequence of independent random variables so that each xi

is almost surely bounded by the interval [ai, bi], i.e., Pr(xi ∈ [ai, bi]) = 1. Then,
defined the empirical mean Ên = 1

n

∑n
i=1 xi, we have that for any ε value inequality

Pr
(
|Ên − E[Ên]| ≥ ε

)
≤ 2e

−2ε2n2∑n
i=1(bi−ai)

2
(4.5)

holds.

Under the above assumptions, we can rewrite (4.5) as

Pr
(
|Ên − E[Ên]| < ε

)
> 1 − 2e

−2ε2∑n
i=1(bi−ai)

2
. (4.6)

In the interesting case where Ên represents the estimate p̂n(γ) of a probability,
e.g., p(γ) = Pr(u(ψ) ≤ γ) for a given positive scalar γ (but any other event applies),
we have that for a generic random variable ψi the indicator function

I (u(ψi) ≤ γ) =
{

1 if u(ψi) ≤ γ

0 if u(ψi) > γ

I assumes values in {0, 1}. As a consequence, ai = 0, bi = 1 and (4.6) becomes

Pr
(
|Ên − E[Ên]| < ε

)
> 1 − 2e−2nε2

.

Since, p̂n(γ) = Ên and E(p̂n(γ)) = p(γ) the expression becomes

Pr
(|p̂n(γ) − p(γ)| < ε

)
> 1 − 2e−2nε2

. (4.7)

from which we derive the Chernoff bound by requesting δ ≤ 2e−2nε2

n ≥ 1

2ε2 ln
2

δ
. (4.8)

The Hoeffding inequality plays a major role since it allows us to

• derive the Chernoff bound of (4.8) that will be used to determine the number of
samples needed to estimate the probability of performance satisfaction;

• derive the Chernoff bound formally identical to that of (4.8) granting the empirical
mean to converge to its expected value with given accuracy and confidence levels;

• derive a set of bounds for estimating the maximum/minimum value of a function
within a probabilistic framework.

Figure 4.5 presents the number of samples as function of δ and ε requested by the
Chernoff bound.

4.3 Bounds on the Number of Samples 73

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

1000

2000

3000

4000

5000

6000

Accuracy

T
he

 n
um

be
r

of
 s

am
pl

es

 = 0.2
 = 0.1
 = 0.05
 = 0.01

Fig. 4.5 The number of samples requested by the Chernoff bound as function of confidence δ and
accuracy ε

Table 4.1 The number of samples n = n(ε, δ)

Bound ε = 0.05, δ = 0.02 ε = 0.05, δ = 0.01 ε = 0.02, δ = 0.01 ε = 0.01, δ = 0.01

Bernoulli 5000 10000 62500 250000
Chernoff 922 1060 6623 26492

Comments

The Chernoff bound shows that the number of required samples grows quadratically
(inversely proportional) with the requested accuracy of the estimate ε but logarith-
mically with the confidence δ. Even if it might appear as a limited gain in reality it is
not and represents a true achievement. In fact, if we refer to Table 4.1 we appreciate
the significant improvement of the Chernoff bound over the Bernoulli one.

Interestingly, it appears that accuracy is more sampling demanding than confi-
dence since the former is ruled by a quadratic term whereas the latter is bound by a
linear one. Figure 4.6 compares the Bernoulli and the Chernoff bound. When δ and
ε assume small values, as generally requested by applications since we wish to get
high confidence and accuracy, the Chernoff bound significantly improves over the
Bernoulli one with a gain nc = 2δ ln 2

δ
nb where nc and nb represent the number of

samples requested by Chernoff and Bernoulli, respectively.
Other interesting bounds can be obtained by assuming some a priori information

about p. For instance, the Chernoff-Okamoto bound [4] is tighter than the Chernoff

74 4 Randomized Algorithms

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

2000

4000

6000

8000

10000

12000

Accuracy

T
he

 n
um

be
r

of
 s

am
pl

es

Bernoulli bound for = 0.05
Chernoff bound for = 0.05
Bernoulli bound for = 0.2
Chernoff bound for = 0.2

Fig. 4.6 The number of samples requested by the Bernoulli and the Chernoff bounds as function
of confidence δ and accuracy ε. Chernoff largely improves over Bernoulli provided that δ and ε

assume small values, as requested by applications

one but assumes that p ≤ 0.5. Other bounds use only one side of the Chernoff bound
and can be used to deal with special cases. The interested reader can refer to [2, 4].

As it will be clear in Sect. 4.3.3 the Chernoff bound is one of those main results
which make the use of randomized algorithms viable.

4.3.3 A Bound on Samples to Estimate the Maximum
Value of a Function

Sections 4.3.1 and 4.3.2 have shown how it is possible to derive bounds on the number
of samples needed to guarantee convergence of the empirical mean to its expectation.
We show here that many problems such as the verification of a constraint satisfaction
problem can be modeled as a realization of a Bernoulli process; at the same time
many problems can be reduced to the evaluation of the empirical mean of a quantity.

In this section, we aim at using a sampling technique (randomization) to estimate
the maximum value of a function (and, of course, its minimum by changing the sign of
the function). Say that we wish to maximize function u(ψ) ∈ U ⊂ R, ψ ∈ Ψ ⊆ R

l

by identifying the maximum value umax

umax = max
ψ∈Ψ

u(ψ).

4.3 Bounds on the Number of Samples 75

There exists a very large literature addressing the function optimization problem.
Different techniques exploit a priori information about the function to be opti-
mized, e.g., as it happens with gradient descent techniques where differentiability is
requested. Some techniques explore the search space by looking for regularity and
building blocks such as in the case of genetic algorithms; others, explore the search
space with a probabilistic approach as in simulated annealing or introduce a blind
search strategy as it happens with Monte Carlo. It can be proven that under mild
hypotheses on the function to be optimized, all the above techniques converge in
probability to the maximum value, also in the case of a blind random search explo-
ration of the parameter space [19]. Different methods either differ in performance
accuracy or convergence rate.

Consider the case where random variable ψ , with probability density function fψ ,
is defined over Ψ and generate the estimate

ûmax = max
i=1,...,n

u(ψi)

after having drawn n random samples {ψ1, . . . , ψn}. To move back to embedded
systems consider u(ψ) as a performance function and ask which is the maximum
(minimum) value the function assumes given the fact we can only provide n mea-
surements u(ψi). That said, how good is the estimate ûmax? The answer is given by
the laws of large numbers.

4.3.3.1 Weak and Strong Laws of Large Numbers for Empirical
Maximum

Assume that u(ψ) is continuous in ψmax = argmaxψ∈Ψ u(ψ) and that fψ assigns a
non-null probability to every neighborhood of ψmax.

Then, for any ε > 0 we have that

weak law of large numbers

lim
n→+∞ Pr(umax − ûmax ≥ ε) = 0

strong law of large numbers

lim
n→+∞ ûmax = umax

with probability one.
Since asymptotic results are of scarce utility in real applications we determine

a bound on the number of samples granting ûmax and umax to be close in probabilistic
terms [2].

76 4 Randomized Algorithms

4.3.3.2 A Bound for a Probabilistic Estimate of the Maximum
of a Function

The problem can be simply solved by noting that the determination of the maximum
of a function is related to the probability estimation problem addressed in Sect. 4.3.2
and, in particular, Eq. (4.7):

Pr
(|p̂n(γ) − p(γ)| < ε

)
> 1 − 2e−2nε2

. (4.9)

In fact, if we set γ = ûmax we have that

p(γ) = Pr
(
u(ψ) ≤ ûmax

) = 1 − Pr
(
u(ψ) > ûmax

)

and
p̂n(γ) = 1

since all taken samples satisfy inequality u(ψ) ≤ ûmax by construction. Therefore,
from (4.9)

Pr
(|p̂n(γ) − p(γ)| < ε

) = Pr
(
Pr

(
u(ψ) > ûmax

)
< ε

)
> 1 − 2e−2nε2

which holds by selecting n according to the Chernoff bound. However, the bound
can be improved as shown in [2] and leads to the final result:

Inequality

Pr
(
Pr

(
u(ψ) > ûmax

) ≤ ε
) ≥ 1 − δ

holds for any accuracy level ε ∈ (0, 1) and confidence 1 − δ, δ ∈ (0, 1) provided
that at least

n ≥ ln δ

ln(1 − ε)
(4.10)

independent and identically distributed samples are drawn.

Other results about convergence exist, but are outside the goal of this book. The
interested reader can refer to [14] where a more complete analysis is carried out.
Derived results will be used in Sect. 4.4.2.

4.4 Randomized Algorithms

Consider a problem influenced by some variables grouped in vector ψ with a pdf
fψ over the space Ψ . Randomized algorithms are algorithms that, by sampling from
space Ψ according to fψ , provide results valid in probability. The method is general

4.4 Randomized Algorithms 77

Algorithm 5: The algorithm behind randomized algorithms

1- Transform the deterministic problem into a probabilistic problem;
2- Identify the input space Ψ of the algorithm and define a random variable ψ , with probability

density function fψ over Ψ ;
3- Identify the accuracy and the confidence levels and, then, the number of samples n required

by the randomization process;
4- Draw n samples Sn = {s1, . . . , sn} from Ψ according to fψ ;
5- Evaluate the algorithm on samples in Sn;
6- Provide the probabilistic outcome of the algorithm.

and can be applied to a very large class of functions, namely those Lebesgue mea-
surable: a filter bank, a Fast Fourier Transform (FFT), a discrete cosine transform,
wavelets transform, and a generic circuit response function are some very simple
examples of Lebesgue measurable functions.

At a very high abstraction level, the procedure behind a randomized algorithm is
given in Algorithm 5.

In the following, we will apply randomized algorithm to an interesting class of
problems. In Chaps. 5 and 7 results will be applied to the robustness problem and to
characterize the level of approximate computation, respectively. Randomized algo-
rithms will also be used to assess the performance of embedded applications as well
as evaluate the level of constraints satisfaction within a noise-affected environment.

4.4.1 The Algorithm Verification Problem

The algorithm verification problem aims at evaluating the satisfaction level of an
inequality. Even though solving this problem might appear strange, we will see that
it constitutes the core of many problems.

Consider function u(ψ) ∈ U ⊂ R, ψ ∈ Ψ ⊆ R
l Lebesgue measurable over

Ψ onto which a random variable ψ is defined, with pdf fψ over Ψ , and a given,
but generic, γ ∈ R scalar. As we already pointed out the problem models the case
where we wish to determine the level of satisfaction of performance function u(ψ)

given a constant value γ , generally acting as a tolerated performance. Without loss of
generality we study here and in next sections a scalar performance function. However,
the simultaneous attainment of several scalar performance functions may be easily
handled with the introduced techniques. The problem can be finalized as:

Verify the level of satisfaction of inequality

u(ψ) ≤ γ,∀ψ ∈ Ψ.

In other words, we wish to determine the “percentage” of points of Ψ satisfying
the inequality. Such a value is simply the ratio

http://dx.doi.org/10.1007/978-3-319-05278-6_5
http://dx.doi.org/10.1007/978-3-319-05278-6_7

78 4 Randomized Algorithms

nu(ψ)≤γ =
∫

u(ψ)≤γ,ψ∈Ψ
dψ∫

Ψ
dψ

.

Determination of nu(ψ)≤γ is surely a computationally hard problem for a generic
u(ψ) function and cannot be computed in a closed form unless u(·) presents a form
that makes the mathematics amenable. Differently, the problem can be solved with a
randomized algorithm by transforming the deterministic problem into a probabilistic
one. By relying on the previously mentioned probability density function fψ defined
over Ψ , we are able to evaluate the probability

p(γ) =
∫

u(ψ)≤γ,ψ∈Ψ
fψ(ψ)dψ∫

Ψ
fψ(ψ)dψ

= Pr (u(ψ) ≤ γ) ,∀ψ ∈ Ψ.

We have seen in Sect. 4.2.3 that p(γ) can be evaluated through randomization and
that, given a γ value, the event

u(ψ) ≤ γ

is associated with the Bernoulli variable

ψ ∈ Ψ : I (u(ψ) ≤ γ) =
{

1 if u(ψ) ≤ γ

0 if u(ψ) > γ

and by sampling n i.i.d. realizations {ψ1, . . . , ψn} from ψ

p̂n(γ) = 1

n

n∑
i=1

I (u(ψi) ≤ γ) .

We invoke the Chernoff inequality with Ên = p̂n(γ), and E[Ên] = p(γ) and
provide the main result

Performance verification problem

Let u(ψ) ∈ U ⊂ R be a performance function measurable according to Lebesgue
on its input domain Ψ ⊆ R

l and ψ be a random variable, with probability density
function fψ over Ψ . Define

p(γ) = Pr (u(ψ) ≤ γ)

and evaluate the estimate p̂n from the n i.i.d. samples ψ1, . . . , ψn. Then,

Pr
(|p̂n(γ) − p(γ)| ≤ ε

) ≥ 1 − δ

holds for any accuracy level ε ∈ (0, 1), confidence δ ∈ (0, 1) and ∀γ ∈ R provided
that

n ≥ 1

2ε2 ln
2

δ
.

4.4 Randomized Algorithms 79

Algorithm 6: Randomized algorithms for the algorithm performance
verification problem: the given performance loss case γ

1- The probabilistic problem requires evaluation of p(γ) = Pr (u(ψ) ≤ γ) for a given γ ;
2- Identify the input space Ψ and a random variable ψ , with density function fψ over Ψ ;
3- Select accuracy ε and confidence δ;
4- Draw n ≥ 1

2ε2 ln 2
δ

samples ψ1, . . . , ψn from ψ ;
5- Estimate

p̂n(γ) = 1

n

n∑
i=1

I (u(ψi) ≤ γ) , I (u(ψi) ≤ γ) =
{

1 if u(ψi) ≤ γ

0 if u(ψi) > γ

6- use p̂n(γ);

Value p̂n(γ) is the probabilistic outcome of the algorithm.

By using the algorithm given in Algorithm 6 we estimate p(γ) for a given γ̄ so
as to solve the problem of determine the level of satisfaction for the inequality, i.e.,

Pr (u(ψ) ≤ γ̄) ,∀ψ ∈ Ψ.

In other applications, we could be interested in constructing function p(γ) for an
arbitrary large but given and finite set of γ s. The natural solution to this problem
is to provide a decomposition of the feasible interval of γ , [aγ , bγ] (e.g., with an
equally spaced grid) and obtain for each γ ∈ Γ = {γ1, . . . , γk} an estimate p̂n(γi) by
invoking Algorithm 6 for i ∈ {1, . . . K}. In such a case the algorithm can be extended
as in Algorithm 7.

Comments

Randomization has allowed us to solve the algorithm verification problem by trans-
forming the deterministic problem in a probabilistic one. At the same time the Cher-
noff bound has provided the number of samples satisfying it a given accuracy ε and
confidence δ.

Having provided a first complete algorithm based on randomization it is worth to
shed light on some operational aspects somehow hidden within the theory.

Here, ε represents the accuracy of estimating p(γ), given γ , with p̂n(γ), that is to
say it represents an upper bound for the error |p̂n(γ)−p(γ)|. If ε is small then we can
confuse p̂n(γ) with p(γ) in our subsequent use of p(γ). At the same time we shall
note that |p̂n(γ)− p(γ)| is a random variable depending on the particular realization
of the sampling set. A different sampling set would have provided a different estimate
p̂n(γ).

Then one should ask how credible the statement |p̂n(γ) − p(γ)| ≤ ε is ∀ψ ∈ Ψ ;
the answer is that the statement holds with probability 1 − δ. This means that we

80 4 Randomized Algorithms

Algorithm 7: Randomized algorithms for solving the algorithm verification
problem

1- The probabilistic problem requires evaluation of p(γ) = Pr (u(ψ) ≤ γ) for any γ belonging
to a finite set of arbitrary γ values;

2- Identify the input space Ψ and a random variable ψ , with density function fψ over Ψ ;
3- Select accuracy ε and confidence δ;
4- Identify the interested performance level set Γ = {γ1, . . . , γk};
5- p̂n,Γ (γ) = verification-problem (Ψ, fψ, u(ψ), Γ, ε, δ);
6- use p̂n,Γ (γ);

function verification-problem (Ψ, fψ, u(ψ), Γ, ε, δ)
Draw n ≥ 1

2ε2 ln 2
δ

samples ψ1, . . . , ψn from ψ ;
For each γ ∈ Γ estimate

p̂n(γ) = 1

n

n∑
i=1

I (u(ψi) ≤ γ) , I (u(ψi) ≤ γ) =
{

1 if u(ψi) ≤ γ

0 if u(ψi) > γ

Group all p̂n(γ)s in vector p̂n,Γ ;
Return p̂n,Γ

could extract a sequence of points for which the inequality |p̂n(γ) − p(γ)| ≤ ε is
not verified but this happens with probability δ, which needs to be kept small.

As a last note we observe that the sampling space is R
l: the Chernoff bound

is independent from the dimension l of the input sampling space. A small dimen-
sion or a large dimension requires the same number of samples: again we find that
randomization has somehow broken the “curse of dimensionality.”

4.4.2 The Maximum Value Estimation Problem

The maximum value estimation problem, also known in the literature as worst-case
analysis, aims at estimating the maximum value a function can assume.

Consider a u(ψ) ∈ U ⊂ R function which is Lebesgue measurable over Ψ ⊆ R
l.

The problem can be cast in the canonical form requesting the evaluation of

umax = max
ψ∈Ψ

u(ψ). (4.11)

Analytical determination of umax is impossible for a large class of functions
as the Lebesgue measurable one is and its evaluation might be a computational
hard problem.

As we did for the verification case, we generate a probabilistic version of the
problem. Observe that the (4.11) can be reformulated as searching for that value
umax of u(ψ) for which

4.4 Randomized Algorithms 81

u(ψ) ≤ umax, ∀ψ ∈ Ψ. (4.12)

Now we resort to probability by relaxing the deterministic approach intrinsic with
(4.12). In particular, we are looking for an estimate ûmax of umax and say that the
estimate is good if the probability of receiving a ψ for which u(ψ) > ûmax is small,
say assumes value τ .

In other words we are requesting that

Pr
(
u(ψ) > ûmax

) ≤ τ. (4.13)

Assume that a random variable ψ , with probability density function fψ , is defined
over Ψ and draw n i.i.d. samples ψ1, . . . , ψn from ψ . Construct estimate ûmax as

ûmax = max
i=1,...,n

u(ψi).

As we have seen in Sect. 4.3.3 the weak and strong laws of large numbers grant
convergence of ûmax to umax in probability.

Unfortunately, solution of (4.13) requires a number of points which is exponential
in the dimension of the input space and, as such, the problem solution is computa-
tionally hard [6]. To solve this issue we note that (4.13) is again a random variable
since different realizations of the sampling set would provide different estimates of
ûmax. To address this last aspect, we introduce a confidence value δ and use a second
level of probability. Since we have reformulated our problem in a canonical form,
we immediately use the bound given in (4.10).

Maximum value estimation problem

Let u(ψ) ∈ U ⊂ R be a performance function measurable according to Lebesgue
on its input domain Ψ ⊆ R

l onto which is defined a random variable ψ with proba-
bility density function fψ . Define value umax to be the maximum value function u(ψ)

assumes, i.e.,

u(ψ) ≤ umax, ∀ψ ∈ Ψ.

Draw n i.i.d. samples ψ1, . . . , ψn according to fψ and generate the estimate ûmax

ûmax = max
i=1,...,n

u(ψi)

then,
Pr

(
Pr

(
u(ψ) ≥ ûmax

) ≤ ε
) ≥ 1 − δ

holds for any accuracy level ε ∈ (0, 1), confidence δ ∈ (0, 1) and ∀ψ ∈ Ψ provided
that

n ≥ ln δ

ln(1 − ε)

82 4 Randomized Algorithms

Algorithm 8: Randomized algorithm to estimate the maximum value of a
function

1- The probabilistic problem requires evaluation of ûmax;
2- Identify the input space Ψ and a random variable ψ with pdf fψ over Ψ ;
3- Select the accuracy ε and the confidence δ levels;
4- ûmax = Max-estimate (Ψ, fψ, u(ψ), ε, δ);
5- use ûmax;

Max-estimate (Ψ, fψ, u(ψ), ε, δ)
Draw n ≥ ln δ

ln(1−ε)
samples ψ1, . . . , ψn from ψ according to fψ ;

Compute ûmax = maxi=1,...,n u(ψi);
Return ûmax

Table 4.2 The number of samples n = n(ε, δ)

ε = 0.05, δ = 0.02 ε = 0.05, δ = 0.01 ε = 0.02, δ = 0.01 ε = 0.01, δ = 0.01

n 77 90 228 459

Value ûmax is the probabilistic outcome of the algorithm.

The algorithm solving the maximum value estimation problem, i.e., the proba-
bilistic version of the worst case analysis, is given in Algorithm 8.

Comments

As it can be seen from Table 4.2, the required number of samples n ≥ ln δ
ln(1−ε)

is well
below the one requested by Chernoff to solve the performance verification problem.
In fact, for a sufficiently small ε, ln(1 − ε) � −ε: the number of samples scales as
1
ε2 with Chernoff and 1

ε
for the above.

Figure 4.7 compares the number of samples requested by Chernoff with those
requested to solve the maximum value estimation problem. We appreciate the fact
that the latter bound significantly improves over the former with a gain set by 1

ε
.

However, since there does not exist a free lunch, the price we have to pay is that
our estimate requires two levels of probability

Pr
(
Pr

(
u(ψ) ≥ ûmax

) ≤ ε
) ≥ 1 − δ.

The inner inequality Pr
(
u(ψ) ≥ ûmax

) ≤ ε states that we are requesting an
estimate which is good not in terms of classic accuracy but according to Lebesgue. In
other terms the inequality requires that, at least with probability 1−δ, the probability
of encountering points whose u(ψ) is larger than ûmax is below ε.

Figure 4.8 shows the situation. Function u(ψ) is given and ûmax determined as
discussed above. Those points u(ψ) ≥ ûmax belong to two intervals Ψ1, Ψ2 so that

4.4 Randomized Algorithms 83

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

 and

T
he

 n
um

be
r

of
 s

am
pl

es

Maximum value bound
Chernoff bound

Fig. 4.7 The number of samples requested by the Chernoff bound and that requested to solve the
maximum value estimation problem. ε and δ assume the same values to ease the comparison

Fig. 4.8 The maximum
estimated value for function
u(ψ) is ûmax. The probability
of having points u(ψ) ≥ ûmax
is associated with two sup-
ports Ψ1, Ψ2, for which
Pr

(
u(ψ)|ψ∈Ψ1 ≥ ûmax

) ≤ ε1,
Pr

(
u(ψ)|ψ∈Ψ2 ≥ ûmax

) ≤ ε2
and sum ε1 + ε2 ≤ ε

1 2

u)(ψ

ψ ψ ψ

Pr
(
u(ψ)|ψ∈Ψ1 ≥ ûmax

) ≤ ε1 and Pr
(
u(ψ)|ψ∈Ψ2 ≥ ûmax

) ≤ ε2, respectively. How-
ever, the sum ε1 + ε2 ≤ ε at least with confidence 1 − δ.

There might even be an infinity of points ψ for which u(ψ) is larger than the
estimated ûmax but the probability of encountering such points is no more than ε.
This note should be carefully recalled when using the obtained estimates.

It can be proved that the bound is tight under regularization and smoothness
hypotheses on the probability function of the random variable u(ψ), for instance
continuity (e.g., refer to [7]).

84 4 Randomized Algorithms

4.4.3 The Expectation Estimation Problem

In many applications it is crucial to be able to estimate the expected value of a
given function u(ψ), operation generally carried out by estimating the empirical
mean. Again, the problem is to identify the minimum number of samples granting
an arbitrary level of accuracy and confidence.

Consider a u(ψ) ∈ [0, 1] function which is Lebesgue measurable over Ψ ⊆ R
l

and let fψ be the probability density function of a random variable ψ defined over
Ψ . Expectation estimation requires evaluation of

E[u(ψ)] =
∫

Ψ

u(ψ)fψ(ψ)dψ. (4.14)

As in other problems, evaluation of (4.14) is computationally hard for a generic
u function and the empirical mean

Ên(u(ψ)) = 1

n

n∑
i=1

u(ψi) (4.15)

is constructed instead based on the n i.i.d. samples ψ1, . . . , ψi, . . . , ψn drawn from
ψ according to fψ . Of course, Ên(u(ψ)) is a random variable depending on the
particular realization of the n samples. By invoking the Hoeffding inequality (4.5)
where ai = 0, bi = 1, i ∈ {1, . . . , n}

Pr
(
|Ên(u(ψ)) − E[u(ψ)]| ≥ ε

)
≤ 2e−2ε2n (4.16)

we derive the Chernoff bound

n ≥ 1

2ε2 ln
2

δ
. (4.17)

Expectation estimation problem
Let u(ψ) ∈ [0, 1] be a performance function measurable according to Lebesgue

on its input domain Ψ ⊆ R
l onto which is defined a random variable ψ with proba-

bility density function fψ . Define E[u(ψ)] to be the expectation of function u(ψ).
Draw n i.i.d. samples ψ1, . . . , ψn according to fψ and generate the estimate

Ên(u(ψ)) = 1

n

n∑
i=1

u(ψi)

then,
Pr

(
|Ên(u(ψ)) − E[u(ψ)]| ≤ ε

)
≥ 1 − δ

holds for any accuracy level ε ∈ (0, 1), confidence δ ∈ (0, 1)

4.4 Randomized Algorithms 85

Algorithm 9: Randomized algorithm to estimate the expected value of a function

1- The probabilistic problem requires evaluation of E[u(ψ)];
2- Identify the input space Ψ and a random variable ψ with pdf fψ over Ψ ;
3- Select the accuracy ε and the confidence δ levels;
4- Draw n ≥ 1

2ε2 ln 2
δ

samples ψ1, . . . , ψn from ψ according to fψ ;

5- Compute Ên(u(ψ)) = 1
n

∑n
i=1 u(ψi);

6- use Ên(u(ψ));

n ≥ 1

2ε2 ln
2

δ
.

Value Ên(u(ψ)) is the probabilistic outcome of the randomized algorithm.

The randomized algorithm to estimate the expected value of a function is given
in Algorithm 9.

Comments

Interestingly, the determination of the expected value problem can be addressed
with the same number of samples (Chernoff bound) used to address the probability
estimation problem. The structural difference is in the use of the empirical sum in
one case and the indicator function in the other. Even if their derivations came from a
different perspective, both cases are a special case of the Hoeffding inequality (which
leads to the Chernoff bound). As a consequence, the request that u(ψ) ∈ [0, 1] is
only made to ease the derivation of the bound through the Hoeffding’s inequality. In
general, it is enough to require u(ψi) bound, e.g., to the same ai = a, bi = b, i =
1, . . . , n. As a consequence, the bound on the number of samples would become

n ≥ (b − a)2

2ε2 ln
2

δ
(4.18)

Another aspect which should be addressed is the relationship between the number
of needed samples as per the Chernoff bound and that which could be derived by
applying the central limit theorem. In fact, if fu(ψ) = fu(ψ)(μ, σ 2) the central limit
theorem states that as n increases the distribution of Ên(u(ψ)) approaches the normal
distribution with mean value E[u(ψ)] = μ and variance σ 2

n irrespective of fu(ψ). Said
that, we can write that

Pr

(
|Ên(u(ψ)) − μ| ≤ λ

σ√
n

)
= erf

(
λ√
2

)
(4.19)

86 4 Randomized Algorithms

If we select ε > 0 so that ε = λ σ√
n
, then the implicit relationship between ε, δ,

and n is

δ = 1 − erf

(
ε
√

n

σ
√

2

)

since for x > 0 we can provide the Chernoff-Rabin bound

1

2

(
1 − erf

(
x√
2

))
≤ 1

2
e

−x2
2

then, being x = ε
√

n
σ

we can write that

δ ≤ e
−ε2n
2σ2

from which

n ≥ 2σ 2

ε2 ln
1

δ
. (4.20)

We recall that the Chernoff bound requires u(ψ) ∈ [0, 1] as a working hypothesis
but we commented that results can be extended provided that the variable is bounded.
The variance σ 2 might be small. In such a case the bound (4.20) provided by the
central limit theorem could slightly improve over the Chernoff bound (the opposite
holds). That said, the Chernoff bound should always be preferred independently of the
value assumed by σ 2. In fact, (4.20) relies on the assumption that the distribution of
the empirical mean is Gaussian which is only true asymptotically with the increasing
n and its convergence ratio depends on σ . Differently, the (4.17) is general and does
not require any particular assumption on the distribution.

As an example, let us assume that u(ψ) is uniformly distributed in interval [a, b] =
[0, 1]. Then, the central limit theorem (using Eq. 4.20) would lead to

n ≥ 2(b − a)2

12ε2 ln
1

δ
= 1

6ε2 ln
1

δ

against the bound derived from the Hoeffding inequality (Eq. 4.18)

n ≥ (b − a)2

2ε2 ln
2

δ
= 1

2ε2 ln
2

δ

Figure 4.9 presents the bound set by the central limit theorem against the Chernoff
one for the choice δ = ε. As we see the CLT, by taking advantage of the fact the
distribution of the empirical mean is Gaussian (when it is only asymptotically),
improves over Chernoff that is not assuming any particular distribution.

4.4 Randomized Algorithms 87

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.5

1

1.5

2

2.5

x 10
4

 and

T
he

 n
um

be
r

of
 s

am
pl

es

CLT
Chernoff

Fig. 4.9 The number of samples requested by the Chernoff bound and the Central limit theorem
as function of confidence and accuracy δ = ε

4.4.4 The Minimum (Maximum) Expectation Problem

The minimum (maximum) expectation problem aims at estimating the minimum
(maximum) value of the expectation of a function. Without any loss in generality, we
consider here the minimization problem by keeping the same structure given in [2].

Consider the Lebesgue measurable function u(ψ,Δ) ∈ [0, 1], ψ ∈ Ψ ⊆ R
l and

Δ ∈ D ⊆ R
k . Define fΨ and fΔ to be the probability density functions associated to

random variables ψ and Δ defined over Ψ and D, respectively. The problem requires
minimization either of function

umin = min
ψ∈Ψ

EΔ[u(ψ,Δ)] (4.21)

or
umin = min

Δ∈D
EΨ [u(ψ,Δ)].

The two problems are structurally equivalent; as such we consider the first one
and the other follows immediately. The problem can then be described by the system

{
φ(ψ) = EΔ[u(ψ,Δ)]

umin = minψ∈Ψ φ(ψ).

88 4 Randomized Algorithms

In Sect. 4.4.3, we have seen how the empirical mean converges to its expectation
if we draw a number of samples satisfying the Chernoff bound. Let us then consider a
given value ψ̄ and estimate the expected value EΔ[u(ψ̄,Δ)] with its empirical mean

Ên(u(ψ̄)) = 1

n

n∑
j=1

u(ψ̄,Δj) (4.22)

based on n i.i.d. samples Δ1, . . . , Δn. The Hoeffding inequality can then be applied
and leads to

Pr
(
|Ên(u(ψ̄)] − EΔ[u(ψ̄,Δ)]| ≥ ε

)
≤ 2e−2nε2

(4.23)

from which we derived the Chernoff bound (4.23) holds for ψ̄ but it also indepen-
dently holds for any finite sequence of ψ̄ ∈ {ψ1, . . . , ψm} drawn from ψ .

Moreover, we can interpret u(ψ̄,Δ), as a set of functions parameterized in ψ̄

composing the function family A.
We would appreciate the actual mean evaluated on the generic i-th sample

Ên(u(ψi)) to be close to the expected value EΔ[u(ψi,Δ)] for any ψi, i = 1, . . . , m.
In other words, we would like the empirical mean to converge to its expectation

uniformly as n goes to infinity and for each element of the family A = {u(ψi,Δ), i =
1, . . . , m}. When this holds we say that function family A satisfies the Uniform
Convergence of Empirical Mean (UCEM) property. If the family A is finite (say
composed of m functions) then, by repeated application of the Hoeffding inequality,
we have that

Pr

(
sup
u∈A

|Ên(u(ψ)) − EΔ[u(ψ,Δ)]| > ε

)
≤ 2me−2nε2

(4.24)

and, when n → ∞, (4.24) goes to zero. The UCEM property then holds for any
finite function family. However, the property might hold also for an infinite function
family, e.g. A = {u(ψ,Δ),ψ ∈ Ψ }. It can be proved that the UCEM property holds
for all those families for which the Pollard dimension dP of A is finite [4].

4.4.4.1 The Pollard Dimension

Let Ψ be a measurable space and F ⊆ [0, 1]k a family of measurable functions.
A set of points ψ1, . . . , ψn is said to be P-shattered by F if there exists a real vector
c ∈ [0, 1]n such that, for every binary vector b ∈ {0, 1}n, there exists a function
fb ∈ F such that

{
fb(ψi) < ci if bi = 0
fb(ψi) ≥ ci if bi = 1

4.4 Randomized Algorithms 89

The Pollard dimension dP of F is the largest integer n for which there exists a set
of cardinality n P-shattered by F [4].

To better understand the concept of P-shattered consider a real vector c ∈ [0, 1]n

and the generic point ψi. For each function f ∈ F we have that f (ψi) can be larger
(or equal) or smaller than value ci. Then there are 2n possible behaviors as f varies in
F. Set ψ1, . . . , ψn is said to be P-shattered by F if each of the possible 2n behaviors
is realized by some f ∈ F.

The dP is a generalization of the Vapnik–Chervonenkis (VC) dimension defined
on binary valued functions F. Moreover, for binary valued functions dP = dVC where
dVC is the VC-dimension.

When the Pollard’s dimension is known, we can state the important Corollary [2]:

The minimum expectation problem. Corollary:

Let u(ψ,Δ) ∈ [0, 1] be a performance function measurable according to
Lebesgue on its domains Ψ ⊆ R

l and D ⊆ R
k , onto which are defined the ran-

dom variables ψ and Δ, respectively, with probability density functions fΨ and fΔ.
Let dP of function u(·) be finite.
Draw m i.i.d. samples ψ1, . . . , ψi, . . . , ψm from ψ and n i.i.d. samples Δ1, . . . , Δj,

. . . Δn from Δ and compute

Ên(u(ψ)) = 1

n

n∑
j=1

u(ψ,Δj)

ûmin = min
i=1,...,m

En[u(ψi)]

then,

Pr
(
Pr

(
EΔ[u(ψ,Δ)] ≤ ûmin − ε1

) ≤ ε2
) ≥ 1 − δ

holds for any accuracy level ε1, ε2 ∈ (0, 1), confidence δ ∈ (0, 1) provided that

m ≥ ln 2
δ

ln(1
1−ε2

)

and

n ≥ 32

ε2
1

[
ln

16

δ
+ dP

(
ln

16e

ε1
+ ln

16e

ε1

)]

Value ûmin is the probabilistic outcome of the algorithm.
Instead, when the Pollard dimension is not know we can use the main result given

in the following theorem [2]

90 4 Randomized Algorithms

Table 4.3 The number of samples n, m = g(ε, δ)

ε1 = ε2 = ε ε = 0.05, δ = 0.02 ε = 0.05, δ = 0.01 ε = 0.02, δ = 0.01 ε = 0.01, δ = 0.01

(m, n) (89, 1960) (104, 2126) (263, 14451) (528, 61296)

The minimum expectation problem. Theorem:

Let u(ψ,Δ) ∈ [0, 1] be a performance function measurable according to
Lebesgue on its input domains Ψ ⊆ R

l and D ⊆ R
k , onto which are defined the

random variables ψ and Δ, respectively, with probability density functions fΨ and
fΔ.
Draw m i.i.d. samples ψ1, . . . , ψi, . . . , ψm from ψ and n i.i.d. samples Δ1, . . . , Δj,

. . . Δn from Δ, compute

Ên(u(ψ)) = 1

n

n∑
j=1

u(ψ,Δj)

ûmin = min
i=1,...,m

E[u(ψi)]

then,

Pr
(
Pr

(
EΔ[u(ψ,Δ)] ≤ ûmin − ε1

) ≤ ε2
) ≥ 1 − δ

holds for any accuracy level ε1, ε2 ∈ (0, 1), confidence δ ∈ (0, 1) provided that

m ≥ ln 2
δ

ln(1
1−ε2

)

and

n ≥ 1

2ε2
1

ln
4m

δ

Value ûmin is the probabilistic outcome of the algorithm.

Comments

We see from Table 4.3 that the required number of samples can be very high depending
on the selected accuracy and confidence levels since the number of samples n is
function of the number of samples m, yet through alogarithm.

However, the number of samples required by the corollary is significantly higher
than those requested by the theorem. For instance, if we choose ε1 = ε2 = ε = 0.02

4.4 Randomized Algorithms 91

Algorithm 10: Randomized algorithm for the minimum expectation problem

1- The probabilistic problem requires to estimate min E[u(ψ,Δ)];
2- Identify the input spaces Ψ , D and random variables ψ and Δ with probability density

function fψ over Ψ and fΔ over D, respectively;
3- Select the accuracy ε and the confidence δ levels;

4- Draw m ≥ ln 2
δ

ln(1
1−ε

)
i.i.d. samples ψ1, . . . , ψi, . . . , ψm from ψ ;

5- Draw n ≥ 1
2ε2 ln 4m

δ
i.i.d. samples Δ1, . . . , Δj, . . . Δn from Δ according to fΔ;

6- Compute ûmin(ψi) = 1
n

∑n
j=1 u(ψi,Δj) for each i;

7- use ûmin = mini=1,...,m ûmin(ψi) and ψ̂ = arg mini=1,...,m ûmin(ψi);

and δ = 0.01 then m = 263, n = 14, 451 from the Theorem and m = 263, n =
1, 367, 851 from the Corollary with the easiest (yet unlikely) dimension dP = 1.
For this reason, we surely use the Theorem’s results in the Randomized algorithm
framework, mostly with the choice ε1 = ε2 = ε.

The randomized algorithm for solving the minimum expectation problem is finally
summarized in Algorithm 10.

4.5 Controlling the Statistical Volume of the Sampling Space

Randomization requests to sample from a given space Ψ and a random variable
with probability density function fψ defined over Ψ . By acting on some controlling
parameter of fψ , we can tune the statistical volume Ψ defined as

Vol(Ψ) =
∫

Ψ

fψdΨ

which is a very useful operation in many applications. For instance, if we wish to
control the space of uncertainty affecting a computation we find useful to introduce a
control parameter that allows the shrinkage/enlargement of the space. A norm applied
to the vector is a first element that can control it. Another possibility—which can be
related to the norm—is the introduction of a mechanism controlling the scattering
of points in the space. For their nature, the variance for a scalar and the covariance
matrix for a vector can control effectively the statistical volume of a space: the larger
the scattering index the larger the embraced volume.

If Ψ ⊂ R
l, it is common to describe it either in terms of a controllable hypercube or

a controllable ball onto which φ is defined with pdf fψ (both situations can be managed
by introducing the concept of norm). In the former case, a common description is such
that each component ψ(i) of ψ belongs to a bounded interval, i.e., ψ(i) ∈ [ai, bi].
Here, the control of the volume is on ai and bi. If we set identical and symmetrical
values for ai and bi so that ai = −ρ, bi = ρ, then we have that each edge of the
hypercube has length 2ρ and Ψ can be controlled in expansion and contraction with
the single parameter ρ and Ψ = Ψ (ρ).

92 4 Randomized Algorithms

Algorithm 11: The algorithm for extracting vectors according to a uniform
distribution from a lp norm-ball

1- Generate l independent random real scalars ξi distributed according to the generalized
gamma density function

G(x) = p

Γ (1
p)

eξp
, ξ ≥ 0,

where Γ is the gamma function and p the norm value.
2- Construct random vector x ∈ R

l of components xi = siξi where si is a random sign. Random
vector y = x

‖x‖p
is uniformly distributed on the boundary of Bρ .

3- Return ψ = ρyw
1
l , where w is a random variable uniformly distributed in [0, 1]

We recall that if we have a uniform distribution defined in the [−ρ, ρ] interval,

the variance is ρ2

3 , and the control of ρ implies a control in variance. This situation
is formalized by the ‖ψ‖∞ norm

‖ψ‖∞ = max {|ψ(1)|, |ψ(2)|, · · · , |ψ(l)|}

being ψ(i) the i-th component of vector ψ . Following the definition, ‖ψ‖∞ = ρ

induces a hypercube of edge 2ρ. In the latter case, e.g., the norm-ball controlled case,
ψ is restricted within Ψ (ρ) described in terms of norm-bounded balls of radius ρ

Ψ (ρ) = {‖ψ‖p ≤ ρ}

where

‖ψ‖p =
(

l∑
i=1

|ψ(i)|p
) 1

p

.

In general, the L2-norm is used but other norms can be considered to bound Ψ and
having it controlled as Ψ (ρ). Interestingly, the maximum norm ‖ψ‖∞ is the limit of
the ‖ψ‖p norm when p → ∞.

Though a uniform distribution sample extraction algorithm is immediate for a
‖ψ‖∞ norm where we simply need to uniformly sample from each axis, the problem
is more complex if we wish to generate a uniform sampling from a norm-bounded
ball. Clearly, verifying the appurtenance of a sample to the ball as we did when
estimating π with the square-circle mechanism of Sect. 4.2.1, instead of a hypercube
is not an effective solution. Fortunately, [3] provides a simple algorithm that returns
a sample ψ belonging to a ball Bρ

Bρ = Ψ (ρ) = {ψ ∈ Ψ : ‖ψ‖p ≤ ρ}.

4.5 Controlling the Statistical Volume of the Sampling Space 93

The algorithm is given in Algorithm 11. Interestingly, if we arrest the algorithm
to the second step, we obtain a sample that is uniformly distributed on the boundary
‖ψ‖p = ρ.

If Ψ = R
l and a multivariate probability density function fψ is defined for ψ ,

say Gaussian, then we can control the statistical volume by acting on the covariance
matrix Cψ . The interested reader can refer to [2] for a deeper investigation.

	4 Randomized Algorithms
	4.1 Computational Complexity
	4.1.1 Analysis of Algorithms
	4.1.2 P, NP-Complete, and NP-Hard Problems

	4.2 Monte Carlo
	4.2.1 The Idea Behind Monte Carlo
	4.2.2 Weak and Strong Laws of Large Numbers
	4.2.3 Some Convergence Results
	4.2.4 The Curse of Dimensionality and Monte Carlo

	4.3 Bounds on the Number of Samples
	4.3.1 The Bernoulli Bound
	4.3.2 The Chernoff Bound
	4.3.3 A Bound on Samples to Estimate the Maximum Value of a Function

	4.4 Randomized Algorithms
	4.4.1 The Algorithm Verification Problem
	4.4.2 The Maximum Value Estimation Problem
	4.4.3 The Expectation Estimation Problem
	4.4.4 The Minimum (Maximum) Expectation Problem

	4.5 Controlling the Statistical Volume of the Sampling Space

