
Reconstructing Breakage Fusion Bridge

Architectures Using Noisy Copy Numbers

Shay Zakov� and Vineet Bafna

Department of Computer Science and Engineering,
University of California, San Diego, CA, USA

szakov@eng.ucsd.edu

Abstract. The Breakage Fusion Bridge (BFB) process is a key marker
for genomic instability, producing highly rearranged genomes in rela-
tively small number of cell cycles. While the process itself was observed
during the late 1930’s, little is known about the extent of BFB in tumor
genome evolution. This is partly due to methodological requiring the rare
observation of a spontaneous BFB occurence, or rigorous assays for iden-
tifying BFB-modified genomes after the process has ceased. Moreover,
BFB can dramatically increase copy numbers of chromosomal segments,
which in turn hardens the tasks of both reference assisted and ab initio
genome assembly.

Based on available data such as Next Generation Sequencing (NGS)
and Array Comparative Genomic Hybridization (aCGH) data, we show
here how BFB evidence may be identified, and how to predict all possi-
ble evolutions of the process with respect to observed data. Specifically,
we describe practical algorithms that, given a chromosomal arm segmen-
tation and noisy segment copy number estimates, produce all segment
count vectors supported by the data that can be produced by BFB, and
all corresponding BFB architectures. This extends the scope of analyses
described in our previous work, which produced a single count vector
and architecture per instance.

We apply these analyses to a comprehensive human cancer dataset,
demonstrate the effectiveness and efficiency of the computation, and sug-
gest methods for further assertions of candidate BFB samples. An online
Appendix, the source code of our tool, and analyses results, are available
at http://cseweb.ucsd.edu/~vbafna/bfb.

1 Introduction

The origin of a tumor cell is marked by genomic instability [9]. Spontaneous,
viral, or other kinds of mechanisms may cause genomic segment deletions, du-
plications, translocations, inversions, etc., producing rearranged genomes with
a possibly malignant nature. Thus, decoding mechanisms that generate rear-
ranged genomes is critical to understanding cancer. Numerous mechanisms were
proposed, including the faulty repair of double-stranded DNA breaks by re-
combination or end-joining and polymerase hopping caused by replication fork

� Corresponding author.

R. Sharan (Ed.): RECOMB 2014, LNBI 8394, pp. 400–417, 2014.
c© Springer International Publishing Switzerland 2014

http://cseweb.ucsd.edu/~vbafna/bfb

Reconstructing Breakage Fusion Bridge Architectures 401

collapse [5,10]. These mechanisms are generally not directly observable, so their
elucidation requires the deciphering of often subtle clues after genomic instability
has ceased. An important source of information in this respect is the architec-
ture of the rearranged genome, i.e. the description of its chromosomes in terms
of concatenations of segments from the original genome.

Breakage Fusion Bridge (BFB) is one model of a genome rearrangement pro-
cess, which was first proposed by Barbara McClintock in the 1930’s [13,14]. Re-
cently, it has seen renewed interest as a possible mechanisms in tumor genome
evolution [3,4]. BFB begins with a telomeric loss on a chromosome, including
a loss of a sequential pattern that signals the location of chromosome termina-
tion. During cell division the telomere-lacking chromosome replicates, and its
two sister chromatids fuse together (possibly due to some DNA repair mecha-
nism falsely induced by the cell). This fusion produces a dicentric chromosome
of palindromic structure, which is later torn apart at some random point as the
centromeres of the dicentric chromosome migrate to opposite poles of the cell.
One part of the torn chromosome includes the fusion region and some tandemly
inverted chromosomal suffix duplication, and the other part lacks the corre-
sponding suffix. The two daughter cells receive these rearranged chromosomes,
both are missing the telomeric region, and the cycle can repeat again (Fig. 1).

�
�

�

�

�

�

�

�

�

�

�

�

�

Fig. 1. The BFB process. (a) A normal chromosome. (b) The chromosome looses its
telomere. (c) The chromosome is duplicated during cell devision. (d) Sister chromatids
are fused together. (e) Centromeres migrate to opposite poles of the cell. (f) The
fused chromosome is torn apart at some random position, causing one copy to have
an inverted suffix duplication, while the other copy has a trimmed suffix. Both copies
lack a telomere, and therefore may undergo additional BFB cycles. (g) After several
BFB cycles, the chromosome architecture exhibits significant increases in segment copy
numbers, as well as fold-back patterns.

In contrast to other mechanisms, BFB can actually be observed in progress
using methods that have been available for decades [14]. Cytogenetic techniques
can reveal the anaphase bridges, dicentric chromosomes, and homogeneously
staining regions that have long been the canonical evidence for BFB. However,
these techniques are useful only in cases where the BFB cycles are ongoing.
While useful in understanding the mechanism, they do not address the question
of whether BFB occurs extensively in evolving tumor genomes.

402 S. Zakov and V. Bafna

Recently, researchers (including us) have started looking at modern available
data in order to demonstrate BFB occurrence after the process has ceased, in-
cluding Fluorescent In Situ Hybridization (FISH), Array Comparative Genomic
Hybridization (aCGH), and Next Generation Sequencing (NGS) data. These
methods take advantage of distinctive BFB features exposed by such data,
including the abundance of fold-back inversions (i.e. duplicated chromosomal
segments arranged in a head-to-head orientation) [3,4], patterns of interleaving
segments of alternating orientations [12,17], and combinatorial properties of seg-
ment counts when copy number variations are due to BFB [11,20]. In fact, if the
architecture of the rearranged genome is known, it is possible to decide if this
architecture can be produced by BFB [11].

Partial knowledge regarding the architecture can be reveled by FISH anal-
yses [12], which uses fluorescence markers to identify the physical locations of
predetermined sequences on the rearranged genome. However, such experiments
are relatively expensive, and can only be performed in a small number of cases.
A more common measurement is NGS data, which contain a big set of short
sequenced reads extracted from a donor genome. Such data is typically used
for predicting the entire donor genomic sequence by computationally assembling
the reads, sometimes facilitated by consulting a similar pre-sequenced reference
genome. Unfortunately, BFB and other mechanisms can produce massively rear-
ranged and highly repetitive genomes. This hardens the task of assembly-based
sequencing due to the multiple ambiguous manners the repetitive reads may be
assembled, and the lack of a relevant reference template. Nevertheless, NGS data
can still be analyzed in order to infer some indirect information regarding the
donor genome architecture [1,6,15,19]. After aligning the reads against a refer-
ence genome, their genomic location distribution can be used in order to identify
segments on the reference genome of coherent read coverage, and to estimate the
number of times each such segment repeats in the donor genome. We will refer to
the output of the latter kind of analysis as copy number data. Other methods to
obtain copy number data are based on analyzing aCGH data [7,8,16,18] (Fig. 2).
Due to the noisy nature of both NGS and aCGH data, count estimates may be
inaccurate, and the true segment count is likely to fall within some interval of
integers around the estimated value. We use the term noisy copy number data
when referring to information regarding such intervals of possible count values.
In addition to copy number data, NGS data can be used in order to produce
contigs (chromosomal segments which may be assembled unambiguously), and
aberrant segment adjacencies can be exposed by discordant reads, restricting the
set of possible contig-based architectures.

In previous work [11,20], we showed how to analyze noisy copy number data
in order to decide is it likely to observe the input data under the assumption
the underlying rearrangement process is BFB. Specifically, we designed algo-
rithms that produce a single BFB architecture over the given segments in which
segment counts are supported by the data, if such an architecture exists. We
applied these algorithm in order to analyze a comprehensive aCGH dataset of
cancer cell lines [2], as well as sequence data from primary tumors [4], and

Reconstructing Breakage Fusion Bridge Architectures 403

�� ���� �� ���� �� ����
��������	
���
������

�����������������������

� �	 � �� � �� � �� � �	 	 �	 	 �	 � �

��

�
��

��

�
��!

�
(a) aCGH data

�
(b) Noisy copy number data

Fig. 2. (a) aCGH data for a part of the q-arm of human chromosome 14 in the NCI-
H508 cell line. Each data point corresponds to a probe on the array, where its x-
coordinate gives the probe’s sequence chromosomal position, and y-coordinate gives
its measured intensity (log-ratio). The data points are clustered into segments, and
an estimated segment copy number appears above each segment. (b) Possible count
intervals around the estimated counts. The counts in the region under the red curly
bracket are supported by a BFB architecture, if changing the count estimate of the
second segment in this region from 12 to 13 or to 11, and of the seventh segment from
7 to 8. Data is taken from [2] (segmentation and copy number analysis were computed
using the PICNIC software [8]).

identified a small subset of candidate samples exhibiting BFB hallmarks. Here,
we extend the scope of the analysis, and describe algorithms that report all
count settings supported by the data which can be explained by BFB, and all
corresponding BFB architectures. Although the theoretical time bounds for these
new algorithms may be exponential, we show that in practice they are efficient,
and apply an Informed Search optimization that further improves their practical
efficiency.

Our proposed algorithms satisfy an important need, therefore. While our work
postulates the existence of BFB using statistical arguments, additional physical
assertions can be obtained with FISH and aberrant read analyses. Starting with
noisy copy number data, our tool can be used to enumerate all possible BFB
architectures. These candidate architectures can then be used towards a small
set of FISH experiments (with a limited number of fluorescence markers) to
validate and refine the genomic architecture.

2 Formalism and Previous Results

Computational BFB-related problems were previously formulated in [11,20]. For
completeness, we give here the main definitions from these works.

A DNA segment σ is a string over the DNA nucleotide alphabet A,C,G, T .
The reversed segment of a segment σ, denoted here by σ, is the string obtained
by reading σ backwards, and replacing each nucleotide with its complementary
nucleotide (A ↔ T,C ↔ G). For example, the reverse of a segment σ = CGGAT
is the segment σ = ATCCG. In the rest of this paper, it is assumed we operate
on a given chromosomal arm with a fixed segmentation, and denote its list of
k segments by Σ = {σ1, σ2, . . . , σk}, ordered from the centromeric segment σ1

to the telomeric segment σk. The term “string” refers to a genomic architecture

404 S. Zakov and V. Bafna

over these segments, i.e. a concatenation of segments from Σ and their reversed
forms. Greek letters α, β, γ, ρ denote strings, and bar notation indicates reversed
strings. For example, if α = σ1σ3σ2, α = σ2σ3σ1. An empty string is denoted
by ε. The notation αl,t represents the string σlσl+1 . . . σt (thus when t < l,
αl,t = ε). To facilitate reading, σ1, σ2, σ3, . . . are replaced by A, B, C, . . . in
concrete examples.

A BFB cycle applied over a chromosomal arm can be viewed as a special
rearrangement procedure, in which some telomeric suffix of the arm is dupli-
cated, inverted, and concatenated tandemly at the telomeric end of the arm. A
BFB process is a consecutive application of BFB cycles. This notion is formally
captured by the following definition.

Definition 1. For two strings α, β, say that α
BFB−→ β if α = β, or α = ργ for

some strings ρ, γ such that γ �= ε, and ργγ
BFB−→ β. Say that α is an l-BFB string

if αl,t
BFB−→ α for some t, and say that α is a BFB string if it is an l-BFB string

for some l.

Note that by definition ε = αl,l−1 is an l-BFB string for every l ≥ 1. The count
vector 	n(α) = [n1, n2, . . . , nk] of a string α is a vector of integers, where for every
1 ≤ l ≤ k, nl is the total number of occurrences of σl and σl in α. For example,
for α = ABCDD̄C̄C, 	n(α) = [1, 1, 3, 2]. Say that a vector 	n is a BFB vector if
there exists some BFB string α such that 	n = 	n(α). In the previous example

	n(α) is a BFB vector, due to the BFB process α1,4 = ABCD
BFB−→ ABCDD̄C̄

BFB−→
ABCDD̄C̄C = α.

The computational analyses presented in this paper aim to detect evidence
for BFB, given a pre-analyzed segmentation of the genome and corresponding
copy number data. We assume that noisy copy number data is represented by
a weight function W = {wl,n | 1 ≤ l ≤ k, n = 0, 1, 2, . . .}, where wl,n is a
nonnegative weight of the count n with respect to the l-th segment. It may be
assumed w.l.o.g. that all weights wl,n satisfy 0 ≤ wl,n ≤ 1. The weight of a count

vector 	n = [n1, n2, . . . , nk] is given by W (n) =
∏

1≤i≤k

wi,ni , and by assumption

0 ≤ W (n) ≤ 1. In some cases, we refer to prefixes 	n1,l−1 = [n1, n2, . . . , nl−1] and
suffixes 	nl,k = [nl, nl+1, . . . , nk] of 	n, which may be empty if l = 1 or l = k + 1,
respectively. Define the weights of such sub-vectors accordingly, i.e. W (n1,l−1) =∏

1≤i<l

wi,ni and W (nl,k) =
∏

l≤i≤k

wi,ni , where the weight of an empty vector is 1 by

definition. Thus, for every 1 ≤ l ≤ k + 1, W (n) = W (n1,l−1) ·W (nl,k).
If some data analysis produces segment count probabilities Pr (nl = n) for

every segment σl and every count n = 0, 1, 2, . . ., weights can be set to these
probabilities choosing wl,n = Pr (nl = n). This way, the weight of a count vector
is the probability this vector reflects the true segment counts, given the observed
data. Another way to set weights given such probabilities would be to choose

weights by setting wl,n = Pr(nl=n)

Pr(nl=n∗
l)
, where n∗

l is the most likely count for the

l-th segment. Here, the weight of a count vector gives the ratio between its
probability and the probability of a most likely vector. Nevertheless weights

Reconstructing Breakage Fusion Bridge Architectures 405

are more general than probabilities, and can be used as a heuristic count error
modeling even when no probabilistic model is available.

In [20], several variants of BFB problems where formulated. Below we restate
these problems, and add two new variants addressed in the current work:

BFB Problem Variants
Input: a count vector 	n, or a weight function W and a weight 0 < η ≤ 1.

1. The decision variant [20]: given 	n, decide if 	n is a BFB vector.
2. The string search variant [20]: if 	n is a BFB vector, find a BFB string

α such that 	n = 	n(α).
3. The vector search variant (or the distance variant in [20]): given W

and η, report a maximum weight BFB vector 	n in case there exists such a
vector with W (n) ≥ η, and otherwise report “FAILED”.

4. The exhaustive vector search variant: given W and η, report all BFB
vectors 	n with W (n) ≥ η.

5. The exhaustive string search variant: given W and η, report all BFB
strings α such that W (n(α)) ≥ η.

For a count vector 	n, define N(n) =
∑

1≤l≤k

nl and Ñ(n) =
∑

1≤l≤k

log(nl).

Note that N(n) is the total length of a string admitting 	n, and Ñ(n) is propor-
tional to the number of bits needed for representing 	n. For a weight function
W and a weight η, define N(W, η) = max {N(n) : W (n) ≥ η}, and Ñ(W, η) =

max
{
Ñ(n) : W (n) ≥ η)

}
. In [20], it was shown that the BFB decision variant

can be solved using O(Ñ (n)) bit operations (i.e. linear time in the input length),
the string search variant can be solved in O(N(n)) operations (i.e. linear time
in the output length), and that the vector search variant can be solved using

at most a sub-exponential number of operations 2O(log2 N(W,η)). Here, we give
algorithms for the two new exhaustive search variants. While theoretically the
output of these algorithms can be exponential with respect to N(W, η), we show
that for realistic inputs this output is manageable. In addition, we describe an
Informed Search (IS) approach that significantly reduces the running time in
practice by eliminating irrelevant search paths and traversing only paths which
are guaranteed to produce valid solutions. Next, we describe some ideas taken
from [20], upon which the algorithms presented here are built.

An l-BFB palindrome is an l-BFB string of the form β = αα. It can be shown
that β = αα is an l-BFB palindrome if and only if α is an l-BFB string. By
definition, ε = εε is an l-BFB palindrome for every l ≥ 1. In addition, observe
that when β = αα we have that 	n(β) = 2	n(α). This allows to replace the
question “is there a BFB string admitting the count vector 	n” by the equivalent
question “is there a BFB palindrome admitting the count vector 2	n”.

An l-block is a string of the form β = σlβ
′σl, where β′ is an (l + 1)-BFB

palindrome. It can be shown that an l-block is a special form of an l-BFB palin-
drome, and that every l-BFB palindrome is some palindromic concatenation of

406 S. Zakov and V. Bafna

l-blocks (though not every palindromic concatenation of l-blocks is a valid l-
BFB palindrome). These observations allow to adopt a “layered” view of BFB
palindromes, as follows (Fig. 3). Let β = αα be a 1-BFB palindrome, where
	n(β) = 2	n(α) = [2n1, 2n2, . . . , 2nk]. Therefore, β is a palindromic concatenation
of 1-blocks, and denote by B1 the collection of all these blocks. Every 1-block in
B1 is a string of the form Aβ′Ā, where β′ is some 2-BFB palindrome. As there
are 2n1 occurrences of A and Ā in β, and each block in B1 contains exactly two
such occurrences, the total number of blocks in B1 is exactly n1. Masking the
letters A and Ā from all blocks in B1, the collection becomes a 2-BFB palindrome
collection of size n1. The 2-BFB palindromes in this collection can be further
decomposed into 2-blocks, yielding a collectionB2 of 2-blocks. Similarly as above,
B2 contains exactly n2 blocks. This process can continue inductively, yielding
for every 1 ≤ l ≤ k a corresponding collection Bl of l-blocks, whose size is nl.
One may also imagine an additional collection in this series Bk+1, containing
zero (k + 1)-blocks.

� � � �

� � � � � �� �� � � ��

(a) A BFB process

�
�
�
�

�

�
�

� �
�

�

�
�

��
�

�

� � � �

�
� �

�� ��

� �

�
�
�
� �

�

	

�
�

�

	
� �

�
�

��� ���� �

�
� �

�� ��

�
�
�
�

�
	

� � ��
	

� � � �
��

�

�
� �

��� �
�

�
�

��

�
�
�
�

�
�

	
� �

�
�
�

�
	

�
�

� � � �
� �

	 			 	 			

��
��

�� ��

��

�� ��

�� ��
�

�� ��

��

�

(b) Palindrome layers

Fig. 3. (a) A BFB process generating a string α: ABCD
BFB−→ ABCDD̄

BFB−→
ABCDD̄DD̄C̄B̄

BFB−→ ABCDD̄DD̄C̄B̄B
BFB−→ ABCDD̄DD̄C̄B̄BB̄BC. (b) The layers of the BFB

palindrome β = αα. The blocks in each layer are marked with annotations of the
form βi.

This layered view is exploited in a reversed order by the algorithms in [20],
developing a BFB palindrome given an input count vector 	n = [n1, n2, . . . , nk]:
Starting with an empty collection Bk+1 of (k + 1)-blocks, the algorithm com-
putes iteratively a sequence of collections Bk, Bk−1, . . . , B1, each collection Bl

is an l-block collection of size nl. In order to generate Bl, the algorithm first
concatenates (l + 1)-blocks from Bl+1, forming a collection B of (l + 1)-BFB
palindromes of size nl (this procedure is called folding). Then, each (l+1)-BFB
palindrome β′ ∈ B is wrapped with a pair of σl segments, rendering it into an
l-block β = σlβ

′σl, and Bl is set to be the collection containing all these l-blocks.
The final collection of 1-blocks B1 is folded one more time into a single 1-BFB
palindrome β = αα, and the algorithm returns the half-length prefix α of this
palindrome as a BFB string admitting the input count vector 	n.

Reconstructing Breakage Fusion Bridge Architectures 407

Fig. 3b illustrates a possible run of the algorithm over the input count vector
	n = [1, 5, 3, 4]. First, the algorithm initializes an empty collection of 5-blocks
B5. In the first iteration, there is a need to perform concatenations of blocks
in B5, and produce n4 = 4 5-BFB palindromes. Such 5-BFB palindromes may
only be obtained by concatenating zero elements (as there are no elements in
B5), and so four empty strings are generated in this folding process, yielding
the 5-BFB palindrome collection {4ε}. Next, each 5-BFB palindrome in this
collection is wrapped by σ4 = D and σ4 = D̄, producing the collection of 4-blocks
B4 =

{
4DεD̄

}
= {4β1}. In the next iteration, the collection B4 needs to reduce

its size from n4 = 4 into n3 = 3 by concatenating its elements to produce 3-
BFB palindromes. In this example, there are two concatenations of two elements
the form β1β1, and one concatenation of zero elements that produces an empty
string ε. The 4-BFB palindromes in the resulting folded collection {2β1β1, ε}
are wrapped by σ3 = C and σ3 = C̄, yielding the 3-block collection B3 ={
2Cβ1β1C̄,CεC̄

}
= {2β2, β3}. This process continues for two more iterations,

generating similarly the collections B2 = {2β4, β5, 2β6} and B1 = {β7}. All
elements in the last collection B1 are then concatenated into a single 1-BFB
palindrome β (in this example B1 contains a single element β7, and so β = β7),
and the returned string α is the half-length prefix of this palindrome.

The ability of the schematic algorithm above to process the entire input vector
	n and produce a corresponding BFB string depends on its ability to fold interme-
diate collections Bl computed along its run. In cases where it cannot fold some
intermediate block collection, it returns a fail message, implying no BFB string
admits the input vector 	n. A case where folding cannot be applied is for example
the case where n2 = 2, B2 = {BCC̄B̄,BB̄}, and n1 = 1. In this case, since both
possible concatenations BCC̄B̄BB̄ and BB̄BCC̄B̄ of the two elements in B2 are
non-palindromic, the folding procedure must fail at this stage. Another example
of a fail folding is the case where n2 = 3, B2 = {BCC̄B̄, 2BB̄}, and n1 = 1. In
this case, though there exists a palindromic concatenation BB̄BCC̄B̄BB̄ of all
three elements in B2, this concatenation is not a valid BFB palindrome (since
any 2-BFB string containing the segment C must start with the prefix BC), and
so the collection may not be folded.

In [20], it was shown that the ability to fold a block collection depends
on a property called the signature of the collection. A signature of an l-BFB
palindrome collection is an infinite sequence of integers 	s = [s0, s1, s2, . . .] with
the following properties: (1) the first nonzero element in 	s (if there is such
an element) must be positive, (2) the cardinality of the signature, defined by

‖	s‖ =

∞∑

d=0

2dabs(sd) (where abs(sd) is the absolute value of sd), equals to the

size of the collection to which the signature corresponds, and (3) wrapping the
collection (i.e. replacing each l-BFB palindrome β in the collection with an (l−1)-
block σl−1βσl−1) does not change its signature. In this sense, a signature can
be thought of as a generalization of a binary representation of an integer, in

408 S. Zakov and V. Bafna

which the coefficients may be other integers besides 0 and 1 (with the additional
restriction of a positive first nonzero element, and the fact the absolute coefficient
value is taken when computing the corresponding summation). The prefix of
a signature 	s up to its d-th element is denoted by 	sd = [s0, s1, . . . , sd]. Due
to being relatively technical, we omit here the formal signature definition and
refer intrigue readers to [20] for a full explanation on how to derive collection
signatures.

From the signature cardinality definition, it follows that for a signature 	s such
that ‖	s‖ = n, all signature elements si for i > logn are zeros, thus signatures
can be explicitly represented by a (small) finite number of nonzero elements.
In addition, it follows that the only signature of an empty collection is 	s =
[0, 0, . . .], and the only signature of a collection containing a single element is 	s =
[1, 0, . . .] (the “. . .” notation implies that the remaining signature elements are
zeros). Otherwise, two collections of the same size may have different signatures.
Signatures can be ranked according to their lexicographic order. That is, say that
	s < 	s ′ if there exists an index d such that 	sd−1 = 	s ′

d−1 and sd < s′d, and say
that 	s ≤ 	s ′ if 	s < 	s ′ or 	s = 	s ′.

Lemma 1. Let B be an l-block collection with a signature 	s. For any folding B′

of B and its corresponding signature 	s ′, 	s ≤ 	s ′. In addition, for any signature 	s ′

such that (1) 	s ≤ 	s ′ and (2) 	s ′ is the lexicographically minimal signature among
all signatures of cardinality ‖	s ′‖ that meet (1), there exists a folding B′ of B
whose signature is 	s ′.

The proof of Lemma 1 follows from Claims 14 and 28 in [20] (Supporting Infor-
mation). The signatures corresponding to the 4 block collections implied by the
BFB palindrome presented in Fig. 3b are 	s4 = [0, 0, 1, 0, . . .], 	s3 = [1,−1, 0, . . .],
	s2 = [1, 0,−1, 0, . . .], and 	s1 = [1, 0, . . .], respectively. Observe that the cardinal-
ity of each signature equals to the size of the corresponding collection (or the
corresponding count in 	n = [1, 5, 3, 4]), and that 	s l+1 ≤ 	s l for every 1 ≤ l < 4.

It follows from Lemma 1 that a vector 	n = [n1, n2, . . . , nk] is a BFB count
vector if and only if there exists a series of lexicographically non-increasing sig-
natures 	s1, 	s2, . . . , 	sk such that nl =

∥∥	s l
∥∥ for every 1 ≤ l ≤ k, and the first

signature in this series satisfies 	s1 ≤ [1, 0, . . .] (the signature of a collection with
one element, due to the last concatenation of all 1-blocks in B1 into a single
palindrome). Call such a signature series a valid signature series for 	n, and so
we get the following conclusion:

Conclusion 1. A vector 	n is a BFB vector if and only if it has a valid signature
series. Moreover, any sub-sequence of a BFB vector is also a BFB vector, evident
by the corresponding sub-series of a valid signature series for the full vector.

For example, the vector 	n = [3, 4] is a BFB vector, due to the valid signa-
ture series 	s1 = [1,−1, 0, . . .], 	s2 = [0, 0, 1, 0, . . .]. A corresponding BFB string

may be obtained by AB
BFB−→ ABB̄

BFB−→ ABB̄BB̄Ā
BFB−→ ABB̄BB̄ĀA. An ex-

ample for a vector that does not have a valid signature series is the vector

Reconstructing Breakage Fusion Bridge Architectures 409

	n = [4, 3]: the only signatures with cardinality 4 are the signatures [0, 0, 1, 0, . . .],
[0, 2, 0, . . .], [2, 1, 0, . . .], [2,−1, 0, . . .], and [4, 0, . . .]. Among these signatures, the
only ones who lexicographically precede the signature [1, 0, . . .] are the signatures
[0, 0, 1, 0, . . .] and [0, 2, 0, . . .]. Nevertheless, the only signatures of cardinality 3
are [1,−1, 0, . . .], [1, 1, 0, . . .], and [3, 0, . . .], and none of them precedes the two
possible 4-cardinality signatures.

As a matter of fact, restating Algorithm DECISION-BFB in [20] (Supporting
Information), one can describe it as follows. Setting 	sk+1 to be the the signa-
ture [0, 0, . . .] of an empty collection (which is also the lexicographically min-
imal among all signatures), the algorithm produces iteratively the signatures
	sk, . . . , 	s1 in a valid signature series for the input vector 	n = [n1, n2, . . . , nk].
Each signature 	s l is obtained by applying the minimal lexicographic increment
to 	s l+1 so that it would admit the cardinality

∥∥	s l
∥∥ = nl. The algorithm returns

true if and only if all increments are successful.

3 Algorithms

In this section we develop algorithms for the two exhaustive search variants of
the BFB problem. To do so, we first describe some ideas and subroutines that
would allow efficient implementations of these algorithms.

Let 	n = [n1, n2, . . . , nk] be a BFB vector, and let 1 ≤ l ≤ k + 1. Define the
right-maximal signature R(n1,l−1) of the prefix 	n1,l−1 = [n1, n2, . . . , nl−1] of 	n to
be [1, 0, . . .] if l = 1, and otherwise to be the lexicographically maximal signature
	s l−1 in some valid signature series 	s1, . . . , 	s l−1 for 	n1,l−1. Similarly, define the
left-minimal signature L(nl,k) of the suffix 	nl,k = [nl, nl+1, . . . , nk] of 	n to be
[0, 0, . . .] if l = k+1, and otherwise to be the lexicographically minimal signature
	s l in some valid signature series 	s l, . . . , 	sk for 	nl,k.

Lemma 2. Let 	n = [n1, n2, . . . , nk] be a BFB vector. For every 1 ≤ l′ ≤ l ≤
k + 1, L(nl,k) ≤ R(n1,l−1), R(n1,l−1) ≤ R(n1,l′−1), and L(nl,k) ≤ L(nl′,k).

Proof. We start by showing the first inequality in the lemma. If l = 1 or l = k+1,
L(nl,k) ≤ R(n1,l−1) follows immediately. Otherwise, consider a valid signature
series 	s1, 	s2, . . . , 	sk for 	n. Note that its prefix 	s1, 	s2, . . . , 	s l−1 is a valid signature
series for 	n1,l−1, and its suffix 	s l, 	s l+1, . . . , 	sk is a valid signature series for 	nl,k.
Thus, by definition, L(nl,k) ≤ 	s l ≤ 	s l−1 ≤ R(n1,l−1).

To show the second inequality in the lemma, let 	s1, 	s2, . . . , 	s l−1 be a valid
signature series for 	n1,l−1 such that 	s l−1 = R(n1,l−1). Observe similarly as above

that R(n1,l−1) = 	s l−1 ≤ 	s l′−1 ≤ R(n1,l′−1). The last inequality in the lemma is
shown symmetrically. 	

The MIN-DECREMENT procedure (Algorithm 1) gets as an input a signature
	s and an integer n ≥ 0, and returns the lexicographically maximal signature 	s ′

such that 	s ′ ≤ 	s and ‖	s ′‖ = n if such a signature exists, and otherwise returns
a fail message. Here, for an integer m �= 0, the notation dm represents the parity
degree of m, which is defined to be the maximum integer dm such that m divides

410 S. Zakov and V. Bafna

by 2dm . Thus, for example, d13 = d13·20 = 0, and d−12 = d−3·22 = 2. The
correctness of this computation is shown in the online Appendix. Symmetrically,
the MIN-INCREMENT procedure gets as an input a signature 	s and an integer
n ≥ 0, and returns the lexicographically minimal signature 	s ′ such that 	s ≤ 	s ′

and ‖	s ′‖ = n if such a signature exists, and otherwise returns a fail message. The
pseudo-code for this procedure is given in the online Appendix, and its proof is
symmetric to that of the MIN-DECREMENT procedure.

Algorithm 1. MIN-DECREMENT(s, n)

Input: A signature �s and an integer n ≥ 0.
Output: The lexicographically maximal signature �s ′ ≤ �s such that

∥
∥�s ′∥∥ = n, or the

message “FAILED” if there is no such signature.

1 Let m = ‖�s‖ − n. If m = 0 then return �s.

2 Else if there is an integer 0 ≤ d ≤ dm such that n ≥ ‖�sd−1‖ + 2d max{−sd + 1, 0} then
3 Let d be the maximum integer meeting the condition above. Initialize �s ′ so that

�s ′
d−1 = �sd−1, and s′d = sd − 2 if d < dm, or s′d = sd − 1 if d = dm.

4 If n ≥ ∥
∥�s ′

d

∥
∥ then set s′d+1 ← n−‖�s ′

d‖
2d+1 .

5 Else set s′d ← n−
∥
∥
∥�s ′

d−1

∥
∥
∥

2d
.

6 Return �s ′.

7 Else return “FAILED”.

Lemma 3. If 	n1,l−1 = [n1, . . . , nl−1] is a BFB vector, 	s = R(n1,l−1), and 	s ′ =
MIN-DECREMENT(s, nl), then 	s ′ is the right-maximal signature for the BFB
vector 	n1,l = [n1, . . . , nl−1, nl]. Symmetrically, if 	nl+1,k = [nl+1, . . . , nk] is a
BFB vector, 	s = L(nl+1,k), and 	s ′ = MIN-INCREMENT(s, nl), then 	s ′ is the
left-minimal signature for the BFB vector 	nl,k = [nl, nl+1, . . . , nk].

Proof. We show the first part of the lemma, where the second part is shown sym-
metrically. First, note that the constructed vector 	n1,l is indeed a BFB vector,
due to the corresponding valid signature series obtained by adding 	s ′ to a valid
signature series for 	nl−1 whose last signature is 	s. Note that ‖R(n1,l)‖ = ‖	s ′‖ =
nl. From Lemma 2 R(n1,l) ≤ 	s, and since 	s ′ = MIN-DECREMENT(s, nl) it
follows that R(n1,l) ≤ 	s ′. From the maximality of R(n1,l), R(n1,l) = 	s ′. 	

In the rest of this section, let W be a weight function, and 0 < η ≤ 1 some
weight threshold. Let 0 ≤ l ≤ k, and consider the set of all signature-weight pairs
of the form 〈R(n1,l),W (n1,l)〉 such that 	nl = [n1, n2, . . . , nl] is a BFB vector and
W (n1,l) ≥ η. Say that the pair 〈	s, w〉 within this set dominates the pair 〈	s ′, w′〉
if 	s ′ ≤ 	s and w′ ≤ w. Define the l-th boundary curve Cl with respect to W and
η as the maximal subset of these pairs satisfying that no pair in Cl dominates
another pair in Cl, and note that Cl is unique. Traversing the pairs in Cl from
lowest to highest lexicographic signature rank, the series of signature values
strictly increases, while the series of weight values strictly decreases, yielding a
steps-like curve (Fig. 4). Algorithm 2 generates all boundary curves for W and
η, which will later be exploited by algorithms for the BFB exhaustive vector and
string search variants.

Reconstructing Breakage Fusion Bridge Architectures 411

Fig. 4. A boundary curve. Points correspond to pairs of the form 〈�s, w〉, with x-
coordinate reflecting the lexicographic rank of �s and y-coordinate equals to w. Blue
points belong to the boundary curve, and green points are dominated by points on the
curve.

Algorithm 2. BOUNDARY-CURVES (W, η)

Input: A weight function W and a weight η.
Output: All boundary curves for W and η.

1 Set C0 ← {〈[1, 0, . . .], 1〉}.
2 For l ← 1 to k do

3 Set Cl ← ∅.
4 For each n and

〈
�s ′, w′〉 ∈ Cl−1 s.t. w′ · wl,n ≥ η and MIN-DECREMENT(�s ′, n)

does not fail do
5 Let �s be the output of MIN-DECREMENT(�s ′, n), and let w = w′ · wl,n.

6 If 〈�s, w〉 is not dominated by any pair in Cl then

7 Add 〈�s, w〉 into Cl, and remove from Cl all pairs dominated by 〈�s, w〉.

8 Return
{

C0, C1, . . . , Ck
}

.

Proof (Algorithm 2). Note that a pair in C0 corresponds to a right-maximal
signature and a weight of an empty vector. By definition, the only such pair is
the pair 〈[1, 0, . . .], 1〉, and the algorithm correctly sets C0 to contain this single
pair (line 1). Now, assuming inductively the algorithm has computed correctly
the curve Cl−1, we prove it also computes correctly Cl. It is clear from lines 6
and 7 of the algorithm that no pair in the set Cl computed by the algorithm
dominates another pair in this set. It is therefore remains to show that after the
l-th loop iteration was executed (1) for every BFB vector 	n1,l = [n1, . . . , nl] with
W (n1,l) ≥ η there exists a pair 〈	s, w〉 ∈ Cl which dominates 〈R(n1,l),W (n1,l)〉,
and (2) for every pair 〈	s, w〉 ∈ Cl there exists some BFB vector 	n1,l = [n1, . . . , nl]
such that 	s = R(n1,l) and w = W (n1,l).

We start by showing (1). Let 	n1,l = [n1, . . . , nl−1, nl] be a BFB vec-
tor with W (n1,l) ≥ η, and consider its prefix 	n1,l−1 = [n1, . . . , nl−1]. Ob-

serve that W (nn,l−1) =
W (�n1,l−1)

wl,nl

≥ η. As 	n1,l−1 is also a BFB vector, the

412 S. Zakov and V. Bafna

inductive assumption implies that Cl−1 contains a pair 〈	s ′, w′〉 that domi-
nates 〈R(n1,l−1),W (n1,l−1)〉. From Lemma 2, R(n1,l) ≤ R(n1,l−1) ≤ 	s ′. Since
‖R(n1,l)‖ = nl, running MIN-DECREMENT (s ′, nl) does not fail, and returns
a signature 	s such that R(n1,l) ≤ 	s ≤ 	s ′ and ‖	s‖ = nl. As w′ · wl,nl

≥
W (n1,l−1) · wl,nl

= W (n1,l) ≥ η, it follows that the algorithm runs the code
in lines 5-7 with respect to nl and 〈	s ′, w′〉. In particular, the algorithm updates
Cl with the pair 〈	s, w〉 for w = w′ · wl,nl

≥ W (n1,l) (lines 6-7). Therefore,
at the end of the l-th iteration, either Cl contains 〈	s, w〉, or it contains some
other signature-weight pair that dominates 〈	s, w〉, and so it contains a pair that
dominates 〈R(n1,l),W (n1,l)〉.

To show (2), assume that Cl contains a pair 〈	s, w〉. This pair was added to
Cl in line 7 of the algorithm, which means there exists some pair 〈	s ′, w′〉 ∈ Cl−1

such that for nl = ‖	s‖, 	s = MIN-DECREMENT(s ′, nl), and w = w′ · wl,nl
≥ η.

From the inductive assumption, there is BFB vector 	n1,l−1 = [n1, . . . , nl−1] such
that 	s ′ = R(n1,l−1) and w′ = W (n1,l−1). For the vector 	n1,l = [n1, . . . , nl−1, nl],
lemma 3 implies that 	s = R(n1,l). In addition W (n1,l) = w, and the lemma
follows. 	

Finally, we present Algorithm 3 for the BFB exhaustive vector search variant.
The algorithm processes the segments of the input one by one, starting from the
k-th segment down to the first segment. The notation [n, 	n] is used for denoting
a vector whose first element is the integer n, and its remaining suffix is the
vector 	n.

Algorithm 3. EXHAUSTIVE-VECTOR-SEARCH (W, η)

Input: A weight function W and a weight 0 < η ≤ 1.
Output: All BFB vectors �n = [n1, n2, . . . , nk] satisfying W (�n) ≥ η.

1 Generate all boundary curves C0, C1, . . . , Ck with respect to W and η using Algorithm 2. If

Ck is empty, return the message “NO SOLUTION” and halt.

2 Set Qk+1 to be the collection containing a single empty vector.
3 For l ← k down to 1 do

4 Set Ql ← ∅.
5 For each �nl+1,k ∈ Ql+1 and count n such that W ([n, �nl+1,k]) ≥ η and

MIN-INCREMENT (L(�nl+1,k), n) does not fail do
6 Let �nl,k = [n, �nl+1,k], and let �s = MIN-INCREMENT(L(�nl+1,k), n).

7 If there exists a pair
〈
�s ′, w′〉 ∈ Cl−1 such that �s ≤ �s ′ and w′ ·W (�nl,k) ≥ η then

8 Add �nl,k to Ql.

9 Return Q1.

Proof (Algorithm 3). By definition, if the boundary curve Ck is empty, it im-
plies there is no BFB vector 	n = [n1, . . . , nk] with W (n) ≥ η. In this case, the
algorithm correctly reports there is no solution to the input (line 1).

Otherwise, we show for every 1 ≤ l ≤ k+1 that the following invariant holds:
After Ql is fully computed, Ql contains 	nl,k = [nl, . . . , nk] if and only if 	nl,k is
a suffix of some BFB vector 	n = [n1, . . . , nk] of weight W (n) ≥ η. In particular,

Reconstructing Breakage Fusion Bridge Architectures 413

this invariant proves that the returned value Q1 (line 9) is indeed the solution
for the BFB exhaustive vector search variant, and so it only remains to establish
the correctness of the invariant.

For l = k+1, the fact that Qk+1 contains a single empty suffix (line 2) derives
the invariant in a straightforward manner. Otherwise, assuming inductively the
invariant holds with respect to Ql+1, we prove it also holds with respect to Ql.

Let 	n = [n1, . . . , nk] be a BFB vector of weight W (n) ≥ η, and consider its
two suffixes 	nl,k = [nl, nl+1 . . . , nk] and 	nl+1,k = [nl+1 . . . , nk]. From the induc-
tive assumption, 	nl+1,k ∈ Ql+1. From Lemma 3, 	s = L(nl,k) satisfies that 	s =
MIN-INCREMENT(L(nl+1,k), nl). Since W (nl,k) ≥ W (n) ≥ η, the condition in
line 5 holds, and lines 6-8 are executed with respect to 	nl,k and 	s. Note that the
prefix 	n1,l−1 = [n1, . . . , nl−1] of 	n is a BFB vector with W (n1,l−1) ≥ W (n) ≥ η.
From the definition of Cl−1, there exists a pair 〈	s ′, w′〉 ∈ Cl−1 that dominates
the pair 〈R(n1,l−1),W (n1,l−1)〉. From Lemma 2, L(nl,k) ≤ R(n1,l−1) ≤ 	s ′. In
addition, w′ ·W (nl,k) ≥ W (n1,l−1) ·W (nl,k) = W (n) ≥ η, and so the condition
in line 7 holds, and the algorithm adds 	nl,k into Ql in line 8.

For the other direction of the invariant, let 	nl,k = [nl, nl+1, . . . , nk] ∈ Ql. Due
to the manner it was constructed (lines 5-6), its suffix 	nl+1,k = [nl+1, . . . , nk] is
in Ql+1, and from Lemma 3, 	nl,k is a BFB vector with L(nl,k) = 	s. From line 7,
there exists a pair 〈	s ′, w′〉 ∈ Cl−1 such that 	s ≤ 	s ′ and w′ · W (nl,k) ≥ η, and
so from the definition of Cl−1 there exists a BFB vector 	n1,l−1 = [n1, . . . , nl−1]
for which R(n1,l−1) = 	s ′ and W (n1,l−1) = w′. The concatenation of 	n1,l−1

and 	nl,k gives the vector 	n = [n1, . . . , nl−1, nl, . . . , nk], whose weight satisfies
W (n) = W (n1,l−1) ·W (nl,k) = w′ ·W (nl,k) ≥ η. In addition, 	n is a BFB vector,
due to the corresponding valid signature series obtained by concatenating a valid
signature series for 	n1,l−1 that ends with 	s ′ and a valid signature series for 	nl,k

that starts with 	s, concluding this direction of the proof. 	

The algorithm for the exhaustive BFB string search variant applies a similar

approach in order to produce all BFB strings whose count vector weights are at
least η. It starts by generating signature curves exactly as done by Algorithm 3.
Then, in each iteration l, instead of computing a set Ql of count vectors, the
algorithm computes a set P l of l-block collections. At the end of the iteration, P l

contains all l-block collections Bl such that there exists some 1-BFB palindrome
β in which the l-th layer’s block collection is Bl, and the weight of the vector 	n
such that 	n(β) = 2	n satisfies W (n) ≥ η. The initial collection P k+1 contains a
single empty (k+1)-block collection. In the l-th iteration, for each (l+1)-block
collection Bl+1 ∈ P l+1, all possible foldings of Bl+1 are enumerated. For each
such folding, its signature and weight are examined against Cl−1 similarly as
done in line 7 of Algorithm 3, and if meeting the condition all elements in the
collection are wrapped, and the resulting l-block collection Bl is added into P l.
Due to space limits, we omit the details for the process of enumerating all foldings
of Bl+1, which will be described in an extended version of this manuscript.

414 S. Zakov and V. Bafna

4 Results

In order to test our algorithms we have used cancer data taken from the Can-
cer Genome Project dataset [2]. This data covers aCGH samples (Affymetrix
Genome-Wide Human SNP Array 6.0) from 746 human cancer cell lines. Seg-
mentation and segment copy numbers are as reported by [2], who used the
PICNIC software [8] for this analysis. In total, the dataset contains about 35
thousands chromosomal arms (746 samples, 23 or 24 chromosomes per sample,
two arms per chromosome), each arm is segmented, and each segment is assigned
an estimated copy number based on the observed aCGH data. As shown in [20],
short BFB-like count vectors have a high probability to emerge even when the
genome was rearranged with mechanisms different from BFB. Thus, in order to
detect significant BFB evidence we have filtered the set of chromosomal arms to
include only arms with at least eight consecutive segments such that no adja-
cent segments share the same copy number estimation. After this filtration, the
remaining subset included 6589 chromosomal arms. As the estimated counts re-
flect the expected segment copy numbers in all copies of the chromosome in the
sample, we have corrected the counts by reducing p−1 from each count, where p
is the ploidy (i.e. the number of copies) of the chromosome in the sample. Typi-
cally p = 2, but since these are heavily rearranged cancer genomes, chromosomal
losses and whole chromosomal duplications are not rare. We therefore allowed
the value of p to vary between 1 and 5, and run the BFB analyses for each value.

As currently no analysis tool available produces count weights, we have derived
such weights from the expected counts reported by PICNIC (after correcting for
ploidy). Specifically, for a segment whose observed count is n, the weight of a

count n′ was defined by Pr(n|n′)
Pr(n|n) , where Pr(x|λ) = λxe−λ

x! is the probability to

observe the value x for a random variable distributing according to the Poisson
distribution with parameter λ. For each of the obtained weight functions, we
used the DISTANCE-BFB algorithm from [20] to report all longest BFB sub-
vectors with weight at least η = 0.7. Out of the 6589 samples, 54 samples had
for at least one ploidy value 1 ≤ p ≤ 5 a BFB sub-vector of length at least 8.
Some samples had long BFB sub-vectors with respect to more than one ploidy
value, and the total number of obtained BFB vectors was 86.

Then, we considered the segment coordinates and weight functions corre-
sponding to the obtained sub-vectors, and run Algorithm 3 in order to find all
BFB vectors of weights at least η = 0.7 with respect to these weight functions.
For these 86 instances, a total number of 19154 heavy BFB vectors were found,
with an average of 222 solutions per-instance. This reviles an interesting prop-
erty of the problem when applied over this data: the vast majority of samples,
6535 out of 6589, cannot be explained by any BFB count vector (and thus are
unlikely to be obtained from BFB), yet each one of those 54 samples who can
be explained by BFB has about several tens or hundreds of corresponding count
vectors.

Reconstructing Breakage Fusion Bridge Architectures 415

The above analysis was run by two variants of our algorithm - the IS variant
described by Algorithm 3, and a variant that runs a similar procedure without
applying the IS optimization (essentially, it runs the same code as Algorithm 3,
with the exception it does not generate the signature curves in line 1, and does
not apply the condition in line 7 before adding new elements to collections Ql).
The disadvantage of the non-IS variant is in that sets of the form Ql main-
tain BFB vectors 	nl,k = [nl, . . . , nk] which may not be suffixes of some BFB
vectors 	n = [n1, . . . , nk] of weight at least η. To measure the gain of the IS al-
gorithm, we count the number of signature increment attempts the algorithms
perform (line 5). On average, the IS variant performed 57-fold less increments,
with a total number of 5672346 incrementation attempt over all 86 vectors, versus
325343441 for the non-IS algorithm. While the IS variant has a clear efficiency
advantage over the non-IS variant, this advantage might be considered more
modest than expected. A possible reason for that is that maximum copy num-
ber values reported in [2] were limited to 14, even when the data suggests higher
copy numbers. In general, higher copy numbers usually imply a higher number
of alternative heavy counts, which in turn induce a higher number of possible
heavy count vectors. For example, when comparing the two algorithms over the
synthetic count vector 	n = [3, 8, 111, 8, 5, 150, 11, 170, 4, 53, 100, 75, 49, 10, 42, 18],
using the same Poisson-based weights as described above and requiring that out-
put vectors weigh at least η = 0.85, the non-IS algorithm runs 218 second1 and
performs over 20 million signature increments, whereas the IS algorithm runs
120 milliseconds and performs 635 signature increments. Both algorithms return
exactly the same output - a set of 18 BFB vectors. Other simulated inputs can
cause memory explosion for the non-IS variant, while handled efficiently by the
IS variant.

5 Discussion and Conclusions

The problem of detecting breakage fusion bridge is challenging, but significant
progress has been made in the last few years. Our work suggests that while rare,
BFB does occur in tumor derived cell lines and also in primary tumors. In this
work, we describe algorithms that can be used to enumerate all possible BFB
architectures given uncertain copy number data.

The results of our analyses heavily depend on the input weights, which in turn
depend on separated analyses applied to biological data. While we used here a
simple Poisson-based model in order to render fixed available count estimations
into weight functions, it is clear that more realistic weighing can be applied.
Examining Fig. 2 for example, one can observe that different segments demon-
strate different variance in signal intensities, implying that some count estimates
are more reliable than others. Incorporating segment lengths and signal variance
information when choosing count weights is likely to produce more meaningful
weights and improve the quality of the analyses output.

1 Running time was measured for an intel Core i7 processor with Microsoft Windows
7 operating system, code is implemented in Java.

416 S. Zakov and V. Bafna

Different measurements can yield other types of BFB evidence. For example,
deep sequencing experiments can sequence reads spanning genomic breakpoints.
In a BFB modified genome, it is expected that many of these breakpoints reflect
fold-back inversions (i.e. concatenations between reference segments and their
inverted form), while such fold-back patterns are less common in other rear-
rangement mechanisms [4]. Thus, identification of high or low fold-back pattern
frequencies can support or weaken the conjecture BFB has occurred, respectively.
Such evidence is less frequent in currently available data, as reliable breakpoint
information requires sequencing to a relatively high depth of coverage (while
copy number data can be obtained also from sequencing with a lower depth of
coverage or from aCGH experiments). When given though, such information can
be integrated and improve the quality of BFB calling [20].

Acknowledgements. The authors are thankful to the anonymous RECOMB
reviewers for their helpful comments. The research was supported by grants from
the NIH (RO1-HG004962), and the NSF (CCF-1115206, IIS-1318386).

References

1. Alkan, C., Kidd, J.M., Marques-Bonet, T., Aksay, G., Antonacci, F., Hormozdiari,
F., Kitzman, J.O., Baker, C., Malig, M., Mutlu, O., Sahinalp, S.C., Gibbs, R.A.,
Eichler, E.E.: Personalized copy number and segmental duplication maps using
next-generation sequencing. Nat. Genet. 41, 1061–1067 (2009)

2. Bignell, G.R., Greenman, C.D., Davies, H., Butler, A.P., Edkins, S., Andrews, J.M.,
Buck, G., Chen, L., Beare, D., Latimer, C., Widaa, S., Hinton, J., Fahey, C., Fu,
B., Swamy, S., Dalgliesh, G.L., Teh, B.T., Deloukas, P., Yang, F., Campbell, P.J.,
Futreal, P.A., Stratton, M.R.: Signatures of mutation and selection in the cancer
genome. Nature 463(7283), 893–898 (2010)

3. Bignell, G.R., Santarius, T., Pole, J.C., Butler, A.P., Perry, J., Pleasance, E.,
Greenman, C., Menzies, A., Taylor, S., Edkins, S., Campbell, P., Quail, M., Plumb,
B., Matthews, L., McLay, K., Edwards, P.A., Rogers, J., Wooster, R., Futreal, P.A.,
Stratton, M.R.: Architectures of somatic genomic rearrangement in human cancer
amplicons at sequence-level resolution. Genome. Res. 17, 1296–1303 (2007)

4. Campbell, P.J., Yachida, S., Mudie, L.J., Stephens, P.J., Pleasance, E.D., Steb-
bings, L.A., Morsberger, L.A., Latimer, C., McLaren, S., Lin, M.L., McBride,
D.J., Varela, I., Nik-Zainal, S.A., Leroy, C., Jia, M., Menzies, A., Butler, A.P.,
Teague, J.W., Griffin, C.A., Burton, J., Swerdlow, H., Quail, M.A., Stratton, M.R.,
Iacobuzio-Donahue, C., Futreal, P.A.: The patterns and dynamics of genomic in-
stability in metastatic pancreatic cancer. Nature 467(7319), 1109–1113 (2010)

5. Carr, A.M., Paek, A.L., Weinert, T.: DNA replication: failures and inverted fusions.
Semin. Cell Dev. Biol. 22(8), 866–874 (2011)

6. Chiang, D.Y., Getz, G., Jaffe, D.B., O’Kelly, M.J., Zhao, X., Carter, S.L., Russ,
C., Nusbaum, C., Meyerson, M., Lander, E.S.: High-resolution mapping of copy-
number alterations with massively parallel sequencing. Nat. Methods 6(1), 99–103
(2009)

7. Eckel-Passow, J.E., Atkinson, E.J., Maharjan, S., Kardia, S.L., de Andrade, M.:
Software comparison for evaluating genomic copy number variation for Affymetrix
6.0 SNP array platform. BMC Bioinformatics 12, 220 (2011)

Reconstructing Breakage Fusion Bridge Architectures 417

8. Greenman, C.D., Bignell, G., Butler, A., Edkins, S., Hinton, J., Beare, D., Swamy,
S., Santarius, T., Chen, L., Widaa, S., Futreal, P.A., Stratton, M.R.: PICNIC: an
algorithm to predict absolute allelic copy number variation with microarray cancer
data. Biostatistics 11(1), 164–175 (2010)

9. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation.
Cell 144(5), 646–674 (2011)

10. Hastings, P.J., Lupski, J.R., Rosenberg, S.M., Ira, G.: Mechanisms of change in
gene copy number. Nat. Rev. Genet. 10(8), 551–564 (2009)

11. Kinsella, M., Bafna, V.: Combinatorics of the breakage-fusion-bridge mechanism.
J. Comput. Biol. 19(6), 662–678 (2012)

12. Kitada, K., Yamasaki, T.: The complicated copy number alterations in chromosome
7 of a lung cancer cell line is explained by a model based on repeated breakage-
fusion-bridge cycles. Cancer Genet. Cytogenet. 185, 11–19 (2008)

13. McClintock, B.: The Production of Homozygous Deficient Tissues with Mutant
Characteristics by Means of the Aberrant Mitotic Behavior of Ring-Shaped Chro-
mosomes. Genetics 23, 315–376 (1938)

14. McClintock, B.: The Stability of Broken Ends of Chromosomes in Zea Mays. Ge-
netics 26, 234–282 (1941)

15. Medvedev, P., Stanciu, M., Brudno, M.: Computational methods for discovering
structural variation with next-generation sequencing. Nat. Methods 6, 13–20 (2009)

16. Olshen, A.B., Venkatraman, E.S., Lucito, R., Wigler, M.: Circular binary segmen-
tation for the analysis of array-based dna copy number data. Biostatistics 5(4),
557–572 (2004)

17. Reshmi, S.C., Roychoudhury, S., Yu, Z., Feingold, E., Potter, D., Saunders,
W.S., Gollin, S.M.: Inverted duplication pattern in anaphase bridges confirms the
breakage-fusion-bridge (bfb) cycle model for 11q13 amplification. Cytogenetic and
Genome Research 116(1-2), 46–52 (2007)

18. Venkatraman, E.S., Olshen, A.B.: A faster circular binary segmentation algorithm
for the analysis of array cgh data. Bioinformatics 23(6), 657–663 (2007)

19. Yoon, S., Xuan, Z., Makarov, V., Ye, K., Sebat, J.: Sensitive and accurate detec-
tion of copy number variants using read depth of coverage. Genome. Res. 19(9),
1586–1592 (2009)

20. Zakov, S., Kinsella, M., Bafna, V.: An algorithmic approach for breakage-fusion-
bridge detection in tumor genomes. Proceedings of the National Academy of Sci-
ences 110(14), 5546–5551 (2013)

	Reconstructing Breakage Fusion Bridge
Architectures Using Noisy Copy Numbers
	1 Introduction
	2 Formalism and Previous Results
	3 Algorithms
	4 Results
	5 Discussion and Conclusions
	References

