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Abstract. The human genome is diploid, that is each of its chromo-
somes comes in two copies. This requires to phase the single nucleotide
polymorphisms (SNPs), that is, to assign them to the two copies, beyond
just detecting them. The resulting haplotypes, lists of SNPs belonging
to each copy, are crucial for downstream analyses in population genetics.
Currently, statistical approaches, which avoid making use of direct read
information, constitute the state-of-the-art. Haplotype assembly, which
addresses phasing directly from sequencing reads, suffers from the fact
that sequencing reads of the current generation are too short to serve
the purposes of genome-wide phasing.

Future sequencing technologies, however, bear the promise to generate
reads of lengths and error rates that allow to bridge all SNP positions in
the genome at sufficient amounts of SNPs per read. Existing haplotype
assembly approaches, however, profit precisely, in terms of computational
complexity, from the limited length of current-generation reads, because
their runtime is usually exponential in the number of SNPs per sequenc-
ing read. This implies that such approaches will not be able to exploit
the benefits of long enough, future-generation reads.

Here, we suggest WhatsHap, a novel dynamic programming approach
to haplotype assembly. It is the first approach that yields provably opti-
mal solutions to the weighted minimum error correction (wMEC) prob-
lem in runtime linear in the number of SNPs per sequencing read, making
it suitable for future-generation reads. WhatsHap is a fixed parameter
tractable (FPT) approach with coverage as the parameter. We demon-
strate that WhatsHap can handle datasets of coverage up to 20x, pro-
cessing chromosomes on standard workstations in only 1-2 hours. Our
simulation study shows that the quality of haplotypes assembled by
WhatsHap significantly improves with increasing read length, both in
terms of genome coverage as well as in terms of switch errors. The switch
error rates we achieve in our simulations are superior to those obtained
by state-of-the-art statistical phasers.
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1 Introduction

The human genome is diploid, that is, each of its chromosomes comes in two
copies (except for sex chromosomes in males), one from the mother and one
from the father. These parental copies are affected by different single nucleotide
polymorphisms (SNPs), and assigning the variants to the copies is an important
step towards the full characterization of an individual genome. The correspond-
ing assignment process is referred to as phasing and the resulting groups of
SNPs are called haplotypes. Phasing SNPs in population studies allows to, for
example, identify selective pressures and subpopulations, and to link possibly
disease-causing SNPs with one another [13]. This explains that phasing SNPs
has been an instrumental step in many human whole-genome projects [5,28].
In the meantime, globally concerted efforts have generated reference panels of
haplotypes, for various populations, which may serve corresponding downstream
analyses [29,30].

There are two major approaches to phasing variants. The first class of ap-
proaches relies on genotypes as input, which are lists of SNP alleles, together
with their zygosity status. While homozygous alleles show on both chromosomal
copies, and obviously apply for both haplotypes, heterozygous alleles show on
only one of the copies, and have to be partitioned into two groups. If m is the
number of heterozygous SNP positions, there are 2m many possible haplotypes.
This illustrates that directly phasing from genotype data is a hard computational
problem. The corresponding approaches are usually statistical in nature, and
they integrate existing reference panels. The underlying assumption is that the
haplotypes to be computed are a mosaic of reference haplotype blocks that arises
from recombination during meiosis. The output is the statistically most likely
mosaic, given the observed genotypes. Most prevalent approaches are based on
latent variable modeling [17,21,26]. Other approaches use Markov chain Monte
Carlo techniques [23].

The other class of approaches makes direct usage of sequencing read data. Such
approaches virtually assemble reads from identical chromosomal copies and are
referred to as haplotype assembly approaches. Following the parsimony principle,
the goal is to compute two haplotypes to which one can assign all reads with
the least amount of sequencing errors to be corrected and/or erroneous reads to
be removed. Among such formulations, the minimum error correction (MEC)
problem has gained most of the recent attention. The MEC problem, which we
will formally define in Section 2, consists of finding the minimum number of
corrections to the SNP values to be made to the input in order to be able to
arrange the reads into two haplotypes without conflicts. A major advantage of
MEC is that it can be easily adapted to a weighted version (wMEC), in order
to deal with phred-based error probabilities. Such error schemes are common in
particular for next-generation sequencing (NGS) data. An optimal solution for
the wMEC problem then translates to a maximum likelihood scenario relative
to the errors to be corrected.

In tera-scale sequencing projects, e.g., [5,28], ever increasing read length and
decreasing sequencing cost make it clearly desirable to phase directly from read
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data. However, statistical approaches are still the methodology of choice be-
cause: (i) most NGS reads are still too short to bridge so-called variant deserts.
Successful read-based phasing, however, requires that all pairs of neighboring
heterozygous SNP alleles are covered; and (ii) the MEC problem is NP-hard,
and so are all other similar problem formulations.

Most advanced existing algorithmic solutions to MEC [6,16] take time expo-
nential in the number of variants per read, and, ironically, often benefit precisely
from variant deserts, because these allow to decompose a problem instance into
independent parts. A major motivation behind read-based approaches, however,
is to handle long reads that cover as many variants as possible, thereby bridging
all variant deserts. Hence, the current perception of haplotype assembly is often
that it underlies theoretical limitations that are too hard to overcome.

Here, we present a fixed parameter tractable (FPT) approach to wMEC where
coverage, that is the number of fragments that cover a SNP position, is the only
parameter. Hence, the runtime of our approach is, for the first time, polynomial
(in fact: linear) in the number of SNPs per read, which addresses the future
sequencing technologies that will generate reads of several tens of thousands of
base pairs (bp) in length, and that the currently existing approaches are not
suitable for processing such data. A carefully engineered implementation of our
algorithm allows the treatment of whole-genome datasets of maximum coverage
up to 20x on the order of hours on a standard workstation. For datasets of higher
coverage, we provide a technique for choosing a reasonable selection of reads.
We demonstrate that the resulting haplotypes suffer from only minor amounts
of errors, even on high-coverage datasets, while we provide a provably optimal
solution to the wMEC problem on bounded-coverage datasets. To do so, we test
against a long-read benchmark dataset that we produced. Such a dataset will be
useful for future tools that leverage long reads.

2 The Minimum Error Correction (MEC) Problem

The input to the MEC problem is a matrix F with entries in {0, 1,−}. Each row
of F corresponds to a fragment/read. Each column of F corresponds to a SNP
position. The “−” symbol, which is referred to as a hole, is used when a fragment
does not contain any information at the corresponding SNP position. This can
be either because the SNP position is not covered by the read, or because the
read gives no accurate information at that position. Let n be the number of rows
(or fragments) of F and m the number of columns (or SNP positions).

A haplotype can formally be defined as a string of length m consisting of 0’s
and 1’s. If h is a haplotype, then the i-th row of F is said to conflict with h if
there is some SNP position j for which h(j) �= F(i, j) while F(i, j) �= −. We say
that F is conflict free if there exist two haplotypes h1, h2 such that each row
of F does not conflict with at least one of h1 and h2. Under the all-heterozygous
assumption, where all columns correspond to heterozygous sites, h1 must be the
complement of h2.

The goal of MEC is to make F conflict free by flipping a minimum number
of entries of F from 0 to 1 or vice versa. The weighted variant of MEC, denoted
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wMEC, has an additional weight function w as input. This weight function
assigns a non-negative weight w(i, j) to each entry F(i, j) of F . This weight can
reflect the relative confidence that the entry is correctly sequenced. The goal of
wMEC is to make F conflict free by flipping entries in F with a minimum total
weight.

The MEC problem, which is also called minimum letter flip, was introduced
by Lippert et al. [22]. Cilibrasi et al. [7] showed that this problem is NP-hard
even if each fragment is “gapless”, i.e., if it consists of a consecutive sequence of
0’s and 1’s with holes to the left and to the right. Panconesi and Sozio [25] were
the first to propose a practical heuristic for solving MEC. An exact branch and
bound algorithm and a heuristic genetic algorithm were presented by Wang et
al. [31]. Levy et al. [19] designed a greedy heuristic to assemble the haplotype of
the genome of J. Craig Venter. Bansal et al. [4] developed an MCMC method to
sample a set of likely haplotypes. In a follow-up, some of the authors proposed
a much faster MAX-CUT-based heuristic algorithm called HapCUT [3], which
they show to outperform [25,19], while showing similar accuracy to [4] in shorter
running time. Very recently, Selvaraj et al. [27] combine the HapCUT [3] al-
gorithm with proximity-ligation, which exploits information from “chromosome
territories”, to develop a method which reports good results on whole-genome
haplotype reconstruction. In another recent paper, He et al. [16] proposed an
exact dynamic programming algorithm. However, their algorithm depends ex-
ponentially on the length of the longest read, which means that for practical
data this method has to ignore all long reads.

The weighted variant of MEC was first suggested by Greenberg et al. [12].
Zhao et al. [34] propose a heuristic for a special case of wMEC and present
experiments showing that wMEC is more accurate than MEC.

More recently, in 2012, Aguiar and Istrail [2,1] propose a different heuris-
tic approach for MEC which they show to perform well compared to previous
methods. Exact integer linear programming (ILP) based approaches were also
proposed very recently by Fouilhoux and Mahjoub [11] and Chen et al. [6]. Both
methods have difficulties solving practical instances optimally. For this reason,
Chen et al. also propose a heuristic for solving difficult subproblems.

3 A Dynamic Programming Algorithm for wMEC

We now present the WhatsHap algorithm for solving wMEC. WhatsHap is
an exact dynamic programming approach that solves wMEC instances in linear
time if we assume bounded coverage.

Consider the input matrix F of the wMEC problem. Each entry F(i, j) �= −
is associated with a confidence degree w(i, j) telling how likely it is that F(i, j)
is correctly sequenced and that its fragment i is correctly mapped to location
j. We use such values as a weight for the correction we need to minimize in the
wMEC model. When these weights are log-likelihoods, summing them up corre-
sponds to multiplying probabilities and, thus, finding a minimum weight solution
corresponds to finding a maximum likelihood bipartition of the reads/fragments.
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Our dynamic programming (DP) formulation is based on the observation that,
for each column, only active fragments need to be considered; a fragment i is
said to be active in every column j that lies in between its leftmost non-hole
entry and its rightmost non-hole entry. Thus, paired-end reads remain active in
the “internal segment” between the two reads. Let F (j) be the set of fragments
that are active at SNP position j and let F be the set of all fragments. The aim
is to find a bipartition (R∗, S∗) of F such that the changes in R∗ and S∗ to make
F conflict free have minimum total weight.

Proceeding columnwise from SNP position 1 to m, our approach computes
a DP table column C(j, ·) for each j ∈ {1, . . . ,m}. We say that a bipartition
B′ = (R′, S′) of all fragments F extends bipartition B = (R,S) of F (j), if
R ⊆ R′ and S ⊆ S′. We define B(X) to be the set of all bipartitions of X . Given
a bipartition (R,S), we denote B(X | (R,S)

)
the set of all bipartitions of X that

extend (R,S), that is,

B(X ∣
∣ (R,S)

)
:=

{
(R′, S′) ∈ B(X)

∣
∣R ⊆ R′ and S ⊆ S′} .

The basic idea of our dynamic program is as follows: for every bipartition
B = (R,S) of F (j), entry C(j, B) gives the minimum cost of a bipartition of all
fragments F that renders positions 1, . . . , j conflict free and which extends B.
By definition of C(j, B), the cost of an optimal solution to the wMEC problem
then equals minB∈F (m)C(m,B). An optimal bipartition of the fragments can be
obtained by backtracking along the columns of the DP table up to the first SNP
position in F .

To compute the contributionΔC(j, (R,S)) of column j to the cost C
(
j, (R,S)

)

of bipartition (R,S), we define the following quantities.

Definition 1. For a position j and a set R of fragment indices in F (j), let
W 0(j, R) (resp. W 1(j, R)) denote the cost of setting position j on all fragments
of R to 0 (resp. 1), flipping if required: i.e.,

W 0(j, R) =
∑

i∈R
F(i,j)=1

w(i, j) and W 1(j, R) =
∑

i∈R
F(i,j)=0

w(i, j) .

Hence, given a bipartition (R,S) of F (j), the minimum cost to make position
j conflict free is

ΔC

(
j, (R,S)

)
:= min{W 0(j, R),W 1(j, R)} +min{W 0(j, S),W 1(j, S)} .

Notice that, under the all heterozygous assumption, where one wants to enforce
all SNPs to be heterozygous, the equation becomes

ΔC

(
j, (R,S)

)
:= min{W 0(j, R) +W 1(j, S),W 1(j, R) +W 0(j, S)} .

In both cases, we only need the four values W 0(j, R), W 1(j, R), W 0(j, S), and
W 1(j, S) to compute ΔC

(
j, (R,S)

)
. We now proceed to state in detail our DP

formulation.
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Fig. 1. WhatsHap toy example. The small numbers next to the matrix of entries F
denote the flipping weights.

Initialization. The first column C(1, ·) of C is initialized to ΔC(1, ·) as defined
above.

Example. AssumeF (1) = {f0, f1, f2}withF(0, 1) = 0,F(1, 1) = 1, andF(2, 1) =
1. Moreover, let w(0, 1) = 5, w(1, 1) = 3, and w(2, 1) = 6. See Figure 1. Then
C(1, ·) is filled in as follows:

C
(
1, ({f0, f1, f2}, ∅)

)
= min{9, 5}+min{0, 0} = 5

C
(
1, ({f0, f1}, {f2})

)
= min{3, 5}+min{6, 0} = 3

C
(
1, ({f0, f2}, {f1})

)
= min{6, 5}+min{3, 0} = 5

C
(
1, ({f1, f2}, {f0})

)
= min{9, 0}+min{0, 5} = 0

Note that we need consider only half of the 2|F (1)| bipartitions, because
C
(
j, (R,S)

)
= C

(
j, (S,R)

)
for every bipartition B = (R,S) and every SNP

position j.

Recurrence. We compute C(j + 1, ·) from C(j, ·) as follows. When computing
costs of bipartitions for F (j + 1) we need only to keep track of the effect that
this has on the bipartition of F (j) through their intersection, which we denote
by F∩

j+1 = F (j) ∩ F (j + 1). For a bipartition (R,S) of F (j + 1) we define
R∩

j+1 = R ∩ F∩
j+1 and S∩

j+1 = S ∩ F∩
j+1. The recursion then becomes:

C
(
j + 1, (R,S)

)
= ΔC

(
j + 1, (R,S)

)
+ min

B∈B(F (j) | (R∩
j+1,S

∩
j+1))

C(j, B) . (1)

The first term accounts for the cost of the current SNP position, while the second
term accounts for costs incurred at previous SNP positions. The minimum selects
the best score with respect to the first j positions over all partitions that extend
(R,S).

Example (continued). We extend the example with a second SNP position. As-
sume F (2) = {f1, f2, f3} with F(1, 2) = 0, F(2, 2) = 1, and F(3, 1) = 0. More-
over, let w(1, 2) = 2, w(2, 2) = 1, and w(3, 1) = 2. See Figure 1. Then C(2, ·) is
filled in as follows:
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C
(
2, ({f1, f2, f3}, ∅)

)
= min{4, 1}+min{0, 0}+

min
{
C
(
1, ({f0, f1, f2}, ∅)

)
, C

(
1, ({f1, f2}, {f0})

)}

= 4 + 0 +min{5, 0} = 4

C
(
2, ({f1, f2}, {f3})

)
= min{1, 2}+min{0, 2}+

min
{
C
(
1, ({f0, f1, f2}, ∅)

)
, C

(
1, ({f1, f2}, {f0})

)}

= 1 + 0 +min{5, 0} = 1

C
(
2, ({f1, f3}, {f2})

)
= min{0, 4}+min{1, 0}+min

{
C
(
1, ({f0, f1}, {f2})

)}

= 0 + 0 + 3 = 3

C
(
2, ({f2, f3}, {f1})

)
= min{1, 2}+min{0, 2}+min

{
C
(
1, ({f0, f2}, {f1})

)}

= 1 + 0 + 5 = 6

AlgorithmEngineering. To compute a column, say j, of the DP table, we have
to go through all bipartitions of the active fragments F (j) = {f0, . . . , f|F (j)|−1} at
SNP position j. Because of the observed symmetry it is sufficient to store 2|F (j)|−1

entries in column j. We order these entries by a mapping of indices k ∈ {0,
. . . , 2|F (j)|−1−1} to bipartitions, using a binary encoding such that each bit k� in
the binary representation of k tells whether fragment f� is in the first or in the sec-
ond part of the bipartition.We break the above mentioned symmetry by assigning
f|F (j)|−1 always to the first set. Formally, this results in the mapping:

B : k �→ ({f|F (j)|−1} ∪ {f� | k� = 0}, {f� | k� = 1} | � < |F (j)| − 1
)

for all k ∈ {0, 1}|F (j)|−1.

Example. Assume there is a SNP position j for which F (j) = {f0, f1, f2}. Then
k ∈ {0, 1, 2, 3} and thus C(p, ·) has four entries each one being encoded in two bits
as follows. 00 �→ ({f0, f1, f2}, ∅

)
, 01 �→ ({f0, f2}, {f1}

)
, 11 �→ ({f2}, {f0, f1}

)
,

10 �→ ({f1, f2}, {f0}
)
. Notice that f|F (p)|−1 = f2, as a sort of pivot, is always in

the first part of the bipartition.

For an efficient computation of ΔC

(
j, Bj(k)

)
, we enumerate all bipartitions

k ∈ {0, . . . , 2|F (j)|−1 − 1} in Gray code order. This ensures that at most one
bit is flipped between two consecutive bipartitions. Therefore, in moving from
one bipartition to the next, only one fragment swaps sides and updating the
four values W 0(j, R), W 1(j, R), W 0(j, S), and W 1(j, S) can be done in constant
time. As ΔC

(
j, (R,S)

)
can be computed from these values in constant time, and

moving from one Gray code to the next can be done in (amortized) constant
time using the algorithm from [24], we conclude that ΔC

(
j, ·) can be computed

in O(2cov(j)−1) time, where cov(j) = |F (j)| denotes the physical coverage at
SNP position j.

To efficiently implement the DP recursion, one can compute an intermediate
projection column as follows. For all B ∈ B(F∩

j+1), store

C
(
j, B

)
= min

B′∈B(F (j) |B)
C(j, B′) .
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Table C(j, ·) can be filled while computing C(j, ·) without any additional (asymp-
totic) runtime expense. Using this precomputed table, Recursion (1) can be
written as

C
(
j + 1, (R,S)

)
= ΔC

(
j + 1, (R,S)

)
+ C

(
j, (R∩

j+1, S
∩
j+1)

)
.

The algorithm has a runtime of O(2k−1m), where k is the maximum value
of cov(·), and m is the number of SNP positions. Note that the runtime is
independent of read length.

An optimal bipartition can be obtained by backtracking. To do this efficiently,
we store tables D(j, ·) that store the indices of the partitions that define the
minima in C(j, ·). Formally,

D
(
j, B

)
= argmin

B′∈B(F (j) |B)

C(j, B′) .

Using these auxiliary tables, the sets of fragments that are assigned to each
allele can be reconstructed in O(km) time. To backtrace an optimal bipartition,
we need to store the rightmost DP column C(m, ·) and the backtracking tables
D(j, B) for j ∈ {1, . . . ,m − 1}, which takes total space O(2k−1m). This leads
to a dramatically reduced memory footprint in practice compared to storing the
whole DP table C.

Backtracking gives us optimal fragment bipartitions (R∗
j , S

∗
j ) for each position

j. It is then straightforward to derive the two haplotypes h1 and h2 from this as
follows:

h1(j) =

{
0 if W 0(j, R∗

j ) < W 1(j, R∗
j )

1 otherwise ,
and

h2(j) =

{
0 if W 0(j, S∗

j ) < W 1(j, S∗
j )

1 otherwise .

4 Experimental Results

The focus of the present paper is on very long reads and the promise they hold
for read-based phasing. Since such data sets are not available today, we perform a
simulation study. We use all variants, that is SNPs, deletions, insertions, and in-
versions, reported by [19] to be present in Venter’s genome. These variants were
introduced into the reference genome (hg18) to create a reconstructed diploid
human genome with fully known variants and phasings. Using the read simulator
SimSeq [10], we simulated a variety of data sets, that reflect current technology
as well as possible future developments. Regarding the former, we used HiSeq
and MiSeq error profiles to generate a 2x100bp and a 2x250bp paired-end data
set, respectively. The distribution of the internal segment size (i.e., fragment
size minus size of read ends) was chosen to be 100bp and 250bp, respectively,
which reflects current library preparation protocols. Furthermore, we created an
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additional MiSeq data set with 2.5 kbp internal segment size resembling mate-
pair sequencing. Longer reads with 1 000bp, 5 000 bp, 10 000bp, and 50 000 bp
were simulated with two different uniform error rates of 1% and 5%. All data
sets were created to have 30x average coverage and were mapped to the human
genome using BWA MEM [20].

To not confound results by considering positions of (possibly) wrongly called
SNPs, we always used the set of true positions of heterozygous SNPs that were
introduced into the genome. We extracted all reads that covered at least two such
SNP positions to be used for phasing. Next, we pruned the data sets to target
coverages of 5x, 10x, 15x, and 20x by removing (randomly selected) reads that
violated the coverage constraints until no more such reads exist. The resulting
problem instances were then solved to optimality using WhatsHap, the DP
algorithm described above.

To our knowledge, no other methods exist that can solve instances of wMEC
with very long reads to optimality in practice. The DP approach of He et al. [16]
has a worst-case complexity linear in 2r where r is the length of the longest read
(in terms of the number of SNPs covered). For coverage pruned at 15x and read
length 5 000, r equals 30. For read length 50 000, r reaches a value of 147, which
is clearly too large to run He et al.’s approach. In the ILP approach of Chen et
al. [6], the key to solving MEC to optimality is to decompose the problem into
independent blocks. Such a decomposition becomes less and less possible for
longer reads, thus rendering such an approach infeasible for very long reads.
After submission of this article, we found the similar yet independently devel-
oped DP approach of [9] that, however, addresses only the unweighted MEC.
Moreover, due to our careful algorithm engineering, we have a lower asymptotic
run-time, and can practically manage coverage up to 20x rather than 12x. A
detailed performance analysis against all of these tools will appear in the full
version of this work.

Our approach solved any problem instance with 15x coverage or below in
less than 10 minutes on a single core (of an Intel Xeon E5-2620 CPU). For
coverage 20x no problem instance took longer than 2.5 hours. The accuracy
performance is summarized in Figure 2. There, the percentage of chromosome
1 that could be phased (y-axis) is plotted against the percentage of errors in
the predicted haplotypes (x-axis) for different read lengths and coverages. A
SNP position is unphasable if it is not covered by any read that also covered
another SNP. Furthermore, we report an unphasable position whenever one of
the two haplotypes contains no read at that position. Among those positions
that are phasable of the reported haplotypes, we compute the number of errors,
which is the sum of zygosity errors and switch errors, by comparing to the true
haplotypes. A zygosity error occurs when a position is reported to be homozygous
when it is truly heterozygous (and vice versa). A switch operation at position t
on a binary string s is defined to result in the binary string s[1 . . . t]s̄[t+1 . . . |s|],
where the ·̄ operation flips all bits in a binary string. The switch error is now
defined as the minimum number of such operations needed to transform the
predicted haplotype (after all positions with zygosity errors have been removed)
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Fig. 2. Performance of phasing human chromosome 1 with 68 184 heterozygous SNPs
in total using different simulated data sets and different coverages. The unphasable
positions percentage (y-axis) gives the fraction of the SNP positions that could not
be phased due to not being covered by reads that span more than one SNP position.
Length 1 000, 5 000, 10 000, and 50 000 refer to reads of this length from a hypothetical
sequencer with an error rate of 1%. HiSeq/MiSeq refers to using error profiles specific
to these instruments during read sampling; in parentheses: mean/standard deviation
of internal segment size (i.e., fragment size minus length of read ends). Data sets are
pruned to four different target coverages (5x, 10x, 15x, 20x) encoded by circle diameter
in the plot (larger means more coverage).

into the true haplotype. Note that the number of switch errors can increase
when the number of unphasable positions goes down (see MiSeq experiments in
Figure 2, for instance), as less gaps mean more contiguous fragments where such
errors can be made.

Figure 2 clearly shows that long reads will indeed facilitate read-based phas-
ing. For short reads of current HiSeq or MiSeq instruments, large portions of
chromosome 1 cannot be phased. This was to be expected since short reads can-
not span SNP deserts and, in general, rarely contain many SNPs. For the HiSeq
data set, we found a paired-end read to cover only 2.2 SNPs on average. For the
long read data sets (i.e., non-HiSeq/MiSeq) shown in Figure 2, an error rate of
1% was used. Repeating the experiments with an error rate of 5% yields nearly
identical results. This exemplifies that errors are indeed corrected by solving the
wMEC problem on sufficiently long reads.

Interestingly, the importance of a high coverage seems to be limited, especially
for long reads. For 10x, 15x, and 20x, the corresponding circles in Figure 2 are
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often close together. On the other hand, the influence of read length was much
more drastic, highlighting that our approach, which is able to handle long reads
but only limited coverage, is well suited for future data sets that allow for read
based phasing.

5 Conclusions and Further Work

We have presentedWhatsHap, a dynamic programming approach for haplotype
assembly. WhatsHap is the first exact approach for the wMEC problem with
runtime linear in the number of SNPs. WhatsHap is thus ready to benefit from
increasing read lengths, which will boost the quality of haplotype assembly-based
predictions.

While our approach handles datasets with possibly long reads, it can only deal
with limited coverage. Although WhatsHap can handle coverage as large as 20x
on a standard workstation, and larger coverage does not seem to significantly im-
prove the quality of the predicted haplotypes as shown in our simulation study,
a number of possible ways to cope with higher coverage are under investigation.
A first possibility is a divide and conquer heuristic approach that operates on
high coverage portions of the matrix by (i) (randomly/suitably) splitting the
fragments into as many subsets as necessary to make each one of them a slice of
limited coverage, (ii) solving each slice separately using the dynamic program-
ming approach, and finally (iii) merging the resulting super-reads and applying
iteratively the method again. Another possibility is to just properly select reads
up to the manageable coverage and to discard the rest.

In the literature there are several graph representations of haplotype data
(the fragment conflict graph defined in [18] and many of its variants), and conse-
quently the optimization problems we have mentioned are seen there as finding
the minimum number of graph editing operations that make the graph bipar-
tite. In particular, for the conflict graph variant used in [11], the MEC problem
turns out to be equivalent to finding the Maximum Induced Bipartite Subgraph
(MIBS). It follows that our dynamic programming approach for MEC can be
generalized to a FPT approach for MIBS where the parameter is the pathwidth
of the graph.

In this work we have concentrated on assembling SNP haplotypes from reads
of a sequenced genome. As a next step we will integrate predictions from statis-
tical phasers into our approach. In some sense, the super-read obtained from a
slice, mentioned above, can be viewed as a reference haplotype from a reference
panel for an existing population. Hence, reference haplotypes can be seamlessly
integrated into this merging step (iii) for a hybrid approach. Hybrid methods are
the future of sequencing data analysis, and the field is already moving quickly
in this direction [8,15,14,27,32,33].

In addition, haplotyping mostly refers to only SNPs for historical reasons
[29,30]. To fully characterize an individual genome, however, haplotyping must
produce exhaustive lists of both SNPs and non-SNPs, that is, larger variants.
This has become an essential ingredient of many human whole-genome projects
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[5,28]. In this paper we focused on SNPs variants and we identify the integration
of non-SNP-variants as a challenging future research direction.

Lastly, we used prior knowledge of the true SNP positions in the genome in
our simulation study. But since our method only scales linearly in the number of
SNP positions, one could conceivably use as input the raw read input, to produce
a “de novo” haplotype. Since SNPs comprise roughly 5% of positions, and the
runtime of our method is on the order of 10 minutes on average (for sufficient 15x
coverage), such a de novo haplotype could be generated in about 3 hours. The
heterozygous sites of this constructed haplotype then correspond to the SNP
positions. It hence follows that this tool could be used for SNP discovery, and
perhaps for larger variants as well.
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