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Abstract. Flux balance analysis (FBA) is one of the most often applied
methods on genome-scale metabolic networks. Although FBA uniquely
determines the optimal yield, the pathway that achieves this is usually
not unique. The analysis of the optimal-yield flux space has been an open
challenge. Flux variability analysis is only capturing some properties of
the flux space, while elementary mode analysis is intractable due to the
enormous number of elementary modes. However, it has been found by
Kelk et al. 2012, that the space of optimal-yield fluxes decomposes into
flux modules. These decompositions allow a much easier but still com-
prehensive analysis of the optimal-yield flux space.

Using the mathematical definition of module introduced by Müller
and Bockmayr 2013, we discovered that flux modularity is rather a lo-
cal than a global property which opened connections to matroid theory.
Specifically, we show that our modules correspond one-to-one to so-called
separators of an appropriate matroid. Employing efficient algorithms de-
veloped in matroid theory we are now able to compute the decompo-
sition into modules in a few seconds for genome-scale networks. Using
that every module can be represented by one reaction that represents
its function, in this paper, we also present a method that uses this de-
composition to visualize the interplay of modules. We expect the new
method to replace flux variability analysis in the pipelines for metabolic
networks.
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1 Introduction

The metabolic capabilities and behaviors of biological cells are often modeled
using metabolic networks. A metabolic network is constituted of a set of chemical
compounds and a set of reactions describing the possible transformations of
compounds. In the last years it became possible to reconstruct such networks
on the genome-scale. This means that on one hand nearly all the reactions that
can happen in a biological cell are included. On the other hand such networks
consist of thousands of reactions.

Constraint based methods have proven to be very successful in the analysis of
metabolic networks [19,20]. In constraint based methods no detailed information
on reaction kinetics is needed. Often, the knowledge of reaction stoichiometries
is sufficient. Each reaction is described by a column of the stoichiometric matrix
S, which has an entry for each chemical compound; sij the i, j-th entry of S is
the number of molecules of compound i consumed (sij < 0), produced (sij > 0),
or not involved (sij = 0) in reaction j. Typically, the network is assumed to
be in equilibrium, i.e. every metabolite is produced at the same rate as it is
consumed. This gives rise to linear constraints on the set of feasible flux-vectors
v (pathways) through the network, formally written as

Sv = 0

Together with bounds �, u on reaction rates (thermodynamic information in
form of irreversibilities, limitation of nutrient uptake rates, etc.) we obtain a
polyhedron of feasible flux-vectors:

P = {v : Sv = 0, � ≤ v ≤ u} (1)

Among the most prominent analysis methods is flux balance analysis (FBA)
[28,17,21]. It is, for example, used to compute the optimal biomass yield that
can be achieved by a cell under some growth medium [5]. It also computes an
optimal flux distribution.

Such an optimum is easily found by solving a linear programming problem of
the following type:

max{cv : Sv = 0, � ≤ v ≤ u}
However, in general such optimal flows are not unique [13]. If this is ignored, it
can lead to wrong predictions of by-product flux rates [11].

Kelk et al. [9] showed that many reactions have fixed flux rate in all optimal
solutions. The remaining variability is due to variability of the fluxes on a number
of relatively small subnetworks, which we call flux modules. Each such a module
has in each optimum specific fixed input and output compounds. Müller and
Bockmayr [15] used this property to formalize the notion of flux-module in a
mathematically rigorous way. This allowed them to show that every optimal
yield elementary flux mode (EFM) [23] is a concatenation of reactions with fixed
flux and an elementary mode of each of the flux modules.

While the method by Kelk et al. [9] required the enumeration of exponentially
many vertices of a flux polyhedron (which are related to the optimal yield EFMs),
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Müller and Bockmayr [15] showed a way to find the modules without needing
to compute all extreme solutions. Their method however relied on many runs of
flux variability analysis (FVA) [3,13]. In FVA for each reaction r of the network
the following two linear optimization problems are solved to obtain the minimal
and maximal possible flux rate:

max /min{vr : Sv = 0, � ≤ v ≤ u}

Although faster than EFM enumeration, the method is very sensitive to numer-
ical instabilities and analyses of genome-scale networks could still take several
hours.

The most important result in this paper is an extremely simple method al-
lowing to compute the flux-modules in a few seconds for genome-scale metabolic
networks. The method, described in Section 2, is based on the observation that
the modules correspond to the separators of the linear matroid defined by the
columns of the stoichiometric matrix that belong to reactions with variable op-
timal flux. We will explain all these technical concepts in Section 1.1. The ef-
ficiency of our method is demonstrated in Section 3 by application to several
genome-scale metabolic networks.

Flux modularity highly depends on the growth conditions. In particular, inter-
esting flux modules can usually only be found in the optimal flux space. Hence, it
is of high importance to understand how the decomposition of modules changes
under different growth conditions and objective functions. Since with our new
method, module computation has become so fast, we can simply compute and
compare modules under many different growth conditions and compare the re-
sults. Essential for this is a visualization method that shows the interplay of
modules in the context of the whole network. In Sec. 2.2 we present a method
that automatically generates such a visualization using a clever compression
based on flux modules. Results of that method applied to a set of genome-scale
metabolic networks can be found in Sec. 3.2.

1.1 Definitions and Preliminaries

We use M to denote the set of metabolites, R to denote the set of reactions. We
abuse the notation for sets also for their size. S ∈ R

M×R denotes the stoichio-
metric matrix. For b ∈ R

M, we analyze flux spaces P ⊆ {v ∈ R
R : Sv = b}. We

observe that b = 0 leads to the standard steady-state assumption. Here, we also
allow b �= 0 to simplify notation in the context of modules. Furthermore, the
space of optimal-yield fluxes is again a polyhedron and can be written in this
form, too [15]. In this paper we will show that we can reduce the analysis of P
to the analysis of linear vector spaces, i.e. flux spaces defined by the kernel of S:
ker(S) := {v ∈ R

R : Sv = 0}. We use subscripts to index flux through reactions,
i.e., vr denotes flux through reaction r. The support of flux-vector v is denoted
by supp(v) := {r ∈ R : vr �= 0}. We will also be interested in the flux through a
subset of reactions A ⊆ R. Hence, we write vA to denote the components of v
corresponding to the reactions in A and we use SA to denote the stoichiometric
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matrix that only contains the columns corresponding to the reactions in A. We
define the projection prA(P ) := {vA : v ∈ P}.
Definition 1. [Flux Module, [15]] A ⊆ R is a P -module if there exists a d ∈ R

M

s.t. SAvA = d for all v ∈ P . We call d the interface flux of the module.

In contrast to the definition in [15], we also allow A = ∅ to be a module, which
together with R we call the trivial modules. We present here some useful prop-
erties of modules proven in [15]. They may also help the reader to get some
intuition on the concept of module.

Proposition 1. Properties of Modules.

(i) If disjoint sets A and B are P -modules then A ∪B is a P -module;
(ii) If A and B are P -modules and B ⊂ A then A \B is a P -module.

The rest of this section is devoted to an introduction to the relevant concepts
from Matroid Theory [18], which is a generalization of graph theory and linear
algebra. A matroid is defined by a universe of elements and subsets of them that
have some independence structure.

Definition 2. Given a universe U and a family A of independent subsets of U .
Then {U ,A} is a matroid if it satisfies the following conditions.

– ∅ ∈ A;
– If A ∈ A and A′ ⊂ A, then A′ ∈ A;
– If A,A′ ∈ A and A′ contains more elements than A, then there exists an

element e ∈ A′ \A, such that A ∪ {e} ∈ A.

As a very relevant example, a set of vectors in R
R, together with their linearly

independent subsets form a matroid; a so-called linear matroid. Another exam-
ple, less relevant here, is a graph with subsets of its edges that form forests as
independent sets; a so-called graphic matroid. Matroid theory has already been
used in the past to describe metabolic networks [16,2]. Indeed, many concepts
from metabolic networks also exist in matroid theory. For example, flux modes
in metabolic networks correspond to cycles in matroid theory; i.e., dependent
sets of a matroid. Elementary flux modes correspond to circuits; i.e., minimal
dependent sets. The only difference is, that in matroid theory we only talk about
the support. I.e., A ⊆ R is a cycle if and only if there exists a flux mode v with
A = supp(v). Similarly, a circuit C ⊆ R is a cycle with minimal support.

However, matroid theory is a wide field with additional concepts that have not
yet been studied for metabolic networks. We show some of these concepts, that
originate from linear algebra, directly in terms of the linear matroid represented
by the columns of the stoichiometrix matrix S, which is the matroid that we use
to describe metabolic networks. In our notation R is the set of columns of S.

– A ⊆ R is called a basis if it is a maximal independent set.
– r(A) is the rank of SA, i.e. the size of the largest independent subset of A.
– The dual matroid is the matroid represented by a kernel matrix of S.
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Also graph theory introduces some further useful concepts into matroid theory.
Typical examples are the circuits and cycles. Another property is connectivity.
A graph is 2-connected if for any two edges, there exists a circuit that contains
both. If a graph is not 2-connected, then the union of connected components is
called a separator; i.e., any of the two sides of a partition of a graph into two
partsA,B that are not 2-connected to each other. We can understand this as that
there exists no flow circulation between A and B. It follows that the interface
flux of A and B has to be zero. In matroid theory separators are defined using
the matroid rank function:

Definition 3 (Separator). A set A is defined to be a separator if and only if

r(A) + r(R \A) = r(R).

In Sec. 2.1 we show how the flux modules of a metabolic network correspond
one-to-one to the separators of the corresponding matroid. We then use matroid
theory to derive a very fast and simple algorithm for finding modules. It is
based on a result by Krogdahl [12]. The runtime results on a set of genome-scale
metabolic networks are presented in Sec. 3.1.

2 Methods

2.1 Finding Modules Efficiently

We first show that it is sufficient to analyze modularity as a local property of
one point in the inside of the flux space, implying that we can ignore reaction
reversibilities and simply analyze a subvector-space (Thm. 1). This allows to
describe modularity in terms of matroid separators (Thm. 2), which we then
exploit in designing an efficient algorithm to compute modules.

To make the first step, consider a point x inside the flux space and a neighbour-
hood of it (Fig. 1). This neighbourhood captures all the characteristics needed to
analyse modularity of the whole flux space. We only have to deal with the term
“inside”. Since P ⊆ {v ∈ R

R : Sv = b}, it follows that P is of lower dimension
in R

R. Hence, we will only consider the interior relative to ker(S). However, if
we have reactions with fixed flux rate, P will also have lower dimension than

P

x

Fig. 1. Viewed from a point x inside the flux space, the flux space looks like a linear
vector space and the bounds are not important
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ker(S). Therefore, we will restrict to reactions with variable flux rate, which we
define by:

V := {r ∈ R : vmax
r �= vmin

r },where (2)

vmax
r := sup{vr : v ∈ P}
vmin
r := inf{vr : v ∈ P}

This restriction does not destroy the module property:

Observation 1. It holds for allA ⊆ V thatA is P -module⇔A is prV (P )-module.

To guarantee that we can find a x inside the flux space after we restricted
to reactions with variable flux rate, we require that P is convex. Theoretically,
there are weaker conditions that are also sufficient.

Theorem 1. If P ⊆ {v ∈ R
R : Sv = b}, is convex, it holds for all A ⊆ R

A is P -module ⇔ A ∩ V is ker(SV )-module.

The proof can be found on the supplementary website.
By Thm. 1 we can restrict our attention to the analysis of linear vector spaces.

Hence, in the following we will only analyse polyhedra of the form P = ker(S).
We will relate modules of ker(S) to separators of the matroid defined by the
columns of S. Remember the explanation of a separator in a graph in terms of
the non-existence of a flow circulation in Section 1.1 and observe, that every
module in ker(S) also has interface flux 0 since 0 ∈ ker(S).

Formally, we obtain the following theorem, the proof of which is deferred to the
supplementary website https://sourceforge.net/projects/fluxmodules/.

Theorem 2. A ⊆ R is a ker(S)-module if and only if A is a separator in the
matroid represented by S.

The characterization of modules as separators of matroids allows to compute
the flux-modules of a metabolic network efficiently. Since separators and mod-
ules are closed under disjoint union, it suffices to describe the set of minimal
nontrivial separators (modules).

Definition 4 (Minimal Module). A P -module ∅ �= A ⊆ R is called minimal
if there exists no P -module B �= ∅ with B ⊂ A.

To understand the algorithm for finding the modules, we observe that the
minimal non-trivial separators are the connected components of the matroid.
In the contex of graph-theory these are called 2-connected components (Note
the inconsistency of the terminology between matroid and graph theory. The
connected components in graph-theory are something different.) Formulated in
matroid-terminology we recall the following graph-theoretic characterization of
2-connected component: For any 2 elements (columns of S in the linear matroid,
edges in the graph) in the same connected component there exists a minimal
dependent set (circuit) that contains them both. For pairs of elements of different

https://sourceforge.net/projects/fluxmodules/
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connected components this is not true. It turns out that this also holds for
matroids in general (Proposition 4.3.4 in [18]).

Theoretically, we could now build a graph G = (V,E), where V is the set of
reactions defined in (2) and there is an edge between two reactions (columns of
SV ) if and only if there exists a circuit that contains both. The connected com-
ponents (in the graph-theoretic sense) of G will be the minimal separators. Since
the number of circuits explodes exponentially, it is not efficient to enumerate all
circuits in order to compute the connected components of the graph G. Indeed,
this is also not necessary and it suffices to look at a special set of circuits, so
called fundamental circuits [27].

A set of fundamental circuits is obtained as follows: We start by finding a basis
X of the matroid; i.e., a maximal independent set, which we compute by Alg. 1.
Notice that, starting from the empty set, the algorithm grows X by adding
elements only if this keeps X independent. Since we try to add all elements to
X , it follows that at the end of the algorithm, X will be a basis of the linear
matroid represented by SV .

Let Y := V \X . Clearly, for every r ∈ Y , adding r toX will create a cycle Cr ⊆
X∪{r}. It is easy to see that Cr is actually a circuit, which is called fundamental
circuit. In Alg. 1 the fundamental circuits are constructed simultaneously with
constructing X . This gives us a so-called partial representation.

We now build, by Alg. 2, the graph G′ = (V,E′), where two reactions are
connected by an edge if there exists a fundamental circuit that contains both.
Krogdahl and Cunningham showed that the connected components of G′, found
by Alg. 2, are precisely the minimal separators of the matroid [4,12].

To each circuit C there exists a flux vector v that is unique up to scaling
with C = supp(v), Sv = 0. If we enter for every circuit in B the corresponding
flux values from v, we obtain a null-space matrix of S. Hence, this approach can
be understood as computing a block-diagonalization of the null-space matrix.
Approaches like this in the context of stoichiometric matrices have already been
studied in [24]. However, [24] does not use matroid theory and it is unclear
whether their method will always compute the finest block-diagonalization.

Here we recapitulate all the steps for finding the modules of the optimal flux
space of a metabolic network.

1. Determine the optimal value by LP;
2. Set the objective function equal to the optimum value and add it as a

constraint;
3. For each reaction r maximize and minimize the flux through r in the optimal

flux space;
4. Determine the set V of reactions for which the maximum and the minimum

are not equal;
5. Select the set of columns SV corresponding to V of the stoichiometric matrix

S and neglect the non-negativity constraints; i.e., irreversibilities, directions
of the reactions;
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Algorithm 1. Computes a basis X and its set of fundamental circuits of a
matroid represented by S

function ComputePartialRepresentation(S)
C = ∅
X = ∅
for r ∈ V do

check feasibility of SXv = −Sr

if feasible then
C := supp(v) ∪ {r}
C := C ∪ {C}

else
X := X ∪ {r}

end if
end for
return C

Algorithm 2. Computes the modules of {v : SV v = 0}
function ComputeModules()
C = ComputePartialRepresentation(SV )
Build Graph G = {V,E} with (x, y) ∈ E iff there exists C ∈ C with x, y ∈ C.
A = find connected components of G (e.g. using depth-first search).
return A

6. Apply Alg. 2 to compute the minimal modules A of {v ∈ R
V : SV v = 0}.

7. A is the set of minimal modules that contain reactions in V . The reactions
with fixed flux are all minimal modules by themselves.

We notice that steps 3 (and therefore 4) of the algorithm can be parallelized
in a trivial way, reducing the computation times even further.

2.2 Visualization

We develop a visualization tool to help us understand how the decomposition
of modules changes under different growth conditions and objective functions.
By the definition of module, the reactions inside a module have together a fixed
function (the interface flux). Hence, we can represent the module by a single
reaction with a fixed flux in the genome-scale network. The stoichiometry of the
representing reaction is precisely the interface flux of the module.

This way we can create a compressed network that contains all the reactions
with fixed flux rates and artificial reactions that represent the modules. This
compressed network has the following advantages:

– The number of reactions carrying flux is compressed (a module with many
reactions, is represented by a single reaction).

– All the reactions in the compressed network have a fixed flux rate.
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Unfortunately, the number of fixed reactions is still very large. This prevents
automatic visualization of the network and the role of the modules containing
variable reactions is obfuscated. However, reactions that have a fixed flux rate
can also be grouped together into modules by Prop. 1.

Theoretically, we could group all reactions with a fixed flux rate into 1 module.
This would result in a compressed metabolic network consisting of k+1 reactions,
where k is the number of minimal modules containing reactions with variable
flux rates. In particular, the module containing all fixed reactions will likely also
contain the biomass- and nutrient-uptake reactions. If we want to understand the
role of the modules for biomass production or nutrient uptake, this is not very
useful. Moreover, modules of variable reactions may disconnect reactions with
fixed flux rates from each other. Such disconnected reactions are important for
the mediation between modules and should also be displayed separately. Hence,
we decided to build a compressed network as follows:

1. Given: A collection Mod of interesting modules (selected by the user). Mod
has to cover all reactions with variable flux rates. Typically Mod contains
all minimal modules of variable reactions, a module containing the biomass
reaction and modules containing the nutrient uptake reactions.

2. We compute the set RMod := {r ∈ R : r ∈ M ∃ M ∈ Mod} of reactions in
interesting modules.

3. We compute the set RB := {r ∈ R \ RMod : vr = 0 ∀v ∈ P} of blocked
reactions.

4. We compute the setMMod := {m ∈ M : ∃ r ∈ RMod such that m ∈ supp(Sr)}
of metabolites involved in the interesting modules.

5. We consider the metabolic network, where RMod,RB and MMod are removed.
It is represented by the stoichiometric matrix S′ := SM\MMod,R\(RMod∪RB).

6. We compute the connected components ModF of S′. We do so by defining
the incidence matrix of a bipartite graph, the nodes of which on one side of
the bipartition correspond to the rows of S′, and the ones on the other side
tot the columns of S′, and there is an edge between row-node i and column-
node j if and only if S′

ij �= 0. The column-nodes represent the reactions in
R\(RMod∪B), and the corresponding reactions of the connected components
of this bipartite graph, whence ModF, forms a partition of R \ (RMod ∪ B).
Clearly, every A ∈ ModF is a module, since ModF only contains fixed reactions.

7. We represent each module in Mod, ModF by a single reaction with the corre-
sponding interface flux. Let M0 be the set of metabolites that have a net
interface flux of 0 in all these modules. We suppress M0, since they would
just show up as isolated metabolites. We obtain a metabolic network with
metabolites M′ := M\M0 and reactions R′ := Mod ∪ ModF.

8. We remove reactions disconnected from the network that contain the target
reaction, e.g. because of modules that form thermodynamically infeasible
cycles or otherwise have no role in the metabolism.

In practice, this results in medium-scale networks that can automatically be
visualized with graph-drawing software like GraphViz [8].
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3 Results

3.1 Runtime of Module Finding

With the new method we can compute all flux modules for the optimal flux space
of genome scale networks in about the same time as is needed for conventional
flux variability analysis. In Table 1 we see that the new method using matroid
theory outperforms the previous methods in orders of magnitude. We used the
metaopt toolbox [14] to solve the flux variability subproblems. Unfortunately,
we did not have access to all the runtime data of [9] which is why some of
the data is missing and the reported runtimes may be only from some of steps
in the pipeline. The computations for the matroid approach were obtained by
computations on a 4-core desktop computer.

Table 1. Comparison of runtimes for computing modules in the optimal flux space of
genome scale networks

Network using [9] using [15] using matroids

E. coli iAF1260 133495sec 755sec 6.4sec
E. coli iJR904 1906sec 162sec 1.9sec
E. coli iJO1366 8.4sec
H. pylori iIT341 55.5sec 0.8sec
H. sapiens recon. 1 153.3sec
H. sapiens recon. 2 1131sec
M. barkeri iAF692 1088sec 941sec 1.4sec
M. tuberculosis iNJ661 9317sec 1623sec 4.3sec
S. aureus iSB619 127.8sec 1.2sec
S. cerevisiae iND750 3.0sec

In particular notice that large networks like Human recon 2 can now also be
analyzed. In addition, the new method is numerically much more stable. In the
method introduced by [15] it often happens that error tolerances are chosen too
small or too large, which causes that linear programs that should be feasible
are detected as infeasible etc. This then usually caused the algorithm to abort
and the tolerance sometimes needed to be adjusted according to the problem
instance.

We experienced that the new matroid based method is much more robust
in this respect. Our initial tolerances of 10−20 for the optimization step, 10−8

for the flux variability and 10−9 for the final module computation worked in all
cases.

Note, that the other two methods are solving slightly different problems.
In [15] we were actually looking for modules in the thermodynamically con-
strained flux space and in [9], rays and linealities are eliminated prior to module
computation.
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A comparison between the results of [15] and the new method on E. coli
iAF1260 revealed that 7 of the modules coincide, 2 modules from the new method
contain additional reactions (which have fixed flux under thermodynamic con-
straints). The remaining modules are computed by the new method, but not by
[15] since they again only contain reactions that have fixed flux by thermody-
namic constraints (usually those modules are formed by a splitted pair of forward
and backward reactions). The differences seem to be small, but a detailed analy-
sis will be subject to future work. Also, we want to point out that, for computing
modules, the method by Kelk et al. [9] has to enumerate all the extreme points of
the flux polyhedron of optimal fluxes (after some preprocessing), a much harder
task. As a result more information than modules is obtained. Hence, the previous
works still remain useful.

3.2 Visualization

We used the visualization method presented in Section 2.2 to create visualiza-
tions of the above mentioned genome scale networks. The results can be found
on the supplementary website. In Tab. 2, we compare the original size of the
networks with the size of the compressed networks that are used to visualize
the interplay of the flux modules with variable flux rates. Each reaction of the
compressed network is a flux module. Every minimal flux module containing re-
actions with variable flux rates is represented by exactly one reaction. Reactions
with fixed flux rate are grouped together. It is interesting to see that although
the networks have quite different sizes originally, the compressed sizes do not
vary very much.

Table 2. Size of the compressed networks

No. Metabolites No. Reactions No. Metabolites No. Reactions
Network (original) (original) (compressed) (compressed)

E. coli iAF1260 1668 2382 46 25
E. coli iJR904 761 1075 42 17
E. coli iJO1366 1805 2583 49 27
H. pylori iIT341 485 554 32 20
M. barkeri iAF692 628 690 35 13
M. tuberculosis iNJ661 826 1025 58 26
S. aureus iSB619 655 743 39 22
S. cerevisiae iND750 1061 1266 57 24

Visualizations of some of the example networks and their modules, using the
tool dot [7] from the GraphViz toolbox, can be found on the supplementary
website https://sourceforge.net/projects/fluxmodules/. The MATLAB
scripts for module detection can be found there as well.

https://sourceforge.net/projects/fluxmodules/
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4 Discussion

4.1 Enumeration of Optimal-Yield Pathways

We showed that flux modules [9,15] of genome-scale metabolic networks can
efficiently be computed using matroids. We confirmed the previous results that
the optimal flux space of most genome-scale metabolic networks decomposes into
modules. If we want to compute the set of all optimal yield elementary modes,
we theoretically can do this by simply computing the optimal yield elementary
modes for each module. Then, we can use the decomposition theorem of [15]
and obtain all optimal yield elementary modes of the whole network. There is
only a small numerical barrier to be climbed to do this in practice: The EFM
enumeration problem for each module appears to be numerically very unstable.
Hence it is likely that EFMs are missed if not everything is computed using
precise rational arithmetic.

We noted that the previous methods [9,15] were computing flux modules on
slightly different flux spaces (in [9] rays and linealities were removed, in [15] we
worked on the thermodynamically feasible flux space). These differences seem
to be small but could be of significant biological importance. For example, it
could be that due to thermodynamic constraints a reaction is blocked and hence,
we can refine the modules. In a follow up work we will (mathematically and
empirically) analyse the impact of these differences.

The full flux space is usually not decomposable into modules. In a follow
up paper we will generalize the notion of module. This will allow us to find
interesting modules also for the full flux space. Furthermore, this will have the
potential to derive similar decomposition theorems as in [15] that then will work
on the full flux space as well. We think this will be a major step towards EFM
enumeration of genome-scale networks.

4.2 Modularity under Different Growth-Conditions

It has been observed that the decomposition into modules depends on the growth
condition [9,15]. If we want to understand how the optimal flux space changes if
the growth condition is modified, we have to recompute the decomposition into
modules. Previously, this was a tedious task. Now it is very simple and fast and
it can be done even for very small changes.

We presented a visualization method that shows the interplay of the modules
and how they contribute to optimal biomass production. We think that this
visualization will be very helpful to detect when a change in a growth condition
significantly changes the structure of the optimal flux space.

For the visualization we use the definition of module to lump reactions to-
gether. This way we compute a compressed metabolic network that shows the
optimal flux distribution with only a small number of reactions. These networks
were small enough to be visualized using automated graph drawing tools. Cur-
rently, we have only little control on how these networks are drawn, causing the
visualization to seem to be very sensitive to changes. In particular it would be
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interesting if we could get more robust drawing results for small changes in the
network.

4.3 Applications Outside Metabolic Networks

Note that the definition of module of a polyhedron is context free. Every poly-
hedron can be written in the form P = {v ∈ R

n : Sv = b, � ≤ v ≤ u}, where
S ∈ R

m×n, b ∈ R
m, � ∈ {R∪{−∞}}n, u ∈ {R∪{∞}}n by addition of slack vari-

ables. The enumeration of extreme points and extreme rays of such polyhedra
is a classical problem in polyhedral combinatorics and computational geometry.
In fact, it is a major open problem if this can be done in total polynomial time,
i.e., polynomial in input and output. Khachiyan et al. [10] showed that this is
impossible if only the extreme points (so without the rays) of an unbounded
polyhedron are to be enumerated, unless P=NP.

Still, methods have been proposed that do this enumeration. The most promi-
nent ones are variations of the so-called Double Description Method and a
method introduced by Fukuda [1,6] (see also the work of Terzer and Stelling
[26,25] in the context of metabolic networks). Such methods are much faster on
smaller polyhedra, and therefore it makes sense to subject any polyhedron to be
enumerated first to our method to see if smaller modules can be found and then
apply a favorite enumeration method on the smaller parts.

4.4 Conclusion

In this paper we presented a new method that allows us to compute flux mod-
ules very efficiently. This allows us to compute flux modules of many metabolic
networks under a large set of different conditions to compare flux modules with
existing classical metabolic subsystems like Glycolysis.

Compared to classical metabolic subsystems that, at worst, are arbitrary func-
tional groupings of metabolic reactions/species, flux modules are mathematically
well defined. They are structural features only depending on a defined set of con-
ditions (inputs, optimality). This qualifies them as a performance and quality
metric for genome-scale metabolic networks. Furthermore, it allows us to inves-
tigate the modularity, and simplify genome metabolic networks without the risk
of a bias from conventional biological interpretation.
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2009 (2009)

26. Terzer, M., Stelling, J.: Large-scale computation of elementary flux modes with bit
pattern trees. Bioinformatics 24(19), 2229–2235 (2008)

27. Truemper, K.: Partial matroid representations. European Journal of Combinatorics
(1984)

28. Varma, A., Palsson, B.Ø.: Metabolic flux balancing: Basic concepts, scientific and
practical use. Nature Biotechnology 12, 994–998 (1994)

Supplementary Material

For the supplementary material we have created a sourceforge project
https://sourceforge.net/p/fluxmodules/wiki/Home/. There you can find

– The proofs for Thm. 1 and Thm. 2.
– The MATLAB code for computing the modules (requires the openCOBRA

toolbox [22])
– The MATLAB code for vizualising modules (requires the tool dot from

GraphViz [7]).
– Computational results and visualizations for the example networks. For each

network the results are grouped into one .zip archive.

https://sourceforge.net/p/fluxmodules/wiki/Home/
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