
Chapter 1
Introduction

The emergence of nontrivial embedded sensor units (e.g., those embedded in
smartphones and other everyday appliances), networked embedded systems, and
sensor/actuator networks (e.g., those associated with services running on mobiles
and wireless sensor networks) has made possible the design and implementation of
several sophisticated applicationswhere large amounts of real-time data are collected
to constitute a big data picture as time passes. Acquired data are then processed at
local, cluster-of-units or server level to take the appropriate actions or make the most
appropriate decision.

Acquired data may be influenced by uncontrolled variables as well as external
environmental factors, which impair the availability, validity, and usability of data.
Sensors are affected by uncertainty and faults, either transient or permanent, nega-
tively impacting on the subsequent decision-making process. Moreover, finite pre-
cision representation, algorithm pruning at the numerical computational level so as
to satisfy execution time and memory constraints, and the use of algorithms and
parameters learned from data, introduce additional levels of uncertainty affecting
the accuracy of the decision-making algorithm.

On the technological side, advances in embedded processor have made available
embedded systems with a computational capacity ready to support sophisticated
intelligent mechanisms and the ability to host a plethora of sensors, hence providing
a new degree of freedom to applications. For instance, a smartphone might host an
ambient light sensor for adjusting the display brightness (which in turn saves battery
power), a proximity sensor (e.g., to switch off the display), a MEMS accelerometer
(e.g., to commute a picture visualization from landscape to portrait), a compass (to
identify the magnetic pole and orientate maps to the north), and GPS (to provide the
local coordinates). It should be emphasized that sensors can even be virtual, e.g., a
sensor that detects a change in inclination by processing the output of an existing
tri-axial MEMS accelerometer, a sensor providing the profiling of a web user, or one
proposing email features for subsequent spam detection.

Interestingly, the adjective intelligent, when associated with a sensing system,
can be inflected differently, depending on the reference community. As such, it may

C. Alippi, Intelligence for Embedded Systems, DOI: 10.1007/978-3-319-05278-6_1, 1
© Springer International Publishing Switzerland 2014



2 1 Introduction

in some way imply: the ability to make decisions, the capability of learning from
external stimuli, the promptness in adapting to changes, or the possibility of executing
computationally intelligent algorithms.All the above definitions, explicitly or implic-
itly, rely on a computational paradigm or application which receives and processes
incoming acquisitions to accomplish the requested task. Under this framework, the
literature generally assumes that sensors are fault free, that data are stationary, time
invariant, available, and ready to be used, and that the application is capable of pro-
viding outputs and taking decisions. Unfortunately, assumptions about the quality
and validity of data are so implicitly taken as valid by scholars that, most of the time,
even their existence as assumptions is forgotten.

From the perspective of the designer and the user, we expect that the coded appli-
cation iswell performing and fully satisfies technological and application constraints,
e.g., power consumption, cost, execution time, and accuracy performance. But how
do we assess the quality of the algorithm given the different degrees of freedom
available in the design space of an unknown solution to a given problem? We recall
that numerical embedded applications operate in an uncertainty-affected world: do
we really need to waste resources to represent and process uncertainty? We should
balance complexity with accuracy.

Moreover, we are interested in designing an application characterized by robust
features, so that perturbations affecting its computation and the presence of uncer-
tainty will be tolerated well and their effects mitigated. How can we evaluate an
effective index for the application robustness allowing us to select/drive the design
phase toward the most appropriate solution? Owing to the different forms of uncer-
tainty affecting the numerical computation, the code execution provides an output
that is approximated. If we investigate this concept a bit further, we discover that the
natural way of carrying out a numerical embedded computation is to provide a result
that approximates the correct one with high probability. That is what the Probably
Approximately Correct Computation (PACC) is about.

Adaptation is another main feature any intelligent system should possess. It repre-
sents the lowest form of intelligence associated with passive, uncontrolled intelligent
mechanisms, like those of emotional processing in the human brain. Some of the
adaptation mechanisms are well known and operate at the hardware level to keep
control of the power consumption, e.g., by means of voltage and clock frequency
scaling.However, adaptationmust be intended in a broader sensewithin an embedded
framework, with learning mechanisms representing the main tools to keep track of
the environmental evolution. Although adaptation plays a relevant role in managing
evolving applications, it may not be sufficient in those applications requiring more
sophisticated responses to meet a higher Quality of Service (QoS) and performance.
Here, cognitive mechanisms must be envisaged, which act as controlled conscious
processes. The basics of cognition, as well as some implications on existing mecha-
nisms specified in the book, will be addressed since it is strongly perceived that the
next generation of embedded systems will be based on cognitive-based approaches.

Another issue is that of learning in a nonstationary environment. For most appli-
cations, we assume that the data stream to be processed is time invariant and, hence,
a time invariant-based application is designed to solve the problem. Although the



1 Introduction 3

time invariant hypothesis might hold for a short period of time, it probably does not
in the mid term and never in the long run. We should not be surprised, our body
evolves over time, so embedded systems and the way they interact thanks to sen-
sors and actuators with the external environment do. This is a consequence of aging
effects at the sensor level, faults or changes affecting the environment, and/or the
interaction between the embedded system and the environment. Such mechanisms
induce changes in the structure of the process generating the data, that evolves, with
the consequence that the application being executed rapidly becomes obsolete unless
learning strategies are taken into account. Learning in an evolving environment aims
at addressing this aspect so that the information carried by incoming data is not only
used for decision making but, also, to keep track of the changes and react accord-
ingly. When the change is of a fault-type, we need to intervene with suitable fault
diagnosis procedures whose effectiveness depends on a priori information about the
environment, the nature of the process generating measurements to be acquired by
sensors, and last, but not least, the type of expected faults.

Most of the above aspects need forms of intelligence, either basic or advanced, to
learn in a time variant, evolving environment and diagnose fault occurrences. These
aspects will also be tackled in next chapters.

1.1 How the Book is Organized

Webriefly summarize themain topics addressed in the book to get a quick snapshot of
both organization and content. The functional dependency among chapters in terms
of content is given in Fig. 1.1.

1.1.1 From Metrology to Digital Data

Most embedded systems take advantage of a sensor platform to carry out the due
task. However, the mounted sensors may not only be those requested by the appli-
cation as seen by the user, since extra sensors are generally envisaged to improve
the QoS needed by the application or mitigate technological problems that might
impair overall performance. As an example of the former class we have the Received
Signal Strength Indicator (RSSI) sensor that measures, in wireless communications,
the power of the received radio signal. By exploiting the information provided by
the RSSI, we can derive the quality of the communication link and identify suitable
actions for maximizing it. As an instance of the latter class we have the temperature
sensor internal to the sensor device (not to be confused with the temperature sensor
mounted on the acquisition board), which measures the temperature of the sensor
for thermal effect compensation. In fact, if a tiltmeter is deployed to inspect the
structural health of a building, then both the transduction mechanism and the analog
to digital conversion are parasitically affected by the temperature. The temperature



4 1 Introduction

5. Robustness analysis 

7. Performance estimation 
and probably approximately 
correct computation 

4. Randomized Algorithms 

3. Uncertainty, information 
and learning mechanisms 

9. Learning in nonstationary 
and evolving environments 

10. Fault diagnosis systems 

2.From metrology to digital 
data 

8. Intelligent mechanisms in 
embedded systems 

6. Emotional cognitive 
mechanisms for embedded 

systems 

Fig. 1.1 The functional dependency among the chapters composing the book. An oriented arc from
chapter i to j implies a strong functional dependency between the two chapters with material in i
relevant to fully understand that in j th

sensor allows us for introducing measurement compensation actions. As a result,
the data flow is affected by uncertainties from the transduction mechanism to the
digital instance.

The chapter introduces the basic concepts behind measure and measurements,
e.g., accuracy, resolution, and precision and sheds light on the elements composing
the measurement chain (transducer, conditioning stage, analog to digital converter,
estimation module). Since measurements are affected by uncertainty, we need to
investigate how uncertainty corrupts the final acquired data. This analysis sets the
basis for the subsequent propagation of uncertainty within the computational chain
as well as introduces constraints on the final embedded solution.

1.1.2 Uncertainty, Information, and Learning Mechanisms

Uncertainty associated with available measurements is not the unique form of
information corruption mechanism. In fact, in digital embedded systems, finite pre-
cision representations introduce an additional form of uncertainty that combines in
a nonlinear way with that of measurements and propagates along the computational
flow. The outcome is that the information content of the output is corrupted, hence
affecting its validity in a subsequent decision-making process.



1.1 How the Book is Organized 5

The chapter introduces and formalizes the most important forms of uncertainty
that embedded systems have to deal with. In particular, in addition to measurement
uncertainty, we will encounter uncertainty affecting the data representation level in a
digital device, characterize it, and see how it propagates within a computational flow.

Another interesting form of uncertainty arises when the computational code in
execution on the embedded system contains parametric models, with parameters
estimated fromavailable data or parameter-freemodelswhere themodel is configured
directly from available measurements. Machine learning-based solutions represent
a relevant example of such mechanisms.

Since machine learning solutions play a main role in intelligent systems, the
chapter presents a statistical formalization of the theory of learning by detailing
those key points that combine model complexity with uncertainty and accuracy. In
particular, we will see that different forms of uncertainty reside behind the learning
mechanisms, depending on the noise affecting the data, the effectiveness of the
learning algorithm, the number of available instances used by the learning algorithm,
and the suitability of the model family envisaged to model the data.

Finally, we introduce uncertainty at the application level either when building a
model from incoming data or designing an application solution, which, for its nature,
is mostly unknown. Uncertainty at application level means that we can design differ-
ent solutions for an application, possibly equivalent in terms of performance accord-
ing to a given figure of merit (i.e., a quantity considered to assess the performance
of a system solution or method). The problem of deciding which solution should be
preferred among the set of feasible solutions is left to the performance estimation
and probably approximately correct computation chapter. Here, differently, we are
interested in discovering that a high level source of uncertainty exists and, in many
cases, dominates over any attempt to improve performance.

As a final comment, all these sources of uncertainty combine in a nonlinear way
and influence the result of the computation in execution on the embedded system.
Results are no more uncertainty-free but uncertainty-affected since the embedded
system does no more provide a correct deterministic outcome but an uncertainty-
affected one.

1.1.3 Randomized Algorithms

The chapter introduces an intuitive key mechanism every engineer should be aware
of: randomization. The idea behind themethod is very intuitive. Every timewe cannot
solve a complex problem, either because it is too complex or computationally hard,
we explore how the problem behaves on a number of instances. We take an input
instance and feed it to the algorithm associated with the problem that provides a
result. Then, we repeat the procedure by sampling other instances.

We find it natural to believe that, by having many instances or samples, we should
be able to say something about the original problem. This is what the Monte Carlo
method is about. However, randomization does much more than a blind sampling



6 1 Introduction

from an instance space. In fact, by merging the Monte Carlo method with the
probabilistic theory of learning we derive the number of samples needed to solve a
large class of hard problems within a probabilistic framework.

The proposed method is general and addresses the very large class of applica-
tions and figures of merit that are Lebesgue measurable (i.e., all those involved in
a numerical computation associated with both physics and engineering problems).
Examples of problems we wish to address in the embedded system world are the
assessment of the performance level attained by the embedded application, the eval-
uation of the energy consumed by an algorithm, the estimation of the time needed
to execute a task, the determination of the average latency in providing a result, and
the satisfaction of the real-time execution constraint for the application.

After having introduced the main results coming from the randomization theory
and those granting convergence of sampled quantities to the exact ones, the chapter
will present some general methods based on randomized algorithms for solving
a large class of performance assessment problems. Results, independent from the
dimension of the sampling space and the probability density function induced on
the sampling space, mostly unknown, hold in probability at arbitrary accuracy and
confidence levels function of the envisaged number of samples.

1.1.4 Robustness Analysis

Robustness analysis deals with the problem of investigating whether a given solution
(e.g., the computational flow in execution on the embedded system) is able to tolerate
the presence of uncertainty/perturbations affecting it or not. Many embedded appli-
cations rely on subsystems implemented with analog solutions. Which is the impact
of the production process on our components and, ultimately, the performance of the
system?

If we design a computational solution on a high resolution platform, e.g., data
are represented in floating point or double precision and, then, we wish to move the
application to an embedded system characterized by a fixed point notation, can we be
reassured that performance is within an application-tolerable loss or not? The answer
to the questions above is that, a priori, nothing can be asserted unless a robustness
analysis is carried out to evaluate/estimate the loss in performance associated with
the introduced perturbation effect. Those of us senior enough to have worked on
artificial neural networks and having tried to port families of neural models from a
high precision platform to a lower precision embedded one are well aware of the
drastic performance loss in accuracy we shall expect. Clearly, the problem is well
beyond that of a specific application.

Most available results on robustness analysis assume the small perturbation
hypothesis to make the mathematics amenable enough so as to derive the closed
form relationship between perturbations affecting the computational flow/variables
and the induced loss in performance. However, such results prove to be of limited
use when envisaging the porting of an algorithm to an embedded system, since the



1.1 How the Book is Organized 7

small perturbation hypothesis is mostly violated. The chapter solves this problem by
introducing a perturbation in the large analysis that, based on randomized algorithms,
allow us to derive an estimate of the robustness index possessed by the application.

1.1.5 Emotional Cognitive Mechanisms for Embedded Systems

The chapter introduces the basis of emotional cognition since it is strongly believed
that the next generation of embedded systems will natively integrate such mecha-
nisms either in hardware or in software to allow the device/application to expose
sophisticated intelligent behaviors. The focus is on the fundamental cognitive
mechanisms obtained by modeling the functionalities of the human brain w.r.t its
emotional processing ability. All methods presented in the book following this
chapter inherit or expose levels of intelligence that can be associated with a same
form of intelligence, either automatic or conscious. For instance, adaptation repre-
sents the lowest level of intelligence, finding in the Amygdala its neurophysiology
counterpart. Reaction to the input stimuli is ruled by an uncontrolled process that
grants an immediate reduced-latency action, modelable as an emotional response
to perception. However, in many applications, the use of adaptation mechanisms is
not enough, mostly due to the generation of erroneous actions (reactions are based
on conservative principles), that must be subsequently validated by higher cognitive
levels where conscious controlled processes are activated. For instance, this role is
played in our brain by the vertical-medial orbital cortices. The same processes will
play amajor role in the learning in a nonstationary and evolving environment chapter.

1.1.6 Performance Estimation and Probably Approximately
Correct Computation

The PACC theory formalizes the way a computation is carried out within an uncer-
tainty affected environment. As such, it represents the natural characterization of
those numerical algorithms for embedded systems or parts of the algorithm affected
by those forms of uncertainty presented in Chap. 2. We comment that a deterministic
computation, mostly requested to satisfy the worst-case scenario, is generally unac-
ceptable since the cost necessary to grant a deterministic outcome is not justified by
the high complexity requested by the solution.

It is shown that, by relaxing the request for determinism, which imposes the
application output to be deterministically correct, we can formalize a simpler dual
probabilistic framework requesting the computation to be correct in probability. The
probabilistic problem is characterized by a lower complexity compared with the
deterministic one.

http://dx.doi.org/10.1007/978-3-319-05278-6_2


8 1 Introduction

The idea behind PACC—but not its formulation—comes from the robust control
community where it has been pointed out that designing a deterministic controller
introduces an unnecessary complexity compared to a probabilistic design. This addi-
tional complexity is not counterbalanced in most real applications by the gained
determinism.

We now recall that a probabilistic computation is the natural way an embed-
ded system processes numerical information since the different forms of uncertainty
affecting the computational flow natively provide an output that is correct in prob-
ability under some mild hypotheses. Let us provide a simple example. Assume we
have a scalar function f (x) whose deterministic output y for each input, spanning
its input dominion X , is

y = f (x),∀x ∈ X.

If f (x) needs to be executed on an embedded system, given the presence of
uncertainty corrupting its evolution, we are satisfied if

Pr (y � f (x)) ≥ η,∀x ∈ X

where η is a confidence term we expect to be close to 1 and � is the approximate
operator. In other words, we are satisfied if our embedded system is providing an
output approximating the correct one according to a suitable figure ofmerit; however,
the statement has to hold with high probability to be sure that the device behaves as
expected, at least in probability. This is exactly what embedded systems, e.g., those
designed for domestic appliances, do.

The framework should not be confused with fuzzy logic and fuzzy algorithms
that can be cast in the PACC framework but do not naturally provide the confidence
level η unless PACC is activated. Randomized algorithms are here used to solve the
complex problem associated with the characterization of the PACC level of function
f (x).
Another strictly related problem is that of performance estimation and assessment.

How can we assess the performance, e.g., in terms of accuracy, of the computation
being executed in the embedded system? How can we address the situation where
only a given finite dataset is available to estimate the quality of the performance our
embedded application claimed to have? If the embedded application is claimed to be
95 % accurate, which is the confidence associated with the statement? The chapter
provides answers also to these questions.

1.1.7 Intelligent Mechanisms in Embedded Systems

Adaptation mechanisms are related to those automatic processes implemented by the
amygdala and thus allowing our brain to make quick decisions without the need to
activate conscious controlled processes. The chapter focuses on some examples of



1.1 How the Book is Organized 9

adaptation and conscious decision-making that intelligent embedded systems should
possess depending on the functional constraints the application is requesting. At the
lowest abstraction level,wehave those formsof adaptation affecting the voltage/clock
frequency of the system, strategiesmainly introduced to keep under control the power
consumed by the embedded system. Then, we encounter adaptation at the acquisition
level, again with the aim of reducing the energy required to carry out data sampling;
the issue is particularly relevant in energy-eager sensors. Here, adaptation basically
intervenes on the sampling frequency to reduce the energy consumption.

Intelligence plays also a fundamental role in maximizing the energy harvested
when the embedded system can scavenge it from the environment as well as in
adapting the system clock to have it alignedwith those of neighbors’ units. Intelligent
mechanisms are beneficial to localize the sensor’s unit within an environmentwithout
requesting a GPS sensor. In order to achieve this goal, other communicating units
have to be deployednearby and collaborate in a coordinated fashion to the localization
effort.

Functional reprogrammability is another form of intelligence that allows the
embedded application to undergo changes whenever needed. Although this mecha-
nism ismostly carried out at the software level,with code updated remotely as needed,
advances in hardware makes available FPGA-based technologies where reprogram-
mability can be also envisaged at the hardware level.

1.1.8 Learning in Nonstationary and Evolving Environments

A chapter on “learning in nonstationary and evolving environments” is particularly
timely and addresses the case, rather frequent in the realworld,where the environment
changes but our embedded application does not (it was configured by assuming that
the environment was time invariant).

The implications of this way of thinking are fruitful. Before releasing the
embedded system, we should ask ourselves if the application we have designed
is assuming that the environment and the interaction between the device and the
external world will change over time or not. Since all physical processes are, at least,
subject to aging phenomena and the environment is mostly time variant, unless suit-
ably controlled (and controllable), we should wonder whether during the lifetime of
the embedded application a change is expected or not. In case of a positive answer,
we should then ask if the change is negligible or will significantly affect the per-
formance of the embedded application. If this is the case, then the application must
be revisited to make it able to deal with changes in the environment or intervene to
mitigate the effects of this change.

Themainmethodologies that allowour application to learn in a nonstationary/time
variant environment are presented and detailed. This chapter is fundamental if we
have to address the big data scenario where the embedded system might be used
to extract features and take a first level decision within a hierarchical triggering
mechanism (the embedded system quickly detects events and relevant instances



10 1 Introduction

and activates an alarm so that more sophisticated and complex agents intervene
to accept/reject the hypothesis). Cognitive mechanisms will play a key role since
adaptation itself might not be sufficient to grant the performance level the system is
expected to have.

1.1.9 Fault Diagnosis Systems

The last section of the book focuses on fault diagnosis systems. In particular, we will
investigate the issue of fault tolerance for sensors and how an application can build
mechanisms to detect the occurrence of faults. Here, a cognitive approach will be
used, since wewant to push the difficult and real case where little a priori information
is available and changes and fault signatures must be learned along with the fault
diagnosis system directly from the data.

It is shown that little can be done at the single sensor level unless strong hypotheses
are made. However, the situation is different if the embedded system mounts a rich
sensor platform or is inserted in a sensor network. In such case, redundancy in the
information content and functional dependencies among sensors can be exploited to
classify a change as fault, change in the environment, or inefficiency of the change
detection method (model bias).


	1 Introduction
	1.1 How the Book is Organized
	1.1.1 From Metrology to Digital Data
	1.1.2 Uncertainty, Information, and Learning Mechanisms
	1.1.3 Randomized Algorithms
	1.1.4 Robustness Analysis
	1.1.5 Emotional Cognitive Mechanisms for Embedded Systems
	1.1.6 Performance Estimation and Probably Approximately Correct Computation
	1.1.7 Intelligent Mechanisms in Embedded Systems
	1.1.8 Learning in Nonstationary and Evolving Environments
	1.1.9 Fault Diagnosis Systems



