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Abstract. In this work we present graph theoretic algorithms for the
identification of all identical-by-descent (IBD) multi-shared haplotype
tracts for an m × n haplotype matrix. We introduce Tractatus, an ex-
act algorithm for computing all IBD haplotype tracts in time linear in the
size of the input, O(mn). Tractatus resolves a long standing open prob-
lem, breaking optimally the (worst-case) quadratic time barrier ofO(m2n)
of previous methods often cited as a bottleneck in haplotype analysis of
genome-wide association study-sized data. This advance in algorithm ef-
ficiency makes an impact in a number of areas of population genomics
rooted in the seminal Li-Stephens framework for modeling multi-loci link-
age disequilibrium (LD) patterns with applications to the estimation of
recombination rates, imputation, haplotype-based LD mapping, and hap-
lotype phasing. We extend the Tractatus algorithm to include computa-
tion of haplotype tracts with allele mismatches and shared homozygous
haplotypes in a set of genotypes. Lastly, we present a comparison of algo-
rithmic runtime, power to infer IBD tracts, and false positive rates for sim-
ulated data and computations of homozygous haplotypes in genome-wide
association study data of autism. The Tractatus algorithm is available for
download at http://www.brown.edu/Research/Istrail_Lab/.

Keywords: haplotypes, haplotype tracts, graph theory, identity-by-
descent.

1 Introduction

1.1 Li-Stephens PAC-Likelihood Model and the O(m2n) Time
Bound

Understanding and interpreting patters of linkage disequilibrium (LD) among
multiple variants in a genome-wide population sample is a major technical chal-
lenge in population genomics. A large body of research literature is devoted to
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the topic including the computational framework presented in the seminal work
of Li and Stephens[1]. Building on the work by Stephens et al. 2001[2], Hudson[3],
and Fearnhead and Donnelly[4], the Li-Stephens framework led the way towards
major advances in the understanding and modeling of linkage disequilibrium
patterns and recombination.

The difficulties associated with modeling LD patterns at multiple loci include
a number of long standing analytical obstacles. Among existing bottlenecks is
the notorious (1) curse of the pairwise, as all the popular LD measures in the
literature are pairwise measures, and the (2) haplotype block-free approach to
avoid ad hoc haplotype block definitions and “fake blocks” due to recombina-
tion rate heterogeneity. Current methods for computing haplotype blocks result
in the definition of ad hoc boundaries that sometimes present less LD within
blocks than between blocks due to different patterns of recombination. This
phenomenon leads to spurious block-like clusters. The Li-Stephens statistical
model for LD, named the Product of Approximate Conditionals (PAC), is based
on a generalization of coalescent theory to include recombination [3,5].

The optimization problem introduces the PAC likelihood LPAC(ρ)

LPAC(ρ) = π̃(h1 | ρ)π̃(h2 | h1, ρ)...π̃(hm | h1, ..., hm−1, ρ)

where h1, ..., hm are the m sampled haplotypes, ρ denotes the recombination
parameter, and π̃ represents an approximation of the corresponding conditional
probabilities. Li and Stephens propose a number of such approximations for ap-
proximate likelihood functions[1]. LPAC(ρ) represents the unknown distribution

Prob(h1, ..., hm | ρ) = Prob(h1 | ρ)Prob(h2 | h1, ρ)...P rob(hm | h1, ..., hm−1, ρ)

The choice of π̃ gives the form of the likelihood objective function.
The PAC likelihood is based on expanding the modeling to capture realistic

genomic structure while generalizing Ewens’ sampling formula and coalescent
theory. The framework iteratively samples the m haplotypes; if the first k haplo-
types have been sampled h1, ..., hk, then the conditional distribution for the next
sampled haplotype is Prob(hk+1 | h1, ..., hk). π̃ approximates this distribution
and is constructed to satisfy the following axioms:

1. hk+1 is more likely to match a haplotype from h1, ..., hk that has been ob-
served many times rather than a haplotype that has been observed less
frequently.

2. The probability of observing a novel haplotype decreases as k increases.
3. The probability of observing a novel haplotype increases as θ = 4Nμ in-

creases, where N is the population size and μ is the mutation rate.
4. If the next haplotype is not identical to a previously observed haplotype, it

will tend to differ by a small number of mutations from an existing haplotype
(as in the Ewens’ sampling formula model).

5. Due to recombination, hk+1 will resemble haplotypes h1, ..., hk over contigu-
ous genomic regions; the average physical length of these regions should be
larger in genomic regions where the local rate of recombination is low.
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Intuitively, the next haplotype hk+1 should be an imperfect mosaic of the
first k haplotypes, with the size of the mosaic fragments being smaller for higher
values of the recombination rate. Although the proposed model (π̃A in the no-
tation of [1]) satisfies the above axioms and has the desirable property of being
efficiently computable, it has a serious disadvantage. As is stated in their article,
this “unwelcome” feature of the PAC likelihoods corresponding to the choices
for π̃ is order dependence, that is, the choices are dependent on the order of the
haplotypes sampled. Other methods used in the literature, notable, Stephens et
al. 2001[2] and Fearnhead and Donnelly[4], present the same problem of order
dependence. Different haplotype sampling permutations correspond to different
distributions; these probability distributions do not satisfy the property of ex-
changeability that we would expect to be satisfied by the true but unknown
distribution.

1.2 Identical-by-Descent Haplotype Tracts

Haplotype tracts, or contiguous segments of haplotypes, are identical-by-descent
(IBD) if they are inherited from a common ancestor [6]. Tracts of haplotypes
shared IBD are disrupted by recombination so the expected lengths of the IDB
tracts depends on the pedigree structure of the sample and the number of gener-
ations till the least common ancestor at that haplotype region. The computation
of IBD is fundamental to genetic mapping and can be inferred using the PAC
likelihood model.

To model the effects of recombination, a hidden Markov model (HMM) is
defined to achieve a mosaic construction. At every variant, it is possible to tran-
sition to any of the haplotypes generated so far with a given probability. Thus,
a path through the chain starts with a segment from one haplotype and contin-
ues with a segment from another haplotype and so on. To enforce the mosaic
segments to resemble haplotype tracts, the probability of continuing in the same
haplotype without jumping is defined exponentially in terms of the physical dis-
tance (assumed known) between the markers; that is, if sites j and j + 1 are at
a small genetic distance apart, then they are highly likely to exist on the same
haplotype. The computation of the LPAC is linear in the number of variants (n)
and quadratic in the number of haplotypes (m) in the sample, hence the O(m2n)
time bound.

In this work we present results that remove the pairwise quadratic dependence
by computing multi-shared haplotype tracts. Multi-shared haplotype tracts are
maximally shared contiguous segments of haplotypes starting and ending at the
same genomic position that cannot be extended by adding more haplotypes in
the sample. Because we represent the pairwise sharing in sets of haplotypes, no
more than O(mn) multi-shared haplotype tracts may exist.

1.3 Prior Work

Building on the PAC model, the IMPUTE2 [7] and MaCH [8] algorithms em-
ploy HMMs to model a sample set of haplotypes as an imperfect mosaic of
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reference haplotypes. The usage of the forward-backward HMM algorithm brings
these methods in the same O(m2n) time bound class. The phasing program
SHAPEIT (segmented haplotype estimation and imputation tool) also builds on
the PAC model by decomposing the haplotype matrix uniformly into a number
of segments and creating linear time mosaics within each such ad hoc segmented
structure[9]. The dependence on the number of segments is not considered in the
time complexity.

PLINK [10], FastIBD [11], DASH [12], and IBD-Groupon [13] are algorithms
based on HMMs or graph theory clustering methods that consider pairs of hap-
lotypes to compute IBD tracts. Iterating over all such pairs takes time O(m2n)
and is intractable for large samples; this intractability is best described in the
recent work of Gusev et al. 2011.

“Although the HMM schemes offer high resolution of detection [of IBD],
the implementations require examining all pairs of samples and are
intractable for GWAS-sized cohorts. ... In aggregate, these identical-by-
descent segments can represent the totality of detectable recent haplo-
type sharing and could thus serve as refined proxies for recent variants
that are generally rare and difficult to detect otherwise.” Gusev et al.
2011 [12]

Gusev et al. 2009 describes the computationally efficient algorithmGERMLINE
which employs a dictionary hashing approach[14]. The input haplotype matrix is
divided into discrete slices or windows and haplotype words that hash to the same
value are identified as shared. Due to this dependence onwindows, the algorithm is
inherently inexact.While the identification of small haplotype tracts within error-
free windows can be performed in linear time, GERMLINE’s method for handling
base call errors is worst case quadratic. However, GERMLINE’s runtime has been
shown to be near linear time in practice [6].

In what follows, we describe the Tractatus algorithm for computing IBD multi-
shared haplotype tracts from a sample of haplotypes and the Tractatus-HH algo-
rithm for computing homozygous haplotypes in a sample of genotypes. Section
2 introduces the computational model and algorithms. Section 3 compares the
runtime of Tractatus to a generic pairwise algorithm, compares false positive
rates and power with GERMLINE, and provides an example computation of ho-
mozygous haplotype regions in genome-wide association study data of autism.
Finally, sections 4 and 5 discuss implications of this algorithm, conclusions, and
future directions.

2 Methods

Our work presented here addresses the lack of exchangeability in the sampling
methods of the Li-Stephens model and provides a rigorous result that gives a
basis for sampling with the assured exchangeability property. We also present a
data structure that speeds up the HMM and the graph clustering models for the
detection of identical-by-descent haplotype tracts. Informally, a haplotype tract
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or simply tract is a contiguous segment of a haplotype – defined by start and end
variant indices – that is shared (identical) by two or more haplotypes in a given
sample of haplotypes. One can then view each of the haplotypes in the set as a
mosaic concatenation of tracts. Such a haplotype tract decomposition is unique
and a global property of the sample. Our Tractatus algorithm computes the
Tract tree of all the tracts of the haplotype sample in linear time in the size of the
sample. The Tract tree, related to a suffix tree, represents each haplotype tract in
a single root-to-internal-node path. Repeated substrings in distinct haplotypes
are compressed and represented only once in the Tract tree.

2.1 The Tractatus Model

Suffix trees are graph theoretic data structures for compressing the suffixes of a
character string. Several algorithms exist for suffix tree construction including
the notable McCreight and Ukkonen algorithms that achieve linear time and
space constructions for O(1) alphabets [15,16]. In 1997, Farach introduced the
first suffix-tree construction algorithm that is linear time and space for integer
alphabets [17]. Extensions to suffix-trees, commonly known as generalized suffix
trees, allow for suffix-tree construction of multiple strings.

The input to the problem of IBD tract inference is m haplotypes which are en-
coded as n-length strings of 0’s and 1’s corresponding to the major and minor al-
leles of genomic variants v1, ..., vn. Because we are interested in IBD relationships
which are by definition interhaplotype, naive application of suffix-tree construc-
tion algorithms to the set of haplotypes would poorly model IBD by including
intrahaplotype relationships. Let haplotype i be denoted hi and the allele of hi at
position j be denoted hi,j . Then, we model each haplotype hi = hi,1, hi,2, ..., hi,n

with a new string di = (hi,1, 1), (hi,2, 2), ..., (hi,n, n) for 1 ≤ i ≤ m. Computa-
tionally, the position-allele pairs can be modeled as integers ∈ [0, 1, 2, ..., 2n− 1]
where (hi,j , j) is 2 ∗ j+hi,j where hi,j ∈ 0, 1. The transformed haplotype strings
are termed tractized.

2.2 The Tractatus Algorithm without Errors

The Tractatus algorithm incorporates elements from integer alphabet suffix trees
with auxiliary data structures and algorithms for computing IBD haplotype
tracts. Firstly, a suffix tree is built from the set of m tractized haplotypes each
of length n. To represent the tractized haplotypes, the alphabet size is O(n), so
Farach’s algorithm may be used to construct a suffix tree in linear time[17]. The
suffix tree built from the tractized haplotypes is termed the Tract tree. After the
Tract tree is built, an O(mn) depth first post-order traversal (DFS) is computed
to label each vertex with the number of haplotype descendants. These pointers
enable the computation of groups of individuals sharing a tract in linear time.

Substrings of haplotypes are compressed if they are identical and contain the
same start and end positions in two or more haplotypes. We consider a path
from the root to a node with k descendants as maximal if it is not contained
within any other path in the Tract tree. The maximal paths can be computed
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using a depth first search of the Tract tree, starting with suffixes beginning at 0
and ending at suffixes beginning with 2n− 1. Of course, if a tract is shared by
k ≥ 2 haplotypes, it is represented only once in the Tract tree. Figure 1 shows
the construction of the Tract tree and computation of IBD tracts.

The internal nodes of the Tract tree also have an interpretation in regards to
Fisher junctions. A Fisher junction is a position in DNA between two variants
such that the DNA segments that meet in this virtual point were ancestrally on
different chromosomes. Fisher junctions are represented in the Tract tree where
maximal tracts branch.

After maximal tracts are computed, they are quantified as IBD or IBS. Trac-
tatus implements two methods for calling maximally shared tracts IBD or IBS.
A simple tract calling method thresholds the length L (number of variants) or
area (variants × haplotypes) of the tract in terms of the haplotype matrix input.
A more complex method considers the probability of a region being shared IBD
or identical-by-state (IBS). If two individuals are kth degree cousins, the prob-
ability they share a haplotype tract IBD is 2−2k due to the number of meioses
between them[18]. Let the frequency of a variant at position i be fi. Then, the
probability of IBD and IBS can be combined to define the probability that a
shared haplotype tract of length L and starting at position s for kth degree
cousins is IBD (Equation 1) [19]

P (IBD|L) = 2−2k

2−2k +
∏s+L

i=s (f2
i + (1 − fi)2)

(1)

The value of k can be approximated if the population structure is known.
Tractatus without errors is presented in Algorithm 1. Because the suffix tree
is computable in O(mn) time with O(mn) nodes, the tree traversals can be
computed in O(mn) time thus giving Theorem 1.

Theorem 1. Given a set of m haplotypes each of length n, Algorithm 1 com-
putes the Tract tree and the set of IBD tracts in O(mn) time and space.

2.3 The Tractatus Algorithm with Errors and Allele Mismatches

Incorporating base call errors and additional variability gained after differenti-
ation from the least common ancestor requires additional computations on the
Tract tree and a statistical modeling of haplotype allele mismatches. The Tracta-
tus algorithm with errors is parameterized by an estimated probability of error
or mismatched alleles pt, a p-value threshold corresponding to a test for the
number of errors in a tract ph, a minimum length partial IBD tract l, and a
minimum length of calling a full IBD tract L (or alternatively P(IBD) as defined
in Equation 1). We will, in turn, explain the significance of each parameter.

The algorithm proceeds similarly to the error-free case. We build the tractized
haplotypes, Tract tree and populate necessary data structures with a DFS. Be-
cause errors and additional variation now exist which can break up tracts (and
therefore paths in the Tract tree), we compute partial tracts as evidence of IBD.
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Fig. 1. Construction of the Tract tree and running Tractatus on example input without
errors or allele mismatches. Terminator characters $ are colored to match tractized
haplotypes and the empty string (simply the terminator character) is omitted in this
example. (A) The haplotype matrix is encoded by an integer alphabet representing
position-allele pairs. (B) Tractized haplotype d0 is inserted in the Tract tree. The first
tractized haplotype inserts O(n) nodes into the Tract tree. (C) Tractized haplotype d1
is inserted in the Tract tree. The suffix of d1 starting at v0 requires generation of a new
node in the Tract tree but subsequent suffixes can be compressed along paths from
the root. (D) Tractized haplotype d2 is inserted in the Tract tree and the algorithmic
search order is given in brown integers adjacent to internal nodes. Leaf nodes have
exactly one terminating character (haplotype) and therefore do not have to be visited
during the search. (E) The largest IBD tracts are found at search numbers 0, 1, and 2.
Saving references to these tracts enables the determination that subsequent tracts are
contained within already processed tracts.

We compute a DFS from the root, and a maximal partial tract is saved when the
algorithm arrives at a node with path length at least l and at least 2 haplotype
descendants. If we find a partial tract in a subsequent traversal, we can check in
O(1) time is it is contained in a maximal partial tract already computed. Figure
2 shows an example of the Tract tree construction with a single allele mismatch.

Because we computed the partial tracts using a DFS, the tracts are ordered by
starting position. For each tract, tracts starting at a position prior and includ-
ing a subset of the same haplotypes are combined if the extension is statistically
probable. To determine the scan distance, we can compute a probability of ob-
serving a partially shared tract of length l given a window distance w (or this
can be user defined). Assuming the generation of errors is independent and the
probability of generating an error is pe, we model the probability of generating
at least k errors in an interval of li in t haplotypes as a Poisson process with
λ = pelit. For each extension we calculate the probability of observing at least
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input : m haplotypes each of length n, minimum length L or IBD
probability p

output: set of IBD tracts

H ← tractized haplotypes

T (H) ← Tract tree of H

Post-order DFS of T(H) to compute descendant haplotypes from each
node

DFS of T(H):
if path in DFS is longer than L or P (IBD) > p and node has at least
2 descendant haplotypes then

if tract is not contained in previously computed tract then
report as an IBD tract

end

else
push children nodes on stack

end

Algorithm 1. Tractatus (error free)

A Bvi ∙ ∙ ∙ ∙ ∙ ∙ vj-1 vj vj+1 ∙ ∙ ∙ ∙ ∙ ∙ vk
0 ∙ ∙ ∙ ∙ ∙ ∙ 0 0 0 ∙ ∙ ∙ ∙ ∙ ∙ 0
0 ∙ ∙ ∙ ∙ ∙ ∙ 0 1 0 ∙ ∙ ∙ ∙ ∙ ∙ 0

h0
h1

d0
d1

2i,
 ∙ ∙

 ∙,2
j-2

2i ∙ ∙ ∙ ∙ ∙ ∙ 2j-2 2j 2j+2 ∙ ∙ ∙ ∙ ∙ ∙ 2k
2i ∙ ∙ ∙ ∙ ∙ ∙ 2j-2 2j+1 2j+2 ∙ ∙ ∙ ∙ ∙ ∙ 2k

2j+2, ∙ ∙ ∙,2k

∙ ∙ 
∙ $

∙ ∙ ∙ $ ∙ ∙ 
∙ $

∙ ∙ ∙ $

Fig. 2. Construction of the Tract tree and running Tractatus on example input with
allele mismatches. (A) h0 and h1 share a tract IBD in the interval [vi, vk] with a single
allele mismatch at vj . (B) By the construction of the Tract tree, there must be some
path (here shown as a single edge but it may be split into a path by other haplotypes)
from root to internal node that includes both [vi, vj) and (vj , vk].

k mismatches and accept the extension if the probability is greater than ph.
The parameter pt is used as an approximation of pe. The haplotype consensus
sequence of the tract is taken by majority rule at each variant position.

Pseudocode is given in Algorithm 2. While the algorithm is parameterized
with five parameters, they are optional and default values are suitable in most
cases.

Construction of the Tract-tree takes O(mn) time and space. O(mn) time is
needed to prepare data structures and compute maximally shared partial tracts
(DFS). A tract can be checked if it is contained in a previously processed tract in
O(1) time. It takes O(sw) to merge partial IBD tracts in the worst case when we
have to extend many tracts covering a large portion of the matrix, thus yielding
Theorem 2.
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Theorem 2. Given a set of m haplotypes each of length n, a scan distance w
and a set of partial haplotype tracts s, Algorithm 2 computes the Tract tree and
set of IBD tracts in time and space O(mn+ sw).

2.4 Extensions for Homozygous Haplotypes

A particular class of identical-by-descent relationships are long regions of ex-
tended homozygosity in genotypes. The two dominant concepts of extended
regions of allelic homozygosity are the homozygous haplotype (HH) concept
introduced by Miyazawa et al. 2007 and the well-known region or run of ho-
mozygosity (ROH)[20]. A HH is defined as a genotype after the removal of het-
erozygous variants such that only homozygous variants remain. Miyazawa et al.
2007 compared every pair of HH in a small cohort and reported regions of consec-
utive matches over a threshold. ROHs are defined as extended genomic regions
of homozygous variants allowing for a small number of heterozygous variants
contained within. We can rigorously capture both concepts using Tractatus.

input : m haplotypes each of length n, partial tract length l,
minimum length L or IBD probability p, p-value threshold ph,
estimated probability of error pt, length of scan w

output: set of IBD tracts

H ← tractized haplotypes

T (H) ← Tract tree of H

Post-order DFS of T(H) to compute descendant haplotypes from each
node

DFS of T(H):
if path in DFS is longer than l, node has at least 2 descendant
haplotypes, and is maximal then

add partial IBD tract to set of tracts S
else

push children nodes on stack
end
for tract s ∈ S do

Check for extension in previously processed tracts within scan
region w

Compute probability according to number of errors in extension, pt,
the length of the extension, and the number of individuals

If probability > ph, merge tracts
end
for tract s ∈ S do

If length of s is greater than L or P (IBD) > p, report as IBD tract
end

Algorithm 2. Tractatus (with errors)
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A naive model for computing HH would consider each heterozygous site as a
wildcard allowing for either the 0 or 1 allele. A haplotype with k heterozygous
sites would require insertion of 2k haplotypes into the Tract tree. This immedi-
ately suggests a fixed-parameter tractable algorithm using the same machinery
as Tractatus. However, we can remove the dependence on k using a key insight
regarding the structure of the Tract tree and tractized haplotypes.

Errors split tracts in the Tract tree such that the shared tract fragments are
on different paths from the root. Instead of encoding all 2k possible haplotypes,
we simply remove the heterozygous alleles from the tractized string. Because
the position is inherently encoded in the tractized string, the removal of the
heterozygous alleles would have the same effect as an error. Therefore, if we
encode genotypes by simply removing heterozygous variants in the tractized
string, we can run Algorithm 2 to produce all the homozygous haplotypes for a
set of genotypes in linear time and space.

3 Results

The principle advantages of Tractatus over existing methods are the theoreti-
cally guaranteed subquadratic runtime and exact results in the error-free case
which translate to improved results in the case with errors and allele mismatches.
We evaluate the runtime of Tractatus against a generic algorithm that processes
individuals in pairs using phased HapMap haplotypes from several populations.
We then compare the power and false positive rates of both Tractatus and
GERMLINE which is a leading method for IBD inference[14]. Finally, we show
an application of Tractatus-HH by inferring homozygous haplotypes in a previ-
ously known homozygous region in the Simons Simplex Collection genome-wide
association study data[21].

3.1 Tractatus vs. Pairwise Algorithm Runtimes

To evaluate the runtime of Tractatus versus pairwise methods, we implemented
the pairwise equivalent algorithm which iterates through pairs of individuals
and reports tracts of variants occurring in both individuals over some threshold
length of variants. The data consist of phased haplotypes from HapMap Phase
III Release 2 in the ASW, CEU, CHB, CHD, GIH, JPT, LWK, MEX, MKK,
TSI, and YRI populations[22]. Figure 3 left shows the independence between
chromosome and computation time for the Tractatus suffix tree and the pair-
wise algorithm. Because the runtime of each algorithm does not depend on the
chromosome, we varied the population sizes while keeping the number of vari-
ants constant for chromosome 22. Figure 3 right shows the quadratic computa-
tion time growth for the pairwise algorithm while Tractatus tree construction
remains linear in the number of individuals.
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Fig. 3. Left: Tractatus and the pairwise algorithm were run on haplotypes from each
chromosome of all HapMap populations for a minimum tract length of 100, and a ran-
domly selected interval of 1000 variants. The experiment was repeated 100 times for
each chromosome and elapsed time was averaged. Right: Tractatus and the pairwise al-
gorithm were run on a randomly selected interval of 1000 variants from chromosome 22.
The population size varied from 100 to twice the actual population size by resampling
haplotypes with a 0.05 allele switch rate (per base).

3.2 False Positive Rates

Because it is difficult to construct a gold-standard baseline of true IBD regions
in real data, our false positive rate and power calculations are performed on sim-
ulated data. To estimate the false positive rates for GERMLINE and Tractatus
we simulated haplotypes at random and generated a single IBD region defined
as having identical haplotype alleles in the region of IBD. We generated 100 hap-
lotype matrices where m = n = 500 for all possible combinations of the number
of individuals sharing a segment IBD ∈ [3, 5, 10], the number of variants in the
IBD region ∈ [50, 60, 70, 80, 90, 100, 150, 200] and the single base substitution er-
ror rates ∈ [0.0, 0.01, 0.05]. In total, we generated 7200 haplotype matrices but
aggregated the data across the number of individuals and variants in the IBD
region because the false positive rates did not vary over these dimensions.

Table 1 shows that both algorithms have very low false positive rates in terms
of the number of bases incorrectly called in an IBD region. However, Tractatus
incorrectly calls less individuals in IBD regions than GERMLINE. In this ex-
periment, IBD regions were generated in block sizes and GERMLINE benefits
from calling IBD regions in terms of blocks or windows. GERMLINE and Trac-
tatus call a similar amount of bases IBD because Tractatus can over-estimate
the ends of blocks. However, when individuals are compared, Table 1 shows that
Tractatus computes a significantly smaller number of false positive IBD regions.



12 D. Aguiar, E. Morrow, and S. Istrail

Table 1. False positive rates for the GERMLINE (G) and Tractatus (T) algorithms as
a function of error rate. Each row corresponds to 2400 randomly generated haplotype
matrices. The error rate was varied in a simulated haplotype matrix containing a single
IBD region. False positive rates were calculated in terms of the number of non-IBD
bases being called IBD (bases) and the number of individuals called IBD who were not
in an IBD region (people) for the GERMLINE and Tractatus algorithms.

error rate G FPR bases T FPR bases G FPR people T FPR people

0.0 1.3 · 10−4 1.16 · 10−4 0.016 2.13 · 10−3

0.01 1.2 · 10−4 1.11 · 10−4 0.012 8.72 · 10−3

0.05 6.1 · 10−5 4.18 · 10−5 0.015 7.43 · 10−3

3.3 Power

We apply Tractatus and GERMLINE to the simulated data from Section 3.2 and
estimate power by computing the number of times GERMLINE and Tractatus
correctly call the IBD region in terms of variants and individuals. We considered
an individual being called correctly if an IBD region was called and overlapped
anywhere in the interval of the true IBD tract. We set the -bits and min m
options of GERMLINE to 20 and 40 respectively which sets the slice size for
exact matches to 20 consecutive variants and the minimum length of a match to
be 40 MB (which corresponds to 40 variants in our simulated data). For a valid
comparison, we set Tractatus to accept partial tract sizes of 20 variants and a
minimum length of an IBD region to 40 variants.

Figure 4 shows the power of GERMLINE and Tractatus to infer IBD as a
function of IBD region length, number of haplotypes sharing the region, and
the probability of base call error. Figure 4 right displays a jagged curve for
GERMLINE which is likely due to the algorithmic dependence on window size.
Both algorithms perform relatively well for shorter IBD tracts but Tractatus is
clearly more powerful when the number of haplotypes sharing the tract increases
or the base call error rates are low. Additionally, the minimum partial tract
length for Tractatus could be lowered to increase the power to find smaller IBD
tracts (at a cost of higher false positive rates). Another interesting observation is
that both GERMLINE and Tractatus are able to perfectly infer all individuals
sharing the IBD region in the perfect data case, but, GERMLINE is unable to
compute the entire IBD interval in some data.

3.4 Homozygous Haplotypes in Autism GWAS Data

As a proof of concept for Tractatus-HH, we extracted a 250kb genomic re-
gion identified as having a strong homozygosity signal in the Simons Simplex
Collection[23]. The families analyzed include 1,159 simplex families each with at
least one child affected with autism and genotyped on the Illumina 1Mv3 Duo
microarray. Gamsiz et al. 2013 approached the problem by treating a homozy-
gous region as a marker and testing for association or burden for the region as
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Fig. 4. The power to infer IBD by individual haplotypes (left) and variant bases (right)
as a function of the length of the IBD region in variants (x-axis), the probability of base
call error (p), and the number of individual haplotypes sharing the IBD segment (i).

a whole[23]. Our analysis shows that regions of homozygosity are more com-
plex than previously assumed and there can be multiple regions overlapping and
sharing some segments of homozygous haplotypes but largely different in other
segments (Table 2). We found more individuals possessing a homozygous hap-
lotype than Gamsiz et al. 2013 because the probability of generating an error
or heterozygous site was set to a large value (0.1) but in general this parameter
can be adjusted to be more conservative.

Table 2. Analysis of a 250kb region of homozygosity in the Simons Simplex Collection.
The homozygous interval is defined as a region start and end in terms of variants in the
genomic interval, a number of individuals (size), and the number of individuals unique
to the particular homozygous haplotype group (unique). One region is dominant and
contains most of the individuals, but there are smaller regions with some overlap that
contain unique individuals not sharing a homozygous haplotype with the larger region.

region start region end size unique

0 111 20 10
0 109 20 12
0 109 252 238
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4 Discussion

The importance of provable bounds and exact solutions is exemplified in Section
3 and, in particular, Figure 4. Even in the error free case, GERMLINE approx-
imates computing IBD tracts by processing windows or vertical slices of the
haplotype matrix. Tractatus is able to compute maximally shared partial tracts
exactly (which are exactly the IBD tracts in the error-free case). Moreover, the
inexactness of GERMLINE due to the dependence of hashing windows is exac-
erbated in the case of errors. If errors fall in a pattern that cause individuals
sharing a segment IBD to hash to different values then GERMLINE produces
false negatives. Tractatus computes all maximally shared partial tracts without
dependence on windows. Lastly, in the worst case, the number of matches per
word is quadratic giving GERMLINE a complexity quadratic in the number of
individuals. Even though this is unrealistic in practice, Tractatus compresses
individuals sharing a partial tract into a single path of the suffix tree.

The Tract tree in itself is an interesting data structure with many possible
applications. Once the Tract tree is computed for a set of haplotypes, the statis-
tics of constructing the mosaic of tract combinations can be done rigorously
and completely such that sampling can be implemented in an order independent
manner satisfying the exchangeability property. For the HMM constructions,
the availability of the complete set of tracts would provide a rigorous basis for
defining the transition probabilities and overall linear time construction. For the
graph clustering methods, the Tract tree represents tracts occurring multiple
times together and thus this construction will maximize the power in associa-
tion studies.

Unfortunately, the issue of acquiring the haplotypes remains. Almost exclu-
sively, algorithms for computing IBD require haplotypes due, in part, to the
higher power to infer a more subtle IBD sharing than in genotype data. How-
ever, this is not a major roadblock considering haplotype phasing algorithms can
be highly parallelized or made more efficient using reference panels. Addition-
ally, haplotype assembly algorithms are very efficient and can extend genome-
wide [24].

A related and important unanswered problem is to compute IBD regions in
genotypes faster than the naive quadratic allele sharing algorithm. Haplotype-
based IBD inference algorithms have difficulties modeling genotypes predomi-
nately because the heterozygous site introduces ambiguity in haplotype phase.
We believe an approach exploiting the Tract tree may infer IBD in genotypes
in subquadratic time perhaps with a direct application of the Tractatus-HH al-
gorithm. However, the number of heterozygous variants is usually very high,
so additional computation would be required to handle the large quantity of
ambiguous sites.

Our analysis of the autism genome-wide association study data shows that
homozygous regions cannot simply be treated as a biallelic markers. Distinct
homozygous haplotypes, while having a similar signature of homozygosity, can
be composed of entirely different alleles. These finding suggest that homozygous
regions are complex, multi-allelic markers.
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Finally, we note that a similar linear time construction could be used for
constructing a Tract tree for a set of haplotypes where there is known genetic
information about the distance between variants as in the Li-Stephens PAC
model[1]. The genetic distance can be modeled approximately as an integer and
used in a similar encoding to compress “identical” tracts.

5 Conclusions

In this work, we described the Tractatus algorithm for computing IBD tracts
with and without errors and homozygous haplotypes. Tractatus represents the
first provably exact algorithm for finding multi-shared IBD tracts given a set
of haplotypes as input; it computes all subsets of individuals that share tracts
and the corresponding shared tracts in time linear in the size of the input.
By starting from an exact and rigorous algorithmic baseline, we are able to
modify downstream decisions based on the global IBD tract decomposition. We
compare the runtimes of Tractatus and a generic pairwise algorithm that process
individuals in pairs using phased HapMap haplotypes from several populations
and show decreased runtimes. Also, we exhibit superior statistical power to infer
IBD tracts with less false positives than GERMLINE. Finally, with a conceptual
change to the interpretation of genotypes, we showed that homozygous haplotype
inference in genotypes can be modeled in the same Tractatus framework and
demonstrated Tractatus-HH in a previously known homozygous region of the
Simons Simplex Collection autism data.
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