
Chapter 2
From Metrology to Digital Data

2.1 Measure and Measurements

The operation of measuring an unknown quantity xo can be modeled as taking an
instance—or measurement—xi at time i with an ad hoc sensor S. Although S has been
suitably designed and realized, the physical elements composing it are far from ideal
and introduce sources of uncertainty in the measurement process. As a consequence,
xi represents only an estimate of xo. In extreme cases, the value of xo might not even
exist [109] or simply cannot be measured, e.g., think of the Heisenberg’s principle
of uncertainty stating that it is not possible to exactly measure both the momentum
and the position of a particle [112] with arbitrary accuracy.

As a consequence, despite the intuitive formalization of the measurement process,
several major aspects need to be investigated and addressed before claiming that a
generic measurement xi is a an accurate and reliable estimate of xo. For instance, we
would rather require subsequent measurements xi to be somehow centered around
xo, where centering must be intended according to a chosen figure of merit. In other
words, we are requesting an accurate sensor that does not introduce some bias error
(accuracy property). Then, we hope that the sensor is able to provide a long sequence
of correct digits of the number associated with the acquired data. Clearly, a weight
sensor able to perceive variations of 1 mg is better than a scale providing a resolution
of 10 g (resolution property). Finally, each measurement represents only an estimate
of the true unknown value, the discrepancy between the two—or error—depending
on the quality of the sensor and the working conditions under which the measure was
taken (precision property). Note that we might have an accurate sensor with a high
resolution but a poor precision associated with the measurement process, yielding
to a poor measurement. Moreover, we might have a precise measurement acquired
with a high resolution sensor, again yielding a poor outcome whenever the sensor is
not accurate.

There are other properties we should look at when considering a sensor, e.g.,
repeatability. Repeatability requires that subsequent measurements acquired in the
same operational conditions should be indistinguishable within the uncertainty level
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Fig. 2.1 The complete measurement chain of a sensor. The key elements are the transducer, con-
verting an unknown physical entity xo into the analog electrical entity xe, the conditioning stage
providing an improved analog value xc, the ADC converting the analog value xc to a binary code-
word xb, and the final data estimation module leading to the output value associated with the data
instance xi

associated with the sensor. For an in-depth analysis of metrological aspects readers
can refer to [180, 182].

In the chapter, we introduce the main actors taking part in the measurement chain
which leads, from the physical quantity to be measured xo, to the final value xi to be
used in the subsequent data processing and decision-making phases. In the following,
the measurement framework will be suitably modeled and the properties we expect
from the retrieved data formalized.

2.1.1 The Measurement Chain

The main functional elements composing the measurement chain carried out by a
sensor are the transduction module, the conditioning circuit, the Analog to Digi-
tal Converter (ADC), and the final data estimation module. Figure 2.1 represents a
common structure for the measurement chain. The input to the chain is the physical
quantity to be measured xo and the output the digital data xi.

The functional chain of the figure represents the most common model describing
a modern electronic sensor. However, it should be noted that some of the elements
composing the chain might be missing in a specific design depending on the cost,
the required sophistication level, and where the analog to digital conversion takes
place. We will return to these aspects later.

2.1.1.1 The Transducer

A transducer is a device transforming one form of energy into another, here converting
a physical quantity xo into an electric or electric-related quantity xe (in some cases
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Fig. 2.2 A force transducer composed of a spring and a potentiometer. The force, of intensity xo,
moves a mobile element compressing/releasing the spring. The induced displacement is converted
by the potentiometer into voltage xe thanks to a voltage divider. Vcc represents the reference voltage

the transducer operates with electrical quantities both at the input and output levels).
For instance, the temperature of an environment is converted into a voltage (voltage
output sensor), the pressure or humidity to a current (current output sensor); the
particular target electrical entity depends on the type of the chosen sensor and the
way it has been designed. For a detailed analysis of the different typologies of sensors
the interested reader can refer to [108]. Clearly, the transduction stage introduces
uncertainty on the transduced quantity, which depends on the mechanism used to
transform a form of energy into an electrical one.

As an example, and by referring to Fig. 2.2, a sensor of force can be composed,
in its transduction principle, of a spring and a potentiometer: the spring converts
the force into a displacement and a potentiometer converts the displacement into a
voltage variation.

Sensors can be active or passive in their transduction mechanism: an active sen-
sor requires energy to carry out the operation and needs to be powered, whereas
a passive sensor does not. Another relevant information is related to the time
requested to produce a stable measurement. Such a time depends, for instance, on
the dynamics of the transduction mechanisms or the time needed to complete the
self-calibration/compensation phase introduced to improve the quality of the sensor
outcome.

2.1.1.2 The Conditioning Circuit

The aim of the conditioning circuit [110] is to provide an enhanced electrical quantity
xc of xe so that the sensitivity of the sensor is amplified, the effect of the noise is
mitigated, the interval of definition of the electrical entity is adapted to the require-
ments of the subsequent ADC. More in detail, the conditioning circuit, which is an
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analog circuit juxtaposed to the transducer module, at first usually amplifies xe and
then filters its output (e.g., with a low pass filter) to improve the signal-to-noise ratio
and the quality of the signal xc to be passed to the analog to digital conversion stage.

The conditioning circuit might also encompass a module designed to help in
compensating parasitic thermal effects, which influence the readout value, as well
as introducing corrections to linearize the relationship between the input xo and xc.
When non-ideal behaviors are compensated by means of a microcontroller, we say
that the sensor is enhanced (enhanced sensor). However, it should be pointed out
that, in the case of enhanced sensors, the output of the microcontroller is again an
analog signal.

In some cases the sensor has an analog output. When this is the case, the output xi

is either xe or xc depending on whether the conditioning circuitry is available or not.
Analog to digital conversion is carried out later, generally at the microprocessor level,
by exploiting the on-chip ADCs. This is a common case in many microprocessors
for embedded systems which make available input pins to host analog input signals.
Internal on-chip conversion modules are then provided. Clearly, the input signal
must be suitably treated and conditioned before it is fed to the microcontroller. For
a general presentation of aspects related to embedded system design the reader can
refer to [5].

2.1.1.3 The Analog to Digital Converter

The third stage of the functional chain is the conversion module, also known as
ADC. The input to the module is the analog electrical signal xc and the output is a
codeword xb represented in a binary format. There is a large variety of architectures
for ADCs [107], all of them having in common the resolution (the number of bits of
the codeword) and the sampling rate as target outputs. During the conversion phase,
the input xc must be kept constant, operation carried out by the “sample and hold”
mechanism (the analog value is sampled and kept to avoid dangerous fluctuations in
the input signal). The conversion introduces an error associated with the quantization
level, whose statistical properties may depend on the specific ADC architecture. The
source of uncertainty is here variegate and depends, to name a few examples, on the
quality of the reference signal (which can change with fluctuations of the powering
source), the speed and quality of the conversion step, and the presence of thermal
variations that shift the working point of the electronics from a reference ideal one
into a different state. The interested reader can refer to [107, 111].

2.1.1.4 The Data Estimation Module

The final module (when present) introduces further corrections on xb by operat-
ing at the digital level. In particular, it generally carries out a further calibration
phase aiming at improving the quality of the final data xi. When a microprocessor
is present to address the data estimation module needs, the sensor is defined to be
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a “smart sensor.” The microprocessor can carry out a more sophisticated processing
relying on simple but effective algorithms, generally aimed at introducing corrections
and structural error compensations. For instance, a thermal sensor can be onboard,
in addition to the principal sensor, to compensate the thermal effect on the principal
sensor readout. The microprocessor carries out the thermal compensation by reading
the temperature value, comparing it with the rated working temperature defined at
design time and introducing a correction on the readout value, mostly by considering
a polynomial correction function of the discrepancy between the nominal tempera-
ture and the current one. The final value xi shows better properties being closer to
xo. When the dynamics of the signal are known not to change too quickly (compared
with the time requested by the ADC to convert a value) or the signal is constant, the
microcontroller can instruct the sensor to take a burst of n readings over time. The
outcome data sequence xb, j j = 1, . . . , n can be used to provide an improved final
estimate of xo by averaging

xi = 1

n

n∑

j=1

xb, j (2.1)

When the data estimation module is not available, the best estimate of xo at this
level is the value provided by the ADC, i.e., xi = xb. The designer of the embedded
application might decide to carry out this operation later within the application by
implementing it in software.

2.1.2 Modeling the Measurement Process

Following the functional description of the sensor given in Sect. 2.1.1 the whole
measurement process can now be seen as a black box, suitably described by an
input–output model whose simplest, but generally effective form, is

x = xo + η (2.2)

where x ∈ X ⊂ R is a generic acquired instance, xo its the ideal, noise-free unknown
value, and η = fη(0, σ 2

η ) is an independent and identically distributed (i.i.d) ran-
dom variable with zero mean and finite σ 2

η variance drawn from probability density
function fη and corrupting the measurement. The additive signal plus noise model
(2.2) represents a simple but realistic model describing the measurement process as
carried out by the sensor with η accounting for the uncertainty associated with the
measurement process. The model implicitly assumes that the noise does not depend
on the working point xo.

Despite the fact that the i.i.d hypothesis is commonly assumed and in fact holds in
many circumstances, it might not be satisfied a priori for a specific sensor/application.
In fact, we have seen that several sources of uncertainty affect the sensor components
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and the independency assumption might be violated. It is one of the tasks of the
application designer to verify the appropriate model for a sensor as well as determine
the existing metrological properties. This is done by first inspecting the sensor data-
sheet, the operating conditions afterwards, and carrying out suitable acquisitions and
metrological analyses whenever requested.

Another common model for the sensor is the multiplicative one where

x = xo + ηxo = xo(1 + η). (2.3)

In this way, the noise depends on the working point xo. In absolute terms, the
impact of the noise on the signal is xoη, but the relative contribution is η and does
not depend on xo. The type of model to be considered depends on the structure of
the instrument/sensor available and the way it has been designed and implemented.
Working conditions might also have an impact on the selection of the proper model.

In the sequel, we focus on the additive model and introduce other models whenever
appropriate. Details related to the validity of the above “signal plus noise” model
will be discussed later in the chapter. Despite the particularities of each sensor, we
expect some basic properties to hold. The main ones are formalized in the sequel
for historical reasons and for their intuitive and common use. However, whenever
possible, we should speak about sensor measurement uncertainty. In particular, we
need to provide the model adopted for the noise affecting the signal and the pdf
function fully associated with the uncertainty. The interested reader can deepen the
study of these issues by referring to [180].

2.1.3 Accuracy

Consider the additive signal plus noise model of (2.2). We say that a measure is
accurate when the expectation taken w.r.t. the noise satisfies

E[x] = xo. (2.4)

In order to have an accurate measurement, the instrument and the measurement
process need not introduce any bias contribution. However, this is not always the case:
in real-life we all experience problems with sensors providing wrong measurements
despite several acquisition attempts, e.g., a room temperature or a badly deployed
scale. When this is the case, the simplest model for the sensor becomes

x = xo + k + η (2.5)

being k the bias value associated with the measure. By taking expectation of (2.5)
we have that

E[x] = xo + k (2.6)
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and, even if we are able to remove the measurement uncertainty, the acquired value is
wrong, introducing an unknown offset (bias) value k. When a measurement process
is biased we need to subtract the expected value (or its estimate) from the read value.
However, since k is unknown, we must rely on a reference value to estimate it. For
instance, if we are able to drive the sensor to a controlled state where the expected
value is known, say xo, then, from (2.6) k = E[x] − xo. This phase is called sensor
calibration [109, 182].

Accuracy is a main property a measurement system should have since we would
like our measurements not to contain any bias error. If we have an accurate mea-
surement system, (2.6) states that, by taking expectation w.r.t. the noise, we remove
the impact of noise on the specific value x. During this phase, the value x need not
change: in practice, we have to sample at a frequency rate much higher than the
dynamics of the signal the sensor is acquiring. This operation is done by the data
estimation module if the sensor is smart; otherwise, we have to do it in software with
an ad hoc code at the primary microcontroller of the embedded system.

It is always a good practice to take the average of a sequence of n repeated
measurements x1, x2 · · · , xn of the same quantity x to provide a better estimate,
x̂ = 1

n

∑n
i=1 xi, of xo compared to that obtainable by using a single instance xi,

leading to x̂ = xi. The number of samples n we should consider as well as the
convergence properties of the average to the expectation are studied in Sect. 4.2.

Example: Sensor Calibration

We bought a low-cost temperature sensor and are not sure about its accuracy. We wish
to quantify the potential bias value so as to zero center subsequent measurements.

For this purpose, we drive our sensor to operate at a known reference value xo (e.g.,
set by a laboratory-grade temperature standard) and wait until the dynamics effect
associated with the change of state vanishes. In the steady state the sensor shares the
same temperature as the environment. We then take n samples, say n = 40, from the
sensor. An estimate k̂ for the bias k is

k̂ = 1

n

n∑

i=1

xi − xo. (2.7)

If we iterate the process for different xo values so as to explore the input domain, we
can construct a curve that passes through these points and get a very good calibration
curve specialized for the given sensor.

Despite the intuitive example, we comment that calibration is a more complex
problem if we look at it closely, in its inner mechanisms. For instance, for an integrated
temperature sensor, the read value depends on the value of the power voltage, which
is contrasted toward a reference value to identify the change in temperature. Any
structural discrepancy between these two values introduces a bias error on the final
output. Moreover, the measured voltage is not the voltage powering the sensor since

http://dx.doi.org/10.1007/978-3-319-05278-6_4
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the conditioning and the ADC electronics modify it. In addition, the relationship
between the measured voltage and the sensed temperature is nonlinear, depending
on the transducing mechanism. Compensations of the above phenomena are known
in the literature as offset, gain, and linearization.

2.1.4 Precision

Under the signal plus noise framework and the above assumptions, each taken mea-
surement is seen as a realization of a random variable. Measurements will then be
spread around a given value (xo in the case of accurate sensors, xo + k in case of an
inaccurate one), with the standard deviation defining a scattering level index (other
indexes can be defined, e.g., as proposed in [181]). In the sequel, precision is a mea-
sure of such scattering and is a function of the standard deviation of the noise ση, in
the case of both accurate and inaccurate sensors.

Given a confidence level δ, precision defines an interval I for xo within which all
values are indistinguishable due to the presence of uncertainty η. In other words, all
values x ∈ I are equivalent estimates of xo. The amplitude of the interval depends
on the confidence level δ, i.e., I = I(δ), as it will be immediately clear.

To ease the understanding, let us consider at first η as drawn from a Gaussian
distribution fη(0, σ 2

η ) of zero mean and variance σ 2
η . The Gaussian hypothesis holds in

many off-the-shelf integrated sensors and can be safely introduced unless differently
specified by the sensor data-sheet. Under the Gaussian assumption [181] and by
setting a confidence level δ = 0.95, we have that a realization xi of xo lies in I =
[xo − 2ση, xo + 2ση] at least with probability 0.95. With the choice of the confidence
interval I = [xo − 3ση, xo + 3ση] the confidence level raises to 0.997 (acquired
xi belongs to I with at least probability 0.997). The interval defines the precision
(interval) of the measure at a given confidence δ. In this last case, the precision of
the sensor (sensor tolerance) is defined as 3ση, so that x = xo ± 3ση.

When fη is unknown, we cannot use the strong results valid for the Gaussian
distribution. In this case, we need to define an interval I function of δ within a pdf-
free framework. The issue can be solved by invoking the Tchebychev theorem [2]
which, given a positive λ value and a confidence δ, grants that inequality

Pr
(|xo − x| ≤ λση

) ≥ 1 − 1

λ2 = δ

holds. By selecting a wished confidence δ, e.g., δ = 0.95, we select the consequent
value λ̄. The precision interval I is now x = xo ± λ̄ση. Clearly, the lack of priors
about the distribution is a cost we pay in terms of a larger tolerance interval. This
can be clearly seen in Table 2.1 where we compare results provided by a “compact”
distribution such as the Gaussian one with those obtainable with a distribution-free
approach based on Tchebychev’s inequality. By having a priori information about
the noise distribution, the precision interval can be easily characterized with a better
precision.
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Table 2.1 The confidence achievable with precision interval I = [xo − λση, xo + λση] in the
Gaussian and the distribution-free case (Tchebychev inequality)

Distribution λ = 1 λ = 2 λ = 3 λ = 4

Gaussian 0.682 0.954 0.997 1
Distribution-free n.a. 0.750 0.889 0.938

2.1.5 Resolution

Whereas precision is a property associated with a measure, resolution is associated
with an instrument/sensor and represents the smallest value that can be perceived
and differentiated by others given a confidence level.

If our instrument has a resolution of 1 g, we will not be able to measure values
of 1 mg due to the limits of the instrument: the scale will make sense in steps of 1 g
(and all values in such interval will be equivalent and indistinguishable). However,
having a high resolution neither implies that the measure is accurate nor precise. In
fact, the scale can be badly mounted, hence introducing a k = 100 g fixed error in the
readout (the scale is not accurate). Moreover, if the scale is analog, we might not be
able to perceive changes affecting the gram for visualization insufficiency but only
something around 10 g (precision error): the size of the pointer might well exceed
the gram!

Since our final interest is the accuracy and precision of a sensor, sensor designers
mostly provide the precision level (by automatically also considering the resolution
impact on the measure in there). That said, the reader must be aware of the confusion
present in the market and attention should be paid before selecting a sensor. Moreover,
a metrological analysis phase should be carried out if we are not sure about the
provided figures.

Example: A Real Sensor

Table 2.2 presents the main features of a temperature sensor for aquatic measure-
ments. The resolution of the instrument is high, but the impact of the noise on the
readout value is high as well. The sensor provides values within a [−4 ◦C, 36 ◦C]
interval with an additive error model influencing the read value up to ±0.3. We
immediately derive that ση = 0.1 since the sensor is ruled by a Gaussian distribution
from data-sheet information and we consider λ = 3. Otherwise, we should have
invoked the Tchebychev’s inequality, set a confidence level, e.g., 0.997 (so as to be
in line with the Gaussian case) leading to λ = 5.77. The sensor requires a warm-up
time up to 2 s: any value read before the warm-up time has elapsed would produce
erroneous data (repeatability is not granted). Engineers should pay attention to this
issue.
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Table 2.2 A temperature
sensor for aquatic
measurements

Features Value

Range −4–36 ◦C
Resolution 0.01 ◦C
Accuracy ±0.3 ◦C
Response time ≤2 s

2.2 A Deterministic Versus a Stochastic Representation of Data

A common problem we face when designing an embedded application is related to
the number of significant digits available within the given codeword. The uncertainty
aspect introduced by the binary representation will be studied in detail in Sect. 3.1.
Differently, here, we focus on the fact that uncertainty exists and affects somehow
the data. We ask ourselves the question: if the output of the data estimation module
xi is represented by means of n bits and hence uncertainty affects the readout, how
many bits p are relevant out of the n? The answer to the question requires a deeper
analysis and can be addressed by considering two relevant scenarios depending on
the nature of the available data, as it will become clear in the sequel.

Consider xo = xo(t) ∈ X ⊂ R to be a signal evolving over time and assume
that the measurement process is much faster than the dynamics of the signal so that
sample x = x(t) can be considered constant during each data acquisition.

2.2.1 A Deterministic Representation: Noise-Free Data

The case covers the situation in which digital data xi are confined within a determin-
istic domain, i.e., the feasible values of acquired data are error-free and belong to
the closed interval [a, b]. If n bits are made available to represent the data and no
noise affects them, then each of the 2n available codewords are worth to be used. By
considering a reasonable uniform assignment codeword-information, the distance
�x between two subsequent data instances is

�x = b − a

2n − 1

if we also wish to represent both extremes of the interval. In this way the 2n codewords
are respectively assigned as x1 = a, x2 = a + �x, . . . , x2n = b. Clearly, different
assignments can be made, also depending on the specific application. Given a value
xo, the maximum representation error is �x

2 and the average error is zero. If values
are uniformly distributed in the interval [xo − �x

2 , xo + �x
2 ], then the variance of the

error representation is �x2

12 .

http://dx.doi.org/10.1007/978-3-319-05278-6_3
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Differently, if the data we wish to represent are affected by noise, as it is generally
the case, then not all the codewords are meaningful and less than n bits are relevant
and should be kept.

2.2.2 A Stochastic Representation: Noise-Affected Data

As we have seen in the measurement chain, data acquired from a sensor are noise-
affected. Obviously, we are not interested in spending bits to represent the noise
when writing a number. At the same time, precision introduces a constraint on the
indistinguishable values we can acquire. In fact, two data are distinguishable and
deserve distinct codewords only if their distance is above the precision interval I
which, as we have seen, depends on a predefined confidence level δ and acts as the
deterministic �x of the Sect. 2.2.1. The number of independent values can be written
as the ratio between the domain interval of the data and the value Im = 2λση of the
probabilistic indistinguishability interval, ση being the uncertainty standard deviation
associated with the measurement process. Finally, the number of independent points
Ip is

Ip = b − a

2λση

+ 1

if we require the interval extremes to be represented. As before, a straight assignment
would be x1 = a, x2 = a + Im, . . . , xIp = b. The number of significant bits is now

p = �log2
(
Ip

)�

where �·� is the ceiling operator. We have that p ≤ n represents the significant bits
within the n with the statement holding at least with probability δ. Figure 2.3 shows
how values around xo = 6 are affected by noise under the assumption that the noise is
normal (zero mean, unitary standard deviation, and λ = 3). As we get further from xo,
the probability of having a value wrongly assigned to xo diminishes. Codewords are
xo = 0, 6, 12, 18 but the error distribution is shown only in correspondence to code-
words xo = 6 and xo = 12. Given the tails of the distribution, we might erroneously
assign with probability 1 − δ a wrong codeword to a given value. Such a probability
is 0.003 for the example given in Fig. 2.3, e.g., see numbers around 9 which can be
assigned both to xo = 6 and xo = 12, though with different probabilities. However,
in most reasonable distributions (and in most embedded applications), the introduced
error is contained since the mis-assignment probability rapidly diminishes.
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Fig. 2.3 The impact of a
normally distributed noise as a
function of the distance from
xo = 6. The presence of a
distribution tail implies that
we might wrongly assign the
codeword of xo to a value x
which should be assigned to
a different codeword instead.
As an example, value x = 9.1
associated with codeword
xo = 12 might have been
generated by xo = 6 as well
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2.2.3 The Signal-to-Noise Ratio

Consider now the case where the signal is not bounded in deterministic terms
and measurements are modeled as instances drawn from a stationary—possibly
unknown—pdf. A probabilistic interval can be identified for xo whose probabilistic
extremes are associated with λxσx , being σx the standard deviation of the signal and
λx the term modulating the width of the interval, chosen to grab confidence level δ.
As in previous sections, the number of independent values Ip depends on the interval
between two distinct codewords, which are distinguishable according to confidence
level δ

Ip = 2λxσx

2λση

+ 1

By considering the same λs both for the noise and signal we define the Signal-to-
Noise ratio (SNR) as

SNR = log
σx

ση

where the logarithm base can either be 2 or 10 depending on the subsequent use.
Interestingly, 2SNR represents the logarithmic ratio of the energy of the signal com-
pared with that of the noise. The SNR is pdf-free and applies to any distribution
thanks to the Tchebychev inequality, provided that the same λ value is considered.
The number of relevant bits p of the binary codeword finally becomes

p = �log2

(
σx

ση

+ 1

)
� ≤ �SNR2� + 1. (2.8)
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If p ≥ n, all bits present in xi are statistically relevant; otherwise, only p out of
n are relevant and n − p are associated with noise. We comment that (2.8) holds for
σx
ση

> 1, i.e., in all meaningful applications. Alippi and Briozzo [37] show how the
SNR can be used to dimension a digital architecture implementing the scalar product
between two vectors and then the processing requested by an artificial neuron.
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