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Preface

This book was written having in mind researchers, practitioners, and students
willingly to learn, understand, or perfect the fundamental mechanisms behind
intelligence and how they can be used to design the future generation of embedded
systems and embedded applications.

Adaptation strategies, active and passive learning abilities, robustness
capabilities, design of embedded, and distributed cognitive fault diagnosis
systems, techniques for assessing the performance and constraints satisfaction in
embedded applications are some fundamental aspects intelligent embedded
systems and embedded applications need to face to deal with those uncertain,
nonstationary, and evolving environments the real world is proposing.

The approach is methodological; as such, the presented methods are technology
independent and can be suitably adapted to software, hardware, or both imple-
mentations, depending on the application constraints. Although it is not the focus
of the book, presented methodologies can also be fruitfully used to guide the
hardware/software co-design phase to define which parts of the application are
more suitably implemented on a dedicated hardware and which ones found in
software the most adequate implementation.

For its nature the book is crossing several disciplines, from measurements and
metrology to machine learning, from computer science to probability and system
identification. As such, it is a book designed to build bridges among those
fundamental areas for electronic engineers, computer scientists, and physicists.

As it will be immediately clear the book was neither written with the goal to
propose a tutorial for all topics covering a specific issue nor detailing and listing all
papers and methodologies related to a given argument. Instead, the focus is on the
formalization of a given problem, proposal of the most relevant strategies for
addressing it, and discussions about ‘‘what is behind’’ the theory, the method, the
approach. I consider the book successful if the reader grasps, after reading the
main strategies, ideas and challenges behind intelligence and how intelligent
methods can be—and should be—used to boost the next generation of embedded
applications.

The book has been designed with the goal to fill a gap existing among
disciplines a computer scientist, particularly the one designing embedded appli-
cations, will face in his/her working life.
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It is the author’s view that many sections of the book should constitute teaching
material within computer science and electronic engineer curricula possibly, but
not necessarily, within an embedded systems or a machine learning course.
The material should be provided at the graduated or Ph.D. student level to opti-
mally benefit from skills and knowledge gained in the undergraduate program.

The book is mostly self-contained. It is expected the reader to be familiar with
the basics of mathematics (integrals, linear algebra, gradients, and partial
derivatives) and hold the principles of probability and statistics (mean, variance,
distributions) and operational research (function optimization). The reader must
also be acquainted with the basics of computer sciences and the very basics of
electronics, even though deep knowledge is not requested at this level. Having that
in mind, also undergraduate students can take advantage of many of the presented
topics. For instance, Chaps. 2, 3, 8, and 10 would constitute appropriate material to
be taught within an undergraduate course on embedded systems or computer
science, with the other chapters’ contents used to give the flavor of what is behind.
Material presented in the book chapters would constitute instead a full course on
advanced embedded systems.

If multidisciplinary is the most appropriate adjective characterizing the book
from the content point of view, the process behind its birth and writing is surely
globalized. The book was conceived and moved its first steps in Paris, at the École
Supérieure de Physique et de Chimie Industrielles (ESPCI), France, following the
very welcome invitation of Prof. Gérard Dreyfus. Then, it grew in Italy, at the
Politecnico di Milano, both at the Milan and the Lecco campuses, Italy. The first
draft took body in Beijing, China, at the Chinese Academy of Sciences, Institute of
Automation (CASIA), following a research experience carried out within the
group of Prof. Dongbin Zhao. Refinements were carried out at the National Library
in Florence, Italy, and the Institute for Infocomm Research (I2R), A*STAR,
Singapore, thanks to Dr. Huajin Tang who invited me for a short visit. Deep
discussions and presentations where given, among others, at the Advanced
Learning and Research Institute of the Università della Svizzera italiana, Swit-
zerland, the Tsinghua University and the Peking University, China, the National
University of Singapore, Singapore, the National Taiwan University in Taipei,
Taiwan and the Los Alamos Labs, USA.

I am beholden to my family for having continuously supported me in this time-
consuming editorial challenge.

I also acknowledge the great contribution received by my collaborators in
reviewing some chapters and run most of the experiments behind the introduced
examples. At first I need to mention the precious collaboration of Dr. Manuel
Roveri, then that of Dr. Maurizio Bocca, Dr. Giacomo Boracchi, Dr. Antonio
Marullo, Mrs. Ouejdane Mejri, and Mr. Francesco Trovò, all from Politecnico di
Milano, Italy.

I take the opportunity to thank those friends—before my colleagues—who
contributed to review some chapters. In particular, a great thank you must be sent
to Mariagiovanna Sami (Politecnico di Milano, Italy, Università della Svizzera
italiana, Switzerland) for having always supported me over my research career.
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Then, Prof. Ali Minai (University of Cincinnati, USA), whose competences were
fundamental to critically assess the chapter on cognition, as well as Prof. Roberto
Ottoboni (Politecnico di Milano, Italy) for the proofread of the chapter on
metrology and measurements.

Finally, I acknowledge the support of those Agencies that contributed in dif-
ferent ways to advance both basic and applied research. In particular, this work
was partly supported by the FP7 EU Project-i-SENSE Making Sense of Nonsense,
Contract No: INSFO-ICT-270428, the visiting professorship of the Chinese
Academy of Sciences, the INTERREG EU project M.I.A.R.I.A.: An adaptive
hydrogeological monitoring supporting the alpine integrated risk plan and the
KIOS Cyprus-funded project.

Milan, January 2014 Cesare Alippi
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Chapter 1
Introduction

The emergence of nontrivial embedded sensor units (e.g., those embedded in
smartphones and other everyday appliances), networked embedded systems, and
sensor/actuator networks (e.g., those associated with services running on mobiles
and wireless sensor networks) has made possible the design and implementation of
several sophisticated applications where large amounts of real-time data are collected
to constitute a big data picture as time passes. Acquired data are then processed at
local, cluster-of-units or server level to take the appropriate actions or make the most
appropriate decision.

Acquired data may be influenced by uncontrolled variables as well as external
environmental factors, which impair the availability, validity, and usability of data.
Sensors are affected by uncertainty and faults, either transient or permanent, nega-
tively impacting on the subsequent decision-making process. Moreover, finite pre-
cision representation, algorithm pruning at the numerical computational level so as
to satisfy execution time and memory constraints, and the use of algorithms and
parameters learned from data, introduce additional levels of uncertainty affecting
the accuracy of the decision-making algorithm.

On the technological side, advances in embedded processor have made available
embedded systems with a computational capacity ready to support sophisticated
intelligent mechanisms and the ability to host a plethora of sensors, hence providing
a new degree of freedom to applications. For instance, a smartphone might host an
ambient light sensor for adjusting the display brightness (which in turn saves battery
power), a proximity sensor (e.g., to switch off the display), a MEMS accelerometer
(e.g., to commute a picture visualization from landscape to portrait), a compass (to
identify the magnetic pole and orientate maps to the north), and GPS (to provide the
local coordinates). It should be emphasized that sensors can even be virtual, e.g., a
sensor that detects a change in inclination by processing the output of an existing
tri-axial MEMS accelerometer, a sensor providing the profiling of a web user, or one
proposing email features for subsequent spam detection.

Interestingly, the adjective intelligent, when associated with a sensing system,
can be inflected differently, depending on the reference community. As such, it may
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in some way imply: the ability to make decisions, the capability of learning from
external stimuli, the promptness in adapting to changes, or the possibility of executing
computationally intelligent algorithms. All the above definitions, explicitly or implic-
itly, rely on a computational paradigm or application which receives and processes
incoming acquisitions to accomplish the requested task. Under this framework, the
literature generally assumes that sensors are fault free, that data are stationary, time
invariant, available, and ready to be used, and that the application is capable of pro-
viding outputs and taking decisions. Unfortunately, assumptions about the quality
and validity of data are so implicitly taken as valid by scholars that, most of the time,
even their existence as assumptions is forgotten.

From the perspective of the designer and the user, we expect that the coded appli-
cation is well performing and fully satisfies technological and application constraints,
e.g., power consumption, cost, execution time, and accuracy performance. But how
do we assess the quality of the algorithm given the different degrees of freedom
available in the design space of an unknown solution to a given problem? We recall
that numerical embedded applications operate in an uncertainty-affected world: do
we really need to waste resources to represent and process uncertainty? We should
balance complexity with accuracy.

Moreover, we are interested in designing an application characterized by robust
features, so that perturbations affecting its computation and the presence of uncer-
tainty will be tolerated well and their effects mitigated. How can we evaluate an
effective index for the application robustness allowing us to select/drive the design
phase toward the most appropriate solution? Owing to the different forms of uncer-
tainty affecting the numerical computation, the code execution provides an output
that is approximated. If we investigate this concept a bit further, we discover that the
natural way of carrying out a numerical embedded computation is to provide a result
that approximates the correct one with high probability. That is what the Probably
Approximately Correct Computation (PACC) is about.

Adaptation is another main feature any intelligent system should possess. It repre-
sents the lowest form of intelligence associated with passive, uncontrolled intelligent
mechanisms, like those of emotional processing in the human brain. Some of the
adaptation mechanisms are well known and operate at the hardware level to keep
control of the power consumption, e.g., by means of voltage and clock frequency
scaling. However, adaptation must be intended in a broader sense within an embedded
framework, with learning mechanisms representing the main tools to keep track of
the environmental evolution. Although adaptation plays a relevant role in managing
evolving applications, it may not be sufficient in those applications requiring more
sophisticated responses to meet a higher Quality of Service (QoS) and performance.
Here, cognitive mechanisms must be envisaged, which act as controlled conscious
processes. The basics of cognition, as well as some implications on existing mecha-
nisms specified in the book, will be addressed since it is strongly perceived that the
next generation of embedded systems will be based on cognitive-based approaches.

Another issue is that of learning in a nonstationary environment. For most appli-
cations, we assume that the data stream to be processed is time invariant and, hence,
a time invariant-based application is designed to solve the problem. Although the
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time invariant hypothesis might hold for a short period of time, it probably does not
in the mid term and never in the long run. We should not be surprised, our body
evolves over time, so embedded systems and the way they interact thanks to sen-
sors and actuators with the external environment do. This is a consequence of aging
effects at the sensor level, faults or changes affecting the environment, and/or the
interaction between the embedded system and the environment. Such mechanisms
induce changes in the structure of the process generating the data, that evolves, with
the consequence that the application being executed rapidly becomes obsolete unless
learning strategies are taken into account. Learning in an evolving environment aims
at addressing this aspect so that the information carried by incoming data is not only
used for decision making but, also, to keep track of the changes and react accord-
ingly. When the change is of a fault-type, we need to intervene with suitable fault
diagnosis procedures whose effectiveness depends on a priori information about the
environment, the nature of the process generating measurements to be acquired by
sensors, and last, but not least, the type of expected faults.

Most of the above aspects need forms of intelligence, either basic or advanced, to
learn in a time variant, evolving environment and diagnose fault occurrences. These
aspects will also be tackled in next chapters.

1.1 How the Book is Organized

We briefly summarize the main topics addressed in the book to get a quick snapshot of
both organization and content. The functional dependency among chapters in terms
of content is given in Fig. 1.1.

1.1.1 From Metrology to Digital Data

Most embedded systems take advantage of a sensor platform to carry out the due
task. However, the mounted sensors may not only be those requested by the appli-
cation as seen by the user, since extra sensors are generally envisaged to improve
the QoS needed by the application or mitigate technological problems that might
impair overall performance. As an example of the former class we have the Received
Signal Strength Indicator (RSSI) sensor that measures, in wireless communications,
the power of the received radio signal. By exploiting the information provided by
the RSSI, we can derive the quality of the communication link and identify suitable
actions for maximizing it. As an instance of the latter class we have the temperature
sensor internal to the sensor device (not to be confused with the temperature sensor
mounted on the acquisition board), which measures the temperature of the sensor
for thermal effect compensation. In fact, if a tiltmeter is deployed to inspect the
structural health of a building, then both the transduction mechanism and the analog
to digital conversion are parasitically affected by the temperature. The temperature
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Fig. 1.1 The functional dependency among the chapters composing the book. An oriented arc from
chapter i to j implies a strong functional dependency between the two chapters with material in i
relevant to fully understand that in j th

sensor allows us for introducing measurement compensation actions. As a result,
the data flow is affected by uncertainties from the transduction mechanism to the
digital instance.

The chapter introduces the basic concepts behind measure and measurements,
e.g., accuracy, resolution, and precision and sheds light on the elements composing
the measurement chain (transducer, conditioning stage, analog to digital converter,
estimation module). Since measurements are affected by uncertainty, we need to
investigate how uncertainty corrupts the final acquired data. This analysis sets the
basis for the subsequent propagation of uncertainty within the computational chain
as well as introduces constraints on the final embedded solution.

1.1.2 Uncertainty, Information, and Learning Mechanisms

Uncertainty associated with available measurements is not the unique form of
information corruption mechanism. In fact, in digital embedded systems, finite pre-
cision representations introduce an additional form of uncertainty that combines in
a nonlinear way with that of measurements and propagates along the computational
flow. The outcome is that the information content of the output is corrupted, hence
affecting its validity in a subsequent decision-making process.
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The chapter introduces and formalizes the most important forms of uncertainty
that embedded systems have to deal with. In particular, in addition to measurement
uncertainty, we will encounter uncertainty affecting the data representation level in a
digital device, characterize it, and see how it propagates within a computational flow.

Another interesting form of uncertainty arises when the computational code in
execution on the embedded system contains parametric models, with parameters
estimated from available data or parameter-free models where the model is configured
directly from available measurements. Machine learning-based solutions represent
a relevant example of such mechanisms.

Since machine learning solutions play a main role in intelligent systems, the
chapter presents a statistical formalization of the theory of learning by detailing
those key points that combine model complexity with uncertainty and accuracy. In
particular, we will see that different forms of uncertainty reside behind the learning
mechanisms, depending on the noise affecting the data, the effectiveness of the
learning algorithm, the number of available instances used by the learning algorithm,
and the suitability of the model family envisaged to model the data.

Finally, we introduce uncertainty at the application level either when building a
model from incoming data or designing an application solution, which, for its nature,
is mostly unknown. Uncertainty at application level means that we can design differ-
ent solutions for an application, possibly equivalent in terms of performance accord-
ing to a given figure of merit (i.e., a quantity considered to assess the performance
of a system solution or method). The problem of deciding which solution should be
preferred among the set of feasible solutions is left to the performance estimation
and probably approximately correct computation chapter. Here, differently, we are
interested in discovering that a high level source of uncertainty exists and, in many
cases, dominates over any attempt to improve performance.

As a final comment, all these sources of uncertainty combine in a nonlinear way
and influence the result of the computation in execution on the embedded system.
Results are no more uncertainty-free but uncertainty-affected since the embedded
system does no more provide a correct deterministic outcome but an uncertainty-
affected one.

1.1.3 Randomized Algorithms

The chapter introduces an intuitive key mechanism every engineer should be aware
of: randomization. The idea behind the method is very intuitive. Every time we cannot
solve a complex problem, either because it is too complex or computationally hard,
we explore how the problem behaves on a number of instances. We take an input
instance and feed it to the algorithm associated with the problem that provides a
result. Then, we repeat the procedure by sampling other instances.

We find it natural to believe that, by having many instances or samples, we should
be able to say something about the original problem. This is what the Monte Carlo
method is about. However, randomization does much more than a blind sampling
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from an instance space. In fact, by merging the Monte Carlo method with the
probabilistic theory of learning we derive the number of samples needed to solve a
large class of hard problems within a probabilistic framework.

The proposed method is general and addresses the very large class of applica-
tions and figures of merit that are Lebesgue measurable (i.e., all those involved in
a numerical computation associated with both physics and engineering problems).
Examples of problems we wish to address in the embedded system world are the
assessment of the performance level attained by the embedded application, the eval-
uation of the energy consumed by an algorithm, the estimation of the time needed
to execute a task, the determination of the average latency in providing a result, and
the satisfaction of the real-time execution constraint for the application.

After having introduced the main results coming from the randomization theory
and those granting convergence of sampled quantities to the exact ones, the chapter
will present some general methods based on randomized algorithms for solving
a large class of performance assessment problems. Results, independent from the
dimension of the sampling space and the probability density function induced on
the sampling space, mostly unknown, hold in probability at arbitrary accuracy and
confidence levels function of the envisaged number of samples.

1.1.4 Robustness Analysis

Robustness analysis deals with the problem of investigating whether a given solution
(e.g., the computational flow in execution on the embedded system) is able to tolerate
the presence of uncertainty/perturbations affecting it or not. Many embedded appli-
cations rely on subsystems implemented with analog solutions. Which is the impact
of the production process on our components and, ultimately, the performance of the
system?

If we design a computational solution on a high resolution platform, e.g., data
are represented in floating point or double precision and, then, we wish to move the
application to an embedded system characterized by a fixed point notation, can we be
reassured that performance is within an application-tolerable loss or not? The answer
to the questions above is that, a priori, nothing can be asserted unless a robustness
analysis is carried out to evaluate/estimate the loss in performance associated with
the introduced perturbation effect. Those of us senior enough to have worked on
artificial neural networks and having tried to port families of neural models from a
high precision platform to a lower precision embedded one are well aware of the
drastic performance loss in accuracy we shall expect. Clearly, the problem is well
beyond that of a specific application.

Most available results on robustness analysis assume the small perturbation
hypothesis to make the mathematics amenable enough so as to derive the closed
form relationship between perturbations affecting the computational flow/variables
and the induced loss in performance. However, such results prove to be of limited
use when envisaging the porting of an algorithm to an embedded system, since the
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small perturbation hypothesis is mostly violated. The chapter solves this problem by
introducing a perturbation in the large analysis that, based on randomized algorithms,
allow us to derive an estimate of the robustness index possessed by the application.

1.1.5 Emotional Cognitive Mechanisms for Embedded Systems

The chapter introduces the basis of emotional cognition since it is strongly believed
that the next generation of embedded systems will natively integrate such mecha-
nisms either in hardware or in software to allow the device/application to expose
sophisticated intelligent behaviors. The focus is on the fundamental cognitive
mechanisms obtained by modeling the functionalities of the human brain w.r.t its
emotional processing ability. All methods presented in the book following this
chapter inherit or expose levels of intelligence that can be associated with a same
form of intelligence, either automatic or conscious. For instance, adaptation repre-
sents the lowest level of intelligence, finding in the Amygdala its neurophysiology
counterpart. Reaction to the input stimuli is ruled by an uncontrolled process that
grants an immediate reduced-latency action, modelable as an emotional response
to perception. However, in many applications, the use of adaptation mechanisms is
not enough, mostly due to the generation of erroneous actions (reactions are based
on conservative principles), that must be subsequently validated by higher cognitive
levels where conscious controlled processes are activated. For instance, this role is
played in our brain by the vertical-medial orbital cortices. The same processes will
play a major role in the learning in a nonstationary and evolving environment chapter.

1.1.6 Performance Estimation and Probably Approximately
Correct Computation

The PACC theory formalizes the way a computation is carried out within an uncer-
tainty affected environment. As such, it represents the natural characterization of
those numerical algorithms for embedded systems or parts of the algorithm affected
by those forms of uncertainty presented in Chap. 2. We comment that a deterministic
computation, mostly requested to satisfy the worst-case scenario, is generally unac-
ceptable since the cost necessary to grant a deterministic outcome is not justified by
the high complexity requested by the solution.

It is shown that, by relaxing the request for determinism, which imposes the
application output to be deterministically correct, we can formalize a simpler dual
probabilistic framework requesting the computation to be correct in probability. The
probabilistic problem is characterized by a lower complexity compared with the
deterministic one.

http://dx.doi.org/10.1007/978-3-319-05278-6_2
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The idea behind PACC—but not its formulation—comes from the robust control
community where it has been pointed out that designing a deterministic controller
introduces an unnecessary complexity compared to a probabilistic design. This addi-
tional complexity is not counterbalanced in most real applications by the gained
determinism.

We now recall that a probabilistic computation is the natural way an embed-
ded system processes numerical information since the different forms of uncertainty
affecting the computational flow natively provide an output that is correct in prob-
ability under some mild hypotheses. Let us provide a simple example. Assume we
have a scalar function f (x) whose deterministic output y for each input, spanning
its input dominion X , is

y = f (x),∀x ∈ X.

If f (x) needs to be executed on an embedded system, given the presence of
uncertainty corrupting its evolution, we are satisfied if

Pr (y ≤ f (x)) ≥ η,∀x ∈ X

where η is a confidence term we expect to be close to 1 and ≤ is the approximate
operator. In other words, we are satisfied if our embedded system is providing an
output approximating the correct one according to a suitable figure of merit; however,
the statement has to hold with high probability to be sure that the device behaves as
expected, at least in probability. This is exactly what embedded systems, e.g., those
designed for domestic appliances, do.

The framework should not be confused with fuzzy logic and fuzzy algorithms
that can be cast in the PACC framework but do not naturally provide the confidence
level η unless PACC is activated. Randomized algorithms are here used to solve the
complex problem associated with the characterization of the PACC level of function
f (x).

Another strictly related problem is that of performance estimation and assessment.
How can we assess the performance, e.g., in terms of accuracy, of the computation
being executed in the embedded system? How can we address the situation where
only a given finite dataset is available to estimate the quality of the performance our
embedded application claimed to have? If the embedded application is claimed to be
95 % accurate, which is the confidence associated with the statement? The chapter
provides answers also to these questions.

1.1.7 Intelligent Mechanisms in Embedded Systems

Adaptation mechanisms are related to those automatic processes implemented by the
amygdala and thus allowing our brain to make quick decisions without the need to
activate conscious controlled processes. The chapter focuses on some examples of
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adaptation and conscious decision-making that intelligent embedded systems should
possess depending on the functional constraints the application is requesting. At the
lowest abstraction level, we have those forms of adaptation affecting the voltage/clock
frequency of the system, strategies mainly introduced to keep under control the power
consumed by the embedded system. Then, we encounter adaptation at the acquisition
level, again with the aim of reducing the energy required to carry out data sampling;
the issue is particularly relevant in energy-eager sensors. Here, adaptation basically
intervenes on the sampling frequency to reduce the energy consumption.

Intelligence plays also a fundamental role in maximizing the energy harvested
when the embedded system can scavenge it from the environment as well as in
adapting the system clock to have it aligned with those of neighbors’ units. Intelligent
mechanisms are beneficial to localize the sensor’s unit within an environment without
requesting a GPS sensor. In order to achieve this goal, other communicating units
have to be deployed nearby and collaborate in a coordinated fashion to the localization
effort.

Functional reprogrammability is another form of intelligence that allows the
embedded application to undergo changes whenever needed. Although this mecha-
nism is mostly carried out at the software level, with code updated remotely as needed,
advances in hardware makes available FPGA-based technologies where reprogram-
mability can be also envisaged at the hardware level.

1.1.8 Learning in Nonstationary and Evolving Environments

A chapter on “learning in nonstationary and evolving environments” is particularly
timely and addresses the case, rather frequent in the real world, where the environment
changes but our embedded application does not (it was configured by assuming that
the environment was time invariant).

The implications of this way of thinking are fruitful. Before releasing the
embedded system, we should ask ourselves if the application we have designed
is assuming that the environment and the interaction between the device and the
external world will change over time or not. Since all physical processes are, at least,
subject to aging phenomena and the environment is mostly time variant, unless suit-
ably controlled (and controllable), we should wonder whether during the lifetime of
the embedded application a change is expected or not. In case of a positive answer,
we should then ask if the change is negligible or will significantly affect the per-
formance of the embedded application. If this is the case, then the application must
be revisited to make it able to deal with changes in the environment or intervene to
mitigate the effects of this change.

The main methodologies that allow our application to learn in a nonstationary/time
variant environment are presented and detailed. This chapter is fundamental if we
have to address the big data scenario where the embedded system might be used
to extract features and take a first level decision within a hierarchical triggering
mechanism (the embedded system quickly detects events and relevant instances
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and activates an alarm so that more sophisticated and complex agents intervene
to accept/reject the hypothesis). Cognitive mechanisms will play a key role since
adaptation itself might not be sufficient to grant the performance level the system is
expected to have.

1.1.9 Fault Diagnosis Systems

The last section of the book focuses on fault diagnosis systems. In particular, we will
investigate the issue of fault tolerance for sensors and how an application can build
mechanisms to detect the occurrence of faults. Here, a cognitive approach will be
used, since we want to push the difficult and real case where little a priori information
is available and changes and fault signatures must be learned along with the fault
diagnosis system directly from the data.

It is shown that little can be done at the single sensor level unless strong hypotheses
are made. However, the situation is different if the embedded system mounts a rich
sensor platform or is inserted in a sensor network. In such case, redundancy in the
information content and functional dependencies among sensors can be exploited to
classify a change as fault, change in the environment, or inefficiency of the change
detection method (model bias).



Chapter 2
From Metrology to Digital Data

2.1 Measure and Measurements

The operation of measuring an unknown quantity xo can be modeled as taking an
instance—or measurement—xi at time i with an ad hoc sensor S. Although S has been
suitably designed and realized, the physical elements composing it are far from ideal
and introduce sources of uncertainty in the measurement process. As a consequence,
xi represents only an estimate of xo. In extreme cases, the value of xo might not even
exist [109] or simply cannot be measured, e.g., think of the Heisenberg’s principle
of uncertainty stating that it is not possible to exactly measure both the momentum
and the position of a particle [112] with arbitrary accuracy.

As a consequence, despite the intuitive formalization of the measurement process,
several major aspects need to be investigated and addressed before claiming that a
generic measurement xi is a an accurate and reliable estimate of xo. For instance, we
would rather require subsequent measurements xi to be somehow centered around
xo, where centering must be intended according to a chosen figure of merit. In other
words, we are requesting an accurate sensor that does not introduce some bias error
(accuracy property). Then, we hope that the sensor is able to provide a long sequence
of correct digits of the number associated with the acquired data. Clearly, a weight
sensor able to perceive variations of 1 mg is better than a scale providing a resolution
of 10 g (resolution property). Finally, each measurement represents only an estimate
of the true unknown value, the discrepancy between the two—or error—depending
on the quality of the sensor and the working conditions under which the measure was
taken (precision property). Note that we might have an accurate sensor with a high
resolution but a poor precision associated with the measurement process, yielding
to a poor measurement. Moreover, we might have a precise measurement acquired
with a high resolution sensor, again yielding a poor outcome whenever the sensor is
not accurate.

There are other properties we should look at when considering a sensor, e.g.,
repeatability. Repeatability requires that subsequent measurements acquired in the
same operational conditions should be indistinguishable within the uncertainty level

C. Alippi, Intelligence for Embedded Systems, DOI: 10.1007/978-3-319-05278-6_2, 11
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Fig. 2.1 The complete measurement chain of a sensor. The key elements are the transducer, con-
verting an unknown physical entity xo into the analog electrical entity xe, the conditioning stage
providing an improved analog value xc, the ADC converting the analog value xc to a binary code-
word xb, and the final data estimation module leading to the output value associated with the data
instance xi

associated with the sensor. For an in-depth analysis of metrological aspects readers
can refer to [180, 182].

In the chapter, we introduce the main actors taking part in the measurement chain
which leads, from the physical quantity to be measured xo, to the final value xi to be
used in the subsequent data processing and decision-making phases. In the following,
the measurement framework will be suitably modeled and the properties we expect
from the retrieved data formalized.

2.1.1 The Measurement Chain

The main functional elements composing the measurement chain carried out by a
sensor are the transduction module, the conditioning circuit, the Analog to Digi-
tal Converter (ADC), and the final data estimation module. Figure 2.1 represents a
common structure for the measurement chain. The input to the chain is the physical
quantity to be measured xo and the output the digital data xi.

The functional chain of the figure represents the most common model describing
a modern electronic sensor. However, it should be noted that some of the elements
composing the chain might be missing in a specific design depending on the cost,
the required sophistication level, and where the analog to digital conversion takes
place. We will return to these aspects later.

2.1.1.1 The Transducer

A transducer is a device transforming one form of energy into another, here converting
a physical quantity xo into an electric or electric-related quantity xe (in some cases
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Potentiometer

Transducer

Force 

Vcc

xe 

Spring 

Fig. 2.2 A force transducer composed of a spring and a potentiometer. The force, of intensity xo,
moves a mobile element compressing/releasing the spring. The induced displacement is converted
by the potentiometer into voltage xe thanks to a voltage divider. Vcc represents the reference voltage

the transducer operates with electrical quantities both at the input and output levels).
For instance, the temperature of an environment is converted into a voltage (voltage
output sensor), the pressure or humidity to a current (current output sensor); the
particular target electrical entity depends on the type of the chosen sensor and the
way it has been designed. For a detailed analysis of the different typologies of sensors
the interested reader can refer to [108]. Clearly, the transduction stage introduces
uncertainty on the transduced quantity, which depends on the mechanism used to
transform a form of energy into an electrical one.

As an example, and by referring to Fig. 2.2, a sensor of force can be composed,
in its transduction principle, of a spring and a potentiometer: the spring converts
the force into a displacement and a potentiometer converts the displacement into a
voltage variation.

Sensors can be active or passive in their transduction mechanism: an active sen-
sor requires energy to carry out the operation and needs to be powered, whereas
a passive sensor does not. Another relevant information is related to the time
requested to produce a stable measurement. Such a time depends, for instance, on
the dynamics of the transduction mechanisms or the time needed to complete the
self-calibration/compensation phase introduced to improve the quality of the sensor
outcome.

2.1.1.2 The Conditioning Circuit

The aim of the conditioning circuit [110] is to provide an enhanced electrical quantity
xc of xe so that the sensitivity of the sensor is amplified, the effect of the noise is
mitigated, the interval of definition of the electrical entity is adapted to the require-
ments of the subsequent ADC. More in detail, the conditioning circuit, which is an
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analog circuit juxtaposed to the transducer module, at first usually amplifies xe and
then filters its output (e.g., with a low pass filter) to improve the signal-to-noise ratio
and the quality of the signal xc to be passed to the analog to digital conversion stage.

The conditioning circuit might also encompass a module designed to help in
compensating parasitic thermal effects, which influence the readout value, as well
as introducing corrections to linearize the relationship between the input xo and xc.
When non-ideal behaviors are compensated by means of a microcontroller, we say
that the sensor is enhanced (enhanced sensor). However, it should be pointed out
that, in the case of enhanced sensors, the output of the microcontroller is again an
analog signal.

In some cases the sensor has an analog output. When this is the case, the output xi

is either xe or xc depending on whether the conditioning circuitry is available or not.
Analog to digital conversion is carried out later, generally at the microprocessor level,
by exploiting the on-chip ADCs. This is a common case in many microprocessors
for embedded systems which make available input pins to host analog input signals.
Internal on-chip conversion modules are then provided. Clearly, the input signal
must be suitably treated and conditioned before it is fed to the microcontroller. For
a general presentation of aspects related to embedded system design the reader can
refer to [5].

2.1.1.3 The Analog to Digital Converter

The third stage of the functional chain is the conversion module, also known as
ADC. The input to the module is the analog electrical signal xc and the output is a
codeword xb represented in a binary format. There is a large variety of architectures
for ADCs [107], all of them having in common the resolution (the number of bits of
the codeword) and the sampling rate as target outputs. During the conversion phase,
the input xc must be kept constant, operation carried out by the “sample and hold”
mechanism (the analog value is sampled and kept to avoid dangerous fluctuations in
the input signal). The conversion introduces an error associated with the quantization
level, whose statistical properties may depend on the specific ADC architecture. The
source of uncertainty is here variegate and depends, to name a few examples, on the
quality of the reference signal (which can change with fluctuations of the powering
source), the speed and quality of the conversion step, and the presence of thermal
variations that shift the working point of the electronics from a reference ideal one
into a different state. The interested reader can refer to [107, 111].

2.1.1.4 The Data Estimation Module

The final module (when present) introduces further corrections on xb by operat-
ing at the digital level. In particular, it generally carries out a further calibration
phase aiming at improving the quality of the final data xi. When a microprocessor
is present to address the data estimation module needs, the sensor is defined to be
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a “smart sensor.” The microprocessor can carry out a more sophisticated processing
relying on simple but effective algorithms, generally aimed at introducing corrections
and structural error compensations. For instance, a thermal sensor can be onboard,
in addition to the principal sensor, to compensate the thermal effect on the principal
sensor readout. The microprocessor carries out the thermal compensation by reading
the temperature value, comparing it with the rated working temperature defined at
design time and introducing a correction on the readout value, mostly by considering
a polynomial correction function of the discrepancy between the nominal tempera-
ture and the current one. The final value xi shows better properties being closer to
xo. When the dynamics of the signal are known not to change too quickly (compared
with the time requested by the ADC to convert a value) or the signal is constant, the
microcontroller can instruct the sensor to take a burst of n readings over time. The
outcome data sequence xb, j j = 1, . . . , n can be used to provide an improved final
estimate of xo by averaging

xi = 1

n

n∑

j=1

xb, j (2.1)

When the data estimation module is not available, the best estimate of xo at this
level is the value provided by the ADC, i.e., xi = xb. The designer of the embedded
application might decide to carry out this operation later within the application by
implementing it in software.

2.1.2 Modeling the Measurement Process

Following the functional description of the sensor given in Sect. 2.1.1 the whole
measurement process can now be seen as a black box, suitably described by an
input–output model whose simplest, but generally effective form, is

x = xo + η (2.2)

where x ∀ X ∈ R is a generic acquired instance, xo its the ideal, noise-free unknown
value, and η = fη(0, σ 2

η ) is an independent and identically distributed (i.i.d) ran-
dom variable with zero mean and finite σ 2

η variance drawn from probability density
function fη and corrupting the measurement. The additive signal plus noise model
(2.2) represents a simple but realistic model describing the measurement process as
carried out by the sensor with η accounting for the uncertainty associated with the
measurement process. The model implicitly assumes that the noise does not depend
on the working point xo.

Despite the fact that the i.i.d hypothesis is commonly assumed and in fact holds in
many circumstances, it might not be satisfied a priori for a specific sensor/application.
In fact, we have seen that several sources of uncertainty affect the sensor components
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and the independency assumption might be violated. It is one of the tasks of the
application designer to verify the appropriate model for a sensor as well as determine
the existing metrological properties. This is done by first inspecting the sensor data-
sheet, the operating conditions afterwards, and carrying out suitable acquisitions and
metrological analyses whenever requested.

Another common model for the sensor is the multiplicative one where

x = xo + ηxo = xo(1 + η). (2.3)

In this way, the noise depends on the working point xo. In absolute terms, the
impact of the noise on the signal is xoη, but the relative contribution is η and does
not depend on xo. The type of model to be considered depends on the structure of
the instrument/sensor available and the way it has been designed and implemented.
Working conditions might also have an impact on the selection of the proper model.

In the sequel, we focus on the additive model and introduce other models whenever
appropriate. Details related to the validity of the above “signal plus noise” model
will be discussed later in the chapter. Despite the particularities of each sensor, we
expect some basic properties to hold. The main ones are formalized in the sequel
for historical reasons and for their intuitive and common use. However, whenever
possible, we should speak about sensor measurement uncertainty. In particular, we
need to provide the model adopted for the noise affecting the signal and the pdf
function fully associated with the uncertainty. The interested reader can deepen the
study of these issues by referring to [180].

2.1.3 Accuracy

Consider the additive signal plus noise model of (2.2). We say that a measure is
accurate when the expectation taken w.r.t. the noise satisfies

E[x] = xo. (2.4)

In order to have an accurate measurement, the instrument and the measurement
process need not introduce any bias contribution. However, this is not always the case:
in real-life we all experience problems with sensors providing wrong measurements
despite several acquisition attempts, e.g., a room temperature or a badly deployed
scale. When this is the case, the simplest model for the sensor becomes

x = xo + k + η (2.5)

being k the bias value associated with the measure. By taking expectation of (2.5)
we have that

E[x] = xo + k (2.6)
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and, even if we are able to remove the measurement uncertainty, the acquired value is
wrong, introducing an unknown offset (bias) value k. When a measurement process
is biased we need to subtract the expected value (or its estimate) from the read value.
However, since k is unknown, we must rely on a reference value to estimate it. For
instance, if we are able to drive the sensor to a controlled state where the expected
value is known, say xo, then, from (2.6) k = E[x] − xo. This phase is called sensor
calibration [109, 182].

Accuracy is a main property a measurement system should have since we would
like our measurements not to contain any bias error. If we have an accurate mea-
surement system, (2.6) states that, by taking expectation w.r.t. the noise, we remove
the impact of noise on the specific value x. During this phase, the value x need not
change: in practice, we have to sample at a frequency rate much higher than the
dynamics of the signal the sensor is acquiring. This operation is done by the data
estimation module if the sensor is smart; otherwise, we have to do it in software with
an ad hoc code at the primary microcontroller of the embedded system.

It is always a good practice to take the average of a sequence of n repeated
measurements x1, x2 · · · , xn of the same quantity x to provide a better estimate,
x̂ = 1

n

∑n
i=1 xi, of xo compared to that obtainable by using a single instance xi,

leading to x̂ = xi. The number of samples n we should consider as well as the
convergence properties of the average to the expectation are studied in Sect. 4.2.

Example: Sensor Calibration

We bought a low-cost temperature sensor and are not sure about its accuracy. We wish
to quantify the potential bias value so as to zero center subsequent measurements.

For this purpose, we drive our sensor to operate at a known reference value xo (e.g.,
set by a laboratory-grade temperature standard) and wait until the dynamics effect
associated with the change of state vanishes. In the steady state the sensor shares the
same temperature as the environment. We then take n samples, say n = 40, from the
sensor. An estimate k̂ for the bias k is

k̂ = 1

n

n∑

i=1

xi − xo. (2.7)

If we iterate the process for different xo values so as to explore the input domain, we
can construct a curve that passes through these points and get a very good calibration
curve specialized for the given sensor.

Despite the intuitive example, we comment that calibration is a more complex
problem if we look at it closely, in its inner mechanisms. For instance, for an integrated
temperature sensor, the read value depends on the value of the power voltage, which
is contrasted toward a reference value to identify the change in temperature. Any
structural discrepancy between these two values introduces a bias error on the final
output. Moreover, the measured voltage is not the voltage powering the sensor since

http://dx.doi.org/10.1007/978-3-319-05278-6_4
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the conditioning and the ADC electronics modify it. In addition, the relationship
between the measured voltage and the sensed temperature is nonlinear, depending
on the transducing mechanism. Compensations of the above phenomena are known
in the literature as offset, gain, and linearization.

2.1.4 Precision

Under the signal plus noise framework and the above assumptions, each taken mea-
surement is seen as a realization of a random variable. Measurements will then be
spread around a given value (xo in the case of accurate sensors, xo + k in case of an
inaccurate one), with the standard deviation defining a scattering level index (other
indexes can be defined, e.g., as proposed in [181]). In the sequel, precision is a mea-
sure of such scattering and is a function of the standard deviation of the noise ση, in
the case of both accurate and inaccurate sensors.

Given a confidence level δ, precision defines an interval I for xo within which all
values are indistinguishable due to the presence of uncertainty η. In other words, all
values x ∀ I are equivalent estimates of xo. The amplitude of the interval depends
on the confidence level δ, i.e., I = I(δ), as it will be immediately clear.

To ease the understanding, let us consider at first η as drawn from a Gaussian
distribution fη(0, σ 2

η ) of zero mean and variance σ 2
η . The Gaussian hypothesis holds in

many off-the-shelf integrated sensors and can be safely introduced unless differently
specified by the sensor data-sheet. Under the Gaussian assumption [181] and by
setting a confidence level δ = 0.95, we have that a realization xi of xo lies in I =
[xo − 2ση, xo + 2ση] at least with probability 0.95. With the choice of the confidence
interval I = [xo − 3ση, xo + 3ση] the confidence level raises to 0.997 (acquired
xi belongs to I with at least probability 0.997). The interval defines the precision
(interval) of the measure at a given confidence δ. In this last case, the precision of
the sensor (sensor tolerance) is defined as 3ση, so that x = xo ± 3ση.

When fη is unknown, we cannot use the strong results valid for the Gaussian
distribution. In this case, we need to define an interval I function of δ within a pdf-
free framework. The issue can be solved by invoking the Tchebychev theorem [2]
which, given a positive λ value and a confidence δ, grants that inequality

Pr
(|xo − x| ≤ λση

) ≥ 1 − 1

λ2 = δ

holds. By selecting a wished confidence δ, e.g., δ = 0.95, we select the consequent
value λ̄. The precision interval I is now x = xo ± λ̄ση. Clearly, the lack of priors
about the distribution is a cost we pay in terms of a larger tolerance interval. This
can be clearly seen in Table 2.1 where we compare results provided by a “compact”
distribution such as the Gaussian one with those obtainable with a distribution-free
approach based on Tchebychev’s inequality. By having a priori information about
the noise distribution, the precision interval can be easily characterized with a better
precision.
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Table 2.1 The confidence achievable with precision interval I = [xo − λση, xo + λση] in the
Gaussian and the distribution-free case (Tchebychev inequality)

Distribution λ = 1 λ = 2 λ = 3 λ = 4

Gaussian 0.682 0.954 0.997 1
Distribution-free n.a. 0.750 0.889 0.938

2.1.5 Resolution

Whereas precision is a property associated with a measure, resolution is associated
with an instrument/sensor and represents the smallest value that can be perceived
and differentiated by others given a confidence level.

If our instrument has a resolution of 1 g, we will not be able to measure values
of 1 mg due to the limits of the instrument: the scale will make sense in steps of 1 g
(and all values in such interval will be equivalent and indistinguishable). However,
having a high resolution neither implies that the measure is accurate nor precise. In
fact, the scale can be badly mounted, hence introducing a k = 100 g fixed error in the
readout (the scale is not accurate). Moreover, if the scale is analog, we might not be
able to perceive changes affecting the gram for visualization insufficiency but only
something around 10 g (precision error): the size of the pointer might well exceed
the gram!

Since our final interest is the accuracy and precision of a sensor, sensor designers
mostly provide the precision level (by automatically also considering the resolution
impact on the measure in there). That said, the reader must be aware of the confusion
present in the market and attention should be paid before selecting a sensor. Moreover,
a metrological analysis phase should be carried out if we are not sure about the
provided figures.

Example: A Real Sensor

Table 2.2 presents the main features of a temperature sensor for aquatic measure-
ments. The resolution of the instrument is high, but the impact of the noise on the
readout value is high as well. The sensor provides values within a [−4 ◦C, 36 ◦C]
interval with an additive error model influencing the read value up to ±0.3. We
immediately derive that ση = 0.1 since the sensor is ruled by a Gaussian distribution
from data-sheet information and we consider λ = 3. Otherwise, we should have
invoked the Tchebychev’s inequality, set a confidence level, e.g., 0.997 (so as to be
in line with the Gaussian case) leading to λ = 5.77. The sensor requires a warm-up
time up to 2 s: any value read before the warm-up time has elapsed would produce
erroneous data (repeatability is not granted). Engineers should pay attention to this
issue.
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Table 2.2 A temperature
sensor for aquatic
measurements

Features Value

Range −4–36 ◦C
Resolution 0.01 ◦C
Accuracy ±0.3 ◦C
Response time ≤2 s

2.2 A Deterministic Versus a Stochastic Representation of Data

A common problem we face when designing an embedded application is related to
the number of significant digits available within the given codeword. The uncertainty
aspect introduced by the binary representation will be studied in detail in Sect. 3.1.
Differently, here, we focus on the fact that uncertainty exists and affects somehow
the data. We ask ourselves the question: if the output of the data estimation module
xi is represented by means of n bits and hence uncertainty affects the readout, how
many bits p are relevant out of the n? The answer to the question requires a deeper
analysis and can be addressed by considering two relevant scenarios depending on
the nature of the available data, as it will become clear in the sequel.

Consider xo = xo(t) ∀ X ∈ R to be a signal evolving over time and assume
that the measurement process is much faster than the dynamics of the signal so that
sample x = x(t) can be considered constant during each data acquisition.

2.2.1 A Deterministic Representation: Noise-Free Data

The case covers the situation in which digital data xi are confined within a determin-
istic domain, i.e., the feasible values of acquired data are error-free and belong to
the closed interval [a, b]. If n bits are made available to represent the data and no
noise affects them, then each of the 2n available codewords are worth to be used. By
considering a reasonable uniform assignment codeword-information, the distance
Θx between two subsequent data instances is

Θx = b − a

2n − 1

if we also wish to represent both extremes of the interval. In this way the 2n codewords
are respectively assigned as x1 = a, x2 = a + Θx, . . . , x2n = b. Clearly, different
assignments can be made, also depending on the specific application. Given a value
xo, the maximum representation error is Θx

2 and the average error is zero. If values
are uniformly distributed in the interval [xo − Θx

2 , xo + Θx
2 ], then the variance of the

error representation is Θx2

12 .

http://dx.doi.org/10.1007/978-3-319-05278-6_3
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Differently, if the data we wish to represent are affected by noise, as it is generally
the case, then not all the codewords are meaningful and less than n bits are relevant
and should be kept.

2.2.2 A Stochastic Representation: Noise-Affected Data

As we have seen in the measurement chain, data acquired from a sensor are noise-
affected. Obviously, we are not interested in spending bits to represent the noise
when writing a number. At the same time, precision introduces a constraint on the
indistinguishable values we can acquire. In fact, two data are distinguishable and
deserve distinct codewords only if their distance is above the precision interval I
which, as we have seen, depends on a predefined confidence level δ and acts as the
deterministic Θx of the Sect. 2.2.1. The number of independent values can be written
as the ratio between the domain interval of the data and the value Im = 2λση of the
probabilistic indistinguishability interval, ση being the uncertainty standard deviation
associated with the measurement process. Finally, the number of independent points
Ip is

Ip = b − a

2λση

+ 1

if we require the interval extremes to be represented. As before, a straight assignment
would be x1 = a, x2 = a + Im, . . . , xIp = b. The number of significant bits is now

p = ≺log2
(
Ip

)∪

where ≺·∪ is the ceiling operator. We have that p ≤ n represents the significant bits
within the n with the statement holding at least with probability δ. Figure 2.3 shows
how values around xo = 6 are affected by noise under the assumption that the noise is
normal (zero mean, unitary standard deviation, and λ = 3). As we get further from xo,
the probability of having a value wrongly assigned to xo diminishes. Codewords are
xo = 0, 6, 12, 18 but the error distribution is shown only in correspondence to code-
words xo = 6 and xo = 12. Given the tails of the distribution, we might erroneously
assign with probability 1 − δ a wrong codeword to a given value. Such a probability
is 0.003 for the example given in Fig. 2.3, e.g., see numbers around 9 which can be
assigned both to xo = 6 and xo = 12, though with different probabilities. However,
in most reasonable distributions (and in most embedded applications), the introduced
error is contained since the mis-assignment probability rapidly diminishes.
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Fig. 2.3 The impact of a
normally distributed noise as a
function of the distance from
xo = 6. The presence of a
distribution tail implies that
we might wrongly assign the
codeword of xo to a value x
which should be assigned to
a different codeword instead.
As an example, value x = 9.1
associated with codeword
xo = 12 might have been
generated by xo = 6 as well
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2.2.3 The Signal-to-Noise Ratio

Consider now the case where the signal is not bounded in deterministic terms
and measurements are modeled as instances drawn from a stationary—possibly
unknown—pdf. A probabilistic interval can be identified for xo whose probabilistic
extremes are associated with λxσx , being σx the standard deviation of the signal and
λx the term modulating the width of the interval, chosen to grab confidence level δ.
As in previous sections, the number of independent values Ip depends on the interval
between two distinct codewords, which are distinguishable according to confidence
level δ

Ip = 2λxσx

2λση

+ 1

By considering the same λs both for the noise and signal we define the Signal-to-
Noise ratio (SNR) as

SNR = log
σx

ση

where the logarithm base can either be 2 or 10 depending on the subsequent use.
Interestingly, 2SNR represents the logarithmic ratio of the energy of the signal com-
pared with that of the noise. The SNR is pdf-free and applies to any distribution
thanks to the Tchebychev inequality, provided that the same λ value is considered.
The number of relevant bits p of the binary codeword finally becomes

p = ≺log2

(
σx

ση

+ 1

)
∪ ≤ ≺SNR2∪ + 1. (2.8)
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If p ≥ n, all bits present in xi are statistically relevant; otherwise, only p out of
n are relevant and n − p are associated with noise. We comment that (2.8) holds for
σx
ση

> 1, i.e., in all meaningful applications. Alippi and Briozzo [37] show how the
SNR can be used to dimension a digital architecture implementing the scalar product
between two vectors and then the processing requested by an artificial neuron.



Chapter 3
Uncertainty, Information, and Learning
Mechanisms

The real-world is prone to uncertainty. We experience uncertainty in acquiring data,
in interacting with the environment through an actuator, in representing information
on a finite-precision machine, and in designing an unknown solution to a problem.
The chapter formalizes and deals at first with the concept of uncertainty and the
way it propagates through a computational flow. Afterwards, the basics of statistical
learning are provided. It is shown how different sources of uncertainty, that depend
on the chosen model family, the number of available data, and their quality and,
ultimately, the complexity of the problem, are introduced when learning from data.

3.1 Uncertainty and Perturbations

3.1.1 From Errors to Perturbations

We have uncertainty whenever we have an approximated entity which, to some extent,
estimates the ideal—possibly unknown—one. Such a situation can be formalized by
introducing the ideal uncertainty-free entity and the real uncertainty-affected one
and evaluating the error, i.e., the discrepancy between the two according to a suitable
figure of merit. Since the error is strictly dependent on a specific pointwise instance,
e.g., a representation error for a given value, a model error for a specific input, or
a sensor error in correspondence of a particular data acquisition, we abstract the
pointwise error with the concept of perturbation, a variable defined in a suitable
domain with the pointwise error representing a particular realization of it.

In the following, a generic perturbation ηA intervenes on the computation by
modifying the status assumed by an entity from its nominal configuration A, whose
domain and cardinality depends on the specific case, to a perturbed one Ap. The
effect induced by the perturbation can be evaluated through a suitable figure of merit
∀A, Ap∀ measuring the discrepancy between the two states. For instance, if we are
looking at the output of a real sensor providing the constant scalar value a ∈ R,
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then the discrepancy between the ideal nominal value and the perturbed one can be
expressed as the punctual error ∀A, Ap∀ = e = |ap − a|. Should we read another
sensor instance, the pointwise error would assume a different value. In this case, the
mechanism inducing uncertainty can be modeled with the signal plus noise model
ap = a + ηa and ∀A, Ap∀ = |ap − a| = |ηa | = |e|. It is evident from this example
that ηa can be described in many cases as a random variable with its probability
density function fully characterizing the way uncertainty disrupt the information.

3.1.2 Perturbations

In Sect. 3.1.1 we have intuitively introduced the concept of perturbation as a ran-
dom variable. More formally, the perturbation ηA can be defined as a result of the
perturbation operator applied to a structured variable A.

Given a generic variable σ ∈ δ ≤ R
d , perturbation ησ moves σ into a perturbed

state σp according to some perturbation model. Not rarely, we can model ησ as a
multivariate random variable drawn from a perturbation probability density function
fσ(M, Cησ ) characterized by mean M and covariance matrix Cησ . δ can either be
discrete or continuous, the latter being the most common situation in signal/image
processing.

Definition: Continuous Perturbations

We say that a perturbation ησ is continuous if Pr(ησ = ησ̄) = 0,≥σ ∈ δ. The
definition tells us that the probability to sample a continuous perturbation space and
get exactly a given perturbation is an event whose probability is null.

Definition: Acute Perturbations

We say that the square matrix Ap obtained by perturbing matrix A is acute (and the
associate perturbation ηA is said to be acute) if and only if

lim
Ap◦A

rank(Ap) = rank(A).

In other words, an acute perturbation does not change the rank of a matrix [51].
If perturbation ηA is induced by perturbation ησ , i.e., ηA = ηA(ησ), we also say
that ησ is acute.

We will use the definitions above along the book and, in particular, in Chap. 5.

http://dx.doi.org/10.1007/978-3-319-05278-6_5
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3.2 Perturbations at the Data Representation Level

Numerical data acquired by sensors and digitalized through an ADC are represented
as a sequence of bits coded according to a given transformation which depends on
the numerical information we need to represent. In the following sections, we will
introduce the main transformations used in numerical representations as well as the
types and characterization of uncertainty introduced when representing data in a
digital format.

3.2.1 Natural Numbers N: Binary Natural

Assume we are willing to spend n bits to represent a finite value a ∈ N. It immediately
comes out that we can represent only numbers belonging to a subset N(n) ≤ N

given the finiteness of n. Since n bits provide 2n independent codewords, the subset
N(n) contains 2n instances, e.g., the first 2n symbols N(n) = 0, 1, . . . , 2n − 1. For
instance, if we have n = 8 we can represent the first 256 natural numbers, starting
from 0 (or any other 256 numbers depending on the number of information-codeword
association). The representation of values in N(n) follows the binary natural code
representation [206], which can be easily derived once we comment that the numeric
representation we are looking at is positional and weighted.

In this section we assume that the information associated with the natural number
is not affected by uncertainty (the numeric instance is noise-free) and that the unique
source of uncertainty is introduced by finite precision operators, such as truncation or
rounding, used in order to reduce the number of bits associated with the information
from n to its most significant q ≺ n bits.

3.2.1.1 Projection to a Subspace

Define the space of a representation as the space spanned by the vector containing
as components the bits/digits considered to represent a value. If n are the bits, then
N(n) = {0, 1, 2, . . . , 2n − 1} is the set of points in the space, with each point
referenced by the generic vector in the form [an−1, . . . , a1, a0].

As such, an interesting projection to a lower dimensional space can be achieved
by simply setting to zero the least significant n − q bits of the n bits codeword
associated with a (the least significant q bits are set to zero leading to value a(q)).
The projection introduces an absolute error whose value is

e(q) = a − a(q) < 2q .

The pointwise error is a function of the particular number instance and its stochas-
tic characterization depends on the particular nature of the envisaged application, i.e.,
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on the probability density function of the process generating value a. However, it is
common to assume a uniform distribution for a. The projection operator introduces
an absolute error that can be modeled as a uniformly distributed random variable
defined in interval [0, 2q). The expected value of the error is 2q−1

2 and its variance

is bounded by 22(q−1)

3 [208].

3.2.1.2 Truncation

Truncation operates as a chopping operator that removes the least significant q bits
from a n bits codeword. However, if truncation would simply mean chopping bits
from a number, then it would not make any sense. For instance, if we consider
the decimal value 123, truncation of the least significant digit would generate the
number 12, per se a number not even related to the original one in terms of the
absolute information content. The error would not even make sense in relative terms:
for the case above, the relative error would be 123−12

123 . However, truncation is a key
operator in embedded systems, for the reasons we will now explain.

The notation associated with the binary natural codeword is positional and
weighted: value 1 in a0 has a different meaning of a 1 in an−1 (positional nota-
tion). In correspondence to bit ai , we have a weight quantifying the information
contribution carried by the bit, which is 2i (weighted notation). What does make
sense is to apply in turn the two steps

• Projection of the codeword in the subspace of dimension n − q;
• Apply the truncation operator so as to remove the q rightmost bits.

The final result of the transformation is that the number is now defined in an n −q
dimensional space. We save q bits in representing the information at the cost of an
introduced source of uncertainty in the data representation (and a loss in information
if the original number was uncertainty-free). Consider, for instance, decimal numbers
1234 and 2545, defined in an n = 4 dimensional space. We wish to reduce the space
to n − q = 2 digits. By applying the projection to a subspace transformation, we
get numbers 1200 and 2500 and, after truncation, the numbers become 12 and 25.
In other words, we are keeping the most relevant part of the information content
by operating into a two-dimensional subspace which somehow keeps the distance
between the numbers at the net of the truncated information. The number can then
be compared with other numbers defined in the same subspace.

The relative distance between the two codewords is mostly kept, although an
error is introduced. In fact, by inspecting the numbers after the transformation, it
is clear that they can be intended as generated with q right shifts, with the conse-
quence that each instance of the reduced space should be weighted 102 to move
back to the original one. The binary number [an−1, an−2 . . . ,aq, . . . ,a1, a0] becomes
[an−1, an−2 . . . , aq ] after the transformation. Each instance of the reduced space can
be brought back to the original space dimension by multiplying it by value 2q . The
introduced absolute error in the original space is e(q) = a − 2qa(q) < 2q, hence
inducing an error uniformly distributed in the interval [0, 2q).
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3.2.1.3 Rounding

Rounding of a positive number truncates the q least significant bits and adds 1 to the
unchopped part if and only if the most significant bit of the truncated segment is 1.
Otherwise, the rounded value is the one defined over n − q bits. In a binary natural
representation, rounding provides a biased uniform error following the comments
made for the projection to a subspace and the truncation operator. The advantage of

rounding is that the variance 22(q−2)

3 of e(q) is half the truncation one.

3.2.2 Integer Numbers Z: 2’s Complement

3.2.3 2cp Notation

We are now interested in representing a value a ∈ Z(n) ≤ Z over n bits. A straight
representation for the generic number a would be the sign and modulus notation.
Such a notation is based on the fact that, although formally inaccurate, Z = −N∪N.
A generic number can then be represented with its sign (requesting a bit) and its
modulus (which, being a natural number, can be represented with the binary natural
representation). The sign and modulus representation is redundant, in the sense that
it uses two codewords to represent the zero (−0 and +0) and requires differentiated
hardware architectures to carry out additions and subtractions. A different approach,
which is used in most embedded systems, is to use a two’s complement notation
(2cp) that solves both problems.

Given n bits, we have a total of 2n available codewords, and we decide to assign
half of them to represent negative numbers, and the remaining half to code positive
numbers (zero included). That said, subset Z(n) becomes

Z(n) = −2n−1, . . . , 0, . . . , 2n−1 − 1.

The 2cp representation for number a ∈ Z(n) is defined as

a2cp =
{

ab,n for a ≥ 0
(2n − |a|)b,n for a < 0

where subscript b, n stands for a binary natural representation on n bits. The
transformation has remarkable properties that make the 2cp notation the one most
used in embedded systems. Other expressions that can be derived from the above
transformation are more immediate to generate 2cp codewords. One of these is par-
ticularly interesting since it exploits the concept of opposite −a of number a. Having
a generic number an obtained from a with a 2cp transformation over n bits, its oppo-
site −an is −an = ān + 1, where ā is the bit-wise complement operator applied
to the codeword an (1s and 0s are toggled in an). The immediate consequence is
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that the subtraction operation can be reduced to the addition one. In fact, given
two numbers an, bn in 2cp and defined on n bits, the subtraction an − bn becomes
an − bn = an + (−bn) = an + b̄n + 1. Both addition and subtraction operators
reduce to the algebraic sum, whose simple algorithm is that used for the addition
operator.

In order to characterize the nature of the finite precision representation error, let us
consider at first the truncation operator, chopping q bits from the n of the original rep-
resentation. The limits of the truncation operator forZ are those presented forN. Trun-
cation should be intended as an operator transforming the n-dimensional space of the
data into the reduced one of dimension n − q. Under this framework, the truncation
error associated with truncated value a(n − q) is always positive, assuming values
0 ≺ a − 2qa(n − q) < 2q − 1. The error introduced by the truncation operator
is uniformly distributed in the interval [0, 2q − 1) and introduces a bias value. On
the contrary, rounding introduces an unbiased error, a very welcome property in
any computation: clearly, we would appreciate the outcome of a computation to be
accurate, or, in the worst case, characterized by a small bias. Thus, rounding outper-
forms truncation in the 2cp representation. This makes it a very interesting operator
for embedded systems despite the required extra computational cost. If rounding
is applied, it can be shown that the representation error is uniformly distributed in
interval [−2q−1, 2q−1).

3.2.4 Rational Q and Real R Numbers

As pointed out in the previous sections, the finiteness of the machine limits the
number of codewords to 2n if n is the number of available bits. As a consequence,
we can only approximate a generic number a, either belonging to Q or R, with the
number a(n) which, for its finite nature, belongs to Q.

3.2.4.1 Fixed Point Representation

Any rational number a ∈ Q can be seen as composed of an integer part and a
fractional one. A natural approximation a(n) of a is a number where l = n − k − 1
bits are assigned to the integer part, one to the sign bit, and k to the fractional one.
This notation is called fixed point since the “dot” separating the integer from the
fractional part is conventionally fixed in the notation, being k bits leftwards from the
least significant bit (note that the point is only virtual and such information is not
stored). This said, we also note that the number a(n)2k is an integer number and,
as such, it can be represented with a 2cp notation. De facto, there is no difference
between a generic fixed point number and an integer one!
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Example: Fixed Point Representation

Consider, as an example, decimal value a = 1.56 and say that we are willing to
spend n = 5 bits to represent it in 2cp. We decide to use 2 bits for the fractional part
(k = 2). The number can then be represented with the fixed point binary sequence
[00110], e.g., codeword [001.10] associated with the approximated decimal number
a(n) = 1.5. If we multiply the binary codeword by factor 2k , the fractional point
disappears and we obtain codeword [00110], which is associated to the binary value
a(n)22. The introduced absolute error is |e(q)| = |a − a(n)| = 0.06 < 2−2.

Let us consider now number a coded in 2cp over n bits with l bits associated with
the non-fractional part (without including the sign bit). We wish to reduce the n bits
to n − q bits at first through a q least significant bits truncation (truncation might
also affect the integer information, and not only the fractional one).

Multiply a by 2−l so that 2−la becomes a totally fractional number. We have seen
that if we keep k bits for the fractional part, then the introduced error is lower than
2−k. Given the fact that we wish to keep n − q bits and a bit is used for the sign, we
have that the truncation error e(q) is always positive (also for negative numbers) and
satisfies the inequalities

0 ≺ e(q) < 2l(2−(n−q−1)).

As an interesting example, let us consider the decimal number 0.45 represented on
n = 5 bits, l = 0. The 2cp representation becomes [00111]. We wish to represent the
number on a smaller space by choosing q = 2. The obtained number after truncation
is [001], e.g., decimal number 0.25. Since l = 0, we have that the representation
error must satisfy 0 ≺ e(q) = 0.2 < 2−2 = 0.25. If rounding is applied, then it can
be shown that the error e(q) satisfies

−2l(2−(n−q)) ≺ e(q) < 2l(2−(n−q)).

The error owed to rounding is independent of the binary representation and its mean
is zero. Moreover, rounding introduces a lower variance compared to truncation.

Let us consider, as a second example, decimal number 6.9, to be represented in
2cp fixed point notation on n = 7 bits. The 2cp representation becomes [0110111].
We wish to represent the number on a smaller space by choosing q = 2 and rounding.
The obtained number after rounding is [01110], e.g., decimal number 7. Since l = 3,
n = 7, and q = 2, we have that the representation error e(q) = 6.9 − 7 has to be in
magnitude smaller than 2−2, as it is.

As a last example, consider decimal number −6.666 to be represented in a 2cp
fixed point notation on n = 7 bits. The 2cp representation becomes [1001011]. We
wish to represent the number on a smaller space by choosing q = 1 and rounding
as space reduction technique. The codeword of the positive number is [0110101];
after rounding with q = 1 we get codeword [011011], to which the rounded negative
codeword [100101] is associated. Since l = 3, n = 7, and q = 1, we have that the
representation error e(q) = −6.666 − (−6.75) = −0.084 has to be of magnitude
smaller than 2−3, as it is.
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Summarizing, in a 2cp notation, the error introduced by quantization is uniformly
distributed [208] in the interval

[0, 2l−n+q+1)

for the truncation operator and uniformly distributed in the interval

[−2l−n+q , 2l−n+q)

for the rounding operator. The above distributions should be used to test the effects
of noise on the embedded computation as requested in Chap. 7 or to evaluate the
intrinsicrobustness of the computational flow as detailed in Chap. 5.

3.3 Propagation of Uncertainty

We analyze in this section the way perturbations affecting sensor data propagate
within a computational flow y = f (x), x ∈ X ≤ R

d ,y ∈ Y ≤ R. The sensi-
tivity analysis provides closed-form expressions for the linear function case and
approximated results for the nonlinear one, provided that the perturbations affect-
ing the inputs are small in magnitude compared to the inputs (small perturbation
hypothesis). The analysis of Perturbations in the large i.e., perturbations of arbi-
trary magnitude, for the nonlinear case, cannot be obtained in a closed form unless
y = f (x) assumes a particular structure and has properties that make the mathe-
matics amenable. The extended analysis dealing with the perturbation in the large
framework will be presented in Chap. 7.

3.3.1 Linear Functions

Let us consider linear function y = f (x) = λT x , where λ ∈ Θ ≤ R
d and x are

d-dimensional column vectors representing the parameters and the inputs of the
linear function, respectively. In the sequel, the parameter vector λ is assumed to be
constant and given, otherwise differently specified.

3.3.1.1 The Additive Perturbation Model

A perturbation ηx affecting the inputs, say according to an additive signal plus noise
perturbation model x p = x + ηx , generates the perturbed value yp = λT x p. The
pointwise error ηy = yp − y can be rewritten, thanks to linearity, as

ηy = λT ηx . (3.1)

http://dx.doi.org/10.1007/978-3-319-05278-6_7
http://dx.doi.org/10.1007/978-3-319-05278-6_5
http://dx.doi.org/10.1007/978-3-319-05278-6_7
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Note that the linear function, characterized by its parameter vector λ , is not
structurally affected by perturbations, which only influence the function inputs. The
(3.1) tells us that the propagated error at the function output is linear with the per-
turbation vector. The perturbation ηx can be modeled as a random variable subject
to pdf fηx (0, Cηx ), where Cηx is the covariance matrix of the perturbation.

Characterization of the perturbation error ηy, which also becomes a random vari-
able, can be done by providing the mean and the standard deviation of the propagated
error at the function output and then, where possible, its pdf. We have that

Eηx [ηy] = Eηx [λT ηx] = λT Eηx [ηx] = 0

and

Var(ηy) = Eηx [λT ηxηxT λ ] = λT Eηx [ηxηxT ]λ = λT Cηxλ = trace
⎧
λT λCηx

⎪
.

Under the independence assumption for the perturbation affecting the inputs, Cηx

happens to be a diagonal matrix with the i-th entry characterized by variance σ 2
ηx,i .

Then, defining λi to be the i-th component of vector λ ,

Var(ηy) =
d⎨

i=1

λ2
i σ 2

ηx,i .

In the particular case where all perturbations have the same variance σ 2
ηx , e.g.,

perturbations are uniformly defined within the same bounded interval, the above
expression becomes

Var(ηy) = σ 2
ηxλ

T λ. (3.2)

The pdf of the propagated error cannot be evaluated a priori in a closed form unless
we assume that the dimension d is large enough. In such a case, we can invoke the
Central Limit Theorem (CLT) under the Lyapunov assumptions [35] and ηy can be
modeled as a random variable drawn from a Gaussian distribution.

CLT Under the Lyapunov Condition

Let Yi , i = 1 . . . d a set of independent random variables characterized by finite
expected value E[Yi ] and variance Var(Yi ). Denote s2

d = ⎩d
i=1 Var(Yi ) and

Y = ⎩
i Yi . If there exists number l > 0 such that

lim
d◦∞

(
1

s2+l
d

d⎨

i=1

E
[
|Yi − E[Yi ]|2+l

])
= 0,

then Z = (Y−E[Y ])∅
V ar(Y )

converges to the standard normal distribution.
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From the intuitive point of view, the CLT tells us that the sum of many,
not-too-large, and not-too-correlated random terms, average out. The Lyapunov con-
dition is one way for quantifying the not-too-large term request by inspecting the
behavior on some 2 + l moments. In most cases, one tests the satisfaction of the
condition for l = 1.

From the theorem, with the choice Yi = λiηxi , ηy can be approximated as a
random variable drawn from Gaussian distribution ηy = N (0,

⎩d
i=1 λ2

i σ 2
ηx,i ) pro-

vided that the Lyapunov condition holds. If all σ 2
ηx,i terms are identical to σ 2

ηx , then

ηy = N (0, σ 2
ηxλ

T λ).
It is easy to show that the Lyapunov condition holds if each component of random

variable ηx is uniformly distributed within a given interval, as it happens in many
application cases (think of the error distribution introduced by the rounding and
truncation operators operating on binary 2cp codewords). Let us show it with an
example that models the situation where all inputs of our embedded system are
represented on the same number of bits and a 2cp notation is adopted. Rounding is the
considered chopping operator for which we know that the induced error distribution
is uniform and centered.

Example: The CLT Under the Lyapunov Condition

Let ηx be an i.i.d random variable with each component uniformly defined in interval
[−1, 1] (if we consider the case of an embedded system, the error introduced by
rounding is defined in such an interval). Assume that λ2

m ⇒= 0 ≺ λ2
i ≺ λ2

M , i.e., the
generic parameter is bounded by the same minimum and maximum values. Let ηy

= λT ηx and define Yi = λiηxi . We have that E[Yi ] = 0 and variance Var[Yi ] = λ2
i
3 .

Denote

s2
d =

d⎨

i=1

Var[Yi ] = 1

3

d⎨

i=1

λ2
i .

Let us compute E
[|Yi |2+l

⎢
for l = 2

E
[
|Yi |4

]
= λ4

i

⎜ 1

0
ηx4

i dηxi = λ4
i

5

Since
1

(s2
d )2

d⎨

i=1

E
[
|Yi |4

]
= 1

(s2
d )2

d⎨

i=1

λ4
i

5

and
⎩d

i=1
λ4

i
5 ≺ d

5 λ4
M and (s2

d )2 =
⎧

1
3

⎩d
i=1 λ2

i

⎪2 ≥ d2λ4
m

9 we can bound
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Fig. 3.1 The empirical distri-
bution of ηy compared with
the set by the CLT. The dimen-
sion of the parameter space is
d = 5
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Fig. 3.2 The empirical distri-
bution of ηy compared with
the set by the CLT. The dimen-
sion of the parameter space is
d = 15
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(
1

(s2
d )2

d⎨

i=1

E
[
|Yi |4

])
≺ 9λ4

M

5dλ4
m

which scales as O( 1
d ) and, when d ◦ ∞, goes to zero, hence satisfying the Lyapunov

condition. This grants that ηy = N (0, σ 2
ηxλ

T λ).
In the example above, a sufficiently large d, e.g., d > 10, proves to be a good

approximation in many cases. Figures 3.1 and 3.2 present an example showing the
quality of the approximation for d = 5 and d = 15, respectively. The applica-
tion is configured so that λd=5 = [2.47,−2.55, 0.52, 1.10,−0.50] and λd=15 =
[−2.81, 1.23,−2.65,−2.66,−1.99,−2.32,−1.50, 0.13,−1.48,−0.30,−1.67,

−2.55,−2.89, 0.45, 2.47]. 1000 ηx vectors have been extracted from the [−1, 1]d

hypercube according to the uniform distribution. The histogram for ηy is plotted and
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contrasted with the Gaussian curve granted by the CLT (ηy = N (0, 1
3λT λ)). We

can observe that, also with a low d, the empirical distribution approximates well the
Gaussian one.

3.3.1.2 The Multiplicative Perturbation Model

Within a multiplicative model ηx affects inputs to yield perturbed value x p = x(1
+ ηx). The pointwise error ηy = yp − y can be rewritten as

ηy = λT (x ◦ ηx)

where ◦ is the elementwise multiplication operator (multiplication is carried out at
the component by component level). As done before, we are interested in charac-
terizing the first two moments of the error distribution and assume that both inputs
and perturbations, that are supposed to be independent, are drawn according to dis-
tributions fx (0, Cx ) and fηx (0, Cηx ), respectively. We only require the covariance
matrices Cx and Cηx to be known (or that an estimate can be provided), but not the
pdf. Inputs are zero centered only to ease the derivation (a zero mean subtraction can
be introduced before carrying out the analysis). Expectation, now taken w.r.t. inputs
and perturbations, leads to

Ex,ηx [ηy] = Ex,ηx [λT x ◦ ηx] = λT Ex [x] ◦ Eηx [ηx] = 0

and variance

Var(ηy) = Ex,ηx [λT xxT ◦ ηxηxT λ ] = λT Cx ◦ Cηxλ (3.3)

Cηx is diagonal under the assumption that perturbations affecting inputs are inde-
pendent. If that is the case, the (3.3) becomes

Var(ηy) =
d⎨

i=1

λ2
i σ 2

ηx,iσ
2
x,i .

In the particular case that all the input variances are identical to σ 2
x and perturbation

variances to σ 2
ηx , the variance at the output level simplifies as

Var(ηy) = σ 2
ηxσ

2
x λT λ. (3.4)

If we compare the variance of (3.4) with that given in (3.2), we see that the former,
generated according to the multiplicative model, is equal to the latter (additive model)
amplified by term σ 2

x . As with the additive model case, the error distribution can be
approximated with a Gaussian one provided the Lyapunov condition is met.



3.3 Propagation of Uncertainty 37

3.3.2 Nonlinear Functions

Let now function y = f (x) be at least twice differentiable w.r.t. x . Again, x is a
column vector that, once affected by perturbation ηx , assumes value x p. By adopting
the perturbation model, the effect of ηx at the output ηy is

ηy = f (x p) − f (x)

ηy can be hardly described in a closed form unless strong hypotheses about the
nature of function f (·) or the perturbation ηx are assumed. Perturbation propagation
analysis within a nonlinear function is carried out in the literature by assuming the
small perturbation hypothesis, e.g., as done with the sensitivity analysis that studies
the effects of perturbation affecting inputs on the function output, e.g., [129].

Although the small perturbation hypothesis might hold in several cases, it
represents, in general, a strong assumption that needs to be weakened, e.g., as pro-
posed in Chap. 5. However, the small perturbation assumption makes the mathematics
amenable and we can expand f (x p) = f (x + ηx) according to Taylor around x and
stop the expansion at the quadratic term

f (x + ηx) = f (x) + J (x)T ηx + 1

2
ηxT H(x)ηx + o(ηxT ηx)

where J (x) = ∂ f (x)
∂x is the gradient vector and H(x) = ∂2 f (x)

∂x2 the Hessian matrix.
By discarding terms of order higher than two the perturbation propagated at the

output takes the form

ηy = J (x)T ηx + 1

2
ηxT H(x)ηx . (3.5)

Not much more can be said within a deterministic framework unless we introduce
strong assumptions on f (x) or ηx . However, by moving to a stochastic framework,
which considers x and ηx mutually independent and identically distributed i.i.d ran-
dom variables drawn from distributions fx (0, Cx ) and fηx (0, Cηx ), respectively, the
first two moments of the distribution of ηy can be computed.

In fact, under the above assumptions and by taking expectation w.r.t. x and ηx ,
the expected value of the perturbed output (3.5) becomes

E[ηy] = 1

2
E[ηxT H(x)ηx] = 1

2
trace

⎧
E[H(x)ηxηxT ]

⎪
= 1

2
trace (E[H(x)]Cηx ).

If the quasi-Newton approximation for the Hessian H(x) = ∂ f (x)
∂x

∂ f (x)T

∂x holds,
then H(x) is a semidefinite positive quadratic form and

E[ηy] = 1

2
trace (Cx Cηx ). (3.6)

http://dx.doi.org/10.1007/978-3-319-05278-6_5
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From (3.6), each perturbation introduces an increase in E[ηy] if we consider the
quadratic form expansion (a first-order approximation, obtained by solely maintain-
ing the linear term, provides a null value). In order to compute Var(ηy), we consider
only the first term of the expansion (the quadratic term does not allow us to advance
the mathematics), which means that we only keep the linear approximation for func-
tion f (x). Under the above assumptions and by taking expectation w.r.t. x and ηx ,
the variance of the perturbed output becomes

Var(ηy) = E
[

J (x)T ηxηxT J (x)
]

= trace
⎧

E
[

J (x)J (x)T
]

Cηx

⎪
.

Obviously, if f (x) = λT x the derivation reduces to that of the linear function
case.

3.4 Learning from Data and Uncertainty at the Model Level

This section studies the case where parameterized models are built from a series
of noisy data. The use of a limited number of data to estimate the model, i.e., to
determine an estimate of the optimal parameter configuration, introduces an extra
source of uncertainty on the estimated parameters in addition to the noise (in previous
sections, the parameters were given). In fact, given a different data set with the
same cardinality, we will obtain a different parameter configuration with probability
one, also in the linear model case. What happens when we select a non-optimal
(“wrong”) model to describe the data? Which is the relationship between the optimal
parameter configuration, constrained by the selected model family, and the current
one configured on a limited data set? Since the estimated parameter vector is a
realization of a random variable centered on the optimal one, the model we obtain
from the available data can be seen as a perturbed model induced by perturbations
affecting the parameter vector. Which are then the effects of this perturbation on the
performance of the model? This section aims at addressing the above aspects.

3.4.1 Basics of Learning: Inherent, Approximation,
and Estimation Risks

Let Z N = {(x1, y1), ..., (xN , yN )} be the set composed of N (input-output) couples.
The goal of machine learning is to build the simplest approximating model able to
explain past Z N data and future instances that will be provided by the data generating
process.

Consider then the situation where the process generating the data (system model)
is ruled by

y = g(x) + η, (3.7)
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where η is a noise term modeling the existing uncertainty affecting the unknown
nonlinear function g(x), if any. Once the generic data instance xi is available, (3.7)
provides value yi = g(xi ) + ηi , ηi being a realization of the random variable η. In
practical cases, the system for which we aim to create a model, by receiving input xi ,
provides value yi . We comment that both inputs and outputs are quantities measurable
through sensors. The ultimate goal of learning is to build an approximation of g(x)

based on the information present in dataset Z N through model family

f (λ, x) (3.8)

parameterized in the parameter vector λ ∈ Θ ≤ R
p. Selection of a suitable family

of models f (λ, x) can be driven by some a priori available information about the
system model. If data are likely to be generated by a linear model—or a linear model
suffices—then this type of model should be considered. In this case, learning relies
on vast results provided by the system identification theory, e.g., see [130]. The
outcome of the the learning procedure is the parameter configuration λ̂ and, hence,
model f (λ̂ , x), whose quality/accuracy must be assessed.

If the accuracy performance is not met, and margin for improvement exists, we
have to select a new model family and reiterate the learning process. For instance,
if the difference—residual— between the reconstructed value f (λ̂ , x) and the mea-
sured y(x) one on a new data set in not a white noise (test procedure), then there is
information that model f (λ̂ , x) was not able to capture. A new richer model fam-
ily should be chosen and learning restarted. In this direction, feedforward neural
networks have been shown to be universal function approximators [131], i.e., can
approximate any nonlinear function, and are ideal candidates to solve the above
learning problem [39]. However, the complexity of the neural model family must
be balanced with the information content provided by the data, otherwise we might
experience poor approximating accuracy. Such performance loss is either associated
with overfitting (the degrees of freedom exposed by the family model are overdi-
mensioned compared to the effective needs, so that noise affecting the data instances
is learned as well) or underfitting (the model is underdimensioned w.r.t. the available
data and the model cannot extract all the information present in the data).

In the sequel, we present the classic learning from data mechanism based on the
statistical formulation set by Vapnik [132–134].

Define as Structural risk the function

V̄ (λ) =
⎜

L (y, f (λ, x)) px,ydxy (3.9)

where L (y, f (λ, x)) is a discrepancy loss function evaluating the closeness between
g(x) and f (λ, x) and px,y is the probability density function associated with the i.i.d.
(x, y) random variable vector. The structural risk (3.9) assesses the accuracy of a
given model according to the loss function L (y, f (λ, x)).

The optimal parameter λo yielding the optimal model f (λo, x) constrained by the
particular choice of the model family f (λ, x), is
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λo = arg minλ∈Θ V̄ (λ).

However, we do not have access to px,y and only the data set Z N is available.
Such an information allows us to construct the empirical distribution

p̂x,y = 1

N

N⎨

i=1

Dη(x − xi , y − yi ) (3.10)

where Dη(x − xi , y − yi ) is the Dirac function. The use of the estimate p̂x,y of (3.10)
in (3.9) leads to the Empirical Risk

VN (λ) = 1

N

N⎨

i=1

L(yi , f (λ, xi )). (3.11)

Finally, minimization of the empirical risk provides the estimate λ̂

λ̂ = arg minλ∈Θ VN (λ) (3.12)

and, in turn, the model f (λ̂ , x) approximating g(x) whose accuracy performance is
V̄ (λ̂). Minimization of the empirical risk defined in (3.12) is also called the learning
process and the minimization procedure learning algorithm.

Conditions granting λ̂ to converge to λo as well as observations regarding the
speed of convergence will be given later in the chapter. Here, we introduce at first
the concepts of inherent risk, approximation risk, and estimation risk relevant to
subsequent analyses.

Define VI = V̄ (λo)|g(x)= f (λo,x) to be the inherent risk, i.e., the a priori non-null
intrinsic risk we have when unknown function g(x) belongs to the chosen model
family, i.e., g(x) = f (λo, x). Rewrite the structural risk V̄ (λ̂) associated with model
f (λ̂ , x), i.e., the performance of the obtained model, as

V̄ (λ̂) =
⎧

V̄ (λ̂) − V̄ (λo)
⎪

+ ⎝
V̄ (λo) − VI

⎥ + VI . (3.13)

The risk associated with the model is composed of three terms

• The inherent risk VI . The risk depends only on the structure of the learning problem
and, for this reason, can be improved only by improving the problem itself, i.e.,
by acting on the process generating the data, (e.g., by designing a more precise
sensor architecture). Nothing else can be done. This is the minimum risk we
can have and we reach it—implying optimal accuracy performance in function
approximation—when the other sources of uncertainty leading to the two other
risks are null;

• The approximation risk V̄ (λo) − VI . The risk depends on how close the model
family (also named hypothesis space) is to the process generating the data. To
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improve it we need to select model families that are more and more expressive, i.e.,
either contain or are very close to g(x) according to the figure of merit L(·, ·). Given
an unknown g(x) function, we need to select families of approximating functions
that are universal function approximator, e.g., feedforward neural networks.

• The estimation risk V̄ (λ̂) − V̄ (λo). The risk depends on the ability of the learning
algorithm to select a parameter vector λ̂ close to λo. If we have an effective learning
process, we hope to be able to get a λ̂ close to λo so that the contribution to the
model risk is negligible.

The theory allows us to understand the intrinsic limits of learning. A learning
problem is affected by three sources of error; of these, the inherent one is determined
by the nature of the problem and, for this reason, cannot be improved by learning.
The remaining error sources, i.e., those introduced by the approximation and the
estimation processes, are the true target of any learning procedure.

Asymptotically with the number of available data N , the approximation and the
estimation errors can both be controlled if the learning method has some basic con-
sistency features (which most practical methods have). But when the available data
set is small, the dominating component of the learning error is determined if the
method is consistent by the approximation error, i.e., by how well the model family
f (λ, x) is close to the process generating the data g(x). In other words, the model
risk is mainly determined by the choice of the approximating function f (λ, x), rather
than by the training procedure. As a consequence, in the absence of a priori informa-
tion, we have no basis to prefer a consistent learning method to another one. Further
details applied to the particular case where the learning problem is of classification
type can be found in [135].

Example: Inherent, Approximation, and Estimation Risks

Consider a quadratic loss function L (y, f (λ, x)) = (y − f (λ, x))2 and a process
generating the data ruled by g(x) = x, x ∈ [0, 1] affected by a Gaussian noise so
that η = N (0, σ 2

η )

y = x + η.

Consider the function family f (λ, x) = k, λ = [k]. The structural risk becomes

V̄ (λ) =
⎜

(x + η − k)2 1∅
2π

e
−η2

2 dxdη (3.14)

that, after some calculus, leads to

V̄ (λ) = 1

3
+ σ 2

η + k2 − k. (3.15)
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Fig. 3.3 The structural risk as function of k for the example. The structural risk presents a unique
minimum λo in correspondence with k = 1

2

Figure 3.3 presents the structural risk as function of k for the case σ 2
η = 0.01. We

see that the curve is characterized by a unique minimum λo.
The optimal point

λo = arg minλ∈Θ V̄ (λ)

can be obtained by imposing the stationary relationship ∂ V̄ (λ)
∂λ

= 0 and leads to

λo = [ 1
2 ]. Assume that the learning procedure has provided value λ̂ = [ 1

4 ]. The
learning situation is that of Fig. 3.4, where we have some points generated by the
system model y = x + η, the optimal model minimizing the structural risk y = 1

2 ,
and the available one y = 1

4 .
It is now easy to derive from (3.13)

• The inherent risk VI = V̄ (λo)|g(x)= 1
2

= σ 2
η ;

• The approximation risk V̄ (λo) − VI = 1
12 ;

• The estimation risk V̄ (λ̂) − V̄ (λo) = 3
48 .

By adding the three risks we obtain the accuracy performance V̄ (λ̂) = σ 2
η + 7

48
of the available model, in line with what is expected by using (3.15) evaluated for
λ̂ = [ 1

4 ].

3.4.2 The Bias-Variance Tradeoff

Following the previous section, consider now the case where we aim at determining
the expected prediction error at a given—fixed—input value x for a quadratic loss
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Fig. 3.4 The key elements of the learning process. The process generating the data y = x + η,
the optimal model minimizing the structural risk y = f (λo, x) = 1

2 , and the one provided by the

learning procedure y = f (λ̂ , x) = 1
4

function Squared Error (SE), namely the error we should expect in test on an unknown
instance x . The trained model f (λ̂ , x)has been derived by following the minimization
of the empirical procedure (3.12). In the following, expectation is taken with respect
to the noise on a given sample x , namely

SEPE(x) = E
[

y(x) − f (λ̂ , x)
]2

. (3.16)

We present a main result known in the literature as the bias-variance tradeoff.
The SE can be seen as decomposed in the intrinsic error level, that introduced by the
model or approximation error, and that introduced by the estimation procedure. Let
us elaborate (3.16) as

SEPE = E
[

y(x) − f (λ̂ , x)
]2

= E
[

y(x) − g(x) + g(x) − f (λ̂ , x)
]2

= E
[
(y(x) − g(x))2

]
+ E[(g(x) − f (λ̂ , x))2]

+ 2E
[
(y(x) − g(x)) (g(x) − f (λ̂ , x))

]

= E
[
η2

]
+ E

[⎧
g(x) − f (λ̂ , x)

⎪2
⎞
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since E
[
(y(x) − g(x)) (g(x) − f (λ̂ , x))

]
= 0. In fact, we can rewrite the term as

E [y(x)g(x)] + E
[

y(x) f (λ̂ , x)
]

− E [g(x)g(x)] + E
[
g(x) f (λ̂ , x)

]

and

E [y(x)g(x)] = g2(x)

E
[

y(x) f (λ̂ , x)
]

= E
[
(g(x) + η) f (λ̂ , x)

]
= E

[
g(x) f (λ̂ , x)

]

E [g(x)g(x)] = g2(x).

Thus, the SE can be decomposed in the variance of the noise and the SE between
the true function and the estimate

E [SE] = σ 2
η + E

[⎧
g(x) − f (λ̂ , x)

⎪2
⎞

. (3.17)

The second term of Eq. (3.17) can be further refined by using the same trick used

above, which requires adding and subtracting E
[

f (λ̂ , x)
]

E

[⎧
g(x) − E

[
f (λ̂ , x)

]
+ E

[
f (λ̂ , x)

]
+ f (λ̂ , x)

⎪2
⎞

= E

[⎧
g(x) − E

[
f (λ̂ , x)

]⎪2
⎞

+ E

[⎧
E

[
f (λ̂ , x)

]
− f (λ̂ , x)

⎪2
⎞

+ 2E
[⎧

g(x) − E
[

f (λ̂ , x)
]⎪ ⎧

E
[

f (λ̂ , x)
]

− f (λ̂ , x)
⎪]

The double product cancels since

E
[
g(x)E

[
f (λ̂ , x)

]]
= g(x)E

[
f (λ̂ , x)

]

E
[
g(x) f (λ̂ , x)

]
= g(x)E

[
f (λ̂ , x)

]

E

[
E

[
f (λ̂ , x)

]2
⎞

= E
[

f (λ̂ , x)
]2

E
[

f (λ̂ , x)E
[

f (λ̂ , x)
]]

= E
[

f (λ̂ , x)
]2

Equation (3.17) can be finally rewritten as

SEPE = σ 2
η + E

[⎧
g(x) − E

[
f (λ̂ , x)

]⎪2
⎞

+ E

[⎧
E

[
f (λ̂ , x)

]
− f (λ̂ , x)

⎪2
⎞

.

(3.18)
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Equation (3.18) states that the accuracy performance of the approximating function
f (λ̂ , x) can be described by means of three terms. The first one is the variance of the
intrinsic noise and cannot be canceled, independently of how good our approxima-
tion is. The second term is the square of the bias and represents the quadratic error we
have in approximating the true function g(x) when our model generation procedure
is able to provide the best model of the model family f (λo, x) (recall again that
the best model is the one that minimizes the distance between the true function and
the optimal approximation built in a noise-free environment having an infinite num-
ber of training points). De facto, the bias represents a discrepancy between the two
functions according to the SEPE figure of merit. The last term is known as variance
and it represents the variance introduced by having considered the approximating
model f (λ̂ , x) instead of the optimal one within the family f (λo, x). Of course, if
our model generating process is capable of providing a more accurate model, the
variance term reduces.

Comments

Recall that the SE is the integral of the quadratic pointwise discrepancy only in
the case that the distribution of the inputs is uniform. When this is not the case, the
quadratic discrepancy is weighted by the pdf fx to differentiate the interest of the error
toward more likely inputs. For instance, if we consider interval X = [0, 1], g(x) = x2

and the approximating function f (λ̂ , x) = x then the quadratic discrepancy is SE
= 1/30. Differently, if we induce the probability density function fx = 2 if x ≺ 0.25,
fx = 2/3 if x > 0.25, then the SE � 0.027. Results related to convergence of the
Mean Squared Error (MSE) to the SE are given in Chap. 4.

From Eq. (3.18) we observe that, in order to minimize the SEPE, we need to min-
imize both the bias and the variance terms over the input space. However, this is
not trivial. For instance, if the model family is rich in terms of degrees of freedom
(say overdimensioned w.r.t. the problem) then f (λ̂ , x) would perfectly interpolate
the training data. This will make the bias term vanish entirely at the cost of a high
variance. More in general, finding an optimal bias-variance tradeoff is a difficult task
but acceptable solutions can be found, e.g., by relying also on early stopping tech-
niques, by cross-validation methods, or by introducing regularisers in the learning
process [39].

3.4.3 Nonlinear Regression

The regression problem is a particular case of learning and aims at determining the
best static model approximating an unknown static function. The framework assumes
that there exists a time invariant model generating the couples (xi , yi ) populating the
data set Z N . The learning framework is that of the empirical/structural risks presented
in previous sections, here presented in the asymptotic formulation to give the reader
a different prospective on how the learning framework can also be formalized.

http://dx.doi.org/10.1007/978-3-319-05278-6_4
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Define the structural risk in the form

V̄N (λ) = 1

N

N⎨

i=1

E [L(εi (λ))]

and the empirical risk

VN (λ) = 1

N

N⎨

i=1

L(εi (λ))

where εi (λ) = yi − f (λ, xi ) is the prediction error at sample (xi , yi ). The optimal
parameter point is defined as

λo = arg min
λ∈Θ

[
lim

N◦+∞ V̄N (λ)

⎞

and estimated by
λ̂ = arg min

λ∈Θ
VN (λ).

The following analysis holds around the optimal point λo which minimizes the
structural risk (note that, under the regularity hypothesis, V̄N ◦ V̄ when N ◦ ∞).
If local minima exist and we find ourselves in one of these, then we require that there
exists a neighborhood for which the optimal point is unique. The analysis confines
us within this neighborhood.

As with [137], we require that the approximating function f (λ, x) is Lipschitz and
that the partial derivatives up to the third order w.r.t λ and ε are bound by a constant
(regularity conditions). Under these hypotheses, λ̂ converges in probability to λo

when N ◦ ∞ and the distribution of the parameter vector follows a multivariate
Gaussian distribution

lim
N◦∞

∅
Nτ

− 1
2

N (λ̂ − λo) ∼ N (0, Ip) (3.19)

where, the Hessian of V̄N is defined as V̄ ′′
N

τN = [
V̄ ′′

N (λo)
⎢−1

UN
[
V̄ ′′

N (λo)
⎢−1

,

and the squared matrix UN of order d is

UN = N E

⎟⎠
∂VN (λ)

∂λ

)⎠
∂VN (λ)

∂λ

)T
]
.

Ip is the identity matrix of order p.
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Comments

The framework designed for the nonlinear case is general but nonlinearity does not
allow us to obtain closed-form results unless particular assumptions are made. In non-
linear regression, we identify a suitable nonlinear model family f (λ, x) characterized
by enough expressive power to keep as small as possible the approximation risk. This
can be achieved by resorting to universal function approximators, e.g., feedforward
neural networks or radial basis functions [39, 131] to be used as f (λ, x). Then, we
have to control the estimation error for the chosen neural network, an operation that
can be carried out by selecting an effective learning algorithm, such as a second-order
Levenberg–Marquardt, a DFP, or a BFGS one, to be applied to the empirical risk
(see [125] for a comprehensive treatment). We might even need to run the algorithm
several times to mitigate the presence of local minima in the VN function.

Once training is perfected, the validity of the above must be intended in the
neighborhood of the found local minimum that, under the regularity assumptions, is
unique. However, it is thought that such univocity for the minimum does not exist
for overdimensioned neural networks where the minimum provided by the learning
procedure might be a saddle point. It should also be emphasized that if we run again
the learning algorithm we will end up in a different minimum with probability one.
This is a consequence of the complexity of the parameter space and the random
selection for the initial weights. The final minimum also depends on the particular
choice of Z N . Although the derivation might seem to have a small impact in real
applications, it is relevant when the approximating function is linear, either static or
dynamic, as presented in the next two sections.

3.4.4 Linear Regression

The linear regression case is a particularly relevant case of nonlinear regression,
where the system generating the data is linear

y = g(x) + η = λoT x + η (3.20)

with λo being an unknown parameter vector to be estimated. η ∼ N (0, σ 2
η ) is a

white noise of σ 2
η variance. The Gaussian request for the noise is amply satisfied

whenever data come from sensors. In other words, we assume that scattered data
coming from the sensor (or otherwise available) can be optimally described by a
linear model. However, only the data set Z N is available and we wish to provide,
starting from the finite data set, an estimate λ̂ of λo.

We choose the linear model family f (λ, x) = λT x and the loss function to be an
SE. All requested hypotheses leading to (3.19) are satisfied and a unique minimum λo

is achieved if inputs are linearly independent (otherwise we simply have to remove
the dependent inputs).
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V̄N and VN are chosen as

V̄N (λ) = 1

2N

N⎨

i=1

E
[
εi (λ)2

]

VN (λ) = 1

2N

N⎨

i=1

εi (λ)2.

Since
∂VN (λ)

∂λ

∣∣∣∣
Z N

= − 1

N

N⎨

i=1

εi (λ)xi ,

by exploiting the independence between x and ε and recalling that E[εiε j ] = 0 since
η is an i.i.d. random variable

UN (λ) = 1

N
E

⎡

⎣
N⎨

i=1

εi (λ)xi

N⎨

j=1

ε j (λ)xT
j

⎤

⎦ = 1

N

N⎨

i=1

N⎨

j=1

E
[
εi (λ)ε j (λ)xi xT

j

]

= 1

N

N⎨

i=1

N⎨

j=1

E
[
εi (λ)ε j (λ)

⎢
E

[
xi xT

j

]
= 1

N

N⎨

i=1

E
[
εi (λ)2

]
xi xT

i

while

V̄ ′′
N = ∂2V̄N (λ)

∂λ2 = 1

N

N⎨

i=1

xi xT
i .

Since E
[
εi (λ)2

⎢ = σ 2
η

UN (λ) = σ 2
η

1

N

N⎨

i=1

xi xT
i = σ 2

η V̄ ′′
N (λ).

The expression of τN simplifies as

τN = [
V̄ ′′

N (λo)
⎢−1

UN (λo)
[
V̄ ′′

N (λo)
⎢−1

= [
V̄ ′′

N (λo)
⎢−1

σ 2
η V̄ ′′

N (λo)
[
V̄ ′′

N (λo)
⎢−1

= σ 2
η

[
V̄ ′′

N (λo)
⎢−1 = σ 2

η

[
V̄ ′′

N

⎢−1

Also, in the linear case the distribution of the parameters is Gaussian following
(3.19), and reduces to
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lim
N◦∞(λ̂ − λo) ∼ N (0,

σ 2
η

N

[
V̄ ′′

N

⎢−1
).

The covariance depends on the variance of the noise and the inverse of the input
Hessian V̄ ′′

N = 1
N

⎩N
i=1 xi xT

i .

Comments

We comment that linearity must be intended w.r.t. parameters λ . As such, any model
family f (λ, x) = λT φ(x), with φ a generic function, can be used, assumptions
are automatically valid, and the results hold. This comment has some relevance to
machine learning, where the φ function can be intended as a transformation of the
inputs (feature extraction).

3.4.5 Linear Time-Invariant Predictive Models

One of the most common applications we can consider given a datastream is the
design of dynamic models able to approximate it over time. This can be carried out
by different methods, e.g., by limiting the analysis to the most common linear tech-
niques, by considering space–state descriptions or predictive input–output models. In
the following, we will focus on predictive models since they will be used in Chap. 10.
Assume that a physical description for the system model is unavailable and that the
unknown dynamic system generating the data is time invariant.

Following the notation set up by Ljung [130], given a parameter vector λ ∈ Θ ,
the input and the output sequences ut = (u(1), . . . , u(t)) ∈ R

t×m, u(·) ∈ R
m and

yt−1 = (y(1), . . . , y(t −1)) ∈ R
t−1, respectively, the predictive model in a one-step

prediction form for output y(t), at time t is

ŷ(t, λ) = f (λ, ut ,yt−1).

The prediction error for model f (λ, ut ,yt−1), at time t is

ε(λ, ut ,yt−1) = ε(t, λ) = y(t) − ŷ(t, λ).

The structural risk V̄N (λ) can be defined as

V̄N (λ) = 1

N

N⎨

t=1

E [L(λ, ε(t, λ))]

where L(·, ·) ∈ R is a suitable loss function and expectation is taken w.r.t. the
distribution of u and y.

http://dx.doi.org/10.1007/978-3-319-05278-6_10
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The optimal parameter configuration is the one minimizing the structural risk

λo = arg min
λ∈Θ

[
lim

N◦+∞ V̄N (λ)

⎞
.

Following the procedure presented in Sect. 3.4.1 and given the input–output train-
ing sequence Z N = {(u(t), y(t))}N

t=1, the empirical risk becomes

VN (λ, ut , yt−1) = 1

N

N⎨

t=1

L(λ, ε(t, λ)).

Minimization of the empirical risk leads to the parameter configuration λ̂N

λ̂N = arg min
λ∈Θ

VN (λ, ut , yt−1).

In the following, we assume that the obtained model has been suitably chosen
and does not degenerate in the identification phase (otherwise, it must be scaled to a
smaller model).

By relying on the theoretical framework developed in [130, 136, 137], under the
mild hypotheses that recent past data suffice to generate accurate approximations of
u(t) and y(t), that f (·) is three time differentiable w.r.t. λ and satisfies Lipschitz
conditions, and that the structural risk is a convex function, minimization of WN (λ)

provides a unique point λo, it is true that:

lim
N◦∞ VN − V̄N ◦ 0 w.p. 1

thus
lim

N◦∞ λ̂N ◦ λo w.p. 1

and

lim
N◦∞

∅
Nτ

− 1
2

N (λ̂N − λo) ∼ N (0, Ip)

where τN is the covariance matrix

τN = [
W ′′

N (λo)
⎢−1

UN
[
W ′′

N (λo)
⎢−1

,

UN = N E
[
VN

′(λo)VN
′(λo)T

]

W ′′
N = ∂2WN

∂λ2 is the Hessian matrix of WN and VN
′ = ∂VN

∂λ
is the gradient of VN .

The theorem assures that, given a sufficiently large N , λ̂N follows a multivariate
Gaussian distribution with mean vector λo and covariance matrix τN

N .
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The theorem contemplates the situation where there exists model bias between the
optimal model and the process generating the data. In fact, under the aforementioned
hypotheses, a unique optimal point λo ∈ Θ exists even in case of model bias.

The above equations grant that the tolerated perturbation space for parameters is
ruled by a Gaussian distribution. Having an application we can compute an estimate of
matrix τN , hence knowing the uncertainty we should expect on parameters. Having
the uncertainty distribution on λ̂ we can now estimate the expected uncertainty in
accuracy, e.g., V̄ (λ̂) by using randomization techniques as explained in Chap. 4.

3.4.6 Uncertainty at the Application Level

As a final note we comment that, in addition to the different sources of uncertainty
we might experience, and that were summarized in the previous sections, we also
have uncertainty at the application level. This source of uncertainty derives from
the fact that, often, we do not know the solution to our application and we design
it by exploiting some a priori information, whenever available. The outcome is a
numerical algorithm describing the application.

However, we might have considered another solution, better, worse, or equivalent
to the one we have. Clearly, we will keep the best performing solution also satisfying
some extra application constraints such as computational complexity, power/energy
consumption, or memory requirements, to name the few. The application solution
might be complex, since it might come from a partitioning approach where the
application is partitioned in parts, each of which has to be solved with the most
appropriate signal/image processing or computational intelligence tool.

However, by looking at the problem from a high-level perspective the key ele-
ments are the unknown ideal algorithm, optimal in its own sense g(x) and the best
solution we found f (x), x representing the input vector feeding my application. The
uncertainty at the application level can be evaluated by introducing a discrepancy
L(·, ·) between the two functions and computing the functional

V̄ ( f, g) =
⎜

L (g(x), f (x)) px dx

where px is the pdf induced on the input space. Function g(x) is unknown but, as
an Oracle, it provides the noisy value y = g(x, η) once queried with input x . η is an
unknown noise affecting the y generation process.

Clearly, the application bias increases if function f (x) has not been suitably
selected and it badly approximates g(x). All aspects related to approximation and
inherent risks can be extended as well to this framework if we assume that function
f (·) belongs to a functional space F , possibly, but not necessarily, parameterized.

The problem requires now to estimate V̄ ( f, g) with V̂ ( f, g) having only data set
Z N but being able to invoke the Oracle all the needed time. Chapter 7 will identify
the optimal N so that V̂ ( f, g) will be a good estimate of V̄ ( f, g). Let us now assume

http://dx.doi.org/10.1007/978-3-319-05278-6_4
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that we have found a set of solutions F f = { f1(x), f2(x), . . . , fn(x)}. Since it is
hard to guarantee that solutions are i.i.d we can only select the best solution f̄ (x) as
the one minimizing the discrepancy function over set F f

f̄ (x) = arg min
fi (x)∈F f

V̂ ( f, g).

Not much more than this can be done unless a priori information is made available
by someone.



Chapter 4
Randomized Algorithms

There exists a very large class of problems that are computationally prohibitive when
formalized in deterministic terms, but may become manageable when a probabilistic
formulation can be derived and considered instead. For those problems, we are no
more requesting to find the problem solution but a solution that, according to some
probabilistic figure of merit, solves the problem.

Examples are the evaluation of the performance of a system when its computation
is affected by perturbations (robustness analysis), verification of the satisfaction of the
performance level of an embedded system or an algorithm (performance verification
problem), identification of extrema of functions (function optimization problem),
and design and analysis of robust controllers, just to name the few applications.
The cost we have to pay to abandon determinism is that derived results will hold in
probability.

Since the focus here is on embedded computation, we will see that there are some
particular cases that might arise during the operational life of the embedded system
violating the application constraints. However, such situations might be acceptable
provided that the constraints are violated for a short time and constraints violation is
a rare event. These aspects will be addressed in Chaps. 5 and 7.

Here, we request to be able to address a very large class of numerical-based
problems and applications and find in the space of Lebesgue measurable functions
the appropriate mathematical framework.

Definition: Lebesgue measurability

We say that a generic function u(ψ), ψ ∀ Ψ ∈ R
l is Lebesgue measurable with

respect to Ψ when its generic step-function approximation SN obtained by partition-
ing Ψ in N arbitrary domains grants that

lim
N≤≥ SN = u(ψ)

holds on set Ψ − Ω , Ω ∈ R
l being a null measure set [20].
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We point out that no functions generated by a finite-step, finite-time algorithm,
such as any engineering-related mathematical computations, can be Lebesgue non-
measurable. Indeed (see, e.g., [21]), the only way to produce nonmeasurable func-
tions is to invoke the Axiom of Choice over an uncountable family of sets. This
procedure is purely theoretical, and the objects obtained in this fashion are necessar-
ily nonconstructible since the construction procedure would involve an uncountable
number of arbitrary choices.

Under the Lebesgue measurability hypothesis and by defining a probability den-
sity function fψ with support Ψ , it comes out that we can transform computationally
hard problems into manageable problems by sampling from Ψ and resorting to prob-
ability. Randomization comes as the main ingredient of the recipe and grants that
obtained results, valid in probability, are characterized by an arbitrary accuracy and
confidence levels function of the number of drawn samples. The loss in determinism
is largely paid back by the possibility to solve our problem with a polynomial time
algorithm.

In fact, all useful algorithms to be executed on embedded systems can be described
as Lebesgue measurable functions and many interesting problems can be cast in the
same formalism. However, by setting a general framework for a problem solution
we can neither expect to find results in a closed form for all Lebesgue measurable
applications nor pretend to solve deterministically the computationally hard problem
associated with the application solution. To tackle such an issue we reformulate the
deterministic problem in a probabilistic one which can be solved by Monte Carlo
sampling under the control of the probabilistic theory of learning.

The chapter introduces the randomization mechanism for problem solution whose
algorithmic description is known as Randomized algorithm.

The structure of the chapter is as follows: At first, we briefly introduce the com-
plexity aspect associated with algorithms and problems. Since solutions will mostly
be unmanageable given a generic problem described as a Lebesgue measurable func-
tion, we will resort to randomization to solve it. Monte Carlo is then presented fol-
lowed by such fundamental results that are asymptotic in the number of samples n
that grants convergence of some estimates to their expected values (laws of large
numbers). Since asymptotic results are of scarce use in real applications (we cannot
obtain a solution for a problem by taking an infinite number of sample), we need to
search for bounds that grant some results to hold for a finite n. This can be achieved
with randomized algorithms that integrate Monte Carlo with results coming from the
theory of learning.

4.1 Computational Complexity

The computational complexity theory studies the intrinsic difficulty associated with
the solution of a computable problem. Since for a computable problem an algorithm
exists, i.e., the problem solution can be obtained in a finite time with a finite num-
ber of steps, it is our interest to identify “the best” algorithm solving the problem,
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with optimality intended according to a given figure of merit. The complexity of an
algorithm is generally evaluated as the time execution and memory resource required
by an abstract machine to execute it. If time execution and memory resources are
the figures of merit considered to assess the performance of the algorithm, say for
solving the sorting problem, we might be interested in

• evaluating the complexity of the sorting algorithm;
• asking whether it is possible to identify a better solution for it or not.

If we focus on memory and execution time we can ask several questions whose
answers are, a priori, not trivial. Which algorithm is using less memory among the
ones we have? Which one is best performing on the average (i.e., the expected execu-
tion time w.r.t. random data in the sequence)? And when the sequence is ordered in the
opposite way (worst case), which is the time complexity of our algorithm? Answer-
ing to these questions—and many others scholars or practitioners might raise—is
fundamental if we wish to execute the algorithm on a real machine characterized by
finite resources.

We comment that the questions posed above represent specific problems we wish
to solve either deterministically or in probability and are of paramount relevance.
In fact, even if a problem is computationally solvable in principle, it may not be
addressable in practice whenever the algorithm requires an unfeasible amount of
execution time or storage. The problem is general: any computer or embedded sys-
tem introduces at some point hardware constraints which might make the practical
execution of a given algorithm unfeasible.

4.1.1 Analysis of Algorithms

Computational complexity, in its analysis of an algorithm realm, approaches an
algorithm to be investigated by observing how some extensive variables scale, e.g.,
the cardinality of a data set n or the dimension of the input space n.

Do we need to store the whole data set? If the answer is positive then we need n
cells for storage and the Big Data paradigm is likely to become a problem. Do we
need extra data structures to execute the algorithm? Then the needed storage space
is the sum of all requested memory resources.

The algorithm time complexity can be decomposed in the time requested to
address the basic sequences of operations (or instructions) and similarly to the mem-
ory complexity case becomes function of extensive variables.

Consider, for instance, the algorithm A given in Algorithm 1 evaluating the scalar
product of two n-dimensional integer vectors x, y ∀ N

n.
The complexity of algorithm A can be computed by evaluating the memory

requirements M(A) and the abstract computation execution time C(A). For sim-
plicity, we do not consider the complexity associated with memory assignment to
the vectors and data acquisition since we wish to focus the attention on the algorithm
itself. The memory requirement is simply the sum of requested variables (e.g., in
memory cells, words, or bytes)
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Algorithm 1: Algorithm A: a simple algorithm computing the scalar product
between two vectors

scalar_product = 0;
i = 0;
assign memory to vectors x and y and populate the content;
while i < n do

scalar_product = scalar_product + x[i]y[i];
i = i+1;

end

M(A) = 2n + 2

while the computational complexity is

C(A) = (2n + 2)Ta + (n + 1)Tc + n(2T+ + T◦)

where Ta is the time requested for an assignment, Tc that associated with the
evaluation of a condition, T+ and T◦ represent the times requested to execute an
addition and a multiplication, respectively.

We comment that all time components T assume constant values on a given
processor (to ease the understanding we assume a sequential execution on a single
core processor having independent instructions, e.g., for assignment, addition and
multiplication); the faster the processor the shorter the execution time. It is clear that
the average, the worst case or a generic case analysis coincide since complexity is
not dependent here on the specific data instances but solely on the cardinality of the
sequence.

The complexity of an algorithm is defined by means of the asymptotic character
of the complexity figures of merit when the extensive variable n goes to infinity.
The consequence is that the algorithm complexity is assessed by investigating how
it scales with the problem complexity. Here, dependencies introduced by a specific
machine assume constant values and can be neglected.

By referring to Algorithm 1, M(A) scales as 2n, that is to say its order is O(n),
while C(A) = n(2T+ + Tc + T◦ + 2Ta) yields to an O(n) order. It comes out that
both functions C and M are linear with n. When Big Data are available we know
that both the execution time and the memory complexity of the algorithm will scale
linearly with n.

The “big Oh” notation characterizes the complexity of a given algorithm by hiding
smaller terms contributions. The advantage in its use is that it makes the evaluation
of complexity independent of the specific hardware platform or the computational
model used. Other approaches evaluate the complexity of an algorithm by providing
lower and upper bounds for it [209].

Let us evaluate the scalar product in a different way, within a sequential approach.
The complexity of Algorithm 2 according to the two figures of merit is M(B) = O(1),
C(B) = O(n) since the memory occupation does not scale with n and the loop is
iterated n + 1 times.
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Algorithm 2: Algorithm B: a sequential scalar product computation
scalar_product = 0;
i = 0;
assign memory to scalars x and y;
while i < n do

input x and y;
scalar_product = scalar_product + xy;
i = i+1;

end

The comparison between the two algorithms is then carried out at the big Oh
notation level by ordering their complexity according to the rank

· · · O(k−n) ≺ O(n−k) ≺ O(n−1) ≺ O(1) ≺ · · ·

≺ · · · O(log n) ≺ O(n) ≺ O(nk) ≺ O(kn) ≺ · · ·

where k is a strictly positive real value. Clearly, algorithms A and B have the same
computational complexity in terms of execution time but algorithm B does not require
storing the two vectors and, hence, is to be preferred to A if memory is a problem and
n increases. For a small number of data the opposite might hold since the constant
terms associated with arithmetic operations, the memory assignment and the input
readout operations might introduce a strong influence on the final time execution.
However, these situations are of no interest to computational complexity.

Complexity can be evaluated also by inspecting the behavior of the algorithm in
the worst or the average case; the worst case is generally considered to compare two
algorithms when their average complexity is identical.

4.1.2 P, NP-Complete, and NP-Hard Problems

We say that a problem A belongs to class P if its computational time complexity is
polynomial O(nk) with constant k. In other words, the algorithm solves the problem
in a polynomial execution time. Some authors, e.g., [23] claim that such a property
characterizes problems that can be considered “efficiently solvable” or “tractable.”
This statement is only qualitatively true but sheds some light on the intrinsic com-
plexity behind algorithms.

The problem of evaluating a scalar product belongs to class P. Many other algo-
rithms belong to the P class: from ordering a vector of finite dimension, to verifying
the presence of a given pattern within an image and carrying out a digital filtering of
a signal.

Consider, as an example, the problem of sorting a numerical vector of cardinality
n. Bubblesort shows complexity O(n2), merge sort O(n log n) both for the worst and



58 4 Randomized Algorithms

Fig. 4.1 The classes of
problems P, NP, NP-complete,
and NP-hard and their
inclusions provided that P ∪=
NP. The complexity increases
when we leave the P problems
and move toward the NP-hard
ones
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Fig. 4.2 The classes of
problems P, NP, NP-complete,
and NP-hard and their
inclusionsprovided that P =
NP. The complexity increases
when we move toward NP-
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the average cases, quicksort O(n log n) for the average case, and O(n2) for the worst
case [24]; different algorithms have different complexities.

With reference to Fig. 4.1, the class of nondeterministic polynomial time problems
NP is larger than the P one. NP contains the class of decision problems for which,
given a candidate solution, we can verify in polynomial time if the solution solves
the problem or not (in other words, we sample a candidate solution from the solution
space and verify in polynomial time whether the selected solution is effective or
not). NP contains many important problems with the hardest called NP-complete.
For NP-complete problems no polynomial-time algorithms are known to solve them.
A different way to characterize a NP-complete problem is the following: a decision
problem is said to be NP-complete if it is NP and any other NP problem can be
reduced to it so that its complexity is bounded by a polynomial in the complexity of
the original problem.

A problem H is said to be NP-hard if and only if there exists a NP-complete
problem L that is reducible to H in polynomial time. In other words, problem L can
be solved in polynomial time by a machine which provides an oracle for H. Again,
a problem is NP-hard if each NP problem can be reduced to this problem. One of
the still open questions is whether P = NP or not, i.e., can a NP problem (and hence
any of the class) be solved in polynomial time? Were that be the case, then Fig. 4.1
would degenerate as depicted in Fig. 4.2.

Even if it is thought that the answer is negative, the problem is still without
a formal solution. The interested reader should consider [25] for a detailed analysis
about complexity issues.
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An example of a NP hard problem of interest here is the following: Given a
Lebesgue measurable function u(ψ) ∀ [0, 1], ψ ∀ Ψ ⊂ R

l and a value γ ∀ [0, 1],
does inequality u(ψ) ∞ γ hold for any ψ ∀ Ψ ? The problem, which models the
situation where we wonder about the level of satisfaction of a constraint, is surely
computationally intractable for a generic u(·) function, since we should query the
oracle at each ψi and ask the question “is u(ψi) below γ ?” Even if the oracle responds
in a single time step (polynomial time response), the number of queries needed to
solve the whole problem is not polynomial for a continuous space Ψ .

We will see in subsequent sections that some hard problems can be addressed
and solved by resorting to probability. Such problems are known in the literature as
belonging to the class of Randomized Polynomial time (RP) problems.

4.2 Monte Carlo

Monte Carlo methods constitute a class of algorithms that use a repeated random
sampling approach and a probabilistic framework to compute the requested out-
put. Due to the possibly large sampling required to provide accurate results, their
full effectiveness became available thanks to advances in the computational power
exposed by current processors and supercomputers (even if the history of the method
dates back to the Manhattan project and it has been formalized in a seminal paper
by Metropolis and Ulam [8] already in 1949).

Monte Carlo is an effective tool for addressing problems which can hardly be
solved analytically for the mathematical complexity of the involved functions (e.g.,
integro-differential equations coming from physics and chemistry). It should be noted
that Monte Carlo is a set of methods more than a method, each of which personalized
to solve a specific class of applications. For instance, we have a method with its
own mathematical results to address the integration problem, another for dealing
with optimization or computational mathematics. The interested reader can refer to
[12, 13] for a comprehensive analysis and further advances. As mentioned above,
the core idea is that of sampling from a space and observing the satisfaction of
a property or generating an estimate based on the sample ensemble; results are
then aggregated to provide an approximated solution to the original problem. In the
following, we present at first the idea behind Monte Carlo and, then, the main results
the theory provides.

4.2.1 The Idea Behind Monte Carlo

To present the Monte Carlo method with a straight and widely used example: the
estimation of π .
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Fig. 4.3 Circle C is inscribed
in square S representing the
sampling world. Defined
as PrC the probability of
extracting a point belonging
to the circle, then π = 4 PrC

S

C

2r

Example 1: a probabilistic estimate for π

Consider a square S of side length 2r and a circle C inscribed within the square (see
Fig. 4.3). Assume that a uniform distribution is induced on the square so that each
sample drawn from there is equiprobable. Draw then n points inside the square and
observe, for each point, whether it belongs to the circle or not. In doing this a straight
question would be to ask which is the probability PrC of extracting a point belonging
to the circle.

The answer is that such a probability is simply the ratio between the area of the
circle and that of the square, i.e., its value is π

4 . Then, 4 PrC is exactly π : we found
a way to compute π with a probabilistic approach.

The issue now becomes that of computing PrC which, a priori, is unknown. We
solve the problem with randomization by extracting n samples s1, . . . , sn from S
according to the uniform distribution, and evaluating the number of samples nC

falling within the circle and computing the empirical probability

p̂n = nC

n
.

The procedure is formalized as follows: Consider the indicator function IC

IC(si) =
{

1 if si ∀ C
0 if si /∀ C

The empirical probability p̂n can be computed as

p̂n = 1

n

n∑

i=1

IC(si)

and represents an approximation of PrC . Having an estimate for PrC , we generate an
estimate for π as

π̂n = 4p̂n = 4

n

n∑

i=1

IC(si).
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How good is the approximation π̂n of π? It is intuitive to believe that the larger the
number of samples n the better the estimate (the smaller the error e(n) = |π̂n − π |).

As such, we should consider a “sufficiently large” n to obtain a good approxi-
mation according to some predefined accuracy level. Such aspect will be addressed
in Sect. 4.3. Instead, the convergence issue of π̂n to π will be studied in Sect. 4.2.2.
A high level algorithm for the Monte Carlo method is given in Algorithm 3.

Example 2: a different probabilistic approach to estimate π

Let us consider a different approach to estimate π with randomization. Consider the
equation of a sector of circumference y = f (x), x, y ∀ [0, 1]

y =
√

1 − x2

and observe that π can be obtained as

π = 4
∫ 1

0

√
1 − x2dx.

If we induce a uniform distribution fx on the input domain [0, 1] we have that π

can also be intended as the expected value of y

π = 4Ex[y(x)] = 4
∫ 1

0

√
1 − x2dx.

We comment that the variance σ 2
y of y is bound

σ 2
y =

∫ 1

0
(y(x) − Ex[y(x)])2 dx ∞ 1.

Extract then n samples xi from [0, 1] and evaluate the sample mean

Ên(y(x)) = 1

n

n∑

i=1

y(xi).

Then, by invoking the Tchebychev inequality in the form

Pr (|z − μ| ∅ α) ∞ σ 2

α2

where z is an i.i.d random variable of mean μ, variance σ 2, and α is a positive number
[2], we have that
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Algorithm 3: The Monte Carlo algorithm

1- Identify the input space D of the algorithm and a random variable s, with probability density
function fs over D;

2- Extract n samples Sn = {s1, . . . , sn} from D according to fs;
3- Evaluate the algorithm on Sn;
4- Generate an estimate of the algorithm output.

Pr
(
|Ên(y(x)) − Ex[y(x)]| ∅ ε

)
∞ σ 2

y

nε2 ∞ 1

nε2 .

where the variance of the estimator is Var(Ên(y(x))) = σ 2
y
n . We can then select the

confidence δ as

1

nε2 < δ =⇒ n >
1

δε2 .

This says that, if we choose n ∅ 1
δε2 , then

Pr
(
|Ên(y(x)) − Ex[y(x)]| ∞ ε

)
∅ 1 − δ

holds with probability 1 − δ and we can estimate π as

Pr
(
|4Ên(y(x)) − 4Ex[y(x)]| ∞ 4ε

)
= Pr

(|π̂n − π | ∞ 4ε
) ∅ 1 − δ

from which we derive the number of points needed to estimate π at a given tolerated
level. For instance, if we select ε = 0.025 and δ = 0.01 we need n ∅ 1600. We
extracted n = 1600 samples from a uniform distribution fx and obtained the estimate
π̂n = 3.148 for which |π̂n − π | = 0.006 ∞ 0.1 = 4ε.

In the previous experiments, we have implicitly assumed that sampling is associ-
ated with a continuous random variable. However, similar results hold by sampling
over a discrete space (e.g., a regular grid over (0, 1)k, k ∀ N).

Interestingly, the second solution proposed to estimate π provides as well the
minimum number of samples satisfying a given accuracy and a confidence level. In
the sequel, we will be interested in this latter approach by improving bounds so as
to reduce the number of samples needed to solve a specific problem after having
investigated the asymptotic behavior of the estimate.

4.2.2 Weak and Strong Laws of Large Numbers

In Sect. 4.2.1 we have seen that, by extracting n samples from S it is possible to build
sequence π̂1, π̂2, . . . , π̂n; it would be appreciable to discover that such a sequence
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converges to the expected value π as the second example showed provided that
n ≤ ≥. This main result is known in the literature as the Law of large numbers; the
interested reader can refer to [14] for its proof.

4.2.2.1 Weak Law of Large Numbers

Let x ∀ D be a continuous scalar random variable of finite expectation μ and finite
variance σ 2

x and x1, . . . , xn a set of n independent and identically distributed samples
drawn from D (e.g., D = R) according to the continuous probability density function
fD. Generate the empirical mean μ̂n = 1

n

∑n
i=1 xi. Then, for any ε ∀ D, the weak

law of large numbers guarantees that

lim
n≤+≥ Pr(|μ̂n − μ| ∅ ε) = 0.

An identical result also holds for the discrete random variable case.

4.2.2.2 Strong Law of Large Numbers

Let x ∀ D be a continuous random scalar variable of finite expectation μ and finite
variance σ 2

x and x1, . . . , xn a set of n independent and identically distributed samples
drawn from D (e.g., D = R) according to the continuous probability density function
fD. Generate the empirical mean μ̂n = 1

n

∑n
i=1 xi. Then, the strong law of large

numbers guarantees that relationship

lim
n≤+≥ μ̂n = μ

holds with probability one.

Comments

The difference between the strong and the weak formulation of the laws of large
numbers is in the convergence modality. In the weak case, the probability of gen-
erating an estimate μ̂n so that |μ̂n − μ| ∅ ε decreases as the number of samples
increases. Differently, the strong law of large numbers implies that the sequence μ̂n

converges to μ with probability one.
When we apply the laws of large numbers to the Monte Carlo method, we have

that μ̂n converges to μ (and π̂n to π ).
The assumption of finite variance is not truly necessary but makes the proof easier.

In fact, a large or infinite variance negatively affects the convergence rate. However,
the variance must exist. When this assumption does not hold, as it happens in example
3, the laws of large numbers cannot be applied.
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Example 3: breaking the law of large numbers

Let x ∀ R be a continuous random variable characterized by the Cauchy density
function

fx = 1

π(1 + x2)
.

Then the expectation E[x] does not exist, because the integral

∫ +≥

−≥
x

π(1 + x2)
dx

diverges; likewise the variance does not exist, hence violating the assumptions
requested by the laws of large numbers. If we compute the sample mean by using
n samples drawn from the Cauchy density it can be proved that the average is still
ruled by a Cauchy probability density function [26].

A main consequence is that if the noise affecting measurements is ruled by a
Cauchy density and we average over a number of measurements (think of the esti-
mation module we introduced in Sect. 2.1.1) to mitigate the presence of uncertainty,
then the average cannot be expected to be more accurate than any individual mea-
surement!

4.2.3 Some Convergence Results

The laws of large numbers are rather general and can be applied to several interesting
cases among which those related to probability and expected value estimation.

Define the real function u(ψ), ψ ∀ Ψ ∈ R
l to be measurable according to

Lebesgue in Ψ and denote by fψ the probability density function of a random variable
ψ with support on the input space Ψ . Assume that ψ has finite mean and variance.

4.2.3.1 Probability Function Estimation

The problem can be formalized as follows: Given a generic value γ ∀ R, evaluate
the probability p(γ ) for which u(ψ) is below γ when ψ spans Ψ , i.e., compute

p(γ ) = Pr(u(ψ) ∞ γ ).

In other terms, we are asking if the embedded system is satisfying a given
constraint γ given performance function u(ψ). Formulation of probability p(γ ) in a
closed form can be achieved only in particular cases, e.g., for very specific choices
of u(ψ) and fψ . However, the problem can be addressed and solved by resorting

http://dx.doi.org/10.1007/978-3-319-05278-6_2
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Algorithm 4: Estimating the probability that a requested performance value is
attained

1- Extract n independent and identically distributed samples Zn = {ψ1, . . . , ψn} from Ψ

according to fψ ;
2- Evaluate, for the i-th sample ψi, the indicator function

I(ψi) =
{

1 if u(ψi) ∞ γ̄

0 if u(ψi) > γ̄ .

3- Construct the estimate p̂(γ̄ ) of p(γ̄ ) as

p̂n(γ̄ ) = 1

n

n∑

i=1

I(ψi)

to randomization. In the following, we aim at solving the problem with the laws of
large numbers and, to this end, we assume at first that γ is given and assumes value
γ̄ . However, obtained results are valid for any γ̄ .

Extract n independent and identically distributed samples Zn = {ψ1, . . . , ψn}
from ψ ∀ Ψ according to fψ and evaluate the indicator function

I(ψi) =
{

1 if u(ψi) ∞ γ̄

0 if u(ψi) > γ̄

The estimate p̂n(γ̄ ) of p(γ̄ ) is

p̂n(γ̄ ) = 1

n

n∑

i=1

I(ψi)

Algorithm 4 summarizes the needed steps to provide an estimate p̂n(γ̄ ) of p(γ̄ ).
The laws of large numbers hold under the respective hypotheses and, for any

ε ∀ (0, 1) we have that
weak law of large numbers

lim
n≤+≥ Pr(|p̂n(γ̄ ) − p(γ̄ )| ∅ ε) = 0

strong law of large numbers

lim
n≤+≥ p̂n(γ̄ ) = p(γ̄ )

with probability one.
In other terms p̂n(γ̄ ) converges to p(γ̄ ). The obtained results, evaluated for

a given γ̄ value, can now be extended to deal with any given γ value (different
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γ s will experience different convergence rates). We can then write, for an arbitrary
given γ that

weak law of large numbers

lim
n≤+≥ Pr(|p̂n(γ ) − p(γ )| ∅ ε) = 0, ∀γ ∀ R

strong law of large numbers

lim
n≤+≥ p̂n(γ ) = p(γ ), ∀γ ∀ R

with probability one.

4.2.3.2 Expected Value Estimation

Another interesting case, which can be immediately derived from the theory, refers
to the problem of evaluating the expected value

EΨ [u(ψ)] =
∫

Ψ

u(ψ)fψdψ

through the empirical mean

Ên(u(ψ)) = 1

n

n∑

i=1

u(ψi).

where ψis have been extracted according to fψ .
In this case, we wish to evaluate some expected performance the embedded system

should have based on measured instances telling us how the system performs for a
given input.

Convergence of Ên(u(ψ)) to EΨ [u(ψ)] is granted under the assumptions of the
laws of large numbers.

weak law

lim
n≤+≥ Pr(|Ên(u(ψ)) − EΨ [u(ψ)]| ∅ ε) = 0

strong law

lim
n≤+≥ Ên(u(ψ)) = EΨ [u(ψ)]

with probability one.
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The goodness of the estimate can be evaluated by taking expectation with respect
to the sequence of n samples in Zn. In particular, it can be proved, e.g., by referring
to [22], that the variance of the estimate is

Var
(

Ên(u(ψ))
)

= EZn

[(
EΨ [u(ψ)] − Ên(u(ψ))

)2
]

= Var(u(ψ))

n
.

The result has a main conceptual impact and states that the variance of the estimate
is the variance of function u(ψ) scaled by n−1. The above expression states that if
Var(u(ψ)) and Var(Ên(u(ψ))) are bound, we can estimate a priori the number of sam-
ples needed to obtain a required accuracy in the estimate. In fact, if we know the vari-
ance Var(u(ψ)) (or it is possible to provide a bound for it) and we set Var(Ên(u(ψ)))

at a tolerated level c, then the number of samples to be drawn is

n ∅ Var (u(ψ))

c
.

4.2.4 The Curse of Dimensionality and Monte Carlo

The Curse of dimensionality refers to the bad scaling of the number of points n needed
to explore a space as its dimension d increases. Consider the segment Ψ = [0, 1)

and subdivide it into N = 10 points so that each segment has resolution of 0.1.
It comes out that, if we wish to keep the same grid resolution for a d dimensional
space, the number of points we need to consider to “explore” the space is n = Nd .
Such an exploration of the space grows exponentially with d and, soon, becomes
computationally prohibitive.

The “curse of dimensionality” represents a major problem every time we need to
sample a space and take future actions, e.g., if our task is to estimate the function
EΨ [u(ψ)] through Ên(u(ψ)).

However, as nicely pointed out in [2] the mean square error of the Monte Carlo
estimate of the expected value does not depend on the dimension d of the space
which, somehow, breaks the “curse of dimensionality.” As it will be clear in Sect. 4.3
this is a consequence of the fact that we associated a probability density function to
Ψ : instead of exploring Ψ with a uniformly-spaced grid we do that by extracting the
due number of points according to fψ . In other words, the curse of dimensionality
can be avoided if we move our analysis from a strictly deterministic to a probabilistic
framework.

4.3 Bounds on the Number of Samples

With Monte Carlo, we have seen that it is difficult to estimate the number of samples
n we should consider to solve a given problem. Results, e.g., see [15–17], exploit
some trial tests or a priori information about the specific problem to decide when
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stopping the sampling procedure. In other cases, e.g., as it happens in Example 2, we
were able to identify the minimum number of points required to satisfy the accuracy
and confidence requirements.

However, this cannot be granted for a generic application, characterized by a
generic Lebesgue measurable function. Moreover, since we are looking for generality
so as to cover a large set of applications, a pdf-free approach must be considered.
The price we have to pay in a pdf-free framework is the a priori larger number of
samples needed to solve our problem compared with that we would need by knowing
the probability density function.

Several improved bounds on the number of samples n have been presented in the
literature to solve large classes of problems through randomization. We will review
such bounds starting from Bernoulli’s one.

The theoretical framework is that of a Bernoulli process where the random variable
x assumes value 1 with probability p and value 0 with probability 1−p. The expected
value is E[x] = p and the variance Var(x) = p(1 − p). Denote by x1, . . . , xn the
sequence of n independent samples drawn from x and compute the empirical mean

Ên = 1

n

n∑

i=1

xi

which represents the estimate of the probability that x = 1 in the n trials. Ên

is a binomially distributed variable with expected value E[Ên] = p and variance
Var(Ên) = p(1−p)

n .

4.3.1 The Bernoulli Bound

Inequality

Pr
(
|Ên − E[Ên]| < ε

)
> 1 − δ

holds for any accuracy level ε ∀ (0, 1) and confidence 1 − δ, δ ∀ (0, 1) provided
that at least n ∅ 1

4δε2 independent and identically distributed samples are drawn.

The proof follows by recalling the Tchebychev theorem in the form

Pr (|x − μ| ∅ α) ∞ σ 2

α2

where x is the random variable of mean μ, variance σ 2, and α is a positive number.
By substituting x with Ên and α with the accuracy variable ε, we obtain

Pr
(
|Ên − E[Ên]| ∅ ε

)
∞ p(1 − p)

nε2 . (4.1)
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Since p(1 − p) is maximized by 1
4 , we can be finally bound (4.1) as

Pr
(
|Ên − E[Ên]| ∅ ε

)
∞ 1

4nε2 . (4.2)

By introducing a confidence value δ ∀ (0, 1), we can rewrite (4.2) as

Pr
(
|Ên − E[Ên]| < ε

)
∅ 1 − δ. (4.3)

By setting
1

4nε2 ∞ δ

we derive the number of samples granting (4.3) to hold.

n ∅ 1

4δε2 (4.4)

Comments

The Bernoulli bound shows that the number of required samples grows quadratically
(inversely proportional) with the requested accuracy for the estimate ε and linearly
(inversely proportional) with the requested confidence δ. We can obtain a good esti-
mate of Ên with a polynomial sampling of the space. For instance, with the choice
ε = 0.05, δ = 0.01 we need to extract at least n = 10000 samples; with the choice
ε = 0.02, δ = 0.01 we need to extract at least n = 62500 samples. Figure 4.4 shows
how the Bernoulli bound scales with δ and ε. We recall we shall consider small values
for δ and ε to have enough confidence and accuracy.

The cost of sampling is the drawback we have to pay for generality (i.e., any p or
application). Fortunately, the Bernoulli bound can be tightened with the Chernoff’s
one.

4.3.2 The Chernoff Bound

The Chernoff bound [1] largely improves over the Bernoulli’s bound by reducing
the number of samples to be drawn. We study at first the case where variable x is a
Bernoulli random variable.

4.3.2.1 The Bernoulli Case

In the Bernoulli case, the main result states that
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Fig. 4.4 The number of samples requested by the Bernoulli bound

Inequality

Pr
(
|Ên − E[Ên]| < ε

)
> 1 − δ

holds for any accuracy level ε ∀ (0, 1) and confidence 1 − δ, δ ∀ (0, 1) provided
that at least

n ∅ 1

2ε2 ln
2

δ

independent and identically distributed samples x are drawn.

To prove the bound we recall that E[Ên] = p and

Pr
(
|Ên − E[Ên]| < ε

)
= Pr

(
|Ên − p| < ε

)
∞

Pr
(

Ên < p + ε
)

+ Pr
(

Ên > p − ε
)

.

By relying on the Binomial distribution, we can derive analytically those
probabilities
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Pr
(

Ên > p + ε
)

= Pr
(

nÊn > n(p + ε)
)

=
n∑

k>n(p+ε)

(
n

k

)
pk(1 − p)n−k

and

Pr
(

Ên < p − ε
)

= Pr
(

nÊn < n(p − ε)
)

=
k∞n(p−ε)∑

k=0

(
n

k

)
pk(1 − p)n−k .

From those expression it is possible to derive the smallest n such that the sum of
the two probabilities is greater than 1 − δ, but no close form solution is known for
the problem. Chernoff provided a bound for each of the above terms. In its additive
form, we have that

Pr
(

Ên ∅ p + ε
)

∞ e−2nε2

and
Pr

(
Ên ∞ p − ε

)
∞ e−2nε2

.

thus
Pr

(
|Ên − p| ∅ ε

)
∞ 2e−2nε2

i.e.,
Pr

(
|Ên − E[Ên]| < ε

)
> 1 − 2e−2nε2

.

It comes out that
Pr

(
|Ên − E[Ên]| < ε

)
> 1 − δ

holds if we extract at least n samples so that δ ∞ 2e−2nε2
. This happens if we select

n ∅ 1

2ε2 ln
2

δ
.

Results, obtained in the case of x distributed as a Bernoulli variable, can be
extended to cover the continuous case where the distribution is generic.

4.3.2.2 The General Case: The Hoeffding Inequality

The Chernoff bound for a generic probability density function and continuous
variable ψ can be derived from the Hoeffding inequality [18]

Hoeffding inequality
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Let x1, . . . xn be a sequence of independent random variables so that each xi

is almost surely bounded by the interval [ai, bi], i.e., Pr(xi ∀ [ai, bi]) = 1. Then,
defined the empirical mean Ên = 1

n

∑n
i=1 xi, we have that for any ε value inequality

Pr
(
|Ên − E[Ên]| ∅ ε

)
∞ 2e

−2ε2n2
∑n

i=1(bi−ai)
2

(4.5)

holds.

Under the above assumptions, we can rewrite (4.5) as

Pr
(
|Ên − E[Ên]| < ε

)
> 1 − 2e

−2ε2
∑n

i=1(bi−ai)
2
. (4.6)

In the interesting case where Ên represents the estimate p̂n(γ ) of a probability,
e.g., p(γ ) = Pr(u(ψ) ∞ γ ) for a given positive scalar γ (but any other event applies),
we have that for a generic random variable ψi the indicator function

I (u(ψi) ∞ γ ) =
{

1 if u(ψi) ∞ γ

0 if u(ψi) > γ

I assumes values in {0, 1}. As a consequence, ai = 0, bi = 1 and (4.6) becomes

Pr
(
|Ên − E[Ên]| < ε

)
> 1 − 2e−2nε2

.

Since, p̂n(γ ) = Ên and E(p̂n(γ )) = p(γ ) the expression becomes

Pr
(|p̂n(γ ) − p(γ )| < ε

)
> 1 − 2e−2nε2

. (4.7)

from which we derive the Chernoff bound by requesting δ ∞ 2e−2nε2

n ∅ 1

2ε2 ln
2

δ
. (4.8)

The Hoeffding inequality plays a major role since it allows us to

• derive the Chernoff bound of (4.8) that will be used to determine the number of
samples needed to estimate the probability of performance satisfaction;

• derive the Chernoff bound formally identical to that of (4.8) granting the empirical
mean to converge to its expected value with given accuracy and confidence levels;

• derive a set of bounds for estimating the maximum/minimum value of a function
within a probabilistic framework.

Figure 4.5 presents the number of samples as function of δ and ε requested by the
Chernoff bound.
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Fig. 4.5 The number of samples requested by the Chernoff bound as function of confidence δ and
accuracy ε

Table 4.1 The number of samples n = n(ε, δ)

Bound ε = 0.05, δ = 0.02 ε = 0.05, δ = 0.01 ε = 0.02, δ = 0.01 ε = 0.01, δ = 0.01

Bernoulli 5000 10000 62500 250000
Chernoff 922 1060 6623 26492

Comments

The Chernoff bound shows that the number of required samples grows quadratically
(inversely proportional) with the requested accuracy of the estimate ε but logarith-
mically with the confidence δ. Even if it might appear as a limited gain in reality it is
not and represents a true achievement. In fact, if we refer to Table 4.1 we appreciate
the significant improvement of the Chernoff bound over the Bernoulli one.

Interestingly, it appears that accuracy is more sampling demanding than confi-
dence since the former is ruled by a quadratic term whereas the latter is bound by a
linear one. Figure 4.6 compares the Bernoulli and the Chernoff bound. When δ and
ε assume small values, as generally requested by applications since we wish to get
high confidence and accuracy, the Chernoff bound significantly improves over the
Bernoulli one with a gain nc = 2δ ln 2

δ
nb where nc and nb represent the number of

samples requested by Chernoff and Bernoulli, respectively.
Other interesting bounds can be obtained by assuming some a priori information

about p. For instance, the Chernoff-Okamoto bound [4] is tighter than the Chernoff
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Fig. 4.6 The number of samples requested by the Bernoulli and the Chernoff bounds as function
of confidence δ and accuracy ε. Chernoff largely improves over Bernoulli provided that δ and ε

assume small values, as requested by applications

one but assumes that p ∞ 0.5. Other bounds use only one side of the Chernoff bound
and can be used to deal with special cases. The interested reader can refer to [2, 4].

As it will be clear in Sect. 4.3.3 the Chernoff bound is one of those main results
which make the use of randomized algorithms viable.

4.3.3 A Bound on Samples to Estimate the Maximum
Value of a Function

Sections 4.3.1 and 4.3.2 have shown how it is possible to derive bounds on the number
of samples needed to guarantee convergence of the empirical mean to its expectation.
We show here that many problems such as the verification of a constraint satisfaction
problem can be modeled as a realization of a Bernoulli process; at the same time
many problems can be reduced to the evaluation of the empirical mean of a quantity.

In this section, we aim at using a sampling technique (randomization) to estimate
the maximum value of a function (and, of course, its minimum by changing the sign of
the function). Say that we wish to maximize function u(ψ) ∀ U ⊂ R, ψ ∀ Ψ ∈ R

l

by identifying the maximum value umax

umax = max
ψ∀Ψ

u(ψ).
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There exists a very large literature addressing the function optimization problem.
Different techniques exploit a priori information about the function to be opti-
mized, e.g., as it happens with gradient descent techniques where differentiability is
requested. Some techniques explore the search space by looking for regularity and
building blocks such as in the case of genetic algorithms; others, explore the search
space with a probabilistic approach as in simulated annealing or introduce a blind
search strategy as it happens with Monte Carlo. It can be proven that under mild
hypotheses on the function to be optimized, all the above techniques converge in
probability to the maximum value, also in the case of a blind random search explo-
ration of the parameter space [19]. Different methods either differ in performance
accuracy or convergence rate.

Consider the case where random variable ψ , with probability density function fψ ,
is defined over Ψ and generate the estimate

ûmax = max
i=1,...,n

u(ψi)

after having drawn n random samples {ψ1, . . . , ψn}. To move back to embedded
systems consider u(ψ) as a performance function and ask which is the maximum
(minimum) value the function assumes given the fact we can only provide n mea-
surements u(ψi). That said, how good is the estimate ûmax? The answer is given by
the laws of large numbers.

4.3.3.1 Weak and Strong Laws of Large Numbers for Empirical
Maximum

Assume that u(ψ) is continuous in ψmax = argmaxψ∀Ψ u(ψ) and that fψ assigns a
non-null probability to every neighborhood of ψmax.

Then, for any ε > 0 we have that

weak law of large numbers

lim
n≤+≥ Pr(umax − ûmax ∅ ε) = 0

strong law of large numbers

lim
n≤+≥ ûmax = umax

with probability one.
Since asymptotic results are of scarce utility in real applications we determine

a bound on the number of samples granting ûmax and umax to be close in probabilistic
terms [2].
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4.3.3.2 A Bound for a Probabilistic Estimate of the Maximum
of a Function

The problem can be simply solved by noting that the determination of the maximum
of a function is related to the probability estimation problem addressed in Sect. 4.3.2
and, in particular, Eq. (4.7):

Pr
(|p̂n(γ ) − p(γ )| < ε

)
> 1 − 2e−2nε2

. (4.9)

In fact, if we set γ = ûmax we have that

p(γ ) = Pr
(
u(ψ) ∞ ûmax

) = 1 − Pr
(
u(ψ) > ûmax

)

and
p̂n(γ ) = 1

since all taken samples satisfy inequality u(ψ) ∞ ûmax by construction. Therefore,
from (4.9)

Pr
(|p̂n(γ ) − p(γ )| < ε

) = Pr
(
Pr

(
u(ψ) > ûmax

)
< ε

)
> 1 − 2e−2nε2

which holds by selecting n according to the Chernoff bound. However, the bound
can be improved as shown in [2] and leads to the final result:

Inequality

Pr
(
Pr

(
u(ψ) > ûmax

) ∞ ε
) ∅ 1 − δ

holds for any accuracy level ε ∀ (0, 1) and confidence 1 − δ, δ ∀ (0, 1) provided
that at least

n ∅ ln δ

ln(1 − ε)
(4.10)

independent and identically distributed samples are drawn.

Other results about convergence exist, but are outside the goal of this book. The
interested reader can refer to [14] where a more complete analysis is carried out.
Derived results will be used in Sect. 4.4.2.

4.4 Randomized Algorithms

Consider a problem influenced by some variables grouped in vector ψ with a pdf
fψ over the space Ψ . Randomized algorithms are algorithms that, by sampling from
space Ψ according to fψ , provide results valid in probability. The method is general
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Algorithm 5: The algorithm behind randomized algorithms

1- Transform the deterministic problem into a probabilistic problem;
2- Identify the input space Ψ of the algorithm and define a random variable ψ , with probability

density function fψ over Ψ ;
3- Identify the accuracy and the confidence levels and, then, the number of samples n required

by the randomization process;
4- Draw n samples Sn = {s1, . . . , sn} from Ψ according to fψ ;
5- Evaluate the algorithm on samples in Sn;
6- Provide the probabilistic outcome of the algorithm.

and can be applied to a very large class of functions, namely those Lebesgue mea-
surable: a filter bank, a Fast Fourier Transform (FFT), a discrete cosine transform,
wavelets transform, and a generic circuit response function are some very simple
examples of Lebesgue measurable functions.

At a very high abstraction level, the procedure behind a randomized algorithm is
given in Algorithm 5.

In the following, we will apply randomized algorithm to an interesting class of
problems. In Chaps. 5 and 7 results will be applied to the robustness problem and to
characterize the level of approximate computation, respectively. Randomized algo-
rithms will also be used to assess the performance of embedded applications as well
as evaluate the level of constraints satisfaction within a noise-affected environment.

4.4.1 The Algorithm Verification Problem

The algorithm verification problem aims at evaluating the satisfaction level of an
inequality. Even though solving this problem might appear strange, we will see that
it constitutes the core of many problems.

Consider function u(ψ) ∀ U ⊂ R, ψ ∀ Ψ ∈ R
l Lebesgue measurable over

Ψ onto which a random variable ψ is defined, with pdf fψ over Ψ , and a given,
but generic, γ ∀ R scalar. As we already pointed out the problem models the case
where we wish to determine the level of satisfaction of performance function u(ψ)

given a constant value γ , generally acting as a tolerated performance. Without loss of
generality we study here and in next sections a scalar performance function. However,
the simultaneous attainment of several scalar performance functions may be easily
handled with the introduced techniques. The problem can be finalized as:

Verify the level of satisfaction of inequality

u(ψ) ∞ γ,∀ψ ∀ Ψ.

In other words, we wish to determine the “percentage” of points of Ψ satisfying
the inequality. Such a value is simply the ratio

http://dx.doi.org/10.1007/978-3-319-05278-6_5
http://dx.doi.org/10.1007/978-3-319-05278-6_7


78 4 Randomized Algorithms

nu(ψ)∞γ =
∫

u(ψ)∞γ,ψ∀Ψ
dψ

∫
Ψ

dψ
.

Determination of nu(ψ)∞γ is surely a computationally hard problem for a generic
u(ψ) function and cannot be computed in a closed form unless u(·) presents a form
that makes the mathematics amenable. Differently, the problem can be solved with a
randomized algorithm by transforming the deterministic problem into a probabilistic
one. By relying on the previously mentioned probability density function fψ defined
over Ψ , we are able to evaluate the probability

p(γ ) =
∫

u(ψ)∞γ,ψ∀Ψ
fψ(ψ)dψ

∫
Ψ

fψ(ψ)dψ
= Pr (u(ψ) ∞ γ ) ,∀ψ ∀ Ψ.

We have seen in Sect. 4.2.3 that p(γ ) can be evaluated through randomization and
that, given a γ value, the event

u(ψ) ∞ γ

is associated with the Bernoulli variable

ψ ∀ Ψ : I (u(ψ) ∞ γ ) =
{

1 if u(ψ) ∞ γ

0 if u(ψ) > γ

and by sampling n i.i.d. realizations {ψ1, . . . , ψn} from ψ

p̂n(γ ) = 1

n

n∑

i=1

I (u(ψi) ∞ γ ) .

We invoke the Chernoff inequality with Ên = p̂n(γ ), and E[Ên] = p(γ ) and
provide the main result

Performance verification problem

Let u(ψ) ∀ U ⊂ R be a performance function measurable according to Lebesgue
on its input domain Ψ ∈ R

l and ψ be a random variable, with probability density
function fψ over Ψ . Define

p(γ ) = Pr (u(ψ) ∞ γ )

and evaluate the estimate p̂n from the n i.i.d. samples ψ1, . . . , ψn. Then,

Pr
(|p̂n(γ ) − p(γ )| ∞ ε

) ∅ 1 − δ

holds for any accuracy level ε ∀ (0, 1), confidence δ ∀ (0, 1) and ∀γ ∀ R provided
that

n ∅ 1

2ε2 ln
2

δ
.
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Algorithm 6: Randomized algorithms for the algorithm performance
verification problem: the given performance loss case γ

1- The probabilistic problem requires evaluation of p(γ ) = Pr (u(ψ) ∞ γ ) for a given γ ;
2- Identify the input space Ψ and a random variable ψ , with density function fψ over Ψ ;
3- Select accuracy ε and confidence δ;
4- Draw n ∅ 1

2ε2 ln 2
δ

samples ψ1, . . . , ψn from ψ ;
5- Estimate

p̂n(γ ) = 1

n

n∑

i=1

I (u(ψi) ∞ γ ) , I (u(ψi) ∞ γ ) =
{

1 if u(ψi) ∞ γ

0 if u(ψi) > γ

6- use p̂n(γ );

Value p̂n(γ ) is the probabilistic outcome of the algorithm.

By using the algorithm given in Algorithm 6 we estimate p(γ ) for a given γ̄ so
as to solve the problem of determine the level of satisfaction for the inequality, i.e.,

Pr (u(ψ) ∞ γ̄ ) ,∀ψ ∀ Ψ.

In other applications, we could be interested in constructing function p(γ ) for an
arbitrary large but given and finite set of γ s. The natural solution to this problem
is to provide a decomposition of the feasible interval of γ , [aγ , bγ ] (e.g., with an
equally spaced grid) and obtain for each γ ∀ Γ = {γ1, . . . , γk} an estimate p̂n(γi) by
invoking Algorithm 6 for i ∀ {1, . . . K}. In such a case the algorithm can be extended
as in Algorithm 7.

Comments

Randomization has allowed us to solve the algorithm verification problem by trans-
forming the deterministic problem in a probabilistic one. At the same time the Cher-
noff bound has provided the number of samples satisfying it a given accuracy ε and
confidence δ.

Having provided a first complete algorithm based on randomization it is worth to
shed light on some operational aspects somehow hidden within the theory.

Here, ε represents the accuracy of estimating p(γ ), given γ , with p̂n(γ ), that is to
say it represents an upper bound for the error |p̂n(γ )−p(γ )|. If ε is small then we can
confuse p̂n(γ ) with p(γ ) in our subsequent use of p(γ ). At the same time we shall
note that |p̂n(γ )− p(γ )| is a random variable depending on the particular realization
of the sampling set. A different sampling set would have provided a different estimate
p̂n(γ ).

Then one should ask how credible the statement |p̂n(γ ) − p(γ )| ∞ ε is ∀ψ ∀ Ψ ;
the answer is that the statement holds with probability 1 − δ. This means that we
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Algorithm 7: Randomized algorithms for solving the algorithm verification
problem

1- The probabilistic problem requires evaluation of p(γ ) = Pr (u(ψ) ∞ γ ) for any γ belonging
to a finite set of arbitrary γ values;

2- Identify the input space Ψ and a random variable ψ , with density function fψ over Ψ ;
3- Select accuracy ε and confidence δ;
4- Identify the interested performance level set Γ = {γ1, . . . , γk};
5- p̂n,Γ (γ ) = verification-problem (Ψ, fψ, u(ψ), Γ, ε, δ);
6- use p̂n,Γ (γ );

function verification-problem (Ψ, fψ, u(ψ), Γ, ε, δ)
Draw n ∅ 1

2ε2 ln 2
δ

samples ψ1, . . . , ψn from ψ ;
For each γ ∀ Γ estimate

p̂n(γ ) = 1

n

n∑

i=1

I (u(ψi) ∞ γ ) , I (u(ψi) ∞ γ ) =
{

1 if u(ψi) ∞ γ

0 if u(ψi) > γ

Group all p̂n(γ )s in vector p̂n,Γ ;
Return p̂n,Γ

could extract a sequence of points for which the inequality |p̂n(γ ) − p(γ )| ∞ ε is
not verified but this happens with probability δ, which needs to be kept small.

As a last note we observe that the sampling space is R
l: the Chernoff bound

is independent from the dimension l of the input sampling space. A small dimen-
sion or a large dimension requires the same number of samples: again we find that
randomization has somehow broken the “curse of dimensionality.”

4.4.2 The Maximum Value Estimation Problem

The maximum value estimation problem, also known in the literature as worst-case
analysis, aims at estimating the maximum value a function can assume.

Consider a u(ψ) ∀ U ⊂ R function which is Lebesgue measurable over Ψ ∈ R
l.

The problem can be cast in the canonical form requesting the evaluation of

umax = max
ψ∀Ψ

u(ψ). (4.11)

Analytical determination of umax is impossible for a large class of functions
as the Lebesgue measurable one is and its evaluation might be a computational
hard problem.

As we did for the verification case, we generate a probabilistic version of the
problem. Observe that the (4.11) can be reformulated as searching for that value
umax of u(ψ) for which
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u(ψ) ∞ umax, ∀ψ ∀ Ψ. (4.12)

Now we resort to probability by relaxing the deterministic approach intrinsic with
(4.12). In particular, we are looking for an estimate ûmax of umax and say that the
estimate is good if the probability of receiving a ψ for which u(ψ) > ûmax is small,
say assumes value τ .

In other words we are requesting that

Pr
(
u(ψ) > ûmax

) ∞ τ. (4.13)

Assume that a random variable ψ , with probability density function fψ , is defined
over Ψ and draw n i.i.d. samples ψ1, . . . , ψn from ψ . Construct estimate ûmax as

ûmax = max
i=1,...,n

u(ψi).

As we have seen in Sect. 4.3.3 the weak and strong laws of large numbers grant
convergence of ûmax to umax in probability.

Unfortunately, solution of (4.13) requires a number of points which is exponential
in the dimension of the input space and, as such, the problem solution is computa-
tionally hard [6]. To solve this issue we note that (4.13) is again a random variable
since different realizations of the sampling set would provide different estimates of
ûmax. To address this last aspect, we introduce a confidence value δ and use a second
level of probability. Since we have reformulated our problem in a canonical form,
we immediately use the bound given in (4.10).

Maximum value estimation problem

Let u(ψ) ∀ U ⊂ R be a performance function measurable according to Lebesgue
on its input domain Ψ ∈ R

l onto which is defined a random variable ψ with proba-
bility density function fψ . Define value umax to be the maximum value function u(ψ)

assumes, i.e.,

u(ψ) ∞ umax, ∀ψ ∀ Ψ.

Draw n i.i.d. samples ψ1, . . . , ψn according to fψ and generate the estimate ûmax

ûmax = max
i=1,...,n

u(ψi)

then,
Pr

(
Pr

(
u(ψ) ∅ ûmax

) ∞ ε
) ∅ 1 − δ

holds for any accuracy level ε ∀ (0, 1), confidence δ ∀ (0, 1) and ∀ψ ∀ Ψ provided
that

n ∅ ln δ

ln(1 − ε)
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Algorithm 8: Randomized algorithm to estimate the maximum value of a
function

1- The probabilistic problem requires evaluation of ûmax;
2- Identify the input space Ψ and a random variable ψ with pdf fψ over Ψ ;
3- Select the accuracy ε and the confidence δ levels;
4- ûmax = Max-estimate (Ψ, fψ, u(ψ), ε, δ);
5- use ûmax;

Max-estimate (Ψ, fψ, u(ψ), ε, δ)
Draw n ∅ ln δ

ln(1−ε)
samples ψ1, . . . , ψn from ψ according to fψ ;

Compute ûmax = maxi=1,...,n u(ψi);
Return ûmax

Table 4.2 The number of samples n = n(ε, δ)

ε = 0.05, δ = 0.02 ε = 0.05, δ = 0.01 ε = 0.02, δ = 0.01 ε = 0.01, δ = 0.01

n 77 90 228 459

Value ûmax is the probabilistic outcome of the algorithm.

The algorithm solving the maximum value estimation problem, i.e., the proba-
bilistic version of the worst case analysis, is given in Algorithm 8.

Comments

As it can be seen from Table 4.2, the required number of samples n ∅ ln δ
ln(1−ε)

is well
below the one requested by Chernoff to solve the performance verification problem.
In fact, for a sufficiently small ε, ln(1 − ε) � −ε: the number of samples scales as
1
ε2 with Chernoff and 1

ε
for the above.

Figure 4.7 compares the number of samples requested by Chernoff with those
requested to solve the maximum value estimation problem. We appreciate the fact
that the latter bound significantly improves over the former with a gain set by 1

ε
.

However, since there does not exist a free lunch, the price we have to pay is that
our estimate requires two levels of probability

Pr
(
Pr

(
u(ψ) ∅ ûmax

) ∞ ε
) ∅ 1 − δ.

The inner inequality Pr
(
u(ψ) ∅ ûmax

) ∞ ε states that we are requesting an
estimate which is good not in terms of classic accuracy but according to Lebesgue. In
other terms the inequality requires that, at least with probability 1−δ, the probability
of encountering points whose u(ψ) is larger than ûmax is below ε.

Figure 4.8 shows the situation. Function u(ψ) is given and ûmax determined as
discussed above. Those points u(ψ) ∅ ûmax belong to two intervals Ψ1, Ψ2 so that
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Fig. 4.7 The number of samples requested by the Chernoff bound and that requested to solve the
maximum value estimation problem. ε and δ assume the same values to ease the comparison

Fig. 4.8 The maximum
estimated value for function
u(ψ) is ûmax. The probability
of having points u(ψ) ∅ ûmax
is associated with two sup-
ports Ψ1, Ψ2, for which
Pr

(
u(ψ)|ψ∀Ψ1 ∅ ûmax

) ∞ ε1,
Pr

(
u(ψ)|ψ∀Ψ2 ∅ ûmax

) ∞ ε2
and sum ε1 + ε2 ∞ ε

1 2

u )(ψ

ψ ψ ψ

Pr
(
u(ψ)|ψ∀Ψ1 ∅ ûmax

) ∞ ε1 and Pr
(
u(ψ)|ψ∀Ψ2 ∅ ûmax

) ∞ ε2, respectively. How-
ever, the sum ε1 + ε2 ∞ ε at least with confidence 1 − δ.

There might even be an infinity of points ψ for which u(ψ) is larger than the
estimated ûmax but the probability of encountering such points is no more than ε.
This note should be carefully recalled when using the obtained estimates.

It can be proved that the bound is tight under regularization and smoothness
hypotheses on the probability function of the random variable u(ψ), for instance
continuity (e.g., refer to [7]).



84 4 Randomized Algorithms

4.4.3 The Expectation Estimation Problem

In many applications it is crucial to be able to estimate the expected value of a
given function u(ψ), operation generally carried out by estimating the empirical
mean. Again, the problem is to identify the minimum number of samples granting
an arbitrary level of accuracy and confidence.

Consider a u(ψ) ∀ [0, 1] function which is Lebesgue measurable over Ψ ∈ R
l

and let fψ be the probability density function of a random variable ψ defined over
Ψ . Expectation estimation requires evaluation of

E[u(ψ)] =
∫

Ψ

u(ψ)fψ(ψ)dψ. (4.14)

As in other problems, evaluation of (4.14) is computationally hard for a generic
u function and the empirical mean

Ên(u(ψ)) = 1

n

n∑

i=1

u(ψi) (4.15)

is constructed instead based on the n i.i.d. samples ψ1, . . . , ψi, . . . , ψn drawn from
ψ according to fψ . Of course, Ên(u(ψ)) is a random variable depending on the
particular realization of the n samples. By invoking the Hoeffding inequality (4.5)
where ai = 0, bi = 1, i ∀ {1, . . . , n}

Pr
(
|Ên(u(ψ)) − E[u(ψ)]| ∅ ε

)
∞ 2e−2ε2n (4.16)

we derive the Chernoff bound

n ∅ 1

2ε2 ln
2

δ
. (4.17)

Expectation estimation problem
Let u(ψ) ∀ [0, 1] be a performance function measurable according to Lebesgue

on its input domain Ψ ∈ R
l onto which is defined a random variable ψ with proba-

bility density function fψ . Define E[u(ψ)] to be the expectation of function u(ψ).
Draw n i.i.d. samples ψ1, . . . , ψn according to fψ and generate the estimate

Ên(u(ψ)) = 1

n

n∑

i=1

u(ψi)

then,
Pr

(
|Ên(u(ψ)) − E[u(ψ)]| ∞ ε

)
∅ 1 − δ

holds for any accuracy level ε ∀ (0, 1), confidence δ ∀ (0, 1)
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Algorithm 9: Randomized algorithm to estimate the expected value of a function

1- The probabilistic problem requires evaluation of E[u(ψ)];
2- Identify the input space Ψ and a random variable ψ with pdf fψ over Ψ ;
3- Select the accuracy ε and the confidence δ levels;
4- Draw n ∅ 1

2ε2 ln 2
δ

samples ψ1, . . . , ψn from ψ according to fψ ;

5- Compute Ên(u(ψ)) = 1
n

∑n
i=1 u(ψi);

6- use Ên(u(ψ));

n ∅ 1

2ε2 ln
2

δ
.

Value Ên(u(ψ)) is the probabilistic outcome of the randomized algorithm.

The randomized algorithm to estimate the expected value of a function is given
in Algorithm 9.

Comments

Interestingly, the determination of the expected value problem can be addressed
with the same number of samples (Chernoff bound) used to address the probability
estimation problem. The structural difference is in the use of the empirical sum in
one case and the indicator function in the other. Even if their derivations came from a
different perspective, both cases are a special case of the Hoeffding inequality (which
leads to the Chernoff bound). As a consequence, the request that u(ψ) ∀ [0, 1] is
only made to ease the derivation of the bound through the Hoeffding’s inequality. In
general, it is enough to require u(ψi) bound, e.g., to the same ai = a, bi = b, i =
1, . . . , n. As a consequence, the bound on the number of samples would become

n ∅ (b − a)2

2ε2 ln
2

δ
(4.18)

Another aspect which should be addressed is the relationship between the number
of needed samples as per the Chernoff bound and that which could be derived by
applying the central limit theorem. In fact, if fu(ψ) = fu(ψ)(μ, σ 2) the central limit
theorem states that as n increases the distribution of Ên(u(ψ)) approaches the normal
distribution with mean value E[u(ψ)] = μ and variance σ 2

n irrespective of fu(ψ). Said
that, we can write that

Pr

(
|Ên(u(ψ)) − μ| ∞ λ

σ∼
n

)
= erf

(
λ∼
2

)
(4.19)



86 4 Randomized Algorithms

If we select ε > 0 so that ε = λ σ∼
n
, then the implicit relationship between ε, δ,

and n is

δ = 1 − erf

(
ε
∼

n

σ
∼

2

)

since for x > 0 we can provide the Chernoff-Rabin bound

1

2

(
1 − erf

(
x∼
2

))
∞ 1

2
e

−x2
2

then, being x = ε
∼

n
σ

we can write that

δ ∞ e
−ε2n
2σ2

from which

n ∅ 2σ 2

ε2 ln
1

δ
. (4.20)

We recall that the Chernoff bound requires u(ψ) ∀ [0, 1] as a working hypothesis
but we commented that results can be extended provided that the variable is bounded.
The variance σ 2 might be small. In such a case the bound (4.20) provided by the
central limit theorem could slightly improve over the Chernoff bound (the opposite
holds). That said, the Chernoff bound should always be preferred independently of the
value assumed by σ 2. In fact, (4.20) relies on the assumption that the distribution of
the empirical mean is Gaussian which is only true asymptotically with the increasing
n and its convergence ratio depends on σ . Differently, the (4.17) is general and does
not require any particular assumption on the distribution.

As an example, let us assume that u(ψ) is uniformly distributed in interval [a, b] =
[0, 1]. Then, the central limit theorem (using Eq. 4.20) would lead to

n ∅ 2(b − a)2

12ε2 ln
1

δ
= 1

6ε2 ln
1

δ

against the bound derived from the Hoeffding inequality (Eq. 4.18)

n ∅ (b − a)2

2ε2 ln
2

δ
= 1

2ε2 ln
2

δ

Figure 4.9 presents the bound set by the central limit theorem against the Chernoff
one for the choice δ = ε. As we see the CLT, by taking advantage of the fact the
distribution of the empirical mean is Gaussian (when it is only asymptotically),
improves over Chernoff that is not assuming any particular distribution.
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Fig. 4.9 The number of samples requested by the Chernoff bound and the Central limit theorem
as function of confidence and accuracy δ = ε

4.4.4 The Minimum (Maximum) Expectation Problem

The minimum (maximum) expectation problem aims at estimating the minimum
(maximum) value of the expectation of a function. Without any loss in generality, we
consider here the minimization problem by keeping the same structure given in [2].

Consider the Lebesgue measurable function u(ψ,Δ) ∀ [0, 1], ψ ∀ Ψ ∈ R
l and

Δ ∀ D ∈ R
k . Define fΨ and fΔ to be the probability density functions associated to

random variables ψ and Δ defined over Ψ and D, respectively. The problem requires
minimization either of function

umin = min
ψ∀Ψ

EΔ[u(ψ,Δ)] (4.21)

or
umin = min

Δ∀D
EΨ [u(ψ,Δ)].

The two problems are structurally equivalent; as such we consider the first one
and the other follows immediately. The problem can then be described by the system

{
φ(ψ) = EΔ[u(ψ,Δ)]

umin = minψ∀Ψ φ(ψ).
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In Sect. 4.4.3, we have seen how the empirical mean converges to its expectation
if we draw a number of samples satisfying the Chernoff bound. Let us then consider a
given value ψ̄ and estimate the expected value EΔ[u(ψ̄,Δ)] with its empirical mean

Ên(u(ψ̄)) = 1

n

n∑

j=1

u(ψ̄,Δj) (4.22)

based on n i.i.d. samples Δ1, . . . , Δn. The Hoeffding inequality can then be applied
and leads to

Pr
(
|Ên(u(ψ̄)] − EΔ[u(ψ̄,Δ)]| ∅ ε

)
∞ 2e−2nε2

(4.23)

from which we derived the Chernoff bound (4.23) holds for ψ̄ but it also indepen-
dently holds for any finite sequence of ψ̄ ∀ {ψ1, . . . , ψm} drawn from ψ .

Moreover, we can interpret u(ψ̄,Δ), as a set of functions parameterized in ψ̄

composing the function family A.
We would appreciate the actual mean evaluated on the generic i-th sample

Ên(u(ψi)) to be close to the expected value EΔ[u(ψi,Δ)] for any ψi, i = 1, . . . , m.
In other words, we would like the empirical mean to converge to its expectation

uniformly as n goes to infinity and for each element of the family A = {u(ψi,Δ), i =
1, . . . , m}. When this holds we say that function family A satisfies the Uniform
Convergence of Empirical Mean (UCEM) property. If the family A is finite (say
composed of m functions) then, by repeated application of the Hoeffding inequality,
we have that

Pr

(
sup
u∀A

|Ên(u(ψ)) − EΔ[u(ψ,Δ)]| > ε

)
∞ 2me−2nε2

(4.24)

and, when n ≤ ≥, (4.24) goes to zero. The UCEM property then holds for any
finite function family. However, the property might hold also for an infinite function
family, e.g. A = {u(ψ,Δ),ψ ∀ Ψ }. It can be proved that the UCEM property holds
for all those families for which the Pollard dimension dP of A is finite [4].

4.4.4.1 The Pollard Dimension

Let Ψ be a measurable space and F ∈ [0, 1]k a family of measurable functions.
A set of points ψ1, . . . , ψn is said to be P-shattered by F if there exists a real vector
c ∀ [0, 1]n such that, for every binary vector b ∀ {0, 1}n, there exists a function
fb ∀ F such that

{
fb(ψi) < ci if bi = 0
fb(ψi) ∅ ci if bi = 1
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The Pollard dimension dP of F is the largest integer n for which there exists a set
of cardinality n P-shattered by F [4].

To better understand the concept of P-shattered consider a real vector c ∀ [0, 1]n

and the generic point ψi. For each function f ∀ F we have that f (ψi) can be larger
(or equal) or smaller than value ci. Then there are 2n possible behaviors as f varies in
F. Set ψ1, . . . , ψn is said to be P-shattered by F if each of the possible 2n behaviors
is realized by some f ∀ F.

The dP is a generalization of the Vapnik–Chervonenkis (VC) dimension defined
on binary valued functions F. Moreover, for binary valued functions dP = dVC where
dVC is the VC-dimension.

When the Pollard’s dimension is known, we can state the important Corollary [2]:

The minimum expectation problem. Corollary:

Let u(ψ,Δ) ∀ [0, 1] be a performance function measurable according to
Lebesgue on its domains Ψ ∈ R

l and D ∈ R
k , onto which are defined the ran-

dom variables ψ and Δ, respectively, with probability density functions fΨ and fΔ.
Let dP of function u(·) be finite.
Draw m i.i.d. samples ψ1, . . . , ψi, . . . , ψm from ψ and n i.i.d. samples Δ1, . . . , Δj,

. . . Δn from Δ and compute

Ên(u(ψ)) = 1

n

n∑

j=1

u(ψ,Δj)

ûmin = min
i=1,...,m

En[u(ψi)]

then,

Pr
(
Pr

(
EΔ[u(ψ,Δ)] ∞ ûmin − ε1

) ∞ ε2
) ∅ 1 − δ

holds for any accuracy level ε1, ε2 ∀ (0, 1), confidence δ ∀ (0, 1) provided that

m ∅ ln 2
δ

ln( 1
1−ε2

)

and

n ∅ 32

ε2
1

[
ln

16

δ
+ dP

(
ln

16e

ε1
+ ln

16e

ε1

)]

Value ûmin is the probabilistic outcome of the algorithm.
Instead, when the Pollard dimension is not know we can use the main result given

in the following theorem [2]



90 4 Randomized Algorithms

Table 4.3 The number of samples n, m = g(ε, δ)

ε1 = ε2 = ε ε = 0.05, δ = 0.02 ε = 0.05, δ = 0.01 ε = 0.02, δ = 0.01 ε = 0.01, δ = 0.01

(m, n) (89, 1960) (104, 2126) (263, 14451) (528, 61296)

The minimum expectation problem. Theorem:

Let u(ψ,Δ) ∀ [0, 1] be a performance function measurable according to
Lebesgue on its input domains Ψ ∈ R

l and D ∈ R
k , onto which are defined the

random variables ψ and Δ, respectively, with probability density functions fΨ and
fΔ.
Draw m i.i.d. samples ψ1, . . . , ψi, . . . , ψm from ψ and n i.i.d. samples Δ1, . . . , Δj,

. . . Δn from Δ, compute

Ên(u(ψ)) = 1

n

n∑

j=1

u(ψ,Δj)

ûmin = min
i=1,...,m

E[u(ψi)]

then,

Pr
(
Pr

(
EΔ[u(ψ,Δ)] ∞ ûmin − ε1

) ∞ ε2
) ∅ 1 − δ

holds for any accuracy level ε1, ε2 ∀ (0, 1), confidence δ ∀ (0, 1) provided that

m ∅ ln 2
δ

ln( 1
1−ε2

)

and

n ∅ 1

2ε2
1

ln
4m

δ

Value ûmin is the probabilistic outcome of the algorithm.

Comments

We see from Table 4.3 that the required number of samples can be very high depending
on the selected accuracy and confidence levels since the number of samples n is
function of the number of samples m, yet through alogarithm.

However, the number of samples required by the corollary is significantly higher
than those requested by the theorem. For instance, if we choose ε1 = ε2 = ε = 0.02
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Algorithm 10: Randomized algorithm for the minimum expectation problem

1- The probabilistic problem requires to estimate min E[u(ψ,Δ)];
2- Identify the input spaces Ψ , D and random variables ψ and Δ with probability density

function fψ over Ψ and fΔ over D, respectively;
3- Select the accuracy ε and the confidence δ levels;

4- Draw m ∅ ln 2
δ

ln( 1
1−ε

)
i.i.d. samples ψ1, . . . , ψi, . . . , ψm from ψ ;

5- Draw n ∅ 1
2ε2 ln 4m

δ
i.i.d. samples Δ1, . . . , Δj, . . . Δn from Δ according to fΔ;

6- Compute ûmin(ψi) = 1
n

∑n
j=1 u(ψi,Δj) for each i;

7- use ûmin = mini=1,...,m ûmin(ψi) and ψ̂ = arg mini=1,...,m ûmin(ψi);

and δ = 0.01 then m = 263, n = 14, 451 from the Theorem and m = 263, n =
1, 367, 851 from the Corollary with the easiest (yet unlikely) dimension dP = 1.
For this reason, we surely use the Theorem’s results in the Randomized algorithm
framework, mostly with the choice ε1 = ε2 = ε.

The randomized algorithm for solving the minimum expectation problem is finally
summarized in Algorithm 10.

4.5 Controlling the Statistical Volume of the Sampling Space

Randomization requests to sample from a given space Ψ and a random variable
with probability density function fψ defined over Ψ . By acting on some controlling
parameter of fψ , we can tune the statistical volume Ψ defined as

Vol(Ψ ) =
∫

Ψ

fψdΨ

which is a very useful operation in many applications. For instance, if we wish to
control the space of uncertainty affecting a computation we find useful to introduce a
control parameter that allows the shrinkage/enlargement of the space. A norm applied
to the vector is a first element that can control it. Another possibility—which can be
related to the norm—is the introduction of a mechanism controlling the scattering
of points in the space. For their nature, the variance for a scalar and the covariance
matrix for a vector can control effectively the statistical volume of a space: the larger
the scattering index the larger the embraced volume.

If Ψ ⊂ R
l, it is common to describe it either in terms of a controllable hypercube or

a controllable ball onto which φ is defined with pdf fψ (both situations can be managed
by introducing the concept of norm). In the former case, a common description is such
that each component ψ(i) of ψ belongs to a bounded interval, i.e., ψ(i) ∀ [ai, bi].
Here, the control of the volume is on ai and bi. If we set identical and symmetrical
values for ai and bi so that ai = −ρ, bi = ρ, then we have that each edge of the
hypercube has length 2ρ and Ψ can be controlled in expansion and contraction with
the single parameter ρ and Ψ = Ψ (ρ).
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Algorithm 11: The algorithm for extracting vectors according to a uniform
distribution from a lp norm-ball

1- Generate l independent random real scalars ξi distributed according to the generalized
gamma density function

G(x) = p

Γ ( 1
p )

eξp
, ξ ∅ 0,

where Γ is the gamma function and p the norm value.
2- Construct random vector x ∀ R

l of components xi = siξi where si is a random sign. Random
vector y = x

‖x‖p
is uniformly distributed on the boundary of Bρ .

3- Return ψ = ρyw
1
l , where w is a random variable uniformly distributed in [0, 1]

We recall that if we have a uniform distribution defined in the [−ρ, ρ] interval,

the variance is ρ2

3 , and the control of ρ implies a control in variance. This situation
is formalized by the ‖ψ‖≥ norm

‖ψ‖≥ = max {|ψ(1)|, |ψ(2)|, · · · , |ψ(l)|}

being ψ(i) the i-th component of vector ψ . Following the definition, ‖ψ‖≥ = ρ

induces a hypercube of edge 2ρ. In the latter case, e.g., the norm-ball controlled case,
ψ is restricted within Ψ (ρ) described in terms of norm-bounded balls of radius ρ

Ψ (ρ) = {‖ψ‖p ∞ ρ}

where

‖ψ‖p =
(

l∑

i=1

|ψ(i)|p
) 1

p

.

In general, the L2-norm is used but other norms can be considered to bound Ψ and
having it controlled as Ψ (ρ). Interestingly, the maximum norm ‖ψ‖≥ is the limit of
the ‖ψ‖p norm when p ≤ ≥.

Though a uniform distribution sample extraction algorithm is immediate for a
‖ψ‖≥ norm where we simply need to uniformly sample from each axis, the problem
is more complex if we wish to generate a uniform sampling from a norm-bounded
ball. Clearly, verifying the appurtenance of a sample to the ball as we did when
estimating π with the square-circle mechanism of Sect. 4.2.1, instead of a hypercube
is not an effective solution. Fortunately, [3] provides a simple algorithm that returns
a sample ψ belonging to a ball Bρ

Bρ = Ψ (ρ) = {ψ ∀ Ψ : ‖ψ‖p ∞ ρ}.
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The algorithm is given in Algorithm 11. Interestingly, if we arrest the algorithm
to the second step, we obtain a sample that is uniformly distributed on the boundary
‖ψ‖p = ρ.

If Ψ = R
l and a multivariate probability density function fψ is defined for ψ ,

say Gaussian, then we can control the statistical volume by acting on the covariance
matrix Cψ . The interested reader can refer to [2] for a deeper investigation.



Chapter 5
Robustness Analysis

Robustness is the property of being strong and healthy in constitution. When we
transpose it to a system, it refers to the ability of tolerating perturbations that might
affect the system’s functional body. As such, a robust system will be able to somehow
resist to a set of perturbations by providing a graceful loss in performance. When
we consider an embedded system, perturbations are associated with either a physical
realization of the device (e.g., fluctuations introduced by the production process in
an analog implementation) or finite precision representation of structural parameters
defining the computational flow (e.g., truncation operators and lookup tables in a
digital implementation). Faults and aging phenomena represent other examples of
perturbations. If the application is robust enough then its porting on the embedded
system will be effective and the ability to guarantee a quality of service over some
time is granted despite the presence of aging effects; in both cases the performance
loss is kept within a tolerated margin.

In the following we formalize at first the robustness analysis problem. We then
study the effect of perturbations affecting a computational flow and quantify the
induced impact on the chosen figure of merit. In particular, the Robustness in the
small problem is addressed, where it is assumed that perturbations are small
in magnitude. The “small” magnitude request is hard to be verified since small
or large depends on the specific problem. However, the assumption allows us to
provide results in a closed form thanks to the more amenable mathematics. Con-
versely, we say that we address a Robustness in the large problem when no assump-
tions are made about the magnitude of perturbations, which can be either small or
large.

C. Alippi, Intelligence for Embedded Systems, DOI: 10.1007/978-3-319-05278-6_5, 95
© Springer International Publishing Switzerland 2014
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5.1 Problem Formalization

Consider a system/application described by a Lebesgue measurable function
g(η, x) ∀ R depending on the column parameter vector η ∀ σ ∈ R

d and the column
input vector x ∀ X ∈ R

l and its perturbed version g(η, δη, x) ∀ R depending also
on the perturbation δη ∀ λ ≤ σ .1

5.1.1 Robustness

We say that g(η, x) is robust with respect to perturbations δη ∀ λ ≤ σ at level
Θ ∀ R

+ when, given a discrepancy function u (g(η, x), g(η, δη, x)) ∀ U ∈ R the
system experiences a degradation in performance within Θ i.e.,

u (g(η, x), g(η, δη, x)) ≥ Θ, ◦δη ∀ λ,◦x ∀ X. (5.1)

In some relevant cases the set X is the discrete one X = X̃ and contains a finite
number of input instances. For instance, this happens when we have a limited number
of data or signals and we wish to estimate the robustness level of the application
constrained to available set X̃ . When this is the case the (5.1) becomes

u (g(η, x), g(η, δη, x)) ≥ Θ, ◦δη ∀ λ,◦x ∀ X̃ . (5.2)

We commented above that perturbations on parameters can be intended as uncer-
tainty affecting parameters, e.g., introduced by their analog implementation within an
embedded hardware. At the same time, we might wish to port an algorithm designed
with parameters represented in double precision to a fixed point representation micro-
processor. Although this is not a robustness problem (the perturbation is in fact fixed
for a given architecture) and the problem should be addressed with the PACC frame-
work of Chap. 7, we have that if the application is designed to be robust then the
application porting will be successful provided that the induced loss on the figure of
merit is below a tolerated value. In other words, a robust enough computation will
be able to address also the specific perturbation introduced by the limited precision
architecture.

The issue is much more relevant than it might appear. In fact, if the application is
not robust, perturbations affecting the parameters, say of a nonlinear model, though
small, can introduce a significant change in the function’s behavior as well as a
drastic fall in performance. All scholars having trained a neural network model with
a high precision machine and ported to an embedded-less precise-hardware have
experienced the dramatic loss in accuracy associated with this operation unless the

1 We should consider that the perturbed parameter vector also belongs to σ . From now on we
assume that this condition is also satisfied.

http://dx.doi.org/10.1007/978-3-319-05278-6_7
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network was trained to be robust. Evaluation of the robustness level possessed by
an application is requested in a vast scenario of applications and research areas,
from model estimation [113] to robust computation [114, 115] and control [2, 116]
to cite a few examples. When electronic devices are taken into account we have
different sources of perturbations. Without pretending to be exhaustive, we encounter
stochastic variations in the production process, e.g., [119], permanent and transient
faults affecting the electronics, finite precision data representation, and processing
in digital devices [37, 117, 118] and aging effects in analog ones [120].

In Sect. 4.5 we show how it is possible to control the space of uncertainty affect-
ing a computation by acting on a suitable norm for λ. Likewise, we can use the
same framework to describe and control the perturbation space λ = λ(ρ) either
in terms of a hypercube whose edge length is modulated by a single positive real
parameter ρ or by shaping λ(ρ) through a norm-bounded ball of radius ρ. By oper-
ating on parameter ρ we enlarge/shrink the volume of the perturbation space. When
ρ = 0 the perturbation space disappears and the system degenerates into its nominal
perturbation-free description.

A robustness analysis aims at evaluating different aspects:

• The performance loss verification problem A perturbation space λ or λ(ρ) is
given as well as a tolerated performance loss level Θ . We wish to verify if (5.1) or
(5.2) is satisfied for function g(η, x). Whenever they are not satisfied we might be
interested in determining the level of satisfaction by computing the percentage of
points in X (or X̃ ) satisfying the relationship, i.e.,

∫
λ,X I (δ, x)dδdx

∫
λ,X dδdx

where I (δ, x) is the indicator function

I (δ, x) =
{

1 if u (g(η, x), g(η, δη, x)) ≥ Θ

0 otherwise

• The evaluation of the robustness level problem A perturbation space λ is given
and we wish to determine the minimum Θ granting (5.1) or (5.2) to hold. In this
case, Θ provides the robustness index of the application.

• The robustness function problem Not rarely, we iterate the robustness level
problem by acting on λ(ρ) through ρ and evaluate function Θ (ρ) which provides
the robustness profile for the application.

5.1.2 Robustness at the Computational Flow Level

It should be commented that the formalization given in (5.1) and (5.2) addresses a
more complete problem than that of evaluating the effects of perturbations solely

http://dx.doi.org/10.1007/978-3-319-05278-6_4
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Fig. 5.1 Decomposition of function g(η, x). Parameter vector η of function g(·, ·) contains both
parameters defining the operational modality of sub-functions (here f1, f2, f3) and those controlling
the subsequent insurgence of perturbations, i.e., η4 and η5. The nominal perturbation-free case is
characterized by the choice of functional parameters η4 = 0 (the perturbation operates with an
additive model on the computational flow) and η5 = 1 (the perturbation, once activated, operates
according to a multiplicative model)

affecting the parameters of a function (e.g., the weights of a neural network or
the parameters of a linear time invariant dynamic model in a predictive form). An
appropriate use of parameters can, in fact, allow us to deal with perturbations acting
on a computational flow. To ease the understanding let us consider the functional
flow depicted in Fig. 5.1 where function g(η, x)

g(η, x) = f2(η2, x) − η4 + f3 (η3, f1(η1, x)) η5

is partitioned in sub-functions y1 = f1(η1, x), f2(η2, x), f3(η3, y1) (inputs and par-
tial outcomes of the processing must be intended as defined in the appropriate real
spaces). The partitioning in subsystems depends on the nature of the computational
flow, on design issues, and where the robustness analysis must be carried out. In the
example, there are two perturbation injection points p1 and p2 controlled by para-
metric values η4, η5 defined in a suitable space and initially set to zero and one so that
their influence on the computation is null. The vector η is then η = [η1, η2, η3, η4, η5].
The introduction of parameters η4, η5 allows us to address sources of perturbations
in the computational flow which are silent during the nominal perturbation-free case
and become active when perturbations are introduced. Initial values for those para-
meters must be set so that their contribution is neutral in the nominal conditions. For
instance, if we are interested in evaluating the robustness level of the computation
w.r.t point p1 we need to solve the (5.1) by selecting a perturbation δη affecting para-
meter η4 only. Then, the perturbation must have the structure δη = [0, 0, 0, δη4, 0]
and λ(ρ) is derived accordingly.
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5.2 Robustness in the Small

This section addresses the robustness in the small problem. The operational frame-
work is that of Sect. 5.1 where we also assume that g(η, x) is differentiable twice
w.r.t. column parameter vector η and that the magnitude of the perturbation δη is
small.

5.2.1 Evaluating the Impact of Small Perturbations
at the Function Output

At first we wish to evaluate the pointwise effect of a small perturbation affecting the
parameter vector on the function output. If g(η, δη, x) is the value of the perturbed
function, then the small perturbation hypothesis allows us to determine its impact on
the perturbed output u(g(η, x), g(η, δη, x)). For instance, consider the additive per-
turbation mechanism and u(g(η, x), g(η, δη, x)) = g(η +δη, x)−g(η, x) = δg. By
expanding with Taylor the perturbed function g(η + δη, x) around the perturbation-
free parameter vector η , we obtain

g(η + δη, x) = g(η, x) + ∂g

∂η

T ∣∣∣∣
η

δη + 1

2
δηT ∂2g

∂η2

∣∣∣∣
η

δη + O(δηT δη).

By neglecting higher order terms, the induced perturbation at the function output
becomes

δg = ∂g

∂η

T ∣∣∣∣
η

δη + 1

2
δηT ∂2g

∂η2

∣∣∣∣
η

δη. (5.3)

As expected, the perturbation depends on the local geometry of the parameter

space through the gradient ∂g
∂η

∣∣
η

and the hessian matrix ∂2g
∂η2

∣∣
η
. No more can be said

at this level unless a priori information or extra assumptions are taken into account
about the nature of the perturbation or the chosen function g(·, ·). For instance, if we
keep only the linear term in the expansion, we can repeat the derivations carried out
in Chap. 3 when assessing the stochastic properties (mean value, variance, and pdf
where applicable) of uncertainty affecting the inputs of a linear system. Clearly, here
the random variable to be considered is δη (ruled by a probability density function
fδη and defined over λ) and x (to which is associated pdf fx over X ). This is an easy
exercise we leave to the reader.

5.2.2 Perturbations at the Empirical Risk Level

The case where the parameters of the function g(η, x) are derived from a learning
process carried out by adopting an effective gradient-based learning algorithm is of

http://dx.doi.org/10.1007/978-3-319-05278-6_3
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particular relevance. We might need to run the algorithm several times due to the
presence of local minima in the empirical risk function VN before obtaining a good
approximating model f (η̂ , x), (see Sect. 3.4.1). We know that the parameter vector
η̂ belongs to the neighborhood of the unknown local optimal parameter η≺ as seen
in Chap. 3.

If we now select function g(η, x) to be the empirical risk defined on the training
set Z N , an additive perturbation and u (g(η, x), g(η + δη, x)) = δVN , then we can
evaluate the effects that a perturbation affecting the parameters η̂ induce on the
empirical risk. Since VN is based on Z N , space X is constrained so that xs to be
considered are those in Z N , i.e., X̃ = Z N . We have that the linear term

∂VN

∂η

T ∣∣∣∣
η̂

δη

in (5.3) is null (the training algorithm converged to a minimum of VN ). The variation
induced at the function output δg depends then only on the quadratic form

δVN = 1

2
δηT ∂2VN

∂η2

∣∣∣∣
η̂

δη. (5.4)

Moreover, if we assume VN to be the Mean Squared Error (MSE) VN =
1
N

∑N
i=1(yi − f (η, xi ))

2 and defined e(x) = y − f (η, x), then term ∂2VN
∂η2

∣∣
η̂

of
(5.4) becomes

∂2VN

∂η2

∣∣∣∣
η̂

= 1

N

N∑

i=1

∂2e(xi )
2

∂η2

∣∣∣∣
η̂

with
∂2e(x)2

∂η2

∣∣∣∣
η̂

= 2
∂ f (η, x)

∂η

∣∣∣∣
η̂

∂ f (η, x)T

∂η
|
η̂

− 2e(x)
∂2 f (η, x)

T

∂η2

∣∣∣∣
η̂

.

We now introduce the quasi-Newton approximation stating that term

e(x)
∂2 f (η, x)

T

∂η2

∣∣∣∣
η̂

is negligible. This happens when the pointwise error is very small for all the x in

the training set (e(x) ∪ 0) or the local curvature of ∂2VN
∂η2

∣∣
η̂

around the minimum η̂

can be nicely approximated with a quadratic semidefinite positive form. Under the
quasi-Newton assumption δVN degenerates to the quadratic form

δVN = δηT Hδη = trace
(

HδηδηT
)

where trace is the trace operator and H is the semidefinite positive matrix

http://dx.doi.org/10.1007/978-3-319-05278-6_3
http://dx.doi.org/10.1007/978-3-319-05278-6_3
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H = 1

N

N∑

i=1

∂ f (η, xi )

∂η

∣∣∣∣
η̂

∂ f (η, xi )
T

∂η

∣∣∣∣
η̂

.

Since we have a quadratic semidefinite positive form by construction, any per-
turbation δη affecting the parameter vector η̂ will introduce a loss in approximation
performance on Z N and VN will not decrease. This means that the training error will
not necessarily decrease following a perturbation and is likely to increase.

This is exactly the situation scholars found when they wanted to port a neural
network configured in a high precision platform to an embedded system characterized
by lower precision.

By recalling that here X̃ = Z N , and given the above, problem (5.2) can be
rewritten as

δηT Hδη ≥ Θ, ◦δη ∀ λ,◦x ∀ Z N . (5.5)

Since the performance loss verification problem aims at verifying the level of sat-
isfaction of (5.5) given a perturbation space λ(ρ) and a given tolerated performance
loss level Θ , its solution can be easily obtained by invoking randomized algorithms
according to Algorithm 6. We recall that if the pdf fδη is unknown, we can consider
the uniform distribution for its worst case characteristics.

We now solve the “evaluation of the robustness level problem.” Again perturbation
space λ is given and we wish to determine the minimum Θ granting the (5.5) to hold.

This problem can be reformulated by looking for the maximum value the perturbed
empirical risk can assume following an arbitrary perturbation δη ∀ λ. The maximum
value is obtained when the perturbation δη is a vector parallel to the eigenvector of
the matrix H associated with the largest eigenvalue λmax(H)

max(δVN ) = ‖(H)‖2 max(‖δη‖2) = λmax(H)ρ2

the maximum error depends again on the geometry of the space and the intensity
of the perturbation (‖δη‖2 is the squared magnitude of the perturbation). Note that
‖δη‖2 = ρ2 both for ‖δη‖2 and ‖δη‖∞ norms.

The hard problem associated with the evaluation of the maximum error can also
be solved by considering the probabilistic solution of the maximum value estimation
problem with randomized algorithms according to Algorithm 8.

Another problem we might be interested in requires the evaluation of the
expected value the perturbed empirical risk assumes, i.e., u (g(η, x), g(η + δη, x)) =
Eδη [δVN ]. Although the problem can be solved with randomized algorithms by
invoking Algorithm 9, we can solve it in a closed form under some hypotheses.
Let us assume that perturbation δη is an i.i.d. random variable of zero mean with
all components characterized by identical variance π 2

δη . This is exactly the case
we encounter when we implement function f (η̂ , x) with an analog representation
where each parameter is subject to a fluctuation induced by the production process.
For instance, if we implement a generic parameter with a resistor, the parameter
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value would be chosen as the nominal value. However, the production process will
generate resistors for such a parameter ruled by a Gaussian distribution of mean
value centered in the nominal one and a standard deviation set, e.g., to one-third of
the component tolerance (refer also to Sect. 2.1.4 where the tolerance of sensors was
defined).

Following this comment we can study the behavior of a family of functions f (η̂ , x)

generated by the production process. Since

δVN = δηT Hδη = trace
(

HδηδηT
)

by taking expectation w.r.t. δη to account for randomness on δη , we have that

Eδη [δVN ] = Eδη [δηT Hδη ] = trace
(

H Eδη

[
δηδηT

])
.

If we assume that components of δη are i.i.d. with the same variance π 2
δη , then

Eδη [δVN ] = π 2
δη trace(H) = π 2

δη

d∑

i=1

λi (H) (5.6)

where λi (H) is the i-th eigenvalue of the H matrix. The expected value of the incre-
ment in the empirical risk Eδη [δVN ] is function of the intensity of the perturbation
π 2

δη and the local geometry of the empirical risk around η̂ .

Comments

We learned from Sect. 3.4.1 that the ultimate goal of learning is to provide a model
that not only fits past data but also provides good performance on unseen patterns. In
this subsection we have addressed the case where the figure of merit we are looking
at is the empirical risk VN and not the structural risk V̄ (η) (situation addressed
in the next subsection). In fact, in real applications, it is not rare the case where
we have all the data needed to learn a nonlinear function for which an explicit
relationship does not exist. Having many data for training means that N tends to the
asymptotes and the theory tells us that the empirical risk becomes a good estimate of
the structural one. Then, the identified model is the one to be used in our application
and implemented in the embedded system. VN is providing a good performance
estimate that, basically, coincides with the inherent risk (the approximation and the
estimation risk are negligible here provided that the training procedure is effective
and a universal approximation neural network is considered).

Porting the model to the embedded system requires a robustness analysis, exactly
the case we investigated in this section.

http://dx.doi.org/10.1007/978-3-319-05278-6_2
http://dx.doi.org/10.1007/978-3-319-05278-6_3
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Fig. 5.2 The training data Z N (circles), the noise-free function y − ε, and the learned function
f (η, x). The hidden layer has 10 hidden units

5.2.2.1 Example (1:4): Learning a Neural Network

Consider the problem of learning an unknown nonlinear regression function from
data and port it to an embedded system. Only the parameters of the function are
affected by perturbations. The unknown reference function generating the data is

y = −x sin(x2) + e−0.23x

1 + x4 + ε

where ε ∅ N (0, 0.05) · N = 50 training data have been drawn from interval
X = [−2, 2] according to a uniform distribution. The y values were evaluated
accordingly.

A feedforward neural network with three layers (the input, the hidden nonlinear
one with neurons characterized by a hyperbolic tangent activation function, and the
linear output layer) was consider to learn the function based on the available training
set Z N . Training was carried out with a Levenberg-Marquardt algorithm and led to
f (η̂ , x). Figure 5.2 shows the noise-free and the neural network output as well as
the considered training data. We appreciate the fact that the learned neural network
approximates well the unknown function.

The perturbation in the small analysis was carried out by perturbing the neural
network parameter vector according to an additive model η + δη affecting both
weights and biases. The generic i-th component of vector δη is drawn from a uniform
distribution U (−ρ, ρ), being ρ a positive real scalar controlling the intensity of the
perturbation. We consider the expected value Eδη [δVN ] of (5.6) to be the figure of
merit chosen to evaluate the robustness property for the neural network
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Fig. 5.3 Eδη [δVN ] estimated according to (5.7) compared with Êδη [δVN ] estimated according to
(5.8). The number of samples granting convergence of Êδη [δVN ] to Eδη [δVN ] was chosen to satisfy
the Chernoff bound

Eδη [δVN ] = ρ2

3

d∑

i=1

λi (H) (5.7)

since π 2
δη = ρ2

3 . Equation (5.7) tells us that the expected increase in VN is linear
with the variance of the perturbation and quadratic in ρ, the parameter controlling
the intensity of the perturbation.

Figure 5.3 shows the Eδη [δVN ] estimated according to (5.7) and

Êδη (δVN ) = 1

n

n∑

j=1

(
VN (η + δη j ) − VN (η)

)
. (5.8)

The number of samples n = 4612 was chosen according to the Chernoff bound
(δ = 0.05, τ = 0.02, Algorithm 9) to grant that discrepancy between |Eδη [δVN ] −
Êδη [δVN ]| < τ with probability 1 − δ = 0.95.

The two curves basically coincide until ρ = 0.5 and start diverging around ρ =
2.7 implying that the small perturbation hypothesis is no more valid from thereon.
Two comments can be made. The first refers to the fact that after ρ = 2.7 VN

assumes very high values, e.g., 50 and above. In such a circumstance it does not
even make sense to speak about loss in performance since the network behaves as
a totally different one. In addition, Fig. 5.3 evidences how the theory represented
by Eq. (5.7) well estimates the real behavior (5.8). The figure shows that the loss
in performance on VN (VN = 1.2 × 10−4 after training) in the nominal error-free
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condition is acceptable only for very small values of ρ, say ρ < 0.05. For larger
values VN increases with a behavior quadratic in ρ as pointed out by (5.7).

5.2.3 Perturbations at the Structural Risk Level

Despite the small-perturbation hypothesis, investigation of the effect of perturbations
on the structural risk is a difficult issue that can be solved in a closed form only
by assuming some additional hypotheses. Although this might appear an unnatural
exercise, we anticipate this is not. In fact, even if the assumed assumptions might
be strong they allow us to open a view over the rather complex theory behind the
robustness problem: results obtained in closed form showing the relationship between
accuracy performance and perturbations set the basis for future research.

In the following, we assume that our application can be modeled as the unknown
nonlinear function g(η≺, x) belonging to a known model family f (η, x) so that there
exists a unique η≺ for which g(η≺, x) = f (η≺, x). Moreover, we assume that the
system model provides data to be used for model configuration according to the
additive signal plus noise model y = f (η≺, x) + φ , where φ is a scalar i.i.d. random
variable of zero mean and unknown π 2

φ variance.
The assumption that the system model is complete, i.e., the process generating the

data belongs to the envisaged model family used for model identification, permits us
to forget about the existence of the approximation and estimation errors contributing
to the structural risk and focus instead on the relationship between perturbations and
accuracy.

We know that the completeness assumption is a strong one if we have a limited
data set, but becomes reasonable when the number of data increases and function
family f (η, x) is a universal function approximator.

By following the approach delineated in [50] we consider a squared loss figure of
merit for the structural risk and a mean squared one for empirical one

V̄ (η) = 1

2
E

[
(y − f (η, x))2

]

VN (η, Z N ) = 1

2N

N∑

i=1

(yi − f (η, xi ))
2.

Note that this formulation is slightly different from the one used in Sect. 3.4.1 for

the introduction of scaling factor 1
2 which simplifies subsequent derivations.

Denote by η̂ the parameter vector obtained by minimizing VN (η, Z N ) with an
efficient gradient-based algorithm. We know from Chap. 3 that η≺ is the value mini-
mizing the structural risk and assume that η̂ belongs to its neighborhoods.

By considering a Taylor expansion for both structural and empirical risks, assum-
ing that inputs and noise are independent variables, neglecting higher order terms

http://dx.doi.org/10.1007/978-3-319-05278-6_3
http://dx.doi.org/10.1007/978-3-319-05278-6_3
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and adopting a quasi-Newton approximation for the Hessian, we obtain that [50, 122,
123],

E
[
VN (η̂ , Z N )

]
= V̄ (η≺) − π 2

φ p̄

2N
(5.9)

E
[
V̄ (η̂)

]
= V̄ (η≺) + π 2

φ p̄

2N
. (5.10)

Expectation is here taken with respect to all possible sets Z N we could generate
with N supervised couples.

p̄ = rank

(
∂2V̄ (η)

∂η2

∣∣∣∣
η≺

)

is the effective number of parameters used by the model to solve the learning problem
and does not necessarily coincide with the sum of available parameters. When the
model is linear and complete, p̄ coincides with the VC dimension minus one. It is
expected that p̄ is somehow related to the VC dimension also in the nonlinear case
but no results are available yet.

The above relationships have an intriguing meaning worth further discussion.

We comment that V̄ (η≺) is the structural risk, whereas E
[
V̄ (η̂)

]
represents the

expected accuracy performance associated with all possible Z N sets, each of which

is evaluated on the obtained training parameter vector. E
[
VN (η̂ , Z N )

]
represents

instead the expected empirical risk evaluated over all the possible realizations of set
Z N . We have that the expected validation error is larger than the structural risk of

term
π 2

φ p̄
2N , whereas the expected empirical risk is lower than the structural risk of the

same term. In other words, (5.9) and (5.10) state that the expected training error is
an optimistic estimate of the true test error.

By estimating the variance of the noise, we obtain

E
[
V̄ (η̂)

]
∪ E

[
VN (η̂ , Z N )

] N + p̄

N − p̄
. (5.11)

The expected validation error equalizes the expected training error amplified by

factor N+ p̄
N− p̄ .

It can be proved [123] that, by removing the expectation since we have only a

data set Z N and given the estimate p̂ = rank
(

∂2 V̄ (η)

∂η2

∣∣
η̂

)
of p̄, Eq. (5.11) reduces to

V̄ (η̂) ∪ VN (η̂ , Z N )
N + p̂

N − p̂
+ l

(
V̄ (η≺) − VN (η≺)

)
(5.12)
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where l
(
V̄ (η≺) − VN (η≺)

)
is an unknown constant depending on the given data set

Z N . In other terms, the generalization performance of the model is equal to the
training one amplified by term N+ p̂

N− p̂ : the test error is larger than the training one or,
which is the same, the training error is an optimistic estimate of the generalization
one. As expected, when N ⇒ ∞, VN (η̂ , Z N ) ⇒ V̄ (η̂), i.e., the empirical risk tends
to the structural one and η̂ to η≺.

Let us now introduce perturbation δη additive to the parameters and wonder which
is the induced perturbation at the test error δV̄ (η̂) = V̄ (η̂ + δη) − V̄ (η̂). We must

pay attention to the fact that the perturbation might change the rank of ∂2VN (η)

∂η2

∣∣
η̂
,

and hence, the effective number of parameters p̂ of a value δp. From [50], it can be
proved that

δV̄ (η̂) ∪ δηT Hδη
N + p̂ + δp

N − p̂ − δp
+ π̂ 2

φ δp

N − p̂ − δp
(5.13)

where π̂ 2
φ = 2N VN (η̂)

N− p̂ . H is the quasi-Newton approximation of the quadratic form
∂2VN (η)

∂η2

∣∣
η̂
. Note that term l(·) vanishes being a constant. From (5.13) the variation in

generalization performance is the sum of two contributions. The first term is related to
the sensitivity of the model and is characterized by a quadratic form, the second term is
related to the intensity of the noise and its sign depends on δp. Interestingly, if δp < 0
and δV̄ (η̂) < 0 then the perturbation improves the performance of the available
model! This is in line with the principal component pruning method proposed in
[124] for neural networks, where authors identified those weights whose removal
increases the accuracy performance of the model (weights removal can be seen as
a particular type of perturbation that sets the weight values to zero). Further details
can be found in [50].

We defined in Chap. 3 a perturbation to be acute when it does not change the rank
of the matrix. Then, if δη is an acute perturbation w.r.t. the H matrix the rank of H
does not change, δp = 0 and

δV̄ (η̂) ∪ δηT Hδη
N + p̂

N − p̂
. (5.14)

We are in a case similar to the δVN one with the unique difference that there is
the amplification term N+ p̂

N− p̂ taking into account the fact we have the structural risk:
results valid for the empirical risk also hold for the structural one under the assumed
hypotheses.

We should then ask which is the probability of encountering not acute perturba-
tions, which are the unique perturbations that can improve the generalization ability
of the model. Reference [50] answers the question for well-conditioned static neural
networks by proving that a continuous perturbation δη , i.e., Pr(δη = δη̄) = 0, is
acute with the probability one. In other words, non-acute perturbations are extremely
rare events and, if we wish to obtain them we need to design ad hoc experiments. For

http://dx.doi.org/10.1007/978-3-319-05278-6_3
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Algorithm 12: The randomized algorithm evaluating the probability that a
generic perturbation is not acute

1- Select the perturbation space λ of δη and assign a uniform probability density function fδη
over λ;

2- Identify the accuracy τ and the confidence δ;
3- Set the number of samples n ≥ 1

2τ2 ln 2
δ

;
4- Draw n samples {δη1, . . . , δηn} from δη according to fδη ;
5- Compute the indicator function for each sample

I (δηi ) =
{

1 if δp �= 0
0 if δp = 0

6- The estimated probability of having non-acute perturbations in the application is

p̂na = 1

n

n∑

i=1

I (δηi )

a generic application we expect perturbations to be acute, even though the property
should be evaluated case by case.

Of course, we can use randomized algorithms to estimate which is the probability
pa of having acute perturbations in our application. Simply, we have to extract δη

from the perturbation space λ, say according to a uniform distribution, and evaluate
the probability that

pa = Pr (δη |δp = 0)

i.e., the probability that the perturbation does not change the rank of the H matrix
of our model. The randomized algorithm procedure for estimating the probability
of not encountering acute perturbations is given in Algorithm 12 for its educational
value. We recall that the estimate is provided with accuracy τ and confidence δ.

5.2.3.1 Example Continued (2:4): Learning a Neural Network

We continue the experiment initiated in the previous section by considering here
the case where we are interested in changes in generalization accuracy following
the perturbations. The experimental setup is that defined at the beginning of the
subsection, i.e., the neural network learned in the previous experiment becomes
function g(η≺, x) that, additively affected by Gaussian noise φ of zero mean and π 2

φ =
0.05 variance, generates the training and the test data sets. A second neural network
f (η, x) belonging to the same family set by g(η≺, x) was trained on the training
set Z N (N = 50) and provided model f (η̂ , x). In this way model completeness is
granted, i.e., g(η≺, x) = f (η≺, x). The f (η≺, x) we refer to is this until the end of
the chapter.
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Fig. 5.4 The expected value p̂na as function of ρ. pna = 1 − pa should be null from the theory
since continuous perturbations are expected to be acute. The experiments show that the estimate p̂na
is almost null due to the fact we are evaluating it by introducing the quasi-Newton approximation
for matrix H

Evaluate, at first, an estimate p̂na of the probability of encountering a non-acute
perturbation pna = 1 − pa by relying on randomized algorithms (Algorithm 12)
where we set τ = 0.04 and δ = 0.05 requiring n = 1153 samples drawn from
space λ(ρ), ρ ∀ [0, 0.5]. We should expect the estimated p̂na to be null to confirm
that finding non acute perturbations is a very rare event. This is true in the ideal
case where we are able to obtain the exact value p. However, in real cases we have
only the estimate p̂ obtained from the quasi-Newton approximation for H (operation
that introduces uncertainty on p̂). This situation can be observed in Fig. 5.4 where
we plotted the curve p̂na as function of ρ. We see that p̂na is basically zero, the
discrepancy from it due to the above comments.

Having fixed the non-acute perturbation issue we move further and evaluate the
estimated p̂. Figure 5.5 shows the expected evolution of p̂ as function of ρ. The
plot shows the maximum and minimum value bars associated with a given ρ. We
comment that the neural network is characterized by 10 hidden units and, therefore,
makes available 31 potential degrees of freedom (i.e., the sum of the weights and
neuron biases). From the figure, we see that the neural network uses all available
degrees of freedom to solve the function approximation task (even though, many
eigenvalues are very small but significantly higher than the resolution of the 64 bits
machine and, hence, should be considered here).

We comment that the fluctuation in p̂ is contained and the minimum value it
assumes is 30. Although we should consider (5.13) to evaluate the accuracy perfor-
mance loss associated with the structural risk, given the small fluctuations around p̂
we can consider δp to be null and consider the degenerate form (5.14) instead. That
done, we can now compute the real expected change in accuracy performance of the
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Fig. 5.5 The expected value p̂ as function ofρ with the maximum and minimum bars. We appreciate
the fact that the fluctuation around the expected value is very small. This is a consequence of the
fact that the perturbations are acute

obtained model in correspondence to a new data set under perturbations uniformly
extracted from λ(ρ) as in the previous subsection and compare it with the expected
one

E[δV̄ (η̂)] = ρ2

3

N + p̂

N − p̂

d∑

i=1

λi (H). (5.15)

Equation (5.15) can be derived from (5.14) by following those derivations that
led to derive the (5.7).

To test the accuracy of (5.15) compare it with the expected real change in test
performance evaluated on a test data set of cardinality nV = 30. The pointwise
change in test can be evaluated as the discrepancy between the test error following
the perturbation and the perturbation-free one

δVnV = 1

2nV

nV∑

j=1

(y j − f (η̂ + δη, x j ))
2 − (y j − f (η̂ , x j ))

2.

Since we need to compare the estimate provided by (5.15) with Eδη [δVnV ], which
is unknown, we resort again to randomization to estimate the expected value of a
function by selecting τ = 0.04, δ = 0.05. Figure 5.6 compares the two curves.

We can see that the performance loss estimated according to (5.15) is larger than
the effective one. The outcome should not be a surprise for two reasons. At first,
we do prefer to have more conservative bounds on the real performance of our
function. Secondly, we recall that N = 50 and p̂ = 31 (we have full rank within an
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Fig. 5.6 The expected value E[δV̄ (η̂)] estimated according to (5.15) and the expected one on the
test set Eδη [δVnV ] obtained from simulations

acute framework). The number of available data is not significantly larger than the
estimated degrees of freedom, a situation that introduces high uncertainty: a more
conservative estimate is, in fact, provided by the correction term

N + p̂

N − p̂
= 1 + p̂

N

1 − p̂
N

(5.16)

that penalizes “the small data compared to the effective number of degrees of free-
dom” situation. Ultimately, small or large data w.r.t. p̂ depends on the ratio p̂

N : in a
learning procedure we have few or many data depending on the number of degrees
of freedom that need to be estimated. Ideally, we would like p̂

N ⇒ 0, statement

that, in practice, requires p̂
N ∼ 1 to which is associated an almost unitary correction

term in (5.16). Given the above setting for N and p̂ the ratio is 0.62, far from being
“much smaller than one.” This not optimal learning framework is penalized by the
correction term in (5.16) that assumes value 4.26.

5.2.4 Theory Highlights on Robustness

The small perturbation assumption allows us to open some views on the hidden
mechanism that rules the robustness-performance relationship.

We discovered that, by introducing the concept of acute perturbations, the empiri-
cal risk and structural risk share the same behavior, the latter coinciding with the
former amplified by term N+ p̂

N− p̂ , constant for a given application. It is expected
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that continuous perturbations are acute with probability one in many well-posed
applications. In particular, we have acute perturbations when considering well trained
static neural networks for nonlinear regression and recall it is a misconception to
believe that neural networks are intrinsically robust.

Both in the expected and the maximum perturbation case, we see that the local
geometry of the space (the H matrix) plays a relevant role in defining the robustness
degree of an application whose parameters have been configured. Obviously, the
intensity of the perturbation is another ingredient to this recipe and the amplification
term N+ p̂

N− p̂ must be considered to address the structural risk.
From the above sections we can propose two indexes to evaluate the goodness

in robustness for the available solution and decide, in the case we have several
equivalent solutions, which one we should consider if robustness is a figure of merit
we are interested in. The first index, RWCA, refers to the worst-case analysis, the
second, RMCA, to the mean case analysis

RWCA = λmax(V ′′
N (η̂))

RMCA =
d∑

i=1

λi (V ′′
N (η̂)),

and V ′′
N (η) can be approximated with the quasi-Newton matrix H whenever com-

putation becomes an issue. Having two equivalent solutions we can contrast them
by evaluating the most appropriate figure of merit for robustness (either RWCA or
RMCA) and select the solution that minimizes the robustness index.

An interesting followup, which naturally comes from the above derivations, is
based on the observation that we can integrate a penalty term directly in the training
phase so as to guide the search toward solutions that provide an improved robustness
ability. In other terms, the training phase will naturally look for solutions finding a
balance between approximation performance and robustness ability. The figures of
merit we need to consider for the training are

VN ,R = VN + Δλmax
(
V ′′

N (η)
)

if we wish to improve the worst-case scenario and

VN ,R = VN + Δ

d∑

i=1

λi
(
V ′′

N (η)
)

for the average case one. Δ > 0 is penalty term weighting the relevance of accuracy
versus robustness. The above penalty-based framework is known in the literature as
Tikhonov regularization and is used to integrate some desired property the solution
must possess by suitably guiding the learning process, see [121].
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It is evident that evaluation of V ′′
N (η) is a critical aspect from the computational

point of view, being high resources demanding. However, the problem can be mit-
igated by considering the quasi-Newton approximation for V ′′

N (η) that leads to the
formulation

VN ,R = VN + Δλmax

(
1

N

N∑

i=1

∂ f (η, xi )

∂η

∂ f (η, xi )

∂η

T
)

for the worst-case scenario and

VN ,R = VN + Δ

d∑

i=1

λi

(
1

N

N∑

i=1

∂ f (η, x)

∂η

∂ f (η, x)

∂η

T
)

= VN + Δ trace

(
1

N

N∑

i=1

∂ f (η, xi )

∂η

∂ f (η, xi )

∂η

T
)

= VN + Δ

N

d∑

j=1

N∑

i=1

(
∂ f (η j , xi )

∂η j

)2

= VN + Δ

N

N∑

i=1

∂ f (η, xi )
T

∂η

∂ f (η, xi )

∂η

for the average case one.
Clearly, pursuit of the worst-case scenario implies also the average case one,

whereas the opposite does not hold a priori. Conversely, the average case scenario is
much easier to be implemented and significantly less time-consuming than the worst
case. In fact, the extra computation reduces to add a penalty term function of the
magnitude of the gradient vector: no eigenvalues need to be computed. We comment
that the gradient information is freely available in a gradient descent algorithm. If
Δ is a function of the learning iterations we can also guide the learning process to
differently weigh the robustness issue over time with a profile favoring more accuracy
at the beginning of the training phase and smoothly integrate the robustness constraint
later.

A different approach for integrating robustness directly in the training phase
requires to add perturbations δη affecting parameters η . The idea is that by perturb-
ing the training process the final network will become less sensitive to perturbations
affecting parameters. In practice, if we consider a gradient descent algorithm, then
we need to update parameters during the learning process and add, at each iteration
time t , a realization δηt of perturbation random variable δη ∀ λ

ηt+1 = ηt − Δ
∂ f (η, x)

∂η
|ηt + δηt .
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However, in order for methodology to be effective, the learning procedure should
not converge too rapidly otherwise the λ space will be badly explored. A sim-
ple gradient-based learning procedure, e.g., back-propagation, should be preferred
instead of more effective quadratic-based solutions taking into account also an esti-
mate of the local Hessian, e.g., the Levenberg–Marquardt algorithm [125].

An interesting problem that naturally derives from the analysis of the structural
risk has been addressed in [128]. There the authors evaluate the degradation in per-
formance according to the structural risk associated with linear models and identify
sufficient conditions for structural redundancy at the model level. Moreover, it is
shown that the intuitive idea of considering a fully linear neural network to improve
the robustness index of the linear application by spreading the information over more
degrees of freedoms is an insane operation. In fact, although the solution improves
the intrinsic robustness of the model, the gain is achieved at the expense of a high
computational load: structural redundancy methods should be considered instead,
being characterized by a lower computational cost.

5.3 Robustness in the Large

It is clear from previous derivations that, despite the elegant structure, the “pertur-
bation in the small” approach cannot be always envisaged to address practical appli-
cations. However, such a method has the striking potentiality of providing results
in closed form, hence shedding light on the hidden relationships among accuracy,
robustness, and application at the theory level. One might object that many assump-
tions have been made. Although that is true, there are situations where the assump-
tions hold and results are valid. We surely have a limited view of the robustness
mechanism but it is available and usable given the closed analytical form.

If we want to keep generality at the application level and, at the same time pro-
vide estimates for the robustness index associated with the “robustness in the large”
framework, we cannot do anything else but leave a deterministic approach and move
to a probabilistic one. We will see that the hard problem associated with the evalua-
tion of the robustness level possessed by an application can be solved by resorting to
randomized algorithms once the robustness problem has been suitably formalized.

5.3.1 Problem Definition: The u(δθ) Case

The operative framework is that set in Sect. 5.1.1. Consider an u(δη) ∀ U ∈ R

function which is Lebesgue measurable over subset λ ∈ R
l and a given, but arbitrary,

Θ ∀ R positive scalar. We comment that, as it is, u(δη) has no explicit function in
the inputs in the sense that if inputs are there they are finite in number and fixed and
belong to set X̃ of (5.2).
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For instance, the u(δη) function can either represent the perturbation impact on
the empirical risk δVN (η̂) or the structural one δV̄ (η̂) as introduced in Sects. 5.2.3
and 5.2.2, respectively. We recall that, there, figures of merit have been evaluated
over the Z N data set. The more general case closer to the robustness problem set in
(5.1) is treated in Sect. 5.3.3.

We introduce two fundamental definitions of robustness in the large, the first based
on a deterministic approach, the second, derived from the first one, characterized by
a probabilistic framework.

Definition: Deterministic Robustness

We say that a computation is robust at level Θ̄ on perturbation space λ when Θ̄ is
the smallest value for which u(δη) ≥ Θ̄ , ◦δη ∀ λ.

The deterministic definition of robustness is very strong and requires determina-
tion of the minimum value of Θ̄ satisfying the inequality. We saw cases in previous
sections where such a value was obtainable under very strong assumptions. Determi-
nation of Θ̄ cannot be obtained in closed form for a generic application and, surely,
a point-by-point investigation of the property satisfaction would be computationally
intractable.

We relax the above definition by resorting to a dual probabilistic problem.

Definition 1: Probabilistic Robustness

We say that a computation is robust at level Θ̄ for perturbation space λ with probabil-
ity 1−ε it when Θ̄ is the smallest value for which Pr(u(δη) ≥ Θ̄ ) ≥ 1−ε, ◦δη ∀ λ.

ε represents a small positive value defined in the [0, 1] interval and 1 − ε can be
intended as a confidence level.

The probabilistic characterization of the problem tolerates the existence of per-
turbations not satisfying the inequality. The proportion of such points is

Vol (δη |u(δη) > Θ̄ )

Vol(λ)
= ε

where Vol is the volume operator. Of course, we would like to have ε = 0 so
that, with probability one, all perturbations would satisfy inequality u(δη) ≥ Θ̄

and the two definitions would become close. By investigating all points in λ the
definition assumes that perturbations are equiprobable, implicitly stating that there
exists a uniform pdf fδη associated to δη over λ. The given definition automatically
considers also the case where a generic fδη is considered. In the following we will
consider such a framework and complete the definition as
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Definition 2: Probabilistic Robustness

We say that a computation is robust at level Θ̄ with probability 1 − ε for the per-
turbation space λ when, given a pdf fδη associated to random δη , Θ̄ is the smallest
value granting Pr(u(δη) ≥ Θ̄ ) ≥ 1 − ε, ◦δη ∀ λ.

Let us compare the deterministic D and probabilistic P problems

{
D : Θ̄D = argminΘ |u(δη) ≥ Θ,◦δη ∀ λ

P : Θ̄P = argminΘ | Pr(u(δη) ≥ Θ ) ≥ 1 − ε,◦δη ∀ λ

The goal of robustness is hence to estimate Θ̄P for the probabilistic problem and
Θ̄D for the deterministic one.

When ε is small, say zero, we have that all δηs satisfy the inequality with the
probability one. However, we recall that this means that inequality might not hold
for a set of perturbations Ω whose Lebesgue measurability is null: it is null the
probability that, by sampling from a continuous fδη , we obtain a perturbation not
satisfying the inequality in correspondence with Θ̄P . Differently, if problem P holds
with probability 1 − ε, then we have a set of Lebesgue measure up to ε of points
not satisfying the inequality (100ε % of the total probabilistic volume). When the u
function is continuous over λ we have that perturbations not satisfying the inequality
lie close to the ones which satisfy it [126] and, hence, the estimate of Θ̄P of Θ̄D is
good even if the Ω set is not empty.

An estimate for Θ̄P can be obtained by resorting to randomization as also suggested
in [127].

5.3.2 Randomized Algorithms and Robustness: The u(δθ) Case

Consider the probabilistic problem of robustness in the large

P : Θ̄P = argminΘ | Pr(u(δη) ≥ Θ ) ≥ 1 − ε,◦δη ∀ λ

and define p(Θ ) to be the probability that u(δη) ≥ Θ for an arbitrary but given Θ

value:
p(Θ ) = Pr(u(δη) ≥ Θ )

we wish to estimate such a probability at first.
This is exactly the algorithm performance verification problem designed in

Sect. 4.4.1 that we re-propose in Algorithm 13 specialized to the robustness problem.
We now know that, for each value Θ ∀ ρ and chosen the respective value p̂n(Θ )

from p̂n,ρ provided by Algorithm 13, relationship

http://dx.doi.org/10.1007/978-3-319-05278-6_4
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Algorithm 13: Randomized Algorithms to solve the probabilistic robustness
evaluation problem

1- Identify the perturbation space λ and the random variable δη with pdf fδη over λ;
2- Select the accuracy τ and confidence δ ;
3- Identify the interested performance level set ρ = {Θ1, . . . , Θk};
4- p̂n,ρ (Θ )= verification-problem(λ, fδη , u(δη), ρ, τ, δ);
5- use p̂n,ρ (Θ );

function verification-problem(λ, fδη , u(δη), ρ, τ, δ)
Draw n ≥ 1

2τ2 ln 2
δ

samples δη1, . . . , δηn from δη according to fδη ;
For each Θ ∀ ρ estimate

p̂n(Θ ) = 1

n

n∑

i=1

I (u(δηi ) ≥ Θ ) , I (u(δηi ) ≥ Θ ) =
{

1 if u(δηi ) ≥ Θ

0 if u(δηi ) > Θ

Return p̂n,ρ

Pr
(| p̂n(Θ ) − p(Θ )| ≥ τ

) ≥ 1 − δ

holds with accuracy τ and accuracy δ. Define as Θ̂ the smallest value of Θ ∀ ρ for
which p̂n(Θ ) = 1,◦Θ ≥ Θ̂ . Then, since

| p̂n(Θ̂ ) − p(Θ̂ )| ≥ τ

we can write that
p̂n(Θ̂ ) − τ ≥ p(Θ̂ ) ≥ 1

namely,
p(Θ̂ ) ≥ 1 − τ.

By selecting ε of the deterministic problem equal to τ we solve the probabilistic
robustness problem and the estimate for Θ̄P is ˆ̄ΘP = Θ̂ .

The intractable problem associated with the deterministic problem is solved by
resorting to probability.

5.3.2.1 Example Continued (3:4): Learning a Neural Network

We can complete the analysis of robustness for the neural network learned in part
(2:4) of the experiment by investigating how it behaves when affected by large
perturbations. In particular, we explore how perturbations affecting the parameters
of f (η̂ , x) influence the empirical risk evaluated on Z N . The chosen figure of merit
is then u(δη) = VN (η̂ + δη) − VN (η̂), λ = λ(ρ) is parametric in ρ, e.g., according
to the multiplicative model so that, for the generic i th component ηi ,
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Fig. 5.7 The curve p̂n(Θ ) estimated with Algorithm 13 for ρ = 9.83. The corresponding value Θ̂

is Θ̂ = 1.2

ηi + δη = ηi (1 + δ′η) s.t. δ′η is uniform in[−ρ, ρ].

In this way the perturbation is affecting each bias and weight of the neural net-
work with a percentage impact bounded by ±100ρ %. The experiment allows us
to investigate in more detail the interesting steps we undertook from the theory
point of view when studying the perturbation in the large case. In the following,
τ = 0.02, δ = 0.05.

At first we set ρ = 9.83 and evaluate the associated probabilistic robustness
problem by determining the function p̂n(Θ ) curve estimated with Algorithm 13.

The outcome is given in Fig. 5.7 and provides Θ̂ = 1.2.
Figure 5.8 compares three p̂n(Θ ) functions associated with increasing ρ values. As

expected, a larger ρ (a stronger perturbation) induces a larger Θ̂ (a larger performance
loss).

Exploration of different perturbation spaces provides several p̂n(Θ ) functions,
each of which is associated with its Θ̂ value. The robustness in the large curve Θ̄P (ρ)

provides the global performance loss of the perturbed function in correspondence
with different perturbation spaces and solves the robustness in the large problem.
Solution to the specific problem requires identification of the perturbation space we
expect for our application and sees if the performance loss is below a tolerated value.

The robustness in the large curve for this experiment is given in Fig. 5.9 where
Θ̄P is estimated with Θ̂ .
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Fig. 5.8 Three curves p̂n(Θ ) estimated with Algorithm 13 for ρ = 4.66, 9.83, 15. The larger the
perturbation space controlled by ρ the larger the performance loss Θ̂
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Fig. 5.9 The curve Θ̄P as a function of ρ and estimated with Θ̂ . As expected, by increasing the
strength of the perturbations affecting the neural network parameters the empirical risk increases.
A multiplicative model has been considered for the parameters so that the maximum percentage
impact is bounded by ±100ρ %

5.3.3 The Maximum Expectation Problem

Equation (5.1) is characterized by a problem, the evaluation of the inequality satisfac-
tion u (g(η, x), g(η, δη, x)) ≥ Θ , that requires a double level of space exploration,
involving both the λ and the X spaces. The problem is clearly computationally hard
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Algorithm 14: Randomized algorithm to compute a probabilistic estimate ûmax
of umax associated with the problem defined in (5.18)

1- The probabilistic problem requires to estimate maxδη∀λ Ex [u(δη, x)];
2- Identify the input spaces X , λ and define random variable x and δη with pdf fx over X and

fδη over λ, respectively;
3- Select the accuracy τ and the confidence δ levels;

4- Draw m ≥ ln 2
δ

ln( 1
1−τ

)
i.i.d. samples δη1, . . . , δηi , . . . , δηm from δη ;

5- Draw n ≥ 1
2τ2 ln 4m

δ
i.i.d. samples x1, . . . , x j , . . . , xn from x according to fx ;

6- Compute ûmax(δηi ) = 1
n

∑n
j=1 u(δηi , x j ), ◦i = 1, . . . , m

7- use ûmax = maxi=1,...,m ûmax(δηi );

for a generic function, albeit Lebesgue measurable. In Sects. 5.2.2 and 5.2.3 we “sim-
plified” the problem—which however is still hard—by restricting the exploration of
the input space to a finite data set composed of data instances present in the Z N

training set. In other words, we restricted problem (5.1) as in (5.2), i.e.,

u (g(η, x), g(η, δη, x)) ≥ Θ,◦δη ∀ λ,◦x ∀ Z N (5.17)

for a given Z N . In fact, although in Sect. 5.2.3 we took expectation with respect
to Z N in (5.9) and (5.10), in subsequent derivations (e.g., see (5.12)) we made
approximations and confined ourselves to the unique available data set Z N .

Problem (5.1) cannot be easily addressed in its general form but can be managed in
very interesting and common cases where it can be converted into the determination of
the maximum value umax that function u(δη, x) = u (g(η, x), g(η, δη, x)) ∀ [0, 1]
assumes ◦δη ∀ λ,◦x ∀ X . By construction, umax coincides with Θ granting the
(5.1) to hold. To keep under control the complexity of the exploration of the input
space, expectation is taken with respect to X according to fx . Finally, the problem
we aim at solving requires determination of

umax = max
δη∀λ

Ex [u(δη, x)]. (5.18)

Fortunately, the hard problem stated in (5.18) can be solved by resorting to ran-
domized algorithms with derivations given in Sect. 4.4.4 and Algorithm 10 given in
Chap. 4 suitably adapted to host the problem in (5.18) as proposed in Algorithm 14.

5.3.3.1 Example Continued (4:4): Testing the Robustness in the Large
of a Neural Network

This last experiment aims at investigating the robustness in the large properties of
the neural network f (η̂ , x) learned from the g(η≺, x) one and given in experiment
(2 : 4). In particular, the figure of merit we use aims at evaluating the change in

http://dx.doi.org/10.1007/978-3-319-05278-6_4
http://dx.doi.org/10.1007/978-3-319-05278-6_4
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Fig. 5.10 The histogram of values ûmax(δηi ) of Algorithm 14 in correspondence with ρ = 1.58.
ûmax,m = 0.07

discrepancy between the two functions evaluated according to a quadratic figure of
merit induced by additive perturbations affecting the parameters of function f (η̂ , x)

leads, following (5.18), to problem

umax = max
δη∀λ

Ex [( f (η̂ + δη, x) − g(η≺, x))2]

that can be solved by invoking Algorithm 14. Also in the following experiments the δη

random variable follows uniform distribution governed by ρ such that ‖δη‖∞ ≥ ρ.
Similarly, x is defined with uniform pdf fx over X = [−2, 2].

At first we wish to plot the histogram of the instances ûmax(δηi ) = Ên[u(δηi , x)]of
Algorithm 14 estimating Ex [u(δηi , x)] when x ∀ X for a given δηi . The operational
parameters are τ = 0.02, δ = 0.04 inducing m = 194 samples to be taken from the
λ(ρ) space and n = 12342 from X · ρ = 1.58. The histogram of the distribution is
given in Fig. 5.10. The robustness level of the neural network evaluated according to
the chosen figure of merit is ûmax = 0.07.

We wish to investigate now how the estimate ûmax changes with the intensity
of the perturbation (i.e., the enlargement of the perturbation space controlled by
‖δη‖∞ = ρ). Figure 5.11 provides three curves estimating umax(ρ) for ρ values in
interval [0, 2]. The operational parameters are as follows: δ = 0.04; in the τ = 0.005
case we have m = 781 and n = 225315; in the τ = 0.02 case we have m = 194
and n = 12342; in the τ = 0.04 one we have m = 96 and n = 2866. When τ

decreases (at the cost of a larger number of samples) the curve becomes more regular
as expected and the obtained estimate tends to the ideal umax(ρ).

It is clear that every time we draw n data from X and m from λ we generate a
realization for the umax(ρ) curve. Figure 5.12 presents such an ensemble associated
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Fig. 5.12 Curves estimating
umax(ρ) for δ = 0.04 and
τ = 0.02
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with 100 curves (δ = 0.04 and τ = 0.02). We need to comment that, despite the fact
the ensemble is compact as we shall expect since the neural functions are continuous
and, then, it is the associated figure of merit, some curves introduce spread values.
This should not surprise us since the estimate for the maximum/minimum value of a
function is carried out in probability and must be intended as discussed in Sect. 4.4.2.

http://dx.doi.org/10.1007/978-3-319-05278-6_4


Chapter 6
Emotional Cognitive Mechanisms
for Embedded Systems

A cognitive embedded system is an embedded system that takes advantage of
cognitive processes to propose intelligent solutions.

It is strongly perceived that the future of intelligent embedded systems is oriented
towards the implementation, either in software or hardware, of cognitive mecha-
nisms. However, the predicted future is not something will happen decades from
now. Since adaptation, namely the ability to automatically modifying the system to
host a new situation, is a basic form of cognition associated with elementary auto-
matic reactions, we can safely claim that the future of embedded systems has started
already. In fact, many embedded solutions present in the market introduce adap-
tation mechanisms at various levels (see Chap. 8). At the same time, technological
advances in the hardware both at the microprocessor, FPGA and Graphics Processing
Units (GPU) level make available a computational power that permits the execution
of sophisticated embedded solutions also integrating online learning and cognitive
mechanisms.

This chapter aims at providing an engineering-oriented perspective of brain
functions. Obviously, from a biological view point, most functions are not done
by a specific region, but emerge over many regions through natural neurodynam-
ics. Nevertheless, the spirit of this chapter is to apply “lessons” from the brain to
embedded systems (and not to duplicate the way the brain works). More specifi-
cally, the chapter introduces a functional description of some basic processes of the
human brain, with a special focus on emotional and cognitive processing. Emotion
processing is, in fact, a complete framework that enables most of the fundamen-
tal data processing and storage elements modellable with automatic and controlled
processes and, as such, it represents an ideal candidate to be mimicked. Access to
the memory to retrieve/store information is a key function here, with information
“stored” in different ways, from simple patterns associated with feature instances to
more advanced forms of semantic knowledge.

We anticipate that many mechanisms introduced in subsequent chapters, e.g.,
those related to PACC, adaptation, and learning in a non-stationary and evolving
environments can be immediately cast within a cognitive representation of emotions.

C. Alippi, Intelligence for Embedded Systems, DOI: 10.1007/978-3-319-05278-6_6, 123
© Springer International Publishing Switzerland 2014
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As such, each of those chapters will have a section showing how the presented
methods are modellable as instances of the emotional cognitive processing. However,
it is worth outlining that the association “emotional processing-intelligent algorithm”
finds affinity in other neural cognitive mechanisms. We leave the interested reader
to deepen the investigation in reference textbooks, e.g., see [220] for a recent essay
on neural anatomy and information processing and [221] for cognitive aspects.

6.1 Emotional Cognitive Structure

Brain phenomena can be modeled as a hierarchy of subsystems differentiating in time
activation and accuracy levels [138–140] that, possibly, rely on a memory containing
knowledge suitably stored for decision making and supporting other processes.

Lower levels are generally characterized by fast automatic processes so as to
be able to quickly take a decision and/or provide a prompt reaction following the
presentation of external stimuli. In the meanwhile, either these processes or the
presence of stimuli activate higher levels of knowledge processing characterized
by more complex and articulated controlled mechanisms able to assess ongoing
performance and abort/modify/complete actions and decisions made by lower levels.
Not rarely, higher cognitive levels introduce feedback mechanisms by providing
information to lower ones so that learning can be perfected, e.g., through a fine
tuning of the existing schemata. Clearly, new situations encountered during lifetime
must be included in the processing mechanism and stored in the semantic memory
where long-term knowledge is kept.

The joint activity of automatic and controlled processes allow us for modeling
the emotional responses in humans. Here, lower levels provide immediate actions
following a stimuli pattern presentation. Clearly, promptness in the reply i.e., low
latency in pattern classification and decision making, is to be preferred than high
accuracy in emotion labeling: if a potential threat is somehow detected we need
to immediately intervene instead of waiting for more information to come or the
outcome of a more sophisticated, and hence time consuming, processing. Higher
processing levels will then be activated either from available stimuli, so as to permit
a parallel processing, or be initiated by automatic ones. In both cases, the goal is
to assess the action taken by lower levels and intervene whenever appropriate to
confirm, abort or correct the decision made.

In the last decades there has been a lot of work on emotional processing, much is
known, but a complete understanding of automatic and controlled cognitive mecha-
nisms is still missing.
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Fig. 6.1 Automatic and
controlled processes
and involved brain regions

6.2 Automatic and Controlled Processes

Automatic and controlled processes involved in emotional expression processing and
response activation are briefly described in the following with Fig. 6.1 representing
the reference framework. The interested reader can refer to e.g., [140] for a more
detailed analysis of the presented concepts.

6.2.1 Automatic Processes

Automatic emotion processes, that refer to the lowest levels of the hierarchical
cognitive system, are characterized by an interesting and relevant detection-reaction
mechanism designed to quickly identify potential dangers and the possibility to get a
reward and initiate suitable actions/reactions, e.g., by increasing the heartbeat or the
respiration rate and releasing stress-hormones following a perceived threat. Here,
reduced latency is more important than keeping under control the false positive
rate following a conservative primordial principle. In fact, it is much better to react
with an unnecessary action following a perceived—possibly new—threat than being
insensitive to it.

These processes are meant to be quick and effortless in generating an emotional
response (which could be either positive or negative) to external stimuli such as pre-
sentation of faces, objects or events [140]. This emotional response is part of the
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emotion processing and the associated decision making level, which involves the
detection of danger or plan and schedule actions to get a reward, the recall of pre-
viously acquired information related the situation/event/emotion and the activation
of a proper action/reaction. It is worth noting that the emotional response (possibly
together with additional environmental information) is then processed to become
part of the knowledge (i.e., stored in the memory) to be recalled whenever necessary.

By inspecting Fig. 6.1 we see that automatic processes receive stimuli made avail-
able by the sensory system or the thalamus and provide outputs to feed controlled
processes, which also influence automatic ones with a feedback mechanism. Clearly,
we must also react to a threat by activating the sensory-motor mechanism primarily
implemented by the sensory-motor cortices, basal ganglia and cerebellum and not
considered here being outside the strict emotion processing analysis.

The main tasks carried out by automatic processes can be summarized as

• Rapid detection of potential threats and activate avoidance behaviours;
• Initiate appropriate approaches oriented towards the achievements of rewards.

6.2.2 Controlled Processes

Consciously, we also direct attention to our personal sensations, construct our
emotional background, and select or inhibit actions depending on a lifetime expe-
rience. The use of computationally demanding processes in the generation and
regulation of emotions is named controlled emotion processing. By deliberately mon-
itoring, activating and processing emotions we can re-interpret and alter their meaning
(learning mechanism), change the current personal experience and perception of the
world as well as the way we interpret emotions and respond to stimuli.

After a preliminary automatic response, cognitive processes are consciously acti-
vated by higher levels of the cognitive hierarchical system. The aim of these processes
is to integrate, improve and (if necessary) correct the output provided by the auto-
matic processing level. As such, these high-level processes allow the human brain for
consciously focusing our attention to a specific stimuli or emotion, recalling events or
sensations stored in the memory or modifying the action/reaction pattern activated
by lower cognitive levels. Differently from automatic processes, this “validation”
step is not automatic, is time and energy consuming and requires consciousness.

Moreover, a relevant activity performed by controlled processes is their capability
to create an abstract representation/meaning of experienced events or stimuli. These
representations, coded in a suitable way, can then be stored in memory and recalled
whenever necessary.

With reference to Fig. 6.1 we see that controlled processes receive information
directly from incoming stimuli as well as the output of automatic processes. The
declarative memory plays a fundamental role being present both for automatic
and controlled processes to provide episodic and semantic memory instances to
be retrieved, stored or updated. The main tasks carried out by controlled processes
can be summarized as
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Table 6.1 Roles, functions and characteristics of brain regions. Refer to [138] for a more complete
treatment

Brain regions Function Operations Type of process

Amygdala Detecting, learning
about stimuli

Detects potentially
threatening stimuli and
associates them with
appropriate actions

Automatic

Basal ganglia Registering rewards,
acquiring habits,
selective gating
of behavior

Mediates selection and
initiation of actions,
automatizes sequences
of behavior and
reinforced thoughts

Automatic or
controlled

Lateral pre-
frontal/association
cortices

Retrieving and
storing semantic
emotion
knowledge

Identifies stimuli,
differentiates feeling
states; attributes
emotional qualities to
stimuli; repository of
regulatory strategies,
lay emotion
knowledge

Retrieval can be
automatic or
controlled

Anterior cingulate
cortex

Conflict monitoring Monitors on-going
behavior and
determines whether a
change is necessary or
not

Conflicts
detected
automatically,
but making
changes takes
control

Ventral/Medial
orbital frontal
cortex

Context- dependent
action selection

Inhibits on-going
emotional responses
based on analyses of
context

Controlled

Hippocampus Long-term strategies Understanding spatial
relations within the
environment

Controlled

• Select or inhibit the actions activated by automatic processes;
• Construct a representation of the emotional experience over time and perfect it

according to the received external stimuli and the final situation outcome;
• Direct attention to internal sensations and thoughts;
• Search and retrieve information from the declarative memory.

6.3 Basic Functions of the Neural Emotional System

Evidences from multiple domains suggests that emotional processing is carried out
by at least six distinct neural subsystems. Amygdala can be associated mainly to auto-
matic processes; Anterior Cingulate Cortex, Ventral and Medial prefrontal, Orbital
Cortices and Hippocampus to controlled processes, while Lateral Prefrontal and
Association Cortices and Basal Ganglia to both [138–141].
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The above subsystems differ both in the mechanisms they rely upon and the carried
out tasks: their joint interaction is a primary ability of the human brain in emotion
processing. Roles, functions and characteristics of these brain regions are summa-
rized in Table 6.1, derived from [140] and here suitably expanded. The functional
description of these brain regions are summarized in the sequel. The interested reader
can find a more detailed description e.g., in [140].

6.3.1 Amygdala

The role of the amygdala is quite complex and involves the detection of a threat by
inspecting stimuli patterns and activating a reaction. Moreover, it helps in modu-
lating the long-term memory consolidation of stimuli-stimuli and stimuli-response
association in the emotional declarative memory.

The capability to quickly identify potentially threatening events is crucial for
survival purposes and is preparatory for any subsequent action following the detec-
tion. The amygdala is devoted to this aspect by assessing the risk associated with
acquired stimuli patterns and, if necessary, it activates the proper reaction. Any novel
or ambiguous stimulus might initially be intended as threatening within a conser-
vation of species principle, and thus warrants a response from the amygdala even
if later the event would be consciously labeled as a false positive based on further
information processing.

Among the areas composing the amygdala, the activation of physiological
responses (e.g., increase of the heartbeat or respiration rate and release of stress-
hormone) is managed by the central nuclei.

6.3.2 Long-Term Memory

The creation and association of long-term memory to emotional events is another
relevant activity carried out by the amygdala. Specifically, as pointed out by several
researches, the basolateral complex of the amygdala is deeply involved in the asso-
ciation of threatening stimuli with the long-term declarative memories. Moreover,
although these mechanisms are not fully understood yet, the amygdala is thought to
have a relevant role in the consolidation of long-term (potentially lifelong) memory
suggesting the idea that emotions are involved in the long-term storage of perceived
events/stimuli. In fact, recent studies suggest that, while the amygdala is not itself
a long-term memory storage site, and learning can occur without it, one of its roles
is to regulate memory consolidation in other brain regions. This suggests that the
amygdala contributes to the development of semantic knowledge by influencing the
information incorporated into the long term semantic memory.

Having the above in mind, the amygdala may be considered as a module processing
stimuli patterns to detect threats. Since novel and unknown stimuli are initially
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considered as threatening, amygdala enters into an “alarm” state following their
detection. Afterwards, other mechanisms intervene e.g., the anterior cingulate cor-
tex to provide, if required, a new assessment for the threat label recommended by
the amygdala. All these aspects are aligned with change detection tests and will be
deeply investigated in Chap. 9.

6.3.3 Basal Ganglia

Research indicates that basal ganglia provides functions related to the voluntary
motor control (e.g., eyes control) as well as emotional processing, for instance that
leading to learn routine behaviors to attain rewards.

Generation of sequential steps for attaining a goal is of paramount importance
to achieve rewards requesting an activity planning. Research demonstrated that this
task is not carried out within the amygdala but in the basal ganglia. Specifically,
although the basal ganglia are involved in sequences of actions and have been pro-
posed as learning such “chunks” [247–249], the sequential aspect is seen as the main
function of basal ganglia. Rather, they facilitate action selection, which is important
for both sequential and non-sequential response. The function of actually discover-
ing and configuring action sequences is thought to occur in the cortex—mainly the
supplementary motor area of the motor cortex [140]. Once a sequence is found to
be important enough to be learned as a single action, it is chunked and then gated
through the basal ganglia.

In intelligent embedded systems this activity refers to the ability of modeling time
dependent events by means of dynamic systems or machine learning techniques (e.g.,
Markov processes) as done in Chap. 10. The availability of these models is crucial
for forecasting purposes and to define sequences of actions necessary to achieve a
long-term goal by means of planning.

6.3.4 Lateral Prefrontal and Association Cortices

The lateral prefrontal and the association cortices (LPAC) provide mechanisms
enabling the storage and retrieval of semantic emotion knowledge as well using
the memory content to asses the relevance of stimuli and events. As such, the role
of this subsystem appears to be that of storing emotional concepts and providing
mechanisms to connect different memories characterized by similar emotional asso-
ciations. Access to this emotional database is automatic during the generation of an
emotional state, or when we consciously represent or label emotional states to draw
inferences about those emotions we are experiencing. However, it is not sure if these
brain areas are responsible for emotion labeling.

Although the neural mechanism behind these behaviors is not fully understood,
there is evidence that the lateral prefrontal and the association cortices are involved

http://dx.doi.org/10.1007/978-3-319-05278-6_9
http://dx.doi.org/10.1007/978-3-319-05278-6_10
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both in supporting the emotional automatic and controlled processes. In particular,
the research has found that this system is part of the automatic generation of an emo-
tion in response to external stimuli and that, over time, the relevant regularities of our
episodic memory slowly become incorporated into the database of semantic knowl-
edge. We saw that the emotional contents of the semantic memory are influenced
by the amygdala, which facilitates long-term consolidation of episodic memory for
significant, arousing events.

The lateral prefrontal and association cortices are closely related to the knowledge
acquired during the operational life by recurrent adaptive classifiers discussed in
Chap. 9. This knowledge is organized into concepts, each of which represents a
memory of the state. Similar concepts can be fused together to improve/integrate the
knowledge over time.

6.3.5 Anterior Cingulate Cortex

The role of the Anterior Cingulate Cortex (ACC) is to assess the “congruence”
of emotions and feelings that have been generated in response to external stimuli.
Moreover, the ACC is involved in forecasting whether external stimuli would induce
threats or pain in the future or not. This capability, which is conscious, is crucial in
the activity planning to achieve long-term goals.

The ACC activity, fundamental in a complex, high-connected systems such as the
human brain, is conceptually very close to the validation procedure of hierarchical
change detection tests introduced in Chap. 9: in response to an event, signals are
jointly evaluated to determine whether what perceived is associated with a false
alarm (congruence among stimuli) or, differently, it represents a true change to be
taken into account.

6.3.6 Orbital and Ventral-Medial Prefrontal Cortices

The orbital and ventral-medial prefrontal cortices known as OFC and VM-PFC (both
simplified in VM-PFC in the sequel) appear to represent the current, context-specific,
emotional value carried by an external stimulus and provide functions that allow us
to both alter our emotional responses based on analyses of the current context and
generate affective responses based on these analyses. These two functions form the
foundation for the active regulation of emotion and emotion-guided behavior.

As such, the role of the VM-PFC is closely related to the active approach modeling
the human behavior. Emotions, stimuli and memory patterns automatically gener-
ated by lower cognitive levels are integrated and linked to the long-term memory to
define a “cognitive” high-level response. This response, which could consider and
take into account long-term goals, can integrate (or even substitute) the automatic
response taken from lower levels. Interestingly, researches (e.g., [138]) found that
the “cognitive” ability of the VM-PFC resides in the capacity to connect the mem-
ory systems (which include the working and declarative memory) with emotional

http://dx.doi.org/10.1007/978-3-319-05278-6_9
http://dx.doi.org/10.1007/978-3-319-05278-6_9
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systems (where the amygdala comes into play) to evaluate the taken actions and
recall associated somatic states.

In the field of decision-making [141], the activity of the VM-PFC has been widely
and deeply studied. Research demonstrated that damages in the VM-PFC prevent the
human brain from effectively integrating information coming from external stimuli,
emotions and memory. The effect of this damage induces extremely poor decision-
making abilities.

In the context of intelligent embedded systems, this approach is very close to
cognitive analysis in distributed fault diagnosis systems where low level information
is integrated and analysed by taking into account also the network topology to be able
to distinguish between false alarms, real events associated with faults or model bias
associated with the models introduced to describe the physical phenomenon under
monitoring, see Chap. 10.

6.3.7 Hippocampus

The hippocampus is an old structure of cerebral cortex that takes part in many
declarative memory functions which refer to the memory of facts and events. Encod-
ing and recalling information from the memory are the two main tasks of this fun-
damental subsystem. Interestingly, the hippocampus interacts with the amygdala in
the formation of short-term memory, which is a preliminary step for the storage of
long-term information. Research demonstrated that lesions affecting the hippocam-
pus induce errors in the processing of information present in short-term memory
solely and do not influence knowledge previously stored in the long-term one.

The role of hippocampus in spatial representations is rather clear in the case of
rodents. Differently, in primates, it seems to have roles in declarative memory and
perhaps sensory integration (though that seems to happen much more in the parietal
cortex).

Thought concept formation is much more likely to happen in other parts of the
cortex (especially other parts of the temporal lobe and perhaps in the prefrontal
cortex), the hippocampus is needed for memory recall only for some period after
the memory is first acquired [250]. In intelligent embedded systems, the role of the
hippocampus can be associated with the ability to recall previously acquired concepts
whenever necessary (refer to Chap. 9).

6.4 Emotion and Decision-Making

Decision-making involves the orchestration of multiple neural structures and
cognitive subsystems, e.g., VM-PFC, amygdala, LPAC, and hippocampus [138].
The key reference for understanding this mechanisms is Fig. 6.2.

http://dx.doi.org/10.1007/978-3-319-05278-6_10
http://dx.doi.org/10.1007/978-3-319-05278-6_9
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Fig. 6.2 The basic functional
elements behind emotion and
decision-making in emotion
processing
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Research has shown that areas such as the VM-PFC, the amygdala, the insula, the
somatosensory cortex, the dorsolateral prefrontal cortex and the hippocampus are all
involved in various aspects of decision-making [138].

Sensory information is acquired/processed by the sensory system/thalamus and
forwarded to amygdala, OFC/VM-PFC and LPAC together with contextual informa-
tion. Emotions are processed, integrated and abstracted in the processing flow starting
from the amygdala and ending with the LPAC, while the congruency of these feel-
ings/emotions is assessed in the ACC. The memory of events/emotions/decisions
then come into play through the hippocampus and the VM-PFC together with infor-
mation about the reward (provided by the basal ganglia) and the value/judgment
(provided by the VM-PFC). All these mechanisms cooperate and constitute the basis
of the decision-making process.

Interestingly, this complex process is very close to the processing in adaptive
classifiers (Chap. 9) where an initial decision is initially taken by considering external
stimuli and previously acquired information.

http://dx.doi.org/10.1007/978-3-319-05278-6_9


Chapter 7
Performance Estimation and Probably
Approximately Correct Computation

The analysis phase of a problem aims at evaluating, given a computation, its
performance. Performance can be intended in several ways depending on the specific
target problem as well as the abstraction level where it is carried out. For instance,
at the device level we have cost, latency, throughput, power, energy, complexity to
name some major performance design indexes. At the algorithm level we have accu-
racy, confidence, energy, and complexity. Not rarely we constrain such indexes and
we saw in Chap. 4 how it is possible to evaluate their satisfaction level.

Performance and design indexes are evaluated through suitable figures of merit
applied to architectural and functional elements of the embedded system or the algo-
rithm. Despite the fact that the provided methodological analysis is able to address
all figures of merit and architectural aspects, we will mainly focus on accuracy as a
case study of a performance/design index without any loss in generality. As a con-
sequence, we look at algorithms to be executed on embedded systems whereas the
embedded system being characterized by finite resources introduces physical con-
straints which, in turn, affect the algorithm itself and its performance. At the same
time, as already pointed out in the introduction, we discover that it is too expensive,
and most of times not necessary, to provide a worst-case analysis for accuracy. In line
with approximate computation and probabilistic computation, we are here interested
in an algorithm that, mounted in the embedded system, provides an outcome correct
in probability.

The chapter introduces at first methods for assessing the accuracy of a computa-
tion, then formalizes the concept of Probably Approximately Correct Computation
PACC. Finally, it provides techniques for accuracy assessment in terms of PACC and
methods for answering to the following questions:

1. Which are the performances of my algorithm?
2. If I simplify my algorithm, which is the introduced performance loss?
3. I have different algorithms solving my problem. Which one is the best?
4. I have different algorithms solving my problem. Which one is the best on a given

embedded system?
5. Shall I use a floating point unit or a cheaper fixed point representation suffices?
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7.1 Accuracy Estimation: Figures of Merit

Different figures of merit can be considered to evaluate the discrepancy between two
functions which, here, must be intended as the optimal—ideal—solution for a given
problem and the approximated solution proposed as the candidate to be implemented
in the embedded system. The discrepancy can be intended as a performance loss,
difference in accuracy between an identified model and the true one or, simply, a
measure of the “distance” between the two. The figure of merit depends on the
specific application and the goodness of a solution also depends on the chosen figure
of merit in the sense that the same solution can be more or less good depending on
the chosen performance evaluation tool.

Since our goal is to provide a function approximating the real one, in the fol-
lowing we consider assessing the discrepancy between two functions according to
figure of merit u ∀ R. The evaluation is carried out by taking into account the punc-
tual discrepancy of two functions u(x) = u(y(x), ŷ(x)) ∀ R,1 where we assume
x ∀ X ∈ R

d . X is a probability space, whose probability measure μ induces pdf fx

over it, and y(x), ŷ(x) ∀ R, which we assume to be measurable functions according
to Lebesgue. By applying an aggregation operator to the punctual discrepancy u(x)

to x ∀ X we obtain the discrepancy u. In the sequel, we indicate as y the refer-
ence function and ŷ the approximating one. Two interesting cases arise from the
applications:

• Functions y(x) and ŷ(x) are given. The figure of merit u evaluates the discrepancy
over the whole input space X . Again, if fx is unknown we shall consider a uniform
distribution for its worst case properties.

• Function y(x) is not given, but can be queried, i.e., once a sample xi is drawn from
the input space, function y(x) acts as an oracle and provides value y(xi ), possibly
affected by uncertainty. The number of samples can be finite or infinite depending
on the nature of the application, thus xi ∀ X̃ ∈ X, i ∀ N are sampled according
to the pdf fx induced by the probability measure over X and are subsequently
considered for the discrepancy computation. In this situation also function ŷ(x) is
not known, therefore it must be at first identified, by considering a suitable model
family function ŷ(x, θ) parametric in the vector of parameters θ ∀ Θ ∈ R

l . Then,
with abuse of notation ŷ(x, θ̂ ) = ŷ(x) once θ̂ has been provided.

The first case arises in all those applications for which the theory provides the
optimal solution to the problem and we need to approximate it for several reasons,
e.g., because our embedded system is not able to host the high accurate solution
for its complexity and an approximation needs to be considered instead. As an
example, we have the optimal design of filters and representation of a complex
numerical algorithm. The second case is what the theory of system identification
and learning is about: starting from a sequence of input/output pairs we determine

1 With an abuse of notation that eases the understanding, we consider the punctual discrepancy as
a function of x , since y and ŷ are fixed.
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the approximating function. This topic, which is fundamental in this book, has been
addressed in Sect. 3.4.1.

In the following we will present, without the intent to be exhaustive, three inter-
esting u figures of merit. We recall that it is the application designer who identifies
the right figure of merit for a given problem based on a priori knowledge, experience,
and application constraints. However, when one does not know which figure of merit
to consider, it is a rather common approach to use the mean squared one.

7.1.1 Squared Error

The Squared Error (SE) is a rather common quadratic figure of merit adopted to
quantify the difference between two functions. The corresponding discrepancy uSE

is a risk function, corresponding to the expected value of the squared punctual dis-
crepancy u(x) = (y(x) − ŷ(x))2

uSE = E[u(x)] = E
[
(y(x) − ŷ(x))2

]

which represents the second order moment of the error (considering a zero mean
error). It is worth observing that the discrepancy between the two functions is
weighted by the probability density function fx over the input space.

Its empirical version evaluated over a finite number of n points drawn according
to fx (i.e., considering a finite space X̃ = {x1, . . . , xn} where xi is a realization of a
random variable x ∀ X with pdf fx ), provides the empirical estimate of the quadratic
error or a Mean Squared Error (MSE)

uM SE = 1

n

n∑

i=1

u(xi ) = 1

n

n∑

i=1

(
y(xi ) − ŷ(xi )

)2
.

We have been using uSE and uM SE widely over the book for their intriguing
structure that makes the mathematics amenable. Moreover, despite the fact that the
use of a SE loss function has been criticized, e.g., in speech and image applications
for its quadratic behavior which amplifies large point-wise discrepancies more than
small ones and is not a perception-based figure of merit [41, 42], it is commonly
adopted since it is easy to use [40]. Moreover, a quadratic function is a natural way
to measure the energy of the discrepancy function u(x) and, thanks to the Parseval
theorem, the energy of the signal can be equivalently computed in the signal space
or frequency domain. It is clear that, if functions y(x) and ŷ(x) are deterministic,
then the uSE simply evaluates the approximation risk (model bias), namely the
integral of the squared discrepancy. In this case, the smaller the uM SE the better the
approximating function. Conversely, if y(x) is affected by noise and ŷ(x) is learned
as proposed in Sect. 3.4.1, then expectation must be extended to the noise as well.
Results presented in Sect. 3.4.1 hold.

http://dx.doi.org/10.1007/978-3-319-05278-6_3
http://dx.doi.org/10.1007/978-3-319-05278-6_3
http://dx.doi.org/10.1007/978-3-319-05278-6_3
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7.1.2 Kullback–Leibler

The Kullback–Leibler divergence [43, 44] measures the distance between two
probability density functions, which, in the following, we denote as y(x) and ŷ(x).

More specifically, if the densities y(x) and ŷ(x) exist then the Kullback–Leibler
divergence is

uK L =
∫

X
y(x) log

y(x)

ŷ(x)
dx (7.1)

The figure of merit, also known as information divergence and relative entropy,
is not a metric (and this is the reason why it is called divergence), since it does not
satisfy the symmetry property, i.e., uK L

(
y(x), ŷ(x)

) ≤= uK L
(
ŷ(x), y(x)

)
. However,

uK L
(
y(x), ŷ(x)

) ≥ 0 and assumes value zero only when ŷ(x) = y(x), ◦x ∀ X ,
that is to say when the two distributions are equal.

In the machine learning field, the Kullback–Leibler divergence plays a lead-
ing role. For instance, in Bayesian machine learning it is used to approximate an
intractable density model [48]. In other application scenarios, the divergence is used
for parameter estimation [46], text classification [45] and, again multimedia appli-
cations [47] just to name the few.

7.1.3 L p Norms and Other Figures of Merit

Several other figures of merit can be designed to asses the discrepancy between two
functions based on the L p norms. For instance, if we consider as punctual discrepancy
u(x) = y(x) − ŷ(x), we can use its L p norm as figure of merit

uL p = ≺u(x)≺p = ≺y(x) − ŷ(x)≺p =
(∫

X
|y(x) − ŷ(x)|p fx (x)dx

) 1
p

. (7.2)

where fx (x)dx = dμ(x) is the differential of the probability measure over X . Of
particular interest are the L1, L2 (equivalent to the SE approach, since uSE = uL2 )
and L∪ norms.

In some cases, the punctual discrepancy is weighted by a given functionw(x) ≥ 0,

◦x ∀ X and (7.2) becomes discrepancy induced by the weighted L p norm

uL p, w =
(∫

X
w(x)|y(x) − ŷ(x)|p fx (x)dx

) 1
p

Other figures of merits may be derived by taking into account the mutual informa-
tion [49], cross entropy [49], or maximum likelihood. However, whatever the chosen
figure of merit is, the designer has solely to provide a Lebesgue measurable function
with domain in a probability space, which is the unique requirement we ask for in
subsequent analyses.



7.2 Probably Approximately Correct Computation 137

7.2 Probably Approximately Correct Computation

Consider given algorithm A associated with function y(x), x ∀ X measurable
according to Lebesgue and X a probability space. Denote as ŷ(x), x ∀ X a given
function approximating the y(x) implementing algorithm Â. Let fx be the probabil-
ity density function associated with the measure over X . As previously mentioned we
can relax the assumption by assuming that function y(x) is not known but operates
as an oracle providing value y(xi ) once queried on xi .

Definition We say that function ŷ(x) is a Probably Approximately Correct Computa-
tion (PACC) of function y(x) at accuracy τ and confidence η when, given a Lebesgue
measurable discrepancy function u

(
y(x), ŷ(x)

) ∀ R, we have that

Pr
(
u

(
y(x), ŷ(x)

) ≤ τ
) ≥ η, ◦x ∀ X. (7.3)

In other terms, we are requesting that the two functions are close enough according
to function u(x); closeness must be intended in probabilistic terms within accuracy τ

on the discrepancy satisfied with probability η,◦x ∀ X . The computation provided
by function ŷ(x) is approximately correct in the sense that it approximates y(x)

according to u(·) at level τ ; such a statement holds at least with probability η.
From the definition, we derive several interesting cases. Consider at first u(x) =

|y(x) − ŷ(x)|. Given this loss function (7.3) can be expressed as

Pr
(|y(x) − ŷ(x)| ≤ τ

) ≥ η, ◦x ∀ X (7.4)

Since

Pr
(−τ ≤ y(x) − ŷ(x) ≤ τ

) ≥ η, ◦x ∀ X

if we assume that τ is small then (7.4) can be cast in a more immediate and intuitive,
yet less formal, form

Pr
(
y(x) ∞ ŷ(x)

) ≥ η, ◦x ∀ X.

The computation provided by our algorithm is approximately correct, i.e., it pro-
vides a value which nicely approximates the true one with high probability.

Example: Scalar product

As a first example of a PACC consider the error free set-up where

y(x) = xT θo (7.5)

with X = [−1, 1]d , fx is uniform and x and θo ∈ R
d represent the column vectors

of inputs and coefficients, respectively. The scalar product computed in (7.5) can be
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a linear filter of coefficients θo, as those used in the waivelets, e.g., see [27, 30, 31],
in a Cordic computer [28, 29] or a filter bank [32]. We request function y(x) to be
either implemented in a digital hardware or executed on a microcontroller. Assume
for simplicity that no overflow/underflow occurs in the computation and that the trun-
cation operator has been envisaged to reduce the number of bits needed to represent
the coefficients. Finite precision representation can be modeled as the perturbation
vector δθ affecting coefficients θo and leading to approximated computation

ŷ(x) = xT (θo − δθ).

Assume that d >> 1 and that inputs are mutually independent. If we consider the

u(x) = u(y(x), ŷ(x)) = y(x) − ŷ(x)

loss function, then the point-wise discrepancy is the variable

u(x) = xT δθ

which, from the central limit theorem, is asymptotically Gaussian with mean

Ex [u(x)] = 0 and variance Ex [u2(x)] = σ 2 = δθT δθ
3 . Finally,

Pr

(
|u(x) − Ex [u(x)]| ≤ λ

σ∅
d

)
= erf

(
λ∅
2

)

i.e.,

Pr

(
|y(x) − ŷ(x)| ≤ λ

σ∅
d

)
= erf

(
λ∅
2

)
.

The PACC computation is characterized τ = λ σ∅
d

and η = er f
(

λ∅
2

)
.

Example: linear regression

Consider function y(x) = xT θo + ζ where x and θo are the d-dimensional column
vectors of inputs and given—but unknown—parameters, respectively. ζ is a zero
mean white noise of variance σ 2

ζ ruled by Gaussian pdf fζ . Inputs are zero centered
and independent and identically distributed, extracted according to probability den-
sity function fx of diagonal covariance σ 2

x Id . Consider the n samples training set
Zn = {(x1, y(x1)), · · · (x1, y(xn))}.

Define χ = [x1, . . . , xn] to be the (n, d) dimensional matrix containing the input
vectors and Y = [y(x1), . . . , y(xn)] the (n, 1) vector of associated outputs.

If we define

u(y(x), ŷ(x)) = ŷ(x) − y(x)
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the least mean squared error estimate

ŷ(x) = xT θ̂

can be obtained by minimizing the

uM SE = Ên(u(x)) = 1

n

n∑

i=1

(
y(xi ) − ŷ(xi )

)2

and provides the parameter estimate

θ̂ =
(
χT χ

)−1
χT Y.

We know from Sect. 3.4.4 that the distribution of θ̂ is centered in θo. θ̂ can then
be seen as a perturbed value of θo so that θ̂ + δθ = θo. We can repeat the derivation
carried out in the previous experiment and the point-wise error

u(x) = xT δθ + ζ

converges to a Gaussian distribution of zero mean and variance σ 2 = σ 2
x δθT δθ +σ 2

ζ

provided that d is large enough.
As before, we can then write

Pr

(
|ŷ(x) − y(x)| ≤ λ

σ∅
n

)
= er f

(
λ∅
2

)
(7.6)

With the choice τ = λ σ∅
n

and η = er f
(

λ∅
2

)
, ŷ(x) represents a PACC computa-

tion of y(x) at level τ and probability η.

Example: Maximum value estimate

Another interesting case emerging from applications is the one where we aggregate
punctual discrepancies with the maximum operator. Define

umax = max
x∀X

u(x)

with ûmax being the estimate of such a maximum as provided by a suitable algorithm.
We have a good estimate ûmax when

Pr
(
umax − ûmax ≤ τ

) ≥ η (7.7)

In other terms, the (7.7) states that estimate ûmax is a good estimate when the
probability of having the true value within distance τ is high. In a way, (7.7) is
closely related to the weak law of empirical maximum.

http://dx.doi.org/10.1007/978-3-319-05278-6_3


140 7 Performance Estimation and Probably Approximately Correct Computation

While the (7.7) is a well-posed formulation from the mathematical point of view
it is of scarce use in the practice apart from very simple cases. In fact, for a generic
u(x) loss function, we cannot guarantee, even in probability, that given ûmax belongs
to a neighborhood of umax within distance below τ .

As we have seen in Chap. 4, this is a well-known problem whose solution within
a PACC framework requires introduction of an additional level of probability.

Comments

The probabilistic theory behind the PACC well describes the operational modality
of those applications for which an exact computation suffice. If an embedded system
is considered, and given the comments raised in Chap. 3, we discover that very few
applications require a high accuracy in the computation, e.g., those involving financial
data, all the others being affected by uncertainty that affects the correctness of the
computation output.

However, the use of the PACC theory appears to be of limited use in practical cases
for generic y(x) and ŷ(x) functions due to the difficulty in providing (or determining)
the η and τ values requested by (7.4) or identifying a ûmax that satisfies the (7.7).

Fortunately, thanks to the procedures based on randomized algorithms we intro-
duce in the sequel, we will be able to provide estimates for both η and τ and ûmax,
hence making effective and operational the PACC framework. The main outcome
is that any computation, under the very weak hypothesis of Lebesgue measurabil-
ity, can be effectively cast into the PACC framework that makes available a set of
algorithms able to identify η, τ , and ûmax.

7.3 The Performance Verification Problem

The performance verification problem aims at verifying to which degree a perfor-
mance level is attained, computing the probability that an inequality on performance
is satisfied or estimating the maximum value associated with a performance discrep-
ancy loss function.

In the following, the key actors will be the given functions y(x) and ŷ(x) and the
Lebesgue measurable figure of merit u

(
y(x), ŷ(x)

)
. It is recalled that a probability

density function fx is induced by the measure of probability space X . We already
pointed out in Chap. 4 that if fx is unknown the user should consider a uniform
distribution which, under mild hypotheses about the regularity of functions y(x) and
ŷ(x), acts as a worst case scenario (e.g., derived bounds tend to be overestimated).

The computationally difficult problem of evaluating the different performance
associated with a given figure of merit over the whole input space X can be tamed
by resorting to probability and accepting a PACC computation.

We will address in the sequel the following problems

• The performance satisfaction problem. Given a tolerated performance loss τ for
an application, compute the probability that the discrepancy u

(
y(x), ŷ(x)

) ≤ τ,

◦x ∀ X ;

http://dx.doi.org/10.1007/978-3-319-05278-6_4
http://dx.doi.org/10.1007/978-3-319-05278-6_3
http://dx.doi.org/10.1007/978-3-319-05278-6_4
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• Figure of merit expectation problem. Provide an estimate of the expected value
E

[
u

(
y(x), ŷ(x)

)]
at arbitrary accuracy and confidence levels;

• The maximum performance problem. The goal is to provide an estimate ûmax for
the maximum value umax = maxx∀X u

(
y(x), ŷ(x)

)
;

• The PACC problem. Compute those η and τ characterizing the PACC degree for
the given application;

• The minimum(maximum)-perturbed expectation problem. Estimate the
minimum/maximum value performance function u(x) assumes when perturba-
tions affect it.

Clearly, u
(
y(x), ŷ(x)

)
can degenerate to ŷ(x). When this happens, the considered

problems must be intended as applied to function ŷ(x).

7.3.1 The Performance Satisfaction Problem

The performance satisfaction problem aims at assessing the level of performance
satisfaction of a given ŷ(x) function in approximating y(x) according to figure of
merit u

(
y(x), ŷ(x)

)
and a tolerated performance loss τ .

Examples of applications

• We designed application ŷ(x) solving my problem. Is that satisfying the accuracy
constraint set at level τ requested by the application?

• We designed solution y(x) which is working well in a high performance machine
where it satisfies the requested real time performance. We port it on our embedded
system where it becomes solution ŷ(x). Is porting granting a loss in execution
time between the two platforms below τ?

• We designed solution to our problem y(x) within a high resolution platform (e.g.,
Matlab, Mathematica, Simulink). Then we need to port the solution to an embedded
system characterized by a given finite precision representation (limited word-
length for data and inner variables, truncation mechanisms and look up tables). Is
the performance loss in accuracy we are introducing tolerable if τ is what we are
willingly to loose?

• Our application solution ŷ(x) has an accuracy scalable with complexity in the
sense that the solution performance (accuracy, execution performances, power
consumption) scales with the solution complexity (the higher the complexity the
better the performance). We would like to minimize complexity provided that
performance loss τ is attained.

The above problems can be formalized as follows: Given a tolerated performance
loss τ we wish to estimate the satisfaction level

u
(
y(x), ŷ(x)

) ≤ τ, ◦x ∀ X

that is to say, determine the percentage of points of X satisfying the inequality. The
problem can be immediately related to the algorithm verification problem presented
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in Sect. 4.4.1 by simply substituting x to each occurrence of ψ . We recall the main
operational steps.

The percentage of points x ∀ X satisfying u(x) ≤ τ is simply the ratio

nu(x)≤τ =
∫

X I (x)dx∫
X dx

where

I (x) =
{

1 if u(x) ≤ τ

0 otherwise

Since determination of nu(x)≤τ is a computationally hard problem for a generic
function we move to a probabilistic problem.

In order to do that, consider the probability density function fx defined over X
and request to evaluate the probability

pτ = Pr (u(x) ≤ τ) =
∫

X I (x) fx dx∫
X fx dx

=
∫

X
I (x) fx dx

since
∫

X fx dx = 1. We have seen in Chap. 4 that pτ can be evaluated through
randomization and that, given τ , we can compute the estimate p̂n of pτ by drawing
n samples x1, . . . xn according to fx and evaluate the indicator function

I (u(x) ≤ τ) =
{

1 if u(x) ≤ τ

0 if u(x) > τ

and the estimate

p̂n = 1

n

n∑

i=1

I (u(xi ) ≤ τ) .

By selecting a number of samples according to the Chernoff bound

n ≥ 1

2ε2 ln
2

δ

we have that

Pr
(| p̂n − pτ | ≤ ε

) ≥ 1 − δ

holds for any accuracy level ε ∀ (0, 1) and confidence δ ∀ (0, 1). Value p̂n is the
probabilistic outcome of the performance satisfaction problem provided that small
ε and confidence δ values are set. The randomized algorithm solving the problem is
Algorithm 6.

http://dx.doi.org/10.1007/978-3-319-05278-6_4
http://dx.doi.org/10.1007/978-3-319-05278-6_4
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7.3.2 The Figure of Merit Expectation Problem

The performance satisfaction problem returns the percentage of points satisfying
a given bound on the tolerated performance associated with my solution. The expec-
tation problem aims at evaluating the expected value of the loss function.

The problem solves the cases where

• We are interested in quantifying the expected performance loss having moved from
solution y(x) to ŷ(x).

• We are interested in quantifying the expected performance of our application ŷ(x)

for a given problem, e.g., in execution on our embedded system. In such a case
u

(
y(x), ŷ(x)

) = u
(
ŷ(x)

)
.

In the following to ease the derivation assume that u(x) is defined in the [0, 1]
interval. This normalization operation is simply done with a rescaling of function
u(x).

Define E[u(x)] to be the expectation of function u(x) according to fx and follow
the derivation given in Sect. 4.4.3 for the evaluation of the expectation problem with
randomization. Briefly, set accuracy level ε ∀ (0, 1), confidence δ ∀ (0, 1) and draw

n ≥ 1

2ε2 ln
2

δ

i.i.d. samples x1, . . . , xn from random variable x defined over X according to fx and
generate the estimate

Ên(u(x)) = 1

n

n∑

i=1

u(xi )

then,

Pr
(
|Ên(u(x)) − E[u(x)]| ≤ ε

)
≥ 1 − δ.

Value Ên(u(x)) is the probabilistic outcome of the algorithm. By selecting small
ε and δ, we obtain a good approximation. The randomized algorithm solving the
problem is given in Algorithm 9.

The interesting reader should refer to Sect. 4.4.3 for the interesting relationships
between the needed samples requested by the Chernoff bound and those needed from
the central limit theorem.

7.3.3 The Maximum Performance Problem

The maximum performance problem aims at estimating the maximum value function
u(x) can assume. Its relevance in many application cases is immediate. As we have
seen in Sect. 4.4.2 (were all details are given) the problem requires evaluation of

http://dx.doi.org/10.1007/978-3-319-05278-6_4
http://dx.doi.org/10.1007/978-3-319-05278-6_4
http://dx.doi.org/10.1007/978-3-319-05278-6_4
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umax = max
x∀X

u(x)

and its analytical determination is impossible for most of functions. We saw in
Sect. 4.4.2 that a manageable probabilistic version of it requires two levels of prob-
ability. From the operational point of view, once fixed accuracy ε and confidence δ,
we have to draw

n ≥ ln δ

ln(1 − ε)

i.i.d. samples x1, . . . , xn and generate the estimate ûmax

ûmax = max
i=1,...,n

u(xi )

then,

Pr
(
Pr

(
u(x) ≥ ûmax

) ≤ ε
) ≥ 1 − δ.

The estimate of the maximum performance level is ûmax. All comments raised in
Sect. 4.4.2 hold. The reference randomized algorithm solving the maximum perfor-
mance problem is given in Algorithm 8.

7.3.4 The PACC Problem

We have seen that the PACC problem requires the evaluation of τ and η so that

Pr
(|y(x) − ŷ(x)| ≤ τ

) ≥ η (7.8)

holds. Then, if τ is small y(x) ∞ ŷ(x) with probability η. The problem can be solved
by considering the figure of merit u(x) = |y(x) − ŷ(x)|, although a more general
discrepancy function could be considered.

Solution of the PACC problem for a given function requires the evaluation of τ for
which (7.8) holds with high probability. This problem can be addressed by using the
method proposed in Sect. 4.4.1 and here reproposed in its main steps. Define p(γ )

as

p(γ ) = Pr (u(x) ≤ γ ) = Pr
(|y(x) − ŷ(x)| ≤ γ

)

for an arbitrary but given γ . Estimate p(γ ) according to method given in Algorithm
6 which returns p̂n(γ ). Explore the γ s by selecting arbitrary incremental points and
generate set Γ = {γ1, . . . , γk} s.t. γi < γ j ◦i < j . For all γ ∀ Γ evaluate p̂n(γ ) so
as to build

http://dx.doi.org/10.1007/978-3-319-05278-6_4
http://dx.doi.org/10.1007/978-3-319-05278-6_4
http://dx.doi.org/10.1007/978-3-319-05278-6_4
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p̂Γ = { p̂n(γ1), . . . , p̂n(γk)}

as done in Algorithm 7.
Define γ̄ to be the smallest value for the finite sequence {γ1, . . . , γk} for which

p̂n(γi ) = 1,◦γi ≥ γ̄ , γi ∀ Γ . Having selected k according to the Chernoff bound
discrepancy

|p(γ ) − p̂n(γ )| ≤ ε

holds with probability 1 − δ and is satisfied for all γ . As such, it also holds for p̂(γ̄ ).
We have that

p̂n(γ̄ ) − ε ≤ p(γ̄ ) ≤ p̂n(γ̄ ) + ε,

i.e.,

1 − ε ≤ p(γ̄ ) ≤ 1

from which p(γ̄ ) ≥ 1 − ε. The PACC problem is solved and provides η = 1 − ε

and τ = γ̄ .

7.3.5 The Minimum(Maximum)-Perturbed Expectation
Problem

The minimum (maximum) expectation problem aims at estimating the minimum
(maximum) value of the expectation of u(x) when perturbations Δ affects u(x), thus
providing a perturbed version of the performance function u(x,Δ). Examples of
applications are the following

• Part of my embedded application has been designed with an analog technology
which is subject to electronic noise. I would like to know the minimum(maximum)
performance of my device subject to the fact perturbations affect it. I am happy to
know the minimum(maximum) performance by taking expectation of the pertur-
bation space.

• There is a source of uncertainty affecting my embedded system and I would like
to obtain an estimate of the performance loss by taking the average over the per-
turbation space.

The formalization of the problem is as follows:
Consider u(x,Δ) ∀ [0, 1], x ∀ X ∈ R

d and Δ ∀ D ∈ R
k (being X and Δ

probability spaces) and focus, e.g., on the minimum problem
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umin = min
x∀X

EΔ[u(x,Δ)]

which is equivalent to
{

φ(x) = EΔ[u(x,Δ)]
umin = minx∀X φ(x)

solution to this computationally demanding problem is given in Sect. 4.4.4 and
addressed by randomized algorithm given in Algorithm 10.

7.4 Accuracy Estimation: A Given Dataset Case

In some of previously discussed performance verification problems we were able to
assess the quality of an estimator in probabilistic terms. For instance, in the figure of
merit expectation problem discussed in Sect. 7.3.2, by extracting n data

x1, . . . , xn

from random variable x according to fx over X , we where able to provide an estimate
Ên(u(x)) for the true unknown expectation E[u(x)]. At the same time, we provided
a quality assessment of the estimator since we wrote that

Pr
(
|Ên(u(x)) − E[u(x)]| ≤ ε

)
≥ 1 − δ. (7.9)

The designed framework implicitly permits that we can extract sequences of
arbitrary length n from X so that we can meet both accuracy ε and confidence δ

according to (7.9).
However, in the real life we generally encounter situations where n is given (e.g.,

we have n finite samples from an industrial process, n models built on the sensor data
stream, etc). Whenever that is the case, (7.9) clearly must hold but n is now given
and δ and ε cannot assume any arbitrary values any more. If we assume that δ must
be fixed since we want our results to hold at some confidence level, e.g., δ = 0.95,
then, accuracy is no more arbitrary and is set as

ε =
√

1

2n
ln

2

δ

by simply inverting the Chernoff bound. Unfortunately, if n is not large enough the
accuracy we should expect might be poor.

Two comments need to be made at this point. The first is that results derived by
invoking bounds such as the Chernoff one are pdf free and, as such, the bound might
be rather conservative. As a consequence, the derived ε might be hardly usable if the
number of samples is fixed and not large enough. Second, we should remind that,

http://dx.doi.org/10.1007/978-3-319-05278-6_4
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given a finite number of samples, we cannot pretend to have an arbitrary accuracy
since the amount of information carried by the data set is finite and depends on n.
As an example, we recall that the estimated standard deviation of mean x̂ based on
n i.i.d scalar data x1, . . . , xn extracted from a distribution of unknown mean μ and

known variance σ 2, is
√

σ 2

n . The quality of the estimator x̂ scales with n
1
2 and cannot

be improved unless we increase the number of samples n. In following subsections,
we wish to assess the quality of an estimate in the case n is given.

7.4.1 Problem Formalization

Consider a data set Zn obtained by extracting n i.i.d. samples x1, . . . , xn from random
variable x defined over X , i.e., Zn = {x1 . . . , xn} and construct the estimator Φn =
Φ(Zn). We are interested in providing an indication of the quality ζ of Φn , e.g., we
wish to provide a confidence interval for Φn .

The problem is of extreme relevance in many applications and, in particular, in
embedded systems where we wish to carry out the performance evaluation of a figure
of merit (estimator) having a finite and given data set to be used to compute ζ . The
performance verification problem is the same introduced in this chapter with the
unique difference that, here, n is fixed, e.g., we have only n i.i.d. data from sensors,
n i.i.d. parameter models or extracted features, n time measurements related to the
execution of a thread.

Clearly, the ideal framework would recommend to carry out the following proce-
dure

1. Extract m independent data sets of cardinality n from X so as to generate datasets
Z1

n, . . . , Zm
n ;

2. Evaluate, in correspondence of the generic i-th data set Zi
n the estimator Φ i

n =
Φ(Zi

n). Repeat this procedure for all i = 1, . . . , m.;
3. Estimate the quality ζ

(
Φ1

n , . . . , Φm
n

)
of the estimator Φn based on the m realiza-

tions Φ i
n = Φ(Zi

n), i = 1, . . . , m.

Unfortunately, the above framework is mostly theoretical: if we have m indepen-
dent datasets Zn we should use all nm data to provide a better estimate. This means
that in practical applications we have only a dataset but, at the same time, we are
interested in evaluating the quality ζ of the estimator Φn .

The literature introduces interesting approaches for providing an assessment ζ of
the quality of an estimator Φ given a limited data set n.

7.4.2 The Bootstrap Method

In the bootstrap method [236] the needed m data sets Zi
n, i = 1, . . . , m are extracted

from Zn with replacement. It means that, once a sample x j has been extracted and
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inserted in the generic Zi
n set, x j is also placed back in Zn that keeps all its original

n data. Once all estimates Φ i
n, i = 1, . . . , m have been generated they are used to

compute ζ
(
Φ1

n , . . . , Φm
n

)
.

The Bootstrap algorithm is given in Algorithm 15. Efron and Tibshirani [236]
proves that the distinct number of samples we should expect in Zi

n is ⇒ 0.632n.
This comment allows us for reducing the computational load associated with the
execution of the algorithm. In fact, if we are expecting to receive approximatively
0.632n independent samples and the estimator requires to compute point wise terms,
e.g., u(xi ) for sample xi given a generic u(·) function, then, there is no need to
compute all n values and a weighting approach can be consider.

Example: The Bootstrap Method

Consider, as a straight example, the figure of merit expectation problem discussed at
the beginning of the section. Differently from the derivation based on the Chernoff
bound, we do not need to require here that the Lebesgue measurable function u(x)

is defined in interval [0, 1] but it is sufficient that u(x) is bounded for some value
(not to be necessarily known).

Select Φ = E[u(x)] and Φn = Ên(u(x)) evaluated on Zn . The estimate of
E[u(x)] we have is Ên(u(x)). We are now interested in evaluating the quality of
the estimate ζ , e.g., by evaluating the variance of the estimates generated with the
bootstrap method. This is done by invoking Algorithm 15.

For instance, the quality of the estimator, here considered to be the variance of
the estimator evaluated according to the bootstrap method V arB , can be estimatedas

V arB = ζ
(
Φ1

n , . . . , Φm
n

)
= 1

m − 1

m∑

i=1

(
Φ i

n − Φn

)2
.

The bootstrap algorithm shows to be accurate for a wide range of estimators but
is also characterized by a significant computational load. Variants of the bootstrap
method have been suggested in the literature, e.g., the m out of n bootstrap [237] to
solve the consistency issue in applications where the bootstrap fails. The computa-
tional issue has been addressed, among the others, in the m out of n bootstrap where
Zi

n′ sets are chosen to have a smaller cardinality than Zi
n , i.e., n′ < n, and in [238]

where a method aiming at using a small m and extrapolation techniques has been
proposed and in the bag of little bootstrap method [239], which will be detailed in
the next subsection.
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7.4.3 The Bag of Little Bootstraps Method

The Bag of Little Bootstraps (BLB) method is a bootstrap-inspired method proposed
in [239] to mitigate the problem posed by Bootstrap and associated with the required
computational complexity. BLB shows to be accurate and appears to over-perform
all other bootstrap methods in terms of computational complexity, hence becoming
a very appealing method for Big Data.

The BLB algorithm is given in Algorithm 16. The starting point of BLB is to select
a smaller data set of cardinality n′ < n. Authors select n′ = nγ , e.g., with γ = 0.6.
Then, m subsets Zi

n′ , i = 1, . . . , n′ are extracted from Zn without replacement. For
each subset Zi

n′ r subsets Zi
n, j , j = 1, . . . , r are generated with replacement (little

bootstraps) and the corresponding estimators Φ i
n, j = Φ(Zi

n, j ) evaluated. Finally,
the quality of the estimator is evaluated for each little bootstrap and yields ζi =
ζ

(
Φ i

n,1, . . . , Φ
i
n,r

)
. At the end of the procedure, we end with m “bags”, the i-th

one associated with quality assessment ζi . The final assessment ζ of the quality
of the estimator Φn is considered to be the ensemble of the little bootstrap one as

ζ =
∑m

i=1 ζi
m . r is generally chosen so that ζi ceases to fluctuate and, in general, this

happens in correspondence with small values of r , e.g., refer to [239].
As mentioned, the BLB shares the consistency properties of the bootstrap and

higher order correctness under the same hypotheses assumed by the bootstrap.
As claimed in [239], the BLB shares the fast convergence rate of the bootstrap

where the procedure’s output scales as O( 1
n ) instead of the O( 1∅

n
) rate achieved by

asymptotic approximations. This fast convergence rate assumes that n′ = Ω(
∅

n),
i.e, limn→∪ sup| n′∅

n
| > 0, and m is large enough compared with the variability

observed in data samples. Satisfaction of such assumption grants that n′ is signifi-
cantly smaller than n (but larger than

∅
n). Moreover, as shown in [239], the BLB is

faster than the bootstrap even in a serial execution. We comment that the algorithm
can be easily made parallel since each little bootstrap procedure can be parallelized.
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7.5 Cognitive Processes and PACC

All mechanisms involving cognitive processing, e.g., those carried out by VM-PFC—
ACC are real and, although complex and mostly unknown to us in detail, Lebesgue
measurable. The PACC theory can hence be applied to cognitive processing. It is
extremely natural to assume that those (sub)systems operate in probability given the
highly uncertainty associated with the processing. Our actions are, in fact, mostly
correct and the output to an emotion or an action mostly correct, with high probability:
exactly what the PACC theory is about.

7.6 Example: Accuracy Assessment in Embedded Systems

The section aims at showing how the accuracy assessment framework can be utilized
in embedded systems to assess the quality of a proposed solution and drive the
designer toward the identification of the most appropriate one within a given set.
The reference application is based on a neural network that, once designed in a high
precision framework, needs to be ported onto an embedded system. The relevance of
the example is in the diversified computation carried out by the neural computation
that requires evaluation of scalar products as well as nonlinear functions.

The porting operation introduces several sources of structural perturbations whose
impact on accuracy can be effectively evaluated with the framework presented in the
chapter.

In particular, the chosen application refers to a neural network designed to provide
a virtual sensor for the chemical process described in the Mathworks Matlab
neural network toolbox (chemical_dataset).

The virtual sensor is inferred from the readings of other eight sensors, whose val-
ues provide the inputs of the network. The chosen network topology is feedforward,
with 8 inputs (x ∀ X ∈ R

8), 10 neurons in the hidden layer characterized by a
hyperbolic tangent activation function, and a single linear output neuron. Once the
neural network was successfully trained, neural function f (θ, x) was requested to
be implemented on the embedded systems.

To illustrate the effect of structural perturbations induced by the embedded system
architecture on function f (θ̂ , x), we consider two different digital embedded imple-
mentations for the neural network that, once ported, become the approximated
f̂ (θ, x). The first implementation is based on a 16 bits word-length solution, the
second on a 8 bits one.

In this way, we investigate the performance in accuracy of the two architectural
solutions, an operation which also allow us for selecting the final target platform
depending on the requested accuracy, the power consumption as well as the requested
area (e.g., think of an ASIC or a FPGA implementation).

Results were emulated on a 32 bits ARM Cortex M3 microcontroller. Since the
ARM Cortex M3 microcontroller is not equipped with a Floating Point Unit (FPU),



7.6 Example: Accuracy Assessment in Embedded Systems 151

x: Q6.10 x 8

Win: Q6.10 x 10 x 8

Q12.20 x 10Q12.20 x 10

Bin: Q12.20 x 10

Q6.10 x 10

Wout: Q6.10 x 1 x 10

Q12.20 x 1 Q12.20 x 1

Bout: Q12.20 x 1

LUT
Tanh

Q2.4 x10

: Q6.10 x 1

Fig. 7.1 The neural network data flow ported on a 16 bits architecture. The activation value u
feeding the hidden units can be obtained with a matrix product between the 10 × 8 matrix Win
containing the weights between the input and the hidden layer and the input column vector x ; the
bias value Bin is then added so that u = Win x + Bin. Inputs composing x are represented with
a Q6.10 notation, weights Win with a Q6.10 notation, the outcome of their product on a Q12.20
notation. The bias term coded as Q12.20 is added and the outcome u on Q12.20 is reduced to Q2.4
to feed the LUT. The T h(u) value coming from the LUT is defined on Q6.10 and multiplied by
the weights connecting the hidden layer with the output neuron. The bias is added and the output
defined on a Q12.20 notation reduced to a 16 bits output in the form Q6.10

all computations must be performed with a fixed point 2cp representation as presented
in Sect. 3.2.4.

In the following, a fixed point number is represented with the Qx .y notation,
which implies a 2cp representation on x + y bits with x bits to the left of the fixed
point (integer part, sign bit included) and y bits after the point (fractional part).

We recall that a sum between two numbers defined on Qx .y does not modify
the position of the radix point, but overflow might occur. Instead, a multiplication
between numbers Qx .y and Qk.z generates a value represented as Q(x + k).(y + z)
whose radix point is shifted to the left of y positions compared to z. This effect
must be taken into account if the final value needs to be brought back to a Qx .y
notation. Usually, multiplications take place with operands characterized by the same
Q representation.

The data flows associated with the two 16 bits and 8 bits implementations are
shown in Figs. 7.1 and 7.2, respectively. The complete description of the architectural
operations is detailed in the caption of Fig. 7.1.

The 16 bit implementation uses the same Q6.10 representation for inputs, out-
put, and weights. With such a choice, we are safe from any possible occurrence of
overflows. The sum following the product of the generic input by the corresponding
weight is still performed at the full resolution of Q12.20 bits. Differently, in the 8
bits implementation, we adopt different resolutions for inputs, outputs, and weights
(input and output values are represented using a Q2.6 coding, while weights are
represented with a Q5.3 one). The neuron biases are still represented at the full reso-
lution of Q7.9. After the operations shifts are introduced to bring back the obtained

http://dx.doi.org/10.1007/978-3-319-05278-6_3
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x: Q2.6 x 8

Win: Q5.3 x 10 x 8

Q7.9 x 10Q7.9 x 10

Bin: Q7.9 x 10

Q2.6 x 10

Wout: Q5.3 x 1 x 10

Q7.9 x 1 Q7.9 x 1

Bout: Q7.9 x 1

LUT
Tanh

Q2.4 x10

: Q2.6 x 1

Fig. 7.2 The neural network data flow ported on a 8 bits architecture. The description of the flow
is similar to that given in the caption of Fig. 7.1 with the suitable change of word length for the
involved entities

numbers to the envisaged word-length. The embedded code for implementing the
neural activation value ready to feed the nonlinear activation function of the hidden
layer is given in Listing 7.1.

The evaluation of the nonlinear hyperbolic tangent function is particularly costly
from the computational point of view. To deal with the issue, the best solution is to
rely on a Look Up Table (LUT) memory enumerating the input–output relationship
in correspondence of some points. The input of the memory is the neural activation
value (i.e., the scalar product between the neuron inputs and the associated weights),
the output is the content stored in the memory cells which represents the value
the activation function assumes in correspondence of the input value. We aimed at
keeping the size of the LUT as small as possible. As such, the input values where
coded as unsigned Q2.4 values for a total of a 64 cells LUT memory; the output
values follow the encoding used for the inputs and, as such, depend on the chosen
architecture (Q6.10 and Q2.6 for the 16 and 8 bits architectures, respectively). We
comment that the input of the LUT is unsigned. The reason is that the hyperbolic
tangent (Th) is an odd function for which T h(−u) = −T h(u). As such, we can
represent the inputs by uniformly subdividing the interval [0, 4] (values above input
4 provide a saturated output at 1): there is no need to represent the full [−4, 4] interval
with an immediate memory saving.

The approximation ability of the solution is given in Fig. 7.3 for the Q6.10 coding
of the output.

The embedded code implementing the LUT is shown in Listing 7.2. As it can be
noted in Fig. 7.3, the quantization error does not introduce a bias in the approximated
function, since we opted for a rounding of the reduced argument instead of a simple
truncation of the value. The cost of an extra shift and the sum needed to implement
the rounding operator is well compensated by the disappearing of the bias term in
the approximating the hyperbolic tangent function.
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Figures 7.4 and 7.5 compare the output of the virtual sensor in its two implemen-
tations with that evaluated on a high precision platform. As expected, the higher the
number of bits made available the better the reconstruction performance. However,
we comment that the 8 bits architecture provides a good reconstruction ability which
lowers in correspondence with high peeks.

To quantify the accuracy level of the porting of the algorithm on the embedded
systems, we considered the figure of merit

ÊN (u(x)) = 1

N

N∑

i=1

| f (xi , θ) − f̂ (xi , θ)|.
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Fig. 7.3 The approximation accuracy of the hyperbolic tangent with a 64 cells LUT in the 16 bits
representation for the output value

The accuracy performance assessment was carried out by following the figure of
merit expectation problem delineated in Sect. 7.3.2 after rescaling the u(·) function.
The input space was explored with a number of samples N drawn according to the
Chernoff bound.
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Fig. 7.4 The accuracy of the virtual sensor data stream provided by the 16 bits embedded archi-
tecture (function f̂ (θ, x)) compared with the reference one (function f (θ, x))

0 50 100 150 200 250 300 350 400 450 500
480

485

490

495

500

505

510

515

520

525

530

samples

ou
tp

ut
 o

f t
he

 v
irt

ua
l s

en
so

r

f (θ ,x )
f̂ (θ ,x )

Fig. 7.5 The accuracy of the virtual sensor data stream provided by the 8 bits embedded architecture
(function f̂ (θ, x)) compared with the reference one (function f (θ, x))

The figure of merit expectation problem was solved by considering an incremental
accuracy ε (the confidence value δ was fixed to 0.05). The numbers of points drawn
according to Chernoff are given in Table 7.1. Since the distribution induced on the
8th dimensional input space in unknown we considered an uniform distribution.
Each experiment was repeated 40 times. The expected value of the performance loss
is given in Fig. 7.6 for the 16 bits architecture. Results show also the confidence
interval based on one standard deviation. As expected, the larger the N the smaller
the confidence interval.

Similar results are given in Fig. 7.7 for the 8 bits embedded architecture. As
expected, the average error is higher for the 8 bits implementation.
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Table 7.1 The number of points chosen to address the figure of merit expectation problem.

δ ε N

0.05 0.061 500
0.05 0.043 1000
0.05 0.035 1500
0.05 0.030 2000
0.05 0.025 3000
0.05 0.021 4000
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Fig. 7.6 The figure of merit expectation problem. The figure shows the performance loss associated
with the porting of the virtual sensor neural network-based code on the 16 bits embedded architec-
ture. Expected values and the confidence intervals are given
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Fig. 7.7 The figure of merit expectation problem. The figure shows the performance loss associated
with the porting of the virtual sensor neural network-based code on the 8 bits embedded architecture.
Expected values and the confidence intervals are given
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Fig. 7.8 The maximum performance problem for the 16 bits architecture. The experiment is
repeated 40 times and each estimate of the maximum coming from the particular realization on
N inputs is plotted
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Fig. 7.9 The maximum performance problem for the 8 bits architecture. The experiment is repeated
40 times and each estimate of the maximum coming from the particular realization on N inputs is
plotted

Figures 7.8 and 7.9 present the the maximum performance problem presented in
Sect. 7.3.3 for the two embedded implementations. The experiment was carried out
40 times in correspondence with each chosen N (δ = 0.05, N ≥ ln δ

ln(1−ε)
); estimates

of the maximum value ûmax, u(x) = | f (θ, x) − f̂ (θ, x)| are plot (one for each
experiment run). No scaling to the [0, 1] interval is requested for u(x). We comment
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that the variability of the estimates reduce as N increases and that the maximum
error introduced by the 8 bits architecture is about four times that introduced by the
16 bits one. Depending on the tolerated accuracy loss and the given constraints on
cost and power consumption, the designer might decide which architecture should
be considered between the 16 and the 8 bits one.



Chapter 8
Intelligent Mechanisms in Embedded Systems

Many embedded systems require intelligent mechanisms to deal with those situations
where either evolution or time variance requests a reaction to grant a performance
level. Adaptation is the basic form of intelligence to be considered every time the
embedded system has to react quickly, possibly with a very simple algorithm to
minimize both time-to-reaction and energy consumption. It must be made immedi-
ately clear that simple has not to be confused with trivial. In fact, most of the times,
adaptive mechanisms are the result of sophisticated techniques that provide effective
actions thanks to the theory behind them. We have seen in Chap. 6 that adaptation
represents that form of intelligence associated with the execution of automatic cog-
nitive processes and it must be considered when a prompt reaction to some stimuli
is more relevant than high accuracy in the answer. We will discover that adaptation
plays a relevant role, e.g., in keeping under control the energy consumption of the
device, maximizing the efficiency of the energy harvesting process, keeping the units
clocks synchronized. Sometimes, the needed level of intelligence can scale up and
a controlled “conscious” mechanism might be requested to carry out more accurate
decisions. The need to reprogram the embedded device (when and how), the imple-
mentation of sophisticated mechanisms for adaptive sensing, taking advantage of
group information to improve accuracy as in distributed clock synchronization are
some relevant examples of “conscious” mechanisms.

The ultimate decision between which strategy must be implemented, either
automatic (adaptation) or controlled (conscious) depends on the application con-
straints. If our embedded system has to satisfy strong real-time constraints as well as
keep under control the energy consumption associated with the action to be under-
taken, only very simple automatic strategies based on adaptation are expected to be
the ones to be considered. Differently, if accuracy performance is more relevant than
computational complexity and energy and power consumption, probably a controlled
mechanism is to be preferred.

In this chapter, we focus on some fundamental mechanisms an embedded system
should possess to expose basic intelligent abilities. At first, the attention will be
devoted toward those low-level adaptation mechanisms that, by adapting both clock
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frequency and power voltage, allow the digital embedded system to reduce the
consumed energy (automatic process, adaptation mechanisms). Afterward, we will
investigate strategies aiming at reducing the power consumption at a higher abstrac-
tion level. In particular, we will address the adaptive sensing issue, requested by
embedded systems to keep under control the power consumption in eager sensors
and, at the same time, control the acquisition bandwidth. In other words, sampling
is a characteristic of the application and the requested rate of data sampling depends
on the application and how it evolves with time (both automatic and controlled
processes, adaptation and cognitive mechanisms).

Then, we will shift the focus towards optimal energy harvesting for tiny
photovoltaic cells, given the high energy density these technologies provide com-
pared with other solutions e.g., piezoelectric, wind turbines, and Peltier cells. In
energy harvesting, adaptation mechanisms are required both at the electronic and
algorithm levels to maximize the harvested energy by passively tracking changes
in the environment. The efficiency of the harvesting mechanism is strictly related
to adaptation: no adaptive solutions have to assume that the phenomenon providing
energy is weakly time variant, a situation that is hardly met in real situations, e.g.,
think of the intensity and direction of the wind and the intensity and orientation of
solar energy (automatic process, adaptation mechanisms).

Such examples of adaptation mechanisms will naturally introduce the need for
a more general framework able to deal with adaptive learning in evolving and time
variant environments. Both passive and active learning methods will be introduced
and detailed in Chap. 9 to cover all needs (both automatic and controlled processes,
adaptation, and cognitive mechanisms).

Another level of adaptation can be considered when the embedded units are joined
together to create the concept of network, e.g., a sensor network. Here, adaptation
is needed at the communication level, e.g., to adapt online the parameters of the
protocol or the physical communication [234, 235] or grant clock synchronization
among units. Clearly, the possibility to exchange information among embedded units
introduce another level of potential processing which can be either distributed or
hierarchical (controlled process, cognitive mechanisms).

Self-localization of the units carried out by exploiting low cost received—signal—
strength sensor data represent an advanced form of cooperation among embedded
units. The algorithms can be both automatic and controlled, depending on the appli-
cation setup and the required accuracy (both automatic and controlled processes,
adaptation, and cognitive mechanisms).

The last section of the chapter addresses aspects related to application reprogram-
mability. Here, once the decision about the need to undergo reprogramming is made,
suitable actions are identified and associated commands issued. Reprogrammability
can be either carried out at the harware level or at the software one or both (controlled
processes, cognitive mechanisms).

http://dx.doi.org/10.1007/978-3-319-05278-6_9
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8.1 Adaptation at the Power Supply Voltage and Processor
Frequency Levels

The power consumed by a CMOS circuit is mainly associated with the moving of
charges in the CMOS gates whenever they switch. As a result, the simplified model
of a CMOS circuit consisting of several gates can be viewed as a large equivalent
capacitor that undergoes charge and discharge phases. Following the model provided
in [159], the averaged power consumption P of a CMOS circuit can be described as:

P = ACV2
cc f + ηAVcc Ishort f + Vcc Ileak. (8.1)

where A represents the number of active gates within the circuit (i.e., the powered
transistors), C is the internal equivalent capacitance of the circuit as seen at the
circuit output, Vcc is the supply voltage, f is the clock frequency of the device,
Ishort represents the short-circuit current flowing for time η once a short occurs, and
Ileak represents the leakage current accounting for the self-discharge mechanism.
The first two terms of (8.1) account for a dynamic power dissipation, while the
third term represents a static power contribution that accounts for the self-discharge
of the capacitor induced by parasitic phenomena. (8.1) shows how the consumed
power scales quadratically with the power supply and linearly with the frequency.
It immediately appears that it is more advantageous to act on the power supply to
reduce power consumption than acting on frequency that, in turn, would imply a
smaller Million Instructions Per Second (MIPS) performance. That said, we might
be interested in implementing a policy aiming at maximizing the MIPS by increasing
the clock frequency and controlling the power balance accordingly by acting on the
supply voltage Vcc.

However, there is a second relation limiting the maximum clock frequency fmax a
circuit can support. fmax depends on the noise immunity, i.e., the difference between
Vcc and the associated logic threshold Vth for which voltages above Vcc − Vth cor-
respond to the logic value one, and those below Vth to logic value zero (here we
simplified the analysis by assuming a unique value for the two thresholds). The
functional relationship reads

fmax ∀ (Vcc − Vth)
2

Vcc
(8.2)

Equation (8.2) states that, by reducing the voltage Vcc so as to reduce the power
consumption, also the maximum frequency the circuit can tolerate reduces (the immu-
nity to noise term reduces as well).

It is worth to outline that a decrease in clock frequency does not necessarily imply
a loss in MIPS performance. In fact, while it is clear that computationally intensive
algorithms would benefit from a higher clock frequency, heavy access to the primary
RAM memory reduces such an advantage with a trade-off that is application and
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device specific. The presence of a cache memory improves the situation in favor of
performance; execution with a code stored in a flash memory worsen it.

The above considerations have led many chip manufacturers to include voltage
and frequency regulation circuitry in their microprocessors so as to support Dynamic
Voltage/Frequency Scaling (DVFS) policies.

The voltage/frequency regulator can either be managed at the software level, with
a code in execution on the controlled microprocessor/core, or through a dedicated
hardware. In both cases the goal is to introduce adaptation mechanisms that, by
acting on the voltage/frequency settings, minimize the power consumption/MIPS
performance ratio.

Existing methods for identifying the most appropriate voltage/frequency settings
are either classified as online or offline. In online methods, the literature suggests
the use of interval and checkpoint-based solutions. Interval-based algorithms are
periodically activated after the elapse of a fixed period of time. The decision about
whether adapting the voltage and frequency or not is taken based on features extracted
during such a time frame. Differently, checkpoint-based solutions identify offline, at
compile time, the points of the application code where we should check and decide
about a possible voltage and frequency adaptation. However, the scaling factors to
be applied for voltage and frequency are decided online, at run time.

In offline methods, both checkpoints and scaling factors are static and decided
directly at compile time before the application is executed on the embedded system.

8.1.1 Online DVFS

In online methods, the embedded system is suitably instrumented and the acquired
information is used to characterize its current state. However, it should be pointed
out that the considered features are not necessarily coming from physical sensors:
the needed information is mostly provided by virtual sensors that, by operating at
the meta-information level, provide features related to the task execution. The most
used strategy to characterize the state of the embedded system is by considering
performance counters for features such as the number of accesses to the cache mem-
ory, the average frequency of active processor cores and the energy delay-squared
product (the term refers to the energy consumed by the processor due to the circuit
input–output delay at the gate level).

By exploiting such information we can derive estimates for the embedded system
performance and, subsequently, design a closed loop controller acting on the supply
voltage and frequency to track a desired reference value.

8.1.1.1 Interval-Based DVFS

Interval-based DVFS algorithms are executed periodically to identify the optimal
voltage/frequency setting with strategies based on the previous and the current states
of the embedded system. Characterization for the system state can be obtained by
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inspecting the performance counters associated with the execution profile of the
embedded system over the last time interval. Features or performance indexes Iσ
need to carry information about the task/system status and must be related to voltage
and/or frequency. As such, by acting on them, we directly/indirectly control the power
consumption and balance it with the system performance. A first task level feature
we can consider is Iσ = T − η , where T is the execution time slot associated with
the task and η the effective time usage (T − η represents then the available unused
execution time). As a second example consider a task whose role, given input x , is
to provide output f (x), e.g., the neural network example of Sect. 7.6. Here Iσ can
be associated with the number of activations of f (x) per time unit. The higher the
number of activations per time unit, the higher the power consumption (we might
even need to increase f to satisfy constraints on real-time execution).

One of the simplest algorithms belonging to this family is the threshold method
[163] where a performance index Iσ related to the processor performance is compared
against a pair of thresholds. If Iσ is higher than the upper threshold or lower than the
lower threshold, then the voltage/frequency setting is updated as with the threshold
values. The system settings remain unchanged, otherwise.

The thresholds employed by such a method are determined heuristically. Another
approach for selecting the thresholds has been proposed in [164]. There, the DVFS
problem is transformed into a control problem, with Iσ modeled as a linear function
in the voltage and the frequency. In such a model, the actual system load affecting
Iσ is seen as a source of noise to be compensated, bringing the performance index
back to the desired value. A light proportional–integral controller is then designed
to track the desired performance index value.

Differently, [165] proposes a greedy method to find the optimal voltage/frequency
setting by minimizing the energy over squared throughput ratio of the system. The
ratio is computed for each time interval and, if different from the value associated
with the previous state, a new configuration for voltage and frequency is enforced.
In particular, if during the time interval the vector having voltage and frequency
as components change in a given direction of the vectorial space by inducing an
increment in the performance index, then, voltage and frequency are moved in the
vector direction. The opposite holds.

A more sophisticated example of a whole class of methods applying machine
learning to the DVFS problem is described in [166]. There, profiling information
encompassing several performance counters such as number of cache hits, cache
misses, number of user instructions, and loop counters are collected to constitute a
train set. A classification and regression algorithm generates a decision tree to be
used at run time to update voltage and frequency according to the current interval
counter values.

8.1.1.2 Checkpoint-Based DVFS

Checkpoint-based methods evaluate the performance of the embedded system in
correspondence with specific lines (points) of the application code where the
programmer has either inserted a software interrupt or the call to a function.

http://dx.doi.org/10.1007/978-3-319-05278-6_7
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This approach is particularly suitable in hard real-time systems, where the task
predictability1 is of fundamental importance. In cycle-conserving Real-Time
Dynamic Voltage Scaling (RT-DVS) methods, [160] checkpoints are inserted when
the task is released (e.g., when it enters a wait state in a time sharing based operating
system) or has terminated its execution. The embedded system, by inspecting the
set of active tasks, selects the voltage/frequency setting able to satisfy the tasks con-
straints with the least amount of energy. Once the task in execution completes or is
released, the voltage/frequency is updated with the same mechanism. In other words,
when a task to which is assigned time slot T ends at time η before its allocated time,
the time left T − η allows to reconfigure both frequency and voltage to the minimum
values that still grant the remaining tasks to be be executed without violating the
associated constraints. In this way, all tasks guarantee constraints satisfaction but
energy is saved since the voltage and the frequency are scaled down as much as
possible.

Such an approach is optimized in the Look-Ahead RT-DVS algorithm [160]. In
it, the needed frequencies for remaining tasks are estimated in advance thanks to
scheduling actions that rearrange the tasks execution to minimize the energy con-
sumption (still satisfying the execution constraint on each task execution). In other
words, whenever possible, the scheduler anticipates the execution of tasks charac-
terized by lower energy requirements. Power eager tasks are executed only later,
possibly with a new configuration of the voltage/frequency. The hope is that the cur-
rent execution of a power-eager task does not coincide with its worst-case execution
that would request to set the voltage/frequency to satisfy the high performance needs.

8.1.2 Offline DVFS

Performing an offline voltage/frequency scaling for our embedded system implies
that all decisions about which voltage/frequency setting should be used during the
task execution are identified at compile time. Software interrupts (or calls to suitable
routines) are hence invoked to change the operating values of voltage/frequency in
correspondence with specific points in the program.

The simplest case is that of a hard real-time system with voltage/frequency scaling
[160]. In this scenario, the voltage or frequency scaling problem is entirely deter-
mined by the satisfaction of the deadlines assigned to the tasks, given the scheduling
algorithm (e.g., the earliest deadline first). In such a case, the chosen frequency is
the minimum between the available ones satisfying the scheduling request. Such
frequency is set at the boot, during its initial configuration. The setting is maintained
during the whole task life without the possibility to evaluate at run time the system
performance or intervene on it.

In case of static intra-task DVFS, the algorithm decides offline both the instant
and the value of the voltage/frequency scaling on the basis of profiling data [161] or
performance estimates task [162]. In both cases, the program is divided into regions

1 A task is predictable when it is possible to determine its worst-case execution time.
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of constant voltage/frequency and the scaling values are identified by solving an
optimization problem that minimizes the energy consumed by taking into account
the task constraints. Although attractive for their simplicity requiring no extra compu-
tation or hardware to monitor the system status, offline methods implement a simple
open-loop control on the dissipated power and, as such, are subject to loose optimal
performance in correspondence of perturbations (different input values, differences
in the actual hardware, variations in temperature, etc.).

8.2 Adaptive Sensing and its Policies

Intelligent embedded systems can consider different strategies to acquire data from
sensors. The simplest approach is based on a sequential polling where sensors are
sampled one after the other, periodically, possibly within a loop. Not rarely, polling
relies on a synchronous mechanism initiated by an hardware interrupt activated after
the elapse of a fixed amount of time (time-sharing task scheduling modality). More
in detail, a task (or thread) is initiated when new data instances need to be acquired.
The due steps can be itemized as:

• The interrupt might, at first, wake up the microprocessor, possibly from a deep
sleep modality where it was placed to save energy,

• afterward, the interrupt routine sends the warm up directives to the sensors (if
needed) and waits (or the task is inserted in the task wait list) for available data.
This operation can also be accomplished by an ad hoc routine.

• once sensors are ready, the sampling procedure is activated, acquiring data, and
storing them in the memory. If a data estimation module is not available in the
sensor (refer to Sect. 2.1.1), we might opt for a high frequency sampling modality
where data are averaged before storage to reduce the impact of electronic noise.

• once the acquisition task is completed the routine terminates.

Previously itemized phases can be present or not depending on the application
and the problem that needs to be solved. In some cases, the same routine acquires
all data from the sensors, within a polling mechanism. If the interrupt routine is
activated according to a given frequency, the same time stamp is generally assigned to
each measurement. This might introduce significant differences among the different
instants of acquisition. The consequence is that we assign the same time stamp to all
data acquisitions even though there might be a significant time discrepancy between
the first and the last measurement. The time error associated with a given acquisition
is a random variable whose properties and features can be estimated with randomized
algorithm-based methods (e.g., we simply take an average or compute the maximum
expected time skew).

However, given the fact that sampling is a rather fast operation compared to the
dynamics of the measured phenomenon for many embedded applications, the effect
introduced by the same time stamp to all polled data within an acquisition cycle can
be considered negligible. When this is not the case, the designer should pay extreme

http://dx.doi.org/10.1007/978-3-319-05278-6_2
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attention to the application code to grant that each measurement is associated with
its accurate time stamp.

The procedure that sees the microprocessor periodically enabled to carry out a
set of tasks, e.g., data sampling, and disabled afterward to save energy is called
duty cycle. Duty cycling is an effective energy management strategy whenever the
overhead associated with the on-off modality is negligible and justifies the energy
saved in the off state.

The sampling rate is generally determined at design time and depends on the
specific application, which is supposed to be time invariant. Generally, the designer
sets the sampling rate based on some a priori information about the physical problem
under monitoring or on his/her naïve interpretation. For instance, if we shall measure
the external temperature of the environment, we might naively say that we need a
sample every second, based on some personal feelings. Not rarely, the application
designer claims that “sampling at 1Hz is enough”, with the statement not justified by
any physics investigation or information about the real dynamics of the phenomenon.
In the best case this approach shows to be very conservative, hence yielding an
oversampled datastream that introduces an unnecessary extra cost in data processing,
storage, and transmission. Of course, the different operations to be executed depend
on the specific application.

In order to avoid/mitigate the oversampling phenomenon, we need to investigate
the dynamics of the signal to be acquired, determine its finite bandwidth under the
time invariance assumption for the signal and derive the Nyquist frequency fN [52],
e.g., estimated with a Fast Fourier Transform. The sampling frequency fS to be
considered for the envisaged signal is then obtained as:

fS = c fN

where c is a scalar value commonly set from 3 to 5 to compensate for the uncertainty
associated with the estimate of the Nyquist’s frequency (in general we rely on a
contained series of noise affected data). In an ideal uncertainty free case where
the signal has finite bandwidth, c should be set to 2. Although the method above
works quite well and should be adopted when sampling a signal, it is worth recalling
that we also requested the time invariance hypothesis for the signal to be sampled.
This assumption in turn requires the Nyquist frequency fN not to change. In many
applications this assumption does not hold and adaptive sensing strategies should be
considered to adaptively estimate fS in order to acquire only the due samples, hence
reducing the amount of data to be stored, processed and, possibly, transmitted.

Duty cycling and adaptive sensing are complementary solutions that can be
adopted within an optimal energy management for embedded systems and can be
combined together to double the advantage. More specifically, the operating system
provides the set of commands needed to power the sensors (duty cycle activity at
the sensor level) and, when the task is active according to an adaptive sensing strat-
egy, the sensors acquire the data. The duty cycle time must be carefully designed to
avoid hardly detectable side effects such as sampling when the sensor is not ready
(e.g., warm up time not completed) hence yielding a not relevant information or
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Fig. 8.1 A classification of the adaptive sensing strategies present in the literature

consuming more than the energy needed to keep the processor and the sensor always
active. This latter situation arises when the sensor is kept off for a short time, surely
not enough to balance the energy consumption of the sensor during its warm up [53].

We follow the classification of adaptive sensing strategies given in [54, 55] and
summarized in Fig. 8.1. We assume that envisaged sensors are fault free, accurate,
and compensated. These assumptions should be checked/verified before enabling
each of the following techniques.

8.2.1 Hierarchical Sensing Techniques

Hierarchical sensing techniques are a form of redundant sensing where multiple sen-
sors of the same type are available on the embedded system to monitor a specific
phenomenon. Sensors differ in terms of resolution and, possibly, energy consumption,
leading to measurements characterized by different precisions (sensors are assumed
to be accurate). For instance, if we wish to measure a temperature, we might con-
sider an integrated digital temperature sensor (resolution 0.5 ∈C) and a thermistor
(resolution 0.1 ∈C) and a high performance thermocouple (resolution 0.03 ∈C). The
implicit assumption behind hierarchical sensing is that resolution-poor sensors are
also characterized by a lower power consumption and/or cost compared to high res-
olution ones. Generally, this assumption is satisfied. However, the embedded system
designer has to investigate further the sensor datasheet before enabling the method.

During operational life, data are mostly acquired by low resolution sensors and
decisions made out of their values. Conversely, high resolution sensors are activated
only when needed to improve the accuracy of the measure or run more accurate
algorithms, e.g., by following an event triggered by the algorithm designed to process
the lower resolution temperature values. The situation is that depicted in Fig. 8.2.
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Fig. 8.2 Hierarchical sampling. Data acquired with low resolution/low power consumption sensors
are processed by simple algorithms. When a potential alarm is detected (an event possibly arose),
high resolution sensors generally characterized by a higher power consumption are activated. A
more complex algorithm evaluates the available data to finalize the decision or take the appropriate
action

In other words, the idea behind hierarchical sensing techniques is to dynamically
select the sensors to be activated within the available sensor platform so as to trade-
off accuracy and energy consumption. Final decisions are made by processing data
coming from all sensors, or a subgroup of them depending on the sensors resolution,
the expected precision and the complexity of the chosen processing algorithm. The
methods belonging to hierarchical sensing are detailed in the sequel.

8.2.1.1 Triggered Sensing

In triggered sensing, instant measurements or derived features obtained by process-
ing basic data are used to decide whether to activate an alarm because an event arose
or not. For instance, by averaging low temperature sensor data we detected that a
threshold has been exceeded, meaning that a constraint has probably been violated.
However, given the low resolution of the sensor we cannot guarantee that the state-
ment is true. High resolution sensors are then activated to validate the constraint
violation hypothesis.

A different example taken from the rich literature is that given in [65] and refer-
ring to the case where each sensing unit has an integrated CMOS camera that can be
reconfigured in terms of spatial resolution. The lower the resolution, the coarser the
image, the lower the energy consumption. Low resolution scenes of the environment
are quickly processed for target detection. If targets are detected, some digital cam-
eras undergo an adaptation phase that, after reconfiguration, provides higher quality
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images for target detection validation. Once the decision has been taken, the cameras
are reconfigured back to the low resolution modality.

Clearly, more sophisticated adaptation strategies can be taken into account to
identify the right level of resolution for the image or improve the estimate of the
due resolution based on a priori or historic information. However, nothing comes
for free and more accurate adaptive solutions require more complex algorithms to
be executed. The compromise between complexity and accuracy is application and
sensor specific.

8.2.1.2 Multiscale Sensing

In multiscale sensing, we identify areas within the monitoring field that require a
more accurate inspection. Different resolutions are used for different areas. In this
way, we envisage a lower resolution when the receptive field is less relevant, and a
higher resolution when high precision acquisitions are requested. This idea has been
originally proposed in [56].

The work in [57] proposes an interesting, albeit articulated, example within a
fire emergency management scenario. The field to be monitored is instrumented
with static, low resolution sensors whose aim is to detect anomalies in the expected
temperature profile. When an event is detected, a mobile sensor unit (mule) is sent to
the area to collect additional high precision measurements as well as other available
information to validate/reject the event hypothesis. Adaptation is here at the activation
of the mule level.

Comments

We should comment that both triggering and multiscale sensing have their own
limitations since they require sensors characterized by different resolutions and, in
turn, more complex hardware and software management policies. Moreover, other
key critical elements of the multiscale sensing method are the identification of the
optimal placement of the sensors, the identification of the size of the field of interest
for each sensor, and the assignment to each subarea of the proper type of sensor.
The answers to these problems are not straightforward and either require a priori
information about the application/environment or a profiling campaign that requires
the acquisition of a long series of environmental data. While optimal placement,
which also implies minimization of the number of sensors to be used, requires a
sequential analysis and solution of an optimization problem, the influence area can
be determined with a spatial Voronoi tessellation of the environment [58]. All in
all, these methods assume that the environment we are looking at is time invariant.
Relaxation of this hypothesis leads to an increasing level of intelligence on one hand
and complexity on the other.
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Fig. 8.3 Activity-driven adaptive sampling

8.2.2 Adaptive Sampling

Adaptive sampling methods modify the sampling rate based on the information con-
tent carried by sensed data, the available residual energy present in the batteries and
the incoming or estimated harvested power. The reference situation is depicted in
Fig. 8.3.

For instance, if the quantity of interest evolves slowly with time so that subsequent
samples do not differ that much it does make sense to adaptively reduce the sampling
rate if the energy available is an issue. We say that there exists a temporal locality
when it is high the probability that the information content carried by subsequent
acquisitions does not change rapidly with time. A similar spatial locality principle
can be introduced by requiring that nearby spatial acquisitions provide a similar
content with high probability. While temporal locality has validity at the sensor
level and, hence, at the single embedded unit, spatial locality requires that units can
somehow communicate in order to take advantage of the distributed information
made available.

Every time we have spatial or temporal locality, we can reduce the energy con-
sumption associated with sensing by adapting the sampling rate. In this direction,
activity-driven adaptive sampling combines both locality principles to reduce the
number of samples to be acquired. However, this mechanism is not necessarily always
active being also function of the residual energy in the batteries and the incoming
power if energy harvesting options are present.

8.2.2.1 Activity-Based Adaptive Sampling

Activity-based adaptive sampling takes advantage of situations where the application
grants the validity of temporal and spatial locality.

For instance, temporal locality was used within an adaptive sampling algorithm
to minimizing the energy consumption of a snow sensor [59] and extended to the
general case in [60]. There, the algorithm estimates online, as sensor data come, the
Nyquist frequency fN and verifies whether fN changes over fixed-size data windows.
If a change in fN is detected, then the new sampling frequency is determined and
updated.
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This detect-and-react mechanism belongs to the class of active learning algorithms
and will be detailed in Chap. 9. It should be noted that a false positive in detecting
the change (erroneous detection of a change in the Nyquist frequency) does only
introduce an unnecessary energy consumption. In fact, the effect induced by a false
positive is that a new fS is applied although it was not needed. A false negative
(no change detection when the change takes place) is negligible if the change is
minimal (the magnitude of the change is small and gets confused with the stochastic
fluctuation of fN associated with a limited training dataset and noisy data). In some
cases, the change might not be immediately detected, e.g., when if affects fN with a
slowly developing drift. In those cases latency induces a delay in sampling frequency
adaptation.

Activity-based adaptive sampling has been used in many applications. For
instance, an adaptive sampling solution for a flood warning system is presented in
[61]. The system includes a flood predictor which is used to adjust the sampling rate
of individual sensing units. A spatial locality approach with a backcasting scheme
was proposed in [62]. The key idea is that sensing units of a sensor network should
be more dense in areas where the phenomenon introduces high variance in the signal.
Spatial locality for a correlation-based collaborative MAC protocol was used in [63]
to selectively reduce the number of units used to send data to the base station. Spatial
and temporal locality was also used in [64] applied to a robot acting as a mobile
mule.

An interesting variant of the adaptive sampling method taking adavantage of
temporal locality is the model-based active sensing paradigm, e.g., see [68]. The idea
of the sampling technique is to build at first a model describing the signal starting
from a training dataset composed of acquired data. The situation is presented in
Fig. 8.4. Once the model is available, the same sampling frequency is applied until
incoming data are well represented by the model, i.e., the residual between the
current data and the ones provided by the model is white noise. Differently, when
the residual whiteness is no more granted (simpler threshold solutions based on the
standard deviation can also be used, although less accurate), the model is no more
capable of explaining the data and a new sampling frequency must be estimated
based on current data instances. This method naturally falls within the concept of
drift detection presented in Chap. 9, and here is applied to the prediction residual
sequence.

8.2.2.2 Harvesting-Aware Adaptive Sampling

The harvesting-aware adaptive sampling method optimizes energy consumption at
the embedded system level by exploiting the information related to the residual
energy present in the batteries as well as the predicted energy we shall expect from
the energy harvester. For instance, if the voltage of the battery is low, hence implying
low residual energy, and the energy expected from the harvesting module for the
next hour is small, we should reduce the sampling frequency. Actions on the sensors
can be differentiated depending on the information content we expect from them. If
the embedded system mounts a rich sensor platform, some sensors can be disabled

http://dx.doi.org/10.1007/978-3-319-05278-6_9
http://dx.doi.org/10.1007/978-3-319-05278-6_9
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Fig. 8.4 Model-based sampling. Model-based sampling is a particular adaptive sampling mecha-
nism where temporal and spatial locality redundancy allow us for designing a model describing,
over time, incoming data. Not all incoming data are hence acquired and predicted ones used instead
to generate the datastream. The consequence is that energy is saved since the effective frequency
sampling reduces. When data are acquired, the discrepancy between the predicted and the real
acquired value is computed and the nature of the residual investigated to decide whether it is time
to generate a new model or not

depending on their relevance and power consumption. Two examples of the method
have been proposed in [66] and [67] with a photovoltaic cell as reference energy
harvester.

8.3 Adaptation at the Energy Harvesting Level

The problem of energy harvesting for small devices represents an extremely hot
research field and a place where adaptation mechanisms do make the difference
to grant efficiency in energy extraction. Energy can be extracted from photovoltaic
cells, which show to be one of the most effective solutions for outdoor applications
thanks to the high power density made available in sunny days. However, depending
on the application scenario and the place the embedded unit is deployed, we can
extract energy from other sources, e.g., from wind by using small wind turbines,
from vibrations by relying on piezoelectric devices and from Peltier’s cells if we
have thermal gradients to exploit. For aquatic deployments, we can extract kinetic
and potential energy from waves, exploit the rise and fall of the sea level caused by
tides thanks to the gravitational forces exerted by the moon over the water mass or
tidal currents, from temperature or salinity gradients.

All the above examples are characterized by situations where kinetic, elastic, or
potential energy to be transducted into electrical power for energy storage is time
invariant and depends on some uncontrollable external conditions that, if treated as
a disturbance, would lead to a poor harvest efficiency. Optimal energy extraction
requires the harvesting module to be able to track changes and evolutions of the
environment, operation that can be done with adaptive mechanisms and ad hoc low
power consuming harvesting devices, e.g., see [69–72].
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Fig. 8.5 A diode-based energy harvester

In the following, we will present details regarding the adaptation mechanism for
photovoltaic cells, as it represents one of the most relevant examples of adaptation
at the energy harvesting level. Time variance is caused here by several factors, e.g.,
changing weather conditions, aging effects and efficiency degradation in the solar
cell, presence of dust and water on the cell surface, variation of the angle of incidence
of the sunlight during the day time and, finally, over the year.

The simplest solution for solar energy harvesting in small embedded devices, also
presented in Fig. 8.5, relies on a straight on/off charging mechanism based on a diode
connecting the cell with the rechargeable battery [73].

When the tension of the cell Vp is above the voltage of the battery Vb + 0.7, the
diode is short circuited and the current flows to the battery. Conversely, when Vb is
larger than Vp − 0.7 the diode acts as an open switch and no power is transferred to
the battery.

A diode-based solution is characterized by an extremely low cost and low power
consumption (no electronic energy harvesting design is simpler than a diode) but
suffers from two major limits:

• No adaptation mechanisms can be envisioned to maximize the energy harvested
despite changes in the energy providing source or in the energy transduction mech-
anism. In fact, adaptation is prevented by the fact that the working point of the cell
is set by the battery voltage and cannot be adjusted. As a direct consequence, the
system cannot operate at low radiation power because the diode disconnects the
solar cell from the battery.

• The size of the solar cell and its type (e.g., monocrystalline, polycrystalline, amor-
phous silicon) and the nominal voltage of the battery must be chosen carefully. A
solution designed for a monocrystalline silicon cell dimensioned with its battery
might not be appropriate for an amorphous silicon cell characterized by a much
lower efficiency.
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Fig. 8.6 The characteristic power delivery curve of a photovoltaic cell. The power is function of
the voltage V imposed at the cell. Different solar radiation conditions generate different curves,
each of which is characterized by a different maximum harvestable power. In the figure, curve A
is characterized by a larger power delivery compared to curve B and is associated with a stronger
solar radiation

The above problems can be solved by substituting the diode-based circuit with a
Maximum Power Point Tracker (MPPT) system based on adaptive mechanisms for
optimally harvesting energy.

Let us look at the power delivery curve of the photovoltaic cell given in Fig. 8.6
as function of the voltage Vp imposed at the cell. Whatever the technology of the
solar cell is, the power versus the cell voltage curve P(Vp) shows a convex behavior
characterized by a unique maximum associated with the solar radiating conditions
and the transduction mechanism [74].

Disturbances, such as aging effects and presence of dust, simply move the curve
onto which the device operates into a new one. Curve A is characterized by a higher
power delivery compared to curve B, e.g., it is associated with a stronger solar
radiation. Clearly, if we consider a fix voltage applied to the cell (e.g., as it happens
with the diode solution where the applied voltage is basically that of the battery) we
might operate on a working point reasonably far from the one granting maximum
energy harvesting. Consequently, given a curve and an initial value for the voltage,
we shall continuously change it over time so as to converge to the optimal value
maximizing the power provided to the battery. That is what adaptation within a
MPPT framework does.

More specifically, the different solutions provided in the literature aim at contin-
uously hill climbing the unknown available power curve so that the voltage to be
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applied to the photovoltaic cell of the solar panel tends towards the value maximiz-
ing the power delivery. Let Vp(k) be the voltage currently imposed at time t = k at
the photovoltaic cell and i p(k) the outcoming current, so that the generated power
is P(Vp(k)) = i p(k)Vp(k). Since the curve P(Vp) is unknown, it is impossible to
determine immediately the optimal voltage, and iterative methods must be applied
to solve the problem. We assume at first the ideal case where, identified a desired
voltage Vp(k + 1), we simply apply it to the photovoltaic cell. In that case, an adap-
tive gradient-based optimization can be applied directly to Vp in order to identify
iteratively the voltage maximizing the delivered power, i.e.,

{
Vp(k + 1) = Vp(k) + δVp(k)

δVp(k) = λ
d P(Vp)

dVp
|Vp(k)

. (8.3)

Under the time invariance hypothesis (the solar radiation keeps the device working
on a specific -yet unknown- curve), the adaptive algorithm converges to the correct
value provided that the parameter gain λ amplifying the gradient function is small
enough. We also comment that the curvature around the optimal voltage point is
rather flat implying that even a rough estimate for the optimal point can be safely
confused with the searched unknown optimal value. Moreover, this working point
can be quickly reached with a relatively large λ , hence requiring few iterations to
converge. λ must be selected with a trial and error approch since it depends on the
particular place the embedded system is deployed (or resides) at a given time. A more
sound way to identify λ for a given place is to rely on the accurate solar radiaton
information made available by national energy organizations e.g., see [228], which
provide the expected solar density available over the year for a given location. The
optimal λ for a locality can be identified with the randomization procedure given in
Chap. 7 having as a figure of merit the trade-off the energy gain reachable with high
values of λ (the higher the gamma, the faster the convergence to a suboptimal value)
with the loss we expect given the fact we might converge to a rough estimate.

The same holds in quasi-stationary conditions where the algorithm converges
to the quasi-optimal value much faster than changes in the solar radiation. This
situation is the most common one and also addresses aging effects, presence of dust
or water drops on the panel and thermal excursions that change the efficiency of the
photovoltaic cell. In rapidly evolving time variant situations, the algorithm has to
rapidly track the change. This might require a high sampling rate, hence requesting
a higher energy consumption.

Previous derivations have assumed that it was possible to directly impose voltage
Vp(k + 1) at time t = k + 1 at the photovoltaic cell. However, this is not a feasi-
ble action due to electronics constraints. Thus, a Controlled Power Transfer Module
(CPTM) must be introduced in the design of the harvester. The role of the module
is to grant transfer of power from the input to the output by imposing that the input
voltage is set to a given reference value (here the cell must be set to Vp(k + 1)).
Figure 8.7 shows the operational framework. The control loop drives Vp to the refer-
ence voltage Vs . From the electronic point of view, the CPTM can be implemented

http://dx.doi.org/10.1007/978-3-319-05278-6_7
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Fig. 8.7 A controlled power transfer module. The transferred power between input (cell) and output
(battery) of the module is controlled by a control logic that, by taking advantage of possibly available
information Vp, i p, Vb, ib, grants that Vp is driven to the desired reference value Vs

with several technologies, e.g., a StepUp DC/DC [76] or a Single Ended Primary
Inductor Converter (SEPIC) [229].

The introduction of the controlled power transfer module allows us to transform
the set of equations (8.3) in the ordered sequence of steps to be undertaken

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Vp(k) = Vp(t = ηk)

Vp(k + 1) = Vp(k) + λ
dP(Vp)

dVp
|Vp(k)

Vs = Vp(k + 1)

Vp(t) = CPTM(Vs)|Vp(t = η(k + 1)) = Vs

. (8.4)

The sequence of operations given in (8.4) must be detailed in order to define
the different meaning associated with time instances given the discrete–continuous
representation of time. Defined η to be the sampling period, we know that Vp(k)

means acquiring the value that Vp and other required information assume at time

ηk, or (Vp(t = ηk)). By calculating Vp(k) + λ
dP(Vp)

dVp
|Vp(k), we compute the value

that Vp should assume at time k + 1. We name this as Vs . The inner control loop
implemented by the CPTM activates and guarantees that at time t = η(k + 1) all
sensor information to be acquired will be characterized by having Vp(t) = Vs . The
process iterates.

In embedded systems characterized by a limited computational ability, the adap-
tive algorithm can be suitably simplified to keep under control the power consumption
cost of the MPPT module. This can be achieved by adopting different strategies such
as the incremental conductivity approach and the perturb and observe one. These
methods are detailed in the following.
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8.3.1 The Incremental Conductance Approach

In the incremental conductance approach, the maximization of the harvested power is
achieved by acting on the conductance i p

Vp
. By recalling that P(Vp(k)) = Vp(k)i p(k),

(8.3) can be rewritten as

{
Vp(k + 1) = Vp(k) + δVp(k)

δVp(k) = λ
(

i p + Vp
di p
dVp

|Vp(k)

) . (8.5)

The algorithm executed by a microcontroller acting as a control CPU follows the
Eq. (8.5). More in detail, and by referring to Fig. 8.8, the embedded system acquires
i p and Vp through the ADC internal to the microcontroller and then evaluates the

gradient of the conductance di p
dVp

|Vp(k) required in (8.5) by computing the incremental
ratio

di p

dVp
≤ i p(k) − i p(k − 1)

Vp(k) − Vp(k − 1)
.

The approximation shows to be good depending on the sampling time and the
dynamics associated with the time variance of the environment. Finally, the micro-
controller executes the algorithm in (8.5) and identifies the next voltage value Vs to
be assigned to the photovoltaic cell. The final ordered steps are given in (8.6)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Vp(k) = Vp(t = ηk)

Vp(k + 1) = Vp(k) + λ
(

i p(k) + Vp(k)
i p(k)−i p(k−1)

Vp(k)−Vp(k−1)

)

Vs = Vp(k + 1)

Vp(t) = CPTM(Vs)|Vp(t = η(k + 1)) = Vs

. (8.6)

If the sum of the times requested by the ADC, the algorithm and the step up
DC/DC module is negligible compared with the dynamics of the evolution of the
solar radiation, then the set value Vp = Vp(k + 1) will still be a good estimate of the
step to be taken along the gradient direction since the power curve did not change
that much in the meantime.

8.3.2 The Perturb and Observe Approach

The perturb and observe method can be derived from (8.3) with the assumption that
P(Vp) = i pVp ≤ ΘibVb, where Θ accounts for the efficiency of the power conversion
module, here assumed to be constant. Under the assumption that the voltage of the
battery Vb does not change that much with instant changes in Vp (a reasonable
hypothesis), we have that
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Fig. 8.8 An incremental conductance-based MPPT energy harvester with a StepUp DC/DC control
power transfer module

Fig. 8.9 A perturb and observe-based MPPT energy harvester with a StepUp DC/DC control power
transfer module

dP(Vp)

dVp
= ΘVb

dib

dVp

which, substituted into (8.3), provides

{
Vp(k + 1) = Vp(k) + δVp(k)

δVp(k) = λ
dib
dVp

|Vp(k)
. (8.7)

Clearly, λ accounts for all constant or quasi-constant terms, e.g., Θ and Vb,
respectively. The role of the MPPT can be presented by commenting the functional
block of Fig. 8.9. There, current ib going into the battery as well as its tension Vb

are measured by the introduced current and voltage sensors. Such information is
provided to the microprocessor executing the adaptation algorithm whose goal is to
identify the optimal voltage Vs the photovoltaic cell should be forced to. Once Vs

has been identified the StepUp DC/DC converter introduces an analog control action
driving Vp to the optimal value Vs by modifying the DC/DC converter duty cycle.



8.3 Adaptation at the Energy Harvesting Level 179

In line with the incremental conductance algorithm, it is assumed that the solar
radiation process evolves much slower than the time required by the device to impose
Vp = Vs . The final equations ruling the algorithm are:

{
Vs(k + 1) = Vs(k) + δVs(k)

δVs(k) = λ
dib
dVp

|Vp(k)

and the derivative dib
dVp

is approximated with the incremental ratio

dib

dVp
≤ ib(k) − ib(k − 1)

Vp(k) − Vp(k − 1)
.

The final set of algorithmic steps are:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Vp(k) = Vp(t = ηk)

Vp(k + 1) = Vp(k) + λ
(

ib(k)−ib(k−1)
Vp(k)−Vp(k−1)

)

Vs = Vp(k + 1)

Vp(t) = CPTM(Vs)|Vp(t = η(k + 1)) = Vs

. (8.8)

We comment that very simple embedded systems do not have division operations
that need to be emulated in software. This as an extra cost in terms of power con-
sumption reducing the efficiency of the harvesting module. As such, in order to
further simplify the algorithm to reduce the power consumption of the harvester,
the designer can follow the approach suggested in [75] where only the sign of the
gradient dib

dVp
is considered. Despite of the crude approximation, it is shown in [76]

that the algorithm converges almost always to the optimal value and when it does
not the situation can be detected and the MPPT restarts. The algorithm evolves by
introducing a perturbation in the panel operating voltage and measuring the induced
current ib; as mentioned, only the sign of the ratio is considered with an undoubted
advantage in harvesting efficiency.

8.4 Intelligent Algorithms for Clock Synchronization

Real clocks are far from being ideal and are subject to clock drifts which increase,
over time, the discrepancy between the time of a reference clock and the available
real one. In the absence of any form of synchronization, embedded systems would
loose the ability to cooperate, being not able to establish any precedence between
the events happening in the system [167] or provide information hardly usable if the
application is requesting distributed data acquired within the same time frame.

In fact, since sensors acquire streams of data over time, a temporal label can be
assigned to each data instance. Such a label represents a relative measure of time as
provided by the internal clock of the acquisition device (a timer) and refers to the time
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elapsed since the last relevant event arose, e.g., the boot of the embedded system, the
last synchronization with respect to an external—highly accurate—clock, the start
of an interrupt routine.

Depending on the nature of the acquired signal and the particular problem we want
to tackle within an application, the time information can be precious or not relevant
at all. In general, if the signal is composed by time-dependent instances, as it happens
in most of cases, then the time information is important to carry out any subsequent
processing. Differently, if data are independent, e.g., we sample instances that can be
modeled as a random variable after some mean centering, probably the time infor-
mation is less relevant. Within a sophisticated sensor containing a data estimation
module (refer to Sect. 2.1.1) or a sensor followed by some software to improve the
accuracy of the readout value, we see both mechanisms. In fact, at the higher level we
have the request for a datum taken from a sensor inspecting a physical phenomenon:
here, the time information is precious. Then, once the sampling procedure has been
activated, we acquire a burst of data with a very high frequency compared with that
of the signal dynamics and average the measurements to provide a better estimate of
the real value. Within the burst, the temporal information is not relevant at all.

Unfortunately, any real clock introduces a time drift w.r.t. the ideal absolute one,
even in the case we are considering some atomic clocks (for which the error on time is
infinitesimal: standards agencies maintain clocks with an accuracy of 10−9 seconds
per day). The time error can be relevant in embedded systems where a clock drift
largely depends on its production quality and the external temperature. The latter
term implies that the same clock can have different drifts over time depending on
external conditions.

Example: Clock Drift in Embedded Systems

We inspect the performance of a given commercial clock crystal that generates a
nominal 32KHz frequency clock. The datasheet of the component claims that the
maximum aging expected for the first year of life is:

δ f

f
= ±3 ppm (8.9)

where f is the clock frequency and δ f the maximum expected variation; ppm
stands for parts per million. The given tolerance is valid at a reference temperature
T0 = 25 ∈C. After the first year the clock drift tends to stabilize to a fixed rate [227].
Therefore, the maximum variation in frequency we shall expect after one year by
keeping the clock at temperature T0 is |δ f | = ±3 · 10−6 · 32 · 103 < 1Hz. Let’s
assume, only in order to provide some quantitative information, that the aging effect
stops after this first year. The time error introduced on the temporal label after any
other year would be 3 s per year. This is a not negligible contribution and we should
remark we are assuming that the clock is not drifting anymore, an hypothesis clashing
with reality.

http://dx.doi.org/10.1007/978-3-319-05278-6_2
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Moreover, we should investigate the effect of temperature on the clock. From the
component datasheet we have that

δ f

f0
= −0.035(T − T0)

2 ± 10 % (8.10)

in parts per million. T is the current temperature and f0 the frequency of the clock
at temperature T0. To give a quantitative idea about the impact of temperature on
δ f , assume that our device is operating at a constant T = 35 ∈C due to the board
warming and that the ±10 % contribution due to uncertainty is null. From (8.10) we
have that the ratio δ f

f0
is −3.5 ppm, in the same order of the contribution of (8.9)

(that was 3 ppm).
Finally, we relax the assumption that the clock is operating at its nominal

frequency. The datasheet states that the frequency tolerance δ f
f is ±30 ppm. This

term is the principal error contributing to the discrepancy between the “absolute”
time and the current one. However, being a structural error, it can be compensated.
The easiest way to compensate it is to assume that the clock is operating at the nomi-
nal frequency and enable the timer accordingly. After a fixed known amount of time,
the content of the timer is read and the temporal discrepancy used to determine the
effective clock frequency. Obviously, another possibility would require to measure
the exact clock frequency of the available quartz with an oscilloscope.

The first two types of clock error depend on exogenous variables, i.e., the operating
temperature and aging. Since such variables evolve with time, either dedicated hard-
ware or intelligence is required to mitigate such phenomena.

From the above it emerges that for any application requiring an accurate time
stamp, the embedded system designer should pay attention to the clock synchroniza-
tion issue for a given embedded system by intervening at the hardware level, at the
software one, or both. If time synchronism is a main issue and we can access the GPS
signal, then, by equipping the embedded system with a GPS receiver, we can get a
time accuracy within 40 ns [226]. Another—less accurate—option is to synchronize
the clock, e.g., by accessing the web with some application and download the cur-
rent time periodically; by repeating the operation we expect to be able to mitigate
the effects of randomness in the operation which, however, keeps a bias due to the
time associated with the information conveyance and the information processing and
update in the embedded timer. This scenario is particularly relevant also in distrib-
uted sensor networks where a set of units are deployed in a given environment with
their own sensor platforms and clocks. Clock information sharing will allow these
units to provide a more accurate common concept of time, possibly, with an unit
(synchronization master) being able to access a GPS service to provide an improved
accuracy over all other clocks. Despite the fact that many technological solutions
can be envisaged to improve the overall accuracy, we focus in the following on those
methods that provide a quasi-synchronous time concept among a set of distributed
units.



182 8 Intelligent Mechanisms in Embedded Systems

The methods discussed in the following should be executed periodically in order
to synchronize the units. Since “periodically” is a qualitative term and clock drift
represents a change in stationarity due to the combination of temperature and aging
effects, we should adopt methods presented in Chap. 9. In particular, given the fact
that the following methods require the exchange of synchronization messages (that,
in turn, have an impact on energy consumption and performances), we anticipate that
active learning strategies for clock synchronization should be preferred than passive
ones.

8.4.1 Clock Synchronization: The Framework

Consider a distributed sensor network composed of at least a computing element.
Denote the absolute time as t and let Ci (t) be the time estimate as provided by the
generic i th embedded system.

Let us define the error in time eC of the clock at the generic unit eC = Ci (t) − t
and the clock drift as its derivative w.r.t. time deC

dt = dCi (t)
dt − 1. Since the time drift

introduced by the clock is very small for a well designed clock (generally not larger
than few ppm of the nominal clock frequency), we can determine a positive real value

k << 1 so that the absolute value | deC
dt | is confined by k, i.e., | dCi (t)

dt − 1| < k. At
every clock cycle the temporal reference system diverges with a drift bounded by k.

The simplest model to describe the discrepancy between t and Ci (t) is linear in

gain fi = dCi (t)
dt and offset θi = Ci (t0) − t0, where t0 is the initial reference time for

the clock [173]

Ci (t) = t fi + θi .

fi is called clock (time) drift and the offset θi is also named clock (time) skew.
If a second j th clock device is available (either on the same board or on a different

unit), by recalling that the absolute time is the same for all units, we can write that

C j (t) = t f j + θ j = (8.11)

= fi≥ j Ci (t) + θi≥ j (8.12)

having defined fi≥ j and θi≥ j

fi≥ j = f j

fi
θi≥ j = fiθ j − f jθi

fi

as the relative drift and relative offset of clock j with respect to clock i , respectively.
It is worth commenting that (8.12) holds for any couple of clocks independently
from the technology being used. As such, one clock might be the one present in our
mobile device, the other being associated with a time-providing service we access
on the web to synchronize the local clock.

http://dx.doi.org/10.1007/978-3-319-05278-6_9
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clock node i

clock node j

Fig. 8.10 Two-way message exchange mechanism

It follows from the equations above that, in order to synchronize clock i with
clock j , the i th unit has to compute terms fi≥ j and θi≥ j and introduce corrections
so that the discrepancy between the two readings becomes null or minimal.

Both hardware and software methods have been devised to solve such a problem.
Hardware methods provide a very tight synchronization by employing an hardware
infrastructure exclusively dedicated to synchronize clocks through electronic clock
synchronization signals [168, 174]. There, the availability of a separated synchroniza-
tion network/bus allows to fully characterize the system delays, e.g., by computing
the expected transmission delays among the different units composing the network.

Differently, algorithmic methods exploit the information provided by synchro-
nization messages to synchronize the local clock with the rest of the connected
system. Algorithm-based methods are classified in statistic, adaptive and predictive.

8.4.2 Statistic Methods for Clock Synchronization

Statistic methods for clock synchronization, also known as probabilistic methods,
update the local clock after a sufficient number of synchronization messages have
been collected.

Depending on the amount of synchronization messages and the role of the
envisaged entities, we divide statistic methods in “two-way message exchange meth-
ods” also known as sender-receiver methods, “one-way message dissemination meth-
ods” and “receiver-receiver methods.”

8.4.2.1 Two-Way Message Exchange Methods

In two-way message exchange methods, such as the one in [246], clock synchroniza-
tion affects both terminal points of the communication. Consider the generic i th unit
taking unit j as a reference. At each iteration of the synchronization process, unit i
sends a message with its time stamp ti1 to unit j .

After having received the first time stamp at time t j2, node j sends a message
containing time stamp t j3 and recorded time t j2 back to unit i , that receives it at time
ti4. This situation is depicted in Fig. 8.10.

With respect to Fig. 8.10, the following relationships hold



184 8 Intelligent Mechanisms in Embedded Systems

t j2 = fi≥ j (ti1 + η + ∂ ) + θi≥ j (8.13)

t j3 = fi≥ j (ti4 − η − ξ) + θi≥ j (8.14)

where ∂ and ξ are i.i.d random variables modeling the noise affecting the message
transmission delay from unit i to unit j and vice versa, respectively. η denotes the
fixed delay introduced by the communication channel, here assumed to be symmet-
rical (in a symmetrical communication channel transmission in both directions has
the same noise characterization, i.e., ∂ and ξ have the same pdf).

We start the analysis by considering the simplifying situation where we have only
clock skew (i.e., fi≥ j = 1). When this is the case, Eqs. (8.13) and (8.14) become

U = η + θi≥ j + ∂ (8.15)

V = η − θi≥ j + ξ (8.16)

having defined U = t j2 − ti1 and V = ti4 − t j3. We comment that U and V do not
depend on η but on the difference between the arrival times only.

By iterating N times the complete bidirectional message exchange mechanism of
Fig. 8.10, we generate the set Z N composed of the N measured quadruples Z N =
{ti1,k, t j2,k, t j3,k, ti4,k}, k = 1, . . . , N .

By defining Uk = t j2,k − ti1,k and Vk = ti4,k − t j3,k (8.15) and (8.16) become

Uk = η + θi≥ j + ∂k (8.17)

Vk = η − θi≥ j + ξk (8.18)

Under the assumption that ∂ and ξ are Gaussian distributed with zero mean and
variance π 2, [175] demonstrates that the Maximum Likelihood Estimation (MLE)
provides the optimal estimate θ̂i≥ j of θi≥ j as

θ̂i≥ j = 1

N

N∑

k=1

(Uk − Vk). (8.19)

The variance of the estimator Var
(
θ̂i≥ j

)
is set by the Cramer-Rao bound

Var
(
θ̂i≥ j

)
◦ 1

I (θi≥ j )
= π 2

2N
(8.20)

where I (θi≥ j ) = 2N
π 2 is the Fisher information. We recall that the Cramer-Rao bound

sets a lower bound to the quality an estimate, in this case the clock skew, can have by
providing the lower bound to its variance. In the ideal case, the bound degenerates
to the equality: the higher the number of complete message exchange N , the lower
the variance of the estimate we should expect.
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Differently, if the communication channel is such that the noise is ruled by an
exponential distribution Exp(ε) of mean ε, the MLE estimate becomes

θ̂i≥ j = mink=1,...,N Uk − mink=1,N Vk

2
(8.21)

and
Var

(
θ̂i≥ j

)
◦ 1

I (θi≥ j )
= ε2

4N 2 (8.22)

with the Fisher information being I (θi≥ j ) = 4N 2

ε2 .
We are ready to extend the above derivations to cover the case where the time

discrepancy between the two clocks is experiencing a drift in addition to a clock
skew. To make the mathematical amenable, we follow the derivation delineated in
[175] and assume at first that a gaussian noise affects the communication channel.
The MLE estimates of θ̂i≥ j and f̂i≥ j are

θ̂i≥ j =
∑N

k=1(ti1,k + ti4,k)
∑N

k=1(t
2
j2,k + t2

j3,k) − Q
∑N

k=1(t j2,k + t j3,k)
∑N

k=1(t j2,k + t j3,k)
∑N

k=1(ti1,k + ti4,k) − 2N Q
(8.23)

f̂i≥ j =−2N [∑N
k=1(ti1,k + ti4,k)

∑N
k=1(t

2
j2,k + t2

j3,k) − Q
∑N

k=1(t j2,k + t j3,k)]
∑N

k=1(ti1,k + ti4,k)[∑N
k=1(t j2,k + t j3,k)

∑N
k=1(ti1,k + ti4,k) − 2N Q] +

+
∑N

k=1(t j2,k + t j3,k)∑N
k=1(ti1,k + ti4,k)

− 1 (8.24)

where

Q =
N∑

k=1

ti1,k t j2,k + t j3,k ti4,k + η(t j2,k − t j3,k) (8.25)

V =
N∑

k=1

(ti1,k + η)2 + (ti4,k − η)2 + 2π 2. (8.26)

The Cramer-Rao bounds associated with estimates (8.23) and (8.24) is

Var
(
θ̂i≥ j

)
◦ π 2(1 + fi≥ j )

2V

N [2V − N (t̄i1 + t̄i4)2] (8.27)

Var
(

f̂i≥ j

)
◦ 2π 2(1 + fi≥ j )

2

2V − N (t̄i1 + t̄i4)2 (8.28)

where term t̄im = 1
N

∑N
k=1 tim,k, m = 1, . . . , 4 represents the average of the time

instants.
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Although (8.23) and (8.24) provide the MLE estimates, they are impractical unless
η is available. Moreover, computation of (8.23) and (8.24) might be computationally
prohibitive for typical embedded system. A less precise but computationally much
simpler maximum likelihood-like estimator that takes advantage solely on the first
and last message of Z N can be considered. Define

D1 = ti1,N − ti1,1

D2 = t j2,N − t j2,1

D3 = t j3,N − t j3,1

D4 = ti4,N − ti4,1.

In the case the channel is subject to Gaussian noise, the estimate and the quality of
the estimator for the clock drift are

f̂i≥ j = D2
2 + D2

3

D1 D2 + D3 D4
− 1 (8.29)

Var
(

f̂i≥ j

)
◦ 2π 2(1 + fi≥ j )

2

D2
1 + D2

4 + 4π 2
(8.30)

Likewise, in the case of channel noise modellable as an exponential pdf function,
we have that

f̂i≥ j = 2D2 D3

D1 D3 + D2 D4
− 1 (8.31)

Var
(

f̂i≥ j

)
◦ ε2(1 + fi≥ j )

2

D2
1 + D2

4 + 4ε2
. (8.32)

Once the drift has been estimated, we can estimate the skew. Define

U ≺
k = Uk − f̂i≥ j ti1,k

V ≺
k = Vk + f̂i≥ j ti4,k .

Then, if the noise is Gaussian

θ̂i≥ j =
∑N

k=1 U ≺
k − V ≺

k

2N
(8.33)

As far as the variance of the estimator is concerned, after the correction of the
clock drift has been implemented, we are in the situation of a sole clock offset. As
a consequence, the estimator has to satisfy the Cramer-Rao bound given in (8.20).
Likewise, when the noise is subject to an exponential distribution we have that
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θ̂i≥ j = mink U ≺
k − mink V ≺

k

2
(8.34)

with the variance of the estimator set by the Cramer-Rao bound given in (8.22).
Although less precise, these last estimates do not require the knowledge of η , which
is mostly unknown in many situations. Their contained computational cost make
such estimates suitable also for mobile embedded devices.

The pairwise synchronization can then be propagated to the units composing a
network e.g., by using a spanning tree exploration method. It should be noted that,
although the root of the tree should represent the reference clock to be used by all
other units for synchronization, in case of a master unit failure any other unit can be
promoted to the role of synchronization master.

8.4.2.2 One-Way Message Dissemination Methods

In one-way message dissemination methods, the unit i , selected to be the master,
broadcasts its time information to the units composing the network. The time infor-
mation received by the generic j th receiver unit is expressed by Eq. (8.13), where
ti1 corresponds to the time stamp present in the received synchronization message
and t j2 is the time of its arrival at node j . If we assume that η is either known (by
knowing the positions of the units we can derive it and correct the clock accordingly)
or negligible with respect to the clock offset and that fi≥ j ≤ 1 (as mostly it is),
Eq. (8.13) can be approximated as

t j2 ≤ fi≥ j ti1 + θi≥ j + ∂ (8.35)

where, again, ∂ accounts for the equivalent noise affecting the channel. In the
Flooding Time Synchronization Protocol (FTSP) described in [172], each unit col-
lects an increasing number of timing messages. f̂i≥ j and θ̂i≥ j are estimated based
on the dataset Z N composed of the N measured couples Z N = {ti1,k, t j2,k}, k =
1, . . . , N by referring to the system model in (8.35) and a least squares procedure.
The clocks of the units can be periodically adjusted (and the absolute error reset)
by compensating their drift with the estimates obtained during the initial message
dissemination phase [242]. In this case, the assumption is that the operating temper-
ature of the units has remained constant over time. If the temperature is time variant,
the estimation procedure has to be repeated, unless enough estimates of the clock
drift have already been collected at different temperatures and the values included
in a look-up table.

8.4.2.3 Receiver-Receiver Methods

The receiver–receiver synchronization approach derives from the consideration that,
given a time stamped message broadcasted by the master unit i , the receiving units
j and k can exchange messages to each other to synchronize based on common time
of the master. If unit i sends its synchronization message with time stamp ti1, we can
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write from (8.13)

t j2 = fi≥ j (ti1 + η j + ∂ j ) + θi≥ j (8.36)

tk2 = fi≥k(ti1 + ηk + ∂k) + θi≥k (8.37)

where fixed delays η j and ηk account for the different paths between unit i and j and
unit i and k, respectively. ∂ j and ∂k are two random variables modeling the noise
affecting the two channels as in the previous subsections. By subtracting (8.37) from
(8.36) we have

t j2 − tk2 = f jk ti1 + θ jk + ( fi≥ jη j − fi≥kηk) + ( fi≥ j∂ j − fi≥k∂k)

= f jk ti1 + θ jk + η ≺ + ∂ ≺ (8.38)

with f jk = fi≥ j − fi≥k , θ jk = θi≥ j − θi≥k and ∂ ≺ representing an equivalent
noise. The term η ≺ can be neglected because it represents the difference between two
terms that are generally very small and, then

t j2 − tk2 = f jk ti1 + θ jk + ∂ ≺. (8.39)

After a data acquisition campaign leading to the dataset Z N ={t j2,l , tk2,l , ti1,l}, l =
1, . . . , N , we can write the linear system



⎢⎜
t j2,1 − tk2,1

...

t j2,N − tk2,N

⎝

⎥ =


⎢⎜
ti1,1 1

...
...

ti1,N 1

⎝

⎥
⎞

f jk

θ jk

⎟
(8.40)

from which we derive the estimates f̂ jk and θ̂ jk with a least squares method.
Should we assume that no drift is affecting our clocks, i.e., f jk = 0 (and that η ≺ is

negligible as before), from (8.39) we derive the Reference Broadcast Synchronization
(RBS) algorithm described in [171]. There, the least square solution associated with
(8.40) reduces to the estimation of the relative offset θ jk which simplifies as

θ̂ jk = 1

N

N∑

l=1

(t j2,l − tk2,l) (8.41)

In the simplified scenario set by the RBS method, the need for a master unit
broadcasting the time disappears (no reference to time t j1 is present in (8.41)) and
the estimate of the clock skew reduces to a distributed negotiation of the time by the
different units composing the network.
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8.4.3 Adaptive Methods for Clock Synchronization

Adaptive methods, also known as direct methods, require just a single message
exchange between units to estimate the clock offset. Most of the existing approaches
rely on the two-way message exchange scheme described in Sect. 8.4.2.1. Under
such a framework, defined

U = t j2 − ti1 (8.42)

V = ti4 − t j3 (8.43)

the estimate θ̂i≥ j is simply
θ̂i≥ j = U − V . (8.44)

The method, extremely lightweight from the computational point of view, becomes
the the Lightweight Tree-based Synchronization protocol (LTS) provided in [170].
The same approach is used also in the Network Time Protocol (NTP) [176] used to
synchronize clocks in computer networks. Unlike LTS, in NTP, the synchronization
messages are continuously sent.

8.4.4 Predictive Methods for Clock Synchronization

Predictive methods are based on the ability to predict values of timing information by
exploiting the relationship between the reference clock and the clock to be synchro-
nized. Examples of this approach can be found in [177–179]. All these approaches
rely on the fact that, thanks to Eq. (8.12), the relationship

f̂i≥ j = C(t j,n) − C(t j,n−1)

C(ti,n) − C(ti,n−1)
(8.45)

holds.

8.5 Localization and Tracking

The localization and tracking problem can be solved by relying on different technolo-
gies. For instance, on the hardware side, we can adopt a GPS sensor and, whenever
the satellite signal is not available for a limited amount of time, reconstruct position,
and trajectory with an inertial platform mounted on the system electronic board.
In indoor environments where the GPS signal is unavailable, we can consider the
Ultra-Wide Band (UWB) technology that, de facto, behaves as a terrestrial GPS.
The robotic community provides a plethora of solutions for allowing robots to be
localized and tracked. The interested reader can find in [233] a detailed description
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of different methods and useful references. The localization accuracy is in the order
of (few tens) of centimeters, obtained at the cost of an expensive apparatus.

In the sequel, we rather prefer to investigate further the situation where the
embedded system is not rich in terms of the mounted sensor platform and intelligence
has to be taken into account to provide self-localization and tracking of the unit. Of
particular relevance is the case where a set of wireless communication devices are
available and exchange messages inside the network for localization purposes.

The problem of localization [197, 198] can be formulated as follows: Given N
generic units placed at unknown locations, and M units (anchor units) deployed at
known locations, determine the coordinates of the N units with appropriate pairwise
measurements of their interdistances. In some cases, anchor units might not be present
or missing; when this happens, it will be possible to get only the relative displacement
of the network units.

The tracking of a target inside an area monitored by a set of sensor units (sensor
network) can be seen as an extension of the localization problem, where a generic
node is moving and the remaining units are either anchors or nodes to be localized.
Most of existing tracking methods start by requiring availability of the localization
information generally derived by methods based on the principles here exposed.

Depending on the technology used to compute the interdistances between units,
we have ranging methods based on the Received Signal Strength (RSS), Time Of
Arrival (TOA), Angle Of Arrival (AOA), and Frequency Of Arrival (FOA). The
range information is then processed by localization methods to estimate the position
of the units. Such methods can be subsequently classified as centralized or distributed
depending on the way the localization algorithm is performed.

8.5.1 RSS-Based Localization

From basic physics, the energy of an ElectroMagnetic (EM) wave propagating in
the vacuum in a space without obstacles scales in a manner inversely proportional to
the square of the traveled distance [243]. Based on this principle, localization can be
carried out by exploiting the Received Signal Strength (RSS) information, i.e., the
power measured by the Received Signal Strength Indicator (RSSI) circuit (sensor)
present in the radio device of the unit receiving the EM wave.

The RSS localization procedure usually requires the execution of three distinct
phases [195]:

1. A power/frequency exploration phase. One after the other, the units of the
network broadcast short packets at different levels of power, possibly by explor-
ing the available frequency channels. In turn, each unit transmits the messages
(transmission modality) that the others receive (receiving modality). Each unit of
the network fills a table where the rows refer to the transmitting units and their
power levels and frequencies and the columns the receiving units. To ease the
presentation, we assume in the following that the power transmission level is fixed
at value Pt and that only one communication frequency is considered. Under this



8.5 Localization and Tracking 191

simplification, the generic cell ci, j of the RSSI matrix contains the RSSI value
associated to the packets transmitted by transmitting unit i and received by unit
j . The power level represents a shared information among units in the case units
transmit at a fixed power. In the case, we should opt for a more complex approach
requiring exploration of different power levels or frequency channels, the power
transmission level is enclosed in the information field of the received message.

2. Creation of an accurate RSS-distance model. The RSSI tuples collected between
pairs of anchor units are used to generate the RSS-distance model. Such a model
can have a local validity, i.e., it is the same used to infer distances among the units
composing a subnetwork, or have general validity and be the same to be used for
the whole network.

3. Solution of the optimization problem. The localization problem is formalized as
an optimization problem whose solution provides the position of each units.

In centralized solutions, the processing eager calibration and optimization phases
are carried out by a high performing central unit, e.g., as suggested in [195]. The
localization algorithm assumes that the elements to be localized are spread in an
open and uniform environment, so that the RSS-distance model is unique for all the
nodes. The function family m(r, θ) used to fit the relationship between the received
power Pr and the distance r is given by

Pr = m(r, θ) = Pt

⎠
a + b

rk

)
(8.46)

where Pt is the transmission power. The parameter vector θ = [a, b, k] must be
learned after the nodes have been deployed, following the learning mechanism pre-
sented in Sect. 3.4.1. Learning is carried out, for instance, by minimizing a SE figure
of merit applied to the measurements taken between all couples of anchor nodes (x
is r and y is the measured power Pr if we follow the formalization given in 3.4.1).
The result is a vector θ̂ to which is associated model m(r, θ̂ ).

Not rarely, the optimization procedure is carried out by fixing the value of k to
incremental integer positive values and then by selecting the best performing model
from the pool of learned models. This approach improves the effectiveness of the
learning procedure (for sensitivity issues, learning an exponent value k might be
critical, with uncertainty on the estimate introducing significant variation in perfor-
mance). In some cases, a logarithm is applied to (8.46) so that the power is directly
measured in decibels.

Here, we assume a single model for the whole network. If the network can be
partitioned in subnetworks on the basis of some locality principle (geographical
niche), we might consider to provide a model for each subnetwork. [244] However,
given the high level of uncertainty, the gained accuracy does rarely justify the high
complexity of the processing procedure. Clearly, different models can be considered
if we have a priori information or we request high accuracy in localization.

On the basis of such ranging model, the estimated distance between two generic
nodes i and j of the network becomes

http://dx.doi.org/10.1007/978-3-319-05278-6_3
http://dx.doi.org/10.1007/978-3-319-05278-6_3
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ro
i, j = k̂

√√√⎡ b̂
Pr
Pt

− â
(8.47)

We anticipate that the extraction of the k-root does not represent a computational
problem for embedded systems since it can be calculated by using a precompiled
Look Up Table (LUT), as we did for the hyperbolic tangent function in Sect. 7.6.

The localization problem can be solved by minimizing the figure of merit

E =
∑

i, j,i ∪= j

ki, j ai, j (ri, j − ro
i, j )

2 (8.48)

with respect to all unknown distances ri, j not associated with couples of anchor
nodes. In (8.48) ai, j is a binary variable; ai, j = 1 states that the message sent by
node i was received by unit j (i.e., there is a not null entry in the RSSI matrix),
ai, j = 0 implies that there was not EM visibility between units i and j at power Pt

(this is the main reason for which we might need to carry out a power exploration.
Exploration in frequency is also advantageous and more relevant than exploration in
power for its direct impact on the EM field). ki, j are weights that might be introduced
to differentiate different contributions on the basis of some a priori information.

Localization of unknown units can be carried out by minimizing (8.48) with a
centralized least mean squared error procedure that estimates the unknown inter-
distances among the nodes. In the case we should obtain several estimates for the
distances (Eq. (8.48) will provide different estimates for ri, j and r j,i ) a straight solu-
tion would be to average them. Identification of distances will be used in subsequent
methods based on the time of arrival.

However, if we are interested in determining the coordinates of units whose
positions are unknown, we consider all distances between two points P(xi , yi , zi )

and Q(x j , y j , z j ) and (8.48) becomes

E =
∑

i, j,i ∪= j

ki, j ai, j

⎠⎣
(xi − x j )2 + (yi − y j )2 + (zi − z j )2 − ro

i, j

)2

. (8.49)

In (8.49) we shall avoid computing those terms for which both P and Q are
anchors (their distance is known). Variables to be determined are those (x, y, z)
not associated with anchor nodes. We also comment that (8.49) can be solved with
any effective minimization method, e.g., based on Genetic Algorithms or Sequential
Quadratic programming.

When an exploration in power (different power levels) or in frequency (different
frequencies) is carried out, (8.48) and (8.49) have to take them into account.

http://dx.doi.org/10.1007/978-3-319-05278-6_7
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Comments

The problem of node localization in embedded systems based on RSS is complicated
because of several reasons but should be preferred to reflection methods, e.g., those
based on particle filters [232], for the much lower computational load requested.

Solution to the RSS-based localization problem requires an accurate model that,
based on the polynomial power attenuation law w.r.t. the traveled distance, depends
on the geometry of the node deployment, the presence of obstacles, the type of
the terrain, the considered transmission power, and the envisaged communication
frequency. In particular, if the antenna is rather close to the soil, say 30 cm from
it, then we should not be surprised to find models scaling as 1

r3 or 1
r4 , with the

immediate consequence that the received power assumes small values after few
meters and many units are needed to cover a large area. Moreover, the presence of
obstacles introduces consistent reflections whose interference, either constructive
or destructive, significantly changes the EM progation field, which moves away
from behaving like 1

rk . The situation is particularly critical in indoor environments,
where the presence of obstacles induce a very articulated complex structure for the
EM field due to EM interference mechanism [245]. As a result, the indoor EM
field is time variant, a situation that negatively impacts on localization accuracy and
requires ad hoc adaptive strategies, e.g., we identify at first a change in stationarity
and react afterwards. Clearly, both in indoor and outdoor applications the accuracy in
localization improves by increasing the number of units N and the number of anchors
M . This comes at the cost of a more expensive optimization problem caused by the
high number of variables to be estimated (the assumption that units are positioned
on a plane, characterized by equation z = z̄, z̄ being a constant, somehow mitigates
the problem).

As a last comment, we observe that, due to the computational load, a centralized
processing approach is generally preferred. In the distributed approach, the a priori
information is hardly integrated in the problem due to the limited processing capabil-
ity possessed by the units. However, some authors consider a distributed approach,
e.g., that proposed in [199], that treats the deployed units as the neural nodes of a
Self-Organizing Map (SOM) neural network.

8.5.2 Time-of-Arrival Based Localization

In time of arrival and Time Difference Of Arrival (TDOA) methods [197, 198, 200,
201], the distance between two generic nodes i and j is derived by processing the
time of arrival information of signals/messages exchanged between them.

Let us consider Fig. 8.10 for an immediate understanding of the terms used
here. Under the hypothesis of clock synchronization between the units, the distance
between a node i sending a message with timestamp ti1 and a node j receiving it at
time t j2 is given by
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η =t j2 − ti1 (8.50)

r ≤ c η (8.51)

where c is the speed of light. Such approximation holds since the difference in time
between the time of arrival of an EM wave traveling through the air and the time of
arrival of an EM wave traveling in the vacuum is negligible compared to the other
uncertainties involved in a typical localization procedure. It must be noted that this
simplified model assumes a direct line of sight between the sender and the receiver.

The localization approach shows to be accurate whenever a dedicated hardware,
mostly based on a dedicated radio, has been designed and is in use. In such a case,
the time required to process the incoming radio signal introduces a fixed, determin-
istic additional delay that can be accurately estimated with a calibration procedure.
An alternative approach takes advantage of the existing radio used for unit-to-unit
communication and it is worth a deeper analysis. Here, the radio transmits a series
of messages and localization is carried out by processing the timing information.
In particular, in the case of a one-way message exchange mechanism, the temporal
information needed in (8.51) is estimated by processing the time stamps associated
with the sender and the receiver. Clearly, in order to provide high quality estimates
for t j2 and ti1 we must assume that clocks are synchronized and that the overheads
introduced by the interaction between hardware and software (structural delays) can
be estimated and compensated with high accuracy. We recall that characterization of
the estimates should be done with a number of samples set by the Chernoff bound
to grant that the estimate is close to the unknown expected value.

The situation improves by considering a full two-way message exchange approach
for which

ηRT = ti4 − ti1 = 2η + ηr (8.52)

ηr = t j3 − t j2 (8.53)

r ≤ c
ηRT − ηr

2
(8.54)

ηRT is the round-trip time of the messages exchange and ηr is the known
(measurable) response time of the procedure in execution on unit j . The effective-
ness of (8.54) depends on the accuracy of the time estimates. After having explored
the robustness and sensitivity issues in Chaps. 4 and 7, it is clear that even small
uncertainties in the estimate can have a tremendous impact in the accuracy of the
distance r , a situation that worsen in correspondence of small distances.

In TDOA methods, node k deployed at an unknown location broadcasts a
localization signal/message which is received at least by two synchronized receivers
i and j whose locations are known. Under the assumption that the units belong to
the same plane (e.g., z = z̄), we have that

http://dx.doi.org/10.1007/978-3-319-05278-6_4
http://dx.doi.org/10.1007/978-3-319-05278-6_7
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rik = c(ti2 − tk1)

r jk = c(t j2 − tk1) (8.55)

rik − r jk = c(ti2 − t j2)

System 8.55 describes an hyperbolic function having its foci in the positions of
anchor nodes i and j . It can be proved that if we have at least three anchor nodes,
then the location of the generic node k is identified by the intersection of all possible
hyperbolas. Given the complexity of the intersection phase (hyperbolas do provide a
feasibility area for the locations due to the presence of uncertainty), the localization
problem is generally carried out at a centralized level.

8.5.3 Angle-of-Arrival Based Localization

In the Angle-Of-Arrival (AOA) localization method each unit mounts a set of
antennas placed at some known angular values within a polar coordinate system
centered on the units. The unit to be localized broadcasts signals/messages which
are received by the antennas of neighboring units and used to estimate the internode
distances as perceived by each antenna. Such distances are then used to compute the
angle of arrival of the signals or, in other terms, the angle between two nodes [197,
198]. Polar coordinates, in terms of angular value and distance, are then provided.
For instance, in the simple case of two antennas a and b deployed at distance l from
the unit to be localized and mounted at 180 degrees, under the assumptions that units
are placed on the same plane (z = z̄), the estimates for the distance r and the angle
τ w.r.t. a reference axis (the line connecting the two antennas) are [202]

r̂ =
⎤⎠

r2
a − r2

b

4l

)2

+ r2
a −

⎠
r2

a − r2
b

4l
+ l

)2

(8.56)

τ̂ = 90∈ ± arcsin

⎠⎦
4(l2 + r2)2 − (2(l2 + r2) − (ra − rb)2)2

4lr

)
(8.57)

where ra and rb are the distances of the unit to be localized from antennas a and b,
respectively, obtainable, e.g., with a RSS or a time-based method.

8.5.4 Frequency-of-Arrival Based Method

In the Frequency-Of-Arrival (FOA) or lighthouse method, an anchor unit rotates
with angular speed φ a laser beam of angular width b. The unit receiving this signal
estimates its distance from the anchor unit by measuring the duration η of the time
elapsed under the beam exposition. By knowing speed and width of the beam, the
distance estimate is calculated as:
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r̂ = b

2 sin (φ · η/2)
. (8.58)

8.6 Adaptation at the Application Code Level

When designing an embedded solution, we mostly assume time invariance for the
application. Time invariance requires that either the algorithm behind the application
does not change with time or the mechanism generating the data the algorithm relies
upon does not evolve. However, the time invariant hypothesis is strong and, even
though sometimes it can be met and surely holds over a short/medium period of
time, it is hardly satisfied in the long run. A bug requiring the code to be updated, the
insurgence of a situation not expected during the application design phase, a struc-
tural change in the interaction between a sensor and the environment are examples of
time invariance. Whenever one or more of the above situations arise, the application
code becomes obsolete and must be modified to match the application performance.
Learning in a time invariant environment, as presented in Chap. 9, provides mecha-
nisms for understanding when it is time to update the application as well as solutions
for updating it. Here, differently, we introduce the basic mechanisms that allow the
code application to undergo updates whenever needed.

Let us consider a generic program to be executed on an embedded system and its
set of constraints that need to be satisfied. The maximum power consumption, the
output accuracy, the execution time are some examples of performance onto which
we add time constraints. We recall that the performance (constraints) verification
problem was addressed in probabilistic terms in Chap. 4 and Sect. 4.7.

The program, partitioned in atomic functional segments of code, representing the
smallest blocks that can undergo a change, can be modeled as a graph [210]. Each
block is associated with a node of the graph that is connected by arcs that represent the
feasible execution flow. Remote reprogrammability of the code can act at different
levels by changing the graph with feasible actions, defined as those satisfying the
set of constraints. In general, the code associated with the graph is present in the
embedded system memory (but different strategies might be enabled that require the
blocks on demand). The actions we can contemplate are:

• Substitute the code associated with a node. The body composing the block is
substituted.

• Substitute a subgraph (or the entire graph). When this is the case, it is possible
that the new subgraph has a different topology. However, the interface with the
unchanged subgraph is maintained.

• Activate/remove arcs. Thanks to a parametric reprogrammability, the execution
flow is modified by enabling/disabling some parts of the code. However, all the
program code is kept into the memory (i.e., the topology of the node does not
change).
In the following subsections, we will present the most relevant strategies for

remote code reprogrammability.

http://dx.doi.org/10.1007/978-3-319-05278-6_9
http://dx.doi.org/10.1007/978-3-319-05278-6_4
http://dx.doi.org/10.1007/978-3-319-05278-6_4
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Algorithm 17: A parametric program. The code is parameterized in the para-
meter set θ = {θ1, θ2, θ3, · · · , θn}. Depending on the values assigned to the set
θ the code modifies its properties.

1- i = 0;
2- enable-sensor();
3- while i < θ1 do
4- data[i] = sample();
5- if θ2=0 then

data[i] =lowPass(data[i]);
end

6- i = i + 1;
end

7- disable-sensor();
8- if θ3 = 1 then

dataF =average(data);
else

dataF = weighted average(data, θ4, · · · , θn);
end

9- output(dataF);

8.6.1 Remote Parametric-Code Reprogrammability

In parametric reprogrammability, the application code contains a set of parameters
θ that, depending on the assumed value, activate/disable/modify the code to be exe-
cuted. Within a graph description of the functional code, parameters are associated
with arcs which can be either present or removed (the parameter value is null). The
points were parameters are inserted in the code are fixed and defined at compile
time; the type and the value the parameters can assume are specific for the given
application code. By remotely changing the current value of the parameters set we
change the execution modality. The decision about whether changing the parameter
values or not is either decided by the user or relying on some (semi)automatic tools.

The example pseudocode given in algorithm 17 describes a sophisticated data
acquisition task providing an accurate filtered sensor reading for subsequent process-
ing. At first, a procedure enables the active sensor (a duty cycle is envisaged for the
energy-eager active sensor). Once the sensor is ready to operate (warm up phase
completed), the sampling loop acquires a set of samples, possibly filters them and
carries out a data processing either based on an average or weighted average before
outputting it. Once the sampling phase ends, the sensor is switched-off.

The code is parametric in n parameters composing the set θ = {θ1, θ2, θ3, . . . , θn},
n is fixed. Parameter θ1 is integer and represents the number of samples that need to
be acquired once the task is activated. Parameter θ2 assumes a binary value enabling
or disabling the low-pass filter action. Parameter θ3 controls the final processing
leading to the output value dataF . If θ3 = 1, a simple average is taken on the data
vector data, otherwise the output of the processing is the scalar product between
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vector data and a corresponding vector of parameters. The maximum number of
parameters is equal to θ1 and must be less or equal than n − 3.

Assume that the parameter set θ is coded so that each component is assigned
with a numerical value. However, different strategies can be envisaged to code the
information in a smaller number of bytes, hence reducing the number of bytes to be
transmitted to the remote unit. For simplicity, let’s consider the first case, assume
n = 9 and that we wish to acquire θ1 = 4 data, disable the low-pass filter and activate
the weighted average procedure with parameters 1

8 , 3
8 , 3

8 , 1
8 . The parameter vector to

be sent to the unit for updating the program is then θ = {4, 1, 0, 1
8 , 3

8 , 3
8 , 1

8 , 0, 0}.
We comment that the last two parameters, θ8, θ9, are set to zero since we acquired 4
samples out of a maximum number of 6.

Within a parametric reprogrammability, it is the designer who decides which
constants need to be made parametric. At deployment time, the system starts with
a vector θ with values (default values) assumed to be the best configuration based
on some a priori information. Then, at run-time, the designer or an automatic tool
might decide to modify the code. A new parameter vector is issued with the new
configuration and sent to the unit. After a safe completion of the parameter update
procedure, the task operates with a new modality.

The advantage of a parametric program is in the contained number of bytes that
need to be updated.

8.6.2 Remote Code Reprogrammability

In remote code reprogrammability, the program or subparts of it are changed at
run time. This provides a higher flexibility compared to the parametric reprogram-
mability, but requires the availability of a run time support for reprogrammability.
Moreover, it should be clear that the ability to change the behavior of the system
after its deployment introduces the risk of facing unexpected side effects that might
cause the system to crash.

Algorithm 18: Remote code reprogrammability. The program is the code
equivalent to the one in algorithm 17 with the configuration θ =
{4, 1, 0, 1

8 , 3
8 , 3

8 , 1
8 , 0, 0}

1- i = 0;
2- enable-sensor();
3- while i < 4 do
4- data[i] = sample();
5- i = i + 1;

end
6- disable-sensor();
7- dataF = weighted average(data, 1

8 , 3
8 , 3

8 , 1
8 );

8- output(dataF);
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In the pseudocode example given in algorithm 18 we present the same code of
algorithm 17 associated with the configuration θ = {4, 1, 0, 1

8 , 3
8 , 3

8 , 1
8 , 0, 0}. Here,

to ease the management, reprogrammability requires to substitute all the program
code.

8.6.3 Decision Support System

Within the above reprogrammability framework, intelligence can be applied at two
levels. At the higher level, machine intelligence can help or substitute the human
operator in decision making, e.g., by identifying the most appropriate actions
(modification of parts of the application code, setting a new parameter configu-
ration) to grant quality of service and maximize the efficiency of the system. Here,
the change can be either recommended and the operator makes the final decision
based on his/her expertise, or automatic. When it is automatic, we enter in the realm
of the Machine-to-Machine (M2M) interaction: decisions are taken by machines and
affect machines. At the lower level, intelligence is used to assist the reprogramming
infrastructure to perform changes at the code in execution in a safe way. We name the
former case as “application update planning” and the latter as “application update
validation.”

8.6.3.1 Algorithms for Application Update Planning

The change manager, namely the module identifying the most appropriate
reprogramming actions to be assigned over time to a self-adaptive, autonomic, or
reprogrammable embedded system, can be conveniently modeled with a Monitor-
ing, Analysis, Planning, Execution, (Knowledge) MAPE(K) framework [211, 222].
Within a MAPE(K) formalism, the change manager, i.e., the management process
behind a reprogrammable embedded system, is composed of the four phases depicted
in Fig. 8.11. More specifically, the change manager is composed of the

1. Monitor process. The monitor process is responsible for collecting and processing
that information acquired from the embedded system that characterizes the current
status of the embedded system.

2. Analysis process. The analysis process, by exploiting information associated with
the current status of the system and its history, determines whether a change in
the code of the embedded system is needed or not.

3. Planning process. This phase identifies which segments of the application code
need to be changed and how the change should be carried out to obtain the best
results.

4. Execution process. This module implements the decisions made by the
planning process by translating decisions into actions and orders for the effectors.
For instance, in the case of a parametric reprogrammability model, the process
generates the commands that allow the new parameters to be sent to the embed-
ded system. Similarly, in a dynamically reprogrammable framework, the process
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Fig. 8.11 The MAPEK cycle: Monitor -Analyze -Plan -Execute with Knowledge. The change
manager identifies when it is the time to intervene and reprogram the application in execution on
the embedded system. Data acquired from the embedded systems are used to characterize its state.
The change manager, once identified the need to intervene with a change in the code, implements
the due actions through the end effectors

leads to a semi-automatic generation of the code to be used to update or integrate
the firmware in execution in the embedded system.

The functional modules composing the MAPEK take advantage of a shared
knowledge base that contains, among the others, a set of action-performance instances
explaining how a given action was effective in the past (or it is believed to be effec-
tive) in achieving the objectives set by the embedded system. In some other cases,
the knowledge base is rich and takes the form of an explicit model that estimates
how taken decisions will affect the future states of the embedded system.

The relation between the change manager and the embedded system context can
be framed within a bayesian decision theory, e.g., see [212]. In such a framework, the
change manager plays a game against the nature.2 The nature defines the operational
context for the embedded system y ∈ Y , unknown to the change manager, and
provides observations x ∈ X that can be acquired by the change manager along
with the state information s ∈ S of the embedded system.

The role of the change manager is to make a decision or, which is the same, select
an action a from the space of feasible actions A . After having applied a specific
action a to the embedded system a reward is obtained, represented by the value
assumed by the utility function U (y, s, a), which measures how the chosen action a
is compatible with y.

A decision strategy can then be represented as a function Δ : X × S ≥ A so
that

2 here, under the term “nature,” we have all those external actors that affect the embedded system’s
context.
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Δ(x, s) = argmaxa∈A E[U (y, s, a)] (8.59)

with expectation taken w.r.t. a given policy π(t, y, s, a) representing the probability
that the action chosen at time t is a, given the status [y, s].

The use of utility functions to evaluate the effectiveness of taken actions in an
autonomic system has been introduced in [213] where it is assumed that the state of
the context is not hidden and measurable (X = Y ). In such a case (8.59) reduces to
a straight optimization problem. The limits of an approach based on an optimization
framework reside in the amount and quality of the knowledge needed to build the
decisional system and the ability to design an appropriate utility function connecting
the states of the environment with the choices operated by the change manager. To
overcome this limit the literature has introduced the “tabula rasa” learning method,
that builds the knowledge by starting from little or not at all built-in domain knowl-
edge in the knowledge base. However, since some knowledge about the domain the
embedded system works and how it interacts with the environment is mostly avail-
able, we can incorporate such information directly in the decision process, e.g., by
considering reinforcement learning algorithms [214, 215] that learn directly from
the interaction of the embedded system with its operational context.

In reinforcement learning, suitable action strategies issued at time t are updated
on the basis of the utility value evaluated at time t + 1. Good strategies get a reward
and their weights are increased, loosing strategies are penalized. In this way, the
decision policy is updated online during the operational activity of the system. In a
reinforcement learning setup, the utility function U (y, s, a) represents the average
of all rewards obtainable by starting from a state-action pair, or more formally, taking
actions following a policy π

U (y, s, a) = Eπ [Rt |yt = y, st = s, at = a]

= Eπ [
∞∑

k=0

λ krt+k+1|yt = y, st = s, at = a] (8.60)

where the λ parameter is used to reduce (discount) the effect of rewards r obtainable
in the distant future and π is the set of probabilities associated with each action-state
pair.

A modified version of the R-learning algorithm provided in [215, 217] allows to
account for previous knowledge as described in algorithm 19.

The learning algorithm does not require any a priori knowledge about the
context and its relationship with the embedded system (in the original formulation
the utility/action-value functions were all initialized to zero, hence implementing a
tabula rasa approach). Clearly, any a priori available knowledge about the embedded
system can provide an improved starting point.

If, during the operational life of the system, the relation between the external
context and the device should change, the learning algorithm would react, hence
inducing an immediate update of the utility function. On the long run, the utility
function values identified by the algorithm result to be an approximation of Eq. (8.60).
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Algorithm 19: R-Learning method. τ and ρ are sufficiently small positive para-
meters.

1- Initialize U (y, s, a) and the rewards by using a priori information about the available system
2- Initialize the average expected reward under the current policy ξ with an arbitrary value,

e.g., 0
3- while true do
4- Estimate y and update s with the current state of the device
5- Choose action a given (y, s) by using a behavior policy (e.g., ε-greedy on U )
6- Take action a and observe r ,(y≺, s≺)
7- U (y, s, a) = U (y, s, a) + τ[r − ξ + maxa≺ U (y≺, s≺, a≺) − U (y, s, a)]
8- if U (y, s, a) = maxa U (y, s, a) then

ξ = ξ + ρ[r − ξ + maxa≺ U (y≺, s≺, a≺) − maxa U (y, s, a)]
end

end

The method requires that the set of feasible actions, given a state, is limited. Yet,
it is possible to modify the set, by taking care to update policy π by properly setting
the probabilities associated with each choice. In other words, adding new actions
involves a coherent update of the probability values of π .

As an example of the framework, we consider as embedded system the Electronic
Control Module (ECM) of an hybrid car. We focus on the mechanism allowing the
car to switch between the fuel engine and the electric propulsion to minimize the
fuel consumption over a given trajectory s = {s1, s2, . . . sn}. composed of n path
segments si .

Example of feasible paths are “slope,” “flat terrain,” “smooth downhill.” Here,
the reward function depends to the fuel needed to cover a segment of the trajectory
i.e., rt = r(si , en) = 1

fuel(si ,en)
where en is a variable denoting the usage of internal

combustion f or the electric propulsion e. In addition, the policy considers the actual
speed of the car, the remaining fuel and the battery voltage. Depending on the nature of
the path (e.g., slopes) and the amount of remaining fuel/battery (low battery voltage),
the ECM of the car might find more convenient to use fuel than an electric propulsion.
The initial values of U are derived from a mathematical model of the car. The current
driving and the conditions of the terrain under different weather conditions determine
both the actual reward and the state, hence providing the values to update the utility
function and the average expected reward. Since the utility function embeds the
behavior policy, by updating the utility function we update the choices planned by
the power-track controller.

8.6.3.2 Algorithms for Application Update Validation

In the case of parameterized reprogramming, the designer has identified well in
advance, before the deployment phase, the feasible changes the code might undergo.
In doing this, we also grant that performances are satisfied and that the code is
correct. In general, we should not expect unwished behaviors by activating a change
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in the code following a new parameter set. Differently, in the case of a dynamic
reprogrammability, the situation is more complex and we should be sure that new
actions do not introduce problems in the application. The problem is even more
relevant in embedded devices due to the strict coupling between the device, the
operating system (mostly real time) and the application.

The main focus of the research on code validation has been devoted to investigate
the legitimacy of the code change and the reliability of the source providing the new
code. In other words, it appears that it is more important that the code is given by a
loyal provider than the correctness of the content. By not considering the case where
the code is changed maliciously it remains the issue of verifying if the proposed
change does not introduce side effects at the system level. This can be granted e.g.,
by introducing a mechanism that keeps a default—error free—code in the memory
of the device as well as the new code in execution. The old code is used to restart
the device shall the change manager discover that something went wrong with the
thread in execution (e.g., by monitoring some heartbeats and verifying if functional
constraints are met). When a problem is detected by the change manager the current
thread in execution is aborted (a preemption mechanism must be considered) and
the default thread is executed that grants the system to operate, yet at a low perfor-
mance/effectiveness level, but in a safe modality. The code that created the problem
must be fixed, most of times by the intervention of an operator that, by inspecting
the log file, identifies and fixes the problem. The new—hopefully corrected—code
is then uploaded in the embedded system. The default code is preempted (but kept
in the flash memory) and the new one goes in execution.

8.6.4 Online Hardware Reprogrammability

Field-Programmable Gate Array (FPGA) are programmable devices composed of
arrays of logic modules and routing channels that can be programmed to imple-
ment custom hardware functionalities. The internal complexity and richness of the
FPGA depends on the particular device family which differentiate among them on
the content made available, e.g., they contain basic logic operators, LUT, flip-flops,
registers, ALUs and memories in the simplest implementations and microcontrollers,
I/O interfaces, control modules, and CPU cores in more sophisticated versions.

FPGAs are characterized by an offline reprogrammability ability that involves
parts or the whole FPGA device and is carried out offline by uploading the “bit-
stream” files. Such files contain information for configuring routing switches, LUT
and programmable devices. It is immediate the affinity with the parametric program-
mability modality presented above since bitstream files contain those parameters
granting the reconfiguration of the device. In general, reprogramming requires a
human intervention, at least to upload the new bitstream code, and involves the
whole device.

The appearance of Dynamic Partial Reconfiguration (DPR) FPGAs on the market
has opened a new dimension to the hardware application reconfigurability aspect that
can now be carried out online, thanks to the enhanced functionalities made available.
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The main advantage of a DPR FPGA consists in the possibility of reprogramming
the FPGA online, in an incremental way, by relying on a core present in the FPGA
that executes the reprogramming application. If the functional code to be placed in
hardware is characterized by a sequential execution and cannot be fully implemented
in the device due to its complexity then, the hardware associated with the already
used functionalities can be freed and reprogrammed (in such a case, the bitstream
file refers only to a sub part of the whole device). Since reprogramming time and
reprogrammed area are directly proportional, it becomes evident here the advantage
that this technology brings to hardware reprogrammability.

As an example let us consider a simple functional flow that requires execution of
three modules A, B, C characterized by two functional dependencies between mod-
ules A and B and A and C . Module A has to be completed before the other two can be
executed in parallel. Assume that the FPGA cannot implement all modules together,
for size limitations. Within a DPR framework, module A is implemented at first.
After its completion, task A is freed and the available area is reprogrammed to host
tasks B and C . During reprogrammability we might have different implementations
for both B and C . The final choice depends on some application constraints and aims
at finding a trade-off between performance (the more the area dedicated to the task
the higher the performance) and energy consumption (the less the area dedicated to
a task the lower the energy consumption). Depending on the current energy and time
constraints the change manager, namely,the decisional module solving the trade-off,
identifies the final solutions to be placed in the FPGA. The change manager is in exe-
cution in a processor core embedded in the FPGA and, generally, follows the MAPEK
cycle of Fig. 8.11. Moreover, it monitors the execution thanks to the presence of sen-
sors (e.g., it measures the effective energy consumption of the actual configuration)
and controls that the status of the task to be completed assumes feasible values.

Reference [223] proposes a formalism that describes the functionalities of an
embedded application as a Finite State Machine (FSM) where, depending on the out-
put of some logical conditions (e.g., associated with constraints satisfaction) actions
are taken. The decisions taken by the change manager are associated with a controller
that transforms the adaption problem to a Discrete Controller Synthesis (DCS) one.
The DCS explores the FSM graph and inspects the constraints associated with those
variables that can be controlled. By acting on controllable variables the DSC opti-
mizes a given control objective [231], e.g., it acts on the control variables such as
the voltage and frequency (see the DVFS policies presented in Sect. 8.1) to minimize
the consumed energy. In controlling the variables it grants that other constraints are
satisfied, e.g., some temporal deadlines associated with the tasks completion.

Other authors follow a similar approach but apply heuristics to the change manager
to decide which changes need to be implemented in the FPGA, e.g., see [224]. Infor-
mation about the system performance is there obtained by employing an approach
based on heartbeats: the system records at periodic time instants (heartbeats) the
level of advancement of the task, so that it can make decisions about the efficiency
of the current configuration. An hardware/software partitioning phase is then car-
ried out that, by taking advantage of information provided by heartbeats, decide
whether executing the task entirely on the FPGA, on an embedded core, or adopt a
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Fig. 8.12 FPGA
feed-through signals:
reprogramming of module
B introduces side effects on
modules A and C due to the
presence of passing through
signals

Fig. 8.13 FPGA with
a crossbar module. The
introduction of the crossbar
module removes the unwished
dependencies that might arise
between modules due to signal
lines connecting the modules

mixed approach where the computation is distributed between the processor and the
FPGA device. Different strategies can be adopted over time, depending on existing
constraints. Obviously, the change manager has to balance the gain in performance
provided by a FPGA-based hardware solution with the time requested to reprogram
the FPGA.

All above approaches assume that it is possible to intervene on the FPGA once
decisions about which reconfiguration solution should be implemented have been
made. However, at the current state of the technology, this is a strong assumption
that might be difficult to meet in some cases. Consider, as an example, a generic
module of the FPGA that, in order to collaborate with other modules or access to the
external world with the FPGA pins, has to cross the area of a second module, with
paths that act as feed-through signals. The situation is depicted in Fig. 8.12 where
the lines of module A have to cross module B to reach module C and the external
I/O. Any reconfiguration affecting module B would indirectly affect modules A and
C due to the presence of feed-through signals.

It should also be commented that a module accessing an external line cannot be
relocated anymore due to technological constraints. In fact, a change to a line access-
ing an external port would require a global reprogramming operation involving the
whole device. This issue can be solved by adopting a crossbar solution as suggested
in [225] that allows the different modules to connect to external peripherals and
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Towers
of Rialba

Fig. 8.14 The Rialba towers is a set of four 100m tall limestone columns insisting on a layer
of clay. Gravitation is inducing a shift of the structure posing the rightmost tower at the risk of
toppling. The lower parts of the structure are subject to stress causing the coalescence of fractures
and the subsequent emission of microacoustic signals. The upper part, due to toppling, is subject to
a rightward shift inducing enlargement of existing fractures and changes in inclination of the tower

memory with a reconfigurable multiple bus. In other words, the crossbar acts like a
proxy between the internal FPGA modules and the external ones.

Figure 8.13 presents the new configuration for the three modules of the experiment
associated with Fig. 8.12 with the introduction of the crossbar block. Reconfiguration
of module B does not affect anymore the other two modules.

8.6.5 An Application: The Rialba Monitoring System

The Rialba towers are a rock tower-like limestone complex overlooking an area
covered with critical infrastructures (motorway, railway, electric distribution lines)
in the Lecco province, north Italy. The towers insist on a layer of clay and experience
a shift that, one day, will lead to a rock toppling/collapse as depicted in Fig. 8.14.

Given the risk insisting in the area a fairly complex sensor network has been
designed and deployed at the Rialba towers [218, 219, 230] to monitor the area. Since
the towers are exposed to a rock toppling risk the sensor network is composed of
two parts, the lower investigating insurgence of microacoustic emissions associated
with the coalescencing of fractures, the upper inspecting for enlargement of the
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Fig. 8.15 The Rialba towers monitoring network. The upper system is associated with a wireless
sensor network technology composed of three leaf units and a gateway. Leaf units mount strain
gauges to evaluate possible enlargement of fractures and high resolution inclinometers. The gateway
mounts a pluviometer and sends data to a remote control room for further processing. The lower
system is composed of a hybrid wired-wireless technology. 5 units connected through a CAN
fieldbus acquire information related to microacoustic emissions and the water flow spilling from
two springs

interdistances between the towers and variations in inclination. The reference figure
is Fig. 8.15 where the types of envisaged sensors are shown.

More specifically, a hybrid sensor network is the technology envisaged at the
base of the towers. It is composed of a gateway system, managing energy harvesting
operations and data communication both locally and remotely, and five Sensing
and Processing Units (SPU), acquiring acoustic emission signals related to micro-
fractures in the rocks as well as the flow of water coming out from two springs. A
picture of the SPU is given in Fig. 8.16. SPUs continuously acquire data at 2KHz and
immediately inspect incoming signals for the presence of microacoustic emission
characterized by a burst nature. For each channel of the MEMS accelerometer the
energy of the incoming signal is computed over two sliding windows of different
size. When the ratio between the energy of the short size window and the long size
one is above a threshold, i.e, the current signal is well above the background noise,
then it is believed that the signal contains a microacoustic burst. The sliding window
mechanism allow us for introducing adaptation to changes in the pdf of the electronic
noise.
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Fig. 8.16 A microacoustic
sensing and processing
unit

Following a positive detection the signal is flagged as valid and stored together
with the content of a pre-trigger buffer designed not to loose the initial part of a burst.
The dimension of the buffer is parametric.

The system controller can decide if the incoming signal must be down-sampled;
this action is set by a configurable parameter. An offset and a again corrections can
be applied to the signal, hence implementing compensation mechanism to improve
accuracy and precision (see Chap. 2). The signal can then be filtered with parametric
coefficients for a FIR filter.

Duty cycling parameters have been introduced to control the energy
consumption of the system by setting the wake-up time for the gateway, the data col-
lection frequency from SPUs and their remote transmission towards a control room.
Low frequency data, e.g., the flowmeters or temperature information are acquired
with lower frequency and averaged to improve the quality of the data as presented
in Chap. 2.

The upper part of the deployment is composed of a fully wireless sensor network
(see Figs. 8.17 and 8.18) that collects data from high precision inclinometers and
strain guages, together with pluvial data and temperature information. The gateway
structure is similar to the one present in the lower subsystem. Most mechanisms for
managing data acquisition, even though different from the technological point of
view, show a behavior similar with that presented for the lower subsystem.

Energy harvesting has been carried out by implementing the MPPT solutions
presented in Sect. 8.3. More specifically, the lower system has a centralized harvesting
system at the gateway level mounting a perturb and observe technology. Differently,
the upper one has a distributed energy harvesting with a photovoltaic cell for each
unit.

http://dx.doi.org/10.1007/978-3-319-05278-6_2
http://dx.doi.org/10.1007/978-3-319-05278-6_2
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Fig. 8.17 The gateway of the upper subsystem (left) and a leaf unit (right)

Fig. 8.18 A high precision
clinometer (left sensor) and
the strain guage sensor (right
sensor)

A parametric reprogrammability paradigm (see Sect. 8.6) has been envisaged for
the monitoring system. As such, code adaptation for the system was implemented by
controlling the value of some structural parameters. Parameters control aspects such
as energy management, data acquisition, data quality enhancement, even triggering.
An example of some parameters adopted for controlling a SPU are listed in Table 8.1.

By following the MAPEK framework (see Sect. 8.6.3.1) the human operator val-
idates the quality of incoming data and, if not satisfied, intervenes by remotely
changing the parameters of the system. Since the acquisition of microacoustic bursts
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Table 8.1 SPU software parameters

Module affected Parameter Functionality Values

Filtering FE Enable parametric filters {True, false}
Filtering FT FIR coefficients (per axis) 128-elements integer vectors
Filtering TLTMA Enable moving average, tilt

signals
{True, false}

Filtering TMPMA Enable moving average,
temperature signal

{True, false}

Event detection STA Short-term average window
size

{16, 32, 64, 128}

Event detection LTA Long-term average window
size

{64, 128, 256}

Event detection A_SET Recorded axes set {x, y, z, xy, xz, yz, xyz}
Event detection EVTWS Event window size (per axis) {16, 32, 64,128, 256, 512, 1024,

2048}
Event detection PRTWS Pre-trigger size (per axis) {0, 8, 16, 32}
Event detection DS Downsampling {1, 2, 4, 8, 16, 32}
Event detection EVTTH Event thresholds (per axis) (0-255)
Event detection DSIZE Data window size {256, 512, 1024, 2048}
Event detection PSIZE Pre-trigger window size {256, 512, 1024, 2048}
General HW MDG Digital amplifier gains (3

channels)
(0-255)

General HW MAG Analog gain switch (adds
20d B to M DG)

{True, false}

was the mostly unknown phase (few information is known about the expected nature
of the bursts) rewards were assigned to the setting of a given parameter configuration
(parameters are those controlling the MEMS accelerometers, e.g., offset and gains,
pre-trigger buffer dimension, downsampling) by experts. If not satisfied by the qual-
ity of received bursts (also other events can be acquired by changing the sensitivity
and the filter parameters) the operator introduced changes in their configuration so
as to reduce the false positive ratio.



Chapter 9
Learning in Nonstationary and Evolving
Environments

Previous chapters have developed methods and methodologies for solving specific
aspects involving intelligent processing on embedded systems and presented tech-
niques for their performance assessment. However, if we look carefully at those
methods, we can observe that we have commonly assumed that the process gener-
ating the data acquired by our sensors was not changing with time (stationarity or
time invariance assumption).

We say that a data-generating process is stationary when generated data are i.i.d.
realizations of a unique random variable whose distribution does not change with
time. Thus, stationarity applies to stochastic processes. We say that a process is time
invariant when its outputs do not explicitly depend on time. Less formally, in the
former case the parameters characterizing the pdf do not change over time, in the
latter, the transfer function of the-possibly dynamic-system does not have an explicit
time dependency.

In some cases, nonstationarity and time invariance are related concepts. For
instance, we will see in the chapter that inspection for time variance in some cases
can be achieved by extracting features from the transfer function and verifying a
potential change in stationarity. Stationarity was requested either directly by requir-
ing i.i.d data streams or features, or indirectly, by requesting that the application or
the model learned from the data was fixed before being implemented in the embed-
ded system. Stationarity/time invariance is requested by performance assessment
methods, e.g., the PACC framework, where the given Lebesgue measurable func-
tion, albeit affected by uncertainty, is fixed. The same holds for a robustness analysis
that initially operates on a stationary/time invariant processing flow.

All in all, we mainly assume stationarity/time-invariance in our applications but
are aware that such an assumption represents a first order, yet in many cases, a
reasonable hypothesis for the data-generating process.

However, real-world processes are often affected by concept drift, i.e., changes in
their inherent structure, which results in having the process departing from its initial,
stationary (or time invariant) conditions. Concept drift could be due, for example, to a
natural evolution of the environment, changes in the operational schema of a system,

C. Alippi, Intelligence for Embedded Systems, DOI: 10.1007/978-3-319-05278-6_9, 211
© Springer International Publishing Switzerland 2014
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aging effects (e.g., structural changes in the transduction mechanism of a sensor),
as well as faults affecting a cyber-physical system (e.g., abrupt or slowly developing
drift). Nonstationarity and time variance can then be modeled as instances of concept
drift. We have gradual concept drift when concept drift continuously evolves with
time (e.g., a drift type of evolution). Conversely, we have an abrupt concept drift when
concept drift is characterized by a sudden abrupt type of change (e.g., an abrupt type
of evolution).

As an example, assume that the data-generating process admits a specific para-
metric expression f (η, x) ∀ Y ∈ R, η ∀ σ ∈ R

d , x ∀ X ∈ R
l , which can be

either the transfer function of the system or the pdf in case of random variables. Let
us consider the situation where the parameter vector is affected by a slowly devel-
oping concept drift, that shifts a given η0 toward a perturbed state, characterized by
parameter vector η0 + δη belonging to the neighborhood of η0. By expanding with
Taylor differentiable f (η, x) in η0 we have that

f (η0 + δη, x) = f (η0, x) + λ f

λη

T

|η0δη + O(δ2η) (9.1)

with λ f
λη

and η column vectors. The stationarity/time invariance hypothesis assumes
that no perturbations affect the system or that the perturbation is negligible (the
gradient term is negligible compared with the driving term f (η0, x)). Expansion
given in (9.1) has been written for a slowly developing concept drift continuously
affecting the parameters. However, nothing changes if concept drift introduces an
abrupt type of perturbation of small magnitude on η0.

Clearly, if we want to design effective intelligent embedded systems they must be
able to deal with time invariant/nonstationary situations to guarantee good perfor-
mance also in situations where the system or the environment where they operate in
evolves with time. We name learning in a nonstationary or evolving environments
all those aspects involving learning mechanisms for evolving environments.

The literature addressing learning in nonstationary or evolving environments clas-
sifies existing approaches as passive or active depending on the learning mechanism
adopted to deal with the process evolution, e.g., [77]. We say that the approach is pas-
sive when the application undergoes a continuous training without explicitly knowing
whether concept drift has occurred or not. Differently, within an active approach a
triggering mechanism, e.g., a Change Detection Test (CDT), is considered to detect
a change in the process generating the data and the application evolves and adapts
only when the change has been detected.

This chapter presents passive and active methods for learning in an evolving
environment. At first we introduce the learning approaches, detailing afterwards the
key elements needed for a successful adaptation.
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9.1 Passive and Active Learning

Learning in an evolving environment is specialized in the literature according to the
chosen learning method, the way available data instances are used in the training
process, and the type of envisioned application. Most learning methods follow either
the active or the passive approach, depending on the way the available data instances
are used both in the training phase and in the operational life. In nonstationary envi-
ronments, both passive and active methods can be pursued to cope with concept drift:
the most suitable method typically depends on the type of envisioned application.

9.1.1 Passive Learning

Since in passive approaches neither a priori nor derived information is available about
the potential concept drift, we are completely blind about the fact a concept drift had,
has, or will happen. Adaptation strategies must then be compulsive and carried out
passively, without taking advantage of the information provided by incoming data.
In fact, as new data come the application is reconfigured, adapted, or relearned
depending on its nature and constraints. For instance, if a model M1 is initially built
from data, then a sequence of models M2, . . . Mt is generated over time as data come
during the operational life.

Passive methods can now be classified depending on the way incoming data are
processed:

• Online learning. In online learning the new model Mt is obtained by updating the
previous model Mt−1 with data acquired at time t . To derive the online learning
procedure we consider at first the traditional, offline, training mechanism given in
Sect. 3.4.1. There the model parameters in η are estimated over a training set Z N

by minimizing the empirical risk

VN (η, Z N ) = 1

N

N∑

i=1

L (yi , f (η, xi ))

leading to the estimate

η̂ = arg minη∀σ VN (η, Z N ).

Without any loss in generality, assume that function minimization is carried out
by considering the straight backpropagation procedure implementing a simple
gradient descent algorithm. Parameter η at iteration i+1, i.e., ηi+1 can be expressed
as

ηi+1 = ηi − Θ
λVN (η, Z N )

λη
|ηi

http://dx.doi.org/10.1007/978-3-319-05278-6_3
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where Θ is the learning rate. Training stops when some terminal conditions are
met.
In online learning, the application-model is continuously trained by exploiting new
instances and VN (η, Z N ) simplifies as

VN (η, {(xi , yi )}) = L (yi , f (η, xi ))

where (xi , yi ) is the running supervised sample provided at time i . Parameters
update becomes

ηi+1 = ηi − Θ
λL (yi , f (η, xi ))

λη
|ηi (9.2)

and Θ is a sufficiently small positive scalar in the simplest version of backprop-
agation. Many variants exist; the interested reader can refer to [100] for further
details. Not rarely, the loss function is the squared function L(yi , f (η, xi )) =
(yi − f (η, xi ))

2. It should be noted that, at each time instant i + 1, a new couple
(xi+1, yi+1) is given and the procedure is reiterated. The training algorithm is
shown to converge to the optimal value of parameters minimizing the empirical
risk, provided that the loss function is quadratic and a sufficiently small Θ is given.
Since a sample-by-sample training method can be a time-consuming opera-
tion, a batch modality can be introduced to mitigate such an issue and sta-
bilize the learning procedure. Thus, model parameters are updated asynchro-
nously, at specific time events when a batch of n data is made available. All
data instances in the batch are considered to have the same relevance and could
be gathered from—possibly overlapping—n-dimensional data windows, even if
the overlapping mechanism does not find any justifiable reason. If we denote by
Zn,i = {(xi , yi ), (xi−1, yi−1), . . . (xi−n+1, yi−n+1)} the batch of n data at time
event i , then the learning procedure following the (9.2) becomes

ηi+1 = ηi − Θ
λVN (η, Zn,i )

λη
|ηi . (9.3)

• Ensemble learning. In ensemble learning, several individual models are activated
at the same time instant, and the output of the ensemble is obtained by aggregating
the outputs of each individual model. There are no specific restrictions about the
individual models, which could be trained and updated during the operational life
according to an online learning scheme. We comment that models to be selected
neither need to belong to the same model family (the dimension of the parameter
vector η may vary) nor the same model hierarchy (models are generic entities not
constrained to belong to the same model class).
Most often, the aggregation consists in averaging the models’ outputs, namely the
ensemble provides a weighted average of the outputs of the individual models.
However, several different aggregation mechanisms have been considered in the
rich literature, which does not necessarily address the issue of learning in evolving
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environments. In fact, the use of ensemble of models is shown to be beneficial
in many circumstances and this claim has theoretical justifications, e.g., [240],
where it is proven that an ensemble of models behaves better than the single
generic model, even though not necessarily better than the best performing one
(which is however hard to identify in a noisy environment).
Let us denote by M = {Mi (·), i = 1, . . . , k} the set of individual models compos-
ing the ensemble. Since the simplest aggregation mechanism in ensemble learning
consists in a weighted average, the output of the ensemble in correspondence with
instance x is

y(x) =
k∑

i=1

wi Mi (x)

where {wi , i = 1, . . . , k} are suitably chosen weights typically yielding a linear
convex combination of the individual models’ outputs.
A viable option to cope with concept drift is to assign larger weights to the indi-
vidual models that have been more recently trained or updated. This method is
effective in developing gradual concept drift where the time locality property surely
holds. Differently, if we have an abrupt type of concept drift, then we introduce
a spurious effect due to the “step” introduced by the abrupt change. The spurious
effect vanishes after k time events if each time event is associated with a new model
(after k time events models will be associated with data affected by the concept
drift only and, therefore are coherent). In the specific case where each individual
model Mi is trained at time event i in an online learning manner, the ensemble
may act as a windowing over the k most recent models, mitigating or discarding
those models older than k events.
Weights aggregation can be set in different ways, depending on the a priori infor-
mation we have about the application or the developing class of concept drift.
Within an instance selection framework, it is possible to select at first the indi-
vidual models to be aggregated. For instance, we might select only l < k models
which are better suited for describing the current observation. The ensemble would
provide output

y(x) =
∑

i∀A
wi Mi (x),

where A is a set of cardinality l containing the indexes of the individual models
selected. In this case we are able to better deal with an abrupt type of concept drift,
still dealing with developing ones.
In other situations, we might set the weights depending on the accuracies of the
individual models evaluated on a common validation or test set. For instance, if
model Mi (x) is characterized by a mean squared error in validation or test σ 2

i then
the weight wi can be chosen as
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wi =
1
σ 2

i⎧k
j=1

1
σ 2

j

.

When all the individual models need to be equally treated or when there is no a
priori information about the effectiveness of each individual model, all weights
are naturally set to 1

k .
Weights can undergo adaptation following the evolution of the environment.

9.1.2 Active Learning

Active learning is a learning paradigm that assumes interaction between the learner
and an oracle or some other information source. In the case of learning in nonstation-
ary environments the oracle can be an automatic triggering mechanism able to detect
concept drift. Such a triggering mechanism typically operates on features extracted
from the data, that are assumed to be stationary when the data-generating process
is stationary or time invariant, but are expected to propagate the effects of concept
drift once a change arises. Typically, such triggering methods are change-detection
tests (CDT) or Change-Point Methods (CPM), which will be described in detail in
the rest of the chapter.

Once concept drift is detected the application/model/service must be retrained.
We consider, as an illustrative example, the embedded system setup of Fig. 9.1 where
the data stream provided by sensors feeds the application/service and is inspected
by either a CDT or a CPM. When the trigger detects a change in the data stream,
the application/service is reconfigured/retrained by means of cognitive mechanisms,
possibly exploiting additional data coming from nearby sensors, when these are
inserted in a network. We refer to this paradigm as detect and react.

For instance, if an agent detects that the temperature sensor of my mobile is no
more accurate (as a consequence of concept drift) an information exchange modality
can be activated: the App will inspect nearby weather stations or other smartphones
composing the local network to provide an estimate of the correct temperature.
Calibration and compensation mechanisms are introduced as a reaction aspect on our
unit. Also, the triggering mechanism might need to be retrained since its configuration
might be obsolete having been configured in an old state. If no change is detected no
reconfiguration is requested at the triggering mechanism and the application level.

When a network of distributed embedded systems is available, the situation is
that depicted in Fig. 9.2. In such a case, intelligence can be present both at the
embedded system and at the upper management level of the distributed system, where
the information is collected and processed for decision making. If this is the case,
communication among the components of the intelligent system must be present and
activated to deliver relevant information.

The most simple triggering mechanisms are deterministic and based on fixed
thresholds. When the features exceed the thresholds, a change is detected.
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Fig. 9.1 The overall active
detect and react methodology
for an intelligent embed-
ded system. A triggering
mechanism inspects for con-
cept drift (e.g., through a
CDT ). When concept drift
is detected the application in
execution must be adapted to
track the change and, conse-
quently, the CDT is reconfig-
ured on the new operational
state

Example: A Fixed Threshold

Consider a scalar feature x which is distributed as an i.i.d. random variable having
expectation μx and variance σ 2

x . The feature could be the average classification
error computed over time in a classification scenario, a measurement, or the result
of an uncertainty-affected computation. Changes could be detected in a straightfor-
ward manner by setting a threshold T = ∂σx , which, according to the Tchebychev
inequality, implies that the probability of x exceeding T in stationary conditions is
less than 1

∂2 . All comments and derivations given in Chap. 3 also apply here.
That said, when |x −μx | > ∂σx the threshold is violated and the trigger provides

a positive response by detecting a change. The situation is that given in Fig. 9.3 where
a threshold (the dashed line) is set. Once instances (samples) are above the threshold
a change is detected.

However, since the realizations of x are independent, the probability of having
false positives after n observations is 1 − (1 − 1

∂2 )n , which rapidly tends to 1 as
n grows. By referring to Fig. 9.4 false positives are those data instances above the
threshold line not associated with a true change.

We comment that a false positive might be an unpleasant—but not dramatic
event—within a “detect and react” mechanism where the detection of concept drift is
followed by a reaction that forces the application to undergo an adaptation phase. In
fact, when false positives arise the activated reaction will introduce an unnecessary
and undue computation with the effect that a new model/application/service will be

http://dx.doi.org/10.1007/978-3-319-05278-6
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Fig. 9.2 The overall active detect and react methodology for a distributed intelligent system. The
application/service is distributed and takes advantage of the information provided by the units
composing the distributed platform. Adaptation can operate, with a simple strategy, at the embedded
systems level and, at the same time, at the distributed network layer where more sophisticated
algorithms can be executed. The outcome of the algorithm introduces adaptation at the distributed
application layer and, thanks to remote reprogrammability, to the embedded distributed units

Fig. 9.3 Triggering with a
fixed threshold: a change is
detected when observation x
is above a threshold value,
here set to 3
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configured even though it was not necessary. Running such unnecessary computation
might be not appealing in embedded systems driven by strict real-time execution con-
straints and/or whenever energy consumption is an issue. As such, we should try to
keep the false positive rate as small as possible.

In some other applications, a false positive might be a strongly unpleasant event.
For instance, think of the case where a vision system detected in an airport a face
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Fig. 9.4 Triggering with a
fixed threshold: a false positive
arises in correspondence to
the sample over the threshold
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of a “dead or alive wanted” person that was you! Another situation where false
positives are not welcome is associated with fault detection. Here, false positives
will erroneously claim that concept drift is associated with a fault in the plant, in a
sensor, in a system module when the device is working properly. For the sensitivity
and relevance of the issue we will address the fault diagnosis aspect in Chap. 10
where intelligence will play a main role.

To mitigate the above problem we might decide to introduce filters, e.g., a median,
at the outputs of the triggering mechanism, hence implicitly assuming that if concept
drift arises it will be of permanent and not of transient type. Although this solution is
simple and might be effective in some applications and under specific assumptions
about the nature of the fault, for others we might need a more accurate statistic-based
triggering mechanism reducing false positives and negatives.

More sophisticated stochastic triggering mechanisms of CPM and CDT type will
be presented in Sect. 9.2. We anticipate that the main difference between the two
triggering methods resides in the way data are processed for decision making. CPMs
operate on a fixed set of data to take a decision about the presence of concept drift,
although some extensions have been proposed to mitigate the problem so as to address
a sequential analysis. As such they are mostly inadequate to process streams of data.
Moreover, the CPM computational cost might become prohibitive, making it hardly
usable in embedded systems. On the other hand, CPMs are very effective in detecting
concept drift, the false positive rate can be controlled at design time and latency in
detection is low (CPMs show to be very responsive). Conversely, CDTs are able to
operate at the data stream level, their computational cost is contained and, hence,
suitable for intelligent embedded systems. The cost we have to pay is associated with
an increased latency and the difficulty to guarantee a fixed false positive rate.

Tables 9.1 and 9.2 list the main stochastic triggering methods suggested in the
related literature by classifying them according to the parametric/non parametric
feature, respectively. Parametric tests require knowledge of the probability density

http://dx.doi.org/10.1007/978-3-319-05278-6_10
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Table 9.1 Parametric triggering mechanisms for concept drift detection

Name Test family Change
(A/D)

Entity under
test

Type Notes

Z-test Statistical
hypothesis test

Abrupt Mean 1D Assumes normality
and known variance
[89]

t-test Statistical
hypothesis test

Abrupt Mean 1D Assumes normality
[89]

F-test Statistical
hypothesis test

Abrupt Variance 1D Assume normality
[89]

Hotellings
T-square
statistic

Statistical
hypothesis test

Abrupt Mean ND Assumes normality
[92]

SPRT Sequential
hypothesis
Test

Abrupt Pdf 1D Minimizes the stop-
ping time, nonpara-
metric extensions
are available [88]

CUSUM Sequential
change-point
detection

Abrupt Pdf ND Minimizes the worst
detection latency
[87]

Parametric
CPM

Sequential
change-point
detection

Abrupt Depends on
the statistics
used

1D/ND Sequential version
of a change-point
method [93]

function and/or prior information about the concept drift, whereas nonparametric
tests are more flexible and require little—mostly reasonable from the application
point of view—hypotheses.

In detail, the tables present the family to which the method belongs, either a
statistical hypothesis test designed on a given data set or sequential and, as such,
suitable to address data stream-based applications. The “change” column shows
which type of concept drift the method has been designed for while the “entity under
test” column presents the key features used by the test to operate. “Type” refers to
the nature of numerical data the test can receive, which is either scalar (univariate
test, 1D) or multidimensional (multivariate test, ND). Finally, key references to the
test as well as comments are given in the last column to complete the overview.

9.2 Change Point Methods

Change point methods inspect a given data sequence to check its stationary, i.e.,
whether the samples composing the sequence are independent realizations of a unique
random variable or not. The problem is solved by checking if the sequence contains
a change point, i.e., a specific time location beyond which the data distribution has
changed.
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Table 9.2 Non parametric triggering mechanisms for concept drift detection

Name Test family Change
(A/D)

Entity under
test

Type Notes

Mann-Whitney
U test

Statistical
Hypothesis
test

Abrupt Median 1D Rank Test Error
based [186]

Kolmogorov-
Smirnov test

Statistical
Hypothesis
test

Abrupt Pdf 1D Also goodness of fit
test [90]

Mann Whitney
Wilcoxon test

Statistical
Hypothesis
test

Abrupt Pdf 1D Rank-based [186]

Kruskal-Wallis
test

Statistical
Hypothesis
test

Abrupt Median 1D Mann-Whitney
based [91]

Pearson’s chi-
squared test

Statistical
Hypothesis
test

Abrupt Pdf 1D Goodness of fit and
test of independence
[80]

Distribution-
Free CUSUM

Sequential
change-point
detection

Abrupt Median 1D Nonparametric
extension of the
CUSUM test [86]

Mann Kendall Sequential
change-point
detection

Abrupt Mean 1D Designed to analyze
climate change [79]

Multi-chart
detection algo-
rithm

Sequential
change-point
detection

Abrupt Median 1D / ND Detection of intru-
sion systems [85]

CI-CUSUM Sequential
change-point
detection

Abrupt,
Drift

PDF, sample
moments

1D/ND Computational
intelligence based
[84]

ICI change
detection test

Sequential
change-point
detection

Abrupt,
Drift

Mean and
variance

1D Exploits the Inter-
section of Confi-
dence Interval (ICI)
rule [83, 94]

Hierarchical
change detec-
tion test

Sequential
change-point
detection

Abrupt,
Drift

Mean and
variance

1D Based on a hierar-
chy of change detec-
tion tests [82]

Shiryaev-
Robert Exten-
sion

Sequential
change-point
detection

Abrupt Median 1D Nonparametric
extension of the
Shiryaev-Robert
test [81]

Mood Statistical
Hypothesis
test

Abrupt Dispersion 1D Based on ranks [93]

Lepage Statistical
Hypothesis
test

Abrupt Location
and disper-
sion

1D sum of Mann-
Whitney and Mood
statistic [93]

Nonparametric
CPM

Sequential
change-point
detection

Abrupt Depends on
the statistic
used

1D Sequential version
of a change-point
method [93]
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9.2.1 Change Points

We say that given data sequence

X = {x(t), t = 1, . . . , n},

contains a change point at time/sample τ < n if subsequences

Aτ = {x(t), t = 1, . . . , τ }, (9.4)

Bτ = {x(t), t = τ + 1, . . . , n},

are distinct i.i.d. realizations of two different unknown random variables distributed
as F0 and F1. The problem detection can be rewritten as

τ is a change point if x(t) ≤
⎪
F0, for t < τ

F1, for t ≥ τ
, (9.5)

The change point problem is then converted into an equivalent problem asking if
Aτ and Bτ are sets generated from the same or different distributions.

9.2.2 Set Dissimilarity

A straightforward solution to determine whether a given τ is a change point or not
consists in formulating a two-sample hypothesis test on the subsequences Aτ and
Bτ . In the hypothesis test, the null (H0) and the alternative (H1) hypotheses are
composed as

H0 : x(t) ≤ F0 ◦t (9.6)

H1 : x(t) ≤
⎪
F0, if t < τ

F1, if t ≥ τ
. (9.7)

To test the above hypothesis we need a statistic T , assessing the dissimilarity
between Aτ and Bτ defined in (9.4). Denote by Tτ the value of such statistic T

Tτ = T (Aτ ,Bτ ), (9.8)

in comparingAτ andBτ . Following a standard hypothesis testing procedure, H0 can
be rejected when the value of Tτ exceeds a suitable threshold hn,π , corresponding
to a given confidence level π and depending on n. In this case, it is possible to claim
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that Aτ and Bτ are generated from different distributions (and X is, hence, not
stationary), taking into account the percentage π of false positives.

Example: Evaluating the Dissimilarity of Two Sets

Consider, as an example, the case where data in Aτ and Bτ are Gaussian distributed
with the same variance and we aim at investigating if they share the same expected
value. We choose as test statistic D the standardized difference between the two
sample means, which leads to a two-sample t test. The test statistic is

Dτ =
⎨

τ(n − τ)

n

¯Aτ − B̄τ

Sτ

(9.9)

where ¯Aτ and B̄τ denote the sample means evaluated on Aτ and Bτ respectively
and Sτ is the pooled sample variance evaluated on Aτ and Bτ . The threshold hn,π

for the statistic D is provided by the Student t distribution with n − 2 degrees of
freedom.

9.2.3 The Change Point Formulation

When the test statistic corresponding to a specific partitioning of X does not pro-
vide enough statistical evidence to reject H0 we can only claim that the particular
τ is not considered as a change point at the given confidence level, hence implying
that no change in stationarity happened at sample τ . All other points composing the
sequence need to be checked for being potential change points by considering all
possible partitions of X . The change point formulation provides a rigorous frame-
work for testing the presence of a change point in a sequence X . Within the CPM
framework, e.g., [183], the null and alternative hypotheses for change point method
are formulated as

H0 : ◦t, x(t) ≤ F0 (9.10)

H1 : ≺ τ x(t) ≤
⎪
F0, if t < τ

F1, if t ≥ τ
. (9.11)

Each feasible time location in X has to be considered as a candidate change
point. More in detail, for each candidate change point s ∀ {2, . . . , n − 1},1 the
sequence X is partitioned into two nonoverlapping sets As = {x(t), t = 1, . . . , s}

1 The actual range of s depends on the minimum number of samples needed to compute T from
As and Bs .
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and Bs = {x(t), t = s + 1, . . . , n}. Set dissimilarity is measured as recommended
in Sect. 9.2.2 by means of a suitable test statistic T , which is evaluated for each
change point candidate, yielding {Ts, s = 2, . . . , n − 1}. The most likely change
point for sequence X is finally the one maximizing the statistic

M = argmax
s=2,...,n−1

(Ts) . (9.12)

corresponding to the value TM of T

TM = max
s=2,...,n−1

(Ts) . (9.13)

To finalize the test, TM has to be compared with a predefined threshold hn,π ,
which guarantees a controlled rate π of false positives. Besides π, the threshold
depends on the statistic T and the cardinality n of X .

WhenTM exceeds hn,π , the CPM rejects the null hypothesis, andX is claimed to
contain a change point at M , the location maximizing (9.13). In these circumstances,
besides claiming that X is not stationary, the CPM also provides M , an estimate
of the change point instant τ . Conversely, when TM < hn,π , there is not enough
statistical evidence to reject the null hypothesis, and no change point is identified
within X . The above can be formalized in the final outcome of the CPM test

⎪
The estimated change point in X is M if TM ≥ hn,π

No change point identified in X , if TM < hn,π

. (9.14)

It is important to comment that, often, the major issue for a CPM is the definition
of the thresholds {hn,π}. In fact, even when the distribution of the statisticT is known
for any partitioning ofX , the distribution of its maximumTM is hard to be computed.
Asymptotic results are available for some test statistics which, however, are often
inaccurate at low sample size. We comment that also when it is possible to provide
an approximation for the distribution of the maximum, the outcome might not be
appropriate. For instance, as discussed in [183], the Bonferroni approximation tends
to be over-conservative as n grows. For these reasons, thresholds are often computed
with the Monte Carlo method or, even better, with randomized algorithms.

Example: The CPM

Figure 9.5 illustrates the operating principle of a CPM relying on the Student t statistic
D (9.9). Figure 9.5a presents a sequence X composed of 500 data. A change point
is injected at τ = 350, so that

x(t) ≤
⎪
N (0, 1), if t < 350

N (−1, 1), if t ≥ 350
. (9.15)
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(a)

(b)

Fig. 9.5 An example of a CPM based on a Student t statistic. Data in (a) are distributed according
to (9.15). The values assumed by the corresponding test statistic {Ds , s = 2, . . . , 499} are reported
in (b). The estimated change point M , and the corresponding value of the test statistic TM are
also reported. For illustrative purpose the figure also shows the partition of X in As and Bs when
s = 200 together with the corresponding value of the statistic Ds=200

Figure 9.5b illustrates the values of the statistics Ds as a function of s =
2, . . . , 499.

The threshold corresponding to π = 0.05, i.e., h500,0.05 = 3.225 was provided by
the CPM package [184], implemented in the statistical R language. Other CPMs can
be designed to detect shifts in the mean of a Gaussian random variable, e.g., [183].

9.2.4 Test Statistics Used in CPMs

Very often the test statistic T measures the dissimilarity between two sets by com-
paring the estimates for both expected value (sample mean) and variance (sample
variance). This choice is motivated by the fact that, in practice, a change in the dis-
tribution as per (9.5) would also affect its first moments [185]. It is also preferable
to employ nonparametric test statistic since, often, the distribution (even before the
change point) is unknown.

Several nonparametric statistics are based on the rank computation, such as the
Mann–Whitney [186] (to assess changes in the location), the Mood [187] (to assess
changes in the scale), and the Lepage ones [188] (to assess both changes affecting the
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location and the scale). A CPM based on the Mann–Whitney statistic was introduced
in [189] together with a CPM for Bernoulli random variables.

A different approach consists in locating change points by comparing the empir-
ical distributions over two sets of data, as in the CPMs [190] that are based on the
Kolmogorov–Smirnov and the Cramer Von Mises [191] statistics. So far, we men-
tioned only test statistics for scalars, however, the change point formulation can be
used to analyze multivariate data, such as the CPM in [192], which relies on the
Hotelling T2 statistic.

9.2.5 Extensions Over the Basic Scheme

The change point formulation was originally presented as an offline processing tool.
However, the methods have recently gained a lot of attention and CPM solutions for
online and data streams have been provided. Such extensions basically consist in
iterating the CPM at each new sample arrival [205]. It comes out that the computa-
tional complexity of such CPMs would endlessly grow, hence pushing the research
toward the proposal of variants keeping in mind the computational complexity and
the memory requirement of the methods [185,190]. In particular, a streaming adap-
tation is required when the test statistic T is computationally demanding (such as
in test statistics based on the rank computation).

Another relevant issue is how to set the thresholds for online CPMs. First of
all, it does not make any sense to control the probability of a false positive as in a
hypothesis test. In fact, the test has to be iterated as a new sample arrives and the
control of false positives has to be intended within a sequential scenario. Therefore,
the thresholds have to be set to guarantee a fixed Average Run Length (ARL) of
the test [87], namely the expected number of samples before the test yields a false
positive during the operational life. Second, the probability that TM exceeds hn,π

at the n-th sample has to be here conditioned to the fact that T never exceeded
the threshold in previous n − 1 samples. For these reasons, thresholds {hn,π, n > 0}
have to be computed numerically, through simulations, as in [183]. The CPM package
[184] implements several CPMs based on different test statistics and provides also
the thresholds {hn,π} for both offline (traditional) CPMs and their online versions.
Such thresholds could be loaded in a LUT as we move the CPM to an embedded
system.

Any CPM (9.10) requires that data are either i.i.d. in the whole sequence (sta-
tionarity) or before and after the change point (nonstationarity). This may seem
a restrictive assumption, since in real applications data are often characterized by
different forms of dependence. When this happens, and we wish to operate with a
CPM, it is necessary to move in a feature space where the i.i.d. assumption is met.
A possibility is to operate in the model space by designing suitable models, e.g., of
regression or predictive type, to fit the observations, and then analyze the residuals,
see [193]. However, the residuals may not be i.i.d. since, quite often, the obtained
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model has a model bias component: in this case it can be convenient to aggregate
several CPMs in an ensemble, as described in [204].

In what follows Change Detection Tests (CDTs) will be presented as statistical
techniques designed having in mind online and sequential monitoring.

9.3 Change Detection Tests

There exists a large literature for concept drift detection mostly based on statisti-
cal hypothesis tests which, generally, require knowledge of the probability density
function of the process generating the data and/or priors about the structure of the
concept drift, e.g., a fault or a change in the environment. Again, the reference is
that of Tables 9.1 and 9.2. In the parametric class of CDTs we find classic textbook
tests such as the Student t-test and the Fisher f-test, addressing changes affecting the
mean and the variance of the extracted features, respectively.

Nonparametric tests are more flexible tools, which require weaker assumptions,
mostly tolerable at the application level. For instance, the Mann–Whitney U-test and
the Wilcoxon test are nonparametric tests designed to detect a single change point
and cannot support a sequential use, as sensing datastreams require. Differently,
MannKendall and CUSUM are widely used tests adequate for a sequential analysis
as the recently introduced ICI-based and hierarchical tests. In the section we present
and detail three CDTs representing effective sequential nonparametric solutions to
be implemented in embedded systems.

9.3.1 The CUSUM CDT Family

Complex and effective nonparametric tests generally require a configuration phase
to fix test parameters at design time. The traditional CUmulative SUM control chart
(CUSUM) is a sequential analysis technique designed for change detection that
guarantees an appreciable change detection accuracy when a priori information about
concept drift and the process generating the data are available. We present in the
sequel two CDT methods that extend the traditional CUSUM by relaxing some
of its restrictive assumptions. The first test extends the CUSUM by allowing the
designer to automatically identify the configuration of the test parameters (adaptive
CUSUM). The change detection ability of the adaptive CUSUM is based on the
analysis of the evolution over time of the mean and the variance of some features
extracted from the data-generating process. The second test, named Computational
Intelligence CUSUM (CI-CUSUM), extends the first one by considering a richer set
of features to improve efficiency in detecting changes in stationarity.
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9.3.1.1 The Adaptive CUSUM CDT

Let X = {x(t), t = 1, . . . , N }, x(t) ∀ R be a sequence of instances coming from
the data generating process ruled by probability density function fη (x), which we
assume to be unknown and parameterized in the parameter vector η ∀ R

n .
Assume that the stochastic process changes its statistical behavior at unknown time

T o. This is generally modeled by considering a transition from parameter vector η0
to η1, associated with the pdfs fη0(x) and fη1(x), respectively. As with CUSUM,
we evaluate the discrepancy between the two pdfs at time t , by computing the log-
likelihood ratio

s(t) = ln
fη1(x(t))

fη0(x(t))
for each t = 1, . . . , N

and the cumulative sum

S(t) =
t∑

τ=1

s(τ ).

CUSUM identifies a change in X at time T̂ when g(t) = S(t)−m(t), the difference
between the value of the cumulative sum S(t) and its current minimum value m(t) =
minτ=1,...,t S(τ ) exceeds a given threshold h, namely

T̂ is the earliest time when g(t) ≥ h

CUSUM assumes that key parameters η0, η1 and h are available at design
time. The assumption is generally hard to be satisfied but parameters can be esti-
mated with the following procedure. Generate at first the cumulative sequence
Y = {y(1), y(2), . . . , }, where each s-th instance y(s) represents the value of the
sample mean estimated over a sliding nonoverlapping window of width n taken
from X

y(s) = 1

n

sn∑

t=s(n−1)+1

x(t)

From the central limit theorem the distribution of Y can be approximated with a
Gaussian distribution provided that n is large enough. The basic CUSUM can then
be applied to sequence Y . The first K configuration instances of X constitute the
configuration set that is used to generate the training set of Y , whose cardinality is
K/n (K is conveniently selected among the multiples of n). The whole procedure
is depicted in Fig. 9.6. The parameters η0 characterizing the Gaussian distribution
are the mean and variance of Y , i.e., η = [μ, σ 2], estimated on the train set. The
parameters η1 are obtained through the identification of a neighborhood confidence
for η0.
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Fig. 9.6 The operational procedure for the adaptive CUSUM test. Data stream X undergoes a
sequential windowing as data come in. When n samples are available, a data window is completed
and ready to be averaged to generate the transformed instance y(s). The distribution of y(s) is
approximately Gaussian, thanks to the central limit theorem, provided n is large enough. The basic
CUSUM test can be applied with parameters η = [μ, σ 2]. Needed parameters η0, η1 and threshold
h are estimated on the training set
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Fig. 9.7 The feature extraction and reduction phases of the CI-CUSUM. A rich set of features is
extracted from the input signal to compose the feature set ε. Features extracted from the operational
set X V are contrasted with those evaluated on the training configuration set X T . A PCA technique
yields the reduced feature vector εr

9.3.1.2 The CI-CUSUM CDT

The CI-CUSUM represents an interesting extension of the adaptive CUSUM and
turns to be much more powerful than the basic CUSUM and the Adaptive CUSUM
since any feature can be extracted from the data stream to take advantage of different
sensitivities in concept drift detection. The reference figure is Fig. 9.7.
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Features ε are selected to be sensitive to concept drift. In particular, since data
extracted from the training set XT are assumed to be i.i.d., the considered features
are evaluated in a differential way to amplify the discrepancy between the current
feature and the reference one associated with the training stationary state.

Envisaged features contain some well-known moments such as the mean μ, the
variance σ 2 (to assess changes in the mean and variance of the distribution), the
kurtosis kurt and skewness skew indexes (measuring how the distribution is peaked
or flat and the lack of symmetry of a distribution, respectively), as well as information
derived from the pdf and cumulative density function (cdf) of the signal. The running
index is then contrasted with the corresponding one evaluated on the training set and
features aim at amplifying the discrepancy between the two. For instance, feature
ε1(t) = |μ0 − μV | aims at amplifying discrepancies in the mean value. μ0 is the
value of the mean evaluated on the training set XT and subscript V refers to the test
set, i.e., the index must be evaluated on data up to the running one (training data
excluded). The basic features are

ε1(t) = |μ0 −μV |, ε2(t) = |σ0 −σV |, ε3(t) = |kurt0 − kurtV |, ε4(t) = |skew0 − skewV |

ε5(t) =
⎩

x
|pd f0(x) − pd fV (x)|dx, ε6(t) =

⎩

x
|cd f0(x) − cd fV (x)|dx

ε7∪ j∪12(t) =
⎪

t−1∑

v=1

sgn
(
ε j−6,v+1 − ε j−6,v

)}, ε13∪ j∪24(t) = {
t−1∑

v=1

(
ε j−12,v+1

ε j−12,v

)}
.

In particular, features ε5(t) and ε6(t) evaluate the discrepancy between the run-
ning pdf and cdf and that induced by the training set, respectively.

Features ε7(t) to ε12(t) investigate changes in the sequence of signs in consec-
utive elements and ε13,t to ε24,t the cumulative sum of the ratio of consecutive
elements. To reduce the complexity of the feature space we performed a PCA on ε

which provides a transformed feature εr . Since the pdf of εr is not a priori available,
we operate as in the adaptive CUSUM case. In detail, we take the average of εr

over nonoverlapping windows and invoke the central limit theorem which provides
an approximated multivariate Gaussian distribution for the transformed variable ε′
characterized by mean M and covariance matrix C . The mean M0 and covariance
matrix C0 of εr are estimated on the training set and provide the nominal reference
configuration η0 = [M0, C0]. The adaptive CUSUM procedure is invoked that com-
putes the alternative hypothesis for the change detection test η1 = [M1, C1]. The
CI-CUSUM is now configured and assesses over time ε′(t) by checking whether it
belongs to distributionN (M0, C0) or not by measuring the discrepancy between the
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two multivariate probability density functions at time t through the log-likelihood
ratio mechanism

s(t) = ln
NM0,C0(ε

′(l))
NM1,C1(ε

′(l))
for each l = 1, · · · , t.

The adaptive CUSUM test can now be applied and either returns detection of
concept drift or claims that concept drift is not present.

9.3.2 The Intersection of Confidence Intervals CDT Family

The Intersection of Confidence Intervals (ICI) CDT and its evolutions [94] detect
concept drift affecting a data stream by monitoring the evolution of suitable features
extracted from incoming data. Features must be i.i.d. and Gaussian distributed, at
least before concept drift occurs. The assumptions might appear strong and far from
any engineering reality, in particular the i.i.d. one. However, this is not the case in
many real applications provided that suitable transformations are invoked.

For instance, the method can be used to inspect sequences of residuals, e.g., asso-
ciated with the discrepancy between a predictive model describing the data stream
and the real data as they are acquired. When the test detects a change in the residual
then concept drift is detected. This issue will be further addressed in the sequel. We
now present the principal features of the ICI-CDT family.

9.3.2.1 The ICI-CDT

In the ICI-CDT, features are extracted by windowing the available data in disjoint
subsequences composed of n instances. For each subsequence we compute the sample
mean and the sample variance which are Gaussian distributed thanks to the central
limit theorem for the former and and ad hoc transformation [95] the latter. More in
detail, named s the s-th subsequence, the extracted features are

M(s) =

ns⎧
t=(s−1)n+1

x(t)

n
, and V (s) =

⎢

⎜⎜⎜⎜⎝

⎥
ns⎧

t=(s−1)n+1
(x(t) − M(s))2

)

n − 1

⎞

⎟⎟⎟⎟⎠

h0

,

(9.16)

The parameter h0 is the exponent of the power-law transform devised in [95]
to generate an approximated Gaussian distribution for the sample variance. h0 is
estimated from the sample cumulants computed on training data OT0 .

The ICI-CDT is configured on the two sequences of features {M(s), s =
1, . . . , S0} and {V (s), s = 1, . . . , S0}, being S0 = T0/n extracted from OT0 ,
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We compute the means μ̂M
S0

, μ̂V
S0

and the standard deviations σ̂ M
S0

, σ̂ V
S0

of the two
features over the training set, i.e.,

μ̂M
S0

=

S0⎧
s=1

M(s)

S0
, and σ̂ M

S0
=

√√√√√
S0⎧

s=1
(M(s) − μ̂M

S0
)2

S0 − 1
. (9.17)

and

μ̂V
S0

=

S0⎧
s=1

V (s)

S0
, and σ̂ V

S0
=

√√√√√
S0⎧

s=1
(V (s) − μ̂V

S0
)2

S0 − 1
. (9.18)

These estimates define the confidence intervals for the mean and standard deviation
features that, under the stationary condition, are defined as

I M
S0

= [μ̂M
S0

− τσ̂ M
S0

, μ̂M
S0

+ τσ̂ M
S0

] , (9.19)

I V
S0

= [μ̂V
S0

− τσ̂ V
S0

, μ̂V
S0

+ τσ̂ V
S0

] ,

with τ > 0 controlling the amplitude of the confidence interval and, then, the
probability that features belong to the interval under the stationary assumption.

Once training is perfected the CDT becomes operational and can be used to assess
changes in stationarity in the data stream. Every time n data are made available, a
new sequence s is created and features extracted to populate the I M

s and I V
s .

The intersection of confidence intervals rule (ICI-rule) [96] can then be applied.
The ICI-rule verifies whether the new feature instance can be intended as a realization
of the existing Gaussian distribution. If not, concept drift is detected in the data stream.

From the operational point of view, the sample mean of all the feature values
is computed, together with the confidence interval of the corresponding estimator
which is expressed as (9.19). As soon as the intersection of all the confidence intervals
up to the current one results in an empty set, the basic ICI-CDT detects a change.
Thus, we detect a concept drift in the subsequence ŝ if

⎡

s<ŝ

I M
s ∞= ∅ and

⎡

s∪ŝ

I M
s = ∅ or (9.20)

⎡

s<ŝ

I V
s ∞= ∅ and

⎡

s∪ŝ

I V
s = ∅

and the detection time T̂ = nŝ corresponds to the rightmost term of the subse-
quence ŝ.

Concept drift is associated with those feature(s) that yielded the empty intersec-
tion. Figure 9.8 illustrates how the ICI-rule operates. To reduce the computational
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Fig. 9.8 An illustrative example of the ICI rule in the setting used for change detection: a feature
values and the set of intervals {[1, T0], [1, T1], [1, T2], [1, T3]}, b the corresponding polynomial
zeroth-order estimates and their confidence intervals. The ICI rule selects the interval [1, T2], since
I0 ⇒ · · · ⇒ I2 ∞= ∅ and I0 ⇒ · · · ⇒ I3 = ∅. The brackets in (b) represent the confidence intervals;
the arrows their intersections

load, the average feature and the intersection of confidence intervals are computed
incrementally, and each feature is separately processed.

The whole procedure is summarized in Algorithm 20. As pointed out in [94] the
basic ICI-CDT is particularly effective but introduces a structural limitation inducing
a structural false positive when time passes.

Despite the fact that this problem can be tolerated in many detect and react mecha-
nisms, it is important to design a test that does not introduce structural false positives
as time passes. This problem can be solved by considering a second test, built on
the top of the basic ICI-CDT that verifies, once activated, if a false positive has been
generated by the first CDT or the raised alarm should be considered a proper concept
drift. For its layered structure the test is named Hierarchical CDT.

9.3.2.2 The H-CDT

The Hierarchical CDT (H-CDT) has been designed to mitigate the structural prob-
lem posed by the ICI-CDT, for which false positives are generated as time passes.
The H-CDT is a hierarchical sequential change detection test structured into two
processing levels. The first level is composed of the ICI-CDT test and the second is
a statistical test validating/rejecting the change hypothesis. The ICI-CDT operates
sequentially as presented in the previous subsection and, when it detects a change
in the sequence x(t) at time T̂ , it activates the upper test to validate the detection
by checking if the data sets before and after the estimated T̂ are consistent with the
change hypothesis.

For such change validation purposes, we need to acquire a set of N additional
data OT̂ = {x(t), t = T̂ , . . . , T̂ + N } generated after T̂ , which are considered to
have been potentially generated from the new state of the data-generating process,
namely, after concept drift. The adjective “potentially” is appropriate since a false
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Algorithm 20: The basic ICI-CDT
1 Compute {M(s), s = 1, . . . , S0}, being S0 = T0/n;

2 μ̂M
S0

= ⎧S0
s=1

M(s)
S0

;

3 σ̂ M =
⎣
⎧S0

s=1

⎤
M(s)−μ̂M

S0

⎦2

S0−1 , σ̂ M
S0

= σ̂ M√
S0

;

4 Define I M
S0

=
[
μ̂M

S0
− τσ̂ M

S0
, μ̂M

S0
+ τσ̂ M

S0

]
;

5 Compute h0;
6 Compute {V (s), s = 1, . . . , S0};
7 μ̂V

S0
= ⎧S0

s=1
V (s)

S0
;

8 σ̂ V =
⎣
⎧S0

s=1

⎤
V (s)−μ̂V

S0

⎦2

S0−1 , σ̂ V
S0

= σ̂ V√
S0

;

9 Define I V
S0

=
[
μ̂V

S0
− τσ̂ V

S0
; μ̂V

S0
+ τσ̂ V

S0

]
;

10 Set s = S0;
11 while (I M

s ∞= ∅ and I V
s ∞= ∅) do

12 Set s = s + 1;
13 Wait for n observations, until a new subsequence is populated;
14 Compute M(s) and V (s) from observations in the subsequence according to 9.16;

15 Compute μ̂M
s = (s−1)μ̂M

s−1+M(s)
s and σ̂ M

s = σ̂ M√
s

;

16 Compute μ̂V
s = (s−1)μ̂V

s−1+V (s)
s and σ̂ V

s = σ̂ M√
s

;

17 I M
s = [

μ̂M
s − τσ̂ M

s ; μ̂M
s + τσ̂ M

s

] ⇒ I M
s−1;

18 I V
s = [

μ̂V
s − τσ̂ V

s ; μ̂V
s + τσ̂ V

s

] ⇒ I V
s−1;

end
19 Concept drift detected at s = ŝ within time interval

[
(ŝ − 1)n + 1, ŝn

]
,i.e., T̂ = nŝ

positive might arise and, hence the information present in the OT̂ set is compatible
with that provided by the training set OT0 onto which the method was configured (T0
refers to the last time instant associated with the training set).

We comment that, if estimate T̂ is highly accurate, then we might expect to
improve the accuracy of the method by considering the whole set {x(t), t < T̂ }
instead of OT0 . The reason behind the last statement is associated with the fact that if
T̂ is a good estimate for the concept drift time then, the presence of data associated
with new state in {x(t), t < T̂ } is likely to be negligible. In what follows, we rather
prefer to be conservative and consider OT0 instead: this choice goes also in the
direction of operating with a reduced computational load, which is a relevant issue
for embedded systems.

Statistical affinity between sets OT0 and OT̂ should be evaluated with a proper
statistical test, e.g., Kolmogorov–Smirnov test or other hypothesis tests such as those
given in Table 9.2. However, the required computational load of the Kolmogorov–
Smirnov is too high and unfeasible for a large class of embedded systems where high
MIPS cannot be provided. The problem of comparingthe data distribution over OT0
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and OT̂ , can be conveniently simplified to the problem of comparing the expected
values of the features (9.16) of the ICI-CDT over OT0 and OT̂ by means of an
Hotelling’s test.

In particular, the Hotelling’s test is a multivariate hypothesis test, which we apply
to compare the values of the features (9.16) arranged in two-dimensional vectors
F = [M(s), V (s)]. These feature vectors are extracted from the time interval OT0

(onto which the ICI-CDT was configured) and on the interval OT̂ (which are expected
to describe the new state of the process). From each of these sets, the sample means
F(OT0) and F(OT̂ ) and the pooled sample covariance matrix are computed. The
null hypothesis H0 is formulated as

H0 : F(OT0) − F(OT̂ ) = 0 (9.21)

where 0 represents the two-dimensional vector of null components. Finally, the
Hotelling T2 test [241] can be executed to reject the null hypothesis at a prede-
fined confidence level π. If the Hotelling test rejects the equivalence hypothesis then
a change is considered to be present in the feature set and the change hypothesis
raised by the ICI-CDT is validated. In turn, the hierarchical test detects concept drift.

Conversely, if there is not enough statistical evidence to reject the null hypothesis,
then the ICI-CDT introduced a false positive and must be retrained on the original
stationary state OT0 . The Hotelling’s test applied to the the features (9.16) shows to
be a particularly effective solution to assess changes detected by the ICI-CDT.

The H-CDT is therefore an adaptive test which reacts when false positives are
introduced by the ICI-CDT and shows to be a great test to be used in embedded
systems. The H-CDT algorithm describing from a high-level perspective is given in
Algorithm 21.

Interestingly, if we want the hierarchical test to operate in a sequential manner,
after each change validation, we are able to retrain the ICI-ICT and we also update the
reference set OT0 used in the Hotelling test. In fact, if the change has been validated
at time T̂ , the set OT̂ contains instances associated with the new state of the data-
generating process, thus the inspection for concept drift proceeds. The algorithm is
summarized in Algorithm 22.

9.3.2.3 An Improved Estimate for the Concept Drift Detection Time

The H-CDT described in the previous section has the main drawback of having
to wait for N observations after T̂ before proceeding with the change-validation
phase. This is of course not appealing in an online monitoring scenario, also because
the detection T̂ is typically characterized by a structural delay (correct detections
provided by most of CDTs come typically after the unknown change-time instant T o).
The idea is hence to improve the estimate of T o once the change has been detected,
to recover part of the samples between T o and T̂ for improving change-validation
efficiency and possibly CDT reconfiguration. Therefore, the improved estimate of
T o, which we denote by t , is expected to satisfy T o ∪ t ∪ T̂ . Once t has been
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Algorithm 21: The hierarchical change detection test H-CDT. The test is initially
configured on the training set OT0 . Once concept drift is detected by the ICI-
CDT, Hotelling test is activated. If the Hotelling test validates the concept-drift
hypothesis then an alarm is raised by the H-CDT and concept drift is validated.
When the ICI-CDT detection is not validated, a false positive is found, no concept
drift alarm is raised, and the ICI-CDT needs to be reconfigured on the initial
training data.

1 Train the ICI-CDT on OT0 ;
2 while (1) do
3 Extract features M(s) and V (s) out of the data stream;
4 if (ICI-CDT detects a change in the features) AND (Hotelling test validates the change)

then
5 Conceptdrift= true;
6 retrain ICI-CDT onto OT0 = OT̂ ;

else
7 false positive: retrain ICI-CDT onto OT0

end
end

Algorithm 22: The H-CDT within the active learning modality. When con-
cept drift is validated at time T̂ the application is reconfigured and the H-CDT
retrained on the new instances.

1 Train the ICI-CDT on OT0 ;
2 while (1) do
3 Extract features M(s) and V (s) from the data stream;
4 if (ICI-CDT detects a change in the features) AND (Hotelling test validates the change)

then
5 Conceptdrift= true;
6 React on concept drift at the application level;
7 retrain ICI-CDT onto OT0 = OT̂ ;

else
8 false positive: retrain ICI-CDT onto OT0

end
end

computed, we could use the observations {x(t), t = t, . . . , T̂ } to define OT̂ without
delaying the validation procedure

OT̂ = {x(t), t = t̄, . . . , T̂ }

that contains more than n samples, thus increasing the significance during validation
and configuration w.r.t. the approach described in the previous section. However,
when the ICI-CDT is very quick OT̂ = {x(t), t = t̄, . . . , T̂ } may not contain enough
samples, and it would be preferable to wait for at least N sample before activating
the change-validation and reconfiguration procedures.
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Algorithm 23: The refinement procedure leading to the improved estimate for
the change time instant t .

1 Provide T̂ ;

2 Compute T1 = T0 + (T̂ − T0)/∂;
3 i = 1; continue = true;
4 while (continue = true) do
5 Apply the ICI-CDT to [0, T0] ∪ [Ti , T̂ ], detecting at T̂i ;

6 Compute Ti+1 = Ti + (T̂ − Ti )/∂;

7 Define Tmin = min
⎤

T̂ j

⎦
, j = 1, . . . , i ;

8 if (Tmin < Ti+1) then
9 continue = false;

end
10 i = i + 1;

end
11 Define t = Tmin.

The key point of the proposed solution is that the ICI-CDT introduces a structural
detection latency that increases as time passes [94]. This undesirable behavior can
be exploited to design a post-detection procedure that, starting from T̂ yields a better
estimate t as illustrated in Algorithm 23.

The algorithm operates as follows. Given concept drift detection from the ICI-
CDT at time instant T̂ split the interval [T0, T̂ ] in two intervals [T0, T1] and [T1, T̂ ],
with T1 = T0 + (T̂ − T0)/∂ defined according to the user-set parameter ∂ > 1
(line 2). Apply the ICI-CDT to dataset [0, T0]∪[T1, T̂ ] (line 5), leading to a detection
at time T̂1 . Note that T̂1 is a more accurate estimate of the change time T0, since
the test operates on a shorter sequence w.r.t. the one which provided the initial
detection T̂ . Interval [T1, T̂ ] is further split into two intervals [T1, T2] and [T2, T̂ ]
where T2 = T1 + (T̂ − T1)/∂ (line 6). If T2 > T̂1, the procedure stops, and t = T̂1.

Otherwise, the procedure iterates: at the i-th iteration, the ICI-CDT is executed on
[0, T0] ∪ [Ti , T̂ ], providing the estimate T̂ (line 5). The interval [Ti , T̂ ] is then split

by point Ti+1 = Ti + T̂ −Ti
∂

(line 6). The procedure ends when Ti+1 is larger than
Tmin, the earliest detection identified during the iteration of the procedure (line 7).
Finally, Tmin is the best estimate of T o obtainable according to this procedure, The
improved final estimate is hence t = Tmin.

The refinement procedure is visualized in Fig. 9.9.

Comments

The estimate t , which is provided by all the ICI-CDTs, makes it particularly appeal-
ing for active (detect and react) learning frameworks, since they provide set OT̂ that
contains instances associated with the new state of the process generating the data.
These instances, in the data stream domain, can now be used to reconfigure the appli-
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Fig. 9.9 The ICI-based time change estimate refinement procedure: an example with ∂ = 2.
Initially, (first line) a change is detected by the ICI-CDT in correspondence with time T̂ and the

procedure starts by computing T1 = T0 + T̂ −T0
∂

. The ICI-CDT is then executed onto interval

[0, T0] ∪ [T1, T̂ ], resulting in a detection at T̂1 (second line). This procedure iterates by computing

T2 = T1 + T̂ −T1
∂

and the test is executed on interval [0, T0] ∪ [T2, T̂ ]. The procedure terminates

when T3 > T̂2, being T2 = min{T̂ j }. The output is t = T̂2 , and [T̂2, T̂ ] is assumed to be generated
by the process in the novel state, i.e., after concept drift

cation, besides the CDT itself. Moreover, the H-CDT shows to be computationally
lighter than CI-CUSUM [101] and in most applications involving embedded systems
should be preferred. For this reason the code of the hierarchical CDT has been made
freely available and can be downloaded from the link given in [102].

We recall that insurgence of false positives introduces a processing load, since it
leads to unnecessary reconfiguration, and that this might also reduce the performance
of the application. In fact, if we mistakenly abandon the a priori rich training set OT0

for the new one OT̂ following the false positive we should expect to end up with a
consistent data set of lower cardinality.

At the same time, the presence of a false negative is also critical, since when no
concept drift is detected, the adaptation mechanism is not activated.

As a last note we investigate the effects induced by slowly developing gradual
concept drift. It is expected that this concept drift will not be detected in its early
stages, but most probably later, when the influence of the concept drift on the features
level grants detection. However, latency in detection is the cost we have to pay in
correspondence to slowly developing gradual concept drift. Moreover, given the type
of CDTs we are considering, a slowly developing concept drift results in a sequence
of concept drift detections, a detection profile being symptomatic of a gradual concept
drift evolution.

The literature has proposed CDTs specifically designed to manage situations with
slowly developing concept drift under some assumptions about the evolution model
for the concept drift, mostly following polynomial functions of a fixed order. The
interested readers can refer to [97].

9.3.3 Amygdala—VM-PFC: The H-CDT

The H-CDT is a pure example of a cognitive mechanism. There, the lower processing
level based on an ICI-CDT quickly processes the input stimuli like in the amygdala
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and provides a first reaction outcome. A threat (perceived change) is immediately
detected (automatic process) and actions are promptly taken (e.g., we immediately
react when we see a gun oriented toward us irrespective of other extra information).
Afterwards, the emotional state is passed to the VM-PFC which perfects the taken
action with a more articulated processing and comes back to the amygdala with a
new control action (e.g., when we realize that the gun is indeed a fake water gun, held
by a kid). The counterpart of VM-PFC corresponds to the higher level of the H-CDT,
where the Hotelling test either validates or rejects the concept drift hypothesis raised
by the lower level CDT. When the change hypothesis is rejected, the action invoked by
the ICI-CDT is aborted, the state rolled back, and the ICI-CDT is reconfigured after
the false positive detection. There is no evidence that the VM-PFC levels reconfigure
the amygdala even though a negative feedback is likely to be provided.

9.4 The Just-in-Time Learning Framework

Availability of a CDT within a sequential framework allows us for designing applica-
tions characterized by an active learning modality. The chosen CDT detects concept
drift (detection modality) and the application reacts accordingly (reaction modality)
by adapting to the new state. This active learning modality is known in the literature
as Just in Time (JIT) learning meaning that the application reconfiguration to track
changes in the environment is activated exactly when needed, i.e., in correspondence
with concept drift detection, in contrast with passive solutions where learning is
always enabled.

We instance the JIT mechanism to an application to ease the presentation and to
the classifier case for its relevance in applications. In JIT classifiers a CDT identifies
concept drift affecting incoming data and the classifier-based application undergoes
a reconfiguration phase to track the change in stationarity. A unique characteristic of
JIT classifiers compared with other classifiers following the active learning modality
is that, when no change is detected, the classifier continues integrating new supervised
information made available to improve the classification accuracy.

A high level description of the JIT adaptive classification framework is given in
Algorithm 24. The framework is very general and can host any type of CDT and
classifier. Clearly, we should consider effective low complexity CDTs and classifiers
having in mind, as final target, embedded systems.

The JIT framework is very general and can deal with any type of concept drift
from abrupt concept drift to gradual concept drift. In the abrupt case we need to
release obsolete data used for training the classifier and replace them with novel
supervised instances characterizing the new operational condition, then the classifier
is trained on the new training set, e.g., [94]. Differently, a frequent management
activity involving both the update of the training set and retraining is needed when
we encounter gradual concept drift, which are seen as a sequence of abrupt concept
drifts following the detection mechanism. Extensions of the mechanism meant to
deal with gradual concept drift has been suggested in [97].
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Algorithm 24: The JIT adaptive classifier. New data instances are integrated in
the classifier as they come until concept drift is detected. When the CDT detects
a change the supervised instances associated with the OT̂ data set are used to
reconfigure the classifier.

1 Configure the JIT classifier and the CDT;
2 while (true) do
3 input receive new data;
4 if (CDT detects concept drift) then
5 Characterize the new process state;
6 Configure the JIT classifier and the CDT on the new process state;

else
7 integrate available extra information in the JIT;

end
8 Classify the new input samples;

end

In the sequel we focus at first on the core JIT for abrupt concept drift and address
afterwards the gradual concept drift case. We use, as reference CDT the ICI-based
family although any CDT can be adopted.

9.4.1 Observation Model

Consider, for sake of simplicity, a two-class classification problem. The operational
framework can be formalized as follows.

Let x ∀ X ∈ R
d be an i.i.d. random variable and y ∀ {φ1, φ2} the associated

binary classification output. The pdf of the inputs at time t

p(x |t) = p(φ1|t)p(x |φ1, t) + p(φ2|t)p(x |φ2, t), (9.22)

depends on the pdfs of the outputs p(φ1|t) and p(φ2|t) = 1 − p(φ1|t) and the
conditional probability distributions p(x |φ1, t) and p(x |φ2, t). In general, these
distributions are unknown.

Let OT = {x(t), t = 1, , T } be the data sequence at time T and ZT =
{(x(t), y(t)), t ∀ IT } the knowledge base of the classifier at time T , which contains
the supervised couples (x(t), y(t)), i.e., y(t) is the classification label associated
with the observation x(t), and IT is the set containing the arrival times of supervised
samples up tp time T .

We further assume that the samples acquired before T0 have been generated
in stationary conditions. The set OT0 is then used to train the CDT, while Z0 =
{(x(t), y(t)), t ∀ I0} represents the initial knowledge base (KB) of the classifier,
being I0 the set of supervised samples in OT0 . Assume that at time instant T o > T0 a
change in stationarity occurs with a subsequent change in the distribution of x : also
the distribution after the change is unknown.
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In the JIT framework the CDT inspects the process by operating on the data
sequence OT and, in some of its variations, by also exploiting supervised sample
information.

9.4.2 The JIT Classifier

With reference to Algorithm 24, the JIT classifier undergoes an adaptation phase
whenever the CDT detects concept drift. Otherwise, it integrates available new infor-
mation in the training set to improve the classification accuracy over time.

9.4.2.1 React to the Change: Updating the Classifier

Retraining the adaptive JIT classifier requires learning the model of the data generat-
ing process after the change. Thus, the set of features Zs|t>t = Zs|[t,T̂ ], i.e., the data

observations in time interval [t, T̂ ], represent the new state of the process generating
the data following concept drift. Such instances must be used to retrain the classifier
(in the time domain t) and the ICI-CDT (in the s domain).

Any consistent classifier, where consistency requires as necessary sufficient that
the model family is a universal function approximator, can be considered in the JIT
framework. However, if we have embedded systems in mind, then not all classifiers
are equally valid. Computational complexity and memory usage must be taken into
account when designing the application also for the indirect effect on power con-
sumption in energy-aware applications. Feedforward neural networks, k-NN clas-
sifiers, Radial basis function neural networks are examples of consistent classifiers
[100], SVM and regularized kernel classifiers are consistent classifiers depending
on the particular choice of the loss function and the implementation algorithm [99].
However, the training phase is a costly operation for most classifiers, hence becom-
ing most likely to be prohibitive for embedded systems, in particular if big data are
involved. As shown in [101] k-NN classifier is a particularly appealing solution since
its training phase is immediate and reduces to the insertion of supervised couples in
a table representing the KB of the classifier.

We recall that the k-NN classifier provides a label to a new instance to be classified
as the label majority of the k closest instances. The figure of merit evaluating the
affinity between two instances—mostly based on an euclidean distance in the input
space—the inspection of instances in the KB and score ranking to identify the k
closest neighbors are the main computationally demanding parts of the algorithm. If
the cardinality of the KB is N the k-NN classifier is consistent [103] provided that

k

N
∼ 0 as k ∼ ∞, N ∼ ∞.

However, k-NN classifiers are memory eager solutions—this is the price we have
to pay for a computational negligible training phase—since all N instances need to
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be stored in the memory, despite the fact that efficient solutions can be envisaged to
keep under control the memory request, e.g., those based on condensing or editing
techniques. Both condensing and editing techniques aim at reducing the cardinality
of the training set yet preserving the maximum classification accuracy. In partic-
ular, condensing techniques, e.g., Condensed Nearest Neighbor (CNN) [105], aim
at keeping in the training set only those samples fundamental to shape the decision
boundary. Differently, editing techniques, e.g., the Wilson Editing Rule (WER) [106],
intervene on the training set by removing particularly noisy samples and request the
Bayes’s decision boundary to be smooth.

A better solution would involve thresholding the cardinality of KB by keeping a
maximum of NM instances. If they are in stationary conditions and N increases, N
will be buffered to NM supervised couples, for instance by keeping the most recent
NM instances. A simple circular buffer would solve the problem.

We detail the JIT classifier based on a k-NN structure and the H-CDT; the reference
is Algorithm 25.

The initial knowledge base of the k-NN classifier is Z0 = {(x(t), y(t)), t ∀ I0}
(line 1), while the value of k is set to kLOO, estimated by means of the Leave-One-
Out (LOO) technique applied to Z0 (line 2). The H-CDT is configured on the initial
training set OT0 (line 3). After this configuration phase, the algorithm works online by
classifying upcoming samples as they arrive and by introducing, whenever available
(line 7), new supervised information (x(t), y(t)) into the knowledge base of the
classifier KB. In this case, the algorithm stores in IT the time instant t when the
sample has been received (line 8), includes the pair (x(t), y(t)) in ZT (line 9), and
updates the parameter k so that consistency is granted. The reader should be aware
that k cannot be freely chosen as N increase to satisfy the consistency conditions;
an effective computational-aware method to estimate the appropriate k is given in
[104] and relies on the LOO performance evaluation method.

In stationary conditions, the classification accuracy always increases by introduc-
ing additional supervised samples during the operational life [103] but when available
x(t) is not supervised, It and Zt sets are not updated (lines 11-12).

When the H-CDT notifies concept drift in the subsequence containing x(t) (line
13), the refinement procedure also provides t (line 15). The H-CDT is then recon-
figured on features s associated with the new state of the process, i.e., those in time
interval [t, T̂ ] (line 16).

The t information allows the JIT for removing those training samples acquired
before t both from It and Zt (lines 17, 18). The new value of kLOO is then estimated
by means of the LOO procedure on the new knowledge-base (line 19) and k set to
it. Finally, x(t) is classified by relying on the updated knowledge-base Zt , and the
current value of k (line 20).

9.4.2.2 Example: JIT Learning in a Classification Systems

The experiment refers to a synthetic monodimensional classification problem with
two equiprobable classes {φ1, φ2} each of which ruled by a Gaussian distribution
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Algorithm 25: H-CDT-based JIT Adaptive Classifier

1 I0 = {1, . . . , T0} , Z0 = {(x(t), y(t)), t ∀ I0},OT0 ;
2 Estimate kLOO by means of LOO on Z0 and set k = kLOO;
3 Configure the ICI-CDT part of H-CDT using OT0 ;
4 Zt = Z0,It = I0,t = T0 + 1;
5 while (1) do
6 Acquire x(t) at time t ;
7 if (supervised information y(t) on x(t) is available) then
8 It = It−1 ∪ {t};
9 Zt = Zt−1 ∪ {(x(t), y(t))};

10 update k as in [104];
else

11 It = It−1;
12 Zt = Zt−1;

end
13 if (H-CDT detects concept drift on the sequence containing x(t)) then
14 Let T̂ be the concept-drift detection time;
15 Extract t from H-CDT (Algorithm 23);

16 Configure ICI-CDT on [t, T̂ ] and Hotelling on feature sequence s|t > t ;
17 It = {

t ∀ Tt , t > t
}
;

18 Zt = {(x(t), y(t)) , t ∀ It };
19 Estimate kLOO by means of LOO on Zt and set k = kLOO ;

end
20 Classify x(t) as k − N N (x(t), k, Zt );
21 t = t + 1;

end

p(x |φ1) = N (0, 4) and p(x |φ2) = N (2.5, 4). The experiment is composed of
N = 10, 000 scalar observations. An abrupt concept drift affects both classes at
time T o = 5000 by modifying the pdfs as p(x |φ1) = N (2, 4) and p(x |φ2) =
N (4.5, 4). Figure 9.10a shows the data instances for the two classes over time.

The following adaptive classification frameworks have been considered for com-
parison:

• the proposed JIT classifier (green dashed line with a square marker).
• A classifier trained on all available data every time a new supervised couple is

provided (dotted black line). This classifier guarantees the best performance in
stationary conditions.

• A short memory classifier trained on a sliding window open over the latest 40
supervised samples (solid red line with circle marker).

All the considered adaptive classification frameworks rely on the k-NN classifier as
a base classifier.

A supervised sample out of m = 5 observations is provided to the classifiers.
The classification accuracy on unsupervised samples is the figure of merit used

to assess the performance of the considered adaptive classification framework. In
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(a)

(b)

Fig. 9.10 An example of the just-in-time learning mechanism applied to a classifier. Data instances
associated with the two classes are subject to a concept drift of abrupt type at T o =5,000 that affects
the mean of the distribution of class φ2 (upper plot). The classification performance of the classifier
are then compared with a short memory classifier implementing a batch online passive learning
mechanism, the JIT classifier and the optimal Bays classifier (lower plot)

particular, Fig. 9.10b shows, at each time instant, the percentage of misclassified
samples in 2,000 runs, averaged over a sliding window of 40 samples.

The JIT classifier tends to the Bayes error both before and after the change thanks
to its ability to integrate fresh supervised samples during the operational life and
to remove obsolete samples after a detected change. In fact, before T o =5,000, the
JIT classifier guarantees performance in line with those provided by the classifier
trained on all available data (i.e., the black line) that, in stationary conditions, is able
to guarantee the best performance.

After the change, the JIT classifier is able to promptly react to the change and adapt
to the new working conditions thanks to its active detection/reaction approach. On
the contrary, the classifier trained on all available data requires much more samples
to adapt to the new working conditions since it is not endowed with a mechanism to
remove obsolete samples.

Interestingly, the short memory classifier guarantees the best performance after
the change since it is naturally able to remove obsolete samples through the window-
ing mechanism. Unfortunately, it is not able to improve its accuracy in stationary
conditions since the sliding window is open over a fixed amount of samples (and this
does not allow the base classifier to achieve the Bayes error).
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9.4.3 Gradual Concept Drift

The proposed JIT grants asymptotic optimality when the process generating the
data is affected by a sequence of abrupt concept drift [84] in the sense that, after
concept drift is detected, the classifier’s performance increases during operational
life with provided additional supervised samples. The classic example is that of a
quality inspection process where a supervisor is invoked time by time to provide an
external quality evaluation which is the fresh information (supervised couple) that
the JIT benefits to recover automatically from concept drift. Clearly, if the process
is characterized by a sequence of concept drift that are too close in time, then the
performance of the JIT might stay low even though the JIT classifier does its best to
keep the highest accuracy possible compatible with the circumstances. In this case a
passive-based classifier where k-NN is trained solely on the last N fixed data might
provide better performance and be simpler from the complexity point of view.

This situation might also arise with gradual concept drift, obviously seen as a
sequence of abrupt type of concept drift. Again, a passive solution might be preferable
to the adaptive one if concept drift is fast, in the sense that its gradient over time is
relevant (high developing concept drift). To address the gradual concept drift [97]
proposes an extended JIT classifier introducing

• a modification of the ICI-CDT outlined in Sect. 9.3.2 that makes the CDT able to
deal with a process whose expectation follows a polynomial trend.

• an adaptive classifier able to handle gradual concept drift affecting the process
expectation. The classifier integrates an index estimating the evolution dynamics
to improve classification accuracy.

Intuitively, the proposed extended classifier copes with gradual concept by esti-
mating the concept drift trend, detrending the data and consider now the process as
exhibiting a stationary state.

We model the gradual concept drift according to the formulation of equation
(9.22). In particular, we focus on gradual concept drift that is represented by a pos-
sibly slow-time-varying stochastic process, whose expectation E[p(x |t)] follows a
piecewise polynomial function fη (t). The parametric description of fη (t) is given by
{(ηi , Ui )} where ηi is a parameter vector characterizing the polynomial fηi (t) defined
on the i-th time interval Ui (i.e., a subsequence of consecutive time instants). The
expectations of the conditional probability distributions can be expressed as

E[p(x |φ1, t)] = fηi (t) + q1,i (9.23)

E[p(x |φ2, t)] = fηi (t) + q2,i (9.24)

where t ∀ Ui and q1,i and q2,i are the expectations of the two classes φ1 and φ2 in
stationary conditions. The process generating observations x(t) at time t becomes

x(t) =
{

fηi (t) + Δ1,i , if y(t) = φ1
fη2(t) + Δ2,i , otherwise

(9.25)
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where Δ1,i and Δ2,i are random variables ruled by the pdfs characterizing the
distributions of their respective classes φ1 and φ2 in stationary conditions with
E[Δ1,i ] = q1,i and with E[Δ2,i ] = q2,i .

We further assume that the probabilities p(x |φ1, t) and p(x |φ2, t) do not change
within each interval defining the piecewise polynomial function, thus, the pdf of
x(t) is

p(x |t) = pi (φ1)p(x |φ1, t) + pi (φ2)p(x |φ2, t), t ∀ Ii .

The pdf of the inputs, the conditional distributions and the output distributions are
unknown. The piecewise-polynomial function within each interval Ui , i.e., fηi (t), is
also unknown, but common between the two classes, as expressed in (9.24). We com-
ment that the considered framework is an extension of the traditional one assuming
constant fηi (t).

9.4.4 JIT for Gradual Concept Drift

The key point of the proposed approach is to extend the observation model
traditionally assumed in classification problems by allowing the expectation of the
conditional probability density functions to evolve over time as a piecewise poly-
nomial function, as expressed in (9.24). Under such a hypothesis, we can develop a
CDT to assess variations in the (polynomial) trend of the process under monitoring,
rather than in the value of its expectation. If the test does not detect variations, we
perform a polynomial regression of the input samples and use the regression coef-
ficients to modify online the knowledge base of an adaptive classifier. Differently,
when a change is detected, the obsolete samples are removed from the knowledge
base and the change detection test is restarted.

Since the ICI-CDT is natively able to deal with polynomial trends in the process
under monitoring, it can be applied with minor modification at the feature level w.r.t.
what is presented in Sect. 9.3.2. A detailed description can be found in [97].

Differently, the k-NN classifier has to be slightly modified to coherently adapt to
gradual concept drift. Algorithm 26 presents the k-NN classifier able to deal with

Algorithm 26: Adaptive k-NN classifier for Gradual Concept drift

1- N = |ZT |;
2- i = 1;
3- while (i < N ) do

4- di =
⎤⎤

x(t) − f
η̂ (t)(t)

⎦
−

⎤
x(ti ) − f

η̂ (t)(ti )
⎦⎦

;

5- i = i + 1;
end

6- Identify the nearest k training samples according to the distances {di }i=1,...,N ;
7- Classify x(t) as the majority of labels in the k nearest training samples;
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gradual concept drift. It is easy to see that the only difference w.r.t. the traditional
k-NN classifier is the computation of the distance between the input sample and the
training samples (line 4). Here, the parameter vector η̂ (t) represents the coefficients
of the best polynomial fit for the data during gradual concept drift. These coefficients
can be estimated from the observations using any regression technique.

The polynomial fit represents the gradual concept drift, and is used to correct
each term as function of the distance between the data and the fitted polynomial.
In particular, the distance between the current sample x(t) and the training sample
x(ti ) is computed after subtracting the values of the (estimated) polynomial having
coefficients η̂ (t) in their corresponding time instants (i.e., f

η̂ (t)(t) and f
η̂ (t)(ti )).

By replacing the CDT and the k-NN classifier it is then possible to formulate
the JIT classifier for gradual concept drift following a similar scheme of Algorithm
25. Note that the proposed JIT for gradual concept drift is indeed an extension of
Algorithm 25 as in absence of gradual concept drift, the higher order coefficients of
the polynomial approach zero and the whole JIT operates as in stationary conditions.

9.4.5 Amygdala—VM-PFC—LPAC- ACC: The JIT Approach

The just-in-time learning framework is an example of a complex mechanism that
founds its psychological roots in Piaget’s theory of childhood learning. Detecting
concept drift and reacting to it is aligned with Piagets psychological theory of human
cognition [157], where learning is described as a constant effort to maintain or achieve
balance between prior and new knowledge. As pointed out in [77], when new knowl-
edge cannot be accommodated under existing schema because of severe conflict (i.e.,
nonstationarity), the need is to restructure the application to create new schemata that
supplement or replace the prior knowledge base. While the former detection issue
is addressed by the Amygdala—VM-PFC mechanism the need to supplement or
replace the prior knowledge base (reaction process) is carried out by the LPAC-ACC
layers.



Chapter 10
Fault Diagnosis Systems

The emergence of sensor-based networked embedded systems has made possible the
real-time collection of a huge amount of data. However, not rarely, collected data
are incomplete or do not make sense for various reasons, thus compromising the
correctness of decisions made out of data by inducing possible dramatic outcomes.
Even worse, most of research does not pay attention to the issue and implicitly
assumes that data are correct and “true” by definition. It comes out that, in mission-
critical applications or those applications significantly impacting on our lives, we
should address this not negligible aspect.

An example is a rock-fall collapse or a landslide type of scenario. Assume that we
have deployed the monitoring system that, once operational, provides the information
we need to assess/infer a potential environmental risk, e.g., see [142, 143].

With reference to the Rialba towers application described in Sect. 8.6.5, if the
strain gauge is detecting an enlargement of a fracture of 3.75 mm as it happens in
Fig. 10.1 with deformometer 4 should we take actions? We might answer by saying
that it depends on the introduced safety threshold. True. However, that implies that
if the threshold is set to 2 mm we should alarm the population of the village living
nearby since the potential risk appears to be real. And what about if the measurement
is wrong since a permanent abrupt type of fault, i.e., a fault biasing the readout value
with a constant component, affected my sensor? You could reply that we should
look at the other strain gauges (deformometers 2 and 3 in the figure) which, in the
considered case, do not show any enlargement in correspondence with the perceived
event. Since the rock might introduce a rigid shift in its movement not perceivable by
the other two strain gauges, we cannot came back with a definitive risk assessment. We
immediately perceive that the issue cannot be underestimated. The above comment
also brings us to the problem of sensors deployment. Sensors should be placed
having well in mind the phenomenon and its expected evolution. Let us try to avoid
covering the environment with unnecessary sensors and, even worse, deploy them in
areas where the phenomenon is hardly observable due to sensitivity aspects (changes
in the environment badly propagate to the sensor for physical reasons).

C. Alippi, Intelligence for Embedded Systems, DOI: 10.1007/978-3-319-05278-6_10, 249
© Springer International Publishing Switzerland 2014
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Fig. 10.1 The plot shows three measurements associated with three strain gauges (deformometers)
mounted on the Rialba towers (see Sect. 8.6.5). Strain gauge 4 presents an enlargement of about
3.75 mm which might represent a potential problem for the towers stability. We see that all strain
gauges are sensitive to the temperature which introduces a parasitic effect on the acquired data
despite of the signal conditioning and compensation: the day–night seasonality emerges clearly.
Small existing peaks are associated with transient faults in the readout mechanism. This is reality:
faults, thermal drifts, missing, and erroneous data are the normality more then the exception not
only in harsh environments

In general, unwished unpredictable situations are the result of faults affecting the
sensor/actuator system or represent an abnormality in the monitored environment
and may be either permanent or temporary, developing abruptly or incipiently. The
problem becomes more pronounced as sensing/actuation systems get older since the
sensors (along with the electronic chain up to the ADC) and the actuators are no
more able to provide the correct functionality (and not always a calibration phase
can solve the issue).

It is of paramount relevance for all applications involving a decision-making
process to design methods able to analyze and interpret incoming data streams so
that faults (from now on the term fault refers also to aging effects and thermal drifts)
are detected, isolated, and identified as soon as possible and, possibly, accommodated
for before decisions or actions are taken on the basis of carried information.

Despite the fact that hardware solutions can be envisaged to partly mitigate the
problems, e.g., those based on modular redundancy by replicating the acquired hard-
ware, they are not always able to deal with all types of faults that the sensor might
encounter. Whereas an abrupt type of fault affecting a specific sensor can be easily
detected by setting suitable thresholds, a drift type of fault would affect all sensors,

http://dx.doi.org/10.1007/978-3-319-05278-6_8
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hence making impossible to detect it with a strict hardware replication schema.
A modular redundancy also implies an increment in cost that, by scaling linearly
with the number of elements, might be acceptable for integrated sensors but not
necessarily for more accurate and expensive traditional nonsilicon-based sensors. It
should also be stressed that silicon integrated sensors suffer even more of aging than
the others.

Fault Diagnosis Systems (FDSs) are software applications designed to detect
potential insurgence of faults (fault detection), identify them (i.e., determine their type
and magnitude), isolate faults (i.e., localize them within the system) and, possibly,
mitigate their effects through ad-hoc actions (mitigation step).

The complexity of the FDS depends both on the functions requested by the appli-
cation (e.g., we might be interested only in detecting the fault) and the computational
power made available by the (embedded) processing system. In simplest embedded
systems, we should consider a simple FDS, mostly based on the fault detection aspect
(e.g., detection of faults affecting the sensors) and, possibly, adoption of some miti-
gation policies (e.g., the sensor is disabled and another one either physical or virtual
is enabled or a software agent tries to recalibrate it). When embedded systems can
cooperate, e.g., within a sensor network, more sophisticated, even distributed FDSs
can be designed. In some other cases, the data stream inspection is centralized in a
high performing remote processing system with outcomes enabling actions sent to the
remote embedded units (e.g., disable the sensor, change the parameters of the filter in
the conditioning stage, and modify the calibration curve w.r.t. the temperature, etc).

Most of FDSs operate by assuming hypotheses about the plant/system under
inspection. For instance, we might assume that a model for the process generating
the data is available and design FDS strategies on the base of that, e.g., by observing
over time the discrepancy between the output of the available model and the acquired
values and applying some CDTs to detect occurring changes. The more the a priori
information we have the better the overall performance of the FDS, e.g., the smaller
the latency in detecting a fault the easier the isolation step. For a general, deep
treatment of problems behind traditional FDSs the interested reader can refer to
[144, 145].

In the chapter we focus on more advanced FDSs based on a cognitive approach
that, by exploiting computational intelligence techniques, address the FDS issue by
assuming none—or little—a priori knowledge. As such, they are particularly suitable
techniques for intelligent embedded systems. In fact, cognitive FDSs do not assume
strong assumptions—if any—about the plant or the environment under investigation
and learn the needed characteristics and the hidden system behavior directly from
incoming data. Clearly, this approach requires a learning phase—which might even
be executed online—to configure the FDS as well as implement those mechanisms
able to identify and react to changes in the environment (not to be confused with
faults which represent a particular instance of a more general class of changes, e.g.,
those including changes in the environment and model bias).

Most of cognitive methods for fault diagnosis aim at characterizing the expected
behavior of the system (nominal fault-free state) based on the knowledge of mathe-
matical description of the system (system model) with some parameters to be learned,
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or by using machine learning techniques under limited or none a priori knowledge
availability. We classify the existing cognitive fault diagnosis approaches based on
the available information about the system model. We have two extreme cases, the
first one where a description for the system model is available (e.g., the equations
describing a plant), the second case investigates the diagnosis problem when the
system model in unavailable and the unique information is associated with acquired
data.

10.1 Model-Based Fault Detection and Isolation

Even if we are assuming availability for the system model, mostly satisfying some
canonical forms (e.g., a continuous or discrete state based description), there are
unknown uncertainties affecting it, e.g., those that stem from the partial knowledge
of the system parameters, unmodeled dynamics, linearizations of some nonlinear
parts of the system, unknown disturbances, and measurement noise.

When a description for the system model is available, the cognitive aspect is
mostly related to the characterization, through learning, of the uncertainties affecting
the system and their dynamics as well as learning the thresholds allowing the FDS
to detect, identify, and isolate faults.

Here, uncertainties are mostly regarded as unknown but bound and their charac-
terization represents a fundamental step for designing an effective fault diagnosis
system. In particular, several methods need to be applied depending on the available
information

• filtering techniques for attenuating the effects of disturbances and measurement
noise [148, 149];

• set-membership identification techniques for estimating bounds of parametric
uncertainty [150, 152] when the bounds are not known;

• adaptive approximation techniques, that learn the modeling uncertainty [146, 147].

Fault detection is then carried out by checking for bounds violation, i.e., we inspect
if new data are associated to features which are within or outside the identified bounds
characterizing the fault-free nominal behavior. In the case of bound uncertainty and
under nominal fault-free conditions, adaptive thresholds can be designed to bound
residuals, i.e., the discrepancy between data obtained with the system model and
those coming from measured sensor data [149, 153], convex sets are designed for
outer-bounding the feasible parameter sets [151], interval constraints are determined
that impose relations to be satisfied by certain variables and domains of these vari-
ables [152], predicted intervals are computed to bound values that output data can
assume [150].

Model-based cognitive fault diagnosis methods following the bound approach
grant robustness with respect to uncertainty (ensuring zero false positives when
bounds represent a reliable information) but might suffer from the occurrence of
false negatives (the existing fault is not detected by the method).
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The specifications for the cognitive algorithm (e.g., system configuration,
known/trained models, bounded/stochastic uncertainty, etc) for conducting fault
detection are also used for fault isolation. It is important to mention that pursuing
fault isolation in large-scale, complex systems in unstructured, open-ended environ-
ments that can be affected by multiple faults is a hard problem that might require
additional a prior knowledge or knowledge to be learned to solve the fault diagnosis
problem.

10.2 Model-Free Fault Detection and Isolation

Availability of a model for the system is a strong assumption in many applications,
in particular those where the unique information about the system is constituted
by acquired data. In these cases, fully cognitive mechanisms need to be created to
address the fault diagnosis. The performance of the FDS to be designed depends on
the complexity of the system, the type of expected faults, the chosen FDS strategy,
and availability of a prior information about the system and the fault classes. For
instance, we might know that the data stream has been generated by a time-invariant
process (or time invariance is a good approximation for some time), that different
data streams are mutually dependent, and that noise affects data streams with an
additive or a multiplicative model (we recall these concepts are given in Chap. 5
where faults represent a particular type of perturbations). Each of these assumptions
can help the FDS to improve its performance. The leitmotif is always the same: the
more the available information the better the performance; we shall expect by a well-
designed FDS. Different solutions might, in fact, take advantage of prior information
to improve detectability, reduce latency in detection and/or false positive/negative
rates.

Some methods, e.g., [156] exploit the spatial and temporal relationships existing
among sensor data streams (faults are expected to change those relationships), others
build a fault dictionary (library) containing fault signatures either at design-time by
exploiting available cases of fault instances [154] or online, without assuming such
an availability [155] to detect/classify the occurred faults.

Following these approaches, the structure of the cognitive fault isolation algo-
rithm, that includes a fault dictionary, is modified in terms of the incoming new
knowledge, i.e., new faults are added to the fault dictionary whenever detected or
the same improves based on the new fault instances (new fault signatures are added
to the dictionary). When a fault is detected and the embedded system can continue
to operate, possibly after a fault accommodation phase has been taken into account
to mitigate/reduce the impact of the fault, a new training phase needs to be activated
since the system is operating on a different state w.r.t. the previous one. As such, all
modules composing the model-free FDS need to be reconfigured accordingly.

The general conceptual framework behind a model-free FDS is given in Fig. 10.2.
The key elements composing the FDS are the Nominal concept, the Change Detec-
tion, and the Cognitive fault analysis modules. All modules receive information or

http://dx.doi.org/10.1007/978-3-319-05278-6_5
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Fig. 10.2 A cognitive model-free FDS. Features extracted by sliding (possibly not overlapping)
windows opened over input signals are used to generate features. In turn, the current available
features are used to assess their coherence with the nominal fault-free state represented in the
nominal concept module. If a change is detected, the cognitive level is activated and, after having
assessed the change, carries out the fault isolation, identification, and accommodation procedures.
If the change is not validated by the cognitive analysis level, the system continues in its operational
modality, possibly by retraining the nominal concept module and the change detection one on new
instances since a fault positive was detected

features ϕ obtained by processing raw data. Features provide a compact represen-
tation of the information for decision making and further processing. The nominal
concept module contains a characterization of the nominal fault-free state built incre-
mentally, directly from available features. Features extracted from the raw data up
to a given instant of time constitute the training set (i.e., data up to the yellow verti-
cal line in the figure) to be used by a learning phase to create the signatures/model
representing the nominal conditions.

During the operational life features are extracted and the change detection module
activated to inspect a sliding window opened in the feature data stream (the green
box opened on the features). The change detection method verifies whether the cur-
rent features are coherent with the model/signatures present in the nominal concept
module where knowledge is stored and managed or not. If the answer is positive no
changes are detected and the current features belong to the nominal state (and hence,
no fault is perceived to have occurred in the raw signal that generated those features).
Differently, if a change is detected, the cognitive fault analysis module is activated.
The cognitive fault analysis module takes advantage of the time a change has been
detected by the change detection module as well as it exploits additional information
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about the change and the knowledge associated with the nominal concept and carries
out the validation of the change. If the change is validated and associated with a
fault then, the isolation, identification, and accommodation phases are executed and
provide the time instant the fault occurred, its location, and magnitude. It should be
commented that identification of the type of fault might require an external assess-
ment from a supervisor (e.g., the operator) that labels the type of fault after personal
inspection. When this operation can be carried out a dictionary can be created online,
over time, based on feature instance-label assigned by the operator. Clearly, if a fault
dictionary is available the cognitive fault analysis module can take advantage of it
and compare the current feature signatures with those present in the fault dictionary
for fault type identification. If the change is not valid, the detection is associated to
a false positive detection (e.g., due to the uncertainty in the characterization of the
nominal concept) and the system keeps its operational modality, while the nominal
concept module and the change detection can be possibly retrained on new instances
of data.

Three fully cognitive methods for fault detection will be presented in the sequel.
The first acting at sensor level, the second exploiting relationships existing between
two sensors, the third taking advantage of relationships in space and time existing
within a network of sensors. All these methods can be implemented in embedded
systems. The first case is limited to a sensor mounted on an embedded system. The
second one assumes that the embedded system has mounted at least two sensors
and the third approach requires a full platform of sensors. Interestingly, the sensors
can be attached to a single embedded system or being part of a more complex,
distributed sensor network. The analysis is the same being methodological and,
hence, technology independent.

10.2.1 FDS: The Sensor Level Case

Consider an unknown process generating the data y = g(x, η) providing time series
y(1), y(2) · · · , y(i), · · · where y(i) ∀ Y ∈ R is the datum acquired at time instance
i affected by an unknown disturbance η and x ∀ X ∈ R

l the input. FDS designed at
the single sensor level are barely effective unless strong hypotheses are made about
the process generating the signal.

We will summarize the most relevant cases under the common stated assumption
that the process generating the data is time invariant (no environmental changes) and,
hence, the fault is the only external cause inducing changes in the process.

• i.i.d. assumption for raw data. When measurements follow an i.i.d distribution
CDTs can be considered to inspect changes in the data flow as proposed in Chap. 9.
For instance, the assumption holds if the system model is y = x̄ + η, where
x̄ assumes a constant value and η is i.i.d. random noise. It also holds in qual-
ity analysis applications where, for each generated/produced item, a set of i.i.d.
measurements are taken and describe the item (e.g., the weight and dimensions of
an egg of class A).

http://dx.doi.org/10.1007/978-3-319-05278-6_9
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• i.i.d. feature assumption. In general, we cannot assume sensor data to be indepen-
dent. As such, the traditional way to construct a FDS requires a feature extraction
step followed by the characterization of the nominal state in the feature space.
Deviations from the nominal state are then seen as symptomatic situations to be
further investigated. In order to be effective, the features associated with the nom-
inal state must constitute a neighborhood in the feature space (or a finite set of
neighborhoods) and features associated with faulty situations must be scattered
apart, possibly grouped together to constitute a neighborhood different from the
nominal one. If that is the case, namely, nominal and fault states are not overlapping
(or weakly overlapping if perfect decoupling cannot be granted), fault detection is
carried out by inspecting the features and discovering that current feature instances
do not belong to the nominal state (either deterministically or in probability). Fault
identification and isolation follow by identifying the cluster features belong to.

• The complete model assumption and the abrupt type of faults. An interesting case
following the feature approach is that where features are the parameters of a model
approximating the data in a running window open over the signal. Each parameter
vector θ̂ learned/identified by taking advantage of data in the data window provides
model f (θ̂ , x). Here, under the assumption that faults are of abrupt type and models
are Linear and Time Invariant (LTI), we have that parameter vectors associated with
models modeling, respectively, faulty data and fault-free data cover different areas
of the parameter space $citeBasseville. However, the implicit strong assumption
behind this method is that no model bias is present (complete model assumption)
namely, g(x, η) = f (θo, x) + η within an additive signal plus noise model (other
models might be considered). For instance, if LTI models are used to describe the
data stream then also the system model must be generated by a LTI system of the
same family used for model approximation.

• The complete model assumption: predictive form. Under the complete model
assumption g(x, η) = f (θo, x) + η, we can build a predictive model approxi-
mating the next time instance y(t). Since the approximating model provides the
estimate ŷ(t) = f (θ̂ , x),being x the regressor vector (e.g., in case of autoregres-
sive models x = [y(t−1), · · · , y(t−τ)] for a τ long window), we can compute the
residual sequence ε(t) = y(t)− ŷ(t). If θ̂ is a good estimate of θo (see Sects. 3.4.1
and 3.4.5) then the residual is i.i.d and CDTs can be applied to inspect changes
induced by faults. In this case, time variance induced by the fault is detected by
methods inspecting for changes in stationarity.

It must be commented that all the above methods suffer from the false positive and
negatives issue. Not much can be done here, unless further hypotheses are assumed.
It should be absolutely clear that, for each of the above methods, if an assumption is
not met it is not possible to distinguish among:

• Changes in the environment. The stationarity/time-invariant assumption is not met;
• Existence of an approximation risk (model bias). If the model family is not com-

plete since it does not contain the system model, then the model bias, if not negli-
gible, will likely raise a false positive;

• False positives intrinsic with the chosen method.

http://dx.doi.org/10.1007/978-3-319-05278-6_3
http://dx.doi.org/10.1007/978-3-319-05278-6_3
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Fig. 10.3 A cognitive FDS detailing that of Fig. 10.2. Some possible instances for the elements
composing the FDS are given

We strongly advise the reader to pay attention to the above issues since easy
conceptual mistakes and wrong statements can be made.

Figure 10.3 details a bit more the general framework depicted in Fig. 10.2. In
particular, the three basic elements associated with the framework are specialized to
ease the understanding and cover some interesting cases itemized above. The detailed
description follows:

• The feature extraction phase. As mentioned before the role of features is to rep-
resent the information carried by the signal (or by a window opened on it) in a
compact way. Features can be intended at different abstraction levels. Depending
on the application and our expertize, we select different features for different prob-
lems. Features at the data space level are the raw observations, possibly calibrated
and compensated. When we move to a feature space, the set of input data present
into an assigned temporal window are transformed according to a function into the
feature vector x . Example of features are the prediction/reconstruction residuals,
the sample statistical moments, the coefficients of a Fast Fourier Transform (FFT),
the rank of the cross-correlation matrix, the minimum values assumed within each
sensor window, etc. At the model space level, features are, for instance, the coeffi-
cients of LTI dynamic models (e.g., ARX, ARMAX, etc) used to predict the next
expected sample. Over time, we generate a sequence of feature vectors x coincid-
ing with the coefficients of the obtained local model approximating the signal in
the considered window.

• The nominal concept module. The nominal concept describing the nominal fault-
free state of the system can be modeled as a set of feature vectors associated with
the nominal state. Statistical moments for the features, gaussian clusters, or HMMs
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Fig. 10.4 An FDS inspecting the datastream associated with a specific sensor. The feature is the
residual approximation error, constituting, over time, a sequence. The CDT operates by extracting
further features, e.g., the sample mean and variance of windowed residuals for carrying out the
change detection phase

describing the nominal fault-free state are other description mechanisms. It is clear
that, here, the goal is to somehow describe the nominal state of the system. As
such, any consistent representation works fine.

• The change detection module. The change detection aims at evaluating the affinity
between the current acquired feature vector and the fault-free nominal concept.
A k-NN classifier (or any classifier) can be built to evaluate the closest signature
to the current feature vector. If the distance between the two is below a threshold
then the current feature is assigned to the nominal state (and the system is said to
operate correctly). In some other cases, the approach is statistical and a CDT test,
e.g., based on the CUSUM, ICI rule, or an HMM-CDT presented in Chap. 9 can
be used to assess changes in stationarity/time variance.

• Cognitive fault analysis. At the cognitive level, different methods can be considered
to validate the change in stationarity and decide whether the change is associated
with a fault, a model bias or a time variance in the environment. Methods based
on the dependency graph or hypothesis tests can be used to solve the problem.

10.2.1.1 Example: A FDS-Based on a Residual Inspection

The example assumes that a given signal y(t) can be approximated with a LTI
predictive model and that the complete model assumption holds (i.e., the discrepancy
between the model and the real data can be represented as a i.i.d. signal, here a white
noise). The structure of the FDS we will discuss in the sequel is given in Fig. 10.4.

http://dx.doi.org/10.1007/978-3-319-05278-6_9
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As we have seen above, the complete model framework assumes that the unknown
process generating the data follows the system model, here rewritten as y(t) =
f (θo, x(t)) + η where x is some uncontrollable unknown input driving the nature
and η is an unknown white Gaussian noise. The signal is modeled with the LTI
predictive model ŷ(t, θ), x(t) being the regressor feature vector x(t = k) =
[y(k − 1), · · · , y(k − τ)] for a particular τ time lag and θ is the model parameter
vector. The particular model f (θ̂ , x(t)) is obtained after a learning procedure that
leads to the parameter vector θ̂ .

To instance the predictive model assumes that an Autoregressive (AR) function
family grants perfect predictability, in the sense that the prediction residual e(t) =
y(t) − ŷ(t) is a white noise. Given the model linearity, θ̂ can be identified with
a classic least squares procedure (learning phase, in the figure) and the predictive
model assumes the form

ŷ(t, θ̂ ) = θ̂T x(t), x(t = k) = [y(k − 1), · · · , y(k − τ)]

leading to the residual sequence · · · , e(t−2), e(t−1), e(t). Consider not overlapping
windows of size S0 opened over the residual sequence. The generic instance of the
window Mw(s), s = 1, · · · , S0 is relocated over e(t) so that Mw(s) for the w-th
window satisfies Mw(s) = e((w − 1)S0 + s), s = 1, · · · , S0 and w = 1, 2, . . ..

The feature vector for change detection ϕw = [μ̂M
w , σ̂ M

w ] extracted from the
residual sequence are the sample mean and sample standard deviation estimated
over the w-th window as

μ̂M
w = 1

S0

S0∑

s=1

Mw(s) (10.1)

σ̂ M
w =

√√√√ 1

S0 − 1

S0∑

s=1

(
Mw(s) − μ̂M

w

)2 (10.2)

An ICI-based CDT can now be considered, e.g., the simple one presented in
Chap. 9. If no changes are detected, the procedure is iterated: time passes and new
features are generated and inspected for a potential change. Conversely, if a change
is detected at a given instant of time, the cognitive fault analysis module is activated
whose role is to validate/reject the change recommendation made by the change
detection level and discover whether the change is associated with a change or not.
Assume that the cognitive fault analysis level is implemented with an hypothesis
test, e.g., based on Hotelling. When this is the case, the change detection and the
cognitive fault analysis modules behave as an hierarchical CDT. Refer to Chap. 9 for
further details.

We recall that even if the change is validated by the cognitive fault analysis module,
by inspecting a single sensor we cannot claim that the change is associated with a
fault since changes in the environment and false positives might occur. However, as

http://dx.doi.org/10.1007/978-3-319-05278-6_9
http://dx.doi.org/10.1007/978-3-319-05278-6_9
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pointed out above, we can take advantage of extra information made available by
correlated sensors, e.g., as those present in multiple sensors embedded systems or
sensor networks. There, by inspecting the dependency graph associated with existing
sensors we can classify the change that, eventually, becomes a fault. These aspects
will be addressed in next sections.

10.2.2 FDS: Changes in a Sensor–Sensor Relationship

It is not rare to find situations where there exists a dependency between two sensors.
Such a dependency can either be direct or indirect. We say to have a direct dependency
when the sensors are observing the same phenomenon but open different views of
it. For instance, two thermal sensors deployed at some distance are likely to be
dependent and the functional dependency can be expressed as a transfer function
linking the two. However, we might —as we do in real life—experience an indirect
relationship among two sensors that are apparently unrelated. For instance, if we have
two strain gauges mounted onto two different bridges, we expect them to be unrelated.
However, functional independence is only associated with ideal sensors. As we have
seen in Chap. 2 not rarely temperature affects sensors. As such, if the strain gauge
sensors provide measurements y1(t) and y2(t) and T (t) is the temperature value,
then there it exists a functional constraint

f (y1(t − τ1), y2(t − τ2), T (t)) = 0

for some τ1 and τ2 accounting for a possibly existing delay in propagating the
effect of temperature on the sensors readout.

Such a constraint introduces an indirect relationship which can be exploited by
any cognitive FDSs, e.g., by the cognitive fault diagnosis level of Fig. 10.4 that might
integrate constraints existing among the set of sensors. Two different approaches for
designing cognitive FDSs are given in the sequel.

10.2.2.1 An Evolving Fully Cognitive Approach

An interesting solution has been proposed in [155] under the hypotheses that the
environment is initially time invariant and faults are of abrupt type (a sudden change
in the affected instance that moves from a value to another one). More specifically, a
model-free algorithm is proposed for fault diagnosis of nonlinear dynamic systems
working in the parameter space of LTI predictive approximating models (the problem
requires identification of time variance associated with a fault). It is shown that, under
reasonable assumptions mainly about the dynamics of the process generating the data,
the distribution of parameters of the LTI models is Gaussian in the parameter space.
As such, features coincide with the LTI model parameters and the nominal concept
can be described by a cluster induced by a Gaussian distribution.

http://dx.doi.org/10.1007/978-3-319-05278-6_2


10.2 Model-Free Fault Detection and Isolation 261

More in detail, and following the general framework of Sect. 10.3, as data come
over time an LTI model is constructed over independent N data windows synchro-
nously opened on sensor data streams y1(t) and y2(t). Consider, for instance, the
Autoregressive eXogenous (ARX) model as the reference LTI predictive family
model that, applied to sequences of not overlapping windows, provides the sequence
of parameters-features

θ̂0, θ̂1, · · · , θ̂w, . . .

which spot the parameter space and must be inspected for fault detection, where
w is the index of the window. The method operates online: as sensor data come
and complete a full N instances window, the corresponding parameter vector θ̂t

is generated for the w-th window of data. The change detection and fault analysis
modules classify it as belonging to one of the following classes.

• Nominal class. Parameter vector θ̂w belongs to the nominal fault-free class at a
given confidence level. In other words, parameter vector θ̂w is inspected by the
change detection module which decides whether it belongs to the nominal concept
or not. Since the nominal concept is based on a Gaussian distribution, it is checked
whether θ̂w belongs to such a distribution once a confidence level has been set.

• Fault class. Instance θ̂w belongs to a fault class at a given confidence level. The
change is detected and the cognitive fault analysis module assigns to the parameter
the label of the class it belongs to.

• Outlier class. Instance θ̂w neither belongs to the nominal class nor to a fault class
at a given confidence level.

The algorithm requires a training phase during which data streams are assumed to
be time invariant. The set of parameter vectors generated during the training phase are
used to generate the nominal (Gaussian) state for the system, suitably inserted in the
nominal concept module. Since the nominal state is a cluster (or a set of clusters if the
sensor-to-sensor relationship can operate in different nominal states, each of which
described by an independent Gaussian cluster) the mean vector and the covariance
matrix fully describe the state.

Note that no assumptions are made about the linearity of the relationship between
the two data streams: the Gaussian distribution for the parameter vector holds even
if the relationship is nonlinear. When a deviation from the nominal condition is
detected, in the sense that the current instance does not belong to the nominal class,
the parameter vector is moved to the outliers set. The outliers set is regularly inspected
to see whether there are instances that, grouped together, provide sufficient statistical
evidence to generate a new class different from the nominal one. If that is the case a
first fault state is generated and, possibly labeled, e.g., by exploiting the information
provided by the user or an automatic decision system.

An example is given in Fig. 10.5 which presents three clusters, a nominal one and
two faulty ones.

Fault clusters constitute, de facto, a fault dictionary. At the beginning, no fault
dictionary is given and the algorithm automatically builds it over time by following
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ϕ1

ϕ2

Fig. 10.5 The knowledge associated with the nominal concept module in a bi-dimensional para-
meter space. Three clusters are present. The first, is the nominal one. Instances associated with the
nominal error-free one are green circles. Then, we have two “red” clusters associated with two
fault classes (squared and cross instances are in there). Asterisks refer to the elements present in
the outliers set

an evolving mechanism as faults occur. From now on, outliers are treated as separate
instances until enough confidence is made available to either integrate some of them
in existing classes or promote to a new fault class.

The method, is purely cognitive since all needed structures are built directly from
sensors as data streams are provided.

Example: Changes at the Sensor-Sensor Relationship

We present a synthetic example describing the evolving FDS approach. Assume that
the relationship between the two sensors is nonlinear as described by the system
model

y1(t) = sin
(
θT x

)
+ η (10.3)

where x = [y1(t − 1), y1(t − 2), y2(t − 1)]. Both θ and x are column vectors with
θ = [0.1, 0.2,−0.1], η ≤ N (0, 10−4) and the input sensor (behaving here as the
exogenous input for the second sensor) is generated by the random walk

y2(t) = 0.4y2(t − 1) + ε(t) (10.4)

ε(t) ≤ N (0, 1). A data set of 80405 samples was generated by using the above
system model and the FDS was trained on the first 16086 fault-free samples. Two
faults were then injected in the remaining data, whose effect induces an abrupt change
δ in the parameter vector. The multiplicative perturbation model is adopted so that
the new configuration for parameters becomes θδ = (1 + δ)θ .

The first fault is characterized by δ = 0.05 and affects the system in the sample
interval [32166, 48246]. The second fault, injected in sample interval [64326, 80405],
is characterized by δ = −0.5. At first, the nominal concept module is composed by
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Fig. 10.6 Green circles represent estimated parameter vectors θ̂w belonging to the nominal state,
red squares and + represent those parameter vectors associated with the two fault states. Black
asterisks are outliers and compose the outliers set. The axis represents the three components of the
approximating LTI parameter vector θ̂

the nominal error-free state only. At the end of the data set, the nominal concept
contains the error-free state and two different fault states complete the available
knowledge. To model the relationship between y1(t) and y2(t), ARX models have
been considered where the order of the autoregressive and exogenous parts are 2
and 1, respectively.

The configuration of the parameters in the parameter space at the end of the
execution of the evolving algorithm is given in Fig. 10.6. The green cluster represents
the nominal concept. Instances belonging to the nominal set are generated during
the training phase and updated during the operational life of the system whenever
instances belonging to the nominal state are found. The two red clusters are associated
with the two faulty conditions.

10.2.2.2 An HMM-Based Cognitive Approach

Changes at the sensor-to-sensor relationship can be also tackled by considering dif-
ferent mechanisms. For instance, [156] has addressed the problem by modeling the
relationship with Hidden Markov Models (HMM), stochastic finite state machine
where the number of states is learned as with the transition matrix. In this way, sea-
sonalities present in the relationship can be modeled by the learning machine which
is trained on the sequence θ̂ generated over either overlapping or non-overlapping
windows of data. The rationale behind the machine is that the sensor-to-sensor rela-
tionship can be modeled by a probabilistic machine operating in the model space.
The cognitive FDS framework is that depicted in Fig. 10.7.

Within this framework, the nominal concept is described by an HMM, whose num-
ber of states and transition matrix are learned during the training phase. Whenever the
current model θ̂w and the previous ones cannot be explained anymore by the learned
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Fig. 10.8 The functional dependency graph for the Rialba towers deployment. The six sensors are
clinometers and temperature sensors internal to the clinometers. All sensors are correlated, either
directly because they measure the same entity (although in a different place) or indirectly, by means
of the parasitic effect introduced by the temperature

HMM machine, a change is detected by the change detection module that inspects for
drops in the likelihood function. When the likelihood is below a threshold, implying
that the current models are believed not to belong to the learned nominal fault-free
situation with high probability, a change is detected. Needed thresholds are learned
during the training phase.

It should be pointed out that the above methods (the evolving one and the HMM-
based) cannot distinguish among time variance in the system, model bias or the
occurrence of faults: not enough a priori knowledge or information is in fact available
to solve this problem whose solution requires a more structured algorithm as proposed
in the next subsection.

10.2.3 FDS: The Multi Sensors Case

We have seen that, by modeling a sensor-to-sensor couple we introduce a relationship,
i.e., a functional constraint that links the two sensor data streams. If a multisensor
platform is attached to the embedded system or a network of sensor embedded
systems (sensor networks) is available, the process can be iterated for all couples.
The starting point of the whole procedure is the construction of a dependency graph
where each node refers to an existing sensor and arcs represent the relationships
(either direct or indirect) among sensors. Arcs are oriented since causality between
data must hold.

An example of a dependency graph for the Rialba tower deployment presented in
Sect. 8.6.5 is given in Fig. 10.8. The six sensors are three high resolution clinometer
and three external temperature sensors, measuring the temperature of the clinometer
(and not the external environmental temperature). Causality holds for all relationships
and, as a consequence, relationships are bidirectional: if we consider the couple of
sensors associated with data streams y1(t) and y2(t), there are the two relationships
f 1,2
θ and f 2,1

θ .

http://dx.doi.org/10.1007/978-3-319-05278-6_8
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Fig. 10.9 Representation of the functional relationships for the synthetic network. The functional
graph is disjoint and composed of two independent subgraphs. Relationships f13 and f46 are indirect
relationships, and the others are associated with direct relationships

Since each relationship provides a constraint, we can use such—possibly—
redundant information to build a cognitive FDS taking advantage of the existing
dependency graph.

The class equivalence among time variance of the environment, fault, model bias
is solved by taking advantage of the available information at the cognitive fault
analysis module. More in detail, a CDT, e.g., based on the HMM likelihood inspects
the stream of model parameters for changes. When a change is detected at the change
detection module an alarm is raised, the cognitive level is activated and the current
likelihoods associate with the dependency graph arcs provided to the cognitive fault
analysis module. The cognitive level accesses the dependency graph as a whole and,
based both on the functional topology and the set likelihoods, makes a decision that
disambiguates the equivalence issue. If the dependency graph is poor, in the sense that
not enough functional constraints can be created with the available sensor platform,
then the equivalence issue cannot be solved.

Example: A Cognitive Fault Analysis Module. The Synthetic Multi Sensor
Platform Case

Consider a multisensor platform for the embedded system (or the sensor network)
composed of six sensors, whose functional graph is shown in Fig. 10.9. A solid
arrow represents a functional relationship existing between a generic couple of sen-
sors, modeled with an HMM based on ARX predictive models as described in
Sect. 10.2.2.2. Dashed arcs refer to indirect functional relationships. Data streams
generated by units 1 and 4 are coming from the random walk stochastic process
similar to that used in experiment (10.4). The other data streams are created with a
system model identical to that given in (10.3) with random generated θ vectors.

For each couple of sensors, data streams composed of 8165 samples were gen-
erated according to the above mechanism. The estimated parameters of the ARX
models on the first 4085 fault-free data have been used to configure the HMMs.

A fault was then injected in the measurements provided by sensor 2 in the inter-
val [6126, 8166], by generating an abrupt perturbation of the parameter vector θ12
relative to the functional relationship f12 between sensors 1 and 2 so that θ ≥

12 =
(1 + δ)θ12, δ = 0.1.
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Fig. 10.10 The loglikelihoods for the selected relationships. a Likelihood f12, b Likelihood f23 ,
c Likelihood f13, d Likelihood f45, e Likelihood f46, f Likelihood f56

Figure 10.10 presents the evolution over time of the loglikelihoods associated with
the estimated ARX parameters modeling relationships fi j of the synthetic example.
We see in plots Fig. 10.10a and b the influence of the fault injected on measurements
taken by sensor 2: the likelihoods drop and assume low values for the whole dataset;
other relationships are not affected. The comments we can make, and will lead to the
final decision taken from the cognitive FDS, are the following:

1. The only relationships affected by the drop in the likelihoods are those associated
with f12 and f23. The intersection between the sensors indexes (1, 2) and (2, 3)
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Fig. 10.11 Cognitive level for the synthetic network experiment. Top to bottom: the data streams
of the six sensors, detection of environmental changes, detection of sensor faults, index of the faulty
sensor (−1 stands for n.a.), and detection of model bias. When detections assume value 1, the
specific detection happened

provides index 2. As a consequence, we can claim that sensor 2 is affected by
concept drift.

2. All other relationships are not affected by the drop in the likelihood, hence stating
that received parameters are consistent with the HMM-trained machine.

3. The change in sensor 2 cannot be associate with a change in the environment.
In fact, the relationship f13 is not detecting a change: we expect that a change
in the environment should be perceived by all related relationships.

If we assume, as a rule, that a model bias/false positive would affect one rela-
tionship at a time then events in correspondence with relationships f45 around time
7400, f46 around time 4100 and f56 around time 5200 are either true false positives
or model bias.

The example has given an intuitive rationale of the rules behind the fault analy-
sis module. However, in real more complex cases, the classification of the change
carried out by inspecting the likelihoods associated with different relationships is a
complex operation. The final decision made by the cognitive FDS depends on values
provided by the likelihood integrated with some topological information through a
more complex cognitive level that extends and formalizes the rules we intuitively
presented in this simple synthetic example.

Details about the logic for partitioning the dependency graph and discriminate
among model bias, sensor fault, and environmental change based on the likelihood
values is given in [156].

By running the cognitive FDS on this experiment we obtain results plotted in
Fig. 10.11. By inspecting the figure, we can make the following comments:
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Fig. 10.12 The reduced graph of the functional dependency graph of Fig. 10.8. Only relationships
between couples of sensors characterized by a linear correlation index above 0.9 are kept. The
reduced dependency graph reduces the computational complexity load requested by the FDS to
carry out its task

• The cognitive layer detects a model bias in interval [4211, 4240] and interval
[4481, 4510], associated with the relationship f56. If we wish to reduce the occur-
rence of false positives, we should introduce a more “strict” threshold. This mod-
ification would increase the detection delay;

• The cognitive level detects a fault affecting sensor 2 starting from sample 6221:
as expected the system is able to correctly detect the induced fault at the cost of a
reasonable detection delay;

• The cognitive level detects the presence of an environmental change in correspon-
dence with the intervals [6521, 6580], [7391, 7480], and [8141, 8165].

Example: A Cognitive Fault Analysis Module. The Rialba Towers
Sensor Network Case

We now run the whole FDS algorithm based on the HMM methodology on data
streams coming from the Rialba towers sensors whose dependency graph is given
in Fig. 10.8. In particular, to keep under control the computational load requested
by the FDS algorithm, the dependency graph of Fig. 10.8 was pruned, by keeping
only those relationships between sensors couples showing at least a linear correlation
above 0.9 (in this way identical existing bidirectional relationships are likely to be
pruned). This hard threshold on correlation allows us to keep the most relevant arcs,
and yielded the reduced dependency graph given in Fig. 10.12. However, we should
keep the whole dependency graph if computation is not an issue.

Final results of the cognitive FDS based on the HMM method are associated with
the evolution of the indexes given in Fig. 10.13. We observe that

• there it is an environmental change perceived in the time interval [1321, 1365].
A more specific analysis showed that the detected event was not associated with
environmental change but a communication fault affecting all units of the network
at the same time. Given the designed rules, the event was perceived as an environ-
mental change since it was affecting all sensor-to-sensor relationships. However,
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Fig. 10.13 Cognitive level for the Rialba towers scenario for the dependency graph given in
Fig. 10.12

this situation can be simply detected by checking if the remote communication
link is suitably working or not;

• a model bias and occurrence of faults affecting the second sensor are perceived in
the interval [2250, 2491].

10.3 Amygdala and VM-PFC: FDS at the Multi Sensor Level

The behavior of a cognitive FDS resembles the cognitive mechanisms involving the
Amygdala and VM-PFC. In this chapter we have seen that after processing the input
data stream, a potential fault is detected (this operation resembles that carried out by
the Amygdala) and the cognitive layer is activated (as it happens with the VM-PFC)
which, by inspecting the dependency graph and the associated likelihoods, provides
a refined more accurate control action. If a false positive is detected then the lower
level undergoes an online learning so that structural parameters are modified to
asymptotically improve the efficiency of the detection level.
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Nonlinear regression, 45
Norm, 91, 136
Nyquist frequency, 166, 170

O
Online learning, 213
Orbital and ventral-medial prefrontal

cortices, 130
Overfitting, 39

P
Parseval theorem, 135
Passive learning, 213
Passive sensor, 13
Performance verification problem, 78
Perturbations at the structural risk level, 105
Perturbations in the small, 103
Piaget’s theory of learning, 247
Pollard dimension, 88
Polynomial complexity, 57
Positional notation, 28
Precision, 11, 18
Probabilistic robustness, 115
Probability function estimation, 64
Probably approximately correct

computation, 2, 133, 137

Q
Quasi-Newton approximation, 100, 106, 107
Quicksort algorithm, 58
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R
Randomized algorithms, 76, 101
Reference broadcast synchronization, 188
Repeatability of a measurement, 11
Resolution, 11, 19
Robustness, 95, 96
Robustness in the large, 95, 114
Robustness in the small, 95, 99
Robustness index, 97, 112, 114
Rounding operator, 29, 32

S
Sample and hold, 14
Sampling frequency, 166
Sensor calibration, 14, 17
Sensor offset, 17
Sensor warm-up, 19
Sign and modulus notation, 29
Signal-to-noise ratio, 14, 22
Smart sensor, 15, 17
Squared error, 43, 135
Stationarity, 211
Strong law of large numbers, 63, 65, 66, 75
Structural risk, 39, 50, 102, 111

T
Tchebychev inequality, 18, 61, 68
The measurement chain, 12
Tikhonov regularization, 112
Time variance, 211
Transducer, 12
Transduction module, 12
Triggered sensing, 168
Truncation operator, 28, 32

U
Underfitting, 39
Uniform convergence of empirical mean, 88

V
Vapnik-Chervonenkis dimension, 89
Ventral and medial prefrontal,

orbital cortices, 127
Virtual sensor, 1, 162
Voltage output sensor, 13

W
Weak law of large numbers, 63, 65, 66, 75
Weighted notation, 28
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