
Chapter 3
Uncertainty, Information, and Learning
Mechanisms

The real-world is prone to uncertainty. We experience uncertainty in acquiring data,
in interacting with the environment through an actuator, in representing information
on a finite-precision machine, and in designing an unknown solution to a problem.
The chapter formalizes and deals at first with the concept of uncertainty and the
way it propagates through a computational flow. Afterwards, the basics of statistical
learning are provided. It is shown how different sources of uncertainty, that depend
on the chosen model family, the number of available data, and their quality and,
ultimately, the complexity of the problem, are introduced when learning from data.

3.1 Uncertainty and Perturbations

3.1.1 From Errors to Perturbations

Wehave uncertaintywheneverwehave an approximated entitywhich, to some extent,
estimates the ideal—possibly unknown—one. Such a situation can be formalized by
introducing the ideal uncertainty-free entity and the real uncertainty-affected one
and evaluating the error, i.e., the discrepancy between the two according to a suitable
figure of merit. Since the error is strictly dependent on a specific pointwise instance,
e.g., a representation error for a given value, a model error for a specific input, or
a sensor error in correspondence of a particular data acquisition, we abstract the
pointwise error with the concept of perturbation, a variable defined in a suitable
domain with the pointwise error representing a particular realization of it.

In the following, a generic perturbation δA intervenes on the computation by
modifying the status assumed by an entity from its nominal configuration A, whose
domain and cardinality depends on the specific case, to a perturbed one Ap. The
effect induced by the perturbation can be evaluated through a suitable figure of merit
‖A, Ap‖ measuring the discrepancy between the two states. For instance, if we are
looking at the output of a real sensor providing the constant scalar value a ∈ R,

C. Alippi, Intelligence for Embedded Systems, DOI: 10.1007/978-3-319-05278-6_3, 25
© Springer International Publishing Switzerland 2014

26 3 Uncertainty, Information, and Learning Mechanisms

then the discrepancy between the ideal nominal value and the perturbed one can be
expressed as the punctual error ‖A, Ap‖ = e = |ap − a|. Should we read another
sensor instance, the pointwise error would assume a different value. In this case, the
mechanism inducing uncertainty can be modeled with the signal plus noise model
ap = a + δa and ‖A, Ap‖ = |ap − a| = |δa | = |e|. It is evident from this example
that δa can be described in many cases as a random variable with its probability
density function fully characterizing the way uncertainty disrupt the information.

3.1.2 Perturbations

In Sect. 3.1.1 we have intuitively introduced the concept of perturbation as a ran-
dom variable. More formally, the perturbation δA can be defined as a result of the
perturbation operator applied to a structured variable A.

Given a generic variableψ ∈ Ψ ⊂ R
d , perturbation δψ movesψ into a perturbed

state ψp according to some perturbation model. Not rarely, we can model δψ as a
multivariate random variable drawn from a perturbation probability density function
fψ(M, Cδψ) characterized by mean M and covariance matrix Cδψ . Ψ can either be
discrete or continuous, the latter being the most common situation in signal/image
processing.

Definition: Continuous Perturbations

We say that a perturbation δψ is continuous if Pr(δψ = δψ̄) = 0,∀ψ ∈ Ψ. The
definition tells us that the probability to sample a continuous perturbation space and
get exactly a given perturbation is an event whose probability is null.

Definition: Acute Perturbations

We say that the square matrix Ap obtained by perturbing matrix A is acute (and the
associate perturbation δA is said to be acute) if and only if

lim
Ap→A

rank(Ap) = rank(A).

In other words, an acute perturbation does not change the rank of a matrix [51].
If perturbation δA is induced by perturbation δψ , i.e., δA = δA(δψ), we also say
that δψ is acute.

We will use the definitions above along the book and, in particular, in Chap.5.

http://dx.doi.org/10.1007/978-3-319-05278-6_5

3.2 Perturbations at the Data Representation Level 27

3.2 Perturbations at the Data Representation Level

Numerical data acquired by sensors and digitalized through an ADC are represented
as a sequence of bits coded according to a given transformation which depends on
the numerical information we need to represent. In the following sections, we will
introduce the main transformations used in numerical representations as well as the
types and characterization of uncertainty introduced when representing data in a
digital format.

3.2.1 Natural Numbers N: Binary Natural

Assumewe arewilling to spend n bits to represent a finite value a ∈ N. It immediately
comes out that we can represent only numbers belonging to a subset N(n) ⊂ N

given the finiteness of n. Since n bits provide 2n independent codewords, the subset
N(n) contains 2n instances, e.g., the first 2n symbols N(n) = 0, 1, . . . , 2n − 1. For
instance, if we have n = 8 we can represent the first 256 natural numbers, starting
from 0 (or any other 256 numbers depending on the number of information-codeword
association). The representation of values in N(n) follows the binary natural code
representation [206], which can be easily derived once we comment that the numeric
representation we are looking at is positional and weighted.

In this section we assume that the information associated with the natural number
is not affected by uncertainty (the numeric instance is noise-free) and that the unique
source of uncertainty is introduced by finite precision operators, such as truncation or
rounding, used in order to reduce the number of bits associated with the information
from n to its most significant q ≤ n bits.

3.2.1.1 Projection to a Subspace

Define the space of a representation as the space spanned by the vector containing
as components the bits/digits considered to represent a value. If n are the bits, then
N(n) = {0, 1, 2, . . . , 2n − 1} is the set of points in the space, with each point
referenced by the generic vector in the form [an−1, . . . , a1, a0].

As such, an interesting projection to a lower dimensional space can be achieved
by simply setting to zero the least significant n − q bits of the n bits codeword
associated with a (the least significant q bits are set to zero leading to value a(q)).
The projection introduces an absolute error whose value is

e(q) = a − a(q) < 2q .

The pointwise error is a function of the particular number instance and its stochas-
tic characterization depends on the particular nature of the envisaged application, i.e.,

28 3 Uncertainty, Information, and Learning Mechanisms

on the probability density function of the process generating value a. However, it is
common to assume a uniform distribution for a. The projection operator introduces
an absolute error that can be modeled as a uniformly distributed random variable
defined in interval [0, 2q). The expected value of the error is 2q−1

2 and its variance

is bounded by 22(q−1)

3 [208].

3.2.1.2 Truncation

Truncation operates as a chopping operator that removes the least significant q bits
from a n bits codeword. However, if truncation would simply mean chopping bits
from a number, then it would not make any sense. For instance, if we consider
the decimal value 123, truncation of the least significant digit would generate the
number 12, per se a number not even related to the original one in terms of the
absolute information content. The error would not even make sense in relative terms:
for the case above, the relative error would be 123−12

123 . However, truncation is a key
operator in embedded systems, for the reasons we will now explain.

The notation associated with the binary natural codeword is positional and
weighted: value 1 in a0 has a different meaning of a 1 in an−1 (positional nota-
tion). In correspondence to bit ai , we have a weight quantifying the information
contribution carried by the bit, which is 2i (weighted notation). What does make
sense is to apply in turn the two steps

• Projection of the codeword in the subspace of dimension n − q;
• Apply the truncation operator so as to remove the q rightmost bits.

The final result of the transformation is that the number is now defined in an n −q
dimensional space. We save q bits in representing the information at the cost of an
introduced source of uncertainty in the data representation (and a loss in information
if the original numberwas uncertainty-free). Consider, for instance, decimal numbers
1234 and 2545, defined in an n = 4 dimensional space. We wish to reduce the space
to n − q = 2 digits. By applying the projection to a subspace transformation, we
get numbers 1200 and 2500 and, after truncation, the numbers become 12 and 25.
In other words, we are keeping the most relevant part of the information content
by operating into a two-dimensional subspace which somehow keeps the distance
between the numbers at the net of the truncated information. The number can then
be compared with other numbers defined in the same subspace.

The relative distance between the two codewords is mostly kept, although an
error is introduced. In fact, by inspecting the numbers after the transformation, it
is clear that they can be intended as generated with q right shifts, with the conse-
quence that each instance of the reduced space should be weighted 102 to move
back to the original one. The binary number [an−1, an−2 . . . ,aq, . . . ,a1, a0] becomes
[an−1, an−2 . . . , aq] after the transformation. Each instance of the reduced space can
be brought back to the original space dimension by multiplying it by value 2q . The
introduced absolute error in the original space is e(q) = a − 2qa(q) < 2q, hence
inducing an error uniformly distributed in the interval [0, 2q).

3.2 Perturbations at the Data Representation Level 29

3.2.1.3 Rounding

Rounding of a positive number truncates the q least significant bits and adds 1 to the
unchopped part if and only if the most significant bit of the truncated segment is 1.
Otherwise, the rounded value is the one defined over n − q bits. In a binary natural
representation, rounding provides a biased uniform error following the comments
made for the projection to a subspace and the truncation operator. The advantage of

rounding is that the variance 22(q−2)

3 of e(q) is half the truncation one.

3.2.2 Integer Numbers Z: 2’s Complement

3.2.3 2cp Notation

We are now interested in representing a value a ∈ Z(n) ⊂ Z over n bits. A straight
representation for the generic number a would be the sign and modulus notation.
Such a notation is based on the fact that, although formally inaccurate, Z = −N∪N.
A generic number can then be represented with its sign (requesting a bit) and its
modulus (which, being a natural number, can be represented with the binary natural
representation). The sign and modulus representation is redundant, in the sense that
it uses two codewords to represent the zero (−0 and +0) and requires differentiated
hardware architectures to carry out additions and subtractions. A different approach,
which is used in most embedded systems, is to use a two’s complement notation
(2cp) that solves both problems.

Given n bits, we have a total of 2n available codewords, and we decide to assign
half of them to represent negative numbers, and the remaining half to code positive
numbers (zero included). That said, subset Z(n) becomes

Z(n) = −2n−1, . . . , 0, . . . , 2n−1 − 1.

The 2cp representation for number a ∈ Z(n) is defined as

a2cp =
{

ab,n for a ≥ 0
(2n − |a|)b,n for a < 0

where subscript b, n stands for a binary natural representation on n bits. The
transformation has remarkable properties that make the 2cp notation the one most
used in embedded systems. Other expressions that can be derived from the above
transformation are more immediate to generate 2cp codewords. One of these is par-
ticularly interesting since it exploits the concept of opposite−a of number a. Having
a generic number an obtained from a with a 2cp transformation over n bits, its oppo-
site −an is −an = ān + 1, where ā is the bit-wise complement operator applied
to the codeword an (1s and 0s are toggled in an). The immediate consequence is

30 3 Uncertainty, Information, and Learning Mechanisms

that the subtraction operation can be reduced to the addition one. In fact, given
two numbers an, bn in 2cp and defined on n bits, the subtraction an − bn becomes
an − bn = an + (−bn) = an + b̄n + 1. Both addition and subtraction operators
reduce to the algebraic sum, whose simple algorithm is that used for the addition
operator.

In order to characterize the nature of the finite precision representation error, let us
consider at first the truncation operator, chopping q bits from the n of the original rep-
resentation.The limits of the truncationoperator forZ are those presented forN. Trun-
cation should be intended as an operator transforming the n-dimensional space of the
data into the reduced one of dimension n − q. Under this framework, the truncation
error associated with truncated value a(n − q) is always positive, assuming values
0 ≤ a − 2qa(n − q) < 2q − 1. The error introduced by the truncation operator
is uniformly distributed in the interval [0, 2q − 1) and introduces a bias value. On
the contrary, rounding introduces an unbiased error, a very welcome property in
any computation: clearly, we would appreciate the outcome of a computation to be
accurate, or, in the worst case, characterized by a small bias. Thus, rounding outper-
forms truncation in the 2cp representation. This makes it a very interesting operator
for embedded systems despite the required extra computational cost. If rounding
is applied, it can be shown that the representation error is uniformly distributed in
interval [−2q−1, 2q−1).

3.2.4 Rational Q and Real R Numbers

As pointed out in the previous sections, the finiteness of the machine limits the
number of codewords to 2n if n is the number of available bits. As a consequence,
we can only approximate a generic number a, either belonging to Q or R, with the
number a(n) which, for its finite nature, belongs to Q.

3.2.4.1 Fixed Point Representation

Any rational number a ∈ Q can be seen as composed of an integer part and a
fractional one. A natural approximation a(n) of a is a number where l = n − k − 1
bits are assigned to the integer part, one to the sign bit, and k to the fractional one.
This notation is called fixed point since the “dot” separating the integer from the
fractional part is conventionally fixed in the notation, being k bits leftwards from the
least significant bit (note that the point is only virtual and such information is not
stored). This said, we also note that the number a(n)2k is an integer number and,
as such, it can be represented with a 2cp notation. De facto, there is no difference
between a generic fixed point number and an integer one!

3.2 Perturbations at the Data Representation Level 31

Example: Fixed Point Representation

Consider, as an example, decimal value a = 1.56 and say that we are willing to
spend n = 5bits to represent it in 2cp. We decide to use 2bits for the fractional part
(k = 2). The number can then be represented with the fixed point binary sequence
[00110], e.g., codeword [001.10] associated with the approximated decimal number
a(n) = 1.5. If we multiply the binary codeword by factor 2k , the fractional point
disappears and we obtain codeword [00110], which is associated to the binary value
a(n)22. The introduced absolute error is |e(q)| = |a − a(n)| = 0.06 < 2−2.

Let us consider now number a coded in 2cp over n bits with l bits associated with
the non-fractional part (without including the sign bit). We wish to reduce the n bits
to n − q bits at first through a q least significant bits truncation (truncation might
also affect the integer information, and not only the fractional one).

Multiply a by 2−l so that 2−la becomes a totally fractional number. We have seen
that if we keep k bits for the fractional part, then the introduced error is lower than
2−k. Given the fact that we wish to keep n − q bits and a bit is used for the sign, we
have that the truncation error e(q) is always positive (also for negative numbers) and
satisfies the inequalities

0 ≤ e(q) < 2l(2−(n−q−1)).

As an interesting example, let us consider the decimal number 0.45 represented on
n = 5 bits, l = 0. The 2cp representation becomes [00111]. We wish to represent the
number on a smaller space by choosing q = 2. The obtained number after truncation
is [001], e.g., decimal number 0.25. Since l = 0, we have that the representation
error must satisfy 0 ≤ e(q) = 0.2 < 2−2 = 0.25. If rounding is applied, then it can
be shown that the error e(q) satisfies

−2l(2−(n−q)) ≤ e(q) < 2l(2−(n−q)).

The error owed to rounding is independent of the binary representation and its mean
is zero. Moreover, rounding introduces a lower variance compared to truncation.

Let us consider, as a second example, decimal number 6.9, to be represented in
2cp fixed point notation on n = 7 bits. The 2cp representation becomes [0110111].
Wewish to represent the number on a smaller space by choosing q = 2 and rounding.
The obtained number after rounding is [01110], e.g., decimal number 7. Since l = 3,
n = 7, and q = 2, we have that the representation error e(q) = 6.9 − 7 has to be in
magnitude smaller than 2−2, as it is.

As a last example, consider decimal number −6.666 to be represented in a 2cp
fixed point notation on n = 7bits. The 2cp representation becomes [1001011]. We
wish to represent the number on a smaller space by choosing q = 1 and rounding
as space reduction technique. The codeword of the positive number is [0110101];
after rounding with q = 1 we get codeword [011011], to which the rounded negative
codeword [100101] is associated. Since l = 3, n = 7, and q = 1, we have that the
representation error e(q) = −6.666 − (−6.75) = −0.084 has to be of magnitude
smaller than 2−3, as it is.

32 3 Uncertainty, Information, and Learning Mechanisms

Summarizing, in a 2cp notation, the error introduced by quantization is uniformly
distributed [208] in the interval

[0, 2l−n+q+1)

for the truncation operator and uniformly distributed in the interval

[−2l−n+q , 2l−n+q)

for the rounding operator. The above distributions should be used to test the effects
of noise on the embedded computation as requested in Chap.7 or to evaluate the
intrinsicrobustness of the computational flow as detailed in Chap. 5.

3.3 Propagation of Uncertainty

We analyze in this section the way perturbations affecting sensor data propagate
within a computational flow y = f (x), x ∈ X ⊂ R

d ,y ∈ Y ⊂ R. The sensi-
tivity analysis provides closed-form expressions for the linear function case and
approximated results for the nonlinear one, provided that the perturbations affect-
ing the inputs are small in magnitude compared to the inputs (small perturbation
hypothesis). The analysis of Perturbations in the large i.e., perturbations of arbi-
trary magnitude, for the nonlinear case, cannot be obtained in a closed form unless
y = f (x) assumes a particular structure and has properties that make the mathe-
matics amenable. The extended analysis dealing with the perturbation in the large
framework will be presented in Chap.7.

3.3.1 Linear Functions

Let us consider linear function y = f (x) = θT x , where θ ∈ Θ ⊂ R
d and x are

d-dimensional column vectors representing the parameters and the inputs of the
linear function, respectively. In the sequel, the parameter vector θ is assumed to be
constant and given, otherwise differently specified.

3.3.1.1 The Additive Perturbation Model

A perturbation δx affecting the inputs, say according to an additive signal plus noise
perturbation model x p = x + δx , generates the perturbed value yp = θT x p. The
pointwise error δy = yp − y can be rewritten, thanks to linearity, as

δy = θT δx . (3.1)

http://dx.doi.org/10.1007/978-3-319-05278-6_7
http://dx.doi.org/10.1007/978-3-319-05278-6_5
http://dx.doi.org/10.1007/978-3-319-05278-6_7

3.3 Propagation of Uncertainty 33

Note that the linear function, characterized by its parameter vector θ , is not
structurally affected by perturbations, which only influence the function inputs. The
(3.1) tells us that the propagated error at the function output is linear with the per-
turbation vector. The perturbation δx can be modeled as a random variable subject
to pdf fδx (0, Cδx), where Cδx is the covariance matrix of the perturbation.

Characterization of the perturbation error δy, which also becomes a random vari-
able, can be done by providing the mean and the standard deviation of the propagated
error at the function output and then, where possible, its pdf. We have that

Eδx [δy] = Eδx [θT δx] = θT Eδx [δx] = 0

and

Var(δy) = Eδx [θT δxδxT θ] = θT Eδx [δxδxT]θ = θT Cδxθ = trace
(
θT θCδx

)
.

Under the independence assumption for the perturbation affecting the inputs, Cδx

happens to be a diagonal matrix with the i-th entry characterized by variance σ 2
δx,i .

Then, defining θi to be the i-th component of vector θ ,

Var(δy) =
d∑

i=1

θ2i σ 2
δx,i .

In the particular case where all perturbations have the same variance σ 2
δx , e.g.,

perturbations are uniformly defined within the same bounded interval, the above
expression becomes

Var(δy) = σ 2
δxθ

T θ. (3.2)

The pdf of the propagated error cannot be evaluated a priori in a closed form unless
we assume that the dimension d is large enough. In such a case, we can invoke the
Central Limit Theorem (CLT) under the Lyapunov assumptions [35] and δy can be
modeled as a random variable drawn from a Gaussian distribution.

CLT Under the Lyapunov Condition

Let Yi , i = 1 . . . d a set of independent random variables characterized by finite
expected value E[Yi] and variance Var(Yi). Denote s2d = ∑d

i=1 Var(Yi) and
Y = ∑

i Yi . If there exists number l > 0 such that

lim
d→∞

(
1

s2+l
d

d∑
i=1

E
[
|Yi − E[Yi]|2+l

])
= 0,

then Z = (Y−E[Y])√
V ar(Y)

converges to the standard normal distribution.

34 3 Uncertainty, Information, and Learning Mechanisms

From the intuitive point of view, the CLT tells us that the sum of many,
not-too-large, and not-too-correlated random terms, average out. The Lyapunov con-
dition is one way for quantifying the not-too-large term request by inspecting the
behavior on some 2 + l moments. In most cases, one tests the satisfaction of the
condition for l = 1.

From the theorem, with the choice Yi = θiδxi , δy can be approximated as a
random variable drawn from Gaussian distribution δy = N (0,

∑d
i=1 θ2i σ 2

δx,i) pro-

vided that the Lyapunov condition holds. If all σ 2
δx,i terms are identical to σ 2

δx , then

δy = N (0, σ 2
δxθ

T θ).
It is easy to show that the Lyapunov condition holds if each component of random

variable δx is uniformly distributed within a given interval, as it happens in many
application cases (think of the error distribution introduced by the rounding and
truncation operators operating on binary 2cp codewords). Let us show it with an
example that models the situation where all inputs of our embedded system are
represented on the same number of bits and a 2cp notation is adopted. Rounding is the
considered chopping operator for which we know that the induced error distribution
is uniform and centered.

Example: The CLT Under the Lyapunov Condition

Let δx be an i.i.d random variable with each component uniformly defined in interval
[−1, 1] (if we consider the case of an embedded system, the error introduced by
rounding is defined in such an interval). Assume that θ2m �= 0 ≤ θ2i ≤ θ2M , i.e., the
generic parameter is bounded by the same minimum and maximum values. Let δy

= θT δx and define Yi = θiδxi . We have that E[Yi] = 0 and variance Var[Yi] = θ2i
3 .

Denote

s2d =
d∑

i=1

Var[Yi] = 1

3

d∑
i=1

θ2i .

Let us compute E
[|Yi |2+l

]
for l = 2

E
[
|Yi |4

]
= θ4i

∫ 1

0
δx4i dδxi = θ4i

5

Since
1

(s2d)2

d∑
i=1

E
[
|Yi |4

]
= 1

(s2d)2

d∑
i=1

θ4i

5

and
∑d

i=1
θ4i
5 ≤ d

5 θ4M and (s2d)2 =
(
1
3

∑d
i=1 θ2i

)2 ≥ d2θ4m
9 we can bound

3.3 Propagation of Uncertainty 35

Fig. 3.1 The empirical distri-
bution of δy compared with
the set by the CLT. The dimen-
sion of the parameter space is
d = 5

15 10 5 0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

delta y

E
st

im
at

ed
 a

nd
 r

ea
l d

is
tr

ib
ut

io
n

fo
r

de
lta

 y

Fig. 3.2 The empirical distri-
bution of δy compared with
the set by the CLT. The dimen-
sion of the parameter space is
d = 15

15 10 5 0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

delta y

E
st

im
at

ed
 a

nd
 r

ea
l d

is
tr

ib
ut

io
n

fo
r

de
lta

 y

(
1

(s2d)2

d∑
i=1

E
[
|Yi |4

])
≤ 9θ4M

5dθ4m

which scales as O(1d) and,when d → ∞, goes to zero, hence satisfying theLyapunov
condition. This grants that δy = N (0, σ 2

δxθ
T θ).

In the example above, a sufficiently large d, e.g., d > 10, proves to be a good
approximation in many cases. Figures3.1 and 3.2 present an example showing the
quality of the approximation for d = 5 and d = 15, respectively. The applica-
tion is configured so that θd=5 = [2.47,−2.55, 0.52, 1.10,−0.50] and θd=15 =
[−2.81, 1.23,−2.65,−2.66,−1.99,−2.32,−1.50, 0.13,−1.48,−0.30,−1.67,
−2.55,−2.89, 0.45, 2.47]. 1000 δx vectors have been extracted from the [−1, 1]d

hypercube according to the uniform distribution. The histogram for δy is plotted and

36 3 Uncertainty, Information, and Learning Mechanisms

contrasted with the Gaussian curve granted by the CLT (δy = N (0, 1
3θ

T θ)). We
can observe that, also with a low d, the empirical distribution approximates well the
Gaussian one.

3.3.1.2 The Multiplicative Perturbation Model

Within a multiplicative model δx affects inputs to yield perturbed value x p = x(1
+ δx). The pointwise error δy = yp − y can be rewritten as

δy = θT (x ◦ δx)

where ◦ is the elementwise multiplication operator (multiplication is carried out at
the component by component level). As done before, we are interested in charac-
terizing the first two moments of the error distribution and assume that both inputs
and perturbations, that are supposed to be independent, are drawn according to dis-
tributions fx (0, Cx) and fδx (0, Cδx), respectively. We only require the covariance
matrices Cx and Cδx to be known (or that an estimate can be provided), but not the
pdf. Inputs are zero centered only to ease the derivation (a zero mean subtraction can
be introduced before carrying out the analysis). Expectation, now taken w.r.t. inputs
and perturbations, leads to

Ex,δx [δy] = Ex,δx [θT x ◦ δx] = θT Ex [x] ◦ Eδx [δx] = 0

and variance

Var(δy) = Ex,δx [θT xxT ◦ δxδxT θ] = θT Cx ◦ Cδxθ (3.3)

Cδx is diagonal under the assumption that perturbations affecting inputs are inde-
pendent. If that is the case, the (3.3) becomes

Var(δy) =
d∑

i=1

θ2i σ 2
δx,iσ

2
x,i .

In the particular case that all the input variances are identical toσ 2
x andperturbation

variances to σ 2
δx , the variance at the output level simplifies as

Var(δy) = σ 2
δxσ

2
x θT θ. (3.4)

If we compare the variance of (3.4) with that given in (3.2), we see that the former,
generated according to themultiplicativemodel, is equal to the latter (additivemodel)
amplified by term σ 2

x . As with the additive model case, the error distribution can be
approximated with a Gaussian one provided the Lyapunov condition is met.

3.3 Propagation of Uncertainty 37

3.3.2 Nonlinear Functions

Let now function y = f (x) be at least twice differentiable w.r.t. x . Again, x is a
column vector that, once affected by perturbation δx , assumes value x p. By adopting
the perturbation model, the effect of δx at the output δy is

δy = f (x p) − f (x)

δy can be hardly described in a closed form unless strong hypotheses about the
nature of function f (·) or the perturbation δx are assumed. Perturbation propagation
analysis within a nonlinear function is carried out in the literature by assuming the
small perturbation hypothesis, e.g., as done with the sensitivity analysis that studies
the effects of perturbation affecting inputs on the function output, e.g., [129].

Although the small perturbation hypothesis might hold in several cases, it
represents, in general, a strong assumption that needs to be weakened, e.g., as pro-
posed inChap.5.However, the small perturbation assumptionmakes themathematics
amenable and we can expand f (x p) = f (x + δx) according to Taylor around x and
stop the expansion at the quadratic term

f (x + δx) = f (x) + J (x)T δx + 1

2
δxT H(x)δx + o(δxT δx)

where J (x) = ∂ f (x)
∂x is the gradient vector and H(x) = ∂2 f (x)

∂x2
the Hessian matrix.

By discarding terms of order higher than two the perturbation propagated at the
output takes the form

δy = J (x)T δx + 1

2
δxT H(x)δx . (3.5)

Not much more can be said within a deterministic framework unless we introduce
strong assumptions on f (x) or δx . However, by moving to a stochastic framework,
which considers x and δx mutually independent and identically distributed i.i.d ran-
dom variables drawn from distributions fx (0, Cx) and fδx (0, Cδx), respectively, the
first two moments of the distribution of δy can be computed.

In fact, under the above assumptions and by taking expectation w.r.t. x and δx ,
the expected value of the perturbed output (3.5) becomes

E[δy] = 1

2
E[δxT H(x)δx] = 1

2
trace

(
E[H(x)δxδxT]

)
= 1

2
trace (E[H(x)]Cδx).

If the quasi-Newton approximation for the Hessian H(x) = ∂ f (x)
∂x

∂ f (x)T

∂x holds,
then H(x) is a semidefinite positive quadratic form and

E[δy] = 1

2
trace (Cx Cδx). (3.6)

http://dx.doi.org/10.1007/978-3-319-05278-6_5

38 3 Uncertainty, Information, and Learning Mechanisms

From (3.6), each perturbation introduces an increase in E[δy] if we consider the
quadratic form expansion (a first-order approximation, obtained by solely maintain-
ing the linear term, provides a null value). In order to compute Var(δy), we consider
only the first term of the expansion (the quadratic term does not allow us to advance
the mathematics), which means that we only keep the linear approximation for func-
tion f (x). Under the above assumptions and by taking expectation w.r.t. x and δx ,
the variance of the perturbed output becomes

Var(δy) = E
[

J (x)T δxδxT J (x)
]

= trace
(

E
[

J (x)J (x)T
]

Cδx

)
.

Obviously, if f (x) = θT x the derivation reduces to that of the linear function
case.

3.4 Learning from Data and Uncertainty at the Model Level

This section studies the case where parameterized models are built from a series
of noisy data. The use of a limited number of data to estimate the model, i.e., to
determine an estimate of the optimal parameter configuration, introduces an extra
source of uncertainty on the estimated parameters in addition to the noise (in previous
sections, the parameters were given). In fact, given a different data set with the
same cardinality, we will obtain a different parameter configuration with probability
one, also in the linear model case. What happens when we select a non-optimal
(“wrong”) model to describe the data?Which is the relationship between the optimal
parameter configuration, constrained by the selected model family, and the current
one configured on a limited data set? Since the estimated parameter vector is a
realization of a random variable centered on the optimal one, the model we obtain
from the available data can be seen as a perturbed model induced by perturbations
affecting the parameter vector. Which are then the effects of this perturbation on the
performance of the model? This section aims at addressing the above aspects.

3.4.1 Basics of Learning: Inherent, Approximation,
and Estimation Risks

Let Z N = {(x1, y1), ..., (xN , yN)} be the set composed of N (input-output) couples.
The goal of machine learning is to build the simplest approximating model able to
explain past Z N data and future instances that will be provided by the data generating
process.

Consider then the situation where the process generating the data (system model)
is ruled by

y = g(x) + η, (3.7)

3.4 Learning from Data and Uncertainty at the Model Level 39

where η is a noise term modeling the existing uncertainty affecting the unknown
nonlinear function g(x), if any. Once the generic data instance xi is available, (3.7)
provides value yi = g(xi) + ηi , ηi being a realization of the random variable η. In
practical cases, the system for which we aim to create a model, by receiving input xi ,
provides value yi .We comment that both inputs and outputs are quantitiesmeasurable
through sensors. The ultimate goal of learning is to build an approximation of g(x)

based on the information present in dataset Z N through model family

f (θ, x) (3.8)

parameterized in the parameter vector θ ∈ Θ ⊂ R
p. Selection of a suitable family

of models f (θ, x) can be driven by some a priori available information about the
systemmodel. If data are likely to be generated by a linear model—or a linear model
suffices—then this type of model should be considered. In this case, learning relies
on vast results provided by the system identification theory, e.g., see [130]. The
outcome of the the learning procedure is the parameter configuration θ̂ and, hence,
model f (θ̂ , x), whose quality/accuracy must be assessed.

If the accuracy performance is not met, and margin for improvement exists, we
have to select a new model family and reiterate the learning process. For instance,
if the difference—residual— between the reconstructed value f (θ̂ , x) and the mea-
sured y(x) one on a new data set in not a white noise (test procedure), then there is
information that model f (θ̂ , x) was not able to capture. A new richer model fam-
ily should be chosen and learning restarted. In this direction, feedforward neural
networks have been shown to be universal function approximators [131], i.e., can
approximate any nonlinear function, and are ideal candidates to solve the above
learning problem [39]. However, the complexity of the neural model family must
be balanced with the information content provided by the data, otherwise we might
experience poor approximating accuracy. Such performance loss is either associated
with overfitting (the degrees of freedom exposed by the family model are overdi-
mensioned compared to the effective needs, so that noise affecting the data instances
is learned as well) or underfitting (the model is underdimensioned w.r.t. the available
data and the model cannot extract all the information present in the data).

In the sequel, we present the classic learning from data mechanism based on the
statistical formulation set by Vapnik [132–134].

Define as Structural risk the function

V̄ (θ) =
∫

L (y, f (θ, x)) px,ydxy (3.9)

where L (y, f (θ, x)) is a discrepancy loss function evaluating the closeness between
g(x) and f (θ, x) and px,y is the probability density function associated with the i.i.d.
(x, y) random variable vector. The structural risk (3.9) assesses the accuracy of a
given model according to the loss function L (y, f (θ, x)).

The optimal parameter θo yielding the optimal model f (θo, x) constrained by the
particular choice of the model family f (θ, x), is

40 3 Uncertainty, Information, and Learning Mechanisms

θo = argminθ∈Θ V̄ (θ).

However, we do not have access to px,y and only the data set Z N is available.
Such an information allows us to construct the empirical distribution

p̂x,y = 1

N

N∑
i=1

Dδ(x − xi , y − yi) (3.10)

where Dδ(x − xi , y − yi) is the Dirac function. The use of the estimate p̂x,y of (3.10)
in (3.9) leads to the Empirical Risk

VN (θ) = 1

N

N∑
i=1

L(yi , f (θ, xi)). (3.11)

Finally, minimization of the empirical risk provides the estimate θ̂

θ̂ = argminθ∈Θ VN (θ) (3.12)

and, in turn, the model f (θ̂ , x) approximating g(x) whose accuracy performance is
V̄ (θ̂). Minimization of the empirical risk defined in (3.12) is also called the learning
process and the minimization procedure learning algorithm.

Conditions granting θ̂ to converge to θo as well as observations regarding the
speed of convergence will be given later in the chapter. Here, we introduce at first
the concepts of inherent risk, approximation risk, and estimation risk relevant to
subsequent analyses.

Define VI = V̄ (θo)|g(x)= f (θo,x) to be the inherent risk, i.e., the a priori non-null
intrinsic risk we have when unknown function g(x) belongs to the chosen model
family, i.e., g(x) = f (θo, x). Rewrite the structural risk V̄ (θ̂) associated with model
f (θ̂ , x), i.e., the performance of the obtained model, as

V̄ (θ̂) =
(

V̄ (θ̂) − V̄ (θo)
)

+ (
V̄ (θo) − VI

) + VI . (3.13)

The risk associated with the model is composed of three terms

• The inherent risk VI . The risk depends only on the structure of the learning problem
and, for this reason, can be improved only by improving the problem itself, i.e.,
by acting on the process generating the data, (e.g., by designing a more precise
sensor architecture). Nothing else can be done. This is the minimum risk we
can have and we reach it—implying optimal accuracy performance in function
approximation—when the other sources of uncertainty leading to the two other
risks are null;

• The approximation risk V̄ (θo) − VI . The risk depends on how close the model
family (also named hypothesis space) is to the process generating the data. To

3.4 Learning from Data and Uncertainty at the Model Level 41

improve it we need to select model families that are more andmore expressive, i.e.,
either contain or are very close to g(x) according to thefigure ofmerit L(·, ·). Given
an unknown g(x) function, we need to select families of approximating functions
that are universal function approximator, e.g., feedforward neural networks.

• The estimation risk V̄ (θ̂) − V̄ (θo). The risk depends on the ability of the learning
algorithm to select a parameter vector θ̂ close to θo. If we have an effective learning
process, we hope to be able to get a θ̂ close to θo so that the contribution to the
model risk is negligible.

The theory allows us to understand the intrinsic limits of learning. A learning
problem is affected by three sources of error; of these, the inherent one is determined
by the nature of the problem and, for this reason, cannot be improved by learning.
The remaining error sources, i.e., those introduced by the approximation and the
estimation processes, are the true target of any learning procedure.

Asymptotically with the number of available data N , the approximation and the
estimation errors can both be controlled if the learning method has some basic con-
sistency features (which most practical methods have). But when the available data
set is small, the dominating component of the learning error is determined if the
method is consistent by the approximation error, i.e., by how well the model family
f (θ, x) is close to the process generating the data g(x). In other words, the model
risk is mainly determined by the choice of the approximating function f (θ, x), rather
than by the training procedure. As a consequence, in the absence of a priori informa-
tion, we have no basis to prefer a consistent learning method to another one. Further
details applied to the particular case where the learning problem is of classification
type can be found in [135].

Example: Inherent, Approximation, and Estimation Risks

Consider a quadratic loss function L (y, f (θ, x)) = (y − f (θ, x))2 and a process
generating the data ruled by g(x) = x, x ∈ [0, 1] affected by a Gaussian noise so
that η = N (0, σ 2

η)

y = x + η.

Consider the function family f (θ, x) = k, θ = [k]. The structural risk becomes

V̄ (θ) =
∫

(x + η − k)2
1√
2π

e
−η2

2 dxdη (3.14)

that, after some calculus, leads to

V̄ (θ) = 1

3
+ σ 2

η + k2 − k. (3.15)

42 3 Uncertainty, Information, and Learning Mechanisms

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

S
tr

uc
tu

ra
l r

is
k

Fig. 3.3 The structural risk as function of k for the example. The structural risk presents a unique
minimum θo in correspondence with k = 1

2

Figure3.3 presents the structural risk as function of k for the case σ 2
η = 0.01. We

see that the curve is characterized by a unique minimum θo.
The optimal point

θo = argminθ∈Θ V̄ (θ)

can be obtained by imposing the stationary relationship ∂ V̄ (θ)
∂θ

= 0 and leads to

θo = [12]. Assume that the learning procedure has provided value θ̂ = [14]. The
learning situation is that of Fig. 3.4, where we have some points generated by the
system model y = x + η, the optimal model minimizing the structural risk y = 1

2 ,
and the available one y = 1

4 .
It is now easy to derive from (3.13)

• The inherent risk VI = V̄ (θo)|g(x)= 1
2

= σ 2
η ;

• The approximation risk V̄ (θo) − VI = 1
12 ;

• The estimation risk V̄ (θ̂) − V̄ (θo) = 3
48 .

By adding the three risks we obtain the accuracy performance V̄ (θ̂) = σ 2
η + 7

48
of the available model, in line with what is expected by using (3.15) evaluated for
θ̂ = [14].

3.4.2 The Bias-Variance Tradeoff

Following the previous section, consider now the case where we aim at determining
the expected prediction error at a given—fixed—input value x for a quadratic loss

3.4 Learning from Data and Uncertainty at the Model Level 43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y
=

 g
(x

)
+

 e
ta

, y
 =

 1
/2

, y
 =

 1
/4

Fig. 3.4 The key elements of the learning process. The process generating the data y = x + η,
the optimal model minimizing the structural risk y = f (θo, x) = 1

2 , and the one provided by the

learning procedure y = f (θ̂ , x) = 1
4

function SquaredError (SE), namely the errorwe should expect in test on an unknown
instance x . The trainedmodel f (θ̂ , x)has beenderivedby following theminimization
of the empirical procedure (3.12). In the following, expectation is taken with respect
to the noise on a given sample x , namely

SEPE(x) = E
[

y(x) − f (θ̂ , x)
]2

. (3.16)

We present a main result known in the literature as the bias-variance tradeoff.
The SE can be seen as decomposed in the intrinsic error level, that introduced by the
model or approximation error, and that introduced by the estimation procedure. Let
us elaborate (3.16) as

SEPE = E
[

y(x) − f (θ̂ , x)
]2

= E
[

y(x) − g(x) + g(x) − f (θ̂ , x)
]2

= E
[
(y(x) − g(x))2

]
+ E[(g(x) − f (θ̂ , x))2]

+ 2E
[
(y(x) − g(x)) (g(x) − f (θ̂ , x))

]

= E
[
η2

]
+ E

[(
g(x) − f (θ̂ , x)

)2]

44 3 Uncertainty, Information, and Learning Mechanisms

since E
[
(y(x) − g(x)) (g(x) − f (θ̂ , x))

]
= 0. In fact, we can rewrite the term as

E [y(x)g(x)] + E
[

y(x) f (θ̂ , x)
]

− E [g(x)g(x)] + E
[
g(x) f (θ̂ , x)

]

and

E [y(x)g(x)] = g2(x)

E
[

y(x) f (θ̂ , x)
]

= E
[
(g(x) + η) f (θ̂ , x)

]
= E

[
g(x) f (θ̂ , x)

]

E [g(x)g(x)] = g2(x).

Thus, the SE can be decomposed in the variance of the noise and the SE between
the true function and the estimate

E [SE] = σ 2
η + E

[(
g(x) − f (θ̂ , x)

)2]
. (3.17)

The second term of Eq. (3.17) can be further refined by using the same trick used

above, which requires adding and subtracting E
[

f (θ̂ , x)
]

E

[(
g(x) − E

[
f (θ̂ , x)

]
+ E

[
f (θ̂ , x)

]
+ f (θ̂ , x)

)2]

= E

[(
g(x) − E

[
f (θ̂ , x)

])2] + E

[(
E

[
f (θ̂ , x)

]
− f (θ̂ , x)

)2]

+ 2E
[(

g(x) − E
[

f (θ̂ , x)
]) (

E
[

f (θ̂ , x)
]

− f (θ̂ , x)
)]

The double product cancels since

E
[
g(x)E

[
f (θ̂ , x)

]]
= g(x)E

[
f (θ̂ , x)

]

E
[
g(x) f (θ̂ , x)

]
= g(x)E

[
f (θ̂ , x)

]

E

[
E

[
f (θ̂ , x)

]2] = E
[

f (θ̂ , x)
]2

E
[

f (θ̂ , x)E
[

f (θ̂ , x)
]]

= E
[

f (θ̂ , x)
]2

Equation (3.17) can be finally rewritten as

SEPE = σ 2
η + E

[(
g(x) − E

[
f (θ̂ , x)

])2] + E

[(
E

[
f (θ̂ , x)

]
− f (θ̂ , x)

)2]
.

(3.18)

3.4 Learning from Data and Uncertainty at the Model Level 45

Equation (3.18) states that the accuracyperformanceof the approximating function
f (θ̂ , x) can be described by means of three terms. The first one is the variance of the
intrinsic noise and cannot be canceled, independently of how good our approxima-
tion is. The second term is the square of the bias and represents the quadratic error we
have in approximating the true function g(x) when our model generation procedure
is able to provide the best model of the model family f (θo, x) (recall again that
the best model is the one that minimizes the distance between the true function and
the optimal approximation built in a noise-free environment having an infinite num-
ber of training points). De facto, the bias represents a discrepancy between the two
functions according to the SEPE figure of merit. The last term is known as variance
and it represents the variance introduced by having considered the approximating
model f (θ̂ , x) instead of the optimal one within the family f (θo, x). Of course, if
our model generating process is capable of providing a more accurate model, the
variance term reduces.

Comments

Recall that the SE is the integral of the quadratic pointwise discrepancy only in
the case that the distribution of the inputs is uniform. When this is not the case, the
quadratic discrepancy isweighted by the pdf fx to differentiate the interest of the error
towardmore likely inputs. For instance, ifwe consider interval X = [0, 1], g(x) = x2

and the approximating function f (θ̂ , x) = x then the quadratic discrepancy is SE
= 1/30.Differently, if we induce the probability density function fx = 2 if x ≤ 0.25,
fx = 2/3 if x > 0.25, then the SE � 0.027. Results related to convergence of the
Mean Squared Error (MSE) to the SE are given in Chap.4.

From Eq. (3.18) we observe that, in order to minimize the SEPE, we need to min-
imize both the bias and the variance terms over the input space. However, this is
not trivial. For instance, if the model family is rich in terms of degrees of freedom
(say overdimensioned w.r.t. the problem) then f (θ̂ , x) would perfectly interpolate
the training data. This will make the bias term vanish entirely at the cost of a high
variance. More in general, finding an optimal bias-variance tradeoff is a difficult task
but acceptable solutions can be found, e.g., by relying also on early stopping tech-
niques, by cross-validation methods, or by introducing regularisers in the learning
process [39].

3.4.3 Nonlinear Regression

The regression problem is a particular case of learning and aims at determining the
best staticmodel approximating an unknown static function. The framework assumes
that there exists a time invariant model generating the couples (xi , yi) populating the
data set Z N . The learning framework is that of the empirical/structural risks presented
in previous sections, here presented in the asymptotic formulation to give the reader
a different prospective on how the learning framework can also be formalized.

http://dx.doi.org/10.1007/978-3-319-05278-6_4

46 3 Uncertainty, Information, and Learning Mechanisms

Define the structural risk in the form

V̄N (θ) = 1

N

N∑
i=1

E [L(εi (θ))]

and the empirical risk

VN (θ) = 1

N

N∑
i=1

L(εi (θ))

where εi (θ) = yi − f (θ, xi) is the prediction error at sample (xi , yi). The optimal
parameter point is defined as

θo = argmin
θ∈Θ

[
lim

N→+∞ V̄N (θ)

]

and estimated by
θ̂ = argmin

θ∈Θ
VN (θ).

The following analysis holds around the optimal point θo which minimizes the
structural risk (note that, under the regularity hypothesis, V̄N → V̄ when N → ∞).
If local minima exist and we find ourselves in one of these, then we require that there
exists a neighborhood for which the optimal point is unique. The analysis confines
us within this neighborhood.

Aswith [137], we require that the approximating function f (θ, x) is Lipschitz and
that the partial derivatives up to the third order w.r.t θ and ε are bound by a constant
(regularity conditions). Under these hypotheses, θ̂ converges in probability to θo

when N → ∞ and the distribution of the parameter vector follows a multivariate
Gaussian distribution

lim
N→∞

√
N�

− 1
2

N (θ̂ − θo) ∼ N (0, Ip) (3.19)

where, the Hessian of V̄N is defined as V̄ ′′
N

�N = [
V̄ ′′

N (θo)
]−1

UN
[
V̄ ′′

N (θo)
]−1

,

and the squared matrix UN of order d is

UN = N E

[(
∂VN (θ)

∂θ

)(
∂VN (θ)

∂θ

)T
]
.

Ip is the identity matrix of order p.

3.4 Learning from Data and Uncertainty at the Model Level 47

Comments

The framework designed for the nonlinear case is general but nonlinearity does not
allowus to obtain closed-form results unless particular assumptions aremade. In non-
linear regression,we identify a suitable nonlinearmodel family f (θ, x) characterized
by enough expressive power to keep as small as possible the approximation risk. This
can be achieved by resorting to universal function approximators, e.g., feedforward
neural networks or radial basis functions [39, 131] to be used as f (θ, x). Then, we
have to control the estimation error for the chosen neural network, an operation that
can be carried out by selecting an effective learning algorithm, such as a second-order
Levenberg–Marquardt, a DFP, or a BFGS one, to be applied to the empirical risk
(see [125] for a comprehensive treatment). We might even need to run the algorithm
several times to mitigate the presence of local minima in the VN function.

Once training is perfected, the validity of the above must be intended in the
neighborhood of the found local minimum that, under the regularity assumptions, is
unique. However, it is thought that such univocity for the minimum does not exist
for overdimensioned neural networks where the minimum provided by the learning
procedure might be a saddle point. It should also be emphasized that if we run again
the learning algorithm we will end up in a different minimum with probability one.
This is a consequence of the complexity of the parameter space and the random
selection for the initial weights. The final minimum also depends on the particular
choice of Z N . Although the derivation might seem to have a small impact in real
applications, it is relevant when the approximating function is linear, either static or
dynamic, as presented in the next two sections.

3.4.4 Linear Regression

The linear regression case is a particularly relevant case of nonlinear regression,
where the system generating the data is linear

y = g(x) + η = θo
T x + η (3.20)

with θo being an unknown parameter vector to be estimated. η ∼ N (0, σ 2
η) is a

white noise of σ 2
η variance. The Gaussian request for the noise is amply satisfied

whenever data come from sensors. In other words, we assume that scattered data
coming from the sensor (or otherwise available) can be optimally described by a
linear model. However, only the data set Z N is available and we wish to provide,
starting from the finite data set, an estimate θ̂ of θo.

We choose the linear model family f (θ, x) = θT x and the loss function to be an
SE. All requested hypotheses leading to (3.19) are satisfied and a uniqueminimum θo

is achieved if inputs are linearly independent (otherwise we simply have to remove
the dependent inputs).

48 3 Uncertainty, Information, and Learning Mechanisms

V̄N and VN are chosen as

V̄N (θ) = 1

2N

N∑
i=1

E
[
εi (θ)2

]

VN (θ) = 1

2N

N∑
i=1

εi (θ)2.

Since
∂VN (θ)

∂θ

∣∣∣∣
Z N

= − 1

N

N∑
i=1

εi (θ)xi ,

by exploiting the independence between x and ε and recalling that E[εiε j] = 0 since
η is an i.i.d. random variable

UN (θ) = 1

N
E

⎡
⎣ N∑

i=1

εi (θ)xi

N∑
j=1

ε j (θ)xT
j

⎤
⎦ = 1

N

N∑
i=1

N∑
j=1

E
[
εi (θ)ε j (θ)xi xT

j

]

= 1

N

N∑
i=1

N∑
j=1

E
[
εi (θ)ε j (θ)

]
E

[
xi xT

j

]
= 1

N

N∑
i=1

E
[
εi (θ)2

]
xi xT

i

while

V̄ ′′
N = ∂2V̄N (θ)

∂θ2
= 1

N

N∑
i=1

xi xT
i .

Since E
[
εi (θ)2

] = σ 2
η

UN (θ) = σ 2
η

1

N

N∑
i=1

xi xT
i = σ 2

η V̄ ′′
N (θ).

The expression of �N simplifies as

�N = [
V̄ ′′

N (θo)
]−1

UN (θo)
[
V̄ ′′

N (θo)
]−1

= [
V̄ ′′

N (θo)
]−1

σ 2
η V̄ ′′

N (θo)
[
V̄ ′′

N (θo)
]−1

= σ 2
η

[
V̄ ′′

N (θo)
]−1 = σ 2

η

[
V̄ ′′

N

]−1

Also, in the linear case the distribution of the parameters is Gaussian following
(3.19), and reduces to

3.4 Learning from Data and Uncertainty at the Model Level 49

lim
N→∞(θ̂ − θo) ∼ N (0,

σ 2
η

N

[
V̄ ′′

N

]−1
).

The covariance depends on the variance of the noise and the inverse of the input
Hessian V̄ ′′

N = 1
N

∑N
i=1 xi xT

i .

Comments

We comment that linearity must be intended w.r.t. parameters θ . As such, any model
family f (θ, x) = θT φ(x), with φ a generic function, can be used, assumptions
are automatically valid, and the results hold. This comment has some relevance to
machine learning, where the φ function can be intended as a transformation of the
inputs (feature extraction).

3.4.5 Linear Time-Invariant Predictive Models

One of the most common applications we can consider given a datastream is the
design of dynamic models able to approximate it over time. This can be carried out
by different methods, e.g., by limiting the analysis to the most common linear tech-
niques, by considering space–state descriptions or predictive input–outputmodels. In
the following, we will focus on predictive models since they will be used in Chap. 10.
Assume that a physical description for the system model is unavailable and that the
unknown dynamic system generating the data is time invariant.

Following the notation set up by Ljung [130], given a parameter vector θ ∈ Θ ,
the input and the output sequences ut = (u(1), . . . , u(t)) ∈ R

t×m, u(·) ∈ R
m and

yt−1 = (y(1), . . . , y(t −1)) ∈ R
t−1, respectively, the predictive model in a one-step

prediction form for output y(t), at time t is

ŷ(t, θ) = f (θ, ut ,yt−1).

The prediction error for model f (θ, ut ,yt−1), at time t is

ε(θ, ut ,yt−1) = ε(t, θ) = y(t) − ŷ(t, θ).

The structural risk V̄N (θ) can be defined as

V̄N (θ) = 1

N

N∑
t=1

E [L(θ, ε(t, θ))]

where L(·, ·) ∈ R is a suitable loss function and expectation is taken w.r.t. the
distribution of u and y.

http://dx.doi.org/10.1007/978-3-319-05278-6_10

50 3 Uncertainty, Information, and Learning Mechanisms

The optimal parameter configuration is the one minimizing the structural risk

θo = argmin
θ∈Θ

[
lim

N→+∞ V̄N (θ)

]
.

Following the procedure presented in Sect. 3.4.1 and given the input–output train-
ing sequence Z N = {(u(t), y(t))}N

t=1, the empirical risk becomes

VN (θ, ut , yt−1) = 1

N

N∑
t=1

L(θ, ε(t, θ)).

Minimization of the empirical risk leads to the parameter configuration θ̂N

θ̂N = argmin
θ∈Θ

VN (θ, ut , yt−1).

In the following, we assume that the obtained model has been suitably chosen
and does not degenerate in the identification phase (otherwise, it must be scaled to a
smaller model).

By relying on the theoretical framework developed in [130, 136, 137], under the
mild hypotheses that recent past data suffice to generate accurate approximations of
u(t) and y(t), that f (·) is three time differentiable w.r.t. θ and satisfies Lipschitz
conditions, and that the structural risk is a convex function, minimization of WN (θ)

provides a unique point θo, it is true that:

lim
N→∞ VN − V̄N → 0 w.p. 1

thus
lim

N→∞ θ̂N → θo w.p. 1

and

lim
N→∞

√
N�

− 1
2

N (θ̂N − θo) ∼ N (0, Ip)

where �N is the covariance matrix

�N = [
W ′′

N (θo)
]−1

UN
[
W ′′

N (θo)
]−1

,

UN = N E
[
VN

′(θo)VN
′(θo)T

]

W ′′
N = ∂2WN

∂θ2
is the Hessian matrix of WN and VN

′ = ∂VN
∂θ

is the gradient of VN .

The theorem assures that, given a sufficiently large N , θ̂N follows a multivariate
Gaussian distribution with mean vector θo and covariance matrix �N

N .

3.4 Learning from Data and Uncertainty at the Model Level 51

The theorem contemplates the situation where there exists model bias between the
optimal model and the process generating the data. In fact, under the aforementioned
hypotheses, a unique optimal point θo ∈ Θ exists even in case of model bias.

The above equations grant that the tolerated perturbation space for parameters is
ruled by aGaussian distribution.Having an applicationwecan compute an estimate of
matrix �N , hence knowing the uncertainty we should expect on parameters. Having
the uncertainty distribution on θ̂ we can now estimate the expected uncertainty in
accuracy, e.g., V̄ (θ̂) by using randomization techniques as explained in Chap.4.

3.4.6 Uncertainty at the Application Level

As a final note we comment that, in addition to the different sources of uncertainty
we might experience, and that were summarized in the previous sections, we also
have uncertainty at the application level. This source of uncertainty derives from
the fact that, often, we do not know the solution to our application and we design
it by exploiting some a priori information, whenever available. The outcome is a
numerical algorithm describing the application.

However, we might have considered another solution, better, worse, or equivalent
to the one we have. Clearly, we will keep the best performing solution also satisfying
some extra application constraints such as computational complexity, power/energy
consumption, or memory requirements, to name the few. The application solution
might be complex, since it might come from a partitioning approach where the
application is partitioned in parts, each of which has to be solved with the most
appropriate signal/image processing or computational intelligence tool.

However, by looking at the problem from a high-level perspective the key ele-
ments are the unknown ideal algorithm, optimal in its own sense g(x) and the best
solution we found f (x), x representing the input vector feeding my application. The
uncertainty at the application level can be evaluated by introducing a discrepancy
L(·, ·) between the two functions and computing the functional

V̄ (f, g) =
∫

L (g(x), f (x)) px dx

where px is the pdf induced on the input space. Function g(x) is unknown but, as
an Oracle, it provides the noisy value y = g(x, η) once queried with input x . η is an
unknown noise affecting the y generation process.

Clearly, the application bias increases if function f (x) has not been suitably
selected and it badly approximates g(x). All aspects related to approximation and
inherent risks can be extended as well to this framework if we assume that function
f (·) belongs to a functional space F , possibly, but not necessarily, parameterized.
The problem requires now to estimate V̄ (f, g) with V̂ (f, g) having only data set

Z N but being able to invoke the Oracle all the needed time. Chapter7 will identify
the optimal N so that V̂ (f, g)will be a good estimate of V̄ (f, g). Let us now assume

http://dx.doi.org/10.1007/978-3-319-05278-6_4
http://dx.doi.org/10.1007/978-3-319-05278-6_7

52 3 Uncertainty, Information, and Learning Mechanisms

that we have found a set of solutions F f = { f1(x), f2(x), . . . , fn(x)}. Since it is
hard to guarantee that solutions are i.i.d we can only select the best solution f̄ (x) as
the one minimizing the discrepancy function over set F f

f̄ (x) = arg min
fi (x)∈F f

V̂ (f, g).

Not muchmore than this can be done unless a priori information is made available
by someone.

	3 Uncertainty, Information, and Learning Mechanisms
	3.1 Uncertainty and Perturbations
	3.1.1 From Errors to Perturbations
	3.1.2 Perturbations

	3.2 Perturbations at the Data Representation Level
	3.2.1 Natural Numbers N: Binary Natural
	3.2.2 Integer Numbers Z: 2's Complement
	3.2.3 2cp Notation
	3.2.4 Rational Q and Real R Numbers

	3.3 Propagation of Uncertainty
	3.3.1 Linear Functions
	3.3.2 Nonlinear Functions

	3.4 Learning from Data and Uncertainty at the Model Level
	3.4.1 Basics of Learning: Inherent, Approximation, and Estimation Risks
	3.4.2 The Bias-Variance Tradeoff
	3.4.3 Nonlinear Regression
	3.4.4 Linear Regression
	3.4.5 Linear Time-Invariant Predictive Models
	3.4.6 Uncertainty at the Application Level

