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Preface

The RECOMB conference series – with the full name of the Annual Inter-
national Conference on Research in Computational Molecular Biology – was
started in 1997 by Sorin Istrail, Pavel Pevzner, and Michael Waterman. The 18th
RECOMB conference, RECOMB 2014, was held in Pittsburgh, PA, USA during
April 2–5, 2014. It was hosted by Carnegie Mellon University and the University
of Pittsburgh.

This volume contains the 35 extended abstracts selected for oral presentation
at RECOMB 2014 by the Program Committee (PC) out of 154 submissions.
Each submission was assigned to at least three PC members and reviewed with
the help of many external reviewers. Following the initial reviews, there was an
extensive discussion of the submissions among the members of the PC, leading
to the final decisions.

This year RECOMB teamed up with PLoS Computational Biology to allow
parallel submissions to the proceedings and the journal in a coordinated manner.
I would like to thank Thomas Lengauer, deputy editor of PLoS Computational
Biology, for the countless hours he spent on coordinating the review process and
ensuring the success of this partnership. In total, 55 papers were submitted for
consideration by RECOMB and PLoS Computational Biology. Eighteen of those
papers passed an initial pre-screening for the journal and underwent a full review
process. Five papers were subsequently accepted to both venues and appear as
two-page abstracts in this volume; a few additional papers were accepted to only
one of the venues. The five papers were published in full in a special RECOMB
2014 section of PLoS Computational Biology. All other papers that were accepted
to RECOMB 2014 were invited for submission of an edited journal version to a
special issue of the Journal of Computational Biology.

In addition to the paper presentations, RECOMB 2014 featured six invited
keynote talks by leading scientists world-wide. The keynote speakers were Ian
T. Baldwin (Max Planck Institute for Chemical Ecology), Atul Butte (Stanford
University), James J. Collins (Harvard University), Trey Ideker (University of
California at San Diego), Tom Mitchell (Carnegie Mellon University), and Sarah
A. Tishkoff (University of Pennsylvania). Following the tradition started at RE-
COMB 2010, RECOMB 2014 also featured a special highlights track containing
computational biology papers that were published in journals during the last
18 months. There were 48 submissions, eight of which were selected for oral
presentation.

The success of RECOMB depends on the effort, dedication, and devotion of
many colleagues who contributed to the organization of the conference. We thank
the PC members and the external reviewers for the timely review of the assigned
papers despite their busy schedules; Teresa Przytycka for chairing the highlights
track; Carl Kingsford for chairing the posters track; the Steering Committee and
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its chair, Martin Vingron, for many excellent suggestions on the organization of
the conference; the local Organizing Committee members, especially Thom Gul-
ish and the Co-chairs Russell Schwartz and Panayiotis (Takis) Benos, for hosting
the conference and providing the administrative, logistic, and financial support;
and the authors of the papers, highlights, and posters and all the attendees for
their enthusiastic participation in the conference. We also thank our generous
sponsors, including the International Society of Computational Biology (ISCB),
the US National Science Foundation, Biomed Central GigaScience, Carnegie
Mellon’s Lane Center for Computational biology, and University of Pittsburgh’s
Department of Computational and Systems Biology. Finally, I would like to
thank Yehuda Afek (Tel Aviv University), Ron Shamir, and Benny Chor (Pro-
gram Chairs of RECOMB 2000 and 2012, respectively) for their support and
advice.

February 2014 Roded Sharan
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Tractatus: An Exact and Subquadratic

Algorithm for Inferring Identical-by-Descent
Multi-shared Haplotype Tracts

Derek Aguiar1, Eric Morrow2, and Sorin Istrail1,�

1 Department of Computer Science and Center for Computational Biology,
Brown University, Providence, Rhode Island 02912, USA

{Derek Aguiar,Sorin Istrail}@brown.edu
2 Departments of Molecular Biology, Cell Biology & Biochemistry and Psychiatry

& Human Behavior, Brown University, Providence, Rhode Island 02912, USA
Eric Morrow@brown.edu

Abstract. In this work we present graph theoretic algorithms for the
identification of all identical-by-descent (IBD) multi-shared haplotype
tracts for an m × n haplotype matrix. We introduce Tractatus, an ex-
act algorithm for computing all IBD haplotype tracts in time linear in the
size of the input, O(mn). Tractatus resolves a long standing open prob-
lem, breaking optimally the (worst-case) quadratic time barrier ofO(m2n)
of previous methods often cited as a bottleneck in haplotype analysis of
genome-wide association study-sized data. This advance in algorithm ef-
ficiency makes an impact in a number of areas of population genomics
rooted in the seminal Li-Stephens framework for modeling multi-loci link-
age disequilibrium (LD) patterns with applications to the estimation of
recombination rates, imputation, haplotype-based LD mapping, and hap-
lotype phasing. We extend the Tractatus algorithm to include computa-
tion of haplotype tracts with allele mismatches and shared homozygous
haplotypes in a set of genotypes. Lastly, we present a comparison of algo-
rithmic runtime, power to infer IBD tracts, and false positive rates for sim-
ulated data and computations of homozygous haplotypes in genome-wide
association study data of autism. The Tractatus algorithm is available for
download at http://www.brown.edu/Research/Istrail_Lab/.

Keywords: haplotypes, haplotype tracts, graph theory, identity-by-
descent.

1 Introduction

1.1 Li-Stephens PAC-Likelihood Model and the O(m2n) Time
Bound

Understanding and interpreting patters of linkage disequilibrium (LD) among
multiple variants in a genome-wide population sample is a major technical chal-
lenge in population genomics. A large body of research literature is devoted to

� Corresponding author.

R. Sharan (Ed.): RECOMB 2014, LNBI 8394, pp. 1–17, 2014.
c© Springer International Publishing Switzerland 2014
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2 D. Aguiar, E. Morrow, and S. Istrail

the topic including the computational framework presented in the seminal work
of Li and Stephens[1]. Building on the work by Stephens et al. 2001[2], Hudson[3],
and Fearnhead and Donnelly[4], the Li-Stephens framework led the way towards
major advances in the understanding and modeling of linkage disequilibrium
patterns and recombination.

The difficulties associated with modeling LD patterns at multiple loci include
a number of long standing analytical obstacles. Among existing bottlenecks is
the notorious (1) curse of the pairwise, as all the popular LD measures in the
literature are pairwise measures, and the (2) haplotype block-free approach to
avoid ad hoc haplotype block definitions and “fake blocks” due to recombina-
tion rate heterogeneity. Current methods for computing haplotype blocks result
in the definition of ad hoc boundaries that sometimes present less LD within
blocks than between blocks due to different patterns of recombination. This
phenomenon leads to spurious block-like clusters. The Li-Stephens statistical
model for LD, named the Product of Approximate Conditionals (PAC), is based
on a generalization of coalescent theory to include recombination [3,5].

The optimization problem introduces the PAC likelihood LPAC(ρ)

LPAC(ρ) = π̃(h1 | ρ)π̃(h2 | h1, ρ)...π̃(hm | h1, ..., hm−1, ρ)

where h1, ..., hm are the m sampled haplotypes, ρ denotes the recombination
parameter, and π̃ represents an approximation of the corresponding conditional
probabilities. Li and Stephens propose a number of such approximations for ap-
proximate likelihood functions[1]. LPAC(ρ) represents the unknown distribution

Prob(h1, ..., hm | ρ) = Prob(h1 | ρ)Prob(h2 | h1, ρ)...P rob(hm | h1, ..., hm−1, ρ)

The choice of π̃ gives the form of the likelihood objective function.
The PAC likelihood is based on expanding the modeling to capture realistic

genomic structure while generalizing Ewens’ sampling formula and coalescent
theory. The framework iteratively samples the m haplotypes; if the first k haplo-
types have been sampled h1, ..., hk, then the conditional distribution for the next
sampled haplotype is Prob(hk+1 | h1, ..., hk). π̃ approximates this distribution
and is constructed to satisfy the following axioms:

1. hk+1 is more likely to match a haplotype from h1, ..., hk that has been ob-
served many times rather than a haplotype that has been observed less
frequently.

2. The probability of observing a novel haplotype decreases as k increases.
3. The probability of observing a novel haplotype increases as θ = 4Nμ in-

creases, where N is the population size and μ is the mutation rate.
4. If the next haplotype is not identical to a previously observed haplotype, it

will tend to differ by a small number of mutations from an existing haplotype
(as in the Ewens’ sampling formula model).

5. Due to recombination, hk+1 will resemble haplotypes h1, ..., hk over contigu-
ous genomic regions; the average physical length of these regions should be
larger in genomic regions where the local rate of recombination is low.
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Intuitively, the next haplotype hk+1 should be an imperfect mosaic of the
first k haplotypes, with the size of the mosaic fragments being smaller for higher
values of the recombination rate. Although the proposed model (π̃A in the no-
tation of [1]) satisfies the above axioms and has the desirable property of being
efficiently computable, it has a serious disadvantage. As is stated in their article,
this “unwelcome” feature of the PAC likelihoods corresponding to the choices
for π̃ is order dependence, that is, the choices are dependent on the order of the
haplotypes sampled. Other methods used in the literature, notable, Stephens et
al. 2001[2] and Fearnhead and Donnelly[4], present the same problem of order
dependence. Different haplotype sampling permutations correspond to different
distributions; these probability distributions do not satisfy the property of ex-
changeability that we would expect to be satisfied by the true but unknown
distribution.

1.2 Identical-by-Descent Haplotype Tracts

Haplotype tracts, or contiguous segments of haplotypes, are identical-by-descent
(IBD) if they are inherited from a common ancestor [6]. Tracts of haplotypes
shared IBD are disrupted by recombination so the expected lengths of the IDB
tracts depends on the pedigree structure of the sample and the number of gener-
ations till the least common ancestor at that haplotype region. The computation
of IBD is fundamental to genetic mapping and can be inferred using the PAC
likelihood model.

To model the effects of recombination, a hidden Markov model (HMM) is
defined to achieve a mosaic construction. At every variant, it is possible to tran-
sition to any of the haplotypes generated so far with a given probability. Thus,
a path through the chain starts with a segment from one haplotype and contin-
ues with a segment from another haplotype and so on. To enforce the mosaic
segments to resemble haplotype tracts, the probability of continuing in the same
haplotype without jumping is defined exponentially in terms of the physical dis-
tance (assumed known) between the markers; that is, if sites j and j + 1 are at
a small genetic distance apart, then they are highly likely to exist on the same
haplotype. The computation of the LPAC is linear in the number of variants (n)
and quadratic in the number of haplotypes (m) in the sample, hence the O(m2n)
time bound.

In this work we present results that remove the pairwise quadratic dependence
by computing multi-shared haplotype tracts. Multi-shared haplotype tracts are
maximally shared contiguous segments of haplotypes starting and ending at the
same genomic position that cannot be extended by adding more haplotypes in
the sample. Because we represent the pairwise sharing in sets of haplotypes, no
more than O(mn) multi-shared haplotype tracts may exist.

1.3 Prior Work

Building on the PAC model, the IMPUTE2 [7] and MaCH [8] algorithms em-
ploy HMMs to model a sample set of haplotypes as an imperfect mosaic of
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reference haplotypes. The usage of the forward-backward HMM algorithm brings
these methods in the same O(m2n) time bound class. The phasing program
SHAPEIT (segmented haplotype estimation and imputation tool) also builds on
the PAC model by decomposing the haplotype matrix uniformly into a number
of segments and creating linear time mosaics within each such ad hoc segmented
structure[9]. The dependence on the number of segments is not considered in the
time complexity.

PLINK [10], FastIBD [11], DASH [12], and IBD-Groupon [13] are algorithms
based on HMMs or graph theory clustering methods that consider pairs of hap-
lotypes to compute IBD tracts. Iterating over all such pairs takes time O(m2n)
and is intractable for large samples; this intractability is best described in the
recent work of Gusev et al. 2011.

“Although the HMM schemes offer high resolution of detection [of IBD],
the implementations require examining all pairs of samples and are
intractable for GWAS-sized cohorts. ... In aggregate, these identical-by-
descent segments can represent the totality of detectable recent haplo-
type sharing and could thus serve as refined proxies for recent variants
that are generally rare and difficult to detect otherwise.” Gusev et al.
2011 [12]

Gusev et al. 2009 describes the computationally efficient algorithmGERMLINE
which employs a dictionary hashing approach[14]. The input haplotype matrix is
divided into discrete slices or windows and haplotype words that hash to the same
value are identified as shared. Due to this dependence onwindows, the algorithm is
inherently inexact.While the identification of small haplotype tracts within error-
free windows can be performed in linear time, GERMLINE’s method for handling
base call errors is worst case quadratic. However, GERMLINE’s runtime has been
shown to be near linear time in practice [6].

In what follows, we describe the Tractatus algorithm for computing IBD multi-
shared haplotype tracts from a sample of haplotypes and the Tractatus-HH algo-
rithm for computing homozygous haplotypes in a sample of genotypes. Section
2 introduces the computational model and algorithms. Section 3 compares the
runtime of Tractatus to a generic pairwise algorithm, compares false positive
rates and power with GERMLINE, and provides an example computation of ho-
mozygous haplotype regions in genome-wide association study data of autism.
Finally, sections 4 and 5 discuss implications of this algorithm, conclusions, and
future directions.

2 Methods

Our work presented here addresses the lack of exchangeability in the sampling
methods of the Li-Stephens model and provides a rigorous result that gives a
basis for sampling with the assured exchangeability property. We also present a
data structure that speeds up the HMM and the graph clustering models for the
detection of identical-by-descent haplotype tracts. Informally, a haplotype tract
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or simply tract is a contiguous segment of a haplotype – defined by start and end
variant indices – that is shared (identical) by two or more haplotypes in a given
sample of haplotypes. One can then view each of the haplotypes in the set as a
mosaic concatenation of tracts. Such a haplotype tract decomposition is unique
and a global property of the sample. Our Tractatus algorithm computes the
Tract tree of all the tracts of the haplotype sample in linear time in the size of the
sample. The Tract tree, related to a suffix tree, represents each haplotype tract in
a single root-to-internal-node path. Repeated substrings in distinct haplotypes
are compressed and represented only once in the Tract tree.

2.1 The Tractatus Model

Suffix trees are graph theoretic data structures for compressing the suffixes of a
character string. Several algorithms exist for suffix tree construction including
the notable McCreight and Ukkonen algorithms that achieve linear time and
space constructions for O(1) alphabets [15,16]. In 1997, Farach introduced the
first suffix-tree construction algorithm that is linear time and space for integer
alphabets [17]. Extensions to suffix-trees, commonly known as generalized suffix
trees, allow for suffix-tree construction of multiple strings.

The input to the problem of IBD tract inference is m haplotypes which are en-
coded as n-length strings of 0’s and 1’s corresponding to the major and minor al-
leles of genomic variants v1, ..., vn. Because we are interested in IBD relationships
which are by definition interhaplotype, naive application of suffix-tree construc-
tion algorithms to the set of haplotypes would poorly model IBD by including
intrahaplotype relationships. Let haplotype i be denoted hi and the allele of hi at
position j be denoted hi,j . Then, we model each haplotype hi = hi,1, hi,2, ..., hi,n

with a new string di = (hi,1, 1), (hi,2, 2), ..., (hi,n, n) for 1 ≤ i ≤ m. Computa-
tionally, the position-allele pairs can be modeled as integers ∈ [0, 1, 2, ..., 2n− 1]
where (hi,j , j) is 2 ∗ j+hi,j where hi,j ∈ 0, 1. The transformed haplotype strings
are termed tractized.

2.2 The Tractatus Algorithm without Errors

The Tractatus algorithm incorporates elements from integer alphabet suffix trees
with auxiliary data structures and algorithms for computing IBD haplotype
tracts. Firstly, a suffix tree is built from the set of m tractized haplotypes each
of length n. To represent the tractized haplotypes, the alphabet size is O(n), so
Farach’s algorithm may be used to construct a suffix tree in linear time[17]. The
suffix tree built from the tractized haplotypes is termed the Tract tree. After the
Tract tree is built, an O(mn) depth first post-order traversal (DFS) is computed
to label each vertex with the number of haplotype descendants. These pointers
enable the computation of groups of individuals sharing a tract in linear time.

Substrings of haplotypes are compressed if they are identical and contain the
same start and end positions in two or more haplotypes. We consider a path
from the root to a node with k descendants as maximal if it is not contained
within any other path in the Tract tree. The maximal paths can be computed
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using a depth first search of the Tract tree, starting with suffixes beginning at 0
and ending at suffixes beginning with 2n− 1. Of course, if a tract is shared by
k ≥ 2 haplotypes, it is represented only once in the Tract tree. Figure 1 shows
the construction of the Tract tree and computation of IBD tracts.

The internal nodes of the Tract tree also have an interpretation in regards to
Fisher junctions. A Fisher junction is a position in DNA between two variants
such that the DNA segments that meet in this virtual point were ancestrally on
different chromosomes. Fisher junctions are represented in the Tract tree where
maximal tracts branch.

After maximal tracts are computed, they are quantified as IBD or IBS. Trac-
tatus implements two methods for calling maximally shared tracts IBD or IBS.
A simple tract calling method thresholds the length L (number of variants) or
area (variants × haplotypes) of the tract in terms of the haplotype matrix input.
A more complex method considers the probability of a region being shared IBD
or identical-by-state (IBS). If two individuals are kth degree cousins, the prob-
ability they share a haplotype tract IBD is 2−2k due to the number of meioses
between them[18]. Let the frequency of a variant at position i be fi. Then, the
probability of IBD and IBS can be combined to define the probability that a
shared haplotype tract of length L and starting at position s for kth degree
cousins is IBD (Equation 1) [19]

P (IBD|L) = 2−2k

2−2k +
∏s+L

i=s (f2
i + (1 − fi)2)

(1)

The value of k can be approximated if the population structure is known.
Tractatus without errors is presented in Algorithm 1. Because the suffix tree
is computable in O(mn) time with O(mn) nodes, the tree traversals can be
computed in O(mn) time thus giving Theorem 1.

Theorem 1. Given a set of m haplotypes each of length n, Algorithm 1 com-
putes the Tract tree and the set of IBD tracts in O(mn) time and space.

2.3 The Tractatus Algorithm with Errors and Allele Mismatches

Incorporating base call errors and additional variability gained after differenti-
ation from the least common ancestor requires additional computations on the
Tract tree and a statistical modeling of haplotype allele mismatches. The Tracta-
tus algorithm with errors is parameterized by an estimated probability of error
or mismatched alleles pt, a p-value threshold corresponding to a test for the
number of errors in a tract ph, a minimum length partial IBD tract l, and a
minimum length of calling a full IBD tract L (or alternatively P(IBD) as defined
in Equation 1). We will, in turn, explain the significance of each parameter.

The algorithm proceeds similarly to the error-free case. We build the tractized
haplotypes, Tract tree and populate necessary data structures with a DFS. Be-
cause errors and additional variation now exist which can break up tracts (and
therefore paths in the Tract tree), we compute partial tracts as evidence of IBD.
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7 {h0,h1} [v4,v4]

Fig. 1. Construction of the Tract tree and running Tractatus on example input without
errors or allele mismatches. Terminator characters $ are colored to match tractized
haplotypes and the empty string (simply the terminator character) is omitted in this
example. (A) The haplotype matrix is encoded by an integer alphabet representing
position-allele pairs. (B) Tractized haplotype d0 is inserted in the Tract tree. The first
tractized haplotype inserts O(n) nodes into the Tract tree. (C) Tractized haplotype d1
is inserted in the Tract tree. The suffix of d1 starting at v0 requires generation of a new
node in the Tract tree but subsequent suffixes can be compressed along paths from
the root. (D) Tractized haplotype d2 is inserted in the Tract tree and the algorithmic
search order is given in brown integers adjacent to internal nodes. Leaf nodes have
exactly one terminating character (haplotype) and therefore do not have to be visited
during the search. (E) The largest IBD tracts are found at search numbers 0, 1, and 2.
Saving references to these tracts enables the determination that subsequent tracts are
contained within already processed tracts.

We compute a DFS from the root, and a maximal partial tract is saved when the
algorithm arrives at a node with path length at least l and at least 2 haplotype
descendants. If we find a partial tract in a subsequent traversal, we can check in
O(1) time is it is contained in a maximal partial tract already computed. Figure
2 shows an example of the Tract tree construction with a single allele mismatch.

Because we computed the partial tracts using a DFS, the tracts are ordered by
starting position. For each tract, tracts starting at a position prior and includ-
ing a subset of the same haplotypes are combined if the extension is statistically
probable. To determine the scan distance, we can compute a probability of ob-
serving a partially shared tract of length l given a window distance w (or this
can be user defined). Assuming the generation of errors is independent and the
probability of generating an error is pe, we model the probability of generating
at least k errors in an interval of li in t haplotypes as a Poisson process with
λ = pelit. For each extension we calculate the probability of observing at least



8 D. Aguiar, E. Morrow, and S. Istrail

input : m haplotypes each of length n, minimum length L or IBD
probability p

output: set of IBD tracts

H ← tractized haplotypes

T (H)← Tract tree of H

Post-order DFS of T(H) to compute descendant haplotypes from each
node

DFS of T(H):
if path in DFS is longer than L or P (IBD) > p and node has at least
2 descendant haplotypes then

if tract is not contained in previously computed tract then
report as an IBD tract

end

else
push children nodes on stack

end

Algorithm 1. Tractatus (error free)

A Bvi ∙ ∙ ∙ ∙ ∙ ∙ vj-1 vj vj+1 ∙ ∙ ∙ ∙ ∙ ∙ vk
0 ∙ ∙ ∙ ∙ ∙ ∙ 0 0 0 ∙ ∙ ∙ ∙ ∙ ∙ 0
0 ∙ ∙ ∙ ∙ ∙ ∙ 0 1 0 ∙ ∙ ∙ ∙ ∙ ∙ 0

h0
h1

d0
d1

2i,
 ∙ ∙

 ∙,2
j-2

2i ∙ ∙ ∙ ∙ ∙ ∙ 2j-2 2j 2j+2 ∙ ∙ ∙ ∙ ∙ ∙ 2k
2i ∙ ∙ ∙ ∙ ∙ ∙ 2j-2 2j+1 2j+2 ∙ ∙ ∙ ∙ ∙ ∙ 2k

2j+2, ∙ ∙ ∙,2k

∙ ∙ 
∙ $

∙ ∙ ∙ $ ∙ ∙ 
∙ $

∙ ∙ ∙ $

Fig. 2. Construction of the Tract tree and running Tractatus on example input with
allele mismatches. (A) h0 and h1 share a tract IBD in the interval [vi, vk] with a single
allele mismatch at vj . (B) By the construction of the Tract tree, there must be some
path (here shown as a single edge but it may be split into a path by other haplotypes)
from root to internal node that includes both [vi, vj) and (vj , vk].

k mismatches and accept the extension if the probability is greater than ph.
The parameter pt is used as an approximation of pe. The haplotype consensus
sequence of the tract is taken by majority rule at each variant position.

Pseudocode is given in Algorithm 2. While the algorithm is parameterized
with five parameters, they are optional and default values are suitable in most
cases.

Construction of the Tract-tree takes O(mn) time and space. O(mn) time is
needed to prepare data structures and compute maximally shared partial tracts
(DFS). A tract can be checked if it is contained in a previously processed tract in
O(1) time. It takes O(sw) to merge partial IBD tracts in the worst case when we
have to extend many tracts covering a large portion of the matrix, thus yielding
Theorem 2.
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Theorem 2. Given a set of m haplotypes each of length n, a scan distance w
and a set of partial haplotype tracts s, Algorithm 2 computes the Tract tree and
set of IBD tracts in time and space O(mn+ sw).

2.4 Extensions for Homozygous Haplotypes

A particular class of identical-by-descent relationships are long regions of ex-
tended homozygosity in genotypes. The two dominant concepts of extended
regions of allelic homozygosity are the homozygous haplotype (HH) concept
introduced by Miyazawa et al. 2007 and the well-known region or run of ho-
mozygosity (ROH)[20]. A HH is defined as a genotype after the removal of het-
erozygous variants such that only homozygous variants remain. Miyazawa et al.
2007 compared every pair of HH in a small cohort and reported regions of consec-
utive matches over a threshold. ROHs are defined as extended genomic regions
of homozygous variants allowing for a small number of heterozygous variants
contained within. We can rigorously capture both concepts using Tractatus.

input : m haplotypes each of length n, partial tract length l,
minimum length L or IBD probability p, p-value threshold ph,
estimated probability of error pt, length of scan w

output: set of IBD tracts

H ← tractized haplotypes

T (H)← Tract tree of H

Post-order DFS of T(H) to compute descendant haplotypes from each
node

DFS of T(H):
if path in DFS is longer than l, node has at least 2 descendant
haplotypes, and is maximal then

add partial IBD tract to set of tracts S
else

push children nodes on stack
end
for tract s ∈ S do

Check for extension in previously processed tracts within scan
region w

Compute probability according to number of errors in extension, pt,
the length of the extension, and the number of individuals

If probability > ph, merge tracts
end
for tract s ∈ S do

If length of s is greater than L or P (IBD) > p, report as IBD tract
end

Algorithm 2. Tractatus (with errors)
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A naive model for computing HH would consider each heterozygous site as a
wildcard allowing for either the 0 or 1 allele. A haplotype with k heterozygous
sites would require insertion of 2k haplotypes into the Tract tree. This immedi-
ately suggests a fixed-parameter tractable algorithm using the same machinery
as Tractatus. However, we can remove the dependence on k using a key insight
regarding the structure of the Tract tree and tractized haplotypes.

Errors split tracts in the Tract tree such that the shared tract fragments are
on different paths from the root. Instead of encoding all 2k possible haplotypes,
we simply remove the heterozygous alleles from the tractized string. Because
the position is inherently encoded in the tractized string, the removal of the
heterozygous alleles would have the same effect as an error. Therefore, if we
encode genotypes by simply removing heterozygous variants in the tractized
string, we can run Algorithm 2 to produce all the homozygous haplotypes for a
set of genotypes in linear time and space.

3 Results

The principle advantages of Tractatus over existing methods are the theoreti-
cally guaranteed subquadratic runtime and exact results in the error-free case
which translate to improved results in the case with errors and allele mismatches.
We evaluate the runtime of Tractatus against a generic algorithm that processes
individuals in pairs using phased HapMap haplotypes from several populations.
We then compare the power and false positive rates of both Tractatus and
GERMLINE which is a leading method for IBD inference[14]. Finally, we show
an application of Tractatus-HH by inferring homozygous haplotypes in a previ-
ously known homozygous region in the Simons Simplex Collection genome-wide
association study data[21].

3.1 Tractatus vs. Pairwise Algorithm Runtimes

To evaluate the runtime of Tractatus versus pairwise methods, we implemented
the pairwise equivalent algorithm which iterates through pairs of individuals
and reports tracts of variants occurring in both individuals over some threshold
length of variants. The data consist of phased haplotypes from HapMap Phase
III Release 2 in the ASW, CEU, CHB, CHD, GIH, JPT, LWK, MEX, MKK,
TSI, and YRI populations[22]. Figure 3 left shows the independence between
chromosome and computation time for the Tractatus suffix tree and the pair-
wise algorithm. Because the runtime of each algorithm does not depend on the
chromosome, we varied the population sizes while keeping the number of vari-
ants constant for chromosome 22. Figure 3 right shows the quadratic computa-
tion time growth for the pairwise algorithm while Tractatus tree construction
remains linear in the number of individuals.
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Fig. 3. Left: Tractatus and the pairwise algorithm were run on haplotypes from each
chromosome of all HapMap populations for a minimum tract length of 100, and a ran-
domly selected interval of 1000 variants. The experiment was repeated 100 times for
each chromosome and elapsed time was averaged. Right: Tractatus and the pairwise al-
gorithm were run on a randomly selected interval of 1000 variants from chromosome 22.
The population size varied from 100 to twice the actual population size by resampling
haplotypes with a 0.05 allele switch rate (per base).

3.2 False Positive Rates

Because it is difficult to construct a gold-standard baseline of true IBD regions
in real data, our false positive rate and power calculations are performed on sim-
ulated data. To estimate the false positive rates for GERMLINE and Tractatus
we simulated haplotypes at random and generated a single IBD region defined
as having identical haplotype alleles in the region of IBD. We generated 100 hap-
lotype matrices where m = n = 500 for all possible combinations of the number
of individuals sharing a segment IBD ∈ [3, 5, 10], the number of variants in the
IBD region ∈ [50, 60, 70, 80, 90, 100, 150, 200] and the single base substitution er-
ror rates ∈ [0.0, 0.01, 0.05]. In total, we generated 7200 haplotype matrices but
aggregated the data across the number of individuals and variants in the IBD
region because the false positive rates did not vary over these dimensions.

Table 1 shows that both algorithms have very low false positive rates in terms
of the number of bases incorrectly called in an IBD region. However, Tractatus
incorrectly calls less individuals in IBD regions than GERMLINE. In this ex-
periment, IBD regions were generated in block sizes and GERMLINE benefits
from calling IBD regions in terms of blocks or windows. GERMLINE and Trac-
tatus call a similar amount of bases IBD because Tractatus can over-estimate
the ends of blocks. However, when individuals are compared, Table 1 shows that
Tractatus computes a significantly smaller number of false positive IBD regions.
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Table 1. False positive rates for the GERMLINE (G) and Tractatus (T) algorithms as
a function of error rate. Each row corresponds to 2400 randomly generated haplotype
matrices. The error rate was varied in a simulated haplotype matrix containing a single
IBD region. False positive rates were calculated in terms of the number of non-IBD
bases being called IBD (bases) and the number of individuals called IBD who were not
in an IBD region (people) for the GERMLINE and Tractatus algorithms.

error rate G FPR bases T FPR bases G FPR people T FPR people

0.0 1.3 · 10−4 1.16 · 10−4 0.016 2.13 · 10−3

0.01 1.2 · 10−4 1.11 · 10−4 0.012 8.72 · 10−3

0.05 6.1 · 10−5 4.18 · 10−5 0.015 7.43 · 10−3

3.3 Power

We apply Tractatus and GERMLINE to the simulated data from Section 3.2 and
estimate power by computing the number of times GERMLINE and Tractatus
correctly call the IBD region in terms of variants and individuals. We considered
an individual being called correctly if an IBD region was called and overlapped
anywhere in the interval of the true IBD tract. We set the -bits and min m
options of GERMLINE to 20 and 40 respectively which sets the slice size for
exact matches to 20 consecutive variants and the minimum length of a match to
be 40 MB (which corresponds to 40 variants in our simulated data). For a valid
comparison, we set Tractatus to accept partial tract sizes of 20 variants and a
minimum length of an IBD region to 40 variants.

Figure 4 shows the power of GERMLINE and Tractatus to infer IBD as a
function of IBD region length, number of haplotypes sharing the region, and
the probability of base call error. Figure 4 right displays a jagged curve for
GERMLINE which is likely due to the algorithmic dependence on window size.
Both algorithms perform relatively well for shorter IBD tracts but Tractatus is
clearly more powerful when the number of haplotypes sharing the tract increases
or the base call error rates are low. Additionally, the minimum partial tract
length for Tractatus could be lowered to increase the power to find smaller IBD
tracts (at a cost of higher false positive rates). Another interesting observation is
that both GERMLINE and Tractatus are able to perfectly infer all individuals
sharing the IBD region in the perfect data case, but, GERMLINE is unable to
compute the entire IBD interval in some data.

3.4 Homozygous Haplotypes in Autism GWAS Data

As a proof of concept for Tractatus-HH, we extracted a 250kb genomic re-
gion identified as having a strong homozygosity signal in the Simons Simplex
Collection[23]. The families analyzed include 1,159 simplex families each with at
least one child affected with autism and genotyped on the Illumina 1Mv3 Duo
microarray. Gamsiz et al. 2013 approached the problem by treating a homozy-
gous region as a marker and testing for association or burden for the region as
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Fig. 4. The power to infer IBD by individual haplotypes (left) and variant bases (right)
as a function of the length of the IBD region in variants (x-axis), the probability of base
call error (p), and the number of individual haplotypes sharing the IBD segment (i).

a whole[23]. Our analysis shows that regions of homozygosity are more com-
plex than previously assumed and there can be multiple regions overlapping and
sharing some segments of homozygous haplotypes but largely different in other
segments (Table 2). We found more individuals possessing a homozygous hap-
lotype than Gamsiz et al. 2013 because the probability of generating an error
or heterozygous site was set to a large value (0.1) but in general this parameter
can be adjusted to be more conservative.

Table 2. Analysis of a 250kb region of homozygosity in the Simons Simplex Collection.
The homozygous interval is defined as a region start and end in terms of variants in the
genomic interval, a number of individuals (size), and the number of individuals unique
to the particular homozygous haplotype group (unique). One region is dominant and
contains most of the individuals, but there are smaller regions with some overlap that
contain unique individuals not sharing a homozygous haplotype with the larger region.

region start region end size unique

0 111 20 10
0 109 20 12
0 109 252 238
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4 Discussion

The importance of provable bounds and exact solutions is exemplified in Section
3 and, in particular, Figure 4. Even in the error free case, GERMLINE approx-
imates computing IBD tracts by processing windows or vertical slices of the
haplotype matrix. Tractatus is able to compute maximally shared partial tracts
exactly (which are exactly the IBD tracts in the error-free case). Moreover, the
inexactness of GERMLINE due to the dependence of hashing windows is exac-
erbated in the case of errors. If errors fall in a pattern that cause individuals
sharing a segment IBD to hash to different values then GERMLINE produces
false negatives. Tractatus computes all maximally shared partial tracts without
dependence on windows. Lastly, in the worst case, the number of matches per
word is quadratic giving GERMLINE a complexity quadratic in the number of
individuals. Even though this is unrealistic in practice, Tractatus compresses
individuals sharing a partial tract into a single path of the suffix tree.

The Tract tree in itself is an interesting data structure with many possible
applications. Once the Tract tree is computed for a set of haplotypes, the statis-
tics of constructing the mosaic of tract combinations can be done rigorously
and completely such that sampling can be implemented in an order independent
manner satisfying the exchangeability property. For the HMM constructions,
the availability of the complete set of tracts would provide a rigorous basis for
defining the transition probabilities and overall linear time construction. For the
graph clustering methods, the Tract tree represents tracts occurring multiple
times together and thus this construction will maximize the power in associa-
tion studies.

Unfortunately, the issue of acquiring the haplotypes remains. Almost exclu-
sively, algorithms for computing IBD require haplotypes due, in part, to the
higher power to infer a more subtle IBD sharing than in genotype data. How-
ever, this is not a major roadblock considering haplotype phasing algorithms can
be highly parallelized or made more efficient using reference panels. Addition-
ally, haplotype assembly algorithms are very efficient and can extend genome-
wide [24].

A related and important unanswered problem is to compute IBD regions in
genotypes faster than the naive quadratic allele sharing algorithm. Haplotype-
based IBD inference algorithms have difficulties modeling genotypes predomi-
nately because the heterozygous site introduces ambiguity in haplotype phase.
We believe an approach exploiting the Tract tree may infer IBD in genotypes
in subquadratic time perhaps with a direct application of the Tractatus-HH al-
gorithm. However, the number of heterozygous variants is usually very high,
so additional computation would be required to handle the large quantity of
ambiguous sites.

Our analysis of the autism genome-wide association study data shows that
homozygous regions cannot simply be treated as a biallelic markers. Distinct
homozygous haplotypes, while having a similar signature of homozygosity, can
be composed of entirely different alleles. These finding suggest that homozygous
regions are complex, multi-allelic markers.
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Finally, we note that a similar linear time construction could be used for
constructing a Tract tree for a set of haplotypes where there is known genetic
information about the distance between variants as in the Li-Stephens PAC
model[1]. The genetic distance can be modeled approximately as an integer and
used in a similar encoding to compress “identical” tracts.

5 Conclusions

In this work, we described the Tractatus algorithm for computing IBD tracts
with and without errors and homozygous haplotypes. Tractatus represents the
first provably exact algorithm for finding multi-shared IBD tracts given a set
of haplotypes as input; it computes all subsets of individuals that share tracts
and the corresponding shared tracts in time linear in the size of the input.
By starting from an exact and rigorous algorithmic baseline, we are able to
modify downstream decisions based on the global IBD tract decomposition. We
compare the runtimes of Tractatus and a generic pairwise algorithm that process
individuals in pairs using phased HapMap haplotypes from several populations
and show decreased runtimes. Also, we exhibit superior statistical power to infer
IBD tracts with less false positives than GERMLINE. Finally, with a conceptual
change to the interpretation of genotypes, we showed that homozygous haplotype
inference in genotypes can be modeled in the same Tractatus framework and
demonstrated Tractatus-HH in a previously known homozygous region of the
Simons Simplex Collection autism data.

Acknowledgements. This work was supported by the National Science Foun-
dation [1048831 and 1321000 to S.I.] and NIGMS-NIH (P20GM103645). We are
grateful to all of the families at the participating Simons Simplex Collection
(SSC) sites, the Simons Foundation Autism Research Initiative, and the prin-
cipal investigators (A.L. Beaudet, R. Bernier, J. Constantino, E.H.C., Jr., E.
Fombonne, D.H.G., E. Hanson, D.E. Grice, A. Klin, R. Kochel, D. Ledbetter,
C. Lord, C. Martin, D.M. Martin, R. Maxim, J. Miles, O. Ousley, K. Pelphrey, B.
Peterson, J. Piggot, C. Saulnier, M.W.S., W. Stone, J.S. Sutcliffe, C.A. Walsh,
Z. Warren, and E. Wijsman). We appreciate obtaining access to phenotypic data
in SFARI Base.

References

1. Li, N., Stephens, M.: Modeling linkage disequilibrium and identifying recom-
bination hotspots using single-nucleotide polymorphism data. Genetics 165(4),
2213–2233 (2003)

2. Stephens, M., Smith, N.J., Donnelly, P.: A new statistical method for haplotype
reconstruction from population data. American Journal of Human Genetics 68(4),
978–989 (2001)

3. Hudson, R.R.: Gene genealogies and the coalescent process. Oxford Survey in Evo-
lutionary Biology 7, 1–44 (1991)



16 D. Aguiar, E. Morrow, and S. Istrail

4. Fearnhead, P., Donnelly, P.: Estimating recombination rates from population ge-
netic data. Genetics 159(3), 1299–1318 (2001)

5. Kingman, J.F.C.: On the Genealogy of Large Populations. Journal of Applied
Probability 19, 27–43 (1982)

6. Browning, S.R., Browning, B.L.: Identity by descent between distant relatives:
Detection and applications. Annual Review of Genetics 46(1), 617–633 (2012)

7. Howie, B.N., Donnelly, P., Marchini, J.: A flexible and accurate genotype impu-
tation method for the next generation of genome-wide association studies. PLoS
Genet. 5(6), e1000529 (2009)

8. Li, Y., Willer, C.J., Ding, J., Scheet, P., Abecasis, G.R.: Mach: using sequence and
genotype data to estimate haplotypes and unobserved genotypes. Genetic Epidemi-
ology 34(8), 816–834 (2010)

9. Delaneau, O., Marchini, J., Zagury, J.F.: A linear complexity phasing method for
thousands of genomes. Nat. Meth. 9(2), 179–181 (2011)

10. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D.,
Maller, J., Sklar, P., de Bakker, P.I., Daly, M.J., Sham, P.C.: PLINK: a tool set
for whole-genome association and population-based linkage analyses. American
Journal of Human Genetics 81(3), 559–575 (2007)

11. Browning, B.L., Browning, S.R.: A fast, powerful method for detecting identity by
descent. American Journal of Human Genetics 88(2), 173–182 (2011)

12. Gusev, A., Kenny, E.E., Lowe, J.K., Salit, J., Saxena, R., Kathiresan, S., Altshuler,
D.M., Friedman, J.M., Breslow, J.L., Pe’er, I.: DASH: A Method for Identical-by-
Descent Haplotype Mapping Uncovers Association with Recent Variation. Am. J.
Hum. Genet. 88(6), 706–717 (2011)

13. He, D.: IBD-Groupon: an efficient method for detecting group-wise identity-by-
descent regions simultaneously in multiple individuals based on pairwise IBD re-
lationships. Bioinformatics 29(13), 162–170 (2013)

14. Gusev, A., Lowe, J.K., Stoffel, M., Daly, M.J., Altshuler, D., Breslow, J.L., Fried-
man, J.M., Pe’er, I.: Whole population, genome-wide mapping of hidden related-
ness. Genome Research 19(2), 318–326 (2009)

15. McCreight, E.M.: A space-economical suffix tree construction algorithm. J.
ACM 23(2), 262–272 (1976)

16. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

17. Farach, M.: Optimal suffix tree construction with large alphabets. In: Proceedings
of the 38th Annual Symposium on Foundations of Computer Science, FOCS 1997,
pp. 137–143. IEEE Computer Society, Washington, DC (1997)

18. Kong, A., Masson, G., Frigge, M.L., Gylfason, A., Zusmanovich, P., Thorleifsson,
G., Olason, P.I., Ingason, A., Steinberg, S., Rafnar, T., et al.: Detection of sharing
by descent, long-range phasing and haplotype imputation. Nature Genetics 40(9),
1068–1075 (2008)

19. Halldorsson, B.V., Aguiar, D., Tarpine, R., Istrail, S.: The Clark Phaseable sample
size problem: long-range phasing and loss of heterozygosity in GWAS. Journal of
Computational Biology 18(3), 323–333 (2011)

20. Miyazawa, H., Kato, M., Awata, T., Kohda, M., Iwasa, H., Koyama, N., Tanaka,
T., Huqu, N., Kyo, S., Okazaki, Y.: Homozygosity Haplotype Allows a Genomewide
Search for the Autosomal Segments Shared among Patients. The American Journal
of Human Genetics 80(6), 1090–1102 (2007)

21. Fischbach, G.D., Lord, C.: The Simons Simplex Collection: A Resource for Identi-
fication of Autism Genetic Risk Factors. Neuron 68(2), 192–195 (2010)



Tractatus: An Exact and Subquadratic Algorithm 17

22. International HapMap Consortium: The International HapMap Project. Na-
ture 426(6968), 789–796 (December 2003)

23. Gamsiz, E., Viscidi, E., Frederick, A., Nagpal, S., Sanders, S., Murtha, M., Schmidt,
M., Triche, E., Geschwind, D., State, M., Istrail, S., Cook Jr., E., Devlin, B.,
Morrow, E.: Intellectual disability is associated with increased runs of homozygosity
in simplex autism. The American Journal of Human Genetics 93(1), 103–109 (2013)

24. Aguiar, D., Istrail, S.: Hapcompass: A fast cycle basis algorithm for accurate hap-
lotype assembly of sequence data. Journal of Computational Biology (2012)



HapTree: A Novel Bayesian Framework

for Single Individual Polyplotyping
Using NGS Data

Emily Berger1,2,3, Deniz Yorukoglu2,�, Jian Peng1,2, and Bonnie Berger1,2,∗

1 Department of Mathematics, MIT, Cambridge, MA, USA
2 Computer Science & Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA

3 Department of Mathematics, UC Berkeley, Berkeley, CA, USA
{bab,denizy}@mit.edu

1 Background

Using standard genotype calling tools, it is possible to accurately identify the
number of “wild type” and “mutant” alleles (A, C, G, or T) for each single-
nucleotide polymorphism (SNP) site. In the case of two heterozygous SNP sites
however, genotype calling tools cannot determine whether “mutant” alleles from
different SNP loci are on the same or different chromosomes. While in many
cases the former would be healthy, the latter can cause loss of function; it is
therefore important to identify the phase—the copies of a chromosome on which
the mutant alleles occur—in addition to the genotype. This need necessitates
efficient algorithms to obtain an accurate and comprehensive haplotype recon-
struction (the phase of heterozygous SNPs in the genome) directly from the
next-generation sequencing (NGS) read data. Nearly all previous haplotype re-
construction studies have focused on diploid genomes and are rarely scalable to
genomes of higher ploidy; however, computational investigations into polyploid
genomes carry great importance, impacting plant, yeast and fish genomics, as
well as studies into the evolution of modern-day eukaryotes and (epi)genetic
interactions between copies of genes.

2 Method

We propose a novel maximum-likelihood estimation framework, HapTree, for
polyploid haplotype assembly of an individual genome using NGS read datasets.
The HapTree pipeline is designed to perform the haplotype reconstruction of a
single genome. The key component of HapTree is a relative likelihood function
which measures the concordance between the aligned read data and a given
haplotype under a probabilistic model that also accounts for possible sequencing
errors. To identify a haplotype of maximal likelihood, HapTree finds a collection
of high-likelihood haplotype partial solutions, which are restricted to the first
m SNP loci, and extends those to high-likelihood partial solutions on the first
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m+ 1 SNP loci, for each incremental m. In each step, HapTree maintains only
the set of sufficiently likely partial solutions to be extended in the next steps.
The goal is to find a full haplotype of maximal likelihood.

3 Results

We evaluate the performance of HapTree on simulated polyploid sequencing read
data modeled after Illumina and 454 sequencing technologies. For triploid and
higher ploidy genomes, we demonstrate that HapTree substantially improves
haplotype assembly accuracy and efficiency over the state-of-the-art [1,2] for
varying read depth coverage and length of haplotype block; moreover, HapTree
is the first scalable polyplotyping method for higher ploidy. To evaluate Hap-
Tree’s performance, we consider the probability that HapTree finds the exact
solution, as well as compute the vector error of a proposed solution, a scoring
mechanism for when the exact solution is known, which we newly define to gen-
eralize the commonly-used switch error to genomes of higher ploidy. In addition,
for triploid genomes, we demonstrate that our relative likelihood measure signif-
icantly outperforms the commonly used minimum error correction (MEC) score
[4,5]; this outperformance becomes even greater as the ploidy increases. Finally,
as a proof of concept, we test our method on real diploid sequencing data from
NA12878 (1000 Genomes Project) and evaluate the quality of assembled haplo-
types with respect to trio-based diplotype annotation as the ground truth. The
results indicate that even for diploid genomes, HapTree improves the switch er-
ror accuracy within phased haplotype blocks as compared to existing haplotype
assembly methods [3], while producing comparable MEC values.

Availability: An implementation of our method, HapTree, is available for down-
load at: http://groups.csail.mit.edu/cb/haptree/
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Abstract. We present CAGe, a statistical algorithm which exploits
high sequence identity between sampled genomes and a reference as-
sembly to streamline the variant calling process. Using a combination of
changepoint detection, classification, and online variant detection, CAGe

is able to call simple variants quickly and accurately on the 90-95% of
a sampled genome which differs little from the reference, while correctly
learning the remaining 5-10% that must be processed using more compu-
tationally expensive methods. CAGe runs on a deeply sequenced human
whole genome sample in approximately 20 minutes, potentially reduc-
ing the burden of variant calling by an order of magnitude after one
memory-efficient pass over the data.

Keywords: genome complexity, next-generation sequencing, variant call-
ing, changepoint detection.

1 Introduction

A central goal in computational biology is to accurately reconstruct sampled
genomes from next-generation sequencing (NGS) data, a procedure termed vari-
ant calling. A vast number of algorithms have been developed in pursuit of this
goal, and they are notoriously computationally demanding. This is due both to
the difficulty of the underlying problem, as well as the sheer size of the data: a
whole human genome sequenced to 30× coverage produces roughly 250 GB of
sequence information and metadata; thus even one sample cannot be represented
in memory on a typical workstation. As a result, variant calling algorithms spend
significant time simply transferring and storing the information needed to carry
out the analysis.

A potential solution to this problem is to harness inherent similarity in ge-
netic data. Unrelated humans are estimated to share over 99% sequence identity
[1], so most sequencer output will be similar to a corresponding region of the
human reference sequence. So-called “reference-based” compression techniques
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which exploit this feature have been proposed [2, 3, 4]; however few existing
tools can operate natively on reference-compressed genomic data. The standard
compressed format for aligned sequence data [BAM; 5] enjoys widespread sup-
port, but only achieves roughly 50% compression owing to its use of a generic
compression algorithm (zlib).

In lieu of compression, a promising alternative is to use statistical methods to
discover the small fraction of the sampled genome believed to harbor interesting
variation, and focus further computational resources in these limited regions. We
formalize this idea in terms of complexity. Regions which are highly mutated,
have low coverage and/or were subject to sequencing errors are complex : they
contain additional signal which cannot be retrieved from the reference genome.
Conversely, regions which are similar to the reference, display expected coverage
levels, and show low rates of mutation and sequencer error have low complexity.
Our goal then becomes to algorithmically classify genomic regions according to
their complexity level. Concretely, we propose the following hybrid approach:

1. Perform a first-pass analysis to isolate a small fraction of the sampled genome
which is “non-reference” and complex;

2. Pass these high-complexity regions to the computationally intensive variant
detection algorithms described above;

3. Process the remaining low-complexity regions using a fast algorithm designed
to detect simple variation.

In this work, we explore methods to isolate such regions by exploiting sta-
tistical features of the sequencer output, which can be computed quickly and
without recourse to fully decoding the underlying genome. Our algorithm, called
Changepoint Analysis of Genomic reads (CAGe), is fast and trivially paral-
lelizable across the genome, and hence well-suited to process large amounts of
NGS data quickly. Using several benchmark datasets, we demonstrate that our
approach maintains state-of-the-art variant calling accuracy while subjecting less
than 10% of the sampled genome to computationally intensive analysis. Addi-
tionally, we present an extension of our algorithm, called CAGe++, in which we
simultaneously perform variant detection and variant calling on low-complexity
genomic regions, potentially obviating the need for the third step of the hybrid
approach described above. Finally, our approach is very cheap when compared to
standard analysis tools [e.g. 5, 6, 7]: CAGe and CAGe++ can process a human
whole genome in approximately 20 minutes on a single 32 core machine while
consuming less than 16 GB of memory, thus illustrating that our proposed hy-
brid variant calling pipeline has the potential to significantly speedup the variant
calling process.

2 Related Work

High-throughput sequencing has inspired various efforts aimed at reducing the
amount of data needed to be stored and analyzed, primarily in the form of
compression algorithms. Lossless compression methods include reference-based
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approaches [3, 4] which store variation relative to a reference sequence, as well
as non reference-based methods which specialize certain existing compression
techniques to genomic data [2]. Greater compression ratios may be achieved if
sequencer quality scores are lossily compressed while still losslessly compressing
the actual sequence data [8]. The primary disadvantage of these techniques is
that few existing software tools can operate directly on the compressed data,
mandating a time- and space-intensive decompression step each time the data
are analyzed.

Recent versions of the Genome Analysis Toolkit [GATK, 6] employ a lossy
compression tool, ReduceReads, to reduce alignment data before being processed
by other variant calling tools. The tool works by discarding data in regions of
the genome which contain little variation, and is thus similar in motivation to
the algorithm we report here. However, the algorithms differ in several regards.
CAGe is based on a statistical model of the observed data (Section 3), and is
tuned using intuitive quantities such as read coverage rate, sequencer error rate,
and mutation rate. ReduceReads appears to employ several heuristics when cre-
ating the compressed output, and it is not necessarily clear how to parameterize
these heuristics in order to achieve a desired compression ratio or data fidelity.
Additionally, though we are unaware of any formal publication or other effort to
benchmark the ReduceReads algorithm, user reports from the GATK support
forums indicate that it requires costly preprocessing steps in order to run, and
can require a large amount of memory and processing time in order to compress
a whole genome sequence.

CAGe uses a changepoint detection method to mark regions of variable com-
plexity as it moves along the genome. A similar idea was used by Shen and
Zhang [9] to detect abrupt changes in copy number. One way to view these
methods is as an alternative to the hidden Markov model (HMM), which has
also been previously used to detect genomic variation [10, 11]. In contrast to the
latter methods, which require the number of hidden states to be known a priori,
changepoint methods allow the number of detected segments to vary in accor-
dance with the data. We leverage this observation, in conjunction with simple
rule-based classifier, to learn the number of hidden genomic complexity states
in a semiparametric manner.

Various distributional aspects of the data we consider have been previously
studied. In a seminal paper, Lander and Waterman [12] showed that read depth
in whole-genome shotgun sequencing experiments is well modeled by a Poisson
distribution, a fact which we exploit in our model. Evans et al. [13] considered
fragment site–insert length pairs embedded into the plane. This construction can
be used to derive null distributions of several coverage-related statistics [13, 14].
They also describe an interesting visualization technique which can be used to
detect deviations from the null coverage distribution. This approach is similar in
spirit to our goal, but here we rely on automated techniques in order to detect
these deviations in a high-throughput environment.
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3 Methods

Following sequencing and alignment, evidence of genetic variation in NGS data
is detectable in several ways. Sites which harbor isolated, single-nucleotide vari-
ants can usually be aligned unambiguously to the reference genome, resulting
in a characteristic SNP signature common to half or all of the reads (depending
on zygosity) in the alignment. Small insertions and deletions (≈2-10bp) are also
frequently detected and compensated for by the aligner. In both of these scenar-
ios, coverage and concordance statistics are usually unaffected by the presence
of the nearby variant since the aligner is able to “explain away” the variant.

In contrast, larger structural variants produce several noticeable signals in
the alignment. Novel insertions are typically flanked by reads with low mapping
quality or missing mate pairs, and may also result in a coverage dropoff or de-
creased insert size near the insertion site. Similarly, deleted regions are evidenced
by larger than expected insert sizes and a coverage dropoff. Reads that straddle
the boundary of a structural variant often have a high percentage of soft-clipped
bases with high Phred-scores. More complicated forms of rearrangement result in
other distinctive patterns involving, for example, split mapping and orientation
bias [15].

Formally, we define complexity in terms of point processes and their associated
rates. At genomic position i, let

– Mi ∈ {0, 1} denote the (unobserved) mutation state, assuming a biallelic
mutation model;

– Ri ∈ Z+ the number of short-reads whose alignment begins at i;
– Di ≥ Ri be number of sequenced bases (“coverage depth”) at i; and

– Ei = (ei,1, . . . , ei,Di) ∈ {0, 1}
Di denote a vector of indicators for whether a

sequencing error occurred in each of the Di bases aligned to i.

Note that we observe the random variables Ri and Di but not Mi or Ei; the Mi

are what we ultimately hope to infer through later variant calling analysis, and
we only observe a noisy signal of Ei through the sequencer quality score.

These random variables generate our data as follows. After sequencing and
read mapping, we observe a collection of vectors B1, . . . ,BL, where L is the
length of the reference genome (≈ 3.3×109 in humans) andBi = (Bi,1, . . . , Bi,Di)
is the vector of sequenced bases at site i, with

Bi,j = 1{base j at location i matches the reference}
= Mi(1 − ei,j) + (1 −Mi)ei,j .

To compute the likelihood of the data, we make the following distributional
assumptions:

– The Ri are independent and Poisson distributed with intensity λi [12].
– Conditional on the R1, . . . , Ri, the coverage depth Di is deterministic.
– Mi ∼ Bernoulli (μi) has a Bernoulli distribution with success parameter μi,
the probability that a mutation occurs at i.
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– The indicators ei,j have a common Bernoulli(εi) distribution.
– Ri, ei,j and Mi are mutually independent within and across sites.
– All reference bases at a mutated site are sequencer errors, as are all non-
reference bases at a non-mutated site.

These assumptions are not expected to hold for real data, however they lead
to a fast, easily estimated model, and moreover they do not appear to greatly
affect the quality of our inference. Henceforth we abbreviate the genomic region
{i, i + 1, . . . , j − 1, j} as i : j. In a region of uniform genomic complexity we
expect that the parameters λk, μk, εk are approximately constant, (λk, μk, εk) =
(λ, μ, ε) � θ for k ∈ i : j.

The complete log-likelihood of the data, �θ(i : j), is then

�θ(i, j) � �θ(Bi:j ,Mi:j ,Ei:j) = �θ(Ri:j) + �θ(Mi:j) + �θ(Ei:j |Mi:j ,Bi:j) (1)

where:

�θ(Ri:j) =

j∑
b=i

logPλ(Rb) (2)

�θ(Mi:j) =

j∑
b=i

[Mb logμ+ (1 −Mb) log(1− μ)] (3)

�θ(Ei:j |Mi:j ,Bi:j) =

j∑
b=i

[
(1−Mb)B̄b log ε+Mb(Di − B̄b) log(1− ε)

]
, (4)

Pλ is the Poisson likelihood with rate λ and B̄b =
∑

k Bb,k.

Let �θ̂(i : j) � supθ �θ(i : j) denote the maximized log-likelihood. It is clear
from the additive form of (2)—(4) that for any i ≤ k ≤ j, we can always increase
the likelihood of the data by breaking i : j into two independent segments i : k
and (k + 1) : j:

�θ̂(i : j) ≤ �θ̂(i : k) + �θ̂((k + 1) : j).

In what follows we use this observation to quickly detect uniformly complex
regions using likelihood-based methods.

3.1 Maximum Likelihood Estimation

The simple form of the complete likelihood (1) suggests using the EM algorithm
to compute �θ̂(i : j). To do so, we must evaluate the conditional expectation

EMi:j ,Ei:j |Bi:j ,θt(�θ(Bi:j ,Mi:j,Ei:j)).

Unfortunately, the conditional distribution Mi:j ,Ei:j | Bi:j , θt is intractable be-
cause the normalization constant requires integrating over the high-dimensional
vectors Mi:j and Ei:j . Since the main goal of our algorithm is to decrease overall
computation time, we instead assume that Mi:j is known, either from a public
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database of mutations [16], or from genotypes estimated on-the-fly using a fast
and simple variant calling algorithm. We assume that the sampled genome(s)
harbor mutations only at sites contained in this database. This enables us to
quickly estimate the sample genotype in a particular region, at the expense of
erroneously classifying uncalled sites as sequencer errors. Since these sites are
generally segregating at low frequency in the population, or were the result of
genotyping error, the overall effect of this assumption on our likelihood calcula-
tion should be small. Moreover, by training our algorithm to flag regions with an
elevated sequencer error rate, we retain the ability to detect these novel variants
downstream.

3.2 Augmented Likelihood

The model described above aims to capture the essential data generating mecha-
nism of an NGS experiment. In practice, we found that augmenting the likelihood
with additional terms designed to capture features of coverage, mapping quality,
and related statistics improved the accuracy of our algorithm with minimal per-
formance impact. In particular, we assume that, in a region of constant genomic
complexity:

1. The mapping quality (MAPQ) distribution of short reads is Bernoulli: with
probability τ ∈ [0, 1], a read has MAPQ = 0; otherwise the read MAPQ > 0.
Here we bin MAPQ into two classes, zero and non-zero, since its distribu-
tion is unknown, and also because we found that the strongest signal was
contained in reads which had zero mapping quality.

2. With probability η ∈ [0, 1], each base pair is inserted or deleted in the sample
genome; otherwise, with probability 1−η the base is subject to the standard
mutational and sequencer error processes described above.

Modern aligners [7, 17] generate MAPQ scores during read mapping proce-
dure, and also call small indels where doing so improves concordance. Hence τ
and η can be be estimated with high confidence from the data. Indels which
are not detected by the aligner will generate aberrations in the coverage and
mismatch signals as described above.

Letting θ denote the vector of all parameters in our model, the augmented
likelihood from positions i to j can be written as

�augθ,τ,η(i, j) ≡ �θ(Bi:j ,Mi:j ,Ei:j)+

j∑
b=i

Ib log η +Qb log τ + (Db − Ib) log(1− η) + (Db −Qb) log(1 − τ), (5)

where Ib and Qb count the number of inserted/deleted and MAPQ-0 bases at
position b. The augmented model no longer has a simple interpretation in the
generative sense; and in fact we unrealistically assume that the random variables
with which we have augmented the likelihood function are mutually independent
and identically distributed. On the other hand, this enables us to quickly estimate
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these parameters from data, and these parameter estimates in turn enable us to
easily detect the signatures of mutational events which mark complex regions of
the genome.

3.3 Change Point Detection

CAGe classifies genomic regions using parameter estimates obtained by max-
imizing (5). We assume that these parameters are piecewise constant within
(unobserved) segments of the sample genome, and estimate the segments using
a changepoint detection method. Let

(θ̂i:j , τ̂ , η̂) = argmax
θ,τ,η

�augθ,τ,η(i, j)

C(i, j) = −�aug
θ̂i:j,τ̂ ,η̂

(i, j)

be defined using the likelihood function given above, and let

τ � (τ0 = 0, τ1, τ2, . . . , τm+1 = s)

be a sequence of changepoints dividing the region 0, . . . , s. C(i, j) is the negative
log-likelihood of segment i : j evaluated at the MLE, and hence

m+1∑
i=1

[C(τi−1 + 1, τi) + β] (6)

is a natural measure of fit for the segmentation τ . Here β is a regularization
parameter which penalizes each additional changepoint. In practice, rather than
considering all O(109) loci in the human genome as potential changepoints, we
restrict the τi in (6) to integer multiples of some window size w. We typically set
25 ≤ w ≤ 200 when evaluating our algorithm. This speeds up the optimization,
and also decreases the variance of the maximum likelihood parameter estimates
for each segment.

Exact minimization of (6) over m and τ can be achieved in quadratic time
via a dynamic programming algorithm [18]. For likelihood-based changepoint
detection, properties of the likelihood function certify that certain changepoint
positions can never be optimal. Killick et al. [19] exploit this property to for-
mulate a pruning algorithm which minimizes (6) in expected linear time. The
pruning process enables both computational savings, as well as significant mem-
ory savings since the in-memory data structures can be repeatedly purged of all
data prior to the earliest possible changepoint. The resulting algorithm consumes
only a few gigabytes of memory, even when processing data sets which are tens of
gigabytes in size. Thus, multiple chromosomes can be processed simultaneously
on a typical workstation.

Our cost calculations take further advantage of a property of maximum
likelihood-based cost functions for parametric families that enable us to avoid
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calculating the full likelihood. From (2)–(4) and (5) it is seen that our cost
function factors as C(i, j) = gθ̂i:j,τ̂ ,η̂ (T (i, j)) + h (i, j) where T (i, j) and h(i, j)

depend only on the data in region i : j and h does not depend on the parameters.
Since our model assumes the data are independent and identically distributed
within a segment, we have

h (i, j) =

j∑
b=i

h1(b)

where h1 is a univariate function. Thus the optimization (6) can be decomposed
as

min
m,τ

s=τm+1

m+1∑
i=1

[
gθ̂,τ̂ ,η̂ (τi−1 + 1, τi) + h (τi−1 + 1, τi) + β

]

= min
m,τ

s=τm+1

m+1∑
i=1

⎡⎣gθ̂,τ̂ ,η̂ (τi−1 + 1, τi) +

τi∑
b=τi−1+1

h1 (b) + β

⎤⎦
=

n∑
b=1

h1 (b) + min
m,τ

s=τm+1

m+1∑
i=1

[
gθ̂,τ̂ ,η̂ (τi−1 + 1, τi) + β

]
.

We see that it is not necessary to evaluate h at all in order to carry out the
optimization. In our setting this function involves a number of log-factorial terms
which are relatively expensive to evaluate.

3.4 Identification of High-Complexity Regions

The changepoint detection algorithm described above determines which genomic
regions have uniform genomic complexity. Next, we use this information to allo-
cate additional computational resources to complex regions. In this paper we use
a binary classification scheme in which a region is labeled as either high or low.
For each changepoint region, we compute the features considered in CAGe’s
augmented likelihood defined in (5), and classify each region as high-complexity
if any of these features are outliers, using hand-tuned thresholds for each feature.

3.5 Integrated Variant Calling Algorithm

The hybrid variant calling approach described in Section 1 relies on a fast algo-
rithm to detect variation in low-complexity regions. Additionally, CAGe requires
estimates of ground-truth locations of mutations and short indels in its likeli-
hood calculation, as discussed in Section 3.1. We hypothesized that variation in
low-complexity regions of the genome should be particularly easy to call, and
implemented a simple, rule-based variant calling heuristic to be run alongside
the core CAGe algorithm during the initial pass over the data.

We refer to this modified algorithm as CAGe++. It uses a count-based method
to identify variants from a pileup, and relies on read depth, strand bias and read
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quality scores to filter calls. This method has five tuning parameters: CAGe++

ignores all bases with quality scores less than α1, and calls a variant at a partic-
ular pileup location if:

1. The pileup depth is at least α2;
2. An alternative allele appears in at least α3 percent of the reads, and no fewer

than α4 actual reads; and
3. The strand bias is less than α5 percent.

As we show in Section 4, this heuristic is extremely fast while remaining com-
petitive with more sophisticated algorithms in terms of accuracy.

4 Results

We compared our proposed algorithms to two baseline variant calling algorithms
from GATK version 2.8. The first is a computationally cheap caller known as Uni-
fiedGenotyper (GATK-ug). The second algorithm, HaplotypeCaller (GATK-ht), is
more accurate but relies on computationally demanding local de novo assembly.
We compare these two variant callers with two hybrid approaches. In one ap-
proach, we first segment the genome by complexity using CAGe, and then use
GATK-ug and GATK-ht to process the low- and high-complexity regions, respec-
tively. In the second approach, we use CAGe++ to both segment the genome
by complexity and perform variant calling on the low-complexity regions, and
then rely on GATK-ht to process the high-complexity regions. To measure the
effectiveness of the changepoint detection component of CAGe and CAGe++,
we also evaluate a simple alternative hybrid approach, called AllChange, in
which we treat each window as a distinct region and rely solely on our rule-based
classifier to determine genomic complexity.1

To perform the CAGe and AllChange hybrid approaches, we first ran
GATK-ug on the full genome, and used these predictions as estimates of Mi:j ,
as discussed in Section 3.1. Since CAGe++ calls variants directly, the CAGe++

approach did not rely on GATK-ug. For all three hybrid approaches, after iden-
tifying regions of high-complexity via binary classification, we then executed
GATK-ht on each region, expanding each region by 10% of its length to minimize
errors at the boundaries. We then combined the resulting predictions from the
low-complexity regions (either from GATK-ug or directly from CAGe++) with
the predictions from GATK-ht on the high-complexity regions.

We performed all our experiments on an x86-64 architecture multicore ma-
chine with 12 2.4Ghz hyperthreaded cores and 284 GB of main memory. We
tuned the changepoint parameters for CAGe and CAGe on a small hold-out
set, setting the window size to w = 100, the regularization parameter to β = 3.0.
We used the same window size for AllChange. For CAGe++, we set the variant
calling parameters to (α1, α2, α3, α4, α5) = (12, 10, 20, 3, 20).

1
AllChange is similar to GATK’s ReduceReads algorithm and is also what we obtain
from CAGe with β ≡ 0.
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4.1 Datasets and Evaluation

To evaluate the performance of these algorithms we used SMaSH [20], a re-
cently developed suite of tools for benchmarking variant calling algorithms.
Briefly, SMaSH is motivated by the lack of a gold-standard NGS benchmarking
dataset which both a) mimics a realistic use-case (i.e. is not generated by sim-
ulating sequencer output) and b) includes comprehensive, orthogonal validation
data (i.e. is not generating using sequencer output). The datasets comprised by
SMaSH present different trade-offs between practical relevance and the qual-
ity and breadth of the validation data. We worked with the following SMaSH

datasets:

– Venter Chromosome 20 and full genome: generated from Craig Venter’s
genome [21] and including noise-free validation data and synthetically gen-
erated short-reads (30× coverage, mean insert size of 400);

– Mouse Chromosome 19: derived from the mouse reference genome and in-
cluding noisy validation data and overlapping short-reads generating from a
GAIIx sequencer (60× coverage, mean insert size of −34);

– NA12878 Chromosome 20: based on a well studied human subject, includ-
ing short-reads from a HiSeq2000 sequencer (50× coverage, mean insert
size of 300). SMaSH’s validation data for this dataset consists primarily
of well-studied SNP locations, so we instead rely on a richer set of validated
variants (SNPs and indels only) provided by Illumina’s Platinum Genomes
project [22]. We nonetheless leverage the SMaSH evaluation framework to
compute accuracy. Since this validation set is only a sample of the full set of
variants, we do not report precision results.

4.2 Accuracy

Table 1 summarizes the accuracy of GATK-ug, AllChange, CAGe/CAGe++

and GATK-ht. Precision and recall are calculated with respect to the validated
variants in the SMaSH datasets, except in the case of NA12878 as described
above. As expected, GATK-ht generally outperforms GATK-ug; the difference
is particularly pronounced for indels. Second, the CAGe approach in which
GATK-ht is applied to the high-complexity regions and GATK-ug is applied to the
remainder yields comparable accuracy to GATK-ht, with the CAGe approach
being slightly better on Mouse, comparable on Venter, and slightly worse on
NA12878. Third, AllChange accuracy is comparable to that of CAGe, indi-
cating that the features we consider in our likelihood model are indeed predictive
of genome complexity.

As shown in Table 2, the AllChange high-complexity regions are larger
than the corresponding CAGe and CAGe++ regions, and by a large margin for
the two human datasets, thus highlighting the effectiveness of the changepoint
detection algorithm. The table also shows that a large fraction of the structural
variants are concentrated in these high-complexity regions. Moreover, when we
investigated the handful of remaining structural variants which fell into low-
complexity regions, we found that they were difficult to discern even by visually
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Table 1. Precision/Recall of various variant calling algorithms

Variant Dataset GATK-ug AllChange CAGe CAGe++ GATK-ht

SNPs
Venter 93.6 / 98.7 98.8 / 98.2 98.6 / 98.2 98.9 / 96.5 98.9 / 98.1
Mouse 93.3 / 96.4 98.2 / 95.5 98.1 / 95.6 98.6 / 95.4 98.5 / 95.4
NA12878 - / 99.7 - / 99.6 - / 99.6 - / 99.6 - / 99.6

Indel-Ins
Venter 94.3 / 81.3 93.1 / 92.1 93.1 / 91.9 93.1 / 91.8 93.1 / 92.0
Mouse 94.2 / 75.1 89.7 / 89.5 89.8 / 89.4 90.0 / 88.3 89.2 / 89.7
NA12878 - / 62.2 - / 93.0 - / 92.7 - / 92.8 - / 93.4

Indel-Del
Venter 95.0 / 87.2 95.0 / 93.4 95.1 / 93.3 95.0 / 93.6 95.1 / 93.9
Mouse 92.1 / 90.7 80.1 / 94.4 81.0 / 94.4 85.6 / 94.2 77.7 / 94.6
NA12878 - / 64.3 - / 94.3 - / 94.3 - / 94.3 - / 94.6

Table 2. Segregation of variants in high-complexity regions for AllChange and
CAGe

Algorithm Dataset Size of high % SNPs % Indels % SVs

AllChange

Venter 13.1% 28.2% 58.3% 98.4%
Mouse 13.2% 72.5% 79.9% 98.7%

NA12878 13.5% - - -

CAGe

Venter 4.0% 14.3% 53.4% 98.4%
Mouse 11.3% 61.3% 77.1% 98.8%

NA12878 7.1% - - -

CAGe++

Venter 6.3% 32.1% 99.6% 97.2%
Mouse 9.7% 55.8% 97.3% 98.2%

NA12878 8.3% - - -

inspecting the raw data. We further note that the basic variant caller in CAGe++

leads to a much higher fraction of indels being placed in high-complexity regions.

4.3 Computational Performance

We evaluated the runtime of CAGe on the full Venter genome, executing it
on a single Amazon EC2 cc2.8xlarge instance with 59 GB of main memory
and 32 cores. We divided the genome into roughly equal sized subproblems,
and CAGe completed in 13 minutes when executing all subproblems in parallel,
with peak memory usage of less than 16 GB. Next, we evaluated the performance
of CAGe++. Since CAGe is heavily I/O bound, the additional computation re-
quired by the variant caller component of CAGe++ has a small impact on overall
execution time, increasing runtime relative to CAGe by approximately 50%. Fi-
nally, we evaluated the speedup obtained by executing GATK-ht only on CAGe’s
high-complexity regions, but we observed modest speedups. Indeed, on Venter,
where CAGe’s high-complexity regions comprise a mere 4% of chromosome 20,
we observed a 1.4× speedup. As a baseline comparison, we also executed GATK-ht

on randomly selected contiguous regions each consisting of 4% of chromosome
20, and observed an average speedup of 2.8×. The sublinear scaling of GATK-ht
suggests that it may not be well suited for a hybrid variant calling approach.
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Fig. 1. Overlap between CAGe regions and known genome annotations. (a,b) Overlap
with the exome. (c,d) Overlap with GEM non-unique regions.

4.4 Properties of CAGe Regions

To further validate our approach, we examined how low- and high-complexity
regions produced by CAGe interact with various genome annotation tracks, as
well as with each other when processing multiple samples at once. Figure 1 (a,b)
depicts the overlap between these regions and portions of the sampled genome
that are annotated as exons according to the Illumina TruSeq exon capture
kit. We found that low-complexity regions are comparatively enriched for exons:
96.3% (97.9%) of the exome falls in low-complexity for NA12878 (Venter). This
is expected since exons are under stronger purifying selection than noncoding
regions of the genome and hence harbor less variation [23].

We also explored the relationship between genome mappability [24] andCAGe

classification. Mappability estimates the uniqueness of each k-mer of the refer-
ence genome. Repetitive and duplicated regions have lower mappability scores,
while k-mers that are unique among all reference k-mers have a mappability
score of 1. In our experiments we set k = 100 to match the standard read length
of NGS data. Figure 1 (c,d) compares the overlap between high-complexity re-
gions, low-complexity regions, and segments of the genome that have non-unique
k-mers (mappability < 1). High-complexity regions are comparatively enriched
for segments that are more difficult to map, with 53.3% (7.5× enrichment) of
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NA12878 NA12889

NA12890

Fig. 2. Overlap of chromosome 20 high regions for three unrelated individuals

the non-unique locations residing in the NA12878 high-complexity regions and
34.1% (8.5× enrichment) in the Venter high-complexity regions. This enrich-
ment is consistent with the fact that non-unique locations of the genome are
prone to alignment errors that can result in high-complexity pileups around these
locations.

Since variant calling is often performed with many samples in parallel, we
next studied the concordance of high-complexity regions between individual sam-
ples. We computed high-complexity regions for samples NA12889, NA12890 and
NA12878 using data released by the Platinum Genomes project. The individu-
als are members of the CEPH/UTAH 1463 pedigree but are unrelated (mother
and paternal grandparents). We ran CAGe on chromosome 20 of each of these
individuals, setting the thresholds of our rule-based classifiers to generate a high-
complexity region of consistent size on each of the chromosomes (respectively,
8.1%, 8.2%, 8.3%). The Venn diagram in Figure 2 characterizes the overlap
among these regions. The high-complexity regions are fairly consistent among
the three individuals; the union of their high-complexity regions consists of 11.6%
of the chromosome.

5 Discussion

These experiments illustrate that a hybrid approach has the potential to accu-
rately detect regions of a sampled genome that harbor the majority of complex
variation, as well as improve the computational performance of variant calling
algorithms. It is possible to partition a genome into high- and low-complexity
regions such that:

1. Low-complexity regions comprise a large majority of the genome; and
2. Fast, simple variant calling algorithms work as well as slower, more complex

ones on these regions.

This strategy leads to a large increase in throughput compared with traditional
variant calling pipelines.

There are several avenues for improving upon this work. Our experiments
demonstrate the promise of, at least in the case of deeply sequenced samples,
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employing a trivial, rule-based variant calling algorithm to process a large frac-
tion of the data with minimal impact on accuracy. More experiments are needed
to confirm that this finding translates to larger samples and/or other types of
sequencing experiments.

The experimental results presented above used a hand-trained classifier to
segment the sampled genomes into high- and low-complexity regions. In order
to employ our algorithm on a larger scale it is necessary to automatically train
this classifier. Since it is usually straightforward via visual inspection to deter-
mine whether a region harbors a complex variant, one potential solution is to
build a streamlined program to facilitate the rapid generation of training exam-
ples by human supervision. We have implemented a prototype of this software
and found that a knowledgeable human subject is capable of generating on the
order of 1,000 training examples per hour. More work is needed to integrate this
supervised classifier into CAGe.

Another extension would be to the multi-class regime where regions are placed
into one of several categories based on whether they are believed to harbor SNPs,
indels, various types of structural variants or some combination thereof. The
summary statistics generated in the maximum likelihood step of CAGe could
be used to send segments to specialized variant calling algorithms designed to
handle these respective categories.
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Abstract. The de Bruijn graph plays an important role in bioinformatics, espe-
cially in the context of de novo assembly. However, the representation of the de
Bruijn graph in memory is a computational bottleneck for many assemblers. Re-
cent papers proposed a navigational data structure approach in order to improve
memory usage. We prove several theoretical space lower bounds to show the
limitations of these types of approaches. We further design and implement a gen-
eral data structure (DBGFM) and demonstrate its use on a human whole-genome
dataset, achieving space usage of 1.5 GB and a 46% improvement over previous
approaches. As part of DBGFM, we develop the notion of frequency-based mini-
mizers and show how it can be used to enumerate all maximal simple paths of the
de Bruijn graph using only 43 MB of memory. Finally, we demonstrate that our
approach can be integrated into an existing assembler by modifying the ABySS
software to use DBGFM.

1 Introduction

De novo assembly continues to be one of the fundamental problems in bioinformatics,
with new datasets coming from projects such as the Genome10K [17]. The task is to
reconstruct an unknown genome sequence from a set of short sequenced fragments.
Most state-of-the-art assemblers (e.g. [14,23,2,41]) start by building a de Bruijn graph
(dBG) [28,18], which is a directed graph where each node is a distinct k-mer present
in the input fragments, and an edge is present between two k-mers when they share an
exact (k−1)-overlap. The de Bruijn graph is the basis of many steps in assembly, includ-
ing path compression, bulge removal, graph simplification, and repeat resolution [26].
In the workflow of most assemblers, the graph must, at least initially, reside in memory;
thus, for large genomes, memory is a computational bottleneck. For example, the graph
of a human genome consists of nearly three billions nodes and edges and assemblers
require computers with hundreds of gigabytes of memory [14,23]. Even these large
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resources can be insufficient for many genomes, such as the 20 Gbp white spruce.
Recent assembly required a distributed-memory approach and around a hundred large-
memory servers, collectively storing a 4.3 TB de Bruijn graph data structure [3].

Several articles have pursued the question of whether smaller data structures could be
designed to make large genome assembly more accessible [10,40,27,9,7]. Conway and
Bromage [10] gave a lower bound on the number of bits required to encode a de Bruijn
graph consisting of n k-mers: Ω(n lg n) (assuming 4k > n). However, two groups
independently observed that assemblers use dBGs in a very narrow manner [9,7] and
proposed a data structure that is able to return the set of neighbors of a given node but
is not necessarily able to determine if that node is in the graph. We refer to these as
navigational data structures (NDS). The navigational data structures proposed in [9,7]
require O(n lg k) and O(n)1 bits (respectively), beating the Conway-Bromage lower
bound both in theory and in practice [9].

What is the potential of these types of approaches to further reduce memory usage?
To answer this question, we first formalize the notion of a navigational data structure
and then show that any NDS requires at least 3.24n bits. This result leaves a gap with the
known upper bounds; however, even if a NDS could be developed to meet this bound,
could we hope to do better on inputs that occur in practice? To answer this, we consider
a very simple class of inputs: simple paths. We show that on these inputs (called linear
dBGs), there are both navigational and general data structures that asymptotically use
2n bits and give matching lower bounds. While dBGs occurring in practice are not
linear, they can nevertheless be often decomposed into a small collection of long simple
paths (where all the internal nodes have in- and out-degree of 1). Could we then take
advantage of such a decomposition to develop a data structure that can achieve close to
2n bits on practical inputs?

We describe and implement a data structure (DBGFM) to represent de Bruijn graphs
in low memory. The first step of the construction uses existing k-mer counting software
to transform, in constant memory, the input sequencing dataset to a list of k-mers (i.e.
nodes) stored on disk [29]. The second step is a novel low memory algorithm that
enumerates all the maximal simple paths without loading the whole graph in memory.
We achieve this through the use of non-lexicographic minimizers, ordered based on
their frequency in the data. Finally, we use the FM-index [12] to store the simple paths
in memory and answer membership and neighborhood queries.

We prove that as the number of simple paths decreases, the space utilization of DBGFM

approaches 2n bits. In practice, DBGFM uses 4.76n bits on a human whole-genome
dataset and 3.53n bits on a human chr14 dataset, improving the state-of-the-art [33] by
46% and 60%, respectively. We demonstrate the efficiency of frequency-based mini-
mizers by collapsing the dBG of the human whole-genome dataset using only 43 MB
of memory. Finally, we show how DBGFM can be integrated into an existing assembler
by modifying the ABySS software [38] to use DBGFM instead of a hash table.

1 The paper only showed the number of bits is O(n lg n). However, the authors recently indi-
cated in a blog post [6] how the dependence on lg(n) could be removed, though the result has
not yet been published.
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2 Previous Work

In the last three years, several papers and assemblers have explored novel data structures
designed to reduce the space usage of dBGs, and we provide a brief summary of the
results here.

ABySS was one of the first genome assemblers capable of representing large
dBGs [38]. It uses an open-addressing hash table that stores the k-mers of the graph
in the keys. The edges can be inferred from the nodes and do not need to be stored. For
every k-mer, ABySS uses 2k bits to store the k-mer, plus an additional 43 bits of asso-
ciated data (stored in 64 bits for ease of implementation). Therefore, in total, the space
usage of the dBG data structure in ABySS is (�−1(2k + 64)) bits per k-mer, where �
is the load factor of the hash table (set to 0.8). In the following, we focus on the space
needed to store just the dBG, since the type of associated data varies greatly between
different assemblers.

Conway and Bromage [10] gave a lg
(
4k

n

)
bits lower bound for representing a dBG

and demonstrated a sparse bit array data structure that comes close to achieving it. They
used an edge-centric definition of the dBG (where edges are all the (k + 1)-mers, and
nodes are prefixes and suffixes of length k), but their results trivially translate to node-
centric dBGs by storing k-mers instead of (k + 1)-mers. For a dataset with k = 27 and
12 · 109 edges (i.e. (k + 1)-mers), their theoretical minimum space is 22 bits per edge
while their implementation achieves 28.5 bits per edge.

Later work explored the trade-offs between the amount of information retained from
the de Bruijn graph and the space usage of the data structure. Ye et al. [40] showed that
a graph equivalent to the de Bruijn graph can be stored in a hash table by sub-sampling
k-mers. The values of the hash table record sequences that would correspond to paths
between k-mers in the de Bruijn graph. The theoretical memory usage of this approach
is Ω(k/g) bits per k-mer, where g is the distance between consecutive sampled k-mers.
Pell et al. [27] proposed a practical lossy approximation of the de Bruijn graph that
stores the nodes in a Bloom filter [4]. They found that a space usage of 4 bits per
k-mer provided a reasonable approximation of the de Bruijn graph for their purpose
(partitioning and down-sampling DNA sequence datasets). Yet, the structure has not
yet been directly applied to de novo assembly.

Chikhi and Rizk [9] built upon the structure of Pell et al. by additionally storing the
set of Bloom filter false positives (false neighbors of true nodes in the graph). In this
way, their structure is no longer lossy. They obtained a navigational data structure that
allowed the assembler to exactly enumerate the in- and out-neighbors of any graph node
in constant time. However, the structure does not support node membership queries, and
also does not support storing associated data to k-mers. The theoretical space usage is
(1.44 lg( 16k

2.08 )+2.08) bits per k-mer, under certain assumptions about the false positive
rate of the Bloom filter. This corresponds to 13.2 bits per k-mer for k = 27.

The structure has recently been improved by Salikhov et al. with cascading Bloom
filters [33], replacing the hash table by a cascade of Bloom filters. In theory, if an infinite
number of Bloom filters is used, this scheme would require 7.93 bits per
k-mer independently of k. The authors show that using only 4 Bloom filters is satis-
factory in practice, yet they do not provide a formula for the theoretical space usage in
this case. For k = 27 and 2.7·109 nodes, they computed that their structure uses 8.4 bits



38 R. Chikhi et al.

per k-mer. Bowe et al. [7] used a tree variant of the Burrows-Wheeler transform [8] to
support identical operations. They describe a theoretical navigational data structure for
representing the dBG of a set of input sequences that uses a space 4m+M lg(m)+o(m)
bits, where M is the number of input strings and m the number of graph edges. Note
that the space is independent of k. Another data structure based on a similar principle
has been recently proposed [32].

3 Preliminaries

We assume, for the purposes of this paper, that all strings are over the alphabet Σ =
{A,C,G, T }. A string of length k is called a k-mer and U is the universe of all k-
mers, i.e. U = Σk. The binary relation u → v between two strings denotes an exact
suffix-prefix overlap of length (k − 1) between u and v. For a set of k-mers S, the de
Bruijn graph of S is a directed graph such that the nodes are exactly the k-mers in S
and the edges are given by the → relation. We define S to be a linear dBG if there
exists a string x where all the (k − 1)-mers of x are distinct and S is the set of k-mers
present in x. Equivalently, S is a linear dBG if and only if the graph is a simple path.
The de Bruijn graph of a string s is the de Bruijn graph of all the k-mers in s. We
adopt the node-centric definition of the de Bruijn graph, where the edges are implicit
given the vertices; therefore, we use the terms de Bruijn graph and a set of k-mers
interchangeably.

For a node x in the de Bruijn graph, let
←−
ext(x) be its four potential in-neighbors (i.e.

←−
ext(x) = {y : y ∈ Σk, y → x} ) and

−→
ext(x) be its four potential out-neighbors. Let

ext(x) =
−→
ext(x) ∪←−ext(x). For a given set of k-mers S, let ext(S) = {ext(x), x ∈ S}

(similarly for
−→
ext(S) and

←−
ext(S)).

We will need some notation for working with index sets, which is just a set of integers
that is used to select a subset of elements from another set. Define IDX(i, j) as a set of all
index sets that select j out of i elements. Given a set of i elements Y and X ∈ IDX(i, j),
we then write Y [X ] to represent the subset of j elements out of Y , as specified by X .
We assume that there is a natural ordering on the elements of the set Y , e.g. if Y is a set
of strings, then the ordering might be the lexicographical one.

The families of graphs we will use to construct the lower bounds of Theorems 1 and
2 have k be a polylogarithmic function of |S|, i.e. k = O(logc |S|) for some c. We note
that in some cases, higher lower bounds could be obtained using families of graphs with
k = Θ(n); however, we feel that such values of k are unrealistic given the sequencing
technologies. On one hand, the value of k is a bounded from above by the read length,
which is fixed and independent of the number of k-mers. On the other hand, k must be
at least log4(|S|) in order for there to be at least |S| distinct k-mers.

4 Navigational Data Structures

We use the term membership data structure to refer to a way of representing a dBG
and answering k-mer membership queries. We can view this as a pair of algorithms:
(CONST, MEMB). The CONST algorithm takes a set of k-mers S (i.e. a dBG) and out-
puts a bit string. We call CONST a constructor, since it constructs a representation of
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a dBG. The MEMB algorithm takes as input a bit string and a k-mer x and outputs
true or false. Intuitively, MEMB takes a representation of a dBG created by CONST and
outputs whether a given k-mer is present. Formally, we require that for all x ∈ Σk,
MEMB(CONST(S), x) is true if and only if x ∈ S. An example membership data struc-
ture, as used in ABySS, is one where the k-mers are put into a hash table (the CONST

algorithm) and membership queries are answered by hashing the k-mer to its location
in the table (the MEMB algorithm).

Recently, it was observed that most assemblers use the MEMB algorithm in a limited
way [9,7]. They do not typically ask for membership of a vertex that is not in ext(S),
but, instead, ask for the neighborhood of nodes that it already knows are in the graph.
We formalize this idea by introducing the term navigational data structure (NDS), in-
spired by the similar idea of performing navigational queries on trees [11]. An NDS
is a pair of algorithms, CONST and NBR. As before, CONST takes a set of k-mers and
outputs a bit string. NBR takes a bit string and a k-mer, and outputs a set of k-mers. The
algorithms must satisfy that for every dBG S and a k-mer x ∈ S, NBR(CONST(S), x) =
ext(x). Note that if x /∈ S, then the behavior of NBR(CONST(S), x) is undefined. We
observe that a membership data structure immediately implies a NDS because a NBR

query can be reduced to eight MEMB queries.
To illustrate how such a data structure can be useful, consider a program that can

enumerate nodes using external memory (e.g. a hard drive or a network connection).
Using external memory to navigate the graph by testing node membership would be
highly inefficient because of long random access times. However, it is acceptable to
get a starting node from the device and access the other nodes using the proposed data
structure.

There are several important aspects of both a navigational and membership data
structures, including the space needed to represent the output of the constructor, the
memory usage and running time of the constructor, and the time needed to answer ei-
ther neighborhood or membership queries. For proving space lower bounds, we make
no restriction on the other resources so that our bounds hold more generally. However,
adding other constraints (e.g. query time of lg n) may allow us to prove higher lower
bounds and is an interesting area for future work.

5 Navigational Data Structure Lower Bound for de Bruijn Graphs

In this section, we prove that a navigational data structure on de Bruijn graphs needs at
least 3.24 bits per k-mer to represent the graph:

Theorem 1. Consider an arbitrary NDS and let CONST be its constructor. For any
0 < ε < 1, there exists a k and x ⊆ Σk such that |CONST(x)| ≥ |x| · (c − ε), where
c = 8− 3 lg 3 ≈ 3.25.

Our proof strategy is to construct a family of graphs, for which the number of navi-
gational data structures is at least the size of the family. The full proof of the theorem is
in the Appendix, however, we will describe the construction used and the overall out-
line here. Our first step is to construct a large dBG T and later we will choose subsets
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Fig. 1. Example of lower bound construction for k = 4. The figure shows T along with some
of the node labels. The four nodes on the left form T0, the 16 nodes in the middle are T1, and
the nodes on the right are T2. For space purposes, some of the edges from T1 to T2 are grouped
together. An example of a member from the family is shown with shaded vertices. Note that there
are four vertices at each level, and together they form a subforest of T .

as members of our family. Fix an even k ≥ 2, let � = k/2, and let m = 4�−1. T will
be defined as the union of � + 1 levels, T = ∪0≤i≤�Ti. For 0 ≤ i ≤ �, we define the
ith level as Ti = {“A�−iTα” : α ∈ Σi+�−1}. Observe that Ti =

−→
ext(Ti−1), for

1 ≤ i ≤ �. See Figure 1 for a small example.
We focus on constructing dBGs that are subsets of T because T has some desirable

properties. In fact, one can show that the set of k-mers T induces a forest in the dBG of
Σk (Lemmas 1 and 2 in the Appendix). Each member of our family will be a subforest
of T that contains m vertices from every level.

Formally, suppose we are given a sequence of index sets X = X1, . . . , X� where
every index set is a member of IDX(4m,m). Each index set will define the subset of
vertices we select from a level, and we define LX

0 = T0 and LX
i =

−→
ext(LX

i−1)[Xi], for
1 ≤ i ≤ �. Note that LX

i ⊆ Ti. In this manner, the index sets define a set of k-mers
s(X) = ∪0≤i≤�L

X
i . Finally, the family of graphs which we will use for our proof is

given by:

Sk = {s(X1, . . . , X�) : � = k/2,m = 4�−1, Xi ∈ IDX(4m,m)}

To prove Theorem 1, we first show that each of the dBGs of our family have the same
amount of k-mers (proof in Appendix):

Property 1. For all x ∈ Sk, |x| = 4�−1(�+ 1).

Next, we show that each choice of X leads to a unique graph s(X) (Lemma 3 in the
Appendix) and use it to show that the numbers of graphs in our family is large, relative
to the number of k-mers in each set (proof in the Appendix):
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Property 2. |Sk| =
(
4m
m

)� ≥ 2(c−ε0)�m, where c = 8− 3 lg 3 and ε0 = lg(12m)/m.

Finally, we need to show that for any two graphs in the family, there is at least one
k-mer that appears in both graphs but with different neighbors:

Property 3. Let x = s(X) ∈ Sk and y = s(Y ) ∈ Sk be two distinct elements in Sk.
Then, there exists a k-mer u ∈ x ∩ y such that

−→
ext(u) ∩ x �= −→ext(u) ∩ y.

The proof of Theorem 1 now follows by using the pigeonhole principle to argue that
the number of navigational data structures must be at least the size of our family, giving
a lower bound on the bits per k-mer.

6 Linear de Bruijn Graphs

In this section, we study data structures to represent linear de Bruijn graphs. Though a
linear dBG will never occur in practice, it is an idealized scenario which lets us capture
how well a data structure can do in the best case. The bounds obtained here also serve
as motivation for our approach in later sections, where we build a membership data
structure whose space usage approaches our lower bound from this section the “closer”
the graph is to being linear.

We can design a naive membership data structure for linear dBGs. A linear dBG
with n k-mers corresponds to a string of length n + k − 1. The constructor builds and
stores the string from the k-mers, while the membership query simply does a linear scan
through the string. The space usage is 2(n+k− 1) bits. The query time is prohibitively
slow, and we show in Section 7 how to achieve a much faster solution at the cost of a
space increase.

We now prove that a NDS on linear de Bruijn graphs needs at least 2n bits to repre-
sent the graph, meaning one cannot do much better than the naive representation above.
In general, representing all strings of length n + k − 1 would take 2(n + k − 1) bits,
however, not all strings of this length correspond to linear dBGs. Fortunately, we can
adapt a probabilistic result of Gagie [13] to quantify the number of strings of this length
that have no duplicate k-mers (Lemma 5 in Appendix). Our strategy is similar to that of
Section 5. We construct a large family of linear dBGs such that for any pair of members,
there is always a k-mer that belongs to both but whose neighborhoods are different. We
build the family by taking the set of all strings without duplicate (k−1)-mers and iden-
tifying a large subset having the same starting k-mer. We then show that by increasing
the length of the strings and k, we can create a family of size arbitrarily close to 4n

(Lemma 6 in Appendix). Finally, we show that because each string in the family starts
with the same k-mer, there always exists a distinguishing k-mer for any pair of strings.
Using the pigeonhole principle, this implies that number of navigational data structures
must be at least the number of distinct strings (proof in Appendix):

Theorem 2. Consider an arbitrary NDS for linear de Bruijn graphs and let CONST be
its constructor. Then, for any 0 < ε < 1, there exists (n, k) and a set of k-mers S of
cardinality n, such that |CONST(S)| ≥ 2n(1− ε).
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Note that our naive membership data structure of 2(n + k − 1) bits immediately
implies a NDS of the same size. Similarly, Theorem 2’s lower bound of 2n bits on a
NDS immediately implies the same bound for membership data structures. In practice,
k is orders of magnitude less than n, and we view these results as saying that the space
usage of membership and navigational data structures on linear dBGs is essentially 2n
and cannot be improved.

These results, together with Theorem 1, suggested that the potential of navigational
data structures may be dampened when the dBG is linear-like in structure. Intuitively,
the advantage of a linear dBG is that all the k-mers of a path collapse together onto one
string and require storing only one nucleotide per k-mer, except for the overhead of the
first k-mer. If the dBG is not linear but can still be decomposed into a few paths, then
we could still take advantage of each path while paying an overhead of only a single
k-mer per path. This in fact forms the basis of our algorithm in the next section.

7 Data Structure for Representing a de Bruijn Graph in Small
Space (DBGFM)

Recall that a simple path is a path where all the internal nodes have in- and out-degree
of 1. A maximal simple path is one that cannot be extended in either direction. It can
be shown that there exists a unique set of edge-disjoint maximal simple paths that com-
pletely covers the dBG, and each path p with |p| nodes can be represented compactly
as a string of length k + |p| − 1. We can thus represent a dBG S containing n k-mers
as a set of strings corresponding to the maximal simple paths, denoted by spk(S). Let
ck(S) = |spk(S)| be the number of maximal simple paths, and let s to be the concate-
nation of all members of spk(S) in arbitrary order, separating each element by a symbol
not in Σ (e.g. $). Using the same idea as in Section 6, we can represent a dBG using s in
2|s| =

∑
p∈spk(S) 2(|p|+ k) ≤ 2(n+(k+2)ck(S)) bits. However, this representation

requires an inefficient linear scan in order to answer a membership query.
We propose the use of the FM-index of s to speed up query time at the cost of

more space. The FM-index [12] is a full-text index which is based on the Burrows-
Wheeler transform [8,1] developed for text compression. It has previously been used to
map reads to a reference genome [22,20,24], perform de novo assembly [36,37,21], and
represent the dBG for the purpose of exploring genome characteristics prior to de novo
assembly [35].

The implementation of the FM-index stores the Huffman-coded Burrows-Wheeler
transform of s along with two associated arrays and some o(1) space overhead. Our
software, called DBGFM2, follows the implementation of [12], and we refer the reader
there for a more thorough description of how the FM-index works. Here, we will only
state its most relevant properties. It allows us to count the number of occurrences of
an arbitrary pattern q in s in O(|q|) time. In the context of dBGs, we can test for the
membership of a k-mer in S in time O(k). Two sampling parameters (r1 and r2) trade-
off the size of the associated arrays with the query time. For constructing the FM-index,
there are external memory algorithms that do not use more intermediate memory than

2 Source code available at http://github.com/jts/dbgfm

http://github.com/jts/dbgfm
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the size of the final output [12]. The space usage of DBGFM is |s|(H0(s) + 96r−1
1 +

384r−1
2 ) + o(1) ≤ n(H0(s) + 96r−1

1 +384r−1
2 )(1 + k+2

n ck(S)) + o(1) bits. H0 is the
zeroth order entropy [1]: H0(s) = −

∑
c∈Σ∪{$} fc lg fc, where fc is the frequency of

character c in s. Note that for our five character alphabet H0 is at most lg 5.
As the value of ck(S) approaches one, f$ approaches 0 and hence the upper bound

on H0 approaches 2. If we further set the sampling parameters to be inversely propor-
tional to n, the space utilization approaches at most 2n bits. However, this results in
impractical query time and, more realistically, typical values for the sampling parame-
ters are r1 = 256 and r2 = 16384, resulting in at most 2.32n bits as ck(S) approaches
1. For the error-free human genome with k = 55, there are c55(S) = 12.9·106 maximal
simple paths and n = 2.7 · 109 k-mers. The resulting H0(S) is at most 2.03, and the
space utilization is at most 2.43 bits per k-mer.

An additional benefit of the FM-index is that it allows constant-time access to the in-
neighbors of nodes — every edge is part of a simple path, so we can query the FM-index
for the symbols preceding a k-mer x. Thus, DBGFM is a membership data structure but
supports faster in-neighbor queries. However we note that this is not always the case
when reverse complementarity is taken into account.

We wanted to demonstrate how the DBGFM data structure could be incorporated into
an existing assembler. We chose ABySS, a popular de novo sequence assembly tool
used in large-scale genomic projects [38]. In modifying ABySS to look up k-mer mem-
bership using DBGFM, we replace its hash table with a simple array. DBGFM associates
each k-mer with an integer called a suffix array index (SAI), which could be used to
index the simple array. However, some of the k-mers of the DBGFM string include a
simple path separator symbol, $, and, hence, not every SAI corresponds to a node in
the dBG. We therefore use a rank/select data structure [15] to translate the SAIs into
a contiguous enumeration of the nodes, which we then use to index our simple array.
We also modified the graph traversal strategy in order to maximize the number of in-
neighborhood queries, which are more efficient than out-neighborhood or membership
queries.

8 Algorithm to Enumerate the Maximal Simple Paths of a de
Bruijn Graph in Low Memory (BCALM)

The DBGFM data structure of Section 7 can construct and represent a dBG in low space
from the set of maximal simple paths (spk(S)). However, constructing the paths (called
compaction) generally requires loading the k-mers into memory, which would require
large intermediate memory usage. Because our goal is a data structure that is low-
memory during both construction and the final output, we developed an algorithm for
compacting de Bruijn graphs in low-memory (BCALM3).

Our algorithm is based on the idea of minimizers, first introduced by [30,31] and
later used by [40,25]. The �-minimizer of a string s is the smallest �-mer that is a sub-
string of s (we assume there is a total ordering of the strings, e.g. lexicographical). We
define Lmin(u) (respectively, Rmin(u)) to be the �-minimizer of the (k − 1)-prefix

3 Source code available at http://github.com/Malfoy/bcalm

http://github.com/Malfoy/bcalm


44 R. Chikhi et al.

(respectively suffix) of u. We refer to these as the left and right minimizers of u, respec-
tively. We use minimizers because of the following observation:

Observation 1. For two strings u and v, if u→ v, then Rmin(u) = Lmin(v).

We will first need some definitions. Given a set of strings S, we say that (u, v) ∈ S2

are compactable in a set V ⊆ S if u → v and, ∀w ∈ V , if w → v then w = u and
if u → w then w = v. The compaction operation is defined on a pair of compactable
strings u, v in S. It replaces u and v by a single string w = u · v[k + 1, |v|] where ’·’
is the string concatenation operator. Two strings (u, v) are m-compactable in V if they
are compactable in V and if m = Rmin(u) = Lmin(v). The m-compaction of a set V
is obtained from V by applying the compaction operation as much as possible in any
order to all pairs of strings that are m-compactable in V . It is easy to show that the order
in which strings are compacted does not lead to different m-compactions. Compaction
is a useful notion because a simple way to obtain the simple paths is to greedily perform
compaction as long as possible. In the following analysis, we identify a string u with
the path p = u1 → u2 → . . .→ u|u|−k+1 of all the k-mers of u in consecutive order.

We now give a high-level overview of Algorithm 1. The input is a set of k-mers S and
a parameter � < k which is the minimizer size. For each m ∈ Σ�, we maintain a file Fm

in external memory. Each file contains a set of strings, and we will later prove that at any
point during the execution, each string is a sub-path of a simple path (Lemma 9 in the
Appendix). Moreover, we show that at any point of execution, the multi-set of k-mers
appearing in the strings and in the output does not change and is always S (Property 4
in the Appendix).

At line 5, we partition the k-mers into the files, according to their �-minimizers.
Next, each of the files is processed, starting from the file of the smallest minimizer in
increasing order (line 6). For each file, we load the strings into memory and m-compact
them (line 7), with the idea being that the size of each of the files is kept small enough

Algorithm 1. BCALM: Enumeration of all maximal simple paths in the dBG
1: Input: Set of k-mers S, minimizer size � < k
2: Output: Sequences of all simple paths in the de Bruijn graph of S
3: Perform a linear scan of S to get the frequency of all �-mers (in memory)
4: Define the ordering of the minimizers, given by their frequency in S
5: Partition S into files Fm based on the minimizer m of each k-mer
6: for each file Fm in increasing order of m do
7: Cm ←m-compaction of Fm (performed in memory)
8: for each string u of Cm do
9: Bmin ← min(Lmin (u),Rmin (u))

10: Bmax ← max(Lmin (u),Rmin (u))
11: if Bmin ≤ m and Bmax ≤ m then
12: Output u
13: else if Bmin ≤ m and Bmax > m then
14: Write u to FBmax

15: else if Bmin > m and Bmax > m then
16: Write u to FBmin

17: Delete Fm



On the Representation of de Bruijn Graphs 45

so that memory usage is low. The result of the compaction is a new set of strings, each
of which is then either written to one of the files that has not been yet processed or
output as a simple path.

The rule of choosing which file to write to is based on the left and right minimizers of
the string. If both minimizers are no more than m, then the string is output as a simple
path (line 12). Otherwise, we identify m′, the smallest of the two minimizers that is
bigger than m, and write the string to the file Fm′ . Finally, the file Fm is discarded,
and the next file is processed. The rule for placing the strings into the files ensures
that as each file Fm is processed (line 6), it will contain every k-mer that has m as a
minimizer (Lemma 8 in the Appendix). We can then use this to prove the correctness
of the algorithm (proof in Appendix):

Theorem 3. The output of Algorithm 1 is the set of maximal simple paths of the de
Bruijn graph of S.

There are several implementation details that make the algorithm practical. First,
reverse complements are supported in the natural way by identifying each k-mer with
its reverse complement and letting the minimizer be the smallest �-mer in both of them.
Second, we avoid creating 4� files, which may be more than the file system supports.
Instead, we use virtual files and group them together into a smaller number of physical
files. This allowed us to use � = 10 in our experiments. Third, when we load a file from
disk (line 7) we only load the first and last k-mer of each string, since the middle part
is never used by the compaction algorithm. We store the middle part in an auxiliary file
and use a pointer to keep track of it within the strings in the Fm files.

Consequently, the algorithm memory usage depends on the number of strings in
each file Fm, but not on the total size of those files. For a fixed input S, the number of
strings in a file Fm depends on the minimizer length � and the ordering of minimizers.
When � increases, the number of (k − 1)-mers in S that have the same minimizer
decreases. Thus, increasing � yields less strings per file, which decreases the memory
usage. We also realized that, when highly-repeated �-mers are less likely to be chosen
as minimizers, the sequences are more evenly distributed among files. We therefore
perform in-memory �-mer counting (line 3) to obtain a sorted frequency table of all
�-mers. This step requires an array of 64|Σ|� bits to store the count of each �-mer in
64 bits, which is negligible memory overhead for small values of � (8 MB for � = 10).
Each �-mer is then mapped to its rank in the frequency array, to create a total ordering of
minimizers (line 4). Our experiments showed a drastic improvement over lexicographic
ordering (results in Section 9).

9 Results

We tested the effectiveness of our algorithms to assemble two sequencing datasets.
Experiments in Tables 1, 2 and 3 were run on a single core of a desktop computer
equipped with an Intel i7 3.2 GHz processor, 8 GB of memory and a 7200 RPM hard
disk drive. Experiments in Tables 4 and 5 were run on a single core of a cluster node
with 24 GB of memory and 2.67 GHz cores. In all experiments, at most 300 GB of
temporary disk space was used. The first dataset is 36 million 155bp Illumina human
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Table 1. Running times (wall-clock) and memory usage of DSK, BCALM and DBGFM construc-
tion on the human chromosome 14 and whole human genome datasets (k = 55 and � = 10 for
both)

Dataset DSK BCALM DBGFM

Chromosome 14
43 MB 19 MB 38 MB
25 mins 15 mins 7 mins

Whole human genome
1.1 GB 43 MB 1.5 GB
5 h 12 h 7 h

Table 2. Memory usage of de Bruijn graph data structures, on the human chromosome 14 and
whole human genome datasets (k = 55 for both). We did not run the algorithm of Conway and
Bromage because our machine does not have sufficient memory for the whole genome. Instead,
we report the theoretical size of their data structure, assuming that it would be constructed from
the output of DSK. As described in [10], this gives a lower bound on how well their implemen-
tation could perform.

DBGFM Salikhov et al. Conway & Bromage

chr14 38.0 MB 94.9 MB > 875 MB
Full human dataset 1462 MB 2702 MB > 22951 MB

chromosome 14 reads (2.9 GB compressed fastq) from the GAGE benchmark [34].
The second dataset is 1.4 billion Illumina 100bp reads (54 GB compressed fastq) from
the NA18507 human genome (SRX016231). We first processed the reads with k-mer
counting software, which is the first step of most assembly pipelines. We used a value
of k = 55 as we found it gives reasonably good results on both datasets. We used
DSK [29], a software that is designed specifically for low memory usage and can also
filter out low-count k-mers as they are likely due to sequencing errors (we used < 5 for
chr14 and < 3 for the whole genome).

First, we ran BCALM on the of k-mers computed by DSK. The output of BCALM

was then passed as input to DBGFM, which constructed the FM-index. Table 1 shows
the resulting time and memory usage of DSK, BCALM, and DBGFM. For the whole
genome dataset, BCALM used only 43 MB of memory to take a set of 2.5 · 109 55-mers
and output 40 million sequences of total length 4.6 Gbp. DBGFM represented these
paths in an index of size 1.5 GB, using no more than that memory during construction.
The overall construction time, including DSK, was roughly 24 hours. In comparison, a
subset of this dataset was used to construct the data structure of Salikhov et al. in 30.7
hours [33].

We compared the space utilization of our DBGFM representation with that of other
low space data structures, Salikhov et al. [33] and Conway and Bomage [10] (Table 2).
Another promising approach is that of Bowe et al. [7], but they do not have an imple-
mentation available. We use 3.53 bits per k-mer (38.0 MB total) for chr14 and 4.76 bits
per k-mer (1462 MB total) for the whole-genome. This is a 60% and 46% improvement
over the state-of-the art, respectively.
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Table 3. Memory usage of BCALM with three different minimizer orderings: lexicographical,
uniformly random, and according to increasing �-mer frequencies. The dataset used is the human
chromosome 14 with k = 55 and � = 8.

Ordering type Lexicographical Uniformly Random �-mer frequency

Memory usage 804 MB 222 MB 19 MB

Table 4. Memory usage and wall-clock running time of BCALM with increasing values of min-
imizer sizes � on the chr14 data. By grouping files into virtual files, these values of � require
respectively 4, 16, 64, 256 and 1024 physical files on disk. The ordering of minimizers used is
the one based on �-mer counts.

Minimizer size � 2 4 6 8 10

Memory usage 9879 MB 3413 MB 248 MB 19 MB 19 MB
Running time 27m19s 22m2s 20m5s 18m39s 21m4s

Table 5. Memory usage and run time (wall clock) of the ABySS hash table implementation
(sparsehash) and of the DBGFM implementation, using a single thread to assemble the human
chromosome 14 data set. The dBG bytes/k-mer column corresponds to the space taken by en-
coded k-mers for sparsehash, and the FM-index for DBGFM. The Data bytes/k-mer column cor-
responds to associated data. The Overhead bytes/k-mer corresponds to the hash table and heap
overheads, as well as the rank/select bit array. The run time of the DBGFM row does not include
the time to construct the DBGFM representation.

Data
structure

Memory
usage

Bytes/
k-mer

dBG
(B/k-mer)

Data
(B/k-mer)

Overhead
(B/k-mer)

Run
time

sparsehash 2429 MB 29.50 16 8 5.50 14m4s
DBGFM 739 MB 8.98 0.53 8 0.44 21m1s

During algorithm development, we experimented with different ways to order the
minimizers and the effect on memory usage (Table 3). Initially, we used the lexico-
graphical ordering, but experiments with the chromosome 14 dataset showed it was a
poor choice, resulting in 804 MB memory usage with � = 8. The lexicographically
smallest �-mer is m0 = A�, which is overly abundant in human chromosomes for
� ≤ 10, resulting in a large file Fm0 . In a second attempt, we created a uniformly ran-
dom ordering of all the �-mers. While A� is no longer likely to have a small value,
it is still likely that there is a highly repeated �-mer that comes early in the ordering,
resulting in 222 MB memory usage. Finally, we ordered the �-mers according to their
frequency in the dataset. This gave a memory usage of 19 MB, resulting in a 40-fold
improvement over the initial lexicographical ordering. The running times of all three
orderings were comparable. We also evaluated the effect that the minimizer size � has
on memory usage and running time (Table 4). Larger � will generally lead to smaller
memory usage, however we did not see much improvement past � = 8 on this dataset.
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Finally, we evaluated the performance of ABySS using DBGFM compared with that
of the hash table implementation (Table 5). Note, however, that only the graph traversal
and marking steps were implemented in the DBGFM version, and none of the graph
simplifications. The DBGFM version used 70% less memory, albeit the hash version was
33% faster, indicating the time/space trade-off inherent in the FM-index. In addition to
storing the graph, ABySS associates data with each k-mer: the count of each k-mer
and its reverse complement (two 16 bits counters), the presence or absence of the four
possible in- and out-edges (8 bits), three boolean flags indicating whether the k-mer and
its reverse complement have been visited in graph traversal (2 bits), and whether they
have been removed (1 bit). While in the hash implementation, the graph structure takes
54% of the memory, in the DBGFM version it only used 6% of memory. This indicates
that further memory improvements can be made by optimizing the memory usage of
the associated data.

10 Conclusion

This paper has focused on pushing the boundaries of memory efficiency of de Bruijn
graphs. Because of the speed/memory trade-offs involved, this has come at the cost of
slower data structure construction and query times. Our next focus will be on improving
these runtimes through optimization and parallelization of our algorithms.

We see several benefits of low-memory de Bruijn graph data structures in genome
assembly. First, there are genomes like the 20 Gbp white spruce which are an order
of magnitude longer than the human which cannot be assembled by most assemblers,
even on machines with a terabyte of RAM. Second, even for human sized genomes, the
memory burden poses unnecessary costs to research biology labs. Finally, in assemblers
such as ABySS that store the k-mers explicitly, memory constraints can prevent the use
of large k values. With DBGFM, the memory usage becomes much less dependent on k,
and allows the use of larger k values to improve the quality of the assembly.

Beyond genome assembly, our work is also relevant to many de novo sequencing
applications where large de Bruijn graphs are used, e.g. assembly of transcriptomes and
meta-genomes [16,5], and de novo genotyping [19].

Acknowledgements. The authors would like to acknowledge anonymous referees from
a previous submission for their helpful suggestions and for pointing us to the paper of
Gagie [13].
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11 Appendix

This Appendix contains lemmas and proofs that are omitted in the main text.

11.1 Lower Bound for General de Bruijn Graphs

Lemma 1. Let y ∈ T . There exists a unique 0 ≤ i ≤ � such that y ∈ Ti.

Proof. Take two arbitrary levels i1 < i2 and two arbitrary vertices in those levels,
x1 ∈ Ti1 and x2 ∈ Ti2 . Let z ∈ {1, 2}. The k-mer represented by xz is “A�−iz+1Tαz”,
where αz is some string. At position �−i1+1, x1 has a T, while x2 has an A. Therefore,
x1 �= x2 and the lemma follows.

Lemma 2. For all distinct x1 and x2 in T that are not in the last level (T�),
−→
ext(x1) ∩−→

ext(x2) = ∅.

Proof. By Lemma 1, there exist unique levels i1 and i2 such that x1 ∈ Ti1 and x2 ∈ Ti2 .
We first observe that

−→
ext(xz) ∈ Tiz+1, for z ∈ {1, 2}. If it is the case that i1 �= i2, then

Lemma 1 applied to the vertices in the extensions prove the lemma. Now suppose that
i1 = i2, and we write i = i1. Then, for z ∈ {1, 2}, the k-mer represented by xz

is “A�−iTαz”, where αz is a (� + i − 1)-mer and α1 �= α2. We can then write the
extensions as

−→
ext(xz) = {“A�−i−1Tαzβ” : β ∈ {A,C,G, T }}. Because α1 �= α2,

the sets
−→
ext(x1) and

−→
ext(x2) share no common elements.

Property 1. For all x ∈ Sk, |x| = 4�−1(�+ 1).

Proof. Follows directly from Lemmas 1 and 2.

Lemma 3. Let X = X1, . . . , X� and Y = Y1, . . . , Y� be two sequences of index sets.
Then s(X) = s(Y ) if and only if X = Y .

Proof. Since the construction is fully deterministic and depends only on the index sets,
then X = Y immediately implies s(X) = s(Y ). For the other direction, suppose that
X �= Y . Let i > 0 be the smallest index such that Xi �= Yi. Then there exists a vertex
y such that y ∈ LX

i but y /∈ LY
i . Since y is in Ti but not in LY

i , Lemma 1 implies that
y /∈ s(Y ).

Lemma 4. For all m > 0,
(
4m
m

)
≥ 2(c−ε0)m, where c = 8 − 3 lg 3 and ε0 =

lg(12m)/m.

Proof. Follows directly from an inequality of Sondow and Stong [39]:
(
rm
m

)
> 2cm

4m(r−1) .

Property 2. |Sk| =
(
4m
m

)� ≥ 2(c−ε0)�m, where c = 8− 3 lg 3 and ε0 = lg(12m)/m.
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Proof. Lemma 3 tells us that the size of Sk is the number of possible ways one could
choose X1, . . . , X� during the construction of each element s(X1, . . . , X�). The choice

for each Xi is independent, and there are
(
4m
m

)
possibilities. Hence, there are

(
4m
m

)�
total choices. The inequality follows from Lemma 4.

Property 3. Let x = s(X) ∈ Sk and y = s(Y ) ∈ Sk be two distinct elements in Sk.
Then, there exists a k-mer u ∈ x ∩ y such that

−→
ext(u) ∩ x �= −→ext(u) ∩ y.

Proof. By Lemma 3, X �= Y . Let i be the smallest index such that Xi �= Yi, and let
v be an element in LX

i but not in LY
i . By construction, there exists a vertex u ∈ LX

i−1

(and hence in LY
i−1) such that v ∈ −→ext(u). Lemma 1 tells us that v is not in y and hence

u satisfies the condition of the lemma.

Theorem 1. Consider an arbitrary NDS and let CONST be its constructor. For any
0 < ε < 1, there exists a k and x ⊆ Σk such that |CONST(x)| ≥ |x| · (c − ε), where
c = 8− 3 lg 3 ≈ 3.25.

Proof. Assume for the sake of contradiction that for all x, |CONST(x)| < |x|(c − ε).
Let k be a large enough integer such that k > 2cε−1 and ε0 < (ε(� + 1) − c)/� holds
(with m, �, ε0 as defined above). The second inequality is verified for any large value
of k, since ε0 = Θ(�/4�) converges to 0 and (ε(� + 1) − c)/� converges to ε. Let
n = 4k/2−1(k/2 + 1). Consider the outputs of CONST on the elements of Sk. When
the input is constrained to be of size n, the output must use less than (c − ε)n bits (by
Lemma 1). Hence the range of CONST over the domain Sk has size less than 2(c−ε)n.
At the same time, Lemma 2 states that there are at least 2(c−εo)�m elements in Sk.

From the inequality ε0 < (ε(�+1)− c)/� we derive that (c− ε0)� > (c− ε)(�+ 1)
and thus 2(c−εo)�m > 2(c−ε)n. Therefore, there must exist distinct s1, s2 ∈ Sk such
that CONST(s1) = CONST(s2). We can now apply Lemma 3 to obtain an element
y ∈ s1∩s2 that is a valid input to CONST(s1) and to CONST(s2). Since the two functions
are the same, the return value must also the same. However, we know that the out-
neighborhoods of y are different in s1 and in s2, hence, one of the results of NBR on y
must be incorrect. This contradicts the correctness of CONST.

11.2 Lower Bound for Linear de Bruijn Graphs

Lemma 5. The number of DNA strings of length m where each k-mer is seen only once
is at least 4m(1 −

(
m
2

)
4−k).

Proof. This Lemma was expressed in a probabilistic setting in [13], but we provide a
deterministic proof here. We define a set of strings S and show that it contains all strings
with at least one repeated k-mer. Let sk be the string obtained by repeating the pattern
s as many times as needed to obtain a string of length exactly k, possibly truncating the
last occurrence.

S = {s | ∃ (i, j), 1 ≤ i < j ≤ m,∃ t, |t| = (m− k), |s| = m

s[1 . . . j] = t[1 . . . j], s[j+k+1 . . .m] = t[j+1 . . .m−k], s[j+1 . . . j+k] = s[i . . . j]
k}
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Let s′ be a string which contains at least one repeated k-mer. Without loss of generality,
assume that i < j are two starting positions of identical k-mers (s′[j . . . j + k − 1] =
s′[i . . . i+k−1]). Setting t to be the concatenation of s′[1..j] and s′[j+k+1 . . . n], it is
clear that s′ is in S. Thus S contains all strings of length n having at least one repeated
k-mer. Since there are

(
m
2

)
choices for (i, j) and 4m−k choices for t, the cardinality of

S is at most
(
m
2

)
4m−k, which yields the result.

Lemma 6. Given 0 < ε < 1, let n = �3ε−1� and k = �1 + (2 + ε) log4(2n)�. The
number of DNA strings of length (n+ k − 1) which start with the same k-mer, and do
not contain any repeated (k − 1)-mer, is strictly greater than 4n(1−ε).

Proof. Note that k < n, thus k > (1 + (2 + ε) log4(n + k − 1)) and 4−k+1 <
(n+k− 1)(−2−ε). Using Lemma 5, there are at least (4n+k−1(1−

(
n+k−1

2

)
4−k+1)) >

(4n+k−1(1 − 1
2(n+k−1)ε )) strings of length (n + k − 1) where each (k − 1)-mer is

unique. Thus, each string has exactly n k-mers that are all distinct. By binning these
strings with respect to their first k-mer, there exists a k-mer k0 such that there are at
least 4n−1(1 − 1

2(n+k−1)ε ) strings starting with k0, which do not contain any repeated

(k − 1)-mer. The following inequalities hold: 4−1 > 4−nε/2 and (1 − 1
2(n+k−1)ε ) >

1
2 > 4−nε/2. Thus, 4n−1(1− 1

2(n+k−1)ε ) > 4n(1−ε).

Lemma 7. Two different strings of length (n+k−1) starting with the same k-mer and
not containing any repeated (k − 1)-mer correspond to two different linear de Bruijn
graphs.

Proof. For two different strings s1 and s2 of length (n + k − 1), which start with the
same k-mer and do not contain any repeated (k − 1)-mer, observe that their sets of
k-mers cannot be identical. Suppose they were, and consider the smallest integer i such
that s1[i . . . i+k− 2] = s2[i . . . i+k− 2] and s1[i−k+1] �= s2[i−k+1]. The k-mer
s1[i . . . i + k − 1] appears in s2, at some position j �= i. Then s2[i . . . i + k − 2] and
s2[j . . . j + k − 2] are identical (k − 1)-mers in s2, which is a contradiction. Thus, s1
and s2 correspond to different sets of k-mers, and therefore correspond to two different
linear de Bruijn graphs.

Theorem 2. Consider an arbitrary NDS for linear de Bruijn graphs and let CONST be
its constructor. Then, for any 0 < ε < 1, there exists (n, k) and a set of k-mers S of
cardinality n, such that |CONST(S)| ≥ 2n(1− ε).

Proof. Assume for the sake of contradiction that for all linear de Bruijn graphs, the
output of CONST requires less than 2(1 − ε) bits per k-mer. Thus for a fixed k-mer
length, the number of outputs CONST(S) for sets of k-mers S of size n is no more than
22n(1−ε). Lemma 6 provides values (k, n, k0), for which there are more strings starting
with a k-mer k0 and containing exactly n k-mers with no duplicate (k−1)-mers (strictly
more than 22n(1−ε)) than the number of outputs CONST(S) for n k-mers.

By the pigeonhole principle, there exists a navigational data structure constructor
CONST(S) that takes the same values on two different strings s1 and s2 that start with
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the same k-mer k0 and do not contain repeated (k − 1)-mer. By Lemma 7, CONST(S)
takes the same values on two different sets of k-mers S1 and S2 of cardinality n. Let p
be the length of longest prefix common to both strings. Let k1 be the k-mer at position
(p− k+1) in s1. Note that k1 is also the k-mer that starts at position (p− k+1) in s2.
By construction of s1 and s2, k1 does not appear anywhere else in s1 or s2. Moreover,
the k-mer at position (p − k) in s1 is different to the k-mer at position (p − k) in s2.
In a linear de Bruijn graph corresponding to a string where no (k − 1)-mer is repeated,
each node has at most one out-neighbor. Thus, the out-neighbor of k1 in the de Bruijn
graph of S1 is different to the out-neighbor of k1 in the de Bruijn graph of S2, i.e.
NBR(CONST(S1), k1) �= NBR(CONST(S2), k1), which is a contradiction.

11.3 Algorithm to Enumerate the Simple Paths of a de Bruijn Graph in Low
Memory

Property 4. At any point of execution after line 5, the multi set of k-mers present in the
files and in the output is S.

Proof. We prove by induction. It is trivially true after the partition step. In general, note
that the compaction operation preserves the multi set of k-mers. Because the only way
the strings are ever changed is through compaction, the property follows.

Lemma 8. For each minimizer m, for each k-mer u in S such that Lmin(u) = m (resp.
Rmin(u) = m), u is the left-most (resp. right-most) k-mer of a string in Fm at the time
Fm is processed.

Proof. We prove this by induction on m. Let m0 be the smallest minimizer. All k-
mers that have m0 as a left or right minimizer are strings in Fm0 , thus the base
case is true. Let m be a minimizer and u be a k-mer such that Lmin(u) = m or
Rmin(u) = m, and assume that the induction hypothesis holds for all smaller mini-
mizers. If min(Lmin(u),Rmin(u)) = m, then u is a string in Fm after execution of
line 5. Else, without loss of generality, assume that m = Rmin(u) > Lmin(u). Then,
after line 5, u is a string in FLmin(u). Let Fm1 , . . . , Fmt be all the files, in increasing
order of the minimizers, which have a simple path containing u before the maximal-
length simple path containing u is outputted by the algorithm. Let mi be the largest of
these minimizers strictly smaller than m. By the induction hypothesis and Property 4, u
is at the right extremity of a unique string su in Fmi . After the mi-compactions, since
m = Rmin(su) > mi, su does not go into the output. It is thus written to the next larger
minimizer. Since m = Rmin(u) ≤ mi+1, then it must be that mi+1 = m, and su is
written to Fm, which completes the induction.

Lemma 9. In Algorithm 1, at any point during execution, each string in Fm corre-
sponds to a sub-path of a maximal-length simple path.

Proof. We say that a string is correct if it corresponds to a sub-path of a maximal-
length simple path. We prove the following invariant inductively: at the beginning of
the loop at line 6, all the files Fm contain correct strings. The base case is trivially
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true as all files contain only k-mers in the beginning. Assume that the invariant holds
before processing Fm. It suffices to show that no wrong compactions are made; i.e.
if two strings from Fm are m-compactable, then they are also compactable in S. The
contrapositive is proven. Assume, for the sake of obtaining a contradiction, that two
strings (u, v) are not compactable in S, yet are m-compactable in Fm at the time it is
processed. Without loss of generality, assume that there exists w ∈ S such that u→ w
and w �= v. Since u → v and u → w, m = Rmin(u) = Lmin(v) = Lmin(w). Hence,
by Lemma 8, w is the left-most k-mer of a string in Fm at the time Fm is processed.
This contradicts that (u, v) are m-compactable in Fm at the time it is processed. Thus,
all compactions of strings in Fm yield correct strings, and the invariant remains true
after Fm is processed.

Theorem 3. The output of Algorithm 1 is the set of maximal simple paths of the de
Bruijn graph of S.

Proof. By contradiction, assume that there exists a maximal-length simple path p that
is not returned by Algorithm 1. Every input k-mer is returned by Algorithm 1 in some
string, and by Lemma 9, every returned string corresponds to a sub-path of a maximal-
length simple path. Then, without loss of generality, assume that a simple path of p is
split into sub-paths p1, p2, . . . , pi in the output of Algorithm 1. Let u be the last k-mer of
p1 and v be the first k-mer of p2. Let m = Rmin(u) = Lmin(v) (with Observation 1).
By Lemma 8, u and v are both present in Fm when it is processed. As u and v are
compactable in S (to form p), they are also compactable in Fm and thus the strings that
include u and v in Fm are compacted at line 7. This indicates that u and v cannot be
extremities of p1 and p2, which yields a contradiction.
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Abstract. We consider the problem of exact learning of parameters of
a linear RNA energy model from secondary structure data. A necessary
and sufficient condition for learnability of parameters is derived, which
is based on computing the convex hull of union of translated Newton
polytopes of input sequences [15]. The set of learned energy parameters
is characterized as the convex cone generated by the normal vectors to
those facets of the resulting polytope that are incident to the origin.
In practice, the sufficient condition may not be satisfied by the entire
training data set; hence, computing a maximal subset of training data
for which the sufficient condition is satisfied is often desired. We show
that problem is NP-hard in general for an arbitrary dimensional feature
space. Using a randomized greedy algorithm, we select a subset of RNA
STRAND v2.0 database that satisfies the sufficient condition for separate
A-U, C-G, G-U base pair counting model. The set of learned energy
parameters includes experimentally measured energies of A-U, C-G, and
G-U pairs; hence, our parameter set is in agreement with the Turner
parameters.

1 Introduction

The discovery of key regulatory roles of RNA in the cell has recently invigo-
rated interest in RNA structure and RNA-RNA interaction determination or
prediction [4,6,17,18,30,33,37]. Due to high chemical reactivity of nucleic acids,
experimental determination of RNA structure is time-consuming and challeng-
ing. In spite of the fact that computational prediction of RNA structure may
not be accurate in a significant number of cases, it is the only viable low-cost
high-throughput option to date. Furthermore, with the advent of whole genome
synthetic biology [16], accurate high-throughput RNA engineering algorithms
are required for both in vivo and in vitro applications [26–28,32, 35].

Since the dawn of RNA secondary structure prediction four decades ago [31],
increasingly complex models and algorithms have been proposed. Early ap-
proaches considered mere base pair counting [23, 34], followed by the Turner
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thermodynamics model which was a significant leap forward [22, 38]. Recently,
massively feature-rich models empowered by parameter estimation algorithms
have been proposed. Despite significant progress in the last three decades, made
possible by the work of Turner and others [21] on measuring RNA thermody-
namic energy parameters and the work of several groups on novel algorithms
[3,5,8–10,19,20,24] and machine learning approaches [2,11,36], the RNA struc-
ture prediction accuracy has not reached a satisfactory level yet [25].

Until now, computational convenience, namely the ability to develop dynamic
programming algorithms of polynomial running time, and biophysical intuition
have played the main role in development of RNA energy models. The first step
towards high accuracy RNA structure prediction is to make sure that the energy
model is inherently capable of predicting every observed structure, but it is not
over-capable, as accurate estimation of the parameters of a highly complex model
often requires a myriad of experimental data, and lack of sufficient experimental
data causes overfitting. Recently, we gave a systematic method to assess that
inherent capability of a given energy model [15]. Our algorithm decides whether
the parameters of an energy model are learnable. The parameters of an energy
model are defined to be learnable iff there exists at least one set of such pa-
rameters that renders every known RNA structure to date, determined through
X-ray or NMR, the minimum free energy structure. Equivalently, we say that the
parameters of an energy model are learnable iff 100% structure prediction accu-
racy can be achieved when the training and test sets are identical. Previously,
we gave a necessary condition for the learnability and an algorithm to verify
it. Note that a successful RNA folding algorithm needs to have generalization
power to predict unseen structures. We leave assessment of the generalization
power for future work.

In this paper, we give a necessary and sufficient condition for the learnability
and characterize the set of learned energy parameters. Also, we show that select-
ing the maximum number of RNA sequences for which the sufficient condition
is satisfied is NP-hard in general in arbitrary dimensions. Using a randomized
greedy algorithm, we select a subset of RNA STRAND v2.0 database that satis-
fies the sufficient condition for separate A-U, C-G, G-U base pair counting model
and yields a set of learned energy parameters that includes the experimentally
measured energies of A-U, C-G, and G-U pairs.

2 Methods

2.1 Preliminaries

Let the training set D = {(xi, yi) | i = 1, 2, . . . , n} be a given collection of
RNA sequences x and their corresponding experimentally observed structures
y. Throughout this paper, we assume the free energy

G(x, s,h) := 〈c(x, s),h〉 (1)
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associated with a sequence-structure pair (x, s) is a linear function of the energy
parameters h ∈ Rk, in which k is the number of features, s is a structure in E(x)
the ensemble of possible structures of x, and c(x, s) ∈ Zk is the feature vector.

2.2 Learnability of Energy Parameters

The question that we asked before [15] was: does there exist nonzero parameters
h† such that for every (x, y) ∈ D, y = argmins G(x, s,h†)? We ask a slightly re-
laxed version of that question in this paper: does there exist nonzero parameters
h† such that for every (x, y) ∈ D, G(x, y,h†) = mins G(x, s,h†)? The answer to
this question reveals inherent limitations of the energy model, which can be used
to design improved models. We provided a necessary condition for the existence
of h† and a dynamic programming algorithm to verify it through computing the
Newton polytope for every x in D [15]. Following our previous notation, let the
feature ensemble of sequence x be

F(x) := {c(x, s) | s ∈ E(x)} ⊂ Z
k, (2)

and call the convex hull of F(x),

N (x) := convF(x) ⊂ R
k, (3)

the Newton polytope of x. We remind the reader that the convex hull of a set,
denoted by ‘conv’ here, is the minimal convex set that fully contains the set. Let
(x, y) ∈ D and 0 �= h† ∈ Rk. We previously showed in [15] that if y minimizes
G(x, s,h†) as a function of s, then c(x, y) ∈ ∂N (x), i.e. the feature vector of
(x, y) is on the boundary of the Newton polytope of x.

In this paper, we provide a necessary and sufficient condition for the existence
of h†. First, we rewrite that necessary condition by introducing a translated copy
of the Newton polytope,

Ny(x) := N (x) � c(x, y) = conv {F(x)� c(x, y)} , (4)

in which � is the Minkowski difference. The necessary condition for learnability
then becomes 0 ∈ ∂Ny(x).

2.3 Necessary and Sufficient Condition for Learnability

The following theorem specifies a necessary and sufficient condition for the
learnability.

Theorem 1 (Necessary and Sufficient Condition). There exists 0 �= h† ∈
Rk such that for all (x, y) ∈ D, y minimizes G(x, s,h†) as a function of s iff
0 ∈ ∂N (D), in which

N (D) := conv

⎧⎨⎩ ⋃
(x,y)∈D

Ny(x)

⎫⎬⎭ = conv

⎧⎨⎩ ⋃
(x,y)∈D

F(x)� c(x, y)

⎫⎬⎭ . (5)
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Proof. (⇒) Suppose 0 �= h† ∈ Rk exists such that for all (x, y) ∈ D, y minimizes
G(x, s,h†) as a function of s. To the contrary, assume 0 is in the interior ofN (D).
Therefore, there is an open ball of radius δ > 0 centered at 0 ∈ Zk completely
contained in N (D), i.e.

Bδ(0) ⊂ N (D). (6)

Let

p = −(δ/2) h†

‖h†‖ .

It is clear that p ∈ Bδ(0) ⊂ N (D) since ‖p‖ = δ/2 < δ. Therefore, p can be
written as a convex linear combination of the feature vectors in

F(D) :=
⋃

(x,y)∈D

{F(x) � c(x, y)} = {v1, . . . , vN} , (7)

i.e.

∃ α1, . . . αN ≥ 0 : α1v1 + · · ·+ αNvN = p, (8)

α1 + · · ·+ αN = 1. (9)

Note that 〈
p,h†〉 = −(δ/2)‖h†‖ < 0. (10)

Therefore, there is 1 ≤ i ≤ N , such that
〈
vi,h

†〉 < 0 for otherwise,

〈
p,h†〉 = N∑

i=1

αi

〈
vi,h

†〉 ≥ 0, (11)

which would be a contradiction with (10). Since vi ∈ F(D) in (7), there is
(x, y) ∈ D such that vi ∈ F(x)�c(x, y). It is now sufficient to note that v′i = vi+
c(x, y) ∈ F(x) and

〈
v′i,h

†〉 < 〈
c(x, y),h†〉 = G(x, y,h†) which is a contradiction

with our assumption that y minimizes G(x, s,h†) as a function of s.
(⇐) Suppose 0 is on the boundary of N (D). Note that for all (x, y) ∈ D,

0 ∈ ∂Ny(x). We construct a nonzero h† ∈ Rk such that for all (x, y) ∈ D,
G(x, y,h†) = mins∈E(x) G(x, s,h†). Since N (D) is convex, it has a supporting

hyperplane H, which passes through 0. Let the positive normal to H be h†,
i.e. 〈N (D),h†〉 ⊂ [0,∞). Therefore, minp∈N (D)〈p,h†〉 = 〈0,h†〉 = 0, which

implies that for all (x, y) ∈ D, minp∈Ny(x)〈p,h†〉 = 〈0,h†〉 = 0, or equivalently,

G(x, y,h†) = mins∈E(x) G(x, s,h†). ��

The proof above is constructive; hence using a similar argument, we characterize
all learned energy parameters in the following theorem.

Theorem 2. Let

H(D) :=

{
h† ∈ R

k | h† �= 0, G(x, y,h†) = min
s∈E(x)

G(x, s,h†) ∀(x, y) ∈ D

}
.

(12)
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In that case, H(D) is the set of vectors n ∈ Rk orthogonal to the supporting
hyperplanes of N (D) such that 〈N (D), n〉 ⊂ [0,∞). Moreover, that is the convex
cone generated by the inward normal vectors to those facets of N (D) that are
incident to 0.

2.4 Compatible Training Set

We say that a training set D is compatible if the sufficient condition for learn-
ability is satisfied when D is considered. However, the sufficient condition for
the entire training set is often not satisfied in practice, for example when the
feature vector is low dimensional. We would like to find a compatible subset of
D to estimate the energy parameters. A natural quest is to find the maximal
compatible subset of D. In the following section, we show that even when the
Newton polytopes with polynomial complexity for all of the sequences in D are
given, selection of a maximal compatible subset of D is NP-hard in arbitrary
dimensions.

2.5 NP-hardness of Maximal Compatible Subset

Problem 1 (Maximal Compatible Subset (MCS)). We are given a collection of
convex polytopes A = {P1,P2, . . . ,Pn} in Rk such that 0 ∈ Rk is on the bound-
ary of every Pi, i.e. 0 ∈ ∂Pi for i = 1, 2, . . . , n. The desired output is a maximal
subcollection B = {Pj1 ,Pj2 , . . . ,Pjm} ⊆ A with the following property

0 ∈ ∂ conv

{ ⋃
P∈B

P
}
. (13)

Theorem 3. MCS is NP-hard.

Sketch of proof. We use a direct reduction to Max 3-Sat. Let
Φ(w1, w2, . . . , wk) =

∧n
i=1 τi be a formula in the 3-conjunctive normal

form with clauses

τi = q1i wai ∨ q2i wbi ∨ q3i wci , (14)

where wj are binary variables, 1 ≤ ai, bi, ci ≤ k, and q1i , q
2
i , q

3
i ⊆ {¬}. For

every clause τi, we build 8 convex polytopes P000
i , . . . ,P111

i in Rk, where the
superscripts are in binary. To achieve that, we first build a true T 1

j and a false
T 0
j convex polytope for every variable wj . Let {e1, e2, . . . , ek} be the standard

orthonormal basis for Rk and define

T 1
j = conv {0,Mej ± e1, . . . ,Mej ± ej−1,Mej ± ej+1, . . . ,Mej ± ek} , (15)
T 0
j = −T 1

j , (16)

for an arbitrary 1�M ∈ Z and j = 1, 2, . . . , k. Note that T is a k-dimensional
narrow arrow with polynomial complexity, and its vertices are on the integer
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M−M

Xj

X�

T 1

j
∩XjX�T 0

j
∩XjX�

Fig. 1. Intersection of T 0
j and T 1

j polytopes with the XjX� plane in the proof of
Theorem 3

lattice and can be computed in polynomial time; see Fig. 1. Moreover, {T 0
j , T 1

j }
is incompatible, i.e. 0 �∈ ∂ conv{T 0

j ∪ T 1
j }. Let

Pd1d2d3
i = conv

{
T d1
ai
∪ T d2

bi
∪ T d3

ci

}
. (17)

Note that even though computing the convex hull is NP-hard in general [12],
Pd1d2d3
i can be computed in polynomial time. Essentially, the vertex set of ∂Pd1d2d3

i

is the union of vertices of ∂T dj
ai . Assume (σ1

i , σ
2
i , σ

3
i) ∈ {0, 1}3 is that assignment

to variables (wai , wbi , wci) which makes τi false, and let

Ai =
{
P000
i , . . . ,P111

i

}
\
{
Pσ1

iσ
2
iσ

3
i

i

}
. (18)

More precisely,

σj
i =

{
0 if qji = ∅,
1 otherwise.

(19)

Note that for every Pd1d2d3
i ∈ Ai, assignment of (d1, d2, d3) to variables

(wai , wbi , wci) makes τi true. Finally, define the input to the MCS as

A =

n⋃
i=1

Ai, (20)

and assume B is a maximal subset of A with the property

0 ∈ ∂ conv

{ ⋃
P∈B

P
}
. (21)

It is sufficient to show that |B| = Max 3-Sat(Φ). First, we prove that |B| ≥
Max 3-Sat(Φ). SupposeMax 3-Sat(Φ) =m, and the assignment (g1, g2, . . . , gk)
∈ {0, 1}k renders τi1 , τi2 , . . . , τim true. Define

Bm =
{
Pgai

gbigci
i | i ∈ {i1, i2, . . . , im}

}
⊆ A, (22)
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and verify that it is compatible, i.e. 0 ∈ ∂ conv
{⋃

P∈Bm
P
}
, since

conv

{ ⋃
P∈Bm

P
}

= conv

⎧⎨⎩
k⋃

j=1

T gj
j

⎫⎬⎭ (23)

spans only (approximately) one orthant of Rk. Since B is a maximal subset of A
with the compatibility property, |B| ≥ |Bm| = m. Second, we prove that |B| ≤
Max 3-Sat(Φ). We show that for every 1 ≤ i ≤ n, at most one Pi ∈ B. To

the contrary, suppose for some 1 ≤ i ≤ n, Pd1d2d3
i ,Pd′1d

′
2d

′
3

i ∈ B. Without loss of
generality, assume d1 �= d′1. In that case,

0 ∈ int
{
conv

[
T 0
ai
∪ T 1

ai

]}
= int

{
conv

[
T d1
ai
∪ T d′1

ai

]}
⊆ int

{
conv

[
Pd1d2d3
i ∪ Pd′1d

′
2d

′
3

i

]}
⊆ int

[
conv

{ ⋃
P∈B

P
}]

,

(24)

which is a contradiction. Above int denotes the interior. Similarly, B induces a
consistent assignment to the variables, that makes |B| clauses true. ��

2.6 Randomized Greedy Algorithm

Since the maximal compatible subset problem is NP-hard in general, we used a
randomized greedy algorithm. In the ith iteration, our algorithm starts with a
seed Bi which is a random subset of A, the input set of polytopes. In our case, Bi

is a single element subset. The algorithm iteratively keeps adding other members
of A to Bi as long as 0 remains as a vertex of the convex hull of union of all
of the polytopes in Bi. Note that Theorem 1 requires 0 to be on the boundary
of the convex hull, not necessarily on a vertex. However in practice, applicable
cases have 0 as a vertex. Finally, the Bi with maximum number of elements is
returned in the output; see Algorithm 1.

3 Results

We used 2277 unpseudoknotted RNA sequence-structure pairs from RNA
STRAND v2.0 database as our data set D. RNA STRAND v2.0 is a conve-
nient source of RNA sequences and structures selected from various Rfam fami-
lies [7] and contains known RNA secondary structures of any type and organism,
particularly with and without pseudoknots [1]. There are 2334 pseudoknot-free
RNAs in the RNA STRAND database. We sorted them based on their length
and selected the first 2277 ones for computational convenience. We excluded
pseudoknotted structures because our current implementation is incapable of
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Algorithm 1. Randomized Greedy Maximal Compatible Subset

Input: A = {P1,P2, . . . ,Pn}
Output: B ⊆ A

i ← 1
B ← ∅
while i < MaxIterations do � MaxIterations is a static/dynamic constant

A′ ← {P ∈ A | 0 is a vertex of ∂P} � remove inapplicable polytopes
Bi ← ∅ � empty subcollection
Q ← ∅ � empty polytope
while A′ 	= ∅ do

Pr ← Random(A′) � pick a random polytope from A′

A′ ← A′\ {Pr}
C ← Bi ∪ {Pr}
R ← conv (Q ∪ Pr)
if 0 is a vertex of ∂R then

Bi ← C � greedily expand the subcollection
Q ← R � update the convex hull of the union

end if
end while
if |B| < |Bi| then

B ← Bi

end if
i ← i+ 1

end while

considering pseudoknots. Some sequences in the data set allow only A-U base
pairs (not a single C-G or G-U pair), in which case the Newton polytope degen-
erates into a line.

We demonstrate the results for the separate A-U, C-G, and G-U base pair
counting energy model similar to our previous model [15]. In that case, the
feature vector

c(x, s) = (c1(x, s), c2(x, s), c3(x, s))

is three dimensional: c1(x, s) is the number of A-U, c2(x, s) the number of C-G,
and c3(x, s) the number of G-U base pairs in s. First, we computed c(x, y) and
used our Newton polytope program to compute N (x) for each (x, y) ∈ D [15].
For completeness, we briefly include our dynamic programming algorithm which
starts by computing the Newton polytope for all subsequences of unit length,
followed by all subsequences of length two and more up to the Newton polytope
for the entire sequence x. We denote the Newton polytope of the subsequence
ni · · ·nj by N (i, j), i.e.

N (i, j) := N (ni · · ·nj). (25)
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The following dynamic programming yielded the result

N (i, j) = conv

⎧⎪⎪⎨⎪⎪⎩
⋃⎡⎢⎢⎣

N (i, �)⊕N (� + 1, j), i ≤ � ≤ j − 1
{(1, 0, 0)} ⊕ N (i + 1, j − 1) if ninj = AU | UA
{(0, 1, 0)} ⊕ N (i + 1, j − 1) if ninj = CG | GC
{(0, 0, 1)} ⊕ N (i + 1, j − 1) if ninj = GU | UG

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ ,

(26)
with the base case N (i, i) = {(0, 0, 0)}. Above ⊕ is the Minkowski sum. We then
computed Ny(x) by translating the Newton polytope so that c(x, y) moves to
the origin 0, to obtain A = {Ny(x) | (x, y) ∈ D} as the input to Algorithm 1.

We then removed those polytopes in A that do not have 0 as one of their
boundary vertices, to obtain A′ in Algorithm 1. It turns out that only 126 se-
quences out of the initial 2277 remain in A′. Note that our condition here is more
stringent than the necessary condition in [15], and that is why fewer sequences
satisfy this condition. After 100 iterations (MaxIterations = 100) which took
less than a minute, the algorithm returned 3 polytopes that are compatible, i.e.
the origin 0 is a vertex of the boundary of convex hull of union of three poly-
topes. They correspond to sequences PDB 00434 (length: 15nt; bacteriophage
HK022 nun-protein-nutboxb-RNA complex [13]), PDB 00200 (length: 21nt; an
RNA hairpin derived from the mouse 5’ ETS that binds to the two N-terminal
RNA binding domains of nucleolin [14]), and PDB 00876 (length: 45nt; solution
structure of the HIV-1 frameshift inducing element [29]) which are experimen-
tally verified by NMR or X-ray.

The origin is incident to 5 facets of the resulting convex hull, shown in Fig.
2, the inward normal vector to which are in the rows of

J =

⎡⎢⎢⎢⎢⎣
−0.3162 −0.9487 0
−1 0 0
0 0 1

−0.4082 −0.8165 −0.4082
−0.5774 −0.5774 −0.5774

⎤⎥⎥⎥⎥⎦ (27)

as explained in Theorem 2. The set of those energy parameters that correctly
predict the three structures in Fig. 3 is the convex cone generated by these 5
vectors. The Turner model measures the average energies of A-U, C-G, and G-U
to be approximately (−2,−3,−1) kcal/mol [21]. To test whether those energy
parameters fall into the convex cone generated by J , we solved a convex linear
equation. Let

h† =

⎡⎣−2−3
−1

⎤⎦ .

We would like to find a positive solution v ∈ R5
+ to the linear equation JT v = h†.

We formulated that as a linear program which was solved using GNU Octave,
and here is the answer:
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Fig. 2. N (D′) where D′ consists of three sequence-structure pairs: PDB 00434,
PDB 00200, and PDB 00876. The dot shows the origin 0. Secondary structures in
D′ are shown in Fig. 3.
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Fig. 3. Structures of PDB 00434, PDB 00200, and PDB 00876 obtained from RNA
STRAND v2.0 website [1]
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v =

⎡⎢⎢⎢⎢⎣
2.10815
0.33340

0
0

1.73190

⎤⎥⎥⎥⎥⎦ .

The convex cone generated by J contains the vector (−2,−3,−1). Therefore,
our finding is in agreement with the Turner base pairing energies. Note that the
three structures are base-pair rich (Fig. 3).

4 Discussion

We further developed the notion of learnability of parameters of an energy model.
A necessary and sufficient condition for it was given, and a characterization of
the set of energy parameters that realize exact structure prediction followed as a
by-product. If an energy model satisfies the sufficient condition, then we say that
the training set is compatible. In our case, the RNA STRAND v2.0 training set
is not compatible (for the A-U, C-G, G-U base pair counting model). We showed
that computing a maximal compatible subset of a set of convex polytopes is NP-
hard in general and gave a randomized greedy algorithm for it. The computed
set of energy parameters for A-U, C-G, G-U from a maximal compatible subset
agreed with the thermodynamic energies. Complexity of the MCS problem is
an open and interesting question, particularly if we treat the dimension of the
feature space as a constant. Also, assessing the generalization power of an energy
model remains for future work.
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Abstract. RNA-seq technology enables large-scale studies of allele-
specific expression (ASE), or the expression difference between maternal
and paternal alleles. Here, we study ASE in animals for which parental
RNA-seq data are available. While most methods for determining ASE
rely on read alignment, read alignment either leads to reference bias or
requires knowledge of genomic variants in each parental strain. When
RNA-seq data are available for both parental strains of a hybrid animal,
it is possible to infer ASE with minimal reference bias and without
knowledge of parental genomic variants. Our approach first uses parental
RNA-seq reads to discover maternal and paternal versions of transcript
sequences. Using these alternative transcript sequences as features, we
estimate abundance levels of transcripts in the hybrid animal using a
modified lasso linear regression model.

We tested ourmethods on synthetic data from themouse transcriptome
and compared our results with those of Trinity, a state-of-the-art de novo
RNA-seq assembler. Ourmethods achieved high sensitivity and specificity
in both identifying expressed transcripts and transcripts exhibiting ASE.
We also ran our methods on real RNA-seq mouse data from two F1 sam-
ples with wild-derived parental strains and were able to validate known
genes exhibiting ASE, as well as confirm the expected maternal contribu-
tion ratios in all genes and genes on the X chromosome.

Keywords: Allele-Specific Expression, RNA-seq, Lasso Regression.

1 Introduction

Recent advances in high-throughput RNA-seq technology have enabled the gen-
eration of massive amounts of data for investigation of the transcriptome. While
this offers exciting potential for studying known gene transcripts and discovering
new ones, it also necessitates new bioinformatic tools that can efficiently and
accurately analyze such data.

Current RNA-seq techniques generate short reads from RNA sequences at
high coverage, and the main challenge in RNA-seq analysis lies in reconstructing
transcripts and estimating their relative abundances from millions of short (35-
250 bp) read sequences. A common approach is to first map short reads onto
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a reference genome, and then estimate the abundance in each annotated gene
region. Such reference-alignment methods include TopHat [25], Cufflinks [27] and
Scripture [10], which use algorithms such as the Burrows-Wheeler transform [1]
to achieve fast read alignment. These methods are well established in the RNA-
seq community and there exist many auxiliary tools [25] [26] for downstream
analysis.

However, aligning reads to a reference genome has some disadvantages. First,
read alignment assumes samples are genetically similar to the reference genome,
and as a result, samples that deviate significantly from the reference frequently
have a large portion of unmapped reads. This bias favors mapping reads from
samples similar to the reference genome and is known as “reference bias.” Second,
alignment methods typically cannot resolve the origin of reads that map to
multiple locations in the genome, resulting in reads being arbitrarily mapped or
discarded from analysis. Suggested workarounds to the first problem of reference
bias involve creating new genome sequences, typically by incorporating known
variants, to use in place of the reference genome for read alignment [23]. How-
ever, this requires prior knowledge of genomic variants in the targeted RNA-seq
sample, which is sometimes difficult and expensive to obtain.

Another class of methods perform de novo assembly of transcriptomes using
De Bruijn graphs of k-mers from reads [7] [21]. These methods enable reconstruc-
tion of the transcriptome in species for which no reference genomic sequence is
available. While these methods offer the possibility of novel transcript discovery,
their de novo nature makes it difficult to map assembled subsequences back to
known annotated transcripts. Furthermore, estimation of transcript expression
levels in these methods is not straightforward and generally involves alignment
of assembled contigs to a reference genome [7] [21], which reintroduces the
possibility for reference bias.

Expression level estimation is particularly difficult for outbred diploid organ-
isms, since each expressed transcript may contain two different sets of alleles,
one from each parental haplotype. In some transcripts, one parental allele is
preferentially expressed over another, resulting in what is known as allele-specific
expression (ASE). It is often biologically interesting to identify genes and tran-
scripts exhibiting ASE, as well as estimate the relative expression levels of the
maternal and paternal alleles [8] [29]. Prior to the introduction of RNA-seq, ASE
studies often relied on microarray technology. Although microarrays are able to
identify genes exhibiting ASE, they generally examine a small number of genes,
with expression level estimates in highly relative terms [19] [22]. The abundance
of data from RNA-seq not only enables large-scale ASE studies incorporating
the entire transcriptome, but also provides several means for direct estimation
of more accurate expression levels, such as using alignment pile-up heights.

Current RNA-seq-based methods for analyzing ASE rely on reference tran-
scriptome alignment [23] [24], which is again subject to reference bias and re-
quires prior knowledge of genomic variants in the strains of interest. Reference
bias is particularly problematic in ASE analysis, since it can falsely enhance
relative expression in one parental strain over another.



A Regression Approach for Estimating ASE Using RNA-Seq Data 71

In the case where RNA-seq data of all three members of a mother-father-
child trio are available, we can utilize the RNA-seq data from the parental
strains and eliminate the need for prior knowledge of their genomic variants.
Here, we examine ASE in F1 mouse strains, which are first-generation offspring
of two distinct isogenic parental strains. We separately construct maternal and
paternal versions of transcripts using RNA-seq reads from the parental strains
and annotated reference transcripts, creating a set of candidate transcript se-
quences the F1 strain could express. We then estimate the expression level of each
candidate transcript in the F1 strain using a modified lasso regression model [11].
Lasso regression has been proposed by Li et al. [17] in the context of RNA-seq
isoform expression level estimation, but not in the context of estimating ASE
without reference alignment. We choose to use lasso regularization since it drives
parameters to zero, enabling us to effectively eliminate non-expressed isoforms
that have significant k-mer overlaps with expressed isoforms. We modify the
lasso penalty slightly to prefer assigning higher F1 expression levels in transcripts
with k-mers that appear frequently in the parental RNA-seq reads, due to the
assumption that most highly expressed genes in the parents should also be highly
expressed in the F1 strain.

We tested our methods on synthetic RNA-seq data from the wild-derived
mouse strains CAST/EiJ and PWK/PhJ, along with F1 offspring CASTxPWK,
with CAST/EiJ as the maternal strain and PWK/PhJ as the paternal strain. We
also tested on real RNA-seq data from a CAST/EiJ, PWK/PhJ, CASTxPWK
trio and a CAST/EiJ, WSB/EiJ, CASTxWSB trio, both using CAST/EiJ as
the maternal strain. The CAST/EiJ, PWK/PhJ, and WSB/EiJ mouse strains
are isogenic, and all three have well-annotated genomes that differ significantly
from each other and from the mouse reference sequence [30], which is largely
based on the C57BL/6J strain (NCBI37 [4]). CAST/EiJ and PWK/PhJ each
have a high variation rate of approximately one variant per 130 bp with respect
to the reference genome, and a slightly higher rate with respect to each other,
while WSB/EiJ is more similar to the reference genome with approximately one
variant per 375 bp. The genetic distance between these three strains make them
ideal candidates for studying ASE, since we expect a large percentage of reads
to contain distinguishing variants.

Table 1. Notation

y F1 k-mer profile. An n× 1 vector where yi indicates the number of times

the ith k-mer appears in the F1 sample
zM , zP maternal and paternal k-mer profiles
XM set of k-mer profiles of candidate transcripts from zM

XP set of k-mer profiles of candidate transcripts from zP

X an n×m matrix equal to [XM ∪XP ], where n is number of k-mers and m
is number of transcripts

xj k-mer profile of the jth candidate transcript
xi,j number of times the ith k-mer occurs in the jth candidate transcript

θj estimated expression level for the jth candidate transcript
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Fig. 1. Our pipeline for estimating allele-specific expression in F1 animals. (a) k-
mer profiles are created for the maternal, paternal, and F1 strains, using all available
RNA-seq reads from one sample of each strain. Each k-mer is also saved as its
reverse complement, since we do not know the directionality of the read. (b) De
Bruijn graphs are created for the maternal and paternal samples. Using annotated
reference transcripts and the parental De Bruijn graphs, we select candidate transcripts
which incorporate parental alleles from the De Bruijn graphs. (c) The k-mer profile
of the F1 sample, y, is then regressed onto the candidate parental transcripts,
{xM

1 ,xM
2 , ...xM

r } ∪ {xP
1 ,x

P
2 , ...x

P
s }, and we estimate the expression level θ of each

candidate transcript.
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2 Approach

In this section, we discuss the parameters and assumptions of our proposed
model and the underlying optimization problem.

2.1 Notation

Table (1) includes a description of the variables used in this paper. We denote
the k-mer profiles of maternal candidate transcripts, XM = {xM

1 ,xM
2 , ...xM

r },
and the k-mer profiles of paternal candidate transcripts, XP = {xP

1 ,x
P
2 , ...x

P
s },

jointly asX = XM∪XP , a matrix representing the k-mer profiles of all candidate
transcripts. Each candidate transcript k-mer profile is labeled as originating from
the maternal k-mer profile, the paternal k-mer profile, or both if there are no
differentiating variants between the parental k-mer profiles.

2.2 Regression Model

We propose a modified lasso penalized regression model for estimating the abun-
dance of each candidate transcript, with the assumption that the F1’s k-mer
profile y can be expressed as a linear combination of its expressed transcripts
X = {x1, ...xj , ...xm} multiplied by their relative expression levels θj :

y =

m∑
j=1

θjxj . (1)

To filter out non-expressed transcripts and prevent overfitting, each candi-
date transcript is penalized by an l1-norm, parameterized by the regularization
parameter λ and the inverse of wj , where

wj = median

⎧⎪⎨⎪⎩
{zMi /xi,j , ∀xi,j > 0}, xj ∈ XM

{zPi /xi,j , ∀xi,j > 0}, xj ∈ XP

{(zMi + zPi )/xi,j , ∀xi,j > 0}, xj ∈ XP ∩XM

(2)

Therefore, transcripts that are expressed at a high level in the parental samples
are more likely to be expressed at a high level in the F1 sample as well. Our
objective function then becomes

argmin
θ

1

2

n∑
i=1

(yi −
m∑
j=1

θjxi,j)
2 + λ

m∑
j=1

θj
wj

subject to θj ≥ 0, ∀j,
(3)

with each θj constrained to be nonnegative since they represent transcript
expression levels.
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3 Methods

3.1 Synthetic Data

We used the Flux Simulator [9] to create simulated reads from the CAST/EiJ,
PWK/PhJ, and CASTxPWK mouse genomes. We chose these two parental
strains because they are well-annotated strains that differ significantly from the
reference strain C57BL/6J and from each other. The transcript sequences for
CAST/EiJ and PWK/PhJ were created using Cufflinks’ gffread utility [27] with
genomes from the Wellcome Trust Institute [13] and transcript annotation from
the Ensembl Genome Database [3]. The positions from the reference transcript
annotation files were updated with positions to the CAST/EiJ and PWK/PhJ
genomes using MODtools [12].

We synthesized 10,000,000 100bp paired-end reads from both the CAST/EiJ
and the PWK/PhJ genomes to represent reads from a maternal CAST/EiJ
genome and a paternal PWK/EiJ genome. We specified the same set of 1000
transcripts with a positive number of expressed RNA molecules in both genomes.
In addition, we merged two sets of 5,000,000 separately synthesized reads from
both CAST/EiJ and PWK/PhJ to create a simulated F1 fastq file. From the
merged CAST/EiJ and PWK/PhJ versions of transcript sequences, the Flux
Simulator output 1156 unique transcripts sequences where at least 95% of the
sequence is covered by reads, and we define this set of 1156 transcript sequences,
representing 626 reference transcripts, as the truly expressed transcripts.

3.2 Real Data

RNA from whole-brain tissues (excluding cerebellum) was extracted from 5 sam-
ples (CAST/EiJ female, PWK/PhJ male, WSB/EiJ male, CASTxPWK male
and CASTxWSB female) using the Illumina TruSeq RNA Sample Preparation
Kit v2. The barcoded cDNA from each sample was multiplexed across four
lanes and sequenced on an Illumina HiSeq 2000 to generate 100 bp paired-end
reads (2x100). This resulted in 2× 71, 291, 857 reads for the CAST/EiJ sample,
2 × 49, 877, 124 reads for the PWK/PhJ sample, 2 × 62, 712, 206 reads for the
WSB/EiJ sample, 2×77, 773, 220 reads for the CASTxPWK hybrid sample, and
2× 57, 386, 133 reads for the CASTxWSB hybrid sample. Note that the selected
samples were not true biological trios, but genetically equivalent. We also used
the same female CAST/EiJ sample as the maternal model for both F1 hybrids.

3.3 Selecting Candidate Transcripts

We used a greedy approach for selecting candidate transcript sequences from the
De Bruijn graphs of each parental k-mer profile. The k-mer size used for this
and subsequent analyses was 32 bp. For each of the 93,006 reference transcripts
provided by Ensembl [3], we match the reference transcript sequence to a path of
k-mers in the De Bruijn graph, allowing for a maximum number of 5 mismatches
within a sliding window of 25 bp, which is a sensible choice except in the case
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of unusually dense SNPs or indels. In the case of mismatches, we replace the
reference sequence with the sequence in the parental De Bruijn graph, thus
creating updated candidate transcript sequences which reflect variants in the
parental strains. If more than 80% of a transcript’s k-mers are found in the
De Bruijn graph, we consider it a candidate transcript. The k-mer profiles of
the selected candidate transcript sequences are then used as features in our
regularized regression model.

3.4 Coordinate Descent

To optimize our objective function Eq. (3), we update θj using coordinate
descent:

θj =
max(

∑n
i=1 y

(−j)
i xi,j − λ

wj
, 0)

‖xj‖22
,where

y
(−j)
i = yi −

∑
k �=j

θjxi,j .
(4)

Due to the high dimensional nature of our data (in real data, the number of k-
mers, n, is approximately 5×107, and the number of candidate transcripts, m, is
approximately 2× 104), updating each θj on every iteration becomes inefficient.
We therefore adapt the coordinate descent with a refined sweep algorithm as
described by Li and Osher [18], where we greedily select to update only the θj
that changes the most on every iteration. To save on computation per iteration,

we can let βj =
∑n

i=1 y
(−j)
i xi,j and precompute the matrix product XTy, so

that β can be updated at every iteration using only addition and a scalar-vector
multiplication. The algorithm is described in Eq. (5), and proof of its convergence
is provided by Li and Osher [18].

Initialize:

θ0 = 0

β0 = XTy

γ = diag(‖xj‖22)−XTX

Iterate until convergence:

θ∗ =
max(β − λ

w , 0)

‖xj‖22
j = argmax|θ∗ − θk|

Updates:

θk+1
j = θ∗j
βk+1 = βk + γj,:(θ

∗
j − θkj )

βk+1
j = βk

j

(5)
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The coordinate descent algorithm terminates when the minimization objective
Eq. (3) decreases by less than a threshold of 0.001 per iteration. For computa-
tional efficiency, the value of our objective function Eq. (3) is evaluated per τ
iterations, where τ = 104 initially. We decrease τ as the objective increases, until
τ = 1 for the final iterations. This saves significant computation time since the
computation of the objective function contains a matrix multiplication and the
regular updates do not, and the convergence of the algorithm is not affected as
the updates are still being performed per iteration.

The lasso regularization parameter λ is chosen via 4-fold cross validation. It
is important to note that the value of λ depends on the mean observed values
for wj , so different values of λ could be chosen for each trio.

4 Results

We analyzed a synthetic data set to ascertain the sensitivity and specificity
of our estimation framework. We then applied our technique to two real data
sets and evaluated them based on their ability to recapitulate known biological
properties.

4.1 Synthetic Data Results

In our synthetic F1 sample, the Flux Simulator generated 1156 unique transcript
sequences from both the maternal and paternal haplotypes with positive expres-
sion levels, representing 626 reference transcripts. We identified 4517 candidate
parental transcript sequences from all reference mouse transcripts annotated by
Ensembl, 1055 of which were truly expressed, representing 598 out of 626 truly
expressed reference transcripts.

We selected the lasso regularization parameter λ to be 500 using 4-fold cross
validataion. We took θj = 0 to indicate transcript j was not expressed and
calculated the sensitivity and specificity of our method in identifying which
transcripts were expressed. For the chosen value of λ, we found the sensitivity
to be 0.9553 (598/626) and the specificity to be 0.9880 (91278/92385).

Of the correctly identified expressed transcripts, the true and estimated ex-
pression levels had a Pearson correlation coefficient of 0.85, indicating high
positive correlation, as shown in Fig. (S1). To allow for comparison of relative
expression levels, we normalized both true and predicted expression levels to
have a mean value of 1 across all expressed transcripts. The mean absolute error
between true and predicted expression levels was 0.3128 for the chosen value of
λ. True positive rates, false positive rates, and mean absolute error of predicted
expression levels for different values of λ are summarized in Fig. (2).

Among the 598 correctly identified expressed transcripts, 544 had differen-
tiable paternal and maternal candidate sequences. Of these, 141 exhibited ASE,
as defined by having a maternal contribution ratio (maternal expression level
divided by total expression level) outside the range [0.4, 0.6]. Our model correctly
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Fig. 2. True positive rate vs. false positive rate for different values of λ. Each point is
colored by the mean absolute error between normalized true and estimated expression
levels for all transcripts correctly classified as expressed.

identified 109 transcripts exhibiting ASE and correctly rejected 293 transcripts
not exhibiting ASE, achieving a sensitivity of 0.77 and specificity of 0.73.

We compared our results with Trinity [7], since its de novo assembly methods
are able to separate maternal and paternal versions of transcripts better than
reference alignment-based methods.

To assemble candidate transcripts from the maternal and paternal strains, we
ran Trinity with its default parameters on the synthetic maternal CAST/EiJ
and paternal PWK/PhJ samples. Per Trinity’s downstream analysis guidelines,
we then aligned reads from the synthetic F1 sample to the assembled parental
transcript sequences using Bowtie [14] then estimated expression levels using
RSEM [16].

Trinity assembled 4215 transcript sequences from both parental strains. Fol-
lowing their guidelines to eliminate false positives, we retained 3336 transcript
sequences representing at least 1% of the per-component expression level. We
used a criterion of Levenshtein distance less than 10% of the true transcript
length to match annotated transcripts to the de novo transcripts sequences
reported by Trinity. With this criterion, only 110 out of 626 truly expressed
transcripts were present in the set of expressed transcripts found by Trinity. In
this set, the mean Levenshtein distance from each true transcript sequence to the
Trinity sequences was 0.12% of the true transcript length, with the maximum
distance being 2.6% of the true transcript length, suggesting our matching
criterion of 10% Levenshtein distance was generous.



78 C.-P. Fu, V. Jojic, and L. McMillan

Out of the 110 assembled transcripts correctly identified, 81 had nonzero
expression levels, making the sensitivity for baseline expression detection 0.13.
However, of the 81 correctly identified transcripts, the Trinity-Bowtie-RSEM
pipeline produced a high correlation of 0.88 between true and estimated expres-
sion levels.

Of the 81 expressed transcripts correctly identified by Trinity, 63 originated
from reference transcripts with ASE. Trinity correctly identified 20 true positives
and 16 true negatives, with a sensitivity of 0.32 and specificity of 0.89.

4.2 Real Data Results

We applied our methods to a male CASTxPWK F1 sample and a female
CASTxWSB F1 sample. We first created De Bruijn graphs for a CAST/EiJ
female, a PWK/EiJ male, and a WSB/EiJ male, representing the parental De
Bruijn graphs of our two F1 samples. To eliminate erroneous reads in each
strain, we filtered k-mers appearing fewer than 5 times. Using Algorithm 2,
we selected 15,287 candidate transcripts from the CAST/EiJ De Bruijn graph,
9,852 candidate transcripts from the PWK/EiJ graph, and 16,023 candidate
transcripts from the WSB/EiJ graph. For each F1 sample, transcript sequences
without differentiating variants between the two parental strains were merged
into a single candidate transcript. This resulted in 23,585 candidate transcripts
for CASTxPWK and 29,155 candidate transcripts for CASTxWSB, representing
7,393 and 8,532 candidate genes, respectively.

The CAST/EiJ, PWK/EiJ and CASTxPWK trio had a merged k-mer profile
of 118,100,824 k-mers, 42,688,910 (36.1%) of which appeared in our candidate
transcripts. Similarly, the CAST/EiJ, WSB/EiJ and CASTxWSB trio had a
merged k-mer profile of 118,383,117 k-mers, 52,715,089 (44.5%) of which ap-
peared in its set of candidate transcripts. We verified most the k-mers in the F1
samples not appearing in candidate transcripts have few occurrences. The k-mers
with high profiles which do not appear in candidate transcripts are most likely
due to poly(A) tails, transcripts with dense variants in the parental strains, or
transcripts expressed by the F1 strain but not the parents, as shown in Fig. (S2)

Table 2. Dimensions and Results from Real Data

CASTxPWK CASTxWSB

k-mers in merged trio k-mer profile 118,100,824 118,383,117
k-mers in candidate transcripts 42,688,910 52,715,089
k-mers in estimated expressed transcripts 42,482,315 52,162,586
candidate transcripts 23,585 29,155
estimated expressed transcripts 17,118 20,596
candidate genes 7,393 8,532
estimated expressed genes 7,148 8,242
expressed genes with isoforms from both parents 4,065 5,183
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Using the penalty parameter λ = 104 for both F1 samples, our methods found
17,118 non-zero θ values in the CASTxPWK sample and 20,596 non-zero θ values
in the CASTxWSB sample, corresponding to as many estimated expressed tran-
scripts. This represented 7,148 of 7,393 and 8,242 of 8,532 estimated expressed
genes, respectively. These results are summarized in Table (2). We estimated the
expression level of each gene by summing the θ values for all expressed isoforms,
both maternal and paternal, of each gene.

To assess our ability to estimate ASE, we looked at the maternal contribution
ratio of all expressed genes with candidate isoforms from both parents and
differentiating variants between the two parents. Maternal contribution ratio of
a gene is defined as the ratio of the expression levels from all maternal isoforms
to the expression levels from both paternal and maternal isoforms of the gene.
The distribution of maternal contribution ratios for both F1 samples is shown in
Fig. (3). The median maternal contribution ratio for both the male CASTxPWK
sample and the female CASTxWSB sample is around 0.5, as expected. In the
male CASTxPWK sample, a higher number of genes are maternally expressed,
which is expected since genes on the X chromosome and mitochondria should
be maternally expressed in males. We verified several genes that are known to
exhibit ASE [8] [29] as having high maternal contribution ratios if maternally
expressed and low maternal contribution ratios if paternally expressed.

In addition, we examined the maternal contribution ratios of all expressed
genes on the X chromosome with candidate isoforms from both parents and
differentiating variants between the parents. In the male CASTxPWK sample,

Fig. 3. Histogram of the maternal contribution ratios of all expressed genes with
candidate isoforms from both parental strains and containing differentiating variants
between the parental strains. On the bottom of each plot, several genes known to be
maternally expressed in literature are highlighted in red, and several genes known to
be paternally expressed are highlighted in blue.
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Fig. 4. Histogram of the maternal contribution ratio of all expressed genes on the
X chromosome with candidate isoforms from both parental strains and containing
differentiating variants between the parental strains. In the male CASTxPWK sample,
the median maternal contribution ratio is 0.94. In the female CASTxWSB sample, the
median maternal contribution ratio is 0.68. Both are in the expected range of maternal
contribution ratio of X-chromosome genes in male and female animals, respectively.

we expect all genes on the X chromosome to be maternally expressed, since its
X chromosome is inherited from the maternal strain. In the female CASTxWSB
sample, we expect most genes on X to be expressed with a 0.6-0.7 maternal
contribution ratio due to a known maternal bias in X inactivation [28] [2]. As
expected, we found the median maternal contribution ratio to be 0.94 in the
male CASTxPWK sample and 0.68 in the female CASTxWSB sample. The
distributions of maternal contribution ratios of genes on the X chromosome are
plotted in Fig. (4).

4.3 Speed and Memory

We ran our methods on a single 1600 MHz processor on a machine with 32 GB
RAM. The De Bruijn graphs of our samples take up around 1GB of disk space.
The selection of candidate transcripts takes approximately 2-3 hours per parental
strain, and the coordinate descent algorithm converges after approximately 1 to
3 million iterations, which takes around 1-2 hours on our machine. We were able
to take advantage of the sparseness of our candidate transcript k-mer profile
matrix X by storing them as sparse matrices using the Scipy.sparse package.

5 Discussion

We have developed methods to estimate expression levels for maternal and pa-
ternal versions of transcripts from RNA-seq trio data. Our need for such methods
arose when we realized that although we have RNA-seq data of many biological
trios and wish to analyze ASE of F1 strains, current methods, both alignment-
based and de novo, do not include standard pipelines that take advantage of
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available RNA-seq data from parental strains. Our model is able to exploit the
information from the maternal and paternal RNA-seq reads and build candidate
transcripts that accurately reflect the F1 strain’s transcriptome, and it does so
without requiring a database of variants of the parental strains. Our proposed
methods still rely on the existence of an annotated reference transcriptome,
which is essential for making biologically meaningful observations.

Our methods performed well when compared to a Trinity-Bowtie-RSEM
pipeline, which incorporates a state-of-the-art de novo assembler and aligner.
We were able to achieve high sensitivity and specificity (0.9553 and 0.9883) in
detecting baseline expression of transcripts. Of the correctly identified expressed
transcripts, we were also able to correctly identify more transcripts exhibiting
ASE, with a sensitivity of 0.77, compared to Trinity’s low ASE sensitivity of 0.32.
The pipeline we used with Trinity also made use of parental RNA-seq data, since
we separately assembled transcript sequences from maternal and paternal reads,
then aligned the F1 reads to the entire set of assembled transcript sequences.
However, Trinity still had a low sensitivity of 0.13 for determining baseline
expression, since the main challenge we faced using Trinity was mapping the
assembled sequences back to known reference transcripts.

The dimensionality of our data can be large. In our real data, we have ap-
proximately 5 × 107 k-mers after filtering and tens of thousands of candidate
transcripts. Despite the high dimensionality of our k-mer space and transcripts
space, we were able to use a refined coordinate descent algorithm to efficiently
perform lasso regression. Although not implemented, we could also decrease our
k-mer space without affecting the solution by merging overlapping k-mers into
contigs.

Since our candidate transcripts are generated from annotated reference tran-
scripts, our methods do not currently assemble novel transcript sequences. How-
ever, it is possible to model the k-mer profiles of all novel transcripts as the
residual of our linear regression, and de novo assembly of the residual k-mers
could then generate sequences of novel transcripts. Another limitation of our
model lies in its inability to detect genes exhibiting overdominance, where the
expression level is high in the F1 animal but nonexistent in the parental strains.
This could be remedied by also selecting candidate transcripts from the F1 De
Bruijn graph itself to add to our feature space.

The strength of our methods lies in the ability to determine ASE directly from
RNA-seq data in diploid trios without prior knowledge of genomic variation in
the parental genomes. This straightforward regression approach is tolerant of
imbalanced read counts in different samples, as demonstrated by our reasonable
maternal contribution ratio distribution in the male CASTxPWK F1 sample
(Fig 3), despite the CAST/EiJ read count being nearly 1.5 times as high as the
PWK/EiJ read count. Our methods could even be extended to ascertain ASE
in any animal that is a hybrid of two or more isogenic ancestral genomes, such
as the recombinant inbred strains often used as genetic reference panels.
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M.: Modelling and simulating generic rna-seq experiments with the flux simulator.
Nucleic Acids Research 40(20), 10073–10083 (2012)

10. Guttman, M., Garber, M., Levin, J.Z., Donaghey, J., Robinson, J., Adiconis, X.,
Fan, L., Koziol, M.J., Gnirke, A., Nusbaum, C., et al.: Ab initio reconstruction
of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic
structure of lincrnas. Nature Biotechnology 28(5), 503–510 (2010)

11. Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of
statistical learning: data mining, inference and prediction. The Mathematical
Intelligencer 27(2), 83–85 (2005)

12. Huang, S., Kao, C.-Y., McMillan, L., Wang, W.: Transforming genomes using mod
files with applications. In: Proceedings of the ACM Conference on Bioinformatics,
Computational Biology and Biomedicine. ACM (2013)

13. Keane, T.M., Goodstadt, L., Danecek, P., White, M.A., Wong, K., Yalcin, B.,
Heger, A., Agam, A., Slater, G., Goodson, M., et al.: Mouse genomic variation and
its effect on phenotypes and gene regulation. Nature 477(7364), 289–294 (2011)

14. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L., et al.: Ultrafast and
memory-efficient alignment of short dna sequences to the human genome. Genome
Biol. 10(3), R25 (2009)



A Regression Approach for Estimating ASE Using RNA-Seq Data 83

15. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions.
Technical report, and reversals. Technical Report 8 (1966)

16. Li, B., Dewey, C.N.: Rsem: accurate transcript quantification from rna-seq data
with or without a reference genome. BMC Bioinformatics 12(1), 323 (2011)

17. Li, W., Feng, J., Jiang, T.: Isolasso: a lasso regression approach to rna-seq based
transcriptome assembly. Journal of Computational Biology 18(11), 1693–1707
(2011)

18. Li, Y., Osher, S.: Coordinate descent optimization for l-1 minimization with
application to compressed sensing; a greedy algorithm. Inverse Probl. Imaging 3(3),
487–503 (2009)

19. Liu, R., Maia, A.-T., Russell, R., Caldas, C., Ponder, B.A., Ritchie, M.E.:
Allele-specific expression analysis methods for high-density snp microarray data.
Bioinformatics 28(8), 1102–1108 (2012)

20. Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization
problems. SIAM Journal on Optimization 22(2), 341–362 (2012)

21. Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S.D., Mungall,
K., Lee, S., Okada, H.M., Qian, J.Q., et al.: De novo assembly and analysis of rna-
seq data. Nature Methods 7(11), 909–912 (2010)

22. Ronald, J., Akey, J.M., Whittle, J., Smith, E.N., Yvert, G., Kruglyak, L.:
Simultaneous genotyping, gene-expression measurement, and detection of allele-
specific expression with oligonucleotide arrays. Genome Research 15(2), 284–291
(2005)

23. Rozowsky, J., Abyzov, A., Wang, J., Alves, P., Raha, D., Harmanci, A., Leng, J.,
Bjornson, R., Kong, Y., Kitabayashi, N., et al.: Alleleseq: analysis of allele-specific
expression and binding in a network framework. Molecular Systems Biology 7(1)
(2011)

24. Skelly, D.A., Johansson, M., Madeoy, J., Wakefield, J., Akey, J.M.: A powerful
and flexible statistical framework for testing hypotheses of allele-specific gene
expression from rna-seq data. Genome Research 21(10), 1728–1737 (2011)

25. Trapnell, C., Pachter, L., Salzberg, S.L.: Tophat: discovering splice junctions with
rna-seq. Bioinformatics 25(9), 1105–1111 (2009)

26. Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H.,
Salzberg, S.L., Rinn, J.L., Pachter, L.: Differential gene and transcript expression
analysis of rna-seq experiments with tophat and cufflinks. Nature Protocols 7(3),
562–578 (2012)

27. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., Van
Baren, M.J., Salzberg, S.L., Wold, B.J., Pachter, L.: Transcript assembly and
quantification by rna-seq reveals unannotated transcripts and isoform switching
during cell differentiation. Nature Biotechnology 28(5), 511–515 (2010)

28. Wang, X., Soloway, P.D., Clark, A.G., et al.: Paternally biased x inactivation in
mouse neonatal brain. Genome Biol. 11(7), R79 (2010)

29. Wang, X., Sun, Q., McGrath, S.D., Mardis, E.R., Soloway, P.D., Clark, A.G.:
Transcriptome-wide identification of novel imprinted genes in neonatal mouse
brain. PloS One 3(12), e3839 (2008)

30. Yang, H., Wang, J.R., Didion, J.P., Buus, R.J., Bell, T.A., Welsh, C.E., Bonhomme,
F., Yu, A.H.T., Nachman, M.W., Pialek, J., et al.: Subspecific origin and haplotype
diversity in the laboratory mouse. Nature Genetics 43(7), 648–655 (2011)



84 C.-P. Fu, V. Jojic, and L. McMillan

A Supplemental Figures

Fig. S1. Predicted versus actual expression levels from synthetic data. Expression levels
were normalized to have a mean value of 1.The Pearson correlation coefficient is 0.85
among the 1055 correctly identified expressed transcript sequences.

Fig. S2. Stacked histogram of k-mers in the real CASTxPWK k-mer profile, sorted by
the number of times each k-mer appears in the F1 reads. K-mers appearing in candidate
transcripts are in red, and k-mers not appearing in candidate transcripts are in blue.
The majority of k-mers not appearing in candidate transcripts have low number of
occurrences, suggesting they are from lowly expressing genes or erroneous reads.
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Abstract. Tandem mass (MS/MS) spectrometry has become the method of 
choice for protein identification and has launched a quest for the identification 
of every translated protein and peptide. However, computational developments 
have lagged behind the pace of modern data acquisition protocols and have be-
come a major bottleneck in proteomics analysis of complex samples. As it 
stands today, attempts to identify MS/MS spectra against large databases (e.g., 
the human microbiome or 6-frame translation of the human genome) face a 
search space that is 10-100 times larger than the human proteome where it be-
comes increasingly challenging to separate between true and false peptide 
matches. As a result, the sensitivity of current state of the art database search 
methods drops by nearly 38% to such low identification rates that almost 90% 
of all MS/MS spectra are left as unidentified.  We address this problem by ex-
tending the generating function approach to rigorously compute the joint spec-
tral probability of multiple spectra being matched to peptides with overlapping 
sequences, thus enabling the confident assignment of higher significance to 
overlapping peptide-spectrum matches (PSMs). We find that these joint spectral 
probabilities can be several orders of magnitude more significant than individu-
al PSMs, even in the ideal case when perfect separation between signal and 
noise peaks could be achieved per individual MS/MS spectrum. After ben-
chmarking this approach on a typical lysate MS/MS dataset, we show that the 
proposed intersecting spectral probabilities for spectra from overlapping pep-
tides improve peptide identification by 30-62%. 

1 Introduction 

The leading method for protein identification by tandem mass spectrometry (MS/MS) 
involves digesting proteins into peptides, generating an MS/MS spectrum per peptide, 
and obtaining peptide identifications by individually matching each MS/MS spectrum 
to putative peptide sequences from a target database. Many computational approaches 
have been developed for this purpose, such as SEQUEST [1], Mascot [2], Spectrum 
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Mill [3], and more recently MS-GFDB [4], yet they all address the same two prob-
lems: Given a MS/MS spectrum  and a collection of possible peptide sequences, i) 
find the peptide  that most likely produced spectrum  and ii) report the statistical 
significance of the Peptide-Spectrum Match ,  (denoted PSM) while searching 
many MS/MS spectra against multiple putative peptide sequences from a target data-
base. Problem (i) is typically addressed by maximizing a scoring function proportion-
al to the likelihood that peptide  generated spectrum  while solving problem (ii) 
involves choosing a score threshold that yields an experiment-wide 1% False-
Discovery Rate (FDR [5]), usually based on an estimated distribution of PSM scores 
for incorrect PSMs [6]. Yet a major limitation comes from ambiguous interpretations 
of MS/MS fragmentation where the true peptide match for a given spectrum  may 
only be the 2nd or 100,000th highest scoring over all possible PSMs for the same spec-
trum [7]. We address this issue as it relates to problem (ii) where the probability of 
false peptides matching  with high score can become common when searching large 
databases, particularly for meta-proteomics [8] and 6-frame translation [9] searches, 
thus leading to higher-scoring false matches and stricter significance thresholds re-
sulting in as little as 2% of all spectra being identified [10] since only the highest 
scoring PSMs become statistically significant even at 5% FDR. 

Identifying peptides from a large database is less of a challenge than that of de no-
vo sequencing, where the target database contains all possible peptide sequences. Yet, 
recent advances in de novo sequencing have demonstrated 97-99% sequencing accu-
racy (percent of amino acids in matched peptides that are correct) at nearly the same 
level of coverage (percent of amino acids in target peptides that were matched) as that 
of database search for small mixtures of target proteins [11, 12]. At the heart of this 
approach is the pairing of spectra from overlapping peptides (i.e. peptides that have 
overlapping sequences) to construct spectral networks [13, 14] of paired spectra. It is 
then shown that de novo sequences assembled by simultaneous interpretation of mul-
tiple spectra from overlapping peptides are much more accurate than individual per-
spectrum interpretations [13], [15]. Use of multiple enzyme digestions and SCX [16] 
fractionation is becoming more common in MS/MS protocols to generate broader 
coverage of protein sequences and yield wider distributions of overlapping peptides, 
but current statistical methods still ignore the peptide sequence overlaps and separate-
ly compute the significance of individual peptides matched to individual spectra [17]. 

Given that the set of all possible protein sequences is orders of magnitude larger 
than the human 6-frame translation (or any other database), application of these de 
novo techniques to database search should substantially improve peptide identification 
rates, especially for large databases. Since the original generating function approach 
showed how de novo algorithms can be used to estimate the significance of PSMs for 
individual spectra, it is expected that advances in de novo sequencing should conse-
quently translate into better estimation of PSM significance. It has already been 
shown that spectral networks can be used to improve the ranking of database peptides 
against paired spectra [18], but it is still unclear how to accurately evaluate the statis-
tical significance of peptides matched to multiple overlapping spectra.  Intuitively, if 
it is known that these overlapping spectra yield more accurate de novo sequencing 
then the probability of observing multiple incorrect high-scoring PSMs with overlap-
ping sequences should be lower than the probability of single incorrect peptides 
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matching single spectra with high scores. To this end we introduce StarGF, a novel 
approach for peptide identification that accurately models the distribution of all pep-
tide sequences against pairs of spectra from overlapping peptides. We demonstrate its 
performance on a typical lysate mass spectrometry dataset and show that it can im-
prove peptide-level identification by up to 62% compared to a state-of-the-art data-
base search tool. 

2 Methods 

2.1 Spectral Probabilities and Notation 

We describe a method to assess the significance of overlapping peptide-spectrum 
matches (PSMs) based on the generating function approach for computing the signi-
ficance of individual PSMs [7]. Although traditional methods for scoring PSMs in-
corporate prior knowledge of N/C-terminal ions, peak intensities, charges, and mass 
inaccuracies, these terms are avoided here for simplicity of presentation, and later we 
describe how these features were considered for real spectra. 

Let a peptide  of length  be a string of amino acids …  with parent mass | | = ∑ | | and each  is one of the standard amino acids . For clarity of 
presentation we define acid masses | | to be integer-valued and that each MS/MS 
spectrum is an integer vector = … | | where 0 if there is a peak at mass  
(having intensity ), and = 0 otherwise (denote | | as the parent mass of ). Let 

 be a spectrum with parent mass | | such that = 1 if  is the mass 
of a prefix of . We define the match score between spectra = … | |  and = … | | as ∑| | . Thus, the match score ,  between a peptide 

 and a spectrum  is equivalent to the match score between  and  
if both spectra have the same parent mass (otherwise , = −∞). The prob-
lem faced by peptide identification algorithms is to find a peptide  from a database 
of known protein sequences that maximizes , , then assess the statistical 
significance of each top-scoring PSM. 

Given a PSM ,  with score , = , the spectral probability intro-
duced by MSGF [7] computes the significance of the match as the aggregate probabil-
ity that a random peptide  achieves a , ≥ , otherwise termed as 

. The probability of a peptide = …  is defined as the product of 
probabilities of its amino acids ∏  where each amino acid  has a 
fixed probability of occurrence of 1 | |⁄  (or could be set to the observed frequencies 
in a target database). In MSGF, computing  is done in polynomial time by 
filling in the dynamic programming matrix , , which denotes the aggregate 
probability that a random peptide  with mass | | =  achieves , = , where = … . The  matrix is initialized to 0,0 = 1, zero elsewhere, and updated using the following recursion [7]. 

 , = ∑ − | |, −: | |,  (1) 

 is calculated from the  matrix as follows: 
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 = ∑ | |,  (2) 

2.2 Pairing of Spectra 

A pair of overlapping PSMs is defined as a pair ,  and , ′  such that i) both 
spectra are matched to the same peptide = ′  or ii) the spectra are matched to 
peptides with partially-overlapping sequences: either  is a substring of  or a 
prefix of ′ matches a suffix of . As mentioned above, spectral pairs can be de-
tected using spectral alignment without explicitly knowing which peptide sequences 
produced each spectrum (as described previously [15], [19]). Intersecting spectral 
probabilities (described below) are calculated for all pairs of spectra with overlapping 
PSMs. In addition, we use all neighbors of each paired spectrum to calculate the star 
probability for the center nodes in each sub-component defined by  and all of its 
immediate neighbors. 

2.3 Star Probabilities 

In the simplest case of a pair of overlapping PSMs ,  and , ′  where = ′, 
we want to find the aggregate probability that a random peptide matches  with score ≥  and matches ′ with score ≥ ′ (denoted the intersecting spectral probability , , ′ ). A naïve solution is to simply take the product of  and ′ , but this approach fails to capture the dependence between , , ′  induced by the similarity between  and ′. Intuitively, a high simi-
larity between  and ′ should correlate with a high probability that both spectra get 
matched to the same peptide, regardless of whether it is a correct match. , , ′  can be computed efficiently by adding an extra dimension to the 
dynamic programming recursion , yielding a 3-dimensional matrix , , ′  
that tracks the aggregate probability that a random peptide  with mass  matches 

 with score  and matches  with score ′. The  matrix is initialized 
to 0,0,0 = 1, zero elsewhere, and computed as follows. 

 , , ′ = ∑ − | |, − , −: | |, ,  (3) 

, , ′  is calculated from the  matrix as follows: 

 , , ′ = ∑ ∑ | |, , ′  (4) 

To generalize intersecting spectral probabilities to include pairs of spectra from 
partially overlapping peptides, we define , , ′  to address the case where ′ is 
shifted in relation to  (see Figure 1) by a given mass shift , which may be positive 
or negative.  The shift  defines an overlapping mass range between the spectra; in 
spectrum  the range starts at mass = 0,  and ends at mass =| |, | ′| +  while in spectrum ′ the range starts at mass ′ = 0, −  
and ends at mass ′ = | ′|, | | − . Since partially-overlapping spectra may 
originate from different peptides ( 0 or | | | ′|), the probabilities of peptides 
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matching  must be processed differently from those matching ′. If one considers a 
peptide  matching , only the portion of  from  to  (denoted as ) can be 
matched against = … . For example, in Figure 1,  is equal to the 
peptide “PTIDE”. First, , , ′  is defined to hold the aggregate probability that  
a random peptide  with mass  achieves , =  such that , , = ′. In cases where  is less than  (i.e. when 0), 

 is empty and is defined to have zero score against ′. 
  

= 0, = 0,  

 ′ = 0, −  
′ = 0, −

= | |, | ′| + = | |, | ′| +   
< 0 ≥ 0  = PTIDE 

= PTIDE ′ ′
 ′ = | ′|, | | − ′ = | ′|, | | −  

 

Fig. 1. Illustration of  and the overlapping mass range between overlapping spectra  and ′ 
The base case for , , ′  is the same as the base case for , but the re-

cursion must be separated into three separate cases depending on whether , < , or . If , then , , ′  is tracking peptides matching  
with score , but score 0 against ′. 
If   = 0 : 

 , , 0 = ∑ − | |, − , 0: | |,  (5) 

When  is inside the overlapping mass range of , the matrix tracks peptides 
matching  with score  that contain a suffix matching  with score . 

If < : , , = ∑ − | |, − , −: | |, , , | |  (6) 

When < | | and, thus,  is outside the overlapping mass range, , , ′  
is extending peptides  matching  with score  where  has score ′ 
against . 

If : 

 , , = ∑ − | |, − ,: | |, , | |  (7) 

If  matches  with score ≥  and  matches  with score ≥ ′, the 
probability of both events is computed as given below. 

 , , = ∑ ∑ | |, , ′  (8) 
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Note that since  may be positive or negative, the intersecting probability of a 
peptide  matching ′ with score ≥ ′ and  matching  with score ≥  is 
computed by simply setting = −  before calculating , , . 

The term star is defined as the set of all spectra directly connected with spectrum  
in the spectral network [18]. We are interested in the minimum , ,  
over all ′ in the star of , otherwise termed as the   of . Compu-
tation of the star probability is more precisely defined in pseudo code below. 

StarProbability(P,S): 
 T := Score(P,S) 
 starP := ProbT(S) 
 for all (S,S’) in the star of S: 
  λ := mass shift of S’ in relation to S 
  T’ := Score(Povlp,S’b’→e’) 
  if ProbT,T’(S,S’b’→e’) > 0: 
   starP := min(starP, ProbT,T’(S,S’b’→e’)) 

 return starP 

2.4 Processing Real Spectra 

Each MS/MS spectrum was transformed into a PRM spectrum [20] with integer-
valued masses and likelihood intensities … | | using the PepNovo+ probabilistic 
scoring model [21]. PepNovo+ interprets MS/MS fragmentation patterns and converts 
MS/MS spectra into PRM (prefix residue mass) spectra where peak intensities are 
replaced with log-likelihood scores and peak masses are replaced by PRMs, or Prefix-
Residue Masses (cumulative amino acid masses of putative N-term prefixes of the 
peptide sequence). PRM scores combine evidence supporting peptide breaks: ob-
served cleavages along the peptide backbone supported by either N- or C-terminal 
fragments. To minimize rounding errors, floating point peak masses returned by Pep-
Novo+ were converted to integer values as in MS-GF [7], where cumulative peak 
mass rounding errors were reduced by multiplying by 0.9995 before rounding to in-
tegers (amino acid masses were also rounded to integer values). High-resolution peak 
masses could also be supported by using a larger multiplicative constant (e.g., 100.0) 
prior to rounding. Peak intensities were first normalized so each spectrum contained a 
maximum total score of = 150, then they were rounded to integers (peaks with 
score less than 0.5 were effectively removed). With these parameters the time com-
plexity of computing individual and intersecting spectral probabilities is approximate-
ly | | | |  and | | | | , respectively. 

2.5 Generating Candidate PSMs 

A published set of ion-trap CID spectra acquired from the model organism Saccharo-
myces cerevisiae was used to benchmark this approach [17]. To aid in the acquisition 
of spectra from overlapping peptides, 12 SCX fractions were obtained for each of five 
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enzyme digests. Three technical replicates were also run for each digest, but only 
spectra from the second replicate were used here. Thermo RAW files were converted 
to mzXML using ProteoWizard [22] (version 3.0.3224) with peak-picking enabled 
and clustered using MSCluster [23] (version 2.0, release 20101018) to merge repeated 
spectra, yielding 255,561 clusters of one or more spectra. 

MS-GFDB [4] (version 7747) was used to match spectra against candidate peptides 
from target and decoy protein databases. Two sets of target+decoy databases (labeled 
small and large) were used to evaluate the performance of individual vs. StarGF spec-
tral probabilities when searching databases of different size. The small target database 
consisted of all reference Saccharomyces cerevisiae protein sequences downloaded 
from UniProt [24] (~4 MB on 09/27/2013) while the large database contained all 
reference fungi UniProt protein sequences (~130 MB on 09/27/2013). The large data-
base (~32 times larger) was used to represent searches against large search spaces, 
such as meta-proteomics [8] or 6-frame translation [9] searches. Separate small and 
large decoy databases were generated by randomly shuffling protein sequences from 
the target database [6]. 

The 255,561 cluster-consensus spectra were separately searched against the small 
target, small decoy, large target, and large decoy databases with MS-GFDB [4] confi-
gured to report the top 10 PSMs for each spectrum. The “no enzyme” model was 
selected along with 30ppm parent mass tolerance, “Low-res LCQ/LTQ” instrument 
ID, one 13C, two allowed non-enzymatic termini, and amino acid probabilities set to 
0.05 (the same amino acid probabilities used by StarGF). Target and decoy PSMs 
were then merged by an in-house program that discarded decoy PSMs whose peptides 
were also found in the target database (allowing for I/L, Q/K, and M+16/F ambigui-
ties). Although variable post-translational modifications (PTMs) were permitted in 
each initial search to reproduce typical search parameters (oxidized methionine and 
deamidated asparagine/glutamine), spectra assigned to modified PSMs were removed 
from consideration at this stage (the incorporation of PTMs into intersecting spectral 
probabilities is not considered here). The top-scoring peptide match for each remain-
ing spectrum was then set to the target or decoy PSM with the highest matching score 
to the PRM spectrum. Each set of unfiltered target+decoy PSMs was evaluated at 1% 
FDR [5] using star probabilities. 

To benchmark StarGF, each set of MS-GFDB results was separately evaluated at 
1% FDR using MS-GFDB’s spectral probability [7] while allowing MS-GFDB to 
report the top-scoring PSM per spectrum. X!Tandem [25] Cyclone (2011.12.01.1) 
was also run on the same set of MS/MS spectra in a separate search against each da-
tabase and results were filtered at 1% spectrum- and peptide-level FDR using the 
same target-decoy approach. X!Tandem search parameters consisted of 0.5 Da peak 
tolerance, 30ppm parent mass tolerance, multiple 13C, and non-specific enzyme clea-
vage (remaining parameters were set to their default values). 

All raw and clustered MS/MS spectra associated with this study have been up-
loaded to the MassIVE public repository (http://massive.ucsd.edu) and are accessible 
at ftp://MSV000078538@massive.ucsd.edu with password recomb_ag88 while 
StarGF can be obtained from http://proteomics.ucsd.edu/Software/StarGF.html. 
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3 Results 

Two sets of pairwise alignments were used to demonstrate the effectiveness of 
StarGF: i) the set of pairs obtained by spectral alignment in the spectral network  [18] 
and ii) to simulate the situation when maximal pairwise alignment sensitivity is 
achieved, pairs were also obtained using sequence-based alignment of the top-scoring 
peptide matches returned by the  MS-GFDB searches. A pair of overlapping PSMs 
was retained if they shared at least 7 overlapping residues and at least 3 matching 
theoretical PRM masses from the overlapping sequence. To eliminate the possibility 
of pairing unique peptides from different proteins, each target PSM pair was also 
enforced to have at least one target protein containing the full sequence supported by 
the pair (e.g. the pair (PEPTIDE,PTIDES) must be supported by a protein containing 
the substring PEPTIDES). Unless otherwise stated, results are reported after applying 
the sequence-based pairing strategy to 40,926 unmodified target PSMs from the small 
database (separately identified by MS-GFDB at 1% spectrum-level FDR), yielding 
32,777 paired spectra in the network. Using these parameters, less than 1% of pairs 
contained at least one decoy PSM while 5% of paired PSMs were decoys for the large 
database set. The significance of each PSM ,  was reported as the star probability 
of . To evaluate the utility of intersecting probabilities, we separately assessed inter-
secting spectral probabilities for same-peptide pairs and partially-overlapping pairs: 
we computed a same-peptide star probability (equal to the minimum , ,  such that = ′) and a partially-overlapping star probability 
(equal to the minimum , ,  such that ′) for each spectrum in 
the network. 

Figure 2 illustrates the substantial separation between individual spectral probabili-
ties, same-peptide star probabilities, and partially-overlapping star probabilities (top 
panel). Same-peptide star probabilities can be further separated into those where the 
minimum intersecting probability was selected for a pair of PSMs with equal precur-
sor charge (higher correlation between MS/MS fragmentation patterns [26]), and 
those where the minimum was selected for a pair with different precursor charge 
states (less-correlated MS/MS fragmentation). Due to repeated instrument acquisition 
of multiple spectra from the same peptide and charge state, it was expected that indi-
vidual spectral probabilities would be approximately the same as intersecting proba-
bilities for most same-peptide/same-charge pairs since duplicate spectra often have 
high similarity [26]. Nevertheless, star probabilities for same-peptide/same-charge 
pairs still prove valuable in improving spectral probabilities by an average of ~2 or-
ders of magnitude (Figure 2, bottom left), while same-peptide/different-charge and 
partially-overlapping pairs enable an even greater improvement in spectral probabili-
ties by an average of ~8 orders of magnitude. 

The distributions of decoy spectral probabilities in the bottom right panel of Figure 
2 illustrate the effect of star probabilities on paired decoy PSMs. It was rare for decoy 
PSMs to pair with others in the network (only 919 of 37,522 decoy PSMs were de-
tected in a spectral pair) and those that did had their spectral probabilities improve by 
an average of ~2 orders of magnitude, which is significantly less than observed  
for correct PSM pairs. Also shown is the distribution of decoy star probabilities as 
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computed by the product of probabilities ( , , ′ = ′ ). 
As expected, the product of spectral probabilities ignores the dependencies between 
the spectra and severely under-estimates the true intersecting spectral probability by 
several orders of magnitude. This would likely lead to increased sampling of false-
positive PSMs at any given star probability cutoff and thus result in an overall re-
duced number of identifications by requiring strict probability thresholds to achieve 
the same 1% FDR. This effect can be explained intuitively for a given pair of PSMs ,  and ′, ′  where = ′ and = ′: if a random peptide matches  with a 
high score, then with probability 1 the same random peptide also matches ′ with an 
equally high score. Thus, in this special case, , , ′  should equal  
= ′ , not the product of the individual spectral probabilities. 

 

 

Fig. 2. Spectral and star probability distributions of observed p-values. (top) Distribution of the 
spectral, same-peptide star, and partially-overlapping star probabilities for PSMs with at least 
one same-peptide pair and at least one partial overlapping pair. (bottom left) Distribution of 
spectral, same-charge star, and unequal-charge star probabilities for PSMs from at least one 
same-peptide pair. (bottom right) Distribution of spectral and star probabilities for all 919 
small-database decoy PSMs found in the network where 480 had a same-peptide pair and 450 
had a partially-overlapping pair (11 had more than one pair). Also shown is the distribution of 
the product of individual spectral probabilities for the same decoys (where , , ′  is 
computed as ′ ) to illustrate how it would substantially underestimate , , ′  by ignoring the dependencies between repeated MS/MS spectra acquisitions 
from the same peptide with the same charge state. 
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Figure 3 compares every PSM’s star probability to its optimal spectral probability, 
which is defined as the spectral probability of the same peptide matched against the sub-
set of peaks from the spectrum that correspond to true PRM masses (i.e., a noise-free 
version of the spectrum). In general, star probabilities improved the least for spectral 
probabilities that were already close to optimal. But the vast majority of star probabilities 
improved past optimal, particularly for stars with same-peptide/unequal-charge and par-
tially-overlapping pairs. Star probabilities can improve past optimal when missing PRMs 
from one spectrum  are present in the overlapping region of the spectrum  is paired 
with, thus enforcing that high-scoring peptide matches contain prefix masses that would 
otherwise be missed. This demonstrates that StarGF probabilities can improve on spectral 
probabilities by orders of magnitude even if perfect separation between signal and noise 
peaks could be achieved for any given spectrum. 

Star probabilities of unfiltered target+decoy PSMs were evaluated at 1% FDR us-
ing both paired and unpaired PSMs (spectral probabilities were computed for un-
paired PSMs). Paired PSMs that were identified by StarGF against the large database 
were verified to have a FDR of 1% (both at the spectrum- and peptide-level) by con-
sidering any peptide identified against the fungi database to be a false positive if it 
was not present in the yeast database (allowing for I/L and Q/K ambiguities). Table 1 
shows how many paired PSMs were identified by MS-GFDB [4] and StarGF using 
either spectral alignments or sequenced-based PSM alignments. Although sequenced-
based alignment was effective here, it may prove difficult to pair spectra by top-
scoring PSMs from very large databases (e.g. meta-proteomics databases or 6-frame 
translations) where the highest-scoring PSMs are much less likely to be correct due to 
the increased search space. For these applications spectral alignment may prove more 
effective at detecting pairs and using them to re-rank matching PSMs (as done in 
[18]) before computing PSM significance by StarGF. Results for sequence-based 
alignments thus indicate the upper bound of improvement when perfect pairwise sen-
sitivity is achieved by spectral alignment. 

The 37% drop in MS-GFDB peptide identification rate of paired PSMs from the 
small to large database is expected since the larger search space allows decoy peptides 
and false matches to target to randomly match individual spectra with higher scores, 
thus decreasing the overall number of detected spectra/peptides at a fixed FDR. Using 
the same set of unfiltered PSMs as MS-GFDB, however, StarGF only lost 20% of 
paired peptides from the small database as it could identify 36-66% more spectra and 
29-62% more peptides by significantly improving the significance of true overlapping 
PSMs while only marginally increasing the significance of decoy overlapping PSMs 
(see Table 1). Note that as described here StarGF could not identify any spectra that 
were matched to decoy peptides, only re-rank them by their star probability. The drop 
in StarGF identification rate from the small to the large database is explained by this 
effect; of the 10,648 spectra identified in the small database search but missed in the 
large database, only 6% were assigned the same peptide from the large database and 
had their preferred neighbor (the paired PSM from which the lowest intersecting 
probability was selected) matched to the same peptide. The remaining PSMs were 
either matched to a different peptide (75%) or had their preferred neighbors matched 
to different peptides (19%). Thus, the majority (94%) of PSMs lost by StarGF from  
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Fig. 3. Reduction of star probability (y-axis) with respect to optimality of starting spectral 
probability (x-axis). Each red dot denotes either a same-peptide (left, middle) or partially-
overlapping (right) star probability. Values on the x-axis that approach zero indicate a starting 
spectral probability that approaches optimal while larger values indicate sub-optimal starting 
spectral probabilities (by orders of magnitude) due to the presence of unexplained PRM masses 
in the spectrum. Values on the y-axis that approach zero indicate star probabilities that did not 
improve substantially over the original spectral probabilities while larger values indicate star 
probabilities that are orders of magnitude smaller than spectral probabilities. The blue line is 
shown to indicate star probabilities that equal their optimal spectral probability; any data point 
above the blue line indicates a star probability that is more significant than optimal (see text for 
a detailed explanation). Red numbers next to the lines indicate the percentage of data points 
above and below each blue line. 

the small to the large database search could potentially be recovered by re-ranking 
candidate peptides against paired spectra (as done before in spectral networks using 
de novo sequence tags [18]). 

Although the results in Table 1 are over paired PSMs, StarGF still significantly 
improved spectrum- and peptide-level identification rate for all spectra since a large 
portion (89%) of all PSMs were paired (Table 2). Considering both paired and un-
paired (unmodified) PSMs when searching against the small database, MS-GFDB was 
able to identify 40,926 spectra (34,165 peptides) while StarGF identified 50,310 spec-
tra (35,521 peptides). However, when searching against the large database MS-GFDB 
could identify only 27,128 spectra (22,782 peptides, 33% loss from the small-
database search) while StarGF could identify 40,269 spectra (32,891 peptides, 16% 
loss from the small-database search) using PSM sequence alignments, an overall im-
provement over MS-GFDB of 48% more identified spectra (44% more identified 
peptides) and revealing StarGF to be nearly as sensitive when searching a 32 times 
larger database as MS-GFDB is when searching a small database. 
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Table 1. Spectrum and peptide-level identification rate of paired PSMs at 1% FDR. The “Small 
Database” column indicates results using the UniProt reference yeast protein database (~4 MB) 
while results on the right are from searching the larger UniProt reference fungi protein database 
(~130 MB). Rows separate results by the type of alignment used to capture overlapping PSMs: 
“Aligned Spectra” indicates pairing by spectral alignment and “Aligned Seqs.” indicates pairing 
by PSM sequence similarity. 

Small Database Large Database 

MS-GFDB StarGF % Increase MS-GFDB StarGF % Increase 

A
lig

ne
d 

Sp
ec

tr
a Spectra 13305 18249 37.2 % 8799 13743 56.2 % 

Peptides 9653 12368 28.1 % 6439 9367 45.5 % 

A
lig

ne
d 

Se
qs

. Spectra 32777 44621 36.1 % 20521 33973 65.6 % 

Peptides 26422 34116 29.1 % 16525 26689 61.5 % 

Table 2. Spectrum and peptide-level identification rate of all (paired and unpaired) PSMs at 1% 
FDR. The “Small Database” column indicates results using the UniProt reference yeast protein 
database (~4 MB) while results in the “Large Database” column are from searching the larger 
UniProt reference fungi protein database (~130 MB). (top) Identification rates of all three 
search tools; numbers in bold indicate the increased percentage of IDs retained by StarGF 
compared to MS-GFDB. (bottom) Percent of PSMs and peptides lost by each search tool at 1% 
FDR as they moved from the small to large search space. 

Small Database Large Database 

X!Tandem MS-GFDB StarGF (% inc.) X!Tandem MS-GFDB StarGF (% inc.) 

Spectra 28923 40926 50310 (22.9 %) 13847 27128 40269 (48.4 %) 

Peptides 23957 
 

34165 39077 (14.4 %) 11483 22782 32891 (44.4 %) 

% lost from larger search space 

  X!Tandem MS-GFDB StarGF 

Spectra 52.1 % 33.7 % 20.0 % 

Peptides 52.1 % 33.3 % 15.8 % 

Figure 4 illustrates the overlap between peptides identified by MS-GFDB against 
the small database and peptides identified by StarGF. The majority (74%) of peptides 
identified by StarGF against the small database were also identified by MS-GFDB. 
The remaining peptides that MS-GFDB did not identify were predominantly found in 
PSM pairs (96%), and thus assigned higher significance by StarGF. Of the peptides 
identified by StarGF against the large database, nearly all were “rescued” from sets of 
peptides identified against the small database by either MS-GFDB or StarGF. 
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Fig. 4. Overlap of unique peptides identified at 1% peptide-level FDR. The top circle denotes 
peptides identified by MS-GFDB against the small database while the left and right circles 
denote peptides identified by StarGF against the small and large databases, respectively. Pep-
tides that only differed by I/L or K/Q ambiguities were counted as the same. Figure is not 
drawn to exact scale. 

4 Discussion 

While MS-GF [7] demonstrated how de novo sequencing techniques could be used to 
greatly improve the state of the art in peptide identification by rigorously computing 
the score distribution of all peptides against every spectrum, it still misses as many as 
38% ( = ( (26689 - 16525) ) ⁄ 26689)  of identifiable (unmodified) peptides when 
searching large databases by ignoring the significance of overlapping PSMs (see Ta-
ble 1). By now extending this principle using a multi-spectrum approach to compute 
the probability distribution of PSM scores for all peptides against every pair of over-
lapping spectra, StarGF is able to assign higher significance p-values to true PSMs 
while only marginally increasing the significance of false PSMs. Thus, where tradi-
tional database search loses sensitivity in searching larger databases, we now show 
that it is possible to regain nearly all peptides that are lost by MS-GFDB when search-
ing a database 32 times the size. Although StarGF performs best when paired with 
MS/MS protocols that maximize acquisition of spectra from partially-overlapping 
peptides, our results indicate that significant gains in identification rate can still be 
made by utilizing commonly observed pairs of spectra from the same peptide, particu-
larly pairs of spectra with different precursor charge states. 

Although StarGF significantly outperforms a state-of-the-art database search tool 
(MS-GFDB [4]) in identifying tandem mass spectra at an empirically validated FDR 
of 1% (confirmed here using matches to non-yeast peptides in the large fungi data-
base), it would be useful to thoroughly assess the limitations of the Target/Decoy 
Approach when estimating FDR for searches against small databases, as previously 
done for MS-GFDB searches [27]. In some cases, the enforcement of overlapping 
PSMs may sometimes result in so few decoy PSMs that it becomes difficult to  
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accurately estimate FDR [28]. A similar situation can also occur in searches with 
highly accurate parent masses since the number of high-scoring decoy peptides with a 
given parent mass becomes miniscule with decreasing parent mass tolerance. 

While the generating function described here only supports unmodified peptides, it 
can be extended to analyze modified peptides by considering modified amino acid 
mass edges (as shown before [4]). Further improvements are foreseeable with addi-
tional support for high-resolution MS/MS peak masses and incorporation of alterna-
tive fragmentation modes (e.g. HCD, ETD) to improve of the quality of PRM spectra, 
especially if from highly charged precursors [29]. Given that MS-GFDB supports 
multiple fragmentation modes and that we utilize PepNovo+ to transform MS/MS 
spectra to PRM spectra, it is possible for this approach to support any fragmentation 
mode since PepNovo+ can be trained to process new types of spectra [12]. 
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Abstract. In many areas of computational biology, hidden Markov
models (HMMs) have been used to model local genomic features. In
particular, coalescent HMMs have been used to infer ancient population
sizes, migration rates, divergence times, and other parameters such as
mutation and recombination rates. As more loci, sequences, and hid-
den states are added to the model, however, the runtime of coalescent
HMMs can quickly become prohibitive. Here we present a new algo-
rithm for reducing the runtime of coalescent HMMs from quadratic in
the number of hidden time states to linear, without making any addi-
tional approximations. Our algorithm can be incorporated into various
coalescent HMMs, including the popular method PSMC for inferring
variable effective population sizes. Here we implement this algorithm to
speed up our demographic inference method diCal, which is equivalent
to PSMC when applied to a sample of two haplotypes. We demonstrate
that the linear-time method can reconstruct a population size change
history more accurately than the quadratic-time method, given similar
computation resources. We also apply the method to data from the 1000
Genomes project, inferring a high-resolution history of size changes in
the European population.

Keywords: Demographic inference, effective population size, coales-
cent with recombination, expectation-maximization, augmented hidden
Markov model, human migration out of Africa.

1 Introduction

The hidden Markov model (HMM) is a natural and powerful device for learning
functional and evolutionary attributes of DNA sequence data. Given an emitted
sequence of base pairs or amino acids, the HMM is well-suited to locating hidden
features of interest such as genes and promotor regions [2,5]. HMMs can also be
used to infer hidden attributes of a collection of related DNA sequences. In this
case, emitted states are a tuple of A’s, C’s, G’s and T’s, and the diversity of
emitted states in a particular region can be used to infer the local evolutionary
history of the sequences. When two sequences are identical throughout a long
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genetic region, they most likely inherited that region identical by descent from a
recent common ancestor. Conversely, high genetic divergence indicates that the
sequences diverged from a very ancient common ancestor [1,15].

In recent years, coalescent HMMs such as the Pairwise Sequentially Markov
Coalescent (PSMC) [15] have been used to infer the sequence of times to most
recent common ancestor (TMRCAs) along a pair of homologous DNA sequences.
Two other coalescent HMMs (CoalHMM [4,12,16] and diCal [24,25]) also tackle
the problem of inferring genealogical information in samples of more than two
haplotypes. These methods are all derived from the coalescent with recombina-
tion, a stochastic process that encapsulates the history of a collection of DNA
sequences as an ancestral recombination graph (ARG) [13,29]. The hidden state
associated with each genetic locus is a tree with time-weighted edges, and neigh-
boring trees in the sequence are highly correlated with each other. Sequential
changes in tree structure reflect the process of genetic recombination that slowly
breaks up ancestral haplotypes over time.

The methods mentioned above all infer approximate ARGs for the purpose of
demographic inference, either detecting historical changes in effective population
size or estimating times of divergence and admixture between different popula-
tions or species. PSMC and CoalHMM have been used to infer ancestral popula-
tion sizes in a variety of non-model organisms for which only a single genome is
available [6,17,19,20,28,30], as well as for the Neanderthal and Denisovan archaic
hominid genomes [18]. Despite this progress, the demographic inference problem
is far from solved, even for extremely well-studied species like Homo sapiens and
Drosophila melanogaster [7,9,15,23,27]. Estimates of the population divergence
time between European and African humans range from 50 to 120 thousand
years ago (kya), while estimates of the speciation time between polar bears and
brown bears range from 50 kya to 4 million years ago [3,10,19]. One reason that
different demographic methods often infer conflicting histories is that they make
different trade-offs between the mathematical precision of the model and scal-
ability to larger input datasets. This is even true within the class of coalescent
HMMs, which are much more similar to each other than to methods that infer
demography from summary statistics [8,11,21] or Markov chain Monte Carlo [7].

Exact inference of the posterior distribution of ARGs given data is a very
challenging problem, the major reason being that the space of hidden states
is infinite, parameterized by continuous coalescence times. In practice, when
a coalescent HMM is implemented, time needs to be discretized and confined
to a finite range of values. It is a difficult problem to choose an optimal time
discretization that balances the information content of a dataset, the complexity
of the analysis, and the desire to infer particular periods of history at high
resolution. Recent demographic history is often of particular interest, but large
sample sizes are needed to distinguish between the population sizes at time
points that are very close together or very close to the present.

In a coalescent HMM under a given demographic model, optimal demographic
parameters can be inferred using an expectation-maximization (EM) algorithm.
The speed of this EM algorithm is a function of at least three variables: the length
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L of the genomic region being analyzed, the number n of sampled haplotypes,
and the number d of states for discretized time. In most cases, the complexity
is linear in L, but the complexity in n can be enormous because the number of
distinct n-leaved tree topologies grows super-exponentially with n. PSMC and
CoalHMM avoid this problem by restricting n to be very small, analyzing no
more than four haplotypes at a time. diCal admits larger values of n by using a
trunk genealogy approximation (see [22,24,25] for details) which is derived from
the diffusion process dual to the coalescent process, sacrificing information about
the exact structure of local genealogies in order to analyze large samples which
are informative about the recent past.

To date, all published coalescent HMMs have had quadratic complexity in d.
This presents a significant limitation given that small values of d lead to biased
parameter estimates [16] and limit the power of the method to resolve complex
demographic histories. PSMC is typically run with a discretization of size d = 64,
but diCal and CoalHMM analyses of larger datasets are restricted to coarser
discretizations by the cost of increasing the sample size. In this paper, we exploit
the natural symmetries of the coalescent process to derive an alternate EM
algorithm with linear complexity in d. The speedup requires no approximations
to the usual forward-backward probabilities; we perform an exact computation
of the likelihood in O(d) time rather than O(d2) time using an augmented HMM.
We implement the algorithms presented in this paper to speed up our published
method diCal, which is equivalent to PSMC when the sample size is two, yielding
results of the same quality as earlier work in a fraction of the runtime. We have
included the speedup in the most recent version of our program diCal; source
code can be downloaded at http://sourceforge.net/projects/dical/.

2 Linear-Time Computation of the Forward and
Backward Probabilities

We consider a coalescent HMM M with hidden states S1, . . . , SL and observa-
tions x = x1, . . . , xL. For PSMC, S� is the discretized time interval in which two
homologous chromosomes coalesce at locus �, while x� is an indicator for het-
erozygosity. The method diCal is based on the conditional sampling distribution
(CSD) which describes the probability of observing a newly sampled haplotype x
given a collection H of n already observed haplotypes. In diCal, the hidden state
at locus � is S� = (H�, T�), where H� ∈ H denotes the haplotype in the “trunk
genealogy” (see [22]) with which x coalesces at locus � and T� ∈ {1, . . . , d} de-
notes the discretized time interval of coalescence; the observation x� ∈ A is the
allele of haplotype x at locus �. For n = |H| = 1, diCal is equivalent to PSMC.
In what follows, we present our algorithm in the context of diCal, but we note
that the same underlying idea can be applied to other coalescent HMMs.

2.1 A Linear-Time Forward Algorithm

We use f(x1:�, (h, j)) to denote the joint forward probability of observing the
partial emitted sequence x1:� := x1, . . . , x� and the hidden state S� = (h, j) at

http://sourceforge.net/projects/dical/
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Fig. 1. (a). Here, we illustrate a transition from hidden state S� = (hn, i) to hidden
state S�+1 = (hk, j) that proceeds via recombination at time tr. The probability of this
transition does not depend on the identity of the haplotype hk.(b). As a recombined
lineage floats through time interval j, it can either coalesce with the trunk (event Cj)
or keep floating (event C>j) and eventually coalesce with the trunk in a more ancient
time interval.

locus �. The probability of transitioning from state (h′, k) at locus � to state
(h, j) at locus � + 1 is denoted by φ(h, j | h′, k), the stationary probability of
state (h, i) is denoted ζ(h, i), and the emission probability of the observed allele
x� = a given coalescence at T� = j onto haplotype h with allele h� = b at locus �
is denoted by ξ(a | b, j). When � is obvious from the context, we sometimes use
ξ(a | s) := ξ(a | h�, j) for s = (h, j). Explicit expressions for ζ(h, i), φ(h, j | h′, k),
and ξ(a | b, j) in the context of our program diCal are given in [24].

The forward probabilities are computed using the recursion

f(x1:�+1, (h, j)) = ξ(x�+1|h�+1, j) ·
d∑

k=1

∑
h′∈H

f(x1:�, (h
′, k)) · φ(h, j|h′, k), (1)

which contains nd terms. Since there are also nd possibilities for S�+1 = (h, j),
it should naively take O(n2d2L) time to compute the entire forward dynamic
programming (DP) table {f(x1:�, S�)}L�=1. The key to achieving a speed-up is
to factor (1) in a way that reflects the structure of the coalescent, exploiting
the fact that many transitions between different hidden states have identical
probabilities.

After a sampled lineage recombines at time tr between loci � and �+1, it will
“float” backward in time from the recombination breakpoint until eventually
coalescing with a trunk lineage chosen uniformly at random (Figure 1a). This
implies that φ(h, j|h′, k) = φ(h, j|h′′, k) whenever h′ �= h and h′′ �= h, and
exploiting this symmetry allows the forward table to be computed in O(nd2L)
time. This speed-up was already implemented in the algorithm described in Paul
et al. [22].

Another symmetry of the transition matrix, not exploited previously, can be
found by decomposing the transition from locus � to locus � + 1 as a sequence
of component events. In particular, let Ri be the event that a recombination
occurs during time interval i, and let R be the event that no recombination
occurs between � and �+ 1. Then we have that
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φ((h, j) | (h′, k)) =
1

n

min(j,k)∑
i=1

(P(Ri, T�+1 = j | T� = k)

+ �{(h,j)=(h′,k′)}P(R | T� = k)
)
, (2)

where �E = 1 if the event E is true or 0 otherwise. The factor 1/n corresponds
to the probability that the sampled lineage coalesces with haplotype h ∈ H in
the trunk genealogy.

If a recombination occurs in time interval i, the sampled lineage will start to
“float” freely back in time until it either coalesces in i or floats into the next
time interval i + 1 (Figure 1b). Specifically, we let C>i denote the event where
the sampled lineage recombines at or before i and floats into i+1, and Ci denote
the event where the recombined lineage coalesces back in interval i. Noting that
P(Ri, Ci | T� = i′) and P(Ri, C>i | T� = i′) are independent of i′ whenever i′ > i,
and that coalescence happens as a Markov process backwards in time, we obtain

P(Ri, T�+1 = j | T� = k) = �i=j=k · P(Ri, Ci | T� = i)

+ �i=j<k · P(Ri, Ci | T� > i)

+ �i=k<j · P(Ri, C>i | T� = i) ·
j−1∏
k=i

P(C>k+1 | C>k)

+ �i<min(j,k) · P(Ri, C>i | T� > i) ·
j−1∏
k=i

P(C>k+1 | C>k). (3)

Explicit formulas (specific to the method diCal) for the above
terms are provided in the supporting information available at
http://www.eecs.berkeley.edu/~yss/publications.html.

By combining (2) with (3) and then collecting terms in (1), we can remove
the sum over T� = k when computing f(x1:�+1, S�+1). In particular, we define
additional forward probabilities

f (x1:�, T� = k) := P(x1:�, T� = k) =
∑
h′∈H

f(x1:�, S� = (h′, k)), (4)

f (x1:�, T� > k) := P(x1:�, T� > k) =

d∑
k′=k+1

∑
h′∈H

f(x1:�, S� = (h′, k′)), (5)

f (x1:�, R≤j , C>j) :=

j∑
i=1

P(x1:�, Ri, C>i, . . . , C>j) (6)

=

j∑
i=1

{[ j∏
i′=i+1

P(C>i′ | C>i′−1)

]

×
[
f (x1:�, T� = i)P(Ri, C>i | T� = i) + f (x1:�, T� > i)P(Ri, C>i | T� > i)

]}
.

http://www.eecs.berkeley.edu/~yss/publications.html


Decoding Coalescent HMM in Linear Time 105

Then, (1) can be written as

f(x1:�+1, (h, j)) = ξ(x�+1 | h�+1, j) ·
[
1

n
f (x1:�, R≤j−1, C>j−1)P(Cj |C>j−1)

+
1

n
f (x1:�, T� > j)P(Rj , Cj | T� > j)

+
1

n
f (x1:�, T� = j)P(Rj , Cj | T� = j)

+f(x1:�, (h, j))P(R | T� = j)

]
. (7)

This can be seen by noting that the first three terms in the sum correspond to
the terms for i < j, i = j < k, and i = j = k, respectively when putting together
(1) and (2). Alternatively, (7) follows from directly considering the probabilistic
interpretation of the terms f(x1:�, ∗) as given by (4), (5), and (6).

The required values of f (x1:�, R≤i, C>i) and f (x1:�, T� > i) can be computed
recursively using

f (x1:�, T� > i) = f (x1:�, T� > i+ 1) + f (x1:�, T� = i+ 1) , (8)

f (x1:�, R≤i, C>i) = f (x1:�, R≤i−1, C>i−1)P(C>i|C>i−1)

+f (x1:�, T� = i)P(Ri, C>i | T� = i)

+f (x1:�, T� > i)P(Ri, C>i | T� > i), (9)

with the base cases

f (x1:�, T� > d) = 0,

f (x1:�, R≤1, C>1) = f (x1:�, T� > 1)P(R1, C>1 | T� > 1)

+f (x1:�, T� = 1)P(R1, C>1 | T� = 1).

Hence, using the recursions (7), (8), and (9), it is possible to compute the entire
forward DP table {f(x1:�, S�)}L�=1 exactly in O(ndL) time.

2.2 A Linear-Time Backward Algorithm

The backward DP table {b(x�+1:L | S�)} can be also computed in O(ndL)
time. Given the linear-time forward algorithm discussed in the previous sec-
tion, the easiest way to compute the backward DP table is as follows: Let

x(r) = x
(r)
1 , x

(r)
2 , . . . , x

(r)
L = xL, xL−1, . . . , x1 denote the reversed x and let S

(r)
�

denote the hidden states for the HMM generating x(r). Then, since the coalescent
is reversible along the sequence,

b(x
(r)
�+1:L | s) =

P(x
(r)
�+1:L, S� = s)

ζ(s)
=

P(x
(r)
�:L, S� = s)

ξ(x
(r)
� | s)ζ(s)

=
f(x

(r)
1:L−�+1, S

(r)
L−�+1 = s)

ξ(x
(r)
� | s)ζ(s)

.
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3 Linear-Time EM via an Augmented HMM

The primary application of PSMC and diCal is parameter estimation, specifically
the estimation of demographic parameters such as changing population sizes.
This is done through a maximum likelihood framework with the expectation
maximization (EM) algorithm. In this section, we describe how to speed up the
EM algorithm to work in linear time.

3.1 The Standard EM Algorithm with O(d2) Time Complexity

Let Θ denote the parameters we wish to estimate, and Θ̂ denote the maximum
likelihood estimate:

Θ̂ = argmax
Θ′
L(Θ′) = argmax

Θ′
PΘ′(x1:L).

To find Θ̂, we pick some initial value Θ(0), and then iteratively solve for Θ(t)

according to

Θ(t) = argmax
Θ′

ES1:L;Θ(t−1) [logPΘ′(x1:L, S1:L) | x1:L],

where S1:L := S1, . . . , SL. The sequence Θ(0), Θ(1), . . . is then guaranteed to
converge to a local maximum of the surface L(Θ).

Since (x1:L, S1:L) forms an HMM, the joint likelihood P(x1:L, S1:L) can be
written as

PΘ′(x1:L, S1:L) = ζΘ′(S1)

[
L∏

�=1

ξΘ′(x� | S�)

] [
L∏

�=2

φΘ′ (S� | S�−1)

]
.

Letting E[#� : E | x1:L] denote the posterior expected number of loci where
event E occurs, and π(x) := P(x) =

∑
s f(x1:L, s) denote the total probability

of observing x, we then have

ES1:L;Θ

[
logPΘ′(x1:L, S1:L)

∣∣x1:L

]
=
∑
s

(log ζΘ′ (s))PΘ(S1 = s|x1:L)

+
∑
(h,i)

∑
a,b∈A

(log ξΘ′(a|b, i))EΘ

[
#� : {S� = (h, i), h� = b, x� = a}

∣∣x1:L

]
+
∑
s,s′

(logφΘ′(s′ | s))EΘ

[
#� : {S�−1 = s, S� = s′}

∣∣x1:L

]
=

1

πΘ(x)

[∑
s

(log ζΘ′(s)) fΘ(x1, s)bΘ(x2:L|s)

+
∑
(h,i)

∑
a,b∈A

(log ξΘ′(a|b, i))
∑

�:x�=a
h�=b

fΘ(x1:�, (h, i))bΘ(x�+1:L|h, i)
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+
∑
s,s′

(logφΘ′(s′ | s))
(

L−1∑
�=1

fΘ(x1:�, s)φΘ(s
′ | s)ξΘ(x�+1 | s′)bΘ(x�+2:L | s′)

)]
.

(10)

Note that we have to compute the term
∑

� fΘ(x1:�, s)φΘ(s
′ | s)ξΘ(x�+1 | s′)

bΘ(x�+2:L | s′) for every pair of states s, s′, which makes computing the EM
objective function quadratic in the number d of discretization time intervals,
despite the fact that we computed the forward and backward tables in linear
time.

3.2 A Linear-Time EM Algorithm

By augmenting our HMM to condition on whether recombination occurred be-
tween loci � and �+1, the EM algorithm can be sped up to be linear in d. We now
describe this augmented HMM. Let M denote our original HMM, with states
S1:L and observations x1:L. Between loci � and �+ 1, define

Rl,l+1 =

{
R, if no recombination,

Ri, if recombination occurred at time i.

Now let S∗
1 = S1, and S∗

� = (R�−1,�, S�) for � > 1. We letM∗ be the HMM with
hidden variables S∗

1:L = S∗
1 , . . . , S

∗
L, observations x1:L, transition probabilities

P(S∗
� | S∗

�−1) = P(S∗
� | S�−1), and emission probabilities P(x� | S∗

� ) = P(x� | S�).
Note that the probability of observing the data is the same under M and M∗,
i.e.,

L(Θ) = PΘ(x1:L | M) = PΘ(x1:L | M∗),

and so we may find a local maximum of L(Θ) by applying the EM algorithm to
the augmented HMM M∗, instead of to the original HMM M.

To compute the EM objective function for M∗, we start by noting that the
joint likelihood is

P(x1:L, S
∗
1:L) = ζ(S1)

[ L∏
�=1

ξ(x� | S�)

][ ∏
�:R�,�+1=R

P(R | T�)

]
(11)

×
[ d∏
i=1

∏
�:R�,�+1=Ri

P(Ri, T�+1 | T�)

](
1

n

)#�:R�,�+1 �=R

,

where we decomposed the joint likelihood into the initial probability, the emission
probabilities, the transitions without recombination, and the transitions with
recombination. We note that the initial probability can be decomposed as
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Sl

i

i +1

i -1

P(Ri, C>i |Tl =i)
P(Ri, C>i |Tl >i)

P(Ri, Ci |Tl >i)P(R |Tl =i)

P(Ri, Ci |Tl =i)

i

i +1

i -1

P(C>(i-1) |C>(i-2) )

P(Ci-1 |C>(i-2) )

Sl+1

Fig. 2. This diagram illustrates the flow of transition probabilities through the aug-
mented HMM. Lineages may transition between different coalescence times at loci �
and � + 1 by recombining and passing through the floating states represented by cir-
cles. Each interval contains three distinct floating states to capture the the dependence
of recombination and coalescence probabilities on whether any of these events occur
during the same time interval.

ζ(S1 = (h, j)) =
1

n

[
j−1∏
i=1

P(C>i | C>i−1)

]
P(Cj | C>j−1), (12)

and from (3), we decompose the product of transition recombination probabilities
as

d∏
i=1

∏
�:R�,�+1=Ri

P(Ri, T�+1 | T�) =

d∏
i=1

{[ ∏
�:R�,�+1=Ri

T�=T�+1=i

P(Ri, Ci | T� = i)

]

×
[ ∏
�:R�,�+1=Ri

T�>T�+1=i

P(Ri, Ci | T� > i)

][ ∏
�:R�,�+1=Ri

T�+1>T�=i

P(Ri, C>i | T� = i)

]

×
[ ∏
�:R�,�+1=Ri

T�,T�+1>i

P(Ri, C>i | T� > i)

][ ∏
�:T�+1>i

R�,�+1∈R<i

P(C>i | C>i−1)

]

×
[ ∏

�:T�+1=i
R�,�+1∈R<i

P(Ci | C>i−1)

]}
, (13)

where R<i := ∪j<iRj . Figure 2 shows a graphical representation for the transi-
tions of M∗.

By plugging (12) and (13) into (11), then taking the posterior expected loga-
rithm of (11), we obtain the EM objective function for M∗:

ES∗
1:L;Θ

[
logPΘ′(x1:L, S

∗
1:L) | x1:L

]
= −L logn+

d∑
i=1

qi(Θ,Θ′), (14)
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where

qi(Θ,Θ′) :=
∑

a,b∈A

[
log ξΘ′(a | b, i)

πΘ(x)

∑
�:x�=a

∑
h:h�=b

fΘ(x1:�, (h, i))bΘ(x�+1:L | (h, i))
]

+
(
logPΘ′(R | T = i) + logn

)
EΘ

[
#� : {R�,�+1 = R, T� = i} | x1:L

]
+ (logPΘ′(Ri, Ci | T = i))EΘ

[
#� : {R�,�+1 = Ri, T� = T�+1 = i} | x1:L

]
+ (logPΘ′(Ri, Ci | T > i))EΘ

[
#� : {R�,�+1 = Ri, T� > T�+1 = i} | x1:L

]
+ (logPΘ′(Ri, C>i | T = i))EΘ

[
#� : {R�,�+1 = Ri, T�+1 > T� = i} | x1:L

]
+ (logPΘ′(Ri, C>i | T > i))EΘ

[
#� : {R�,�+1 = Ri, T� > i, T�+1 > i} | x1:L

]
+ (logPΘ′(C>i | C>i−1))EΘ

[
#� : {R�,�+1 ∈ R<i, T�+1 > i} | x1:L

]
+ (logPΘ′(Ci | C>i−1))EΘ

[
#� : {R�,�+1 ∈ R<i, T�+1 = i} | x1:L

]
+ PΘ(T1 > i | x1:L) + PΘ(T1 = i | x1:L). (15)

The computation time for each of the posterior expectations EΘ[#� : ∗ | x1:L]
and PΘ(T1 | x1:L) does not depend on d; full expressions are listed in the support-
ing information (http://www.eecs.berkeley.edu/~yss/publications.html).
Hence, the number of operations needed to evaluate (14) is linear in d.

We note another attractive property of (14). By decomposing the EM ob-
jective function into a sum of terms qi(Θ,Θ′), we obtain a natural strategy for
searching through the parameter space. In particular, one can attempt to find
the argmaxΘ′ of (14) by optimizing the qi(Θ,Θ′) one at a time in i. In fact,
for the problem of estimating changing population sizes, qi(Θ,Θ′) depends on
Θ′ almost entirely through a single parameter (the population size λ′

i in interval
i), and we pursue a strategy of iteratively solving for λ′

i while holding the other
coordinates of Θ′ fixed, thus reducing a multivariate optimization problem into
a sequence of univariate optimization problems.

Although both the linear and quadratic EM procedures are guaranteed to
converge to local maxima of L(Θ), they may have different rates of convergence,
and may converge to different local maxima. The search paths of the two EM
algorithms may differ for two reasons: first, the intermediate objective functions
(10) and (14) are not equal, and secondly, as discussed above, we use different
search strategies to find the optima of (10) and (14). We have no proven guaran-
tee that either search should perform better than the other, but our observations
indicate that the linear-time EM algorithm typically converges to a value of Θ
with a equal or higher value of L(Θ) than the quadratic-time algorithm, in a
fraction of the time (see Figure 5 for an example).

http://www.eecs.berkeley.edu/~yss/publications.html
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4 Results

To confirm the decrease in runtime, we ran the linear-time diCal method on
simulated data with L = 2 Mb of loci and 2 haplotypes (in which case diCal is
equivalent to PSMC), using d = 2, 4, 8, 16, 32, 48, 64, 80, 96, 112, 128 discretiza-
tion intervals. To simulate the data, we used ms [14] with a population-scaled
recombination rate ρ = 0.0005 to generate an ARG, and then added mutations
using a population-scaled mutation rate of θ = 0.0029 and a finite-sites mutation
matrix described in Sheehan et al. [24]. Figure 3(a) shows the time required to
compute the table of forward probabilities. We also measured the time required
for one EM iteration and then extrapolated to 20 iterations to approximate the
time required to estimate an effective population size history (Figure 3(b)). In
both figures, the linear runtime of our new algorithm is apparent and signifi-
cantly improves our ability to increase the number of discretization intervals.

To assess the gain in accuracy of population size estimates that is afforded by
more discretization intervals, we ran both the linear- and quadratic-time methods
on simulated data with 10 haplotypes and L = 2 Mb. The conditional sampling
distribution was used in a leave-one-out composite likelihood approach [24] in
this experiment. To run each method for roughly the same amount of time
(≈ 40 hours), we used d = 9 for the quadratic method and d = 21 for the
linear method. For both methods, we ran the EM for 20 iterations and inferred
d/3 size change parameters. As measured by the PSMC error function, which
integrates the absolute value of the difference between the true size function and
the estimated size function [15], larger values of d permit the inference of more
accurate histories.

We also ran our method on 10 CEU haplotypes (Utah residents of European
descent) sequenced during Phase I of the the 1000 Genomes Project [26] (Fig-
ure 4(b)). We can see that for the quadratic method with d = 9, we are unable

(a) (b)

Fig. 3. Runtime results on simulated data with L = 2 Mb and 2 haplotypes, for varying
number d of discretization intervals. (a) Runtime results (in minutes) for the forward
computation. (b) Runtime results (in hours) for the entire EM inference algorithm (20
iterations) extrapolated from the time for one iteration.
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(a) (b)

Fig. 4. Effective population size change history results. The speedup from the linear
method allows us to use a finer discretization (d = 21) than the quadratic method
(d = 9) for about the same amount of runtime. (a) Results on simulated data with
L = 2 Mb and 10 haplotypes. Using the quadratic method with d = 9, the error was
0.148. Using the linear method with d = 21, the error dropped to 0.079. (b) Results
on 10 European haplotypes over a 2 Mb region of chromosome 1. The out-of-Africa
bottleneck is very apparent with d = 21, but is not as well characterized for d = 9.

to fully characterize the out-of-Africa bottleneck. In the same amount of com-
putational time, we can run the linear method with d = 21 and easily capture
this feature. The disagreement in the ancient past between the two methods is
most likely due to diCal’s lack of power in the ancient past when there are not
many coalescence events. Using a leave-one-out approach with 10 haplotypes,
the coalescence events in the ancient past tend to be few and unevenly spaced,
resulting in a less confident inference.

The runtime of the full EM algorithm depends on the convergence of the M-
step, which can be variable. Occasionally we observed convergence issues for the
quadratic method, which requires a multivariate optimization routine. For the
linear method, we used the univariate Brent optimization routine from Apache
Math Commons (http://commons.apache.org/proper/commons-math/),
which converges quickly and to a large extent avoids local maxima.

To examine the convergence of the two EM algorithms, we ran the linear
and quadratic methods on the simulated data with 10 haplotypes and the same
number of intervals d = 16. We examine the likelihoods in Figure 5(a). The linear
method reaches parameter estimates of higher likelihood, although it is unclear
whether the two methods have found different local maxima, or whether the
quadratic method is approaching the same maximum more slowly. Figure 5(b)
shows the inferred population sizes for each method, which although similar, are
not identical.

We have also looked at the amount of memory required for each method, and
although the difference is small, the linear method does require more memory to
store the augmented forward and backward tables. A more thorough investiga-
tion of memory requirements will be important as the size of the data continues
to increase.

http://commons.apache.org/proper/commons-math/
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(a) (b)

Fig. 5. Results on simulated data, using the same discretization for the linear and
quadratic methods. Each method was run for 20 iterations. (a) The log likelihood of
the EM algorithm, plotted against time, for both the linear and quadratic methods.
(b) Population size change history results for the linear and quadratic methods, run
with the same discretization using d = 16 and estimating 6 parameters.

5 Discussion

The improvement to diCal described in this paper will enable users to analyze
larger datasets and infer more detailed demographic histories. This is especially
important given that large datasets are needed to distinguish between histo-
ries with subtle or recent differences. By using samples of 10 haplotypes rather
than 2, diCal v1.0 [24] was able to distinguish between histories that diverged
from each other less than 0.1 coalescent time units ago, in which period PSMC
tends to exhibit runaway behavior and hence cannot produce reliable popula-
tion size estimates. The faster algorithm described here can handle samples of 30
haplotypes with equivalent computing resources. Our results indicate that this
improves the method’s ability to resolve rapid, recent demographic shifts.

In organisms where multiple sequenced genomes are not available, the re-
sources freed up by O(d) HMM decoding could be used to avoid grouping sites
into 100-locus bins. This binning technique is commonly used to improve the
scalability of PSMC, but has the potential to downwardly bias coalescence time
estimates in regions that contain more than one SNP per 100 bp.

In general, it is a difficult problem to choose the time discretization that can
best achieve the goals of a particular data analysis, achieving high resolution dur-
ing biologically interesting time periods without overfitting the available data.
Sometimes it will be more fruitful to increase the sample size n or sequence length
L than to refine the time discretization; an important avenue for future work
will be tuning L, n, and d to improve inference in humans and other organisms.

Another avenue for future work will be to develop augmented HMMs for co-
alescent models with population structure. Structure and speciation have been
incorporated into several versions of CoalHMM and diCal, and the strategy pre-
sented in this paper could be used to speed these up, though a more elaborate
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network of hidden states will be required. We are hopeful that our new technique
will help coalescent HMMs keep pace with the number and diversity of genomes
being sequenced and tease apart the demographic patterns that differentiated
them.

Acknowledgments. We are grateful to Matthias Steinrücken and other mem-
bers of the Song group for helpful discussions. This research was supported in
part by NSF Graduate Research Fellowships to K.H. and S.S., and by an NIH
grant R01-GM094402 and a Packard Fellowship for Science and Engineering to
Y.S.S.

References

1. Browning, B.L., Browning, S.R.: A fast, powerful method for detecting identity by
descent. Am. J. Hum. Genet. 88, 173–182 (2011)

2. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic
DNA. J. Mol. Biol. 268, 78–94 (1997)

3. Cahill, J.A., Green, R.E., Fulton, T.L., et al.: Genomic evidence for island popula-
tion conversion resolves conflicting theories of polar bear evolution. PLoS Genetics
9, e1003345 (2013)

4. Dutheil, J.Y., Ganapathy, G., Hobolth, A., et al.: Ancestral population genomics:
the coalescent hidden Markov model approach. Genetics 183, 259–274 (2009)

5. Ernst, J., Kellis, M.: ChromHMM: automating chromatin-state discovery and char-
acterization. Nature Methods 9, 215–216 (2012)

6. Groenen, M.A., Archibald, A.L., Uenishi, H., et al.: Analyses of pig genomes pro-
vide insight into porcine demography and evolution. Nature 491(7424), 393–398
(2012)

7. Gronau, I., Hubisz, M.J., Gulko, B., et al.: Bayesian inference of ancient hu-
man demographic history from individual genome sequences. Nature Genetics 43,
1031–1034 (2011)

8. Gutenkunst, R.N., Hernandez, R.D., Williamson, S.H., Bustamante, C.D.: Inferring
the joint demographic history of multiple populations from multidimensional SNP
frequency data. PLoS Genetics 5, e1000695 (2009)

9. Haddrill, P.R., Thornton, K.R., Charlesworth, B., Andolfatto, P.: Multilocus pat-
terns of nucleotide variability and the demographic selection history of Drosophila
melanogaster populations. Genome Res. 15, 790–799 (2005)

10. Hailer, F., Kutschera, V.E., Hallstrom, B.M., et al.: Nuclear genomic sequences
reveal that polar bears are an old and distinct bear lineage. Science 336, 344–347
(2012)

11. Harris, K., Nielsen, R.: Inferring demographic history from a spectrum of shared
haplotype lengths. PLoS Genetics 9, e1003521 (2013)

12. Hobolth, A., Christensen, O.F., Mailund, T., Schierup, M.H.: Genomic relation-
ships and speciation times of human, chimpanzee, and gorilla inferred from a coa-
lescent hidden Markov model. PLoS Genetics 3, 294–304 (2007)

13. Hudson, R.R.: Properties of the neutral allele model with intergenic recombination.
Theor. Popul. Biol. 23, 183–201 (1983)

14. Hudson, R.R.: Generating samples under a Wright–Fisher neutral model of genetic
variation. Bioinformatics 18(2), 337–338 (2002)



114 K. Harris et al.

15. Li, H., Durbin, R.: Inference of human population history from individual whole-
genome sequences. Nature 10, 1–5 (2011)

16. Mailund, T., Dutheil, J.Y., Hobolth, A., et al.: Estimating divergence time and
ancestral effective population size of Bornean and Sumatran orangutan subspecies
using a coalescent hidden Markov model. PLoS Genetics 7, e1001319 (2011)

17. Mailund, T., Halager, A.E., Westergaard, M., et al.: A new isolation with migration
model along complete genomes infers very different divergence processes among
closely related great ape species. PLoS Genetics 8(12), e1003125 (2012)

18. Meyer, M., Kircher, M., Gansauge, M.T., et al.: A high-coverage genome sequence
from an archaic Denisovan individual. Science 338, 222–226 (2012)

19. Miller, W., Schuster, S.C., Welch, A.J.: Polar and brown bear genomes reveal
ancient admixture and demographic footprints of plast climate change. Proc. Natl.
Acad. Sci. USA 109, 2382–2390 (2012)

20. Orlando, L., Ginolhac, A., Zhang, G., et al.: Recalibrating Equus evolution using
the genome sequence of an early Middle Pleistocene horse. Nature 499, 74–78 (2013)

21. Palamara, P.F., Lencz, T., Darvasi, A., Pe’er, I.: Length distributions of identity
by descent reveal fine-scale demographic history. Am. J. Hum. Genet. 91, 809–822
(2012)

22. Paul, J.S., Steinrücken, M., Song, Y.S.: An accurate sequentially Markov condi-
tional sampling distribution for the coalescent with recombination. Genetics 187,
1115–1128 (2011)

23. Pritchard, J.: Whole-genome sequencing data offer insights into human demogra-
phy. Nature Genetics 43, 923–925 (2011)

24. Sheehan, S., Harris, K., Song, Y.S.: Estimating variable effective population sizes
from multiple genomes: A sequentially Markov conditional sampling distribution
approach. Genetics 194, 647–662 (2013)

25. Steinrücken, M., Paul, J.S., Song, Y.S.: A sequentially Markov conditional sampling
distribution for structured populations with migration and recombination. Theor.
Popul. Biol. 87, 51–61 (2013)

26. The 1000 Genomes Project Consortium: A map of human genome variation from
population-scale sequencing. Nature 467, 1061–1073 (2010)

27. Thornton, K., Andolfatto, P.: Approximate Bayesian inference reveals evidence for
a recent, severe bottleneck in a Netherlands population of Drosophila melanogaster.
Genetics 172, 1607–1619 (2006)

28. Wan, Q.H., Pan, S.K., Hu, L., et al.: Genome analysis and signature discovery for
diving and sensory properties of the endangered chinese alligator. Cell Res. 23(9),
1091–1105 (2013)

29. Wiuf, C., Hein, J.: Recombination as a point process along sequences. Theor. Popul.
Biol. 55, 248–259 (1999)

30. Zhao, S., Zheng, P., Dong, S., et al.: Whole-genome sequencing of giant pandas pro-
vides insights into demographic history and local adaptation. Nature Genetics 45,
67–71 (2013)



AptaCluster – A Method to Cluster HT-SELEX

Aptamer Pools and Lessons from Its Application

Jan Hoinka1,�, Alexey Berezhnoy2,�, Zuben E. Sauna3, Eli Gilboa2,��,
and Teresa M. Przytycka1,��

1 National Center of Biotechnology Information, National Library of Medicine,
NIH, Bethesda MD 20894, USA
przytyck@ncbi.nlm.nih.gov

2 Department of Microbiology & Immunology, University of Miami Miller
School of Medicine, Miami, Florida 33101, USA

EGilboa@med.miami.edu
3 Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation

and Research, Food and Drug Administration, Bethesda, Maryland, USA

Abstract. Systematic Evolution of Ligands by EXponential Enrich-
ment (SELEX) is a well established experimental procedure to identify
aptamers - synthetic single-stranded (ribo)nucleic molecules that bind
to a given molecular target. Recently, new sequencing technologies have
revolutionized the SELEX protocol by allowing for deep sequencing of
the selection pools after each cycle. The emergence of High Throughput
SELEX (HT-SELEX) has opened the field to new computational oppor-
tunities and challenges that are yet to be addressed. To aid the analysis of
the results of HT-SELEX and to advance the understanding of the selec-
tion process itself, we developed AptaCluster. This algorithm allows for
an efficient clustering of whole HT-SELEX aptamer pools; a task that
could not be accomplished with traditional clustering algorithms due
to the enormous size of such datasets. We performed HT-SELEX with
Interleukin 10 receptor alpha chain (IL-10RA) as the target molecule
and used AptaCluster to analyze the resulting sequences. AptaCluster
allowed for the first survey of the relationships between sequences in
different selection rounds and revealed previously not appreciated prop-
erties of the SELEX protocol. As the first tool of this kind, AptaCluster
enables novel ways to analyze and to optimize the HT-SELEX procedure.
Our AptaCluster algorithm is available as a very fast multiprocessor im-
plementation upon request.

1 Introduction

Aptamers are short, (∼20 to ∼100 nucleotides) synthetic, single-stranded (ribo)-
nucleic molecules that can be generated to bind specifically to molecular targets.
These binding targets can vary from small organic molecules [1], through pro-
teins and protein complexes [2], to viruses [3], and cells [4]. Aptamers have high
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structural stability over a wide range of pH and temperatures making them ideal
reagents for a broad spectrum of in-vitro, ex-vivo, and in-vivo applications [5].
A pegylated aptamer that inhibits binding of Vascular Endothelial Growth Fac-
tor (VEGF) to the VEGF receptor (Macugen R©) is approved for the treatment
of age-related macular degeneration [6]. Aptamers can also be used to monitor
small changes in the conformation of proteins, a property that can be utilized
for detecting the effect changes in the manufacturing process or during the de-
velopment of generic versions of protein-therapeutics [7].

Aptamers are experimentally identified through a procedure known as Sys-
tematic Evolution of Ligands by EXponential Enrichment (SELEX) [8]. The
traditional SELEX procedure iterates over five basic steps which together define
one selection cycle: incubation, binding, partitioning and washing, target-bound
elution, and amplification (Fig. 1). The process starts with a single-stranded
(ribo)nucleic acid sequence library of, typically, 1015 random sequences of fixed
length flanked by constant primer sites to aid amplification. Each random se-
quence permits the molecule to fold into a unique 3D shape or conformation. At
the start of each cycle, such a RNA/ssDNA pool is incubated with a target of in-
terest. Due to the large number of unique sequences in the library, the probability
of at least some aptamer molecules to bind the target with specificity and affinity
is quite high. At the end of each cycle, low affinity binders are removed from
the solution whereas bound aptamer molecules are eluted and amplified, forming
the input for the next round. Eventually, only molecules that bind the target
with high affinity remain. The aptamer molecules thus selected for high affinity
and specificity are then individually evaluated experimentally and optimized for
specific properties, such as size or stability, depending on the intended applica-
tion. The experimental optimization is often assisted by computational analysis.
Such analysis includes finding minimum free energy secondary structures and the
identification of sequence motifs common to the final pool of aptamers. Recently,
Hoinka et al. developed AptaMotif, a computational method for the identifica-
tion of sequence-structure motifs in SELEX-derived aptamers [9].

New sequencing technologies have revolutionized the SELEX protocol by al-
lowing deep/next-generation sequencing of entire aptamer pools ([10], Fig. 1).
This extension, the so-called HT-SELEX, holds the promise for greatly accel-
erating aptamer discoveries and expanding their applications. For example, in
the special case where the target molecule is a transcription factor, a variant of
HT-SELEX designed for double-stranded DNA aptamers has been successfully
used to uncover transcription factor binding motifs [11–13].

Traditionally, the SELEX process has been treated as a black box and only
a handful of binders elucidated in the last cycle were sequenced. In contrast,
sequencing of earlier pools using HT-SELEX provides the opportunity to un-
cover potential binders that might otherwise have been lost in later steps of the
selection process. More importantly, by analyzing the relative changes of con-
secutive selection rounds of properties such as sequence diversity and mutation
rates, the method provides an unprecedented opportunity to gain deeper insights
into the selection process per se. Thus, HT-SELEX coupled with computational
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Fig. 1. The SELEX procedure iterates over five basic steps incubation, binding, par-
titioning and washing, target-bound elution, and amplification. Traditionally, only the
binders elucidated in the last cycle were sampled and examined. The HT-SELEX in-
cludes sequencing of the final and intermediate selection pools.

assessment of the relation between sequences has the potential to trace the dy-
namics of the selection process and the rational selection of aptamers with desired
properties making the SELEX process more rapid as well as more efficient.

Despite the success of HT-SELEX for drug design, efficient computational
tools that exploit and encompass data from all sequenced rounds, therefore elu-
cidating the selection process from the initial pool to the final cycles, have yet to
be developed. Computational processing of HT-SELEX data is currently largely
based on simple counting of aptamer species in the final round of selection, fre-
quently discarding low-frequency species from the analysis, and choosing the
sequences that occur in high counts for further investigation [10]. In addition, a
small number of most frequent sequences from the final selection round might be
used as seeds for similarity searches. The underlying postulate of these methods
is that the best predictor of binding affinity is the frequency at which a particular
aptamer occurs in a pool. While these approaches might be suitable for candi-
date identification, they lack the ability of providing insight into the mechanisms
governing the selection process itself. Note that as the selection progresses, low
affinity binders (Fig. 2 high z-coordinate) are eliminated from the pool leaving
aptamers that sample local minima of binding energy. It is therefore expected
that clustering of aptamers in consecutive cycles should provide valuable infor-
mation about the selection process and should allow for the delineation of the
entire aptamer landscape probed by the SELEX protocol. Hence, our primary
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Fig. 2. A visualization of the aptamer landscape probed by the SELEX protocol. The
surface represents all possible aptamers of fixed length and the red dots represent
aptamers used in the initial pool. The distance on the surface is a conceptual projection
of sequence similarity. Multiple local minima correspond to groups of aptamers that
bind to the different areas of the targets surface or to the same region but are related
by structure rather than sequence similarity.

objective is to cluster aptamers in all rounds of selection according to their se-
quence similarity. This task however could not be accomplished with previous
clustering algorithms due to the enormous size (2-50 Million sequences per cy-
cle) of the data set generated by high throughput sequencing, especially for early
rounds of selection which feature a high degree of unique sequences (≥ 90%). To
address this challenge, we developed a novel approach, AptaCluster, capable of
efficiently clustering entire aptamer pools.

Several sequence similarity measures are commonly found in clustering meth-
ods, of which the Hamming and Levenshtein (edit) distances are most promi-
nent. However, full-scale clustering approaches are computationally untrackable
for HT-SELEX data. Therefore we use the randomized dimensionality reduction
technique, known as locality-sensitive hashing (LSH) [14], to implicitly approx-
imate an upper bound to the edit distance for each sequence pair without the
need of exhaustive pairwise comparison. In the subsequent step, we eventually
compute precise sequence distances based on k-mer counting between pairs of
aptamers below this bound, while the remaining distances are not relevant and
might be arbitrarily assumed to be infinity.

We applied AptaCluster to analyze the results of the HT-SELEX experiment
that we preformed using Interleukin 10 receptor alpha chain (IL-10RA) as the
target molecule. IL-10 is considered to be a master regulator of immunity to
infection and is an important therapeutic molecular target [15]. We preformed
5 cycles of HT-SELEX with a 40nt variable region, sequencing the samples of
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pools 2-5. AptaCluster has enabled us to analyze the results of HT-SELEX,
revealed interesting properties of the selection landscape, and allowed for a better
understanding of the HT-SELEX experiment. AptaCluster scales very well with
data size. While the sequenced pools in our IL-10RA HT-SELEX experiment
varies between 2 and 4.5 Million aptamers, we have applied AptaCluster to
much larger pools of more than 20 Million sequences in the context of whole-cell
HT-SELEX (data not shown) without loss of noticeable performance.

2 The AptaCluster Algorithm

Our approach is centered around a randomized dimensionality reduction tech-
nique, known as locality-sensitive hashing (LSH) [14]. First, a compressed repre-
sentation of the data set is constructed by reducing the pool to non-redundant
species and their corresponding frequency counts. We then apply a user-defined
number of randomized locality-sensitive hash functions to the data set in order
to distinguish sequence pairs that are potentially similar from those that are,
with very high probability, not similar. Each function operates by selecting a
small number of nucleotide positions from each aptamer and treats the sub-
string, resulting from the concatenation of these bases, as input for the hashing
procedure. Hence, aptamers with highly similar primary structure are likely to
fall into the same group whereas dissimilar sequences rarely produce identical
hash values. In the third step, the actual clustering step, we compute precise se-
quence distances between aptamers of identical hash value, while the distances
between the aptamers never encountered in the same group are set to infinity.
To accelerate the clustering, AptaCluster relies on a similarity measure based on
k-mer counting. Thus the algorithm preforms three main steps outlined below.
Relevant implementation details and the parameters used throughout this study
can be found in the Methods section.

Dataset Compression. Data compression is achieved by using a hash map in
which the keys correspond to the species in the pool and the values correspond
to their respective frequency counts which can be done in O(N) time. In the

following, let s = (si)
l
i=1 be an aptamer of of length l defined by the sequence of

nucleotides si over the alphabet Ω = {A,C,G, T } where the index i corresponds
to the ith position of the aptamer. Furthermore, we define S = {sj ∈ P ‖ sj �=
sk ∀j, k ∈ [1, . . . , |S|] ∧

∑|S|
j=1 m(sj) = N}, where m(sj) corresponds to the

frequency of si, as the keys of the hash map, i.e. the set of unique aptamers for
pool P .

Filtering Using Locality Sensitive Hashing. LSH is based on the idea
that data points that are close in high dimension, after applying a probabilistic
dimensionality reduction and using the reduced representation as the input to a
hash function, are likely to obtain the same hash value and hence fall into the
same bucket [16].
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AptaCluster exploits this property by treating each sequence sj ∈ S as an
l-dimensional vector and reducing this vector into d dimensions (d < l). This
is done by generating a set Id of d randomly sampled indices i ∈ [1, . . . , l] and,
for each sequence sj , only selecting those nucleotides si for which i ∈ Id as
input for the hashing procedure. Hence, the more similar the primary structure
of a set of aptamers, the higher the probability that they will produce the same
mapping. Similarly, the choice of d controls the minimal degree of similarity
between the members of each partition since these are guaranteed to differ in
at most l − d positions. In other words, our approach implicitly computes an
upper bound to the edit distance. We iteratively improve this upper bound by
repeating this procedure a user defined number of times, each time using a
different hash function. With sufficient number of of iterations, if two sequences
never fall into the same bucket they are assumed to be dissimilar with very
high probability. The iterative computation of the upper bound is performed as
follows. Let dklsh(s

1, s2) be the upper bound computed after the kth iteration and
let Lk(s) be the value of the kth hash function for sequence s. We assume that,
by default, we have for all pairs d0lsh(s

1, s2) =∞. Then

dklsh(s
1, s2) =

{
l− d Lk(s1) = Lk(s2)

dk−1
lsh (s1, s2) Lk(s1) �= Lk(s2)

(1)

Clearly, only the assignment in the first line needs to be executed. To define
Lk(s), for each iteration k we randomly select a mapping h from a family of
functions

F = {h : Nl → N
d ‖ h(I) = Id} (2)

where I = (1, . . . , l) represents the nucleotide positions of an aptamer of size l,
and apply the function

L = {Ωl → Ωd ‖ L(s) = (si) ∀ i ∈ Id} (3)

to each aptamer s, creating a sub-string ŝ comprised of the concatenation of
the nucleotides at the positions defined in Id. Finally, traditional hashing is
performed on the set Ŝ = {ŝi}, i = 1, . . . , |S|. Id = (i0, . . . , id) can be efficiently
computed as follows: Let i0 ∈ [1, l] be a randomly selected index of I and define
x ∈ [2, l − 1] as a random number co-prime to l. Then, the remaining positions
can be generated with

ij = (ij−1 + x) mod l, j = 1, . . . , d− 1 (4)

and

Id = (ij)
d−1
j=0 , ij < ij+1 ∀ j (5)

corresponds to the sequence of indices after sorting these in ascending order.
Using this scheme guarantees that each index in I is selected exactly once and
avoids scenarios in which only adjacent positions of the sequence are chosen.
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Cluster Extraction. Based on the assumption that high-frequency of a se-
quence in a selection pool is related to its selective advantage due to its binding
affinity, we build the clusters iteratively around these high frequency aptamers.
We repeatedly choose the highest frequency sequence s not assigned to any clus-
ter, making it a seed of the new cluster. We then we employ a k-mer based
distance function [17] to compute the distance of the selected seeds to all other
sequences for which the upper bound estimated with LSH was finite and include
it in the cluster if dkmer is smaller than a user defined cutoff. In particular,

dkmer(s
x, sy) =

4k∑
i=1

∣∣∣∣ Xi

|sx| − k + 1
− Yi

|sy| − k + 1

∣∣∣∣2 (6)

where Xi and Yi denotes the number of times the i-th k-mer occurs in sequence
sx and sy respectively and |si| corresponds to the length of the aptamer. Since
we compare only sequences that are in the same bucket in at least one iteration,
this approach allows us to extract clusters in O(N ∗m ∗ k) where m denotes to
the maximum number of seed sequences in a bucket which is bounded by the
size of the largest bucket generated during LSH.

3 Results of Application to HT-SELEX Experiment for
IL-10RA

We performed 5 rounds of HT-SELEX experiment with Interleukin 10 receptor
alpha chain (IL-10RA) as the target molecule. Here, we summarize the insights
obtained using AptaCluster.

3.1 Validating Clustering Results

The main advantage of AptaCluster is that to cluster an aptamer pool it does
not need to compute the distances between all pairs of sequences but instead
uses locality-sensitive hashing to filter out pairs that do not need to be com-
pared. However, the filtering step is heuristic and its outcome might depend on
the number of LHS iterations and properties of the dataset. Therefore we started
by confirming that the filtering step produces correct results, i.e. that sequences
filtered out as not potentially similar are indeed remote from the seed sequences
in terms of exact distance. Since the dataset size prohibits an exhaustive compu-
tation of all distances, we used 400 aptamers (the 20 most frequent species from
the top 20 clusters) and computed their edit distances to all other aptamers.
We then computed the distribution of the distances to the members of the same
cluster to the distances to the rest of the aptamers. The former group sampled
the sequences whose distances to the reference sequences has been computed and
found to be below the clustering threshold. The latter group sampled two types
of sequences: the sequences whose distance to the reference sequence has been
computed but found to be above the threshold and the sequences filtered out
without computing the distance based on our locality sensitive hashing function.



122 J. Hoinka et al.

The results for all selection cycles are summarized in Fig. 3 for a set of default
and relaxed parameters (see Parameters section). The results demonstrate that
no sequence that was filtered out using locality sensitive hashing is close to the
seed sequences of the clusters. In addition, it also demonstrates that SELEX de-
rived aptamer clusters are well separated. Indeed, relaxing the locality-sensitive
hashing based filtering and increasing clustering threshold did not change the
clustering results appreciatively (Fig. 3 (b)).

3.2 Distribution of Aptamers within Clusters

Next, we examined the distribution of aptamers within the clusters. Interestingly,
we found that the distribution of these frequencies was very skewed (Fig. 4).
Except for a handful of highly abundant aptamers, most of the species in a cluster
had low frequencies. Such extreme differences in frequencies is consistent with a
situation in which most of the cluster diversity can be attributed to mutations
caused by Polymerase errors. To test this hypothesis, we investigated whether
aptamers with a maximal count of 5 from the top 20 clusters in cycle 5 were also
present in the sequenced portion of the selection pool from cycle 2. Indeed, the
vast majority of these sequences (99% of singletons, 97% for frequency 5) where
absent in this pool (Supplementary Table 1). Note that the sequences introduced
by Polymerase errors can be subsequently selected and amplified providing an
important source of cluster’s diversity. However, due to the late introduction,
their frequency count might not correctly reflect their binding affinity.

3.3 Frequency Counts versus Binding Affinity

It is often assumed that an aptamer sequence’s frequency in the pool later cycles
provides a good predictor of its binding affinity. Indeed this would be a reason-
able expectation under the assumption that the selection process is free of any
artifacts, all aptamers are present in the initial pool with the same frequency, and
there was no stochastic variability during the above mentioned partitioning. How-
ever the realization that a large fraction of sequences in the final pool might have
been absent from the initial pool but introduced in a later stage made us to reex-
amine this assumption. We measured disassociation constantKd for 30 Aptamers
including the most frequent ones. We found that cycle-to-cycle enrichment of ap-
tamer frequencies, i.e. their relative increase in multiplicity, from cycle 4 to 5 is a
better predictor of binding than the frequency in the final pool (data not shown).
Specifically, taking 125 Kd as a reasonable threshold between binders and non-
binders, sorting by cycle-to-cycle enrichment separates binders form non-binders
while sorting by frequency leaves these two groups randomly mixed.

In addition to the emergence of new sequences, another source of dissonance
between aptamer frequency and its binding potential could also be the differences
in their frequencies in the initial pools due to the stochastic nature of partition-
ing the pool into groups to be used for storage/sequencing/next cycle. Looking at
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Fig. 3. Distribution of the edit distances between aptamers belonging to a cluster
(red) and distances between cluster members and all non-cluster sequences (blue) for
selection rounds 2 to 5. Within each of the top 20 clusters, the 20 most frequent
aptamers where compared against all other cluster members as well as the remaining
aptamers of the pool. (a) Distributions using the defaults parameters of AptaCluster as
described in the Parameter section is shown in the top panel. (b) Relaxed parameters as
depicted in the bottom panel in which only 40% of the randomized region was sampled
during LSH.

cycle-to-cycle sequence enrichment instead of counts permits a resolution of this
problem. However, other artifacts exist that can affect aptamer frequencies as
well. In particular, we also tested the Kd values for non IL-10RA specific binding
using binding to IgG as proxy for such non-specificity (data not shown). We
found for example that cluster with ID 3 has high frequency in cycle 5 but it is
not IL-10RA specific.

4 Conclusions and Discussion

Given the great promise of the HT-SELEX approach and rapidly diminishing
costs of next generation sequencing, the usage of this method is likely to in-
crease rapidly. Therefore it is imperative that researchers are able to analyze
and correctly interpret HT-SELEX results. We have developed a new approach,
AptaCluster, that allows for clustering based on primary structure of pools of
aptamers sequenced using Hi-Seq technology.

Until now, a typical HT-SELEX analysis was reduced to counting the fre-
quency of each aptamer and using such counts as a predictor of binding affinity.
However our results indicate that such counting is actually not as good of a pre-
dictor as it has been anticipated. Instead, a predictor that utilizes the dynamics
of the cycle-to-cycle enrichment holds greater promise.

Our results of applying AptaCluster to the outcome of the IL-10RA HT-
SELEX experiment revealed important properties of the resulting clusters. We
found the clusters to be well separated, and typically dominated by one or a few
individuals. Relaxing the parameters to allow for larger intra-cluster distances
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did not change the results significantly. Consequently, sequence profiles of indi-
vidual clusters were dominated by one or a few of the most abundant sequences.
We have also implemented a procedure that enables the tracing of the clusters
over consecutive selection cycles and, consistently with the observation above, we
found that the clusters’ sequence profile did not change much during consecutive
selection steps.

The distribution of frequency counts within clusters suggests that cluster di-
versity is, in a large part, a result of Polymerase errors. The emergence of such
Polymerase mutants creates an interesting opportunity to sample around local
minima. This is strengthened by the observation that the number of mutations
correlates with the frequency of the cluster seeds: the more frequent the seed, the
more frequent the mutants. How to design the dynamics of the selection process
to optimally utilize these emerging mutants is an open question. One possibility
is to replace the typical selection procedure where selection pressure increases in
each cycle by an approach that alternates between stronger and weaker selection.

AptaCluster provides a valuable tool which will help us and others to analyze
and to optimize the HT-SELEX procedure. It has enabled us to analyze the
results of HT-SELEX for IL-10 and allowed for a better understanding of the
HT-SELEX experiment. We expect that the properties of the clusters obtained
with AptaCluster will vary depending on the experimental details of HT-SELEX
protocol in use, the length of the variable region, error rate of Polymerase, and
properties of the target. Independently of this expected variability, AptaCluster
can be used as the first step towards understanding the aptamer binding land-
scape, and for the identification of a broad spectrum of potential binders. We
point out that AptaCluster is not intended to elucidate complex, indel-containing
motifs but rather to operate on sequences of equal length. It is designed to serve
as a pre-processing step for approaches to uncover sequence-structure motifs
such as the planned extension of our AptaMotif algorithm to high throughput
sequencing data [9].

5 Materials and Methods

5.1 Dataset Description

We applied 4 rounds of selection and cDNA generated from round 5 bound frac-
tions as well as RNA recovered from bound fractions at rounds 2, 3 and 4 was
amplified and sequenced using Illuminas HiSeq 2500 device with 100-cycle paired-
end sequencing protocol (see HT-SELEXExperiment section for the experimental
protocol). Aptamers were extracted by aligning the transcribed, inverted
sequence of the reverse run to the corresponding forward lane and only retaining
those sequences with less then 5 mismatches between the actual primers/tags and
the identified primer region. Furthermore we restricted the number of allowedmis-
matches between the sequences of the forward and reverse lane in the randomized
region to four. Mismatches in the randomized region were corrected by choosing
the nucleotide with higher Illumina quality score. For the entire experiment, a to-
tal of 12895554 sequences where retrieved of which 4621438 species belonged to
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round 5, 1923823 to round 4, 2181720 to round 3, and 4168573 to round 2. Out of
these respectively 617220, 1021668, 1902904, and 3857210 were unique.

5.2 Implementation Details

AptaCluster is currently available as a multi-threaded implementation in C++
using the OpenMP and Boost libraries for its parallel programming operations
and hashing procedures, respectively [18, 19]. It features a complete, highly
modular pipeline from data input and parsing, over cluster extraction, to re-
sult visualization and database storage. We implemented threaded parsers for
a number of file formats, including FASTA, FASTQ, and RAW sequence files,
both for paired-end and single-end sequencing data as well as automatic multi-
plexing procedures for separating the individual SELEX rounds when sequenced
together. Depending on the number of available CPUs, clustering and distance
calculations are performed in parallel for each pool. Cluster families and their
evolution from cycle to cycle are currently visualized in HTML format. Finally,
the algorithms behavior can be controlled using a configuration file allowing for
the assignment of most parameters used for parsing and clustering, among oth-
ers. We have empirically determined a set of default values, of which the most
relevant are discussed below.

5.3 Parameters

For the experiments described in this paper, we performed a total of r = 10
iterations of LSH sampling 60% of the randomized region (i.e. l = 24). The
parameter d = 4 is set in terms of the maximal number of point mutations any
pair of sequences should have and is converted into the k-mer distance cutoff by
sampling a user defined number of aptamers from the pool (10000 by default),
artificially mutating that sequence up to d times, and averaging over all dkmer

between these mutants and the wild-type. Furthermore we set k = 3 for the
computation of dkmer which has shown to give reasonable results for aptamer-
sized sequences.

5.4 HT-SELEX Experiment

Selection Details. A DNA template for the selection library was ordered from
IDT (Coralville, IA). 1 nM of each N40 template (5-TCTCGATCTCAGCGAGTCGTCG

-N40-CCCATCCCTCTTCCTCTCTCCC-3) and 5 primer (5-GGGGGAATTCTAATACGACTC
ACTATAGGGAGAGAGGAAGAGGGATGGG-3)were annealed together, extended with Taq
polymerase (Life Science), and transcribed in vitro using Durascribe (in-vitro
transcription) IVT kit (Illumina). The random R0 RNA was purified by dena-
turing PAGE and, after preclearing with human IgG-coated (Sigma) beads (GE
Healthcare), used for in-vitro selection. 1 nM of R0 RNA was used in a first round
of selection to coincubate with 0.3 nM of bead-bound human IL-10RA-Fc fusion
protein (Novus Biologicals) in 100 mM NaCl selection buffer. After washes, a re-
covered bound RNA fraction was reverse transcribed using the cloned AMV RT
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kit (Life Science). cDNA was amplified by either emulsion or open PCR using
Platinum Taq PCR kit (Life Science) as described below. The DNA template
was used to IVT RNA for the next round. During subsequent rounds, amount of
protein was reduced 25% each time, while concentration of NaCl was gradually
increased to 150 mM.

Emulsion PCR. cDNA was amplified using Platinum Taq PCR kit with addi-
tion of 10% PCRx enhancer solution and following primers: 5-GGGGGAATTCTAAT
ACGACTCACTATAGGGAGAGAGGAAGAGGGATGGG-3 and 5-TCTCGATCTCAGCGAGTCGTCG-

3. After preparing the master mix PCR reaction solution, it was separated to
100 μL aliquots and each aliquot was mixed with 600 μL ice-cold oil fraction
assembled from components supplied with emulsion PCR kit (EURx) according
to manufacturers instructions. Water and oil mixture was emulsified by 5 vor-
texing at +4C and amplified in standard PCR machine for 25 cycles. Control
open PCR reaction was carried with aqueous phase only for 16 cycles.

Preparing Libraries for HTS. After 4 rounds of selection, 3 nM of RNA
was prepared for round 5. The RNA was pre-cleared using IgG-coated beads
and separated into three identical aliquots. Each aliquot was incubated with
either human IL10RA protein, murine IL10RA protein or human IgG. After
standard washes, bound RNA fraction was extracted from beads and reverse
transcribed as described previously. A cDNA generated from round 5 bound
fractions, as well as RNA recovered from bound fractions at rounds 2, 3 and 4,
was amplified by emulsion PCR with two sets of primers as described previously
[2]. Amplified DNA was purified by 2% agarose gel electrophoresis and sequenced
using Illuminas HiSeq 2500 device with 100-cycle paired-end sequencing protocol.
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Supplementary Materials

6 Supplementary Figures and Tables

Fig. 4. The frequency distribution of the members of the 5 largest clusters. The cluster
sizes are given in the brackets.

Table 1. Number of species with counts 1 to 5 present in the top 20 clusters of
selection round 5 compared to the frequency of their occurrence in selection round 2.
The overwhelming majority of the sequences are not present in the latter.

Nr. of aptamers with frequency
1 2 3 4 5

Top 20, cycle 5 8529 2202 1074 614 465
Found in cycle 2 61 36 27 18 16
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Abstract. In studying the strength and specificity of interaction between
members of two protein families, key questions center on which pairs of
possible partners actually interact, how well they interact, and why they
interact while others do not. The advent of large-scale experimental stud-
ies of interactions between members of a target family and a diverse set of
possible interaction partners offers the opportunity to address these ques-
tions. We develop here a method, DgSpi (Data-driven Graphical mod-
els of Specificity in Protein:protein Interactions), for learning and using
graphical models that explicitly represent the amino acid basis for interac-
tion specificity (why) and extend earlier classification-oriented approaches
(which) to predict the ΔG of binding (how well). We demonstrate the ef-
fectiveness of our approach in analyzing and predicting interactions be-
tween a set of 82 PDZ recognition modules, against a panel of 217 possible
peptide partners, based on data from MacBeath and colleagues. Our pre-
dicted ΔG values are highly predictive of the experimentally measured
ones, reaching correlation coefficients of 0.69 in 10-fold cross-validation
and 0.63 in leave-one-PDZ-out cross-validation. Furthermore, the model
serves as a compact representation of amino acid constraints underlying
the interactions, enabling protein-levelΔG predictions to be naturally un-
derstood in terms of residue-level constraints. Finally, the model, DgSpi

readily enables the design of new interacting partners, andwe demonstrate
that designed ligands are novel and diverse.

Keywords: protein:protein interaction, specificity,ΔG prediction, graph-
ical model, PDZ.

1 Introduction

The molecular machinery of the cell is driven largely by protein:protein inter-
actions. Traditional high-throughput technologies [5] provide evidence for the
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existence of interactions that existing computational systems biology techniques
utilize to build global networks of interacting proteins. However, finer-grained
methods are necessary in order to better understand, predict, and control these
interactions. Fortunately, appropriate experimental methodologies are rapidly
developing, e.g., using protein microarrays to isolate numerous pairs of possi-
ble partners, and fluorescence polarization to assess their interaction strength
(Fig. 1, left). Several large-scale studies have been conducted using such tech-
niques for particular families of interacting proteins, including PDZ domains and
their peptide ligands [4,40], and human basic-region leucine zippers (bZIPs) and
their coiled-coil partners [6,8]. In lieu of large-scale studies, the aggregation of
a large number of smaller-scale experiments can also yield extensive amounts
of detailed binding data, e.g., for major histocompability complex (MHC) and
ligands [29,27,41,2,43], and serine proteases and inhibitors [21,18].

As one particular example, consider the specific recognition between PDZ do-
mains and their peptide ligands. PDZs are small peptide recognition modules
that bind specific C-terminal peptides of other proteins (Fig. 1, right), in or-
der to mediate protein:protein interactions (e.g., in signaling networks). Early
studies of PDZ:peptide recognition developed consensus motifs to capture the
common amino acids comprising the ligands of different PDZ “classes” (e.g.,
class I = S/T-X-Φ vs. class II = Φ-X-Φ, where Φ is a hydrophobic residue).
More recent studies yielded more refined statistical binary interaction predictors
(interact or not?), based on analysis of amino acid pairs (across the PDZ:peptide
interface) in curated datasets of experimentally identified PDZ:ligand partners
[3,38]. MacBeath and colleagues then made the leap to large-scale quantitative
data, determining the ΔG of binding for 829 PDZ:peptide pairs from 96 PDZs
(from mouse, fly, and worm) against a panel of 259 possible peptide partners
[36]. They used this data to develop a binary interaction predictor, based on the
constituent PDZ:peptide amino acid pairs like the predictors mentioned above,
but taking advantage of the quantitative and negative data [4]. More recently,
Bader and co-workers used the MacBeath data to train a type of support vector
regression model for predicting ΔG of binding for PDZ:peptide pairs [33].

Motivated by the exciting growth in quantitative studies of protein:protein in-
teractions, we have developed a data-driven, sequence-based model that directly
and compactly reveals and represents the amino acid interactions underlying ex-
perimentally measured ΔG values of binding (henceforth just ΔG) and enables
efficient, accurate, robust, and transparent prediction of ΔGs for new pairs of
possible partners (Fig. 1). We employ a graph-structured model (which we refer
to simply as a graphical model) that explicitly models amino acid interactions
and provides a probabilistic interpretation for them. Sequence-based graphical
models of protein families have been used to capture amino acid interactions
in order to predict protein structure [26,10,12] and function [37,1] and design
new proteins [39,15]. We build here on our sequence-based models of interacting
protein families for binary prediction of interaction [38], significantly extending
that approach to incorporate quantitative data and thereby predict ΔG.
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Fig. 1. DgSpi: Data-driven Graphical models of Specificity in Protein:protein Interac-
tions. A graphic model of PDZ:peptide interactions encapsulates the amino acid con-
straints conferring the strength and specificity of the interactions in an input dataset.
(left) The dataset has ΔG values (shades of green) or “non-interacting” indications
(‘X’s) for some PDZ (blue) peptide (red) pairs. (middle) We learn a graphical model
with bipartite nodes for some residues in the PDZ (blue) and peptide (red), with edges
(green) encapsulating and providing a probabilistic interpretation for amino acid con-
straints. (right) We use the model to predict novel interactions as well as to design
novel peptide partners for PDZs.

We call our approach DgSpi, for Data-driven Graphical models of Speci-
ficity in Protein:protein Interactions. Using the PDZ data from MacBeath and
co-workers, we demonstrate that DgSpi is highly predictive of ΔG, obtaining
predicted-experimental correlation coefficients of up to 0.69 in a ten-fold cross-
validation and 0.63 in leave-one-PDZ-out cross-validation. This performance is
essentially equivalent to that obtained by Bader and colleagues, but importantly,
our approach provides a readily interpretable model of the amino acid contribu-
tions underlying specific interactions. Furthermore, since our graphical models
can be used in designing new interacting partners (again, interpretable in terms
of the amino acid contributions), and we show that there is a diversity of novel
peptides that are predicted to bind well against any given PDZ and thus provide
worthwhile hypotheses for experimental testing.

2 Methods

DgSpi takes as input (Fig. 1, left) two sets of protein sequences; for simplicity
but without implications about function, we refer to one set as the “receptor” and
the other as the “ligand”; e.g., the PDZ protein recognition modules as receptors
and corresponding peptides as ligands. In addition to the sequences, there are
experimental binding measurements for some of the pairs (one from each set);
the measurement is either a ΔG value or an indication of “non-interacting”
within the sensitivity of the experiment. Our goal is to be able to predict the
ΔG of interaction for a previously untested receptor:ligand pair and to design
new ligands partners for a specified receptor (Fig. 1, right). To do this, we seek a
method that admits explanation of predictions in terms of the underlying amino
acid-level interactions conferring specificity of interaction. Thus we employ a
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graph-structured, or graphical, model (Fig. 1, middle) with nodes for the receptor
and ligand residues, and bipartite edges capturing the amino acid constraints
between receptor and ligand residues.

We first summarize a graphical model to predict ΔG from a pair of sequences,
and then the algorithms to construct a model from training data of sequence
pairs with observed ΔG.

2.1 A Graphical Model of Binding Free Energy

We assume the receptors have been multiply aligned to p informative (non-
gappy) columns, and the ligands likewise to q residues. LetX = {X1, X2, . . . , Xp}
be a set of p random variables representing the receptor amino acid composition,
with Xi a discrete random variable for the amino acid type at position i. Each
Xi takes values in A = {ala, arg, . . . , val, -}, corresponding to the 20 amino
acid types and an additional ‘-’ for a gap in the multiple sequence alignment.
Similarly, let Y = {Y1, Y2, . . . , Yq} be a set of q random variables representing
the ligand composition.

Given a receptor sequence x = {x1, x2, . . . , xp} (i.e., amino acid values for the
random variables in X), along with a ligand sequence y = {y1, y2, . . . , yq}, we
want to predict the strength of a possible interaction between the two proteins,
ΔGpred(x,y). Our goal here is to develop a robust predictive model that is inter-
pretable in terms of the amino acid interactions driving specific protein:protein
recognition. Therefore we model ΔGpred with a bipartite graphical model, with
nodes for X and Y representing the amino acids and edges E ⊂ X×Y represent-
ing their dependencies. Nodes xi, yj have associated |A| × 1 vectors Vi[a], Vj [b]
to capture position specific environment effects to binding. Edge (i, j), between
nodes xi and yj, has an associated |A| × |A| matrix Wi,j [a, b] of weights for
a, b ∈ A, holding the position-specific contributions to binding for each possible
pair of amino acids, intended to capture electrostatics, van der Waals, hydrogen
bonding, and other such interactions, which depend on the composition of the
amino acids involved. We point out that these physical justifications for the pa-
rameters of our model are descriptive rather than prescriptive: they guide the
intutition for learning and interpreting the model, but we make no assumptions
on sources of these interactions beyond what we can learn from data.

In summary, then, given two protein sequences x and y, we predict their
binding free energy as:

ΔGpred(x,y) =

p∑
i=1

Vi[xi] +

q∑
j=1

Vj [yj ] +
∑

(i,j)∈E
Wi,j [xi, yj] (1)

2.2 Training Objective

Our data-driven approach to modeling protein:protein interaction specificity uses
experimental data to learn the parameters V and W that define the model in
Eq. 1. We assume that the experimental data is partitioned into interactions I+,
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with ΔG values, and non-interactions I−, where the binding was weaker than
ΔGmax , a maximum experimentally detectable ΔG value. Thus each member of
I+ is of the form (x,y, ΔG), giving a pair of sequences and the measured ΔG
value, while each member of I− is simply an (x,y) pair.

We take as our primary objective minimizing the squared error between the
observed and predicted ΔG values for members of I+. For the non-interactions
in I−, we incorporate a penalty for an incorrect prediction, i.e., for ΔGpred

better than ΔGmax . In particular, we use a one-sided squared penalty for non-
interactions predicted as interactions. Compared with the hinge-loss commonly
used in SVMs, this tends to penalize small differences to a lesser extent, which
is a desirable property in cases such as ours where the focus is on the regression
error and not the misclassification cost. The one-sided square error has no points
of discontinuity, making optimization easier as well.

Thus our objective function for a specific set of parameters V , W is:

L(V,W ) =
∑

(x,y,ΔG)∈I+

(ΔGpred(x,y;V,W ) −ΔG)2

+
∑

(x,y)∈I− s.t.
ΔGpred(x,y;V,W )<ΔGmax

γ− · (ΔGpred(x,y;V,W )−ΔGmax )
2 (2)

where we emphasize the dependence ofΔGpred in Eq. 1 on V andW by including
them as parameters. The parameter γ− sets the relative weighting between the
contributions from interactions and non-interactions.

2.3 Block-Sparse Regularization

A suitable model can be learned from the data by minimizing the objective
function in Eq. 2. However, directly optimizing this function is likely to lead
in overfitting as there are usually far more parameters in the model than there
are data points available with which to fit them. To circumvent this problem,
we instead optimize a regularized objective function. Regularization is usually
described as a penalty to the objective function; an alternate but equivalent
view of the regularization is that it is a Bayesian prior on the models that biases
the learning method towards models consistent with the prior. Protein:protein
interactions can be reasonably expected to display structural sparsity —due to
spatial restrictions, only a few of all possible bipartite interactions between the
partners are likely to be important in biochemical interactions. Motivated by
this prior belief, we employ block-L1 regularization, a form of regularization
that penalizes the number of non-zero edges (or “blocks”), so that each edge
(i, j) is penalized unless all parameters within the edge, Wi,j , are zero. This pro-
motes a sparser structure promoting interpretability; furthermore, by reducing
the number of non-zero parameters in the model, it helps avoid overfitting. For
our model, the block-L1 regularization term is:

R1,2(V,W ) =
1√
|A|

⎛⎝ p∑
i=1

‖Vi‖+
q∑

j=1

‖Vj‖

⎞⎠+
∑

(i,j)∈E
‖Wi,j‖ (3)
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where ‖ · ‖ refers to the vector two-norm of the corresponding set of parameters
and the fraction 1√

|A| (number of amino acids plus gap) is a correction factor to

account for the different degrees of freedom in V and W .
Our learning objective is then:

argmin
V,W

(L(V,W ) + λ1,2 · R1,2(V,W )) (4)

where λ1,2 sets the relative weight between the learning objective and the regu-
larization term.

2.4 Learning Algorithms

Schmidt et al. [32] developed a Limited-Memory Projected Quasi-Newton (PQN)
approach suitable for squared error objectives. We customize their method for
our graphical models of protein-protein interactions. A constrained optimization
to incorporate the block-L1 regularization is performed by a projected gradient
method that iterates between unconstrained gradient descent updates to the
parameter values, and constrained projections of the parameter values onto the
constrained space.

While this approach can be used to learn the structure and parameters of the
model (i.e., which vertices and edges, along with their weights), in practice, the
resulting procedure can result in biased weights for the non-zero parameters,
despite identifying the correct structure [1,23]. To avoid this, after learning the
structure of the model, we re-learn the non-zero parameters with L2 regulariza-
tion. That is, in a second stage, we restrict the optimization to the vertices and
edges contributing in the first stage, but reoptimize their weights using a modi-
fied version of Eq. 4, replacingR1,2 with: R2(V,W ) =

∑p
i=1 ‖Vi‖2+

∑q
j=1 ‖Vj‖2+∑

(i,j)∈E ‖Wi,j‖2, weighted by a corresponding λ2. Since R2(V,W ) penalizes the
square of the vector 2-norms, each element of each parameter vector is penalized
independent of any group membership; the regularization is thus independent
of the degrees of freedom in the corresponding groups. This two-stage approach
finds sparse models with small edge weights, regularizing a pseudo-likelihood
objective similarly to the approach of [1]. We find in practice that this approach
yields models that are both interpretable and predictive of ΔG.

3 Results

Our goal is to make quantitative predictions of the ΔG of PDZ:peptide inter-
actions, interpretable in terms of underlying amino acid constraints. This is in
contrast to the approach of MacBeath and co-workers [4], who studied the abil-
ity of a computational method to classify interaction vs. non-interaction. (A
graphical model approach to do that has been previously described [38]; we have
found that classifying based on predicted ΔG is not as robust.) It is also in con-
trast to the Support Vector Regression approach of Bader and co-workers [33],
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in that while our method achieves comparable predictive accuracy, it has the
added benefit of being able to automatically identify the amino acid-level inter-
actions with the greatest impact, and directly characterize their contributions.
These interactions not only allow us to characterize the sequence determinants
of binding affinity and specificity, but also allow us to design new interacting
partners based on the derived “rules” of good interactions.

We apply DgSpi to the extensive PDZ dataset collected by MacBeath and
colleagues [36,4]. To enable appropriate comparison of results, we use the pro-
cessed version of the dataset provided by Bader and colleagues [33]. The dataset
includes 82 mouse PDZs and 217 peptides, with a reported 560 interactions
and 1167 non-interactions. We obtained a structure- and sequence-based mul-
tiple sequence alignment of 225 columns where the peptides were represented
by 5 C-terminal residues. We then removed highly conserved and highly gap-ful
columns, reducing the alignment to 114 PDZ positions and 5 peptide positions.

3.1 ΔG Prediction

10-fold cross-validation. To test the ability of our model to predict the affinity
of PDZ-peptide interaction, we first performed a ten-fold cross-validation (i.e.
we learned the model with 90% of the data and tested it on the left-out 10%,
doing this with each 10% left out). This represents the scenario in which data
are available for some interactions, and we want to make predictions for others.

Our learning approach has three main parameters: γ−, a parameter trading
off the relative importance of positive and negative interactions in the objec-
tive function; λ1,2, the strength of the block-L1 regularization used to determine
the non-zero parameters of the model and λ2, the regularization weight used
to estimate the values of the non-zero parameters. γ− and λ2 were set to 0.05
and 1 respectively based on our initial experiments using one train-test split.
The small value of γ− reflects the relative abundance of non-interactions in our
dataset and our emphasis on modeling interactions comprehensively since they
are biologically more interesting. For each training split, we varied λ1,2 generat-
ing multiple models spanning the spectrum from models with no interactions to
models where nearly all possible interactions were allowed.

Fig. 2 summarizes trends over values of λ1,2. The top-left panel characterizes
the increase in number of interactions with decreasing λ1,2, and top-right panel
the corresponding increase in the average Pearson correlation coefficient, from
0.49 when there are no edges in the model and all contributions are due to the
Vi, Vj , to 0.66 when ∼ 60 interactions are included, to a maximum of 0.69 when
∼ 300 interactions are included. The relatively large increase in model accuracy
when the number of edges increases from 0 to 60 suggests that these edges make
important contributions to binding affinity and specificity. In contrast, the rela-
tively small increase in accuracy of the model as the number of edges increases
beyond 60 to being a completely connected model suggests that the edges intro-
duced later have relatively low importance. The bottom panel shows the average
strength of each edge, calculated as the norm of Wi,j , as a function of λ1,2. Each
line represents a separate unique interacting pair of residues; interactions that
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Fig. 2. Trends with varying regularization weight (parameter λ1,2), with higher values
yielding sparser models. (top-left) Number of edges in models learned with varying
λ1,2. (top-right) Regularization path, showing each edge’s strength as a function of
λ1,2. The red star indicates a model with edges fixed according to contacts in a crystal
structure. (bottom) Test correlation coefficient as a function of the average number
of edges in trained model.

have high weight at λ = 25 are highlighted in color, while the remaining in-
teractions are shown in black. When the model is sparse (high λ1,2), there are
few, strong, interactions; as the density of the model increases (low λ1,2), most
interactions have non-zero strength but are very weak.

Fig. 3 shows the prediction results for one 10-fold repetition at λ1,2 = 20.
The overall correlation coefficient across the dataset was 0.67 while the root
mean square error between experiment and prediction was 0.62. Most errors
were equally distributed around zero, and actually within typical experimental
error. However, there were a few clear outliers where the model under-predicted
binding energies.

Contact-based model structure. When an experimentally determined 3D struc-
ture of the protein-protein interface is available, an alternate approach to de-
termining the structure (edges) of the graphical model could be to restrict the
non-zero interactions to the pairs of residues close to each other in the 3D struc-
ture. The parameters of this model with fixed structure can then be readily
learned with L2 regularization, as before. Macbeath and colleagues identified 38
contacts between 16 PDZ residues and 5 peptide [4]. We repeated our 10 fold
cross-validation experiments, using these 21 positions and 38 contacting residues
as the set of vertices and edges in the model (instead of identifying them using
the block-L1 penalty), and estimated their parameters with L2 regularization.
The average correlation coefficient of the contact-based models is 0.60, which,
while good, is lower than the 0.66 correlation obtained by models with about
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Fig. 3. Example prediction results, combined across 10 splits in one repetition at
λ1,2 = 20. (left) Scatterplots of experimental vs. predicted ΔG. Pearson Correlation
Coefficient across entire test-split was 0.67. (right) Histogram of prediction errors.

60 interactions. Could the difference in accuracy be due to the difference in the
number of interactions? The top-right panel in Fig. 2 highlights the accuracy
of this model (shown as a red star), compared to the correlation coefficients
obtained by varying λ1,2. We see that the models with learned structure can
achieve accuracy similar to the contact-structure model but using fewer interac-
tions; alternativeely, a model with learned structure and a comparable number
of interactions to that of the contact structure achieves higher correlation. Thus
our data-driven approach to learning model structure can identify important in-
teractions beyond those that might be inferred by inspection of the 3D structure.

Leave-one PDZ out. To test the scenario where the model is applied to make
predictions for a new PDZ, we performed “leave-one-PDZ-out” cross-validation
following the approach of Bader and colleagues [33]. We held out data for each
of the 23 PDZ domains with at least 10 interactions, training the model on the
remaining data and testing on the held-out domain. Since the effect of λ1,2 on
the sparsity of the model depends on the number of sequences in the training set,
instead of choosing the same value of as selected by ten-fold cross validation, we
performed a grid search on λ1,2 and used the value that gives a model of similar
sparsity as the cross-validated models. This process allows us to parameterize
the model by the number of edges as opposed to the less natural λ1,2. Using
this procedure we obtained an average correlation coefficient of 0.61 across the
23 PDZs that had at least 10 interactions. Again, allowing for denser models
by changing the regularization weight slightly improved the average correlation
coefficient to 0.63 which is comparable to the 0.65 obtained by Bader and col-
leagues by Support Vector Regression [33]; when restricting to contact edges, we
obtain 0.54 (about the same as the 0.56 of Bader and colleagues).

3.2 Model Analysis

A key feature of DgSpi is that a model can be easily “opened up” to charac-
terize the amino acid determinants of binding. To illustrate, we characterized
the models trained at λ1,2 = 25 across the 10 folds, computing the average
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Fig. 4. Model analysis. (top) Average strength of the vector 2-norms for the PDZ
positions (i.e., Vi), peptide positions (i.e., Vj), and potentially interacting pairs (i.e.,
Wi,j) in the model trained at λ1,2 = 25. (bottom-left) Strong interactions highlighted
in top panel, displayed on the NMR structure of the alpha syntropin PDZ (pdb id:
2PDZ). Color scheme same as above. (bottom-right) Average edge strength across
10 training splits plotted against distance in the 3D structure.

strength of the vector 2-norms for the protein positions (i.e., Vi), peptide po-
sitions (i.e., Vj), and potentially interacting pairs (i.e., Wi,j). Fig. 4-top shows
these values: the strengths of the vertex terms appear along the axes (x-axis
for PDZ positions and y-axis for peptide positions), while the strengths of the
PDZ:peptide edge terms appear in the heat map. As might be expected for inter-
action affinities, the position-based terms are relatively weaker, with most being
less than 0.2. In contrast, more than 40 interaction terms have norms larger than
this value with a large fraction of them between position 4 of the peptide and the
protein. Fig. 4-bottom-left overlays these strong interactions on the structure of
the murine al-syntrophin PDZ (colored blue to light pink according to position)
complexed with the peptide KESLV (colored in red). Fig. 4-bottom-right plots
the edge strength (y-axis) against the distance of the corresponding residue pairs
(x-axis) Interestingly, while most of the strong edges tend to be between posi-
tions less than 15 Å apart in the crystal, there are a few edges that are at a
longer-range that appear consistently.

Despite the fact that no 3D structure information was used in learning the
model, our method identifies several contacting residues as important for de-
termining interaction specificity. This suggests that our data-driven approach
might be capturing physically important interactions. To test this hypothesis
further, we determined the average weight assigned to each possible amino acid
pair for the top three interacting residue pairs across the models for the 10 train-
ing folds at λ1,2 = 25. Fig. 5 shows these weights with strong negative energies
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Fig. 5. Average weights for amino acid pairs for the top three interacting residue pairs

(i.e., favoring binding) in shades of blue and strong positive energies in shades
of red. Darker shades correspond to stronger effects in both cases. The strongest
interacting residue pair (PDZ position 54 : peptide position 2) strongly favors
interactions between oppositely charged Arginine/Lysine in the PDZ and Gluta-
mate in the peptide, while strongly penalizing Aspartate/Glutamate : Glutamate
between pairs of negatively charged residues, suggesting a strong electrostatic
effect between these positions. Similar effects are seen in the other two inter-
actions with Glutamate:Lysine favored between 48:1 and Aspartate:Threonine
penalized between 12:4. Our method can thus provide structural information as
well as insights into the biochemical determinants of binding affinity.

In summary, our results suggest that a large fraction of the binding affinity is
due to interactions between a relatively small set of positions, not all spatially
adjacent to the binding pocket. A larger set of weak interactions might have an
additional small effect on binding; these might effect particular sub-families of
PDZs or might reflect allosteric affects related to alternate conformational states
of the protein previously described in this family [20].

3.3 From Sequence Determinants to Sequence Design

The accuracy and simplicity of our model allows us to rapidly evaluate the
binding affinity of any PDZ-peptide pair. We demonstrate the utility of this
approach by “designing” optimal binders for a given PDZ sequence. Using a
model learned from the entire training set with λ1,2=25, we searched all five
residue peptides and determined the top 10 peptides by their predicted ΔG for
each PDZ sequence. Fig. 6-left shows the density of predicted binding energies
of these PDZ:peptide pairs in blue and that of natural PDZ-peptide pairs bind-
ing energies in our training dataset in red. The predicted binding affinities of
designed sequences are considerably lower than those of the natural sequences. .

While the designed sequences include the natural substrates (at close to their
predicted affinities, as discussed above), they also include a diverse array of
alternatives. Fig. 6-right shows sequence logos of the top 10 designed peptides
for three different PDZs. Even among these sets of top predicted binders, we see
interesting diversity among the peptides, suggesting novel designs potentially
worthy of experimental evaluation.
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Fig. 6. (left) Density of predicted PDZ-peptide ΔG for designed peptides (blue) and
experimental ΔG for natural PDZ-peptide pairs (red). (right) Sequence logos for the
top 10 peptide designs for SHANK1, CHAPSYN, and PSD95 (top, middle and bottom).

4 Discussion and Conclusion

We have developed a graphical model which is highly predictive of the ΔG of
binding in protein:protein interactions, while providing an interpretable and des-
ignable basis for its predictions. The notion of modularity is fundamental to the
idea of a graphical model. Hence these models form a powerful and natural tool
to solve problems involving complex probability distributions over many random
variables, like the ones here. Due to the natural equivalence between the graph
structure of a model and the structure of spatial interactions in proteins, graphi-
cal models have seen considerable use in modeling various aspects of proteins: in
recognizing structural motifs [19,24,25], in protein structure alignments [42], and
in modeling dynamics [30]. A growing body of work using graphical models to
capture correlated mutations in protein families has also seen substantial success
in predicting residue-residue contacts in the protein structure [10,12,22,26,28],
highlighting the power of these models.

While basing the modeling of ΔG on sequence and data is fundamentally
different from structure-based predictors, which employ physics-based models
and analysis of side-chain (and potentially backbone) conformations to assess
interactions (e.g., [9,16,35]), we note that structure-based undirected graphical
models have been used to predict ΔG [13,14]. The integration of the structure-
based approach and the sequence+data-based approach provides an interesting
future direction. Our preliminary work on such integration for individual proteins
[11] provides evidence that the two viewpoints can be complementary and enable
better prediction than either alone.

The method we developed here could be applied to any pair of interacting
protein families with a similar extent of quantitative binding data. Due to their
size and easy availability, PDZ domains form a “model system” for studying
protein-protein interactions, [4,17,34,40]. They are involved in formation of pro-
tein complexes which are involved in cellular signal transduction and neural
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circuitry [34] and so make an interesting test case from the point of view of
protein-engineering [7] and drug design [31].

We demonstrated that our models can be used to design novel peptides that
interact strongly with a given PDZ domain. This approach could be extended
using sampling or other inferential techniques to design a desired interaction,
rather than only the peptide, and to scale up to larger sets of involved residues.
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Abstract. Superposition by orthogonal transformation of vector sets by
minimizing the least-squares error is a fundamental task in many areas
of science, notably in structural molecular biology. Its widespread use
for structural analyses is facilitated by exact solutions of this problem,
computable in linear time. However, in several of these analyses it is com-
mon to invoke this superposition routine a very large number of times,
often operating (through addition or deletion) on previously superposed
vector sets. This paper derives a set of sufficient statistics for the least-
squares orthogonal transformation problem. These sufficient statistics
are additive. This property allows for the superposition parameters (ro-
tation, translation, and root mean square deviation) to be computable as
constant time updates from the statistics of partial solutions. We demon-
strate that this results in a massive speed up in the computational effort,
when compared to the method that recomputes superpositions ab initio.
Among others, protein structural alignment algorithms stand to benefit
from our results.

1 Introduction

Optimal superposition through orthogonal transformation of vector sets forms
the linchpin of macromolecular structure comparison [1, 2]. This task is ubiq-
uitously used to analyse globular three-dimensional structures of proteins [3].
Orthogonal transformation involves finding the best rigid-body rotation and
translation of two vector sets that are in one-to-one correspondence so that
they can be superimposed. This superposition immediately provides a quali-
tative (through visual inspection) as well as a quantitative measure of shape
similarity.

An almost universally used criterion to define the best superposition of vec-
tor sets is the one that minimizes the sum of square errors over the entire
search space of possible rotations and translations. This results in a quantita-
tive measure, root mean square deviation (or r.m.s.d.) after best superposition.
This measure is central in assessing the quality of superposition with attractive
metrical properties.

R. Sharan (Ed.): RECOMB 2014, LNBI 8394, pp. 144–159, 2014.
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Superpositions pervade protein structural analyses because they provide es-
sential information about comparisons of conformations of structures and sub-
structures; it is remarkable and comes in handy that optimal superposition of
aligned sets of points can be computed exactly and efficiently [3]. Given the im-
portance of this routine, several approaches have been proposed to address this
problem over the years [4–14]. However, among the most-widely used approach
to solve this problem is the method of Kabsch [5] that solves this problem us-
ing Lagrange multipliers that constrain the search to pure rotations (and avoid
improper ones).

An equivalent, but a more elegant, approach to solving the same problem
was proposed by Kearsley [11] using the mathematical object called quater-
nions [15]. Quaternions are generalizations of complex numbers with direct ap-
plications to transformations in three dimensional space. Specifically, the space
group corresponding to unit quaternions is equivalent to the group of all possi-
ble pure rotations in three dimensions (3D) defined about an arbitrary origin.
That is, any 3D pure rotation by an angle θ about some normalized axis n̂ pass-
ing through the origin can be represented using a unit quaternion as follows:[
cos

(
θ

2

)
, n̂ sin

(
θ

2

)]
. Among the key advantages of using Kearsley’s quater-

nion method to solve the least-squares superposition problem are: (1) the prob-
lem can be solved analytically in quaternion parameters, and (2) the method
avoids problems with singularities (and rotoinversions) that can result from us-
ing Kabsch’s approach, where these oddities are handled explicitly after the
solution is found [11, 13]. In general, the least-squares superposition involves
a computational effort that asymptotically grows linearly with the number of
corresponding points being superimposed.

Many methods that facilitate analyses involving protein structures employ
least-squares superpositions. Among the primary example of this is when
computing the residue-residue correspondences betweeen two or more protein
structures – the structural alignment problem. Many popular methods build an
alignment between structures using orthogonal superpositions of fragments [9,
16–23]. The general strategy involves finding aligned (contiguous) fragment pairs
that are often maximally extended, one residue-residue correspondence at a time
starting from some minimum fragment size, until the fragment pairs superposes
within some specified threshold of r.m.s.d. This results in a library of well-fitting
fragment pairs, construction effort of which grows as a cubic in the length of
the structures being aligned (O(n2) number of superpositions, each taking O(n)
superposition effort, where n is the number of residues in the structures be-
ing aligned). Further, by computing the joint superpositions of these well-fitting
maximal fragment pairs, a structural alignment is assembled by collecting frag-
ment pairs that superpose consistently. This involves repeated concatenation and
superposition calls using the fragment pairs in the library. Such superpositions
are currently recomputed from scratch (even though the previous superposi-
tions provide a wealth of information about the joint superposition, as we shall
demonstrate in the forthcoming sections). It can be seen that the number of joint
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superpositions grows (at least) quadratically in the size of the fragment library,
with each joint superposition taking a linear effort in the size of the concatenated
vector sets.

Although the optimal solution of the least-squares superposition problem can
be computed extremely efficiently, the algorithmic complexity term hides a size-
able constant factor. This imposes a significant computational demand when
performing a large number of superpositions, as required for computing pair-
wise structural alignments. The amount of time spent in superposing fragments
quickly becomes computationally impractical when aligning multiple protein
structures simultaneously, where the multiple structural alignment is commonly
built using all-vs-all pairwise structural alignments, each of which makes a very
large number of calls to the superposition routine.

Contribution of This Work: In this paper we explore the theoretical under-
pinning of the orthogonal superposition problem and derive a set of statistics that
are sufficient to compute the r.m.s.d of best superposition, and its correspond-
ing rotation and translation parameters). We demonstrate that these sufficient
statistics [24] are additive. Thus these statistics can be used to compute new
superpositions as constant time updates using the statistics of the partial solu-
tions. Using such an approach results in a drastic speed up in comparison with
the approach that recomputes the new superposition from scratch.

Organization of This Paper: Section 2 gives the basic background of the
orthogonal superposition problem using the widely-used least-squares criterion.
Section 3 introduces the statistical aspects of sufficient statistics, and derives
the full set of sufficient statistics for the optimal orthogonal superposition prob-
lem. Section 4.1 provides the mechanics of performing constant-time updates to
superpositions building on the sufficient statistics of previous (partial) super-
positions. Section 5 describes an approach to speed up the diagonalization step
used in the Kearsley approach. Finally, the paper ends with an experimental
evaluation of computing optimal superpositions using sufficient statistics.

2 Orthogonal Superposition

Formally let U = {u1, · · · ,un} and V = {v1, · · · ,vn} denote two vector sets with
one-to-one correspondence. In this paper we consider vectors in three dimensions.
Let the (x, y, z) components of eachui be represented here as (ui(x),ui(y),ui(z)).
(Similar representation holds for vi or any other vector.)

The rigid-body least-squares superposition problem is a constrained optimiza-
tion problem that involves finding the best rotation (matrix) R and translation
(vector) t with the optimality criterion defined as:

E = min |RU+t−V|2 = min

n∑
i=1

|Rui+t−vi|2 = min

n∑
i=1

〈Rui + t− vi,Rui + t− vi〉
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where 〈·, ·〉 denotes the inner product between the stated terms, R is a 3 × 3
pure rotation matrix, and t is a translation vector.

Under this least-squares criterion, the translation with respect to the optimal
superposition is independent of rotation. This can be easily seen by differentiat-
ing E with respect to t and evaluating it at its extremum:

∂E
∂t

=
∂

∂t

n∑
i=1

〈Rui + t− vi,Rui + t− vi〉 =
n∑

i=1

2
∂(Rui + t− vi)

∂t
(Rui + t− vi) = 0

=⇒
n∑

i=1

Rui + t− vi = 0

=⇒ t =

∑n
i=1 vi

n
−R

∑n
i=1 ui

n
= Centroid(V)−R Centroid(U)

It follows that moving each of the vector sets to an origin at its centroid, about
which the rotation is defined, gives us a modified (but equivalent) objective
which is independent of the translation t:

E = min
n∑

i=1

|Ru′
i − v′

i|2

where, ui
′ = ui −

∑n
i=1 ui

n
and vi

′ = vi −
∑n

i=1 vi

n
.

Kearsley [11] proposed an elegant method that removes the non-linear aspect
to this least-squares problem and transforms it to an eigenvalue problem of the
form Qq = λq, where Q is a 4× 4 square symmetric matrix

⎛
⎜⎜⎜⎜⎝

∑
(x2

m + y2
m + z2m)

∑
(ypzm − ymzp)

∑
(xmzp − xpzm)

∑
(xpym − xmyp)∑

(ypzm − ymzp)
∑

(x2
m + y2

p + z2p)
∑

(xmym − xpyp)
∑

(xmzm − xpzp)∑
(xmzp − xpzm)

∑
(xmym − xpyp)

∑
(x2

p + y2
m + z2p)

∑
(ymzm − ypzp)∑

(xpym − xmyp)
∑

(xmzm − xpzp)
∑

(ymzm − ypzp)
∑

(x2
p + y2

p + z2m)

⎞
⎟⎟⎟⎟⎠

, (1)

q = (q1, q2, q3, q4)
T
=

(
cos

(
θ

2

)
, n̂(x) sin

(
θ

2

)
, n̂(y) sin

(
θ

2

)
, n̂(z) sin

(
θ

2

))T

are the (unknown or to be solved) quaternion components associated with some
rotation θ about a normalized axis n̂, and λ is an (unknown) eigenvalue. In
Equation 1, we use the notation xm to denote the component-wise difference
v′
i(x) − u′

i(x) (and similarly ym and zm) and xp to denote the component-wise
sum v′

i(x)+u′
i(x) (similarly yp and zp). From this point onwards, we use the term

quaternion matrix to indicate the 4× 4 square symmetric matrix in Equation 1
and denote it as Q.

Diagonalizing this matrix yields four eigenvalues and (corresponding) eigen-
vectors. The eigenvector corresponding to the smallest eigenvalue, λmin, cor-
responds to the rotation producing the least-squares error, and the r.m.s.d is

computed as

√
λmin

n
.



148 A.S. Konagurthu et al.

Time Complexity. The computational effort that takes to solve the rigid-body
superposition problem using Kearsley’s quaternion approach (or equivalently
Kabsch’s approach) grows linearly with the number of vectors being superim-
posed. In Kearsley’s approach this is dominated by the computation of the Q
where each of 10 distinct terms in the matrix requires O(n) effort. The diagonal-
ization of Q is independent of n and shows a rapid convergence with numerical
methods such as Jacobi’s diagonalization algorithm [25].

3 Sufficient Statistics

We note that this rigid-body superposition problem is a geometric instance of
the general regression problem using total least-squares, where a regression line
is determined that minimizes the sum of the squared errors of the observed data
with respect to it.

It is widely known that solution of the regression problem produces error
terms that are normally distributed as N (0, σ) where the mean μ is 0 and σ
is the standard deviation which is minimized by the problem. In fact, the least
squares estimator of σ is also its maximum likelihood estimator.

More formally, consider the standard normal distribution of some random
variable x:

N (x|μ, σ) = 1√
2πσ

exp

[
− (x− μ)2

2σ2

]
This normal density can be reparameterized into a general form denoting the
family of exponential distributions:

f(x|η) = h(x)g(η) exp(ηTU(x))

where h(x) =
1√
π
, g(η2) =

√
−η2 exp

(
η21
4η2

)
, ηT = (

μ

σ2
,− 1

2σ2
), UT (x) =

(x, x2).
This transformation can be used to show certain important properties that

allows efficient computation of maximum likelihood estimators of μ and σ.
Considering a sample set of observations that are normally distributed X =

{x1, x2, · · · , xn}. The likelihood for these samples is given by:

f(X|η) =
(

n∏
i=1

h(xi)

)
(g(η))n exp(ηT

n∑
i=1

u(xi))

Taking natural logarithms on both sides gives us the log likelihood:

log(f(X|η)) = κ+ n log (g(η)) + ηT
n∑

i=1

U(xi)

where κ =

n∑
i=1

log(h(xi)) is a term independent of η.
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To find the maximum likelihood estimators η̂, take the gradient with respect
to η and set to 0. This results in:

n∇η̂ [log (g(η̂))] +
n∑

i=1

U(xi) = 0

=⇒ −∇η̂ [log (g(η̂))] =
1

n

n∑
i=1

U(xi)

=
−1
g(η̂)

∇η̂g(η̂) =
1

n

n∑
i=1

U(xi)

Notice that maximum likelihood estimate η̂ depends on the statistic

n∑
i=1

U(xi)

rather than the individual data. This suggests that to obtain the maximum like-
lihood estimate we do not need the data explicitly as it can be derived from
that statistic. This sufficiency to derive the maximum likelihood estimator with-

out explicit consideration of data makes

n∑
i=1

U(xi) a sufficient statistic for the

exponential family of functions. For normal distribution, we saw earlier that

U(xi) = (xi, x
2
i ) gives the sufficient statistics of

n∑
i=1

xi and

n∑
i=1

x2
i [24].

Sufficient Statistics for Orthogonal Superposition
We note that each error term, εi = Rui

′ − vi
′, is assumed to be normally

distributed: i.e., εi ∼ N (μ = 0, σ). We now derive the sufficient statistics for
σ of εis, which is equivalent to the r.m.s.d. after least-squares superposition.
The likelihood of the observed normally distributed errors after superposition,
E = {ε1, . . . , εn}, can be written as:

f(ε1, . . . , εn|σ) =
n∏

i=1

(2πσ2)−
1
2 exp

(
− 1

2σ2
‖Rui

′ − vi
′‖2
)

= (2πσ2)−
n
2 exp

(
− 1

2σ2

n∑
i=1

‖Rui
′ − vi

′‖2
)

(2)

Let’s examine the decomposition of

ε2i = ‖Rui
′ − vi

′‖2 = ‖ui
′‖2 + ‖vi

′‖2 − 2vi
′TRui

′ (3)

From Equation 1, the matrix Q is made up of terms of the form

Am = v′i(A) − u′
i(A) and Ap = v′i(A) + u′

i(A)

where each A and B take the values {x, y, z} denoting vector components.
Rewriting, we get

v′i(A) =
Ap +Am

2
and u′

i(A) =
Ap −Am

2
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The first two terms on the right hand side of Equation 3 can be expanded as
follows:

‖ui
′‖2 + ‖vi

′‖2 = (u′
i(x)

2 + u′
i(y)

2 + u′
i(z)

2) + (v′i(x)
2 + v′i(y)

2 + v′i(z)
2)

=
1

2
(x2

m + x2
p + y2m + y2p + z2m + z2p)

=
1

2

∑
A∈{x,y,z}

A2
m +

1

2

∑
A∈{x,y,z}

A2
p (4)

The last term on the right hand side of Equation 3 can be expanded as vi
′TRui

′=
vi

′T[r1 r2 r3]ui
′ where r1, r2, r3 are column vectors of the 3×3 rotation matrix

R. Therefore,

vi
′TRui

′ = (vi
′.r1)u′

i(x) + (vi
′.r2)u′

i(y) + (vi
′.r3)u′

i(z) (5)

Take the first term on the right hand side of Equation 5. This can be expanded
as:

(vi
′.r1)u′

i(x) = r11v
′
i(x)u

′
i(x) + r12v

′
i(y)u

′
i(x) + r13v

′
i(z)u

′
i(x)

=
r11

4
(xp + xm)(xp − xm) +

r12

4
(yp + ym)(xp − xm) +

r13

4
(zp + zm)(xp − xm)

=
r11

4
(x2

p − x2
m) +

r12

4
(ypxp − ypxm + ymxp − ymxm)

+
r13

4
(zpxp − zpxm + zmxp − zmxm)

where r11, r12, r13 are the terms in the r1 column vector in R. More generally,

(vi
′.r1)u′

i(x) = c1A
2
p + c2A

2
m + c3ApBp + c4AmBm + c5AmBp (6)

where ck are constants in terms of components of r1.
Similarly, (vi

′.r2)u′
i(y) and (vi

′.r3)u′
i(z) can be expanded as above and will

have the same form as (6) but with different constants. Therefore, combining
Equations 4-5, the equation 3 can be written as

ε2i = ζ1
∑
A

A2
p + ζ2

∑
A

A2
m + ζ3

∑
∀A �=B

ApBp + ζ4
∑

∀A �=B

AmBm + ζ5
∑

∀A �=B

AmBp

where ζk are constants. Hence, the likelihood function can be written as

f(ε1, . . . , εn|σ) = (2πσ2)−
n
2 exp

(
− 1

2σ2
U

)
(7)

where

U =
n∑

i=1

⎛
⎝ζ1

∑
A

A2
p + ζ2

∑
A

A2
m + ζ3

∑
∀A�=B

ApBp + ζ4
∑

∀A�=B

AmBm + ζ5
∑

∀A�=B

AmBp

⎞
⎠

and A,B ∈ {x, y, z}
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Using Equation 7, the negative log-likelihood is given as:

L(ε1, . . . , εn|σ) =
n

2
log(2π) + n logσ +

1

2σ2
U (8)

The maximum likelihood estimate σ̂ can be determined by minimising Equation
8 and evaluating the corresponding σ, i.e.

∂L
∂σ

= 0 =⇒ σ̂2 =
U

n
(9)

U involve statistics that do not take into account the data explicitly, and are
sufficient to estimate σ (or r.m.s.d). Therefore the set of sufficient statistics for
the least-squares superposition problem can be defined as:

Ψ =

{
n∑

i=1

Am,
n∑

i=1

Ap,
n∑

i=1

AmBm,
n∑

i=1

AmBp,
n∑

i=1

ApBp

}
(10)

where A and B take the values {x, y, z}, Am = vi
′(A)−ui

′(A) is the component-
wise difference (similarly Bm), and Ap = vi

′(A) +ui
′(A) is the component-wise

sum (similarly Bp). Altogether, the set Ψ consists of 24 distinct statistics.
In addition, using the same notation, the statistics required to compute the

centroid are of the form

n∑
i=1

ui
′(A) and

n∑
i=1

vi
′(A), and these are equivalent to∑

∀A
Am and

∑
∀A

Ap.

4 Updating Sufficient Statistics

4.1 Addition Operation on Vector Sets Using Sufficient Statistics

Consider two pairs of corresponding vector sets: Q ↔ R containing n1 corre-
spondences and S ↔ T containing n2 correspondences. Let U be defined as a
combination of vectors Q and S) and similarly V as a combination of R and
T . Let Ψ1 denote the sufficient statistics of superposing the first pair and Ψ2

denote the same for the second pair. Define these as:

Ψ1 =

{
n1∑
i=1

Cm,

n1∑
i=1

Cp,

n1∑
i=1

CmDm,

n1∑
i=1

CmDp,

n1∑
i=1

CpDp

}
(11)

Ψ2 =

{
n2∑
i=1

Em,

n2∑
i=1

Ep,

n2∑
i=1

EmFm,

n2∑
i=1

EmFp,

n2∑
i=1

EpFp

}
(12)

Where C,D,E and F are all either {x, y, z} denoting the components of the
corresponding vectors in the vector sets under consideration. Consistent with
the previous notation (see Equation 10), Cp and Cm (similarly Dp and Dm)
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are the component-wise sums and differences between corresponding vectors in
Q and R. The same definitions hold for Em (and Ep) and Fm (and Fp), with
respect to corresponding vectors in S and T .

We want to use Ψ1 and Ψ2 to compute a new set of sufficient statistics Ψ
(defined in Equation 10) for the superposition of vector sets U = Q + S with
V = R+ T . Below we derive the construction of the new sufficient statistics.

The statistics involved in computing the new centroids of the sets U and V ,
n=n1+n2∑

i=1

u(A) and

n=n1+n2∑
i=1

v(A), can be trivially updatated using the statistics

n1∑
i=1

q(C),

n1∑
i=1

r(D),

n2∑
i=1

s(E), and

n2∑
i=1

t(F ).

To compute the remaining statistics in Ψ, define vectors:

α1 = Centroid(U)−Centroid(Q) β1 = Centroid(V)−Centroid(R)
α2 = Centroid(U)−Centroid(S) β2 = Centroid(V)−Centroid(T ).

These vectors define the corrections that are required to be made to the previous
centroids to recover the updated ones.

Lemma 1.
n=n1+n2∑

i=1

Am =

[
n1∑
i=1

Cm + n1Δ
C
m

]
+

[
n2∑
i=1

Em + n2Δ
E
m

]
, where ΔC

m =

β1(C) −α1(C) and ΔE
m = β2(E)−α2(E) and A = C = E ∈ {x, y, z}

Proof

n=n1+n2∑
i=1

Am =

[
n1∑
i=1

[(r′(C) + β1(C)) − (q′(C) +α1(C))]

]

+

[
n2∑
i=1

[(t′(E) + β2(E)) − (s′(E) +α2(E))]

]

=

[
n1∑
i=1

(r′(C) − q′(C)) + (β1(C)−α1(C))

]

+

[
n2∑
i=1

(t′(C)− s′(C)) + (β2(E)−α2(E))

]

=

[
n1∑
i=1

Cm +

n1∑
i=1

ΔC
m

]
+

[
n2∑
i=1

Em +

n2∑
i=1

ΔE
m

]

=

[
n1∑
i=1

Cm + n1Δ
C
m

]
+

[
n2∑
i=1

Em + n2Δ
E
m

]
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Corollary 1.

n∑
i=1

Ap =

[
n1∑
i=1

Cp + n1Δ
C
p

]
+

[
n2∑
i=1

Ep + n2Δ
E
p

]

Lemma 2

n=n1+n2∑
i=1

AmBm =

[
n1∑
i=1

CmDm +ΔC
m

n1∑
i=1

Dm +ΔD
m

n1∑
i=1

Cm + n1Δ
C
mΔD

m

]

+

[
n2∑
i=1

EmFm +ΔE
m

n2∑
i=1

Fm +ΔF
m

n2∑
i=1

Em + n2Δ
E
mΔF

m

]

where ΔC
m = β1(C) − α1(C), ΔD

m = β1(D) − α1(D), ΔE
m = β2(E) − α2(E),

and ΔF
m = β2(F )−α2(F ) A = C = E ∈ {x, y, z} and B = D = F ∈ {x, y, z}

Proof

Updated(

n1∑
i=1

CmDm) =

n1∑
i=1

[(r′(C) + β1(C))− (q′(C) +α1(C))]

[(r′(D) + β1(D))− (q′(B) +α1(D))]

=

n1∑
i=1

[(r′(C)r′(D)− q′(C)q′(D)− r′(C)q′(D) + q′(C)r′(D)]

+

n1∑
i=1

[(β1(C)r′(D)−α1(C)r′(D)− β1(C)q′(D) +α1(C)q′(D)]

+

n1∑
i=1

[(r′(C)β1(D)− r′(C)α1(D)− q′(C)β1(D) + q′(C)α1(D)]

+

n1∑
i=1

[(β1(C)β1(D)−α1(C)β1(D)− β1(C)α1(D) +α1(C)α1(D)]

=

n1∑
i=1

CmDm +

n1∑
i=1

ΔC
mDm +

n1∑
i=1

ΔD
mCm +

n1∑
i=1

ΔC
mΔD

m

=

n1∑
i=1

CmDm +ΔC
m

n1∑
i=1

Dm +ΔD
m

n1∑
i=1

Cm + n1Δ
C
mΔD

m

Similarly, we can show that:

Updated(

n2∑
i=1

EmFm) =

n2∑
i=1

EmFm +ΔE
m

n2∑
i=1

Fm +ΔF
m

n2∑
i=1

Em + n2Δ
E
mΔF

m

Adding the two updated statistics, the lemma follows.
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Corollary 2

n=n1+n2∑
i=1

A2
m =

n=n1+n2∑
i=1

AmAm =

[
n1∑
i=1

CmCm + 2ΔC
m

n1∑
i=1

Cm + n1

(
ΔC

m

)2]

+

[
n2∑
i=1

EmEm + 2ΔE
m

n2∑
i=1

Em + n2

(
ΔE

m

)2]

Corollary 3

n=n1+n2∑
i=1

ApBp =

[
n1∑
i=1

CpDp +ΔC
p

n1∑
i=1

Dp +ΔD
p

n1∑
i=1

Cp + n1Δ
C
p Δ

D
p

]

+

[
n2∑
i=1

EpFp +ΔE
p

n2∑
i=1

Fp +ΔF
p

n2∑
i=1

Ep + n2Δ
E
p Δ

F
p

]

Corollary 4

n=n1+n2∑
i=1

A2
p =

n=n1+n2∑
i=1

ApAp =

[
n1∑
i=1

CpCp + 2ΔC
p

n1∑
i=1

Cp + n1

(
ΔC

p

)2]

+

[
n2∑
i=1

EpEp + 2ΔE
p

n2∑
i=1

Ep + n2

(
ΔE

p

)2]

Lemma 3

n=n1+n2∑
i=1

AmBp =

[
n1∑
i=1

CmDp +ΔC
m

n1∑
i=1

Dp +ΔD
p

n1∑
i=1

Cm + n1Δ
C
mΔD

p

]

+

[
n2∑
i=1

EmFp +ΔE
m

n2∑
i=1

Fp +ΔF
p

n2∑
i=1

Em + n2Δ
E
mΔF

p

]

where ΔC
m = β1(C) − α1(C), ΔD

m = β1(D) − α1(D), ΔE
m = β2(E) − α2(E),

and ΔF
m = β2(F )−α2(F ) A = C = E ∈ {x, y, z} and B = D = F ∈ {x, y, z}

Proof

Updated(

n1∑
i=1

CmDp) =

n1∑
i=1

[(r′(C) + β1(C)) − (q′(C) +α1(C))]

[(r′(D) + β1(D)) + (q′(B) +α1(D))]
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=

n1∑
i=1

[(r′(C)r′(D)− q′(C)q′(D) + r′(C)q′(D)− q′(C)r′(D)]

+

n1∑
i=1

[(β1(C)r′(D)−α1(C)r′(D) + β1(C)q′(D)−α1(C)q′(D)]

+

n1∑
i=1

[(r′(C)β1(D)− r′(C)α1(D) + q′(C)β1(D)− q′(C)α1(D)]

+

n1∑
i=1

[(β1(C)β1(D)−α1(C)β1(D) + β1(C)α1(D)−α1(C)α1(D)]

=

n1∑
i=1

CmDp +

n1∑
i=1

ΔC
mDp +

n1∑
i=1

ΔD
mCp +

n1∑
i=1

ΔC
mΔD

p

=

n1∑
i=1

CmDp +ΔC
p

n1∑
i=1

Dm +ΔD
m

n1∑
i=1

Cp + n1Δ
C
mΔD

p

Similarly, we can show that:

Updated(

n2∑
i=1

EmFp) =

n2∑
i=1

EmFp +ΔE
m

n2∑
i=1

Fp +ΔF
p

n2∑
i=1

Em + n2Δ
E
mΔF

p

Adding the two updated statistics, the lemma follows.

4.2 Deletion Operation of Vector Sets Using Sufficient Statistics

Let us consider the case where we want to find a superposition under a deletion
operation. That is, let Q ↔ R and S ↔ T denote two pairs of vector sets that
are in correspondence. Let S ⊂ Q and T ⊂ R. Under this assumption, let us
define U = Q− S and V = R− T .

Using the same notations as in the previous section, it is straightforward to see
that the sufficient statistics Ψ of the superposition of U with V can be derived
from the sufficient statistics Ψ1 (of Q ↔ R) and Ψ2 (of S ↔ T ). The update
rules defining the deletion operation are similar to the ones described above, so
we leave these rules to the reader as an exercise.

5 Computing the r.m.s.d. from Updated Sufficient
Statistics

It is easy to see that Kearsley’s 4 × 4 quaternion matrix Q given in Equation
1 can be constructed using the updated sufficient statistics Ψ derived from Ψ1

and Ψ2. The matrix Q contains 10 distinct elements (given that Q is square
symmetric) which can be computed in constant time.
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In practice, Q is diagonalized using the Jacobi’s iterative rotation approach,
which with each rotation annihilates an off-diagonal element. This approach has
a fast convergence, and requiring no additional optimization. However, in many
cases the updated superposition shows only a marginal change from the previous
one. For example, if we were to extend a current superposition by one pair of
residues, the resultant new transformation will often, in practice, be very close
to the previously computed one. This allows the diagonalisation to build on the
previous solution.

Let Q denote the Kearsley’s 4× 4 matrix corresponding to the superposition
of corresponding vector sets U and V . From eigen decomposition theorem, we
get Q = SΛS−1, where S is the matrix of eigenvectors and Λ is the diagonal
matrix of eigenvalues. Also note that Q is positive semidefinite matrix with the
property QTQ = QQT . This implies that all the eigenvectors are orthogonal to
each other. This further simplifies the decomposition to Q = SΛST . Also, since
S is an orthogonal matrix, Q = SΛST =⇒ Λ = STQS.

Now, assume that the corresponding vector sets are augmented from U and
V to U ′ and V ′, resulting in an updated Kearsley’s matrix Q′. We want to

diagonalize this matrix into S′Λ′S′T . Instead of starting the Jacobi’s iterative
process from scratch, we use the previously computed eigenvectors (before the
vector sets were augmented), S, and compute Λ̃ as STQ′S. Notice that if the
augmentation does not include drastic changes, then Λ̃ is nearly diagonal (that is,
Λ̃ ≈ Λ′), thus requiring very few iterations to fully diagonalize Λ̃. This provides
a further optimization to the diagonalization step under update operations on
vector sets.

6 Experiments

C++ programs were developed to compare the performance gain using sufficient
statistics, when compared with the approach which recomputes the superposition
ab initio.

8992 ASTRAL SCOP [26, 27] domains were as the source structures from
which superposable fragments are randomly sampled. The general procedure of
sampling is as follows. From the list of source structures, uniformly randomly
choose a particular structure. Within this structure choose 2 random fragments
of lengths l1 and l2, where the length is between 10 and 40 residues. These chosen
fragments form the setsQ and S. Yet another structure is again randomly chosen,
and two fragments are sampled from it such that their lengths are strictly l1 and
l2 respectively. These form the sets R and T .

Assuming one-to-one correspondence between Q ↔ R we compute the suf-
ficient statistics Ψ1 of their orthogonal superposition. Similarly the sufficient
statistics Ψ2 is computed for the orthogonal superposition between R ↔ T .
Define U = Q+ S and V = R+ T .
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Iterating this process over 100 million such random samples, we compute:

1. The time it takes to superpose U ↔ V and compute r.m.s.d from scratch.
2. The time it takes to superpose the same and compute r.m.s.d using the

sufficient statistics Ψ1 and Ψ2

3. The difference between the two r.m.s.d values. (This is performed to ascer-
tain the numerical stability involved in computing the r.m.s.d. values from
sufficient statistics.)
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Fig. 1. The CPU times (in seconds) performing joint superpositions from scratch (Red
line) compared against the same using sufficient statistics (Blue line) over 100 million
random fragment data sets derived from ASTRAL SCOP domains. The X-axis reports
the number of joint superpositions divided by 10,000.

Figure 1 compares the run times for the data set discussed above. Without
sufficient statistics the run times takes 1.15 hours to conduct 100 million joint
superpositions, while the same task is be achieved in 261 seconds (≈4 minutes)
using sufficient statistics. This shows a drastic improvement in the run time.

These empirical runtime results demonstrate what we have shown in Section
4.1, that the updates using sufficient statistics can be performed in constant
time. If |J | is the number of joint superpositions and n is the (average) number
of points being superposed, then the first method grows asO(n|J |). Since n� |J |
we see a linear trend (with a steeper gradient accounting for the multiplier n in
the complexity term). In comparison, the results with sufficient statistics grow
simply as O(|J |) with a small gradient, made possible due to constant time
computation of r.m.s.d values (using sufficient statistics) in each iterations.

To assess the numerical stability of our approach, we computed the r.m.s.d.
values using the two approaches. The mean and standard deviation of the dif-
ference between the two r.m.s.d values were then computed. Both the mean and
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the standard deviation are zero Å up to double precision. This demonstrates the
numerical stability of computing r.m.s.d. using sufficient statistics.

7 Conclusion

Optimal superpositions of vector sets provide the foundation to determine
similarities and differences between spatial objects, especially for macromolec-
ular structures. We derived a set of sufficient statistics for the orthogonal
superposition problem minimizing the sum of squares error. These statis-
tics provide a highly efficient method to operate (via addition and dele-
tion of vectors) on the existing superpositions. Our results demonstrate
a drastic improvement in the computational effort required to compute
r.m.s.d. using sufficient statistics. These results are relevant to many anal-
yses involving structural data. These include the plethora of algorithms
to construct pairwise and multiple protein structural alignments by assem-
bling fragment pairs. Source code (written in C++) to undertake super-
positions of vector sets using sufficient statistics can be downloaded from
http://www.csse.monash.edu.au/~karun/suffStatSuperpose.html
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Abstract. Metatranscriptomic analysis provides information on how a microbi-
al community reacts to environmental changes. Using next-generation sequenc-
ing (NGS) technology, biologists can study microbe community by sampling 
short reads from a mixture of mRNAs (metatranscriptomic data). As most mi-
crobial genome sequences are unknown, it would seem that de novo assembly 
of the mRNAs is needed. However, NGS reads are short and mRNAs share 
many similar regions and differ tremendously in abundance levels, making de 
novo assembly challenging. The existing assembler, IDBA-MT, designed spe-
cifically for the assembly of metatranscriptomic data only performs well on 
high-expressed mRNAs.  

This paper introduces IDBA-MTP, which adopts a novel approach to meta-
transcriptomic assembly that makes use of the fact that there is a database of 
millions of known protein sequences associated with mRNAs. How to effec-
tively use the protein information is non-trivial given the size of the database 
and given that different mRNAs might lead to proteins with similar functions 
(because different amino acids might have similar characteristics). IDBA-MTP 
employs a similarity measure between mRNAs and protein sequences, dynamic 
programming techniques and seed-and-extend heuristics to tackle the problem 
effectively and efficiently. Experimental results show that IDBA-MTP outper-
forms existing assemblers by reconstructing 14% more mRNAs. Availability: 
www.cs.hku.hk/~alse/hkubrg/.  

Keywords: metatranscriptomic reads, assembling, next-generation sequencing, 
protein sequence alignment.  

1 Introduction 

The traditional approach for studying microorganisms is to isolate and cultivate each 
single microorganism and then study its behavior, such as gene expression levels, 
under different environments. As different microbes usually live together to form a 
microbial community, isolating a single microbe is usually impossible [4] and, even 
possible, changes the microbe’s living behavior in a microbial community. 
Metatranscriptomic studies in the past have been based on microarrays or cDNA 
clone libraries [2,23,29]. The microarray-based approach [17] requires knowledge of 
target mRNA sequences, which limits its usefulness in relation to novel mRNAs. 
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cDNA clone libraries, on the other hand, can be applied to novel mRNAs, but the 
approach is labor-intensive and the estimations of expression levels of mRNAs are 
inaccurate.  

High-throughput next-generation sequencing (NGS) technology [3,7,22,18] 
introduces a new and better approach for studying metatranscriptomic data. By 
sequencing reads from mRNA sequences of a sample, scientists can reconstruct novel 
mRNA sequences by assembling reads and can estimate the expression levels of each 
mRNA by the number of reads aligned to the mRNA sequence. Currently, there are 
two main NGS technologies for metatranscriptomic data: pyrosequencing technology 
and synthesis technology. Pyrosequencing technology [6,8,24,30] produces long reads 
(of length about 400 bp) with relatively higher cost (over 40 times higher for the same 
throughput). Since the read length is long, no or limited assembly is required. 
Pyrosequencing technology has achieved promising results for soil samples [30] and 
marine samples [6,8]. Synthesis technology, on the other hand, produces relatively 
short reads (of length varying from 75 bp to 150 bp) at much lower cost. Since the 
length of reads produced by synthesis technology is much shorter than the length of 
the mRNA sequence (about 1000 bp), the reads need to be assembled into longer 
sequences (contigs) before analysis.  

Compared with assembling genomic, transcriptomic or metagenomic data, 
assembling metatranscriptomic data is much more difficult because of the following 
reasons. 

1. Repeat patterns across different mRNAs. Repeat patterns usually introduce 
ambiguity during assembly and are a common problem in all types of assembling. 
However, the problem is more serious in metatranscriptomes than in other data. 
Many genes exist in multiple species with similar functions and the resultant 
proteins share common protein domains [9]. As a result, in the metatranscriptomic 
data, many different mRNAs have similar patterns. According to analysis of 
genBank [1], based on known gene information, 24.53% of bacteria genes contain 
at least one repeat pattern of length longer than 100 bp (note that, in this analysis, 
different versions of the same genes from the same bacteria were ignored and only 
the repeat patterns in genes from different bacteria were considered). In these 
circumstances, assemblers, not specially designed for metatranscriptome data, 
produce either short contigs or chimeric contigs that merge mRNA sequences from 
more than one gene [15]. This is consistent with our experiments (see Table 2): 
these assemblers can either only recover 31% of mRNAs with average contig 
length of 194bp and 4.14% error rate (Oasis), or recover more mRNAs (59.29%) 
with longer average contig length (395bp) but the error rate is increased to 10.73% 
(IDBA-UD). 

2. Extreme differences in abundances. For the DNA genome assembly problem of a 
single species, this is not a problem because there is one abundance only. On the 
other hand, in transcriptomic data and metagenomic data, since the abundances of 
different mRNAs and the number of genomes vary (can be 100 times and 1,000 
times different, respectively [25]) because of different expression levels and 
abundances of species, erroneous reads cannot be identified easily by sampling 
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rates. In metatranscriptomic data, this problem becomes more serious. Since both 
the abundances of species and the expression levels of mRNAs from the same 
species may vary, the abundances of different mRNAs can vary much more 
significantly (over 100,000 times). Thus low-expressed mRNA sequences are very 
difficult to reconstruct as correct reads from these sequences and erroneous reads 
are very difficult to distinguish. As Table 1 shows for our experiments on low-
expressed mRNAs, the performance of existing assemblers suffers. 

Thus, existing assemblers for genomic, transcriptomic and metagenomic data do not 
perform well on metatranscriptomic data especially for the low-expressed 
transcriptomes [15]. To our best knowledge, IDBA-MT [15] is the only assembler 
designed for metatranscriptomic data. IDBA-MT aims at solving the repeat pattern 
problem. By applying information from paired-end reads, IDBA-MT can resolve 
some of the chimeric contigs (See Table 2, IDBA-MT can recover more mRNAs 
while decreasing the error rate from about 10% to 5% when compared to IDBA-UD). 
However, this approach can only work for high-expressed transcriptomes with high 
sequencing depths as it relies on paired-end data and fails when there are insufficient 
sampling reads from the mRNAs (i.e., low-expressed mRNAs). 

Similar to genome assembly, besides de novo assembly, one can apply the 
reference-based approach. Existing work tries to reconstruct mRNAs by aligning 
metatranscriptomic reads to known genomes or gene DNA sequences. However, this 
approach has had only limited success [32] as the genomes of most microbes are still 
unknown [4] and the microbe gene sequences mutate frequently.  

Our Observations on the Reference-Based Approach: Although the aforementioned 
reference-based approach has limited success, about 60% to 70% of the proteins in 
bacteria have similar sequences as some known proteins [5, 30], thus known reference 
protein sequences could help in the assembling of novel mRNAs. There are two 
difficulties to resolve in order to make use of the protein sequences. First, we need to 
consider amino acid instead of nucleotides. Even if we consider amino acid, it is not 
trivial due to the following. For proteins with similar functionalities, even though 
their structures are similar and their sequences share some conserved regions, the 
amino acid sequences corresponding to these conserved regions might not be exactly 
the same. Second, to consider amino acid, the information contained in a single read 
becomes much less (3 nucleotides converted to 1 amino acid). Since one read only 
corresponds to about 25 amino acids (aa), it is difficult to have a confident alignment 
[32]. Another approach is to align contigs, instead of reads, to proteins. However, as 
the performance of existing assemblers is not good, the resultant contigs are short or 
incorrect and not many confident alignments can be obtained. 

Our Contributions: To overcome the first problem of amino acid similarity, we 
found that even though the amino acid sequences may not be exactly the same, it is 
known that some amino acids, though different, have similar chemical properties and 
functionality [11]. Consequently, the mRNA can be reconstructed using the approach  
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of first decoding the reads into peptide sequences and then aligning these peptide 
sequences to protein sequences based on the similarity of amino acids (e.g. Blosom 
62). Thus, we incorporate the similarity of amino acids into our alignment algorithm. 
To solve the problem of short reads and low-expressed mRNAs, we make use of the 
paths of the de Bruijn graph with a small k. 

Our proposed assembler, IDBA-MTP, reconstructs mRNA sequences from 
metatranscriptomic reads, especially for low-expressed mRNAs, using the 
information of known microbial protein sequences to guide the construction of 
contigs as follows. IDBA-MTP first constructs a de Bruijn graph from the input reads 
using a relatively small k (k = 21 bp) to compensate for the missing long k-mers in 
low-expressed mRNAs. Since k is small, the de Bruijn graph, though connected, has 
many branches representing repeat regions in the mRNA sequences (due to problem 1 
and 2) and with each mRNA represented by one of its paths. In order to determine 
whether a path represents an mRNA sequence or not, IDBA-MTP will decode the 
path into a peptide sequence and then align it with known protein sequences. Those 
paths, which can be aligned to known protein sequences, should be potential 
candidates for mRNA sequences depending on their similarity and sequencing depths. 
However, since the number of paths is huge (many paths will not represent any 
mRNA sequences) and the alignment with the protein sequences is not 
straightforward because of the similar chemical properties of amino acids, a dynamic 
programming approach with a seed-and-extend (with the seed derived from the 
known protein sequences) heuristics is employed to reduce the complexity of the 
problem. 

Since the candidate mRNA sequences are constructed by aligning known protein 
sequences, mRNA sequences for novel proteins cannot be reconstructed using this 
approach.  An intuitive idea is to run IDBA-MT for novel mRNAs, then combine the 
results of IDBA-MT and the output from our reference-based approach. However, 
some mRNAs sequences may be reconstructed by both approaches, which results in 
redundant or similar contigs. To prevent having redundant contigs, IDBA-MTP will 
treat those mRNAs sequences reconstructed by alignment of known reference 
proteins as long input reads for IDBA-MT, i.e. the output of the first approach will be 
the input of the second approach. Experiments on simulated data show that even 
though 48% regions of the mRNAs can be aligned to known reference proteins, 
existing assemblers can only reconstruct contigs representing at most 62.9% of these 
regions. IDBA-MTP can reconstruct contigs covering 77.6% of these regions and 
some novel mRNAs using protein reference sequences. As a result, IDBA-MTP can 
reconstruct 14% more mRNAs (in term of the total length of mRNAs) than existing 
assemblers. 

The paper is organized as follows. The IDBA-MTP algorithm is described in 
Section 2. Experimental results for IDBA-MTP and other existing assemblers on both 
simulated and real metatranscriptomic data are presented in Section 3. Conclusions are 
drawn on the performance of IDBA-MTP in Section 4. 
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2 Methodology 

Given a set of reads sampled from a set of mRNA sequences (with nucleotides A, C, 
G and U), we can construct a de Bruijn graph where each vertex v represents a length-
k substring (k-mer) of the reads and where an edge connects vertex u to vertex v if and 
only if the corresponding k-mers for vertex u and vertex v overlap at k – 1 positions 
and appear in a read. An mRNA sequence can be represented by a path of k-mers in 
the de Bruijn graph. Since there are many paths in the de Bruijn graph and most of 
them do not represent any mRNA, a correct mRNA sequence R can be reconstructed 
from the de Bruijn graph if some known protein sequence P can be aligned to the 
path. If the alignment similarity between R and P is high, R will likely be an mRNA 
sequence in the sample. 

A protein or peptide sequence is represented by a sequence of amino acids (of 
which there are 20 kinds). Given a length-3m mRNA sequence R, we can decode it 
into a length-m sequence D(R) of amino acids by converting each non-overlapping 
coden (length-3 substring) in R into an amino acid character. Given a protein 
sequence P and an mRNA sequence R, P and D(R) can be aligned by inserting space 
characters in P and D(R) to form P' and D(R)' of equal length respectively, and the 
similarity score based on this alignment is defined as follows:  ′, = ∑ ′ , + · number of gaps        (1) 

where P' [i] and D(R)'[i] are the i-th amino acid in P' and D(R)' respectively, δ(x,y) is 
the similarity score between amino acids x and y (which depends on their chemical 
properties and roles in the protein’s functionality), popen is the gap penalty and a gap is 
defined as consecutive space characters in P' or D(R)' (the gap penalty can be refined 
to take the gap size into consideration). Note that the similarity score δ(x,y) can be 
negative and is -∞ whenever a stopping coden in D(R)' is compared to space or any 
amino acid in P'. The optimal global similarity score between P and D(R) is defined 
as the highest similarity score of all alignments of P and D(R). , = all alignment and ,                (2) 

Since the decoded protein from an mRNA usually does not exist in the protein 
database but some part of the decoded protein sequence might match with some 
regions of some proteins in the database because of their functional similarity, instead 
of aligning the whole sequence of P and D(R), the optimal local alignment between 
all substrings of P and D(R) is considered in IDBA-MTP and this information, in 
terms of contigs, will be needed for mRNA assembly later (see Section 2.3). The 
optimal local similarity score is defined as: , = all substrings  and  of P and ,               (3) 

The Protein-Graph Alignment (PGA) Problem can be defined as follows: given 
a de Bruijn graph G and a protein P, find a path in G (representing a substring in an 
mRNA sequence R) such that scorel (P, D(R)) is maximized. 
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2.1 Dynamic Programming 

The PGA problem can be solved by dynamic programming based on the principle of 
optimality. Consider an optimal global alignment Opt of the substring ds (represented 
by a path Q(ds)) of the decoded protein D(R) for an mRNA sequence R with the 
substring ps of protein sequence P. The same alignment Opt for any subpath of Q(ds) 
and the corresponding substring of ps should also be optimal. 

Let S(v, i) define the maximum global similarity score between a substring of P 
ending at P[i] and all decoded sequences D(R) for path R in the de Bruijn graph G 
ending at vertex v. Similarly, we define SM(v, i), SP(v, i) and SR(v, i) to be the 
maximum global similarity score with the following restrictions respectively: (1) P[i] 
is aligned with the last amino acid of the corresponding protein sequence decoded 
from the path ending at vertex v, (2) P[i] is aligned with the space character and (3) 
the last amino acid of the corresponding protein sequence decoded from the path 
ending at vertex v is aligned with the space character. The value of S(v, i) is the 
maximum of 0 (alignment of two null substring), SM(v, i), SP(v, i) and SR(v, i). The 
value of SM(v, i), SP(v, i) and SR(v, i) can be calculated by considering the alignment of 
the last coden, any length-3 path s→v with D(s→v) represent the decoded amino acid 
of path s→v, and the subproblem of alignment ending as vertex s. 

S(v, i), SM(v, i), SP(v, i) and SR(v, i) can be calculated as follows: 

, = 0  no path ending at  can be decoded to an amino acidmax 0, , , , , , otherwise  

, = −∞ no path ending at  can be decoded to an amino acid, − 1 + δ , otherwise  

, = −∞ = 0max , − 1 , , − 1 + + δ , otherwise ,= −∞ no path ending at  can be decoded to an amino acidmax , , , + + δ , otherwise  

If D(s→v) represents the stopping coden, δ(D(s→v), x) = -∞. maxv,i{S(v, i)} 
represents the optimal local similarity score and the corresponding aligned mRNA 
sequence can be obtained by backtracking. Note that care should be taken for the 
starting vertex of the path. Since the starting vertex of a path in de Bruijn graph 
represents the length-k prefix of an mRNA and each subsequent vertex represents an 
extra nucleotide of the mRNA, we modify zero in-degree vertices in the de Bruijn 
graph implicitly such that each vertex only represents one single nucleotide (the last 
nucleotide of the k-mer) of an mRNA. Note that since the protein sequence P is fixed, 
the dynamic programming is correct even there is loop in the de Bruijn graph. 
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Since there are at most 43 = 64 length-3 paths s→v to a vertex v, each entry S(v, i), 
SM(v, i), SP(v, i) and SR(v, i) can be computed in constant time by preprocessing. The 
time complexity for aligning a length-|P| protein P is O(n|P|) and for a set of protein 
sequences with total length m is O(nm), where n is the total number of vertices in the 
de Bruijn graph. 

2.2 Seed-and-Extend Heuristic 

Although the dynamic programming approach can solve the PGA problem in O(nm) 
time, n and m are usually large for real biological data (in the order of millions and 
thousand millions respectively) and the running time for the above dynamic 
programming approach is too long for practical use. In order to speed up the running 
time, IDBA-MTP applies on seed-and-extend heuristic to speed up the process. 
Assume that the optimal local alignment of an mRNA and a protein has at least one 
aligned region with t consecutive matches of amino acids (with similarity score larger 
than a predefined threshold), the PGA problem can be solved by a seed-and-extend 
heuristic. Given a simple path (a path with all intermediate vertices have exactly one 
incoming and one outgoing edge) or a k-mer in the de Bruijn graph representing a 
length-t peptide (sequence of amino acids), the reference protein sequences containing 
this peptide can be obtained in constant time after O(m) preprocessing, where m is the 
total length of the reference proteins. By considering these positions as the starting 
alignment positions (seeds) and extending the alignment in both forward and 
backward directions using dynamic programming, a small subset of paths containing 
the seed as a subpath will be considered and the running time can be greatly reduced 
in practice. 

2.3 Preventing Redundant mRNAs 

As some reference proteins could have similar sequences, these similar proteins might 
align to overlapping paths in the de Bruijn graph and similar mRNA sequences may 
be obtained. Among these similar mRNA sequences, it is likely that only one of them 
is correct while the others are only artifacts caused by sequencing errors or 
misalignment. However, duplicate genes and genes with similar functions in different 
species may also introduce similar mRNA sequences. IDBA-MTP applies two 
techniques to remove artifacts. The first approach is to prevent aligning multiple 
proteins with seeds on the same simple path in the de Bruijn graph. Simple paths in 
the de Bruijn graph are sorted in decreasing order of lengths and are considered one 
by one. Once a protein is aligned to a path R (with the maximum alignment score 
among all proteins) in the de Bruijn graph, all substrings in R are removed from the 
seed table and will not be considered as starting positions for alignment. Note that 
these simple paths could still be considered when extending the alignment of other 
proteins using dynamic programming. Although the first approach can determine 
some redundant contigs represent the same mRNAs, sequence error could introduce 
error paths in the de Bruijn graph result as alignment of similar proteins to overlapped 
but similar paths in the de Bruijn graph. In our experiment, there can be 50 similar 
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paths represented by the correct and erroneous paths corresponding to the same 
mRNA. Thus, we should not output the aligned mRNAs directly. The second 
approach was considering these mRNAs as long reads and treating them as input to 
IDBA-MT for de novo assembly. By using these extra long reads, paired-end reads 
and sequencing depths information, IDBA-MT avoids assembling redundant mRNAs 
and can reconstruct novel mRNAs with no similar reference proteins. 

3 Experiments 

We compared the performances of Oases [26], Trinity [10], IDBA-UD [21], IDBA-
MT[15] and IDBA-MTP on a real dataset from mouse gut [32] and two simulated 
datasets generated from known bacteria gene sequences obtained from genBank [1]. 
Oases and Trinity were designed for assembling transcriptomic data, IDBA-UD for 
assembling metagenomic data, and IDBA-MT for assembling metatranscriptomic 
data. All bacteria gene sequences with known sources in the genBank were 
downloaded. To prevent selecting mRNAs from the same species (either from the 
same or different strains), duplicated sequences were removed and only one version 
was kept. Note that similar mRNAs obtained from different bacteria would be kept. 
Similar to [15], mRNAs sharing at least half of the sequences with other mRNAs 
were selected for generating a difficult dataset (mRNAs which do not share common 
sequence regions with others would be isolated in the de Bruijn graph and can be 
assembled easily). The resultant 658 mRNA sequences were used to generate the 
simulated data. Although the number of mRNA sequences selected is small compared 
with the real experiments, this small subset of mRNAs sequences with long repeats 
represents the most difficult part of assembling metatranscriptomic data. The 
reference bacteria protein sequences for IDBA-MTP was downloaded from NCBI 
database and we used the Blosum-62 scoring matrix, open gap penalty = -10 – (-1) = -
9 and gap extend penalty = -1 for calculating the similarity scores of protein 
sequences. In all experiments on simulated data, all the corresponding protein 
sequences of the 658 mRNA sequences were removed from the reference protein 
sequences for testing the performance of IDBA-MTP. 

For each simulated dataset, we randomly picked length-75 bp paired-end reads from 
the RNA sequence with 1% sequencing error according to the predefined abundances. 
The mean insert distance of each paired-end read was 200 bp with a standard deviation 
of 10 bp. Two sets of simulated data were generated: (1) Low abundance - 100 
mRNAs were sampled with 3x sequencing depth for evaluating the performances of 
the assemblers for mRNAs with low expression levels. (2) Mixture abundance - 658 
mRNAs were sampled from 1000x to 3x sequencing depth with the number of mRNAs 
following the power law (number of mRNAs with a certain abundance is directly 
proportional to the negative of abundance ratio) for evaluating the performances of the 
assemblers for mRNAs with different expression levels. 

All assemblers were tested on simulated data using default parameters. Each contig 
produced by the assemblers was aligned to the 658 mRNAs in the samples using Blat 
[13]. A contig was considered correct if and only if at least 95% of the contig region 
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could be aligned to the mRNA sequence with 95% similarity. Some short, even correct, 
contigs which could not align confidently to the 658 mRNAs were considered incorrect. 
Regions of mRNAs aligned by correct contigs were considered covered and the 
coverage of an assembler was calculated as the ratio of regions in the mRNAs covered 
by the contigs produced by the assembler. Although Oases, Trinity, IDBA-UD could 
produce scaffolds using paired-end reads, the scaffolds performed worse than the 
contigs in all simulated data because these assemblers connected contigs wrongly and 
produced long but incorrect scaffolds. Thus, we compared the performances of the 
assemblers based on the resultant contigs and the experimental results are shown in 
Table 1 and 2.  

Table 1. Experimental Result on simulated data with low abundance ratios 

Softare Coverage Max. Len. Avg. 
Len. 

# of wrong contig 
(len.) 

# of correct contig 
(len.) 

Error Rate 

Oases 25.99% 524 bp 172 bp 9 (1,063 bp) 149 (25,690 bp) 3.97% 
Trinity 9.85% 497 bp 287 bp 17 (7,362 bp) 34 (9,837 bp) 42.80% 

IDBA-UD 48.26% 783 bp 342 bp 8 (4,425 bp) 83 (28,480 bp) 13.45% 
IDBA-MT 52.68% 900 bp 279 bp 8 (3,194 bp) 136 (37,993 bp) 7.75% 

IDBA-MTP 66.00% 916 bp 273 bp 5 (1,057 bp) 156 (42,771 bp) 2.40% 

Table 2. Experimental Result on simulated data with mixed abundance ratios 

Softare 
Coverage Max. 

Len. 
Avg. 
Len. 

# of wrong 
contig (len.) 

# of correct  
contig (len.) 

Error 
Rate total ≤5x > 5x 

Oases 31.00% 22.46% 8.45% 676 bp 194 bp 63 (8,471 bp) 1009 (196,162 bp) 4.14% 
Trinity 15.10% 11.28% 3.80% 1,270 bp 319 bp 106 (75,713 bp) 310 (99,603 bp) 43.18% 

IDBA-UD 59.29% 42.74% 16.38% 1,430 bp 395 bp 43 (28,837 bp) 606 (239,887 bp) 10.73% 
IDBA-MT 64.07% 46.53% 17.37% 1,511 bp 310 bp 37 (18,023 bp) 1005 (312,500 bp) 5.45% 

IDBA-MTP 69.62% 51.29% 18.33% 1,615 bp 368 bp 41 (23,461 bp) 1127 (415,813 bp) 5.34 % 

3.1 Low Abundance mRNAs 

When the abundances of mRNAs were low, Oases and Trinity did not perform well in 
assembly because of the low sequencing depths and the similarity of mRNAs. Oases 
tended to produce confident but shorter contigs. As a result, it had a low error rate 
(3.97%) but the lengths of contigs were short (average length = 172 bp) and the 
coverage was not high (25.99%). Since Trinity was designed for assembling 
transcriptomic data for eukaryotic mRNAs and was not suitable for assembling 
prokaryotic mRNAs, the error rate of Trinity was high (42.80%) and the coverage was 
low (9.85%). IDBA-UD, which was designed for assembling metagenomic data, 
performed better than Oases and Trinity because it applied various technologies, e.g. 
multiple k-mers, local assembling and local coverage of contigs for assembling reads 
sampled from low abundance genomes (mRNAs in this case). However, since the 
mRNAs had many similar sequences, IDBA-UD could not determine these chimeric 
contigs and the error rate was high (13.45%) but the coverage was acceptable 
(48.26%). IDBA-UD has such high error rate because it merged two or more mRNA 
sequences incorrectly to produce chimeric contigs. IDBA-MT, which was designed 
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for assembling metatranscriptomic data, outperformed IDBA-UD because it used 
paired-end reads information to resolve chimeric contigs. It achieved a relatively high 
coverage (52.68%) with low error rate (7.75%). With the information from known 
protein sequences, IDBA-MTP further improved the coverage to 66.00% and had the 
lowest error rate (2.40%).  

Table 3. Experimental Result on real mouse gut data 

Softare Maximum 
Length 

Average 
Length 

Contigs 
number 

Total Length # of contig aligned to known proteins 
(length) 

Oases 693 bp 127 bp 99,611 12,655,199 bp 489 (84,044 bp) 
Trinity 15,857 bp 500 bp 19,721 9,862,469 bp 7,188 (2,994,588 bp) 

IDBA-UD 10,741 bp 490 bp 18,951 9,287,101 bp 9,510 (4,178,162 bp) 
IDBA-MT 8,863 bp 490 bp 18,972 9,301,484 bp 9,515 (4,181,949 bp) 

IDBA-MTP 9,070 bp 477 bp 20,062 9,581,626 bp 10,429 (4,712,857 bp) 

3.2 mRNAs with Different Abundances 

For the simulated data with mixed abundances, the overall performance of the 
assemblers improved because of the mRNAs with high abundances. We have also 
analysed the coverage of low-abundance mRNAs (76% mRNA with sequencing 
depth ≤ 5x) and high-abundance mRNAs (24% mRNA with sequencing depth > 5x). 
As expected, the high-abundance mRNAs had better overall results than the low-
abundance mRNAs. Again, Oases produced short but confident contigs, achieved 
higher coverage (31.00%) than Trinity and had the lowest error rate (4.14%). Trinity, 
which assembled many long and wrong contigs, had the lowest coverage (15.10%) 
and the highest error rate (43.18%). IDBA-UD had higher coverage (59.29%) and 
moderate error rate (10.73%). By resolving some chimeric contigs, IDBA-MT had 
slightly higher coverage (64.07%) and lower error rate (5.45%) than IDBA-UD. 
IDBA-MTP had the highest coverage (69.62%) and a low error rate (5.34%). 
Considering the performance of mRNAs with different abundances, IDBA-MTP 
could reconstruct 5% and 1% more mRNAs with low and high abundances 
respectively than the best existing assembler IDBA-MT. By using protein reference 
information, the performance of IDBA-MTP improved not only for the  
low-abundance mRNAs, but also for the high-abundance mRNAs.  

3.3 Real Metatranscriptomic Data 

Xiong et al. [32] isolated mRNAs from the lumen of the cecum and colon of 4 mice at 
12 weeks old, colonized with an Altered Schaedler flora (ASF) containing eight known 
species without reference genomes. A total of 3.3 million paired-end reads were 
generated using Illumina sequencing technology. The read length was about 75 bp and 
the insert distance was about 300 bp. Similar to [15], we merged the reads sampled 
from the 4 mice into a single dataset as the number of reads in each sample was small. 
The reads were inputted to existing assemblers for comparison. Since there were no 
reference genomes, we evaluated the accuracy of output contigs by aligning them to 
known protein sequences using Blastx with default parameters. A contig was 
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considered “correct” if at least 90% of the contig sequence could be aligned to a single 
protein sequence. We used number of aligned contigs instead of number of aligned 
proteins to evaluating the result because a contigs can be aligned to hundred of similar 
proteins and it is difficult to evaluate the softwares based on the number of discovered 
proteins. Noted that IDBA-UD, IDBA-MT and IDBA-MTP consider each k-mer in the 
de Bruijn should belong to at most one contigs, they should not output redundant 
contigs represents the same protein or protein regions.  

Similar to simulated data, Oases produced very short contigs. Since it was difficult 
to obtain confident alignment for short contigs, only 489 (out of 99,611) contigs 
produced by Oases could be aligned to known protein sequences. Trinity produced 
longer contigs than other assemblers. However, over half of them (7,188 out of 19,721 
can be aligned) could not be aligned to known protein sequences although the contigs 
were long enough for confident alignment. The performances of IDBA-UD and IDBA-
MT were similar with half of the contigs aligned to known protein sequences. IDBA-
MTP produced a thousand more contigs than IDBA-UD and IDBA-MT. Since the 
extra contigs constructed mainly due to using protein reference sequences, most of 
these extra contigs could be aligned to known protein sequences. 

4 Conclusions 

Existing assemblers do not perform well on metatranscriptomic data, especially on 
low-expressed mRNAs. In this paper, we have proposed IDBA-MTP to assemble 
mRNAs, making use of information from the database of millions of known protein 
sequences. In particular, dynamic programming technique with a seed-and-extend 
heuristics was introduced to reconstruct mRNA sequences from paths in the de Bruijn 
graph with maximum similarity scores when aligned with the known protein sequences. 
Experimental results on both simulated and real biological data showed that IDBA-
MTP outperformed existing assemblers on metatranscriptomic data.  

However, when applying IDBA-MTP on metatranscriptomic data, there is an issue 
of running time when compared with existing assemblers. Since the reference proteins 
databae is big and highly redundant, i.e. many proteins with very similar sequences 
exist, IDBA-MTP takes one or two days for aligning reference proteins to de Bruijn 
graph even using the seed-and-extend heuristic. This is much longer that existing 
assemblers which takes one or two hours to assemble the reads. Although it may not 
be a problem at current state because it takes weeks to generate a metatranscriptomic 
dataset, further research should be performed to increase the speed of IDBA-MTP by 
preprocessing the reference proteins or parallel processing. 

The techinque of assembly based on known protein sequence information is appli-
cable not only on metatranscriptomic data. It can also improve the performance on 
transcriptomic data of single species. We plan to study the usage of protein reference 
sequence information on transcriptomic assembly of single species. 
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Sequence-based protein homology detection has been extensively studied, but it still 
remains very challenging for remote homologs with divergent sequences. So far the 
most sensitive method for homology detection is based upon comparison of protein 
sequence profiles, which are usually derived from multiple sequence alignment 
(MSA) of sequence homologs in a protein family and represented as a position-
specific scoring matrix (PSSM) or an HMM (Hidden Markov Model). HMM is more 
sensitive than PSSM because the former contains position-specific gap information 
and also takes into account correlation among sequentially adjacent residues. The 
main issue with HMM lies in that it makes use of only position-specific amino acid 
mutation patterns and very short-range residue correlation, but not long-range residue 
interaction. However, remote homologs may have very divergent sequences and are 
only similar at the level of (long-range) residue interaction pattern, which is not en-
coded in current popular PSSM or HMM models.  

To significantly advance homology detection, this paper presents a Markov Ran-
dom Fields (MRFs) modeling of an MSA. MRFs can model long-range residue inte-
ractions and thus, encodes information for the global 3D structure of a protein family. 
In particular, MRF is a graphical model encoding a probability distribution over the 
MSA by a graph and a set of preset statistical functions. A node in the MRF corres-
ponds to one column in the MSA and one edge specifies correlation between two 
columns. Each node is associated with a function describing position-specific amino 
acid mutation pattern. Similarly, each edge is associated with a function describing 
correlated mutation statistics between two columns. With MRF representation, align-
ment of two proteins or protein families becomes that of two MRFs.  

To score the similarity of two MRFs, we use both node and edge alignment poten-
tials, which measure the node (i.e., residue) similarity and edge (i.e., interaction pat-
tern) similarity, respectively. To derive the node alignment potential, we use a set of 
1400 protein pairs as the training data, which covers 458 SCOP folds. The reference 
alignment for a protein pair is generated by a structure alignment tool DeepAlign [1]. 
The edge alignment potential is derived from a software package EPAD [2], which 
takes as input PSSM and residue interaction strength and outputs the inter-residue 
distance probability distribution. The interaction strength of two residues can be cal-
culated by different ways. In current implementation we calculate the mutual informa-
tion matrix (MI) and its power series (MI2, MI3,…, MI11) as interaction strength. The 
MI power series are much more informative than MI alone, as shown in [3]. 
                                                           
* Corresponding author. 
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It is computationally challenging to optimize the MRFalign scoring function due to 
the edge alignment potential. We formulate this problem as an integer programming 
problem and then develop an ADMM (Alternative Direction Method of Multipliers) 
algorithm to solve it efficiently to a suboptimal solution. ADMM divides the MRF 
alignment problem into two tractable sub-problems and then solve them iteratively.  

Alignment Accuracy. We use reference-dependent alignment recall to measure the 
alignment accuracy, which is the fraction of alignable residues that are correctly aligned. 
To reduce bias, we use three structure alignment tools TM-align, Matt, and DeepAlign to 
generate reference alignments. Two datasets from [4] are used to test the alignment accu-
racy. As shown in Table 1, MRFalign greatly outperforms HMMER and HHalign. 
MRFalign also has better alignment precision (not shown). 

Table 1. Reference-dependent alignment recall on Set3.6K and Set2.6K. Three tools are used 
to generate reference alignments. 

 Set3.6K Set2.6K 

 TMalign Matt DeepAlign TMalign Matt DeepAlign 

HMMER 22.9% 24.1% 25.5% 36.5% 38.6% 40.4% 
HHalign 36.3% 37.0% 38.4% 62.5% 63.2% 64.0% 
MRFalign 47.4% 47.5% 49.2% 72.8% 73.5% 74.2% 

Homology Detection Performance. We employ two benchmarks SCOP20 and 
SCOP40 to test homology detection rate at the superfamily and fold levels, respectively, 
as shown in Table 2.  

Table 2. Homology detection performance at the superfamily and fold levels 

 Superfamily level Fold level
 SCOP20 SCOP40 SCOP20 SCOP40 
 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 

hmmscan 35.2% 36.5% 40.2% 41.7% 5.2% 6.1% 6.2% 6.9% 
FFAS 48.6% 54.4% 52.1% 56.3% 13.1% 18.7% 10.4% 14.5% 

HHsearch 51.6% 57.3% 55.8% 60.8% 16.3% 24.7% 17.6% 25.3% 
HHblits 51.9% 56.3% 56.0% 59.8% 17.4% 25.2% 19.1% 26.0% 
MRFalign 58.2% 61.7% 59.3% 63.6% 27.2% 36.8% 28.3% 37.9% 

 
Availability. The MRFalign server will be available at http://raptorx.uchicago.edu/. 
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Introduction: Profiling the genomic binding activity of regulatory proteins in
multiple cell types is important for understanding cellular function, as a single
regulator can bind to distinct sets of genomic targets depending on the cellular
context in which it is expressed. Characterizing the determinants of such dif-
ferential binding specificity is key to understanding how a single regulator can
play multiple roles during development and other dynamic cellular processes. For
example, pre-existing chromatin context such as chromatin accessibility or the
binding of other regulators may determine the binding of some developmental
transcription factors (TFs) [1,2], while other pioneer TFs may find their binding
targets independently of the established chromatin state [3]. In order to reliably
characterize such condition-specific regulatory activity, we require methods that
can integrate analysis across multiple related experiments in a principled way.

We present MultiGPS, an integrated machine learning approach for the
analysis of multiple related ChIP-seq experiments. MultiGPS is based on a
generalized Expectation Maximization framework that enables the principled
incorporation of external information in binding event discovery, which we use
to share information across multiple experiments. MultiGPS performs binding
event analysis across multiple conditions, sharing information across conditions
to produce accurate joint binding estimates while simultaneously allowing for
condition-specific binding events. MultiGPS leverages a flexible framework for
incorporating prior information into binding event discovery, allowing models
of joint binding and sequence dependence to be used. In analyzing multiple-
condition ChIP-seq datasets, MultiGPS encourages consistency in the reported
binding event locations across conditions and provides accurate estimation of
ChIP enrichment levels at each event.

� Corresponding authors.
�� Joint first authors.
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Results: MultiGPS uses a joint multi-experiment model that considers the read
data from all experiments to produce accurate location estimates of punctate
binding events. The multi-experiment model is one aspect of a novel modeling
approach that enables external sources of information to be included as priors
in binding event identification. We demonstrate that our framework enables the
simultaneous modeling of sparse condition-specific binding changes, sequence
dependence, and replicate-specific noise sources. On simulated binding data,
MultiGPS encourages consistent binding event locations across experiments and
improves the quantification of condition-specific binding events when compared
to single-condition peak callers. The use of the multi-condition prior along with
a motif prior fully utilizes available information and allows almost all example
binding events to be aligned to consistent (typically motif-associated) locations.
On experimental data from 14 factors studied in 3 cell lines, MultiGPS improves
the cross-replicate correlation of binding event quantification estimates and re-
duces the effects of inter-replicate noise when compared to peak quantifications
from another peak caller and a window-based analysis.

As a case study of our framework’s sensitive and accurate multi-condition
analysis, we applied MultiGPS to the analysis of Cdx2 ChIP-seq data generated
in three developmentally relevant cellular contexts. We found that condition-
specific Cdx2 binding events are predicted by preexisting chromatin state. Sur-
prisingly, condition-independent Cdx2 binding events that are bound in multiple
contexts do not appear to be predetermined by accessibility or other chromatin
signatures, and instead may be predicted on the basis of cognate motif occur-
rence. Our results suggest that Cdx2 can act as a pioneer factor at a subset
of sites, while also being influenced by preexisting chromatin context at other
sites. Therefore, our results have consequences for understanding where TFs will
bind when introduced into an established regulatory state during development,
or when induced artificially during cellular programming techniques.

Conclusions: MultiGPS provides a principled platform for the analysis of dif-
ferential protein-DNA binding across multiple experimental conditions by prefer-
ring consistent binding locations across related experiments while also modeling
condition-specific experimental parameters. MultiGPS is freely available from
http://mahonylab.org/software.
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Abstract. In this paper, we introduce a new and highly scalable algo-
rithm, PASTA, for large-scale multiple sequence alignment estimation.
PASTA uses a new technique to produce an alignment given a guide tree
that enables it to be both highly scalable and very accurate. We present
a study on biological and simulated data with up to 200,000 sequences,
showing that PASTA produces highly accurate alignments, improving on
the accuracy of the leading alignment methods on large datasets, and is
able to analyze much larger datasets than the current methods. We also
show that trees estimated on PASTA alignments are highly accurate –
slightly better than SATé trees, but with substantial improvements rela-
tive to other methods. Finally, PASTA is very fast, highly parallelizable,
and requires relatively little memory.

Keywords: Multiple sequence alignment, Ultra-large, SATé.

1 Introduction and Motivation

Multiple sequence alignment (MSA) is a basic step in many bioinformatics anal-
yses, including predicting the structure and function of RNAs and proteins and
estimating phylogenies. Yet only a handful of the many MSA methods are able
to analyze large datasets with 10,000 or more sequences. Performance studies
evaluating MSA methods on large datasets have shown that some MSA methods
can produce highly accurate alignments, as measured by traditional alignment
criteria (sum-of-pairs or column scores) for sufficiently slowly evolving sequence
datasets (e.g., [1]). However, other studies, focusing on phylogeny estimation
from nucleotide datasets, have found that only a handful of MSA methods can
provide good enough alignments on nucleotide datasets with 10,000 or more se-
quences to produce highly accurate trees, even when trees are estimated using
the best maximum likelihood heuristics [2–5]. However, these studies have relied
upon benchmarks with at most 28,000 sequences, and so little is known about
alignment accuracy and its impact on tree accuracy for larger datasets. Yet, phy-
logenetic analyses of sequence datasets containing more than 100,000 nucleotide
sequences are being attempted by at least two groups that we are aware of: the
iPTOL project [6] and the Thousand Transcriptome project (1KP)[7].
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In this paper we present PASTA, “Practical Alignments using SATé and
TrAnsitivity”, a new method for ultra-large multiple sequence alignment of nu-
cleotide sequence datasets. PASTA begins with an alignment and tree estimated
using a very simple profile HMM-based technique and then re-aligns the se-
quences using the tree. If desired, a new tree can be estimated on the new
alignment, and the algorithm can iterate.

The key to the accuracy and scalability of PASTA is the novel technique it
uses for estimating an alignment on a guide tree. As in SATé [3], PASTA uses the
centroid edge dataset decomposition technique and computes MAFFT -linsi [8]
alignments on the subsets; however, PASTA and SATé merge these subset align-
ments into an alignment on the full dataset using very different techniques. While
SATé uses Opal [9] (or Muscle [10, 11], if the dataset is too large) to hierarchically
merge all the subset alignments into a single alignment, PASTA uses Opal only
to merge pairs of adjacent subset alignments, producing overlapping alignments,
then treats each resultant alignment as an equivalence relation and uses tran-
sitivity to merge these larger alignments. The result is a very fast re-alignment
method that is highly parallelizable and easily scales to large datasets. Further-
more, this re-alignment step in PASTA is a negligible fraction of the PASTA
analysis, whereas the re-alignment step in SATé is the majority of its running
time on large datasets (44% of the running time for datasets with 10K sequences,
and 78% of the time for datasets with 50K sequences). Thus, PASTA is dramat-
ically faster than SATé on large datasets. Interestingly, PASTA produces more
accurate alignments and trees than SATé. We demonstrate PASTA’s speed and
accuracy on a collection of datasets, including a 200K-sequence RNASim dataset
[12], which we align in less than 24 hours using PASTA on a 12-core machine.

2 PASTA

We describe PASTA and present some theorems about its performance guaran-
tees and running time; due to space limits, proofs are provided in the appendix.

PASTA uses an iterative divide-and-conquer strategy to align an input set S
of sequences, and uses the following input parameters: a starting tree (default our
HMM-based profile alignment technique, described below), subset size k (default
200), a subset alignment technique (default MAFFT -linsi), an alignment merger
technique (default OPAL), and a stopping rule (default 3 iterations).

The first iteration begins with the starting tree, and subsequent iterations
begin with the tree estimated in the previous iteration. Each iteration involves
six steps, shown in Figure 1.

Starting Tree: PASTA can begin with any reasonable starting tree, but here
we describe the simple technique, similar to that used in [14, 15], that we use
in these experiments. We take a random subset X of 100 sequences from S and
compute a SATé alignment A on the set; this is called the “backbone alignment”.
We then use HMMER [16, 17] to compute a Hidden Markov Model on A, and to
align all sequences in S−X one by one (and independently) to A, and hence build
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Step 1 Decompose the input set S into subsets S1 . . . Sm of size at most k.
Step 2 Compute a spanning tree T ∗ to connect the subsets S1 . . . Sm.
Step 3 Align each subset using the subset alignment technique.
Step 4 Merge the two alignments on endpoints of each edge in T ∗.
Step 5 Use successive applications of transitive closure to merge the overlap-

ping and compatible alignments obtained in Step 4.
Step 6 Compute a maximum likelihood (ML) tree on the full MSA using

FastTree-2 [13].

Fig. 1. Algorithmic steps of PASTA for each iteration

an alignment of the full dataset. We then construct a ML tree on this alignment
using FastTree-2 [13]. If this technique fails to produce an alignment on the
full set of sequences (which can happen if HMMER considers some sequences
unalignable), we randomly add the unaligned sequences into the tree obtained
on the alignment obtained by HMMER.

Step 1: We use the centroid decomposition technique in SATé [3] on the current
guide tree to divide the sequence set into disjoint sets, S1, . . . , Sm, each with at
most k sequences. If the tree has at most k leaves, we return the set of sequences;
otherwise, we find an edge in the tree that splits the set of leaves into roughly
equal sizes, remove it from the tree, and then recurse on each subtree.

Step 2: We compute a spanning tree T ∗ on the subsets, S1, S2, . . . , Sm, as
follows. For every i, we compute the set of nodes v in the guide tree that are on
a path between two leaves that both belong to Si, and we label all these nodes
by Si; thus, if v is a leaf and belongs to Si, we label v by Si. Then, if some nodes
are not yet labelled, we propagate labels from nodes to unlabelled neighbors
(breaking ties by using the closest neighbor according to branch lengths in the
guide tree) until all nodes are labelled. We then collapse edges that have the
same label at the endpoints. The result is a spanning tree on S1, S2, . . . , Sm.

Step 3: We compute MSAs on each Si using the subset alignment method spec-
ified by the user. We refer to each such alignment as a “Type 1 sub-alignment”.

Step 4: Every node in T ∗ is labelled by an alignment subset for which we
have a Type 1 sub-alignment from Step 3. For every edge (v, w) in T ∗, we use
the specified alignment merger technique to merge the Type 1 sub-alignments
at v and w; this produces a new set of alignments, each containing at most 2k
sequences, which are called “Type 2 sub-alignments”. We require that the merger
technique used to compute Type 2 sub-alignments not change the alignments on
the Type 1 sub-alignments; therefore, Type 2 sub-alignments induce the Type 1
sub-alignments computed in Step 2.
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Step 5: We compute the transitivity merge through a sequence of pairwise
transitivity mergers. To motivate this technique, we note that every MSA defines
an equivalence relation on the letters within its sequences, whereby two letters
are in the same equivalence class if and only if they are in the same column [18].
Hence given two alignments A and B that induce identical alignments on their
shared sequences (called overlapping compatible alignments henceforth), we can
define an equivalence relation on the union of the letters from their sequence
subsets, as follows: a and b are in the same equivalence class for the merged
alignment if and only if at least one of the following is true: (1) they are in the
same equivalence class in A or B, or (2) there is some letter c such that a and
c are in the same equivalence class in one alignment, and b and c are in the
same equivalence class for the other alignment. This is the basis for the pairwise
transitivity merger, but the spanning tree enables this technique to extend to
a set of alignments through a sequence of pairwise transitivity mergers in a
computationally efficient manner. We provide details for the transitivity merge
in the appendix.

Step 6: If an additional iteration (or a tree on the alignment) is desired, we run
FastTree-2 [13] to estimate a maximum likelihood tree on the MSA produced in
the previous step. To speed up this step, we mask all sites that have more than
99.9% gaps in the alignment obtained in Step 5. Note that PASTA’s alignment
merging step is conservative in introducing new homologies (only what is nec-
essary through transitivity is added) and thus PASTA tends to produce many
gappy columns. Masking these highly gapped columns is harmless for the tree
estimation step but has a dramatic effect on the running time.

Running Time Considerations. PASTA keeps alignments in the memory in a
condensed format by representing each sequence by its unaligned sequence and
column indices for each letter. So, for example, (‘ACCA’,[1,3,5,6]) corre-
sponds to ‘A-C-CA’. This format reduces the memory requirement of PASTA,
as well as the running time for each transitivity merge.

As long as each pairwise transitivity merge is performed correctly, the final
output multiple sequence alignment does not depend on the order in which edges
of the spanning tree are processed, but the order can impact the running time.
However, if we merge sub-alignments using the reverse order of the centroid edge
deletions, then the running time can be bounded, as follows:

Theorem 1. Given m Type 1 alignments and m−1 Type 2 alignments, the algo-
rithm to compute the transitivity merge of these alignments uses O(Km logm+
Lm) time, where K is the maximum length of any sequence (not counting gaps)
in any Type 1 alignment, and L is the length of output alignment.

The bound given in the theorem is achievable using an order of edge contrac-
tions that reverses the order of centroid edge deletions; however, an arbitrary
order of edge contractions can result in a worst case O(Km2 + Lm) running
time; see Supplementary Material [19] for discussion and proof.
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Table 1. Empirical statistics of large datasets based on reference alignments. Number
of sequences, number of sites, proportion of gap characters, maximum p-distance, and
average p-distance are given for each dataset (the p-distance is the fraction of sites
in which two sequences differ). For 10K RNASim datasets, the given values are aver-
ages over 10 replicates. For RNASim datasets with 100K and 200K sequences, pairwise
distances could not be computed; however, since 100K and 200K datasets are ran-
dom subsamples from the same alignment as 10K and 50K datasets, their alignment
statistics are likely very close to those of 10K and 50K.

Dataset # Sequences # Sites Proportion gaps Max p-dist Avg p-dist

Gutell 16S.B.ALL 27,643 6,857 0.800 0.769 0.210
Gutell 16S.T 7,350 11,856 0.874 0.900 0.345
Gutell 16S.3 6,323 8,716 0.821 0.832 0.315

RNASim 10,000 10,000 8,637 0.820 0.616 0.410
RNASim 50,000 50,000 12,400 0.875 0.620 0.410
RNASim 100,000 100,000 14,316 0.891 ≈ 0.62 ≈ 0.410
RNASim 200,000 200,000 16,365 0.905 ≈ 0.62 ≈ 0.410

3 Experimental Setup

Datasets. To evaluate the accuracy on moderate size datasets, we use 1000-taxon
simulated datasets from [2]. For evaluating performance on larger datasets, we
used RNASim, a simulated RNA dataset with 1,000,000 sequences [12], subsam-
pling it to create datasets with 10,000, 50,000, 100,000, and 200,000 sequences.
For the 10K case we created 10 different replicates, but for other cases, due to
running time requirements, we created only one replicate. Finally, we use three
large 16S biological datasets obtained from the Gutell lab [20], and previously
studied in [2]. These datasets include 16S.3 with 6323 sequences, 16S.T with 7350
sequences, and 16S.B.ALL with 27,643 sequences. The reference alignments for
the biological datasets are based on secondary structure, and the reference trees
are computed on these reference alignments using RAxML [21], with all edges
having bootstrap support less than 75% contracted; using other thresholds pro-
duces similar results (see online supplementary materials [19]). The reference
alignments and trees for the simulated datasets are the true alignment and true
trees, which are known because they are the result of a simulation process. Ta-
ble 1 shows more statistics about the reference alignments.

Methods. We compare PASTA to SATé, Muscle, MAFFT-Profile [22], ClustalW
(quicktree algorithm) [23], and also to our approach for obtaining the starting
alignment and tree. PASTA results are based on the default settings: three iter-
ations, subset size set to 200, MAFFT-linsi used on subsets, and Opal used for
merging alignments. The starting tree is obtained by the technique described in
Section 2. MAFFT-Profile is a version of MAFFT that can add new sequences
into an existing backbone alignment [22]; we provide MAFFT-Profile the same
backbone alignment that we use for the starting tree of PASTA. We run SATé
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with identical starting trees as PASTA, and we also run SATé for three itera-
tions. Due to high computational costs of OPAL on large datasets, we use Muscle
for merging alignments inside SATé for datasets with 5,000 sequences or more,
and otherwise we use the default settings in SATé. Finally, we use FastTree-2
to compute ML trees on each alignment. See supplementary material [19] for
commands and version numbers.

Criteria. We measure the alignment accuracy, tree error, and running time.
Alignment accuracy is measured using FastSP [18] with two different metrics: the
SP-score (the percentage of homologies in the reference alignment recovered in
the estimated alignment) and the modeler score (the percentage of homologies in
the estimated alignment that are correct), averaged together to get one measure.
Note that SP-score is the complement of the SP-FN error rate, and the modeler-
score is the complement of the SP-FP error rate; thus our measure of alignment
accuracy is influenced equally by false positive and false negative homologies.
In addition, we also report the number of columns that are recovered entirely
correctly in the estimated alignment (TC score). The standard error metric for
tree estimation is the bipartition distance, also known as the Robinson-Foulds
(RF) rate; however, this metric is not appropriate when the reference tree is
not fully resolved, as is the case for the biological datasets. Therefore, we use
the False Negative (FN) rate, which is the percentage of true tree edges missing
in the estimated trees, to evaluate estimated trees. Note that the FN rate is
identical to the RF rate when both estimated and reference trees are binary.

Computational Platform. We ran all methods on the Lonestar Linux cluster at
TACC [24], and each run was given one node with 12 cores and 24 GB of memory.
Since running time on Lonestar is limited to 24 hours, we were only able to run
techniques that could finish in 24 hours (see below). However, PASTA and SATé
are iterative techniques, and we allowed them to perform as many iterations (but
no more than three) as they could complete within 24 hours. We report the wall
clock time in all cases.

4 Results

Ability to complete analyses. We report which methods completed analyses
within 24 hrs using 12 cores and 24 GB of memory. All methods completed
on all datasets with at most 10,000 sequences. On 16S.B.ALL, all methods ex-
cept for ClustalW finished. However, ClustalW, Muscle, and SATé-2 failed to
complete on the RNASim datasets with 50,000 sequences or more, and MAFFT-
profile failed to complete on the RNASim dataset with 200K sequences. On 100k
RNAsim, PASTA finished 2 iterations in 24 hours, and on 200k, PASTA was able
to complete one iteration and was the only method that could run.

1000-Taxon datasets from SATé papers. We studied PASTA on the 1000-taxon
simulated datasets from [2, 3] and observed that PASTA trees matched the
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Fig. 2. Tree error rates on RNASim 10K-200K (left) and biological (right)
datasets.We show missing branch rates for maximum likelihood trees estimated on the
reference alignment as well as alignments computed using PASTA and other methods;
results not shown indicate failure to complete within 24 hours using 12 cores on the
datasets. Error bars on 10,000 RNASim dataset show standard error over 10 replicates.

accuracy of SATé trees and had improved alignment accuracy; PASTA was also
more accurate than the other methods we tested (Opal, Muscle, and MAFFT);
see supplementary materials for these results [19].

Tree Error on RNASim and biological datasets. Figure 2 reports results for
tree error rates of ML trees on the reference alignments and on the different
estimated alignments for the RNASim and biological datasets. On the RNASim
data, PASTA returns the most accurate trees, coming very close to FastTree trees
on the reference (true) alignment. The difference between PASTA and trees on
the next most accurate alignment is very large. Note also that only PASTA and
its starting tree complete within the time limit on the 100K and 200K sequence
datasets. Furthermore, PASTA has very low error rates overall (e.g., only 6.4%
tree error on the 200K dataset).

We also show results for the biological datasets using the 75%-support refer-
ence trees. FastTree-2 trees computed on the reference alignments had the best
accuracy. PASTA, SATé, and Muscle came next, and the remaining methods
had poorer accuracy.

Alignment Accuracy on the RNASim and biological datasets. Figure 3 compares
methods with respect to two ways of evaluating accuracy - the total column
score (TC) and the average of the SP-score and modeler score. On the RNASim
data, PASTA returns by far the most accurate alignments of all methods tested
according to TC, and its SP-scores are better than all other methods except the
starting alignment. Furthermore, the PASTA alignment had high accuracy: on
the 200K dataset, its sum-of-pairs accuracy was 88% and more than 800 columns
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Fig. 3. Alignment accuracy on the RNASim 10K-200K (left) and biological
(right) datasets. We show the number of correctly aligned sites (top) and the average
of the SP-score and modeler score (bottom). The starting alignment was incomplete on
the 16S.T dataset, and so no result is shown for the starting alignment on that dataset.

were recovered entirely correctly. Another interesting trend is that as the number
of sequences increases, the alignment accuracy decreased for MAFFT-profile but
not for PASTA.

The biological datasets are smaller (see Table 1) and so are not as challenging.
On the 16S.T dataset, the starting alignment did not return an alignment with
all the sequences on the 16S.T dataset because HMMER considered one of the
sequences unalignable. However, the starting alignment technique had good SP-
scores for the other two datasets. Of the remaining methods, PASTA has the
best sum-of-pairs scores (bottom panel), and MAFFT-profile has only slightly
poorer scores; the other methods are substantially poorer. With respect to TC
scores, on 16S.B.ALL and 16S.T, PASTA is in first place and SATé is in second
place, but they swap positions on 16S.3. TC scores for the other methods are
clearly less accurate, though Muscle does fairly well on the 16S.B.ALL dataset.

Comparison to SATé on 50,000 taxon dataset. SATé could not finish even one
iteration on the RNASim with 50,000 sequences running for 24 hours and given
12 CPUs on TACC. However, we were able to run two iterations of SATé on a
separate machine with no running time limits (12 Quad-Core AMD Opteron(tm)
processors, 256GB of RAM memory). Given 12 CPUs, each iteration of SATé
takes roughly 70 hours, compared to 5 hours for PASTA, and as shown next, the
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Table 2. Two iterations of PASTA compared to SATé on 50,000 RNASim given more
than 24 hours of running time (outside TACC)

Alignment Accuracy Tree Error Running Time
SP-score Modeler score TC FN (hours)

PASTA-2iter 80.2% 81.8% 311 8.2% 10

SATé-2iter 20.5% 55.9% 30 12.6% 137
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Fig. 4. Alignment running time (hours). Note that PASTA is run for three iterations
everywhere, except on 100,000-sequence RNASim dataset where it is run for two iter-
ations, and on the 200,000-sequence RNASim dataset where it is run for one iteration.

majority of SATé running time is spent in the merge step. However, the resulting
SATé alignment is much less accurate, and produces trees that are substantially
less accurate than PASTA (see Table 2).

Running Time. Figure 4 compares the running time (in hours) of different align-
ment methods. PASTA is faster than SATé, and MAFFT-Profile is faster than
PASTA on the smallest datasets. However, the running time of MAFFT-Profile
grows faster than PASTA so that at 200,000 sequences it is not able to finish in 24
hours, while PASTA can. Muscle is faster than PASTA on datasets with 10,000
sequences or less, but is slower on 16S.B.ALL, the only dataset above 10,000 se-
quence where it can actually run. Our approach for producing the starting tree
is the fastest method on all datasets, and ClustalW is always the slowest. How-
ever, note that neither Clustalw or Muscle is parallelized and so these methods
cannot take advantage of the multiple cores.

Figure 5a presents the running time comparison to SATé. Note that merging
subset alignments is the majority of the time used by SATé to analyze the
50K RNASim dataset, but a very small fraction of the time used by PASTA.
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Fig. 5. Running time comparison of PASTA and SATé. (a) Running time pro-
filing on one iteration for RNASim datasets with 10K and 50K sequences (the dotted
region indicates the last pairwise merge). (b) Running time for one iteration of PASTA
with 12 CPUs as a function of the number of sequences (the solid line is fitted to the
first two points). (c) Scalability for PASTA and SATé with increased number of CPUs.

The reason SATé uses so much time is that all mergers are done hierarchically
using either Opal (for small datasets) or Muscle (on larger datasets), and both
are computationally expensive with increased number of sequences. For example,
the last pairwise merge within SATé, shown by the dotted area in Figure 5a,
is entirely serial and takes up a large chunk of the total time. PASTA solves
this problem by using transitivity for all but the initial pairwise mergers, and
therefore scales well with increased dataset size, as shown in Figure 5b (the
sub-linear scaling is due to a better use of parallelism with increased number of
sequences). Finally, Figure 5c shows that PASTA is highly parallelizable, and
has a much better speed-up with increasing number of threads than SATé does.
While PASTA has a much improved parallelization, it does not quite scale up
linearly, because FastTree-2 does not scale up well with increased thread count.

Divide-and-Conquer strategy: impact of guide tree. We also investigated the im-
pact of the use of the guide tree for computing the subset decomposition, and
hence defining the Type 1 sub-alignments. We compared results obtained using
three different decompositions: the decomposition computed by PASTA on the
HMM-based starting tree, the decomposition computed by PASTA on the true
(model) tree, and a random decomposition into subsets of size 200, all on the
RNASim 10k dataset. PASTA alignments and trees had roughly the same ac-
curacy when the guide tree was either the true tree or the HMM-based starting
tree (Table 3). However, when based on a random decomposition, tree error in-
creased dramatically from 10.5% to 52.3%, and alignment scores also dropped
substantially. Thus, the guide-tree based dataset decomposition used by PASTA
provides substantial improvements over random decompositions, and the default
technique for getting the starting tree works quite well.
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Table 3. Effect of subset decomposition in PASTA algorithm, based on one iteration
of PASTA on one replicate of the 10k RNASim dataset

Alignment Accuracy Tree Accuracy
SP-score Modeler score TC FN

Random 78.4% 81.4% 2 52.3%

Phylogeny-based (estimated tree) 86.3% 87.3% 138 10.5%

Phylogeny-based (true tree) 85.5% 86.7% 133 10.5%

5 Discussion and Future Work

One of the intriguing observations in this study is that alignment accuracy mea-
sures are not always predictive of tree accuracy. For example, on the Gutell
datasets, MAFFT-profile produced less accurate trees than Muscle, yet had bet-
ter sum-of-pairs alignment accuracy scores. Similarly, the PASTA starting align-
ment is typically among the best in terms of alignment accuracy but far from the
best in terms of tree error. Most likely this is because not all pairwise homologies
are equally important for phylogeny estimation, and alignment accuracy mea-
sures treat pairwise homologies identically. Failing to recover some homologies
may not have much impact on tree estimation, while other homologies may be
essential for phylogenetic accuracy. Furthermore, alignment methods that aim
to recover the conserved regions may be able to have high alignment accuracy
scores but fail to produce good trees - because conserved regions may not be
as useful for phylogeny estimation as regions that change. Thus, the sites and
even specific homologies that are most informative of the phylogenetic branching
process may not be the homologies that many alignment methods are trained to
recover. More generally, then, this disconnect suggests a real challenge in using
alignment metrics to predict the utility of an alignment, especially if the purpose
of the alignment is phylogeny estimation.

We have shown results for the current default version of PASTA; however,
we also explored variants where we changed some algorithmic parameters (see
supplementary material [19]). We found PASTA to be robust to the choice of the
starting tree. Interestingly, while varying the alignment subset size (between 50
and 200) had only a small impact on accuracy, PASTA run with smaller align-
ment subsets is much faster, raising the possibility that comparable accuracy at
reduced running time might be achievable through smaller alignment subsets.

Finally, we note that PASTA, like SATé, is a method that “boosts” the per-
formance (accuracy and/or scalability) of the base method used to align subsets.
The good performance using MAFFT as the base method suggests the possibility
that PASTA could be used to extend computationally intensive statistical meth-
ods, such as BAli-Phy [25], to large datasets, while maintaining their accuracy.
Our future work will explore this possibility.
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6 Conclusions

PASTA is a new method for nucleotide sequence alignment and tree estimation
that is designed for speed, scalability, and accuracy, especially for large datasets.

PASTA is based on SATé, but its design allows it to provide improved accu-
racy while using only a fraction of the time on large datasets. The key algorithmic
contribution is the new technique for aligning sequences on a given guide tree.
This algorithmic design addresses computational limitations in SATé and other
methods, however it also provides improved accuracy on large datasets because
it uses transitivity to extend highly accurate overlapping alignments rather than
trying to directly infer homologies between distantly related sets of sequences.

PASTA is fast and also scales well with the number of processors, so that
datasets with even 200,000 sequences can be analyzed in less than a day with
a small number of processors. Thus, highly accurate alignment and phylogeny
estimation is possible, even on hundreds of thousands of sequences, without
supercomputers.

PASTA software is implemented by extending the SATé code, and is publicly
available at https://github.com/smirarab/pasta. Datasets are available at
http://www.cs.utexas.edu/users/phylo/software/pasta/.
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A Appendix: Computing the Transitivity Merge

We compute the transitivity merge through a sequence of pairwise transitivity
mergers. Recall that every node v in the spanning tree T ∗ computed in Step 2 is
labelled by an alignment subset (i.e., a subset of the input sequence dataset on
which we have a Type 1 sub-alignment). In addition, during Step 4, we computed
Type 2 sub-alignments for every pair of Type 1 sub-alignments whose alignment
subsets are adjacent in the spanning tree T ∗. We now define a set S(v) for every
vertex v and Label(e) for every edge e, as follows. For node v in T ∗, we define
the set S(v) = {Xv} where Xv is the alignment subset associated to the node
v, and for edge e = (v, v′), we set Label(e) = (Xv, Xv′). Note that S(v) is a
set containing one element - the alignment subset associated to v - and that
Label(e) is a pair of alignment subsets. Furthermore, we have computed Type 2
sub-alignments for each X ∪ Y where Label(e) = (X,Y ).

We will use T ∗ to guide a sequence of pairwise transitivity mergers, resulting
finally in an MSA for the full set of sequences. As we do so, we will modify T ∗

through a sequence of edge contractions, until there is only one vertex left. The
contraction of an edge e = (v, w) will create a new vertex x with a new label

https://github.com/smirarab/pasta
http://www.cs.utexas.edu/users/phylo/software/pasta/
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S(x) = S(v) ∪ S(w), but will not modify the labels at the edges. Therefore, at
every point in the process, each edge will be labelled by a pair of alignment
subsets for which we have a Type 2 sub-alignment, and each vertex will be
labelled by a set of alignment subsets. Some edge contractions will require that
we compute a transitivity merge of two overlapping compatible alignments. The
new sub-alignments that result from transitivity mergers are called “Type 3 sub-
alignments”, and these Type 3 sub-alignments are defined by transitivity applied
to some subset of the Type 2 sub-alignments.

For an edge e = (v, w) and Label(e) = (Si, Sj), we have a Type 2 sub-
alignment Aij on Si ∪Sj , and S(v)∩S(w) = ∅. If S(v) and S(w) are singletons,
then collapse the edge, and label the new vertex by the union of the labels at the
endpoints. Otherwise, at least one endpoint of e is labelled by a set containing
two or more alignment subsets, and the alignments Av and Aij are overlapping
compatible alignments. Therefore, the three alignments Aij , Av, and Aw are all
compatible, and so we can use transitivity (i.e., treating each alignment as an
equivalence relation) to define the “transitivity merge” of these three alignments.
To compute this transitivity merge, we first mergeAv andAij , and then we merge
the resulting alignment with Aw (each step involves merging two overlapping
compatible alignments). The result of each merger of these three MSAs creates
a Type 3 sub-alignment on S(v) ∪ S(w). We contract the edge (v, w) to create
the new node x, and we set S(x) = S(v) ∪ S(w).

Transitivity merge of two alignments. To compute the transitivity merge of two
overlapping compatible alignments A and B, given two columns (one in A and
the other in B) that share a common letter (i.e. the ith character of the jth

sequence) we simply merge the two columns into one column.

Theorem 2. Given m Type 1 alignments and m−1 Type 2 alignments, the algo-
rithm to compute the transitivity merge of these alignments uses O(Km logm+
mL) time, where K is the maximum length of any sequence (not counting gaps)
in any Type 1 alignment and L is length of output alignment.

Proof (Sketch): We begin with the following observation, which we provide
without a proof due to space limitations (but see our supplementary material
[19]). Lemma: Let X,Y, and Z be disjoint sequence datasets, and alignments A
and A′ be alignments on X ∪ Z and Y ∪ Z, respectively, that induce identical
alignments on Z. Let K be the length of the longest sequence in X, Y, and Z,
and L be the total number of sites in A and A′. Then we can merge alignments
A and A′ using transitivity in O(L + (|X |+ |Y |+ |Z|)K).

Let our dataset consist of N sequences, with each sequence of length at most
K, and for the sake of simplicity, assume that our decomposition produces m
subsets, all with equal sizes (note that centroid decomposition produces balanced
subsets, so this assumption is justified). As described before, in Step 5, we chose
an edge e = (v, w) from the spanning tree, contract that edge, and perform two
transitivity merges: one between S(v) and Label(e), and another between the
result of the first merger and S(w).
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Based on the Lemma above, the first transitivity merge will have a run-
ning time of O(K(|S(v)| + 2) + L), and the second merge will have a cost
of O(K(|S(v)| + |S(w)|) + L), and thus the cost of each edge contraction is
O(K(2 ∗ |S(v)| + |S(w)|) + L). Now, imagine the case where the spanning tree
is a path. If we start merging from one end to the other end, we get the total
running time of O(K(3 + 4+ . . .+m)) = O(Km2); however, we can improve on
that. The important observation is that the spanning tree should be traversed
such that transitivity mergers are between alignments with balanced number of
sequences on each side.

The order in which edges are processed in PASTA is obtained by a recursive
approach. Given the spanning tree, we divide it into two halves on the centroid
edge, and thus obtain two roughly equal size subtrees. We process each half re-
cursively using the same strategy, and thus get two single leaves at the endpoints
of the centroid edge. Each leaf would represent the merger of all alignments in
each half, and by construction they would have roughly equal size. We then
contract the centroid edge, merge the two sides, and obtain the full alignment.
If each half has roughly x sequences, the cost of the final edge contraction is
O(K(2x+ x) +L) = O(3Kx+L) (as shown before). If f(x) denotes the cost of
applying our transitivity merger on a spanning tree with x nodes, we have

f(2x) = 2f(x) + 3kx+ L

which has a O(x log(x)+xL) solution. Therefore, our particular order of travers-
ing the spanning tree results in a total cost of O(Km log(m) +mL).
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flux modules. These decompositions allow a much easier but still com-
prehensive analysis of the optimal-yield flux space.

Using the mathematical definition of module introduced by Müller
and Bockmayr 2013, we discovered that flux modularity is rather a lo-
cal than a global property which opened connections to matroid theory.
Specifically, we show that our modules correspond one-to-one to so-called
separators of an appropriate matroid. Employing efficient algorithms de-
veloped in matroid theory we are now able to compute the decompo-
sition into modules in a few seconds for genome-scale networks. Using
that every module can be represented by one reaction that represents
its function, in this paper, we also present a method that uses this de-
composition to visualize the interplay of modules. We expect the new
method to replace flux variability analysis in the pipelines for metabolic
networks.

Keywords: metabolic networks, FBA, flux modules, matroid theory.

R. Sharan (Ed.): RECOMB 2014, LNBI 8394, pp. 192–206, 2014.
c© Springer International Publishing Switzerland 2014



Fast Flux Module Detection Using Matroid Theory 193

1 Introduction

The metabolic capabilities and behaviors of biological cells are often modeled
using metabolic networks. A metabolic network is constituted of a set of chemical
compounds and a set of reactions describing the possible transformations of
compounds. In the last years it became possible to reconstruct such networks
on the genome-scale. This means that on one hand nearly all the reactions that
can happen in a biological cell are included. On the other hand such networks
consist of thousands of reactions.

Constraint based methods have proven to be very successful in the analysis of
metabolic networks [19,20]. In constraint based methods no detailed information
on reaction kinetics is needed. Often, the knowledge of reaction stoichiometries
is sufficient. Each reaction is described by a column of the stoichiometric matrix
S, which has an entry for each chemical compound; sij the i, j-th entry of S is
the number of molecules of compound i consumed (sij < 0), produced (sij > 0),
or not involved (sij = 0) in reaction j. Typically, the network is assumed to
be in equilibrium, i.e. every metabolite is produced at the same rate as it is
consumed. This gives rise to linear constraints on the set of feasible flux-vectors
v (pathways) through the network, formally written as

Sv = 0

Together with bounds �, u on reaction rates (thermodynamic information in
form of irreversibilities, limitation of nutrient uptake rates, etc.) we obtain a
polyhedron of feasible flux-vectors:

P = {v : Sv = 0, � ≤ v ≤ u} (1)

Among the most prominent analysis methods is flux balance analysis (FBA)
[28,17,21]. It is, for example, used to compute the optimal biomass yield that
can be achieved by a cell under some growth medium [5]. It also computes an
optimal flux distribution.

Such an optimum is easily found by solving a linear programming problem of
the following type:

max{cv : Sv = 0, � ≤ v ≤ u}
However, in general such optimal flows are not unique [13]. If this is ignored, it
can lead to wrong predictions of by-product flux rates [11].

Kelk et al. [9] showed that many reactions have fixed flux rate in all optimal
solutions. The remaining variability is due to variability of the fluxes on a number
of relatively small subnetworks, which we call flux modules. Each such a module
has in each optimum specific fixed input and output compounds. Müller and
Bockmayr [15] used this property to formalize the notion of flux-module in a
mathematically rigorous way. This allowed them to show that every optimal
yield elementary flux mode (EFM) [23] is a concatenation of reactions with fixed
flux and an elementary mode of each of the flux modules.

While the method by Kelk et al. [9] required the enumeration of exponentially
many vertices of a flux polyhedron (which are related to the optimal yield EFMs),
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Müller and Bockmayr [15] showed a way to find the modules without needing
to compute all extreme solutions. Their method however relied on many runs of
flux variability analysis (FVA) [3,13]. In FVA for each reaction r of the network
the following two linear optimization problems are solved to obtain the minimal
and maximal possible flux rate:

max /min{vr : Sv = 0, � ≤ v ≤ u}

Although faster than EFM enumeration, the method is very sensitive to numer-
ical instabilities and analyses of genome-scale networks could still take several
hours.

The most important result in this paper is an extremely simple method al-
lowing to compute the flux-modules in a few seconds for genome-scale metabolic
networks. The method, described in Section 2, is based on the observation that
the modules correspond to the separators of the linear matroid defined by the
columns of the stoichiometric matrix that belong to reactions with variable op-
timal flux. We will explain all these technical concepts in Section 1.1. The ef-
ficiency of our method is demonstrated in Section 3 by application to several
genome-scale metabolic networks.

Flux modularity highly depends on the growth conditions. In particular, inter-
esting flux modules can usually only be found in the optimal flux space. Hence, it
is of high importance to understand how the decomposition of modules changes
under different growth conditions and objective functions. Since with our new
method, module computation has become so fast, we can simply compute and
compare modules under many different growth conditions and compare the re-
sults. Essential for this is a visualization method that shows the interplay of
modules in the context of the whole network. In Sec. 2.2 we present a method
that automatically generates such a visualization using a clever compression
based on flux modules. Results of that method applied to a set of genome-scale
metabolic networks can be found in Sec. 3.2.

1.1 Definitions and Preliminaries

We useM to denote the set of metabolites, R to denote the set of reactions. We
abuse the notation for sets also for their size. S ∈ R

M×R denotes the stoichio-
metric matrix. For b ∈ RM, we analyze flux spaces P ⊆ {v ∈ RR : Sv = b}. We
observe that b = 0 leads to the standard steady-state assumption. Here, we also
allow b �= 0 to simplify notation in the context of modules. Furthermore, the
space of optimal-yield fluxes is again a polyhedron and can be written in this
form, too [15]. In this paper we will show that we can reduce the analysis of P
to the analysis of linear vector spaces, i.e. flux spaces defined by the kernel of S:
ker(S) := {v ∈ RR : Sv = 0}. We use subscripts to index flux through reactions,
i.e., vr denotes flux through reaction r. The support of flux-vector v is denoted
by supp(v) := {r ∈ R : vr �= 0}. We will also be interested in the flux through a
subset of reactions A ⊆ R. Hence, we write vA to denote the components of v
corresponding to the reactions in A and we use SA to denote the stoichiometric
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matrix that only contains the columns corresponding to the reactions in A. We
define the projection prA(P ) := {vA : v ∈ P}.

Definition 1. [Flux Module, [15]] A ⊆ R is a P -module if there exists a d ∈ RM

s.t. SAvA = d for all v ∈ P . We call d the interface flux of the module.

In contrast to the definition in [15], we also allow A = ∅ to be a module, which
together with R we call the trivial modules. We present here some useful prop-
erties of modules proven in [15]. They may also help the reader to get some
intuition on the concept of module.

Proposition 1. Properties of Modules.

(i) If disjoint sets A and B are P -modules then A ∪B is a P -module;
(ii) If A and B are P -modules and B ⊂ A then A \B is a P -module.

The rest of this section is devoted to an introduction to the relevant concepts
from Matroid Theory [18], which is a generalization of graph theory and linear
algebra. A matroid is defined by a universe of elements and subsets of them that
have some independence structure.

Definition 2. Given a universe U and a family A of independent subsets of U .
Then {U ,A} is a matroid if it satisfies the following conditions.

– ∅ ∈ A;
– If A ∈ A and A′ ⊂ A, then A′ ∈ A;
– If A,A′ ∈ A and A′ contains more elements than A, then there exists an

element e ∈ A′ \A, such that A ∪ {e} ∈ A.

As a very relevant example, a set of vectors in RR, together with their linearly
independent subsets form a matroid; a so-called linear matroid. Another exam-
ple, less relevant here, is a graph with subsets of its edges that form forests as
independent sets; a so-called graphic matroid. Matroid theory has already been
used in the past to describe metabolic networks [16,2]. Indeed, many concepts
from metabolic networks also exist in matroid theory. For example, flux modes
in metabolic networks correspond to cycles in matroid theory; i.e., dependent
sets of a matroid. Elementary flux modes correspond to circuits; i.e., minimal
dependent sets. The only difference is, that in matroid theory we only talk about
the support. I.e., A ⊆ R is a cycle if and only if there exists a flux mode v with
A = supp(v). Similarly, a circuit C ⊆ R is a cycle with minimal support.

However, matroid theory is a wide field with additional concepts that have not
yet been studied for metabolic networks. We show some of these concepts, that
originate from linear algebra, directly in terms of the linear matroid represented
by the columns of the stoichiometrix matrix S, which is the matroid that we use
to describe metabolic networks. In our notation R is the set of columns of S.

– A ⊆ R is called a basis if it is a maximal independent set.
– r(A) is the rank of SA, i.e. the size of the largest independent subset of A.
– The dual matroid is the matroid represented by a kernel matrix of S.



196 A.C. Müller et al.

Also graph theory introduces some further useful concepts into matroid theory.
Typical examples are the circuits and cycles. Another property is connectivity.
A graph is 2-connected if for any two edges, there exists a circuit that contains
both. If a graph is not 2-connected, then the union of connected components is
called a separator; i.e., any of the two sides of a partition of a graph into two
partsA,B that are not 2-connected to each other. We can understand this as that
there exists no flow circulation between A and B. It follows that the interface
flux of A and B has to be zero. In matroid theory separators are defined using
the matroid rank function:

Definition 3 (Separator). A set A is defined to be a separator if and only if

r(A) + r(R \A) = r(R).

In Sec. 2.1 we show how the flux modules of a metabolic network correspond
one-to-one to the separators of the corresponding matroid. We then use matroid
theory to derive a very fast and simple algorithm for finding modules. It is
based on a result by Krogdahl [12]. The runtime results on a set of genome-scale
metabolic networks are presented in Sec. 3.1.

2 Methods

2.1 Finding Modules Efficiently

We first show that it is sufficient to analyze modularity as a local property of
one point in the inside of the flux space, implying that we can ignore reaction
reversibilities and simply analyze a subvector-space (Thm. 1). This allows to
describe modularity in terms of matroid separators (Thm. 2), which we then
exploit in designing an efficient algorithm to compute modules.

To make the first step, consider a point x inside the flux space and a neighbour-
hood of it (Fig. 1). This neighbourhood captures all the characteristics needed to
analyse modularity of the whole flux space. We only have to deal with the term
“inside”. Since P ⊆ {v ∈ RR : Sv = b}, it follows that P is of lower dimension
in RR. Hence, we will only consider the interior relative to ker(S). However, if
we have reactions with fixed flux rate, P will also have lower dimension than

P

x

Fig. 1. Viewed from a point x inside the flux space, the flux space looks like a linear
vector space and the bounds are not important
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ker(S). Therefore, we will restrict to reactions with variable flux rate, which we
define by:

V := {r ∈ R : vmax
r �= vmin

r },where (2)

vmax
r := sup{vr : v ∈ P}
vmin
r := inf{vr : v ∈ P}

This restriction does not destroy the module property:

Observation 1. It holds for allA ⊆ V thatA is P -module⇔A is prV (P )-module.

To guarantee that we can find a x inside the flux space after we restricted
to reactions with variable flux rate, we require that P is convex. Theoretically,
there are weaker conditions that are also sufficient.

Theorem 1. If P ⊆ {v ∈ RR : Sv = b}, is convex, it holds for all A ⊆ R

A is P -module⇔ A ∩ V is ker(SV )-module.

The proof can be found on the supplementary website.
By Thm. 1 we can restrict our attention to the analysis of linear vector spaces.

Hence, in the following we will only analyse polyhedra of the form P = ker(S).
We will relate modules of ker(S) to separators of the matroid defined by the
columns of S. Remember the explanation of a separator in a graph in terms of
the non-existence of a flow circulation in Section 1.1 and observe, that every
module in ker(S) also has interface flux 0 since 0 ∈ ker(S).

Formally, we obtain the following theorem, the proof of which is deferred to the
supplementary website https://sourceforge.net/projects/fluxmodules/.

Theorem 2. A ⊆ R is a ker(S)-module if and only if A is a separator in the
matroid represented by S.

The characterization of modules as separators of matroids allows to compute
the flux-modules of a metabolic network efficiently. Since separators and mod-
ules are closed under disjoint union, it suffices to describe the set of minimal
nontrivial separators (modules).

Definition 4 (Minimal Module). A P -module ∅ �= A ⊆ R is called minimal
if there exists no P -module B �= ∅ with B ⊂ A.

To understand the algorithm for finding the modules, we observe that the
minimal non-trivial separators are the connected components of the matroid.
In the contex of graph-theory these are called 2-connected components (Note
the inconsistency of the terminology between matroid and graph theory. The
connected components in graph-theory are something different.) Formulated in
matroid-terminology we recall the following graph-theoretic characterization of
2-connected component: For any 2 elements (columns of S in the linear matroid,
edges in the graph) in the same connected component there exists a minimal
dependent set (circuit) that contains them both. For pairs of elements of different

https://sourceforge.net/projects/fluxmodules/
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connected components this is not true. It turns out that this also holds for
matroids in general (Proposition 4.3.4 in [18]).

Theoretically, we could now build a graph G = (V,E), where V is the set of
reactions defined in (2) and there is an edge between two reactions (columns of
SV ) if and only if there exists a circuit that contains both. The connected com-
ponents (in the graph-theoretic sense) of G will be the minimal separators. Since
the number of circuits explodes exponentially, it is not efficient to enumerate all
circuits in order to compute the connected components of the graph G. Indeed,
this is also not necessary and it suffices to look at a special set of circuits, so
called fundamental circuits [27].

A set of fundamental circuits is obtained as follows: We start by finding a basis
X of the matroid; i.e., a maximal independent set, which we compute by Alg. 1.
Notice that, starting from the empty set, the algorithm grows X by adding
elements only if this keeps X independent. Since we try to add all elements to
X , it follows that at the end of the algorithm, X will be a basis of the linear
matroid represented by SV .

Let Y := V \X . Clearly, for every r ∈ Y , adding r toX will create a cycle Cr ⊆
X∪{r}. It is easy to see that Cr is actually a circuit, which is called fundamental
circuit. In Alg. 1 the fundamental circuits are constructed simultaneously with
constructing X . This gives us a so-called partial representation.

We now build, by Alg. 2, the graph G′ = (V,E′), where two reactions are
connected by an edge if there exists a fundamental circuit that contains both.
Krogdahl and Cunningham showed that the connected components of G′, found
by Alg. 2, are precisely the minimal separators of the matroid [4,12].

To each circuit C there exists a flux vector v that is unique up to scaling
with C = supp(v), Sv = 0. If we enter for every circuit in B the corresponding
flux values from v, we obtain a null-space matrix of S. Hence, this approach can
be understood as computing a block-diagonalization of the null-space matrix.
Approaches like this in the context of stoichiometric matrices have already been
studied in [24]. However, [24] does not use matroid theory and it is unclear
whether their method will always compute the finest block-diagonalization.

Here we recapitulate all the steps for finding the modules of the optimal flux
space of a metabolic network.

1. Determine the optimal value by LP;
2. Set the objective function equal to the optimum value and add it as a

constraint;
3. For each reaction r maximize and minimize the flux through r in the optimal

flux space;
4. Determine the set V of reactions for which the maximum and the minimum

are not equal;
5. Select the set of columns SV corresponding to V of the stoichiometric matrix

S and neglect the non-negativity constraints; i.e., irreversibilities, directions
of the reactions;
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Algorithm 1. Computes a basis X and its set of fundamental circuits of a
matroid represented by S

function ComputePartialRepresentation(S)
C = ∅
X = ∅
for r ∈ V do

check feasibility of SXv = −Sr

if feasible then
C := supp(v) ∪ {r}
C := C ∪ {C}

else
X := X ∪ {r}

end if
end for
return C

Algorithm 2. Computes the modules of {v : SV v = 0}
function ComputeModules()
C = ComputePartialRepresentation(SV )
Build Graph G = {V,E} with (x, y) ∈ E iff there exists C ∈ C with x, y ∈ C.
A = find connected components of G (e.g. using depth-first search).
return A

6. Apply Alg. 2 to compute the minimal modules A of {v ∈ RV : SV v = 0}.
7. A is the set of minimal modules that contain reactions in V . The reactions

with fixed flux are all minimal modules by themselves.

We notice that steps 3 (and therefore 4) of the algorithm can be parallelized
in a trivial way, reducing the computation times even further.

2.2 Visualization

We develop a visualization tool to help us understand how the decomposition
of modules changes under different growth conditions and objective functions.
By the definition of module, the reactions inside a module have together a fixed
function (the interface flux). Hence, we can represent the module by a single
reaction with a fixed flux in the genome-scale network. The stoichiometry of the
representing reaction is precisely the interface flux of the module.

This way we can create a compressed network that contains all the reactions
with fixed flux rates and artificial reactions that represent the modules. This
compressed network has the following advantages:

– The number of reactions carrying flux is compressed (a module with many
reactions, is represented by a single reaction).

– All the reactions in the compressed network have a fixed flux rate.



200 A.C. Müller et al.

Unfortunately, the number of fixed reactions is still very large. This prevents
automatic visualization of the network and the role of the modules containing
variable reactions is obfuscated. However, reactions that have a fixed flux rate
can also be grouped together into modules by Prop. 1.

Theoretically, we could group all reactions with a fixed flux rate into 1 module.
This would result in a compressed metabolic network consisting of k+1 reactions,
where k is the number of minimal modules containing reactions with variable
flux rates. In particular, the module containing all fixed reactions will likely also
contain the biomass- and nutrient-uptake reactions. If we want to understand the
role of the modules for biomass production or nutrient uptake, this is not very
useful. Moreover, modules of variable reactions may disconnect reactions with
fixed flux rates from each other. Such disconnected reactions are important for
the mediation between modules and should also be displayed separately. Hence,
we decided to build a compressed network as follows:

1. Given: A collection Mod of interesting modules (selected by the user). Mod
has to cover all reactions with variable flux rates. Typically Mod contains
all minimal modules of variable reactions, a module containing the biomass
reaction and modules containing the nutrient uptake reactions.

2. We compute the set RMod := {r ∈ R : r ∈ M ∃ M ∈ Mod} of reactions in
interesting modules.

3. We compute the set RB := {r ∈ R \ RMod : vr = 0 ∀v ∈ P} of blocked
reactions.

4. We compute the setMMod := {m ∈M : ∃ r ∈ RMod such that m ∈ supp(Sr)}
of metabolites involved in the interesting modules.

5. We consider the metabolic network, where RMod,RB andMMod are removed.
It is represented by the stoichiometric matrix S′ := SM\MMod,R\(RMod∪RB).

6. We compute the connected components ModF of S′. We do so by defining
the incidence matrix of a bipartite graph, the nodes of which on one side of
the bipartition correspond to the rows of S′, and the ones on the other side
tot the columns of S′, and there is an edge between row-node i and column-
node j if and only if S′

ij �= 0. The column-nodes represent the reactions in
R\(RMod∪B), and the corresponding reactions of the connected components
of this bipartite graph, whence ModF, forms a partition of R \ (RMod ∪ B).
Clearly, every A ∈ ModF is a module, since ModF only contains fixed reactions.

7. We represent each module in Mod, ModF by a single reaction with the corre-
sponding interface flux. Let M0 be the set of metabolites that have a net
interface flux of 0 in all these modules. We suppress M0, since they would
just show up as isolated metabolites. We obtain a metabolic network with
metabolites M′ :=M\M0 and reactions R′ := Mod ∪ ModF.

8. We remove reactions disconnected from the network that contain the target
reaction, e.g. because of modules that form thermodynamically infeasible
cycles or otherwise have no role in the metabolism.

In practice, this results in medium-scale networks that can automatically be
visualized with graph-drawing software like GraphViz [8].
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3 Results

3.1 Runtime of Module Finding

With the new method we can compute all flux modules for the optimal flux space
of genome scale networks in about the same time as is needed for conventional
flux variability analysis. In Table 1 we see that the new method using matroid
theory outperforms the previous methods in orders of magnitude. We used the
metaopt toolbox [14] to solve the flux variability subproblems. Unfortunately,
we did not have access to all the runtime data of [9] which is why some of
the data is missing and the reported runtimes may be only from some of steps
in the pipeline. The computations for the matroid approach were obtained by
computations on a 4-core desktop computer.

Table 1. Comparison of runtimes for computing modules in the optimal flux space of
genome scale networks

Network using [9] using [15] using matroids

E. coli iAF1260 133495sec 755sec 6.4sec
E. coli iJR904 1906sec 162sec 1.9sec
E. coli iJO1366 8.4sec
H. pylori iIT341 55.5sec 0.8sec
H. sapiens recon. 1 153.3sec
H. sapiens recon. 2 1131sec
M. barkeri iAF692 1088sec 941sec 1.4sec
M. tuberculosis iNJ661 9317sec 1623sec 4.3sec
S. aureus iSB619 127.8sec 1.2sec
S. cerevisiae iND750 3.0sec

In particular notice that large networks like Human recon 2 can now also be
analyzed. In addition, the new method is numerically much more stable. In the
method introduced by [15] it often happens that error tolerances are chosen too
small or too large, which causes that linear programs that should be feasible
are detected as infeasible etc. This then usually caused the algorithm to abort
and the tolerance sometimes needed to be adjusted according to the problem
instance.

We experienced that the new matroid based method is much more robust
in this respect. Our initial tolerances of 10−20 for the optimization step, 10−8

for the flux variability and 10−9 for the final module computation worked in all
cases.

Note, that the other two methods are solving slightly different problems.
In [15] we were actually looking for modules in the thermodynamically con-
strained flux space and in [9], rays and linealities are eliminated prior to module
computation.
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A comparison between the results of [15] and the new method on E. coli
iAF1260 revealed that 7 of the modules coincide, 2 modules from the new method
contain additional reactions (which have fixed flux under thermodynamic con-
straints). The remaining modules are computed by the new method, but not by
[15] since they again only contain reactions that have fixed flux by thermody-
namic constraints (usually those modules are formed by a splitted pair of forward
and backward reactions). The differences seem to be small, but a detailed analy-
sis will be subject to future work. Also, we want to point out that, for computing
modules, the method by Kelk et al. [9] has to enumerate all the extreme points of
the flux polyhedron of optimal fluxes (after some preprocessing), a much harder
task. As a result more information than modules is obtained. Hence, the previous
works still remain useful.

3.2 Visualization

We used the visualization method presented in Section 2.2 to create visualiza-
tions of the above mentioned genome scale networks. The results can be found
on the supplementary website. In Tab. 2, we compare the original size of the
networks with the size of the compressed networks that are used to visualize
the interplay of the flux modules with variable flux rates. Each reaction of the
compressed network is a flux module. Every minimal flux module containing re-
actions with variable flux rates is represented by exactly one reaction. Reactions
with fixed flux rate are grouped together. It is interesting to see that although
the networks have quite different sizes originally, the compressed sizes do not
vary very much.

Table 2. Size of the compressed networks

No. Metabolites No. Reactions No. Metabolites No. Reactions
Network (original) (original) (compressed) (compressed)

E. coli iAF1260 1668 2382 46 25
E. coli iJR904 761 1075 42 17
E. coli iJO1366 1805 2583 49 27
H. pylori iIT341 485 554 32 20
M. barkeri iAF692 628 690 35 13
M. tuberculosis iNJ661 826 1025 58 26
S. aureus iSB619 655 743 39 22
S. cerevisiae iND750 1061 1266 57 24

Visualizations of some of the example networks and their modules, using the
tool dot [7] from the GraphViz toolbox, can be found on the supplementary
website https://sourceforge.net/projects/fluxmodules/. The MATLAB
scripts for module detection can be found there as well.

https://sourceforge.net/projects/fluxmodules/
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4 Discussion

4.1 Enumeration of Optimal-Yield Pathways

We showed that flux modules [9,15] of genome-scale metabolic networks can
efficiently be computed using matroids. We confirmed the previous results that
the optimal flux space of most genome-scale metabolic networks decomposes into
modules. If we want to compute the set of all optimal yield elementary modes,
we theoretically can do this by simply computing the optimal yield elementary
modes for each module. Then, we can use the decomposition theorem of [15]
and obtain all optimal yield elementary modes of the whole network. There is
only a small numerical barrier to be climbed to do this in practice: The EFM
enumeration problem for each module appears to be numerically very unstable.
Hence it is likely that EFMs are missed if not everything is computed using
precise rational arithmetic.

We noted that the previous methods [9,15] were computing flux modules on
slightly different flux spaces (in [9] rays and linealities were removed, in [15] we
worked on the thermodynamically feasible flux space). These differences seem
to be small but could be of significant biological importance. For example, it
could be that due to thermodynamic constraints a reaction is blocked and hence,
we can refine the modules. In a follow up work we will (mathematically and
empirically) analyse the impact of these differences.

The full flux space is usually not decomposable into modules. In a follow
up paper we will generalize the notion of module. This will allow us to find
interesting modules also for the full flux space. Furthermore, this will have the
potential to derive similar decomposition theorems as in [15] that then will work
on the full flux space as well. We think this will be a major step towards EFM
enumeration of genome-scale networks.

4.2 Modularity under Different Growth-Conditions

It has been observed that the decomposition into modules depends on the growth
condition [9,15]. If we want to understand how the optimal flux space changes if
the growth condition is modified, we have to recompute the decomposition into
modules. Previously, this was a tedious task. Now it is very simple and fast and
it can be done even for very small changes.

We presented a visualization method that shows the interplay of the modules
and how they contribute to optimal biomass production. We think that this
visualization will be very helpful to detect when a change in a growth condition
significantly changes the structure of the optimal flux space.

For the visualization we use the definition of module to lump reactions to-
gether. This way we compute a compressed metabolic network that shows the
optimal flux distribution with only a small number of reactions. These networks
were small enough to be visualized using automated graph drawing tools. Cur-
rently, we have only little control on how these networks are drawn, causing the
visualization to seem to be very sensitive to changes. In particular it would be
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interesting if we could get more robust drawing results for small changes in the
network.

4.3 Applications Outside Metabolic Networks

Note that the definition of module of a polyhedron is context free. Every poly-
hedron can be written in the form P = {v ∈ Rn : Sv = b, � ≤ v ≤ u}, where
S ∈ Rm×n, b ∈ Rm, � ∈ {R∪{−∞}}n, u ∈ {R∪{∞}}n by addition of slack vari-
ables. The enumeration of extreme points and extreme rays of such polyhedra
is a classical problem in polyhedral combinatorics and computational geometry.
In fact, it is a major open problem if this can be done in total polynomial time,
i.e., polynomial in input and output. Khachiyan et al. [10] showed that this is
impossible if only the extreme points (so without the rays) of an unbounded
polyhedron are to be enumerated, unless P=NP.

Still, methods have been proposed that do this enumeration. The most promi-
nent ones are variations of the so-called Double Description Method and a
method introduced by Fukuda [1,6] (see also the work of Terzer and Stelling
[26,25] in the context of metabolic networks). Such methods are much faster on
smaller polyhedra, and therefore it makes sense to subject any polyhedron to be
enumerated first to our method to see if smaller modules can be found and then
apply a favorite enumeration method on the smaller parts.

4.4 Conclusion

In this paper we presented a new method that allows us to compute flux mod-
ules very efficiently. This allows us to compute flux modules of many metabolic
networks under a large set of different conditions to compare flux modules with
existing classical metabolic subsystems like Glycolysis.

Compared to classical metabolic subsystems that, at worst, are arbitrary func-
tional groupings of metabolic reactions/species, flux modules are mathematically
well defined. They are structural features only depending on a defined set of con-
ditions (inputs, optimality). This qualifies them as a performance and quality
metric for genome-scale metabolic networks. Furthermore, it allows us to inves-
tigate the modularity, and simplify genome metabolic networks without the risk
of a bias from conventional biological interpretation.
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Supplementary Material

For the supplementary material we have created a sourceforge project
https://sourceforge.net/p/fluxmodules/wiki/Home/. There you can find

– The proofs for Thm. 1 and Thm. 2.
– The MATLAB code for computing the modules (requires the openCOBRA

toolbox [22])
– The MATLAB code for vizualising modules (requires the tool dot from

GraphViz [7]).
– Computational results and visualizations for the example networks. For each

network the results are grouped into one .zip archive.

https://sourceforge.net/p/fluxmodules/wiki/Home/
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Abstract. A reference genome is a high quality individual genome that
is used as a coordinate system for the genomes of a population, or
genomes of closely related subspecies. Given a set of genomes partitioned
by homology into alignment blocks we formalise the problem of order-
ing and orienting the blocks such that the resulting ordering maximally
agrees with the underlying genomes’ ordering and orientation, creating
a pangenome reference ordering. We show this problem is NP-hard, but
also demonstrate, empirically and within simulations, the performance
of heuristic algorithms based upon a cactus graph decomposition to find
locally maximal solutions. We describe an extension of our Cactus soft-
ware to create a pangenome reference for whole genome alignments, and
demonstrate how it can be used to create novel genome browser visual-
izations using human variation data as a test.

1 Introduction

A reference genome is a genome assembly used to represent a species. Reference
genomes are indispensable to contemporary research primarily because they act
as a common coordinate system, so that genes, variations, and other functional
annotations can be described in common terms [1–3].

In this paper we explore creating a pangenome reference from a set of genomes.
We start from a set of genomes in a genome alignment [4], which partitions the
genomes subsequences into homology sets that we term blocks. The problem is
to find an ordering of the blocks that as closely as possible reflects the order-
ing of the underlying genome sequences. We call such an ordering a pangenome
reference because it indexes every block, something that any individual genome
within the population almost certainly does not. Though potentially useful for
many of the things reference genomes are currently used for, our principal moti-
vation is to produce better visualisations of variation and closely related species
data within a genome browser [5], in which one reference genome is used as the
coordinates to display data for a species and for which a pangenome display
would allow a more complete view of the data.
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Closely analogous to the problem of building a pangenome reference of aligned
input genomes, a great deal of previous work has focused on methods for ances-
tral reconstruction. Most relevant to this work is the (rearrangement) median
problem. The median problem is, informally, to find for a set of genomes and a
given edit operation a median genome whose total pairwise edit distance from
each of the other sequences is minimal [6]. Naively it might be assumed that good
solutions to the median problem might have utility for finding an intra-species
pangenome reference. However, in the median problem the edit operations are
not necessarily restricted to maintain sequence colinearity while during evolution
complex selective pressures often work to achieve exactly this [7]. For example,
consider the three signed permutations: A, d,B, e, C and A,−e,B,−d, C and
A,B, e,−d, C. Assume that the capital letters, A, B and C represent very large
subsequences of the genome and the lower case letters, d and e, represent short
subsequences. In each of the sequences the large subsequences maintain their
colinearity with respect to one another, and ignoring the short subsequences no
edits appear to have occurred. However, incorporating the short subsequences
the optimal median sequence under either the double-cut-and-join (DCJ) or
reversal edit operations is A,−e,−B,−d, C (the other sequences are each one
operation away), despite the inversion of the large sequence B, which may be bio-
logically implausible as a common ancestor. This tendency to lose colinearity has
led to the study of ‘perfect’ rearrangement scenarios, in which common intervals
of ordered subsequences present in the input are conserved [8]. However, current
algorithms for finding perfect rearrangement scenarios require the common in-
tervals to be pre-specified, do not allow copy number variation and require the
common intervals to exist in all the inputs. This makes them inappropriate when
there is no prior expert knowledge to define the intervals, or when representing
large populations, where copy number variation is present and missing data and
unusual variants break many intervals that would otherwise be common.

Related to our approach, methods to derive consensus orderings of sets of
total and partial orders have been extensively considered, particularly in the
domain of social choice [9, 10]. In general, the inputs to such problems are se-
quences or structures equivalent (in their most general form) to directed acyclic
graphs (DAG), and the output is a consensus (partial) ordering. In such work,
algorithms often work to minimise the consensus’ (weighted) symmetric differ-
ence distance or Kemeny tau distance [10] (informally, the number of out of
order (discordant) pairs). Recently, such consensus ordering procedures have
been adapted to create consensus genetic maps from sets of individual subpopu-
lation maps [11]. The problem formalised here has similarity to such approaches,
with the important difference that it explicitly models the double stranded na-
ture of DNA, allowing us to account for the cost of sequences being inverted
with respect to one another. In what follows we will formalise the basic prob-
lem, prove its NP-hardness, describe a principled heuristic decomposition of the
problem using cactus graphs [12], give heuristic algorithms for the problem’s
solution, demonstrate the algorithms performance using simulation and show a
pangenome reference visualisation of variation data.
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2 Results

2.1 The Pangenome Reference Problem

Genome Sequences. Let S = {σ1, σ2, . . . , σk} be the input DNA sequences,
with lengths (n1, n2, . . . , nk). For simplicity we assume here that the DNA
sequences are linear, though extensions to allow additional circular sequences are
straightforward. Due to the double stranded nature of DNA, we distinguish the
5′ and 3′ ends of each sequence element. We denote a tuple (x ∈ {1, 2, . . . , k}, i ∈
(1, 2, . . . , nx), a ∈ {5′, 3′}) as xa

i , giving the coordinate of the a end of the ith
element in σx. For any DNA sequence σx the ends are oriented consistently, so
that for all i > 1 the x5′

i end is adjacent (contiguous) in the sequence to the x3′
i−1

end and, for all i < nx the x3′
i end is adjacent in the sequence to the x5′

i+1 end.

We use signed notation to distinguish ends, hence −x5′
i = x3′

i and x5′
i = −x3′

i .
The set of all end coordinates is S.

Alignment. The end coordinates in S are partitioned by their alignment re-
lationships. To represent this we define the alignment relation ∼ ⊂ S2. The
alignment relation is an equivalence relation, i.e. one that is transitive, symmet-
ric and reflexive. We denote the equivalence classes for ∼ as S/∼, and write [xa

i ]
to represent an equivalence class containing xa

i . We also constrain the alignment
relation to force the pairing of opposite ends. Firstly, we assume if xa

i∼ybj then

−xa
i∼ − ybj , we call this strand consistency. Secondly, we assume if xa

i∼ybj then

neither −xa
i∼ybj or xa

i∼ − ybj , which we term strand exclusivity. Due to strand

consistency, for all [xa
i ] in S/∼ there exists [−xa

i ] = {−ybj : ybj ∈ [xa
i ]}, the re-

verse complement of [xa
i ]. Due to strand exclusivity, for all xa

i , [x
a
i ] �= [−xa

i ].
Combining these two statements it follows that |S/∼| is even. The set [−xa

i ]
can be equivalently denoted −[xa

i ], so that the reverse complement of X in S/∼
is −X . We call each member of S/∼ a side, and each pair set of forward and
reverse complement sides a block. Note that the alignment relation allows for
copy number variation, i.e. arbitrary numbers of coordinates from sequences in
the same genome can be present in a block.

Sequence Graphs. Let G = (V,E) be a (bidirected) sequence graph. A bidi-
rected graph is a graph in which each edge is given an independent orientation
for each of its endpoints [13]. The vertices are the set of blocks, V = {{X,−X} :
X ∈ S/∼}. The edges, E = {{[x3′

i ], [x
5′
i+1]} : σx ∈ S ∧ i ∈ (1, 2, . . . , nx − 1)}, en-

code the adjacencies (biologically the covalent bonds) between contiguous ends
of sequence elements. Each edge is a pair set of sides rather than a pair set
of vertices, therefore giving each endpoint its orientation, see Fig. 1(A). The
cardinality and size of G are clearly at most linear in the size of S.

A sequence of sides (X1, X2, . . . , Xn) is a thread. If the elements in
{−X1, X2}, {−X2, X3}, . . . , {−Xn−1, Xn} are edges in the graph then the thread
is a thread path. We use a sequence of sides, rather than vertices, because the sides
orient the vertices, distinguishing forward and reverse complement orientations.
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For example, for each sequence σx ∈ S, [x5′
1 ], [x5′

2 ], . . . , [x5′
nx
] is a thread path in

G, because for all i ∈ 1, 2, . . . , nx−1, {[x3′
i ], [x

5′
i+1]} (equivalently {−[x5′

i ], [x5′
i+1]})

is an edge in G.
A transitive sequence graph, Ĝ = (V, Ê = {{[x3′

i ], [x
5′
j ]} : σx ∈ S ∧ i < j}),

includes the sequence graph G as a subgraph but additionally includes edges
defined by transitive adjacencies, that is pairs of ends connected by a thread
path. The cardinality (vertex number) of Ĝ is the same as G, but the size (edge
number) of Ĝ is worst-case quadratic in the size of S. A sequence graph encodes
input sequences and an alignment, a transitive sequence graph models the com-
plete set of ordering and orientation relationships between the blocks implied by
the input sequences.

{  -A, -B }

{ A, B }

{ A, -B }

{ -A, B }A B

(A)

B C

(B)

D E FA G

Fig. 1. (A) A bidirected graph representing the four ways two blocks can be connected.
The arrowheads on the edges indicate their endpoints: the sides of the vertices. (B) An
example pangenome reference on a sequence graph. There are two sequences, indicated
by the colour of the edges. The red sequence, represented by the thread A,B,C,D, F,G
and the black sequence, represented by the thread A,−F,−E,−D,−B,G. Neither
includes all the blocks. A pangenome reference, indicated by the dotted edges, is
A,−F,−E,−D,−C,−B,G. The dotted edges and the edges {−B,D} and {−D, F}
are the edges consistent with the given pangenome reference.

Pangenome References. A pangenome reference F is a set of non-empty
threads such that each block is visited exactly once, see Fig. 1(B). Intuitively,
not all pangenome references are equally reasonable as a way of summarising
S, because they will not all be equally “consistent” with the set of adjacencies,
Ê. An edge {X,Y } is consistent with a pangenome reference F if and only if
there exists a thread in F containing the subsequence −X, . . . , Y , see Fig. 1(B).
Given a weight function z : Ê → R+, which maps edges to positive real valued
weights, the pangenome reference problem is to find a pangenome reference in
F = argmaxF

∑
e∈ÊF

z(e), where ÊF is the subset of Ê consistent with F .

Exponential Weight Function. Although many possible weight functions
exist, inspired by the nature of genetic linkage, we define z({X,Y }) = z′(X,Y )+
z′(Y,X), where z′(X,Y ) =

∑
σx∈S

∑
x3′
i ∈X

∑
x5′
j ∈Y (1 − θ)j−iI{i<j}, in which

I{i<j} is the indicator function that is 1 for pairs of i and j for which i <
j else 0, and the parameter θ is a real number in the interval [0, 1). The θ
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parameter intuitively represents the likelihood that an adjacency between two
directly abutting sequence elements is broken or absent in any other randomly
chosen sequence, and is defined analogously to its use in the LOD score [14] used
in genetics. For θ > 0, the score given to keeping elements in a sequence in the
same order and orientation in the pangenome reference declines exponentially
with distance separating them.

A d B e C
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A d B e C
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(I) (J) B

A C
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Fig. 2. Top: An illustration of why it is not always sufficient to consider only abutting
adjacencies. (A) There are five blocks, A, B, C, d and e, reprising their roles from
the example given in the introduction. The input contains n copies of the sequence
A, d,B, e, C and n copies of the sequence A,−e,B,−d,C. (B) The bidirected graph
representation of this problem, with the number of adjacencies supporting each edge
labeled, the abutting adjacencies shown as solid lines and the non-abutting adjacencies
shown as dotted lines. If we are only interested in solutions that start with A and
end with C there are 4 maximal solutions, shown in (C,D,E,F). For θ less than 1 the
(C) and (D) solutions are optimal, but as θ approaches 1 all four solutions become
equally weighted, despite (E) and (F) having B in the reverse orientation. Bottom:
An illustration of why θ should be greater than 0. (G) There are m + 2, blocks, the
input contains n − 1 copies of the sequence Am, B,C and 1 copy of the sequence
A1, A2, . . . , Am,−B,C. (H) The bidirected graph representation of the problem, where
the sequence of A1, A2, . . . , Am blocks has been reduced to just a single vertex for
convenience. The two maximal solutions are shown in (I,J), corresponding to the two
distinct input sequences. If m > n and θ is 0 then the solution with B in the reverse
orientation (D) is optimal, despite this orientation being observed only once. By in-
creasing θ the alternative solution with B in the forward orientation becomes optimal.

To make it clear that an intermediate value of θ is desirable we can look at
what happens at extreme values of the parameter. As θ approaches 1 the weight
function become dependent only on edges in the sequence graph. Fig. 2 demon-
strates a limitation with considering only these edges, which is similar to that
described for edit operations in the introduction. At θ = 0 all transitive adja-
cencies are equally weighted, however this can lead to longer sequences having
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undue influence on the solution; Fig. 2 also gives an example of this limitation
when weighting all adjacencies equally. One issue not dealt with by the definition
of z are the evolutionary interdependencies between the input sequences. It is
possible to adjust the weights given to adjacencies given a phylogenetic tree that
relates the input sequences (or the genomes they derive from). However, where
homologous recombination is present a weighting based upon a phylogenetic tree
is insufficient and yet more complex strategies are needed.

2.2 NP-Hardness of the Pangenome Reference Problem

We show the pangenome reference problem is NP-hard, demonstrating that the
pangenome reference problem can be projected onto the problem of finding max-
imum weight subgraphs of a bidirected graph that do not contain characteristic
classes of simple cycle.

A M,N bidirected simple cycle, henceforth abbreviated to a M,N -cycle, is
a simple cycle in a bidirected graph containing M vertices such that M ≥ N ,
M −N of the vertices have both their sides incident with an edge in the cycle
(we call these balanced vertices) and the other N vertices have only one side
incident with edges in the cycle (we call these unbalanced vertices). A M,N -cycle
is odd if N is odd, else we call it even. We say a bidirected graph is strongly
acyclic if it contains no M, 0-cycles or odd M,N -cycles. Let Ĝ be the set of
all strongly acyclic subgraphs of Ĝ of maximum weight. The following lemma
shows the relationship between maximum weight strongly acyclic subgraphs and
maximum weight pangenome references.

Lemma 1. There exists a surjection f : F � Ĝ, such that for all F in F,
f(F ) = (V, ÊF ).

Proof. Let F ∈ F, the threads in F orient all the vertices, partitioning the sides
into two sets according to if they appear in a pangenome reference thread or
not. By definition, the consistent edges and this bipartition of the sides form a
bipartite graph. If there exists an odd M,N -cycle in f(R), then it defines an
odd cycle in this bipartite graph (a contradiction), hence f(R) contains no odd
M,N -cycles.

A pangenome reference induces a partial <F order on the vertices. If there
exists a M, 0-cycle {{X1,−X2}, {X2,−X3}, . . . , {Xn,−X1}} ∈ f(R), as these
edges are consistent with F , this implies that both {X1,−X1} <F {Xn,−Xn}
and {Xn,−Xn} <F {X1,−X1}, but a partial order is asymmetric (a contradic-
tion), therefore f(R) contains no M, 0− cycles.

As f(F ) is strongly acyclic, if it is not in Ĝ then it must be possible to add an
edge to f(F ) without creating a M, 0-cycle or odd M,N -cycle. Assume therefore
that f(F ) is a subgraph of some Ĝ′ ∈ Ĝ. Let {X,Y } be an edge in Ĝ′ but not in
f(F ). By definition, {X,Y } has non-zero weight. Between {X,−X} and {Y,−Y }
of the three other possible edges, {{X,−Y }, {−X,Y }, {−X,−Y }}, one must be
in ÊF , else F is not a maximum weight solution to the pangenome reference prob-
lem, because in this case there must exist two threads in F , one that contains X
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or −X and one that contains Y or −Y , and these two threads can be concate-
nated together to create a new pangenome reference additionally consistent with
one of the four possible edges between {X,−X} and {Y,−Y }. If {X,−Y } ∈ ÊF

then Ĝ′ contains a 2, 1-cycle {{X,−Y }, {Y,X}}, if {−X,−Y } then Ĝ′ contains
a 2, 0-cycle {{−X,−Y }, {Y,X}} and if {−X,Y } then Ĝ′ contains a 2, 1-cycle
{{−X,Y }, {Y,X}}. In all cases therefore we derive a contradiction, therefore
f(R) ∈ Ĝ.

It remains to prove that for every member of Ĝ′ in Ĝ there exists F such
that f(F ) = Ĝ′. For Ĝ′ = (V̂ ′, Ê′) ∈ Ĝ a side bicolouring is a labelling function
colour, such that each vertex and edge’s sides are coloured such that one is black
and the other is red, i.e. it creates a bipartition of the sides of the graph.

To construct such a colouring for Ĝ′ use a depth first search. In each connected
component of Ĝ′ pick an unlabeled vertex and colour one of it sides red and the
other black. The depth first search then recurses from this vertex such that for
each edge of the form {X,Y } if X is coloured red and Y is unlabelled then Y
is coloured black and −Y is coloured red and vice versa if X is coloured black.
If during this recursion an edge is encountered such that both sides are already
labelled then the depth first search has traversed a M,N -cycle. Further, if the
sides of this edge are labelled with the same colour then the depth first search
has failed to produce a side bicolouring. Suppose we encounter such a cycle in
Ĝ′, either there are two excess black sides or two excess red sides, as only the last
edge encountered does not have sides of distinct colours. Each balanced vertex
contributes a black and a red side while each unbalanced vertex contributes either
two black sides or two red sides, therefore N ≥ 1. Furthermore, as there are only
two excess vertices of one colour N must be odd, implying Ĝ′ is not strongly
acyclic, therefore there exists a side bicolouring of Ĝ′. Given a side bicolouring
of Ĝ′ let Ĝ′′ = (V̂ ′′, Ê′′) be a digraph, such that V̂ ′′ = {X : {X,−X} ∈ V̂ ′ ∧
colour(X) = red} and Ê′′ = {(X,Y ) : {X,−Y } ∈ Ê′ ∧ colour(X) = red ∧
colour(−Y ) = black}, where (a, b) is a directed edge from a to b. The graph Ĝ′′

is isomorphic to Ĝ′, except that the arbitrary orientations of the sides within the
vertices have been reassigned so that there is only one type of edge in the graph
(Fig. 3). A directed cycle in Ĝ′′ would be a M, 0-cycle, but as Ĝ′′ is strongly
acyclic it must contain no directed cycles, therefore Ĝ′′ is a DAG. Any topological
sort F = {X1, X2, . . . , Xn} of the vertices of Ĝ′′ is a pangenome reference for
which f(F ) = Ĝ′. �

Theorem 1. The pangenome reference problem is NP-hard.

Proof. The problem of finding a maximum weight strongly acyclic subgraph
of a bidirected graph is polynomial-time reducible to the pangenome reference
problem, because, by the previous lemma, the consistent subgraph of any solu-
tion to the pangenome reference problem is a maximum weight strongly acyclic
subgraph. It remains to prove that the problem of finding a maximum weight
strongly acyclic subgraph of a bidirected graph is NP-hard. We prove this by
reduction of the minimum feedback arc set problem [15], which is to find the
smallest set of edges in a directed graph that when removed result in a graph
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Fig. 3. (A) A bidirected graph with three vertices A, B and C. (B) A subgraph of (A)
containing no M, 0-cycles or odd M,N-cycles. (C) A side bicolouring of (B). (D) A
digraph for (C).

containing no directed cycles. Using the demonstration in the previous lemma,
a digraph can be equivalently represented as a side bicoloured bidirected graph.
An unbalanced vertex in an M,N -cycle is red if the endpoints of the edges in-
cident with it in the cycle are colored red, else it is black. Suppose there exists
an M,N -cycle in a side bicoloured bidirected graph with i balanced vertices, j
unbalanced red vertices and k unbalanced black vertices. As in a side bicoloured
bidirected graph each edge has one red endpoint and one black endpoint the
total number of red and black endpoints is equal, therefore i+2j = i+2k, thus
k = j and therefore it is not possible to construct an odd M,N -cycle in a side
bicoloured bidirected graph. As a directed cycle in a digraph corresponds to an
M, 0-cycle in the equivalent side bicoloured bidirected graph, the minimum feed-
back arc set problem is thus polynomial-time reducible to the problem of finding
a maximum weight strongly acyclic subgraph of a side bicolored bidirected graph
(i.e. eliminating M, 0-cycles). �

An alternative, similarly simple proof of NP-hardness uses the elimination of
odd M,N -cycles rather than the M, 0-cycles, reducing the maximum bipartite
subgraph problem[16].

2.3 Algorithms for the Pangenome Reference Problem

We have established the pangenome reference problem is NP-hard, and now,
given that knowledge, we describe a principled, and to our knowledge novel,
heuristic to decompose the problem using cactus graphs, and briefly describe
two straightforward algorithms to build and refine a pangenome reference.

Cactus Decomposition of the Pangenome Reference Problem. A cactus
graph of the type introduced in [12] describes a sequence graph in a hierarchical
form. For a sequence graph G, a pair of sides X and Y form a chain interval if
there exists one or more thread paths of the form−X, . . . , Y , but no thread paths
of the form −X, . . . ,−Y or X, . . . , Y . Chain intervals represent intervals that are
“fundamental”, in the sense that all the simple threads for all the sequences in
S follow the traversal rules defined above. It is reasonable therefore to search for
reference sequences that preserve all such intervals.
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The chain interval relation defines a partition of the vertices into a set of
disjoint chains. A chain is a thread (X1, X2, . . . , Xn) such that all and only pairs
of form (−Xi, Xj) for which j − i ≥ 1 define a chain interval; we call each chain
interval of the form (−Xi, Xi+1) a link. Chains can be arranged hierarchically,
because one child chain may be contained within the link of a parent chain.We
call two chains siblings, if either they are both children of the same parent chain
link, or both are not contained within any parent chain link (i.e. they are at
the highest level of the hierarchy). For a thread (X1, X2, . . . , Xn) the two sides
X1 and −Xn are stubs. A net is an induced subgraph of G defined by the set
of stubs for a maximal set of sibling chains and (if they exist) the pair of sides
that define the containing parent link, see Fig. 4(A). A graph in which the nodes
are the nets and the edges are the oriented vertices of a sequence graph forms a
cactus graph, see Fig. 4(B).

B

C(A)
D

E

F

A G

(B)

A

B

C
D

E

F

G

Fig. 4. (A) The bidirected graph from Fig. 1(B) rewritten to show the nets as colored
side subgraphs. (B) The cactus graph representation of the blocks and nets in (A),
with the white net containing the highest level chains. The edges represent the blocks,
the vertices the nets. The arrow heads on the edges indicate endpoints that are links.

To construct a reference that respects all chain intervals we create a pangenome
reference independently for each net, treating each pair of chain stubs as equivalent
to blocks in the previous exposition. Additionally, the pangenome reference for
each child net with a parent link must be composed of a single thread whose stubs
are the sides of the parent link. This reduces the maximum size of the pangenome
reference problem to that of the largest net in the sequence graph, which as the
sequence graph for alignments of variation data is often relatively sparse, has (in
our experience and in accordance to elementary random graph theory [17]) size
only approximately logarithmically proportional to the number of vertices in the
graph. It also facilitates parallel execution, because each net can be computed in
parallel.

Greedy and Iterative Sampling Algorithms for the Pangenome Refer-
ence Problem. Given the decomposition, we build a pangenome reference for
each subproblem using an initial greedy algorithm, before iterative refinement
that employs simulated annealing.

In overview (see the source-code for more details), a pangenome reference F is
composed, starting from the empty set, by greedily adding one member of V to
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F at a time, each time picking the combination of insertion point and member of
V that maximises consistency with elements already in the F . The algorithm is
naively |V |3 time (as each insertion is |V |2 time), though by heuristically ignoring
weights less than a specified threshold (the weight declines exponentially with
sequence separation), and using a priority queue to decide which member of V
to add next, it can be improved |V |log(|V |) in practice.

Given an initial reference F the procedure progressively searches through a
sequence of neighbouring permutations, where for a reference F a neighbouring
permutation is created by removing an element from F and then inserting it
either in the positive or negative orientation as a prefix, suffix or coordinate
between elements in the reduced F , potentially including the elements original
coordinate. The algorithm incorporates simulated annealing by using a mono-
tonically decreasing temperature function to control the likelihood of choosing
neighbouring, lower scoring permutations. As the temperature tends to zero the
algorithm becomes greedy and we can search for a local minima, while as the
temperature tends to positive infinity all permutations become equally probable
and the search becomes a random walk. Each iteration of sampling, in which
the repositioning of every block is considered once, is naively |V |2 time, but is
improved to |V |log(|V |) in practice.

2.4 Simulation Experiments

To test the algorithms described we use a simple simulation of a rearrangement
median problem. We start with a single linear chromosome, represented as a
signed permutation of 250 elements, which we call the original median. We then
simulate either 3, 5 or 10 leaves, treating each leaf with a set number of random
edits. For convenience we simulate only translocations and inversions, which re-
sults in each leaf remaining a single contiguous chromosome, and apply an equal
number of translocations and inversions. Note, for simplicity, we did not assess
copy number changes (e.g. duplicative rearrangements), but doing so would be
interesting.

We performed two sets of simulations, in the first we did not constrain the
length of the subsequence of elements inverted or translocated. In such a sce-
nario only a few edits are sufficient to radically reorder the genome and break
many resulting ordering relationships. In the second scenario we constrained
the lengths of inverted subsequences to 2 or 1, and constrained the length of
translocated subsequences to just 1. In this scenario relatively large numbers of
rearrangements are required to breakup the ordering of the original median.

To find solutions to the pangenome reference problem we use a combination
of the algorithms described above, first using the greedy algorithm, then refin-
ing it with iterative sampling, performing 1000 iterations of improvement and
setting θ = 0.1 (values of theta between 0.5 and 0.001 made little difference
to the result). We call this combination Ref. Alg. in the results that follow. To
compare performance of our solutions we compare them to the original median,
and to a median genome inferred using the AsMedian program [18] (using de-
fault parameters), which finds optimal solutions to the DCJ median problem
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with three leaves. We assess performance by looking at two metrics. Firstly, the
DCJ distance, which gives the minimum number of edits needed to translate
one genome into another by DCJ edits. Secondly, viewing the medians as two
signed, partial order relations A and B on the blocks, the symmetric difference

distance, defined as |A
B|
|(A∪B)| . This gives the proportion of order plus orientation

relationships not common to the two medians.
The top panel of Fig. 5 shows the results of simulating unconstrained, arbi-

trary translocations and inversions. Unsurprisingly, Ref. Alg. constructs medians
that are substantially farther from the leaves or the original median in terms of
DCJ distance than the results of AsMedian (avg. 44% and 103% more overall
than Ref. Alg. with 3 leaves, respectively, from the leaves and original median).
Furthermore, in terms of symmetric difference distance, the AsMedian solutions
are on average 52% closer to the original median (though not the leaves) than
those constructed using Ref. Alg. with 3 leaves. This clearly demonstrates that
using the Ref. Alg. for sequences whose ordering have been turned over by large
rearrangements produces poor results, and that ancestral reconstruction algo-
rithms can be used more effectively for moderate numbers of edits in this sce-
nario, with the caveat that they may construct a multi-chromosomal ordering of
the data.

The bottom panel of Fig. 5 shows the results of simulating short edits, demon-
strating a striking converse to the unconstrained case. In terms of DCJ distance,
the Ref. Alg. with 5 and 10 leaves is actually able to outperform the AsMedian
program in terms of distance to the original median (Ref. Alg. with 5 leaves
requires 20% on avg. fewer DCJ edits than AsMedian), while in terms of sym-
metric distance Ref. Alg. with 3 leaves is able to find solutions that are as close
to the leaves as the original median and substantially closer to the original me-
dian than the AsMedian results (Ref. Alg. with 3 leaves is 31% closer on avg.
than AsMedian in terms of symmetric difference distance to the original me-
dian). Furthermore, adding more leaves improves the results substantially (Ref.
Alg. with 10 leaves is 52%, 44% closer, on average, to the original median in
terms of avg. DCJ and symmetric difference than Ref. Alg. with 3 leaves). These
results demonstrate that if edits have largely maintained the linear ordering
of the sequences then, even when the sequences have been subject to substan-
tial numbers of edits, Ref. Alg. is competitive with an ancestral reconstruction
method in terms of DCJ, while ensuring that all elements appear in an ordering
that is closer, in terms of ordering and orientation, than an optimal ancestral
reconstruction method.

2.5 Creating a Pangenome Visualisation for the Major
Histocompatibility Complex (MHC)

We recently introduced HAL format and associated APIs [19], which represent a
multiple genome alignment as a series of pairwise alignments between ancestor
and descendant genomes related by a tree. Using the algorithms and decomposi-
tion described here, we have adapted the Cactus alignment program to generate
HAL format alignments, by additionally imputing a pangenome reference that
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Fig. 5. Top: Simulation results using arbitrary inversion and translocation operations.
Each plot shows the total number of operations (a mixture of 50% inversions and 50%
translocations) vs. either the DCJ distance (top two plots) or symmetric difference
distance (bottom two plots). The left plots give the average distance from the leaf
genomes and the right plots give the distance from the original “true” median genome.
Series shown include the original median genome (left plots only), the inferred median
genome from the AsMedian program [18] using three leaves, and the inferred median
genomes using our combined reference algorithms, using, separately, three, five and ten
leaf genomes as input. Simulations used ten replicates for each fixed number of edits,
points give median result, lines show max and min quartiles. Bottom: Simulation
results using short inversion and translocation operations, laid out as in top panel.

serves as the common ancestral genome of the aligned genomes. To visualize
HAL alignments we have developed comparative assembly hubs (to be described
in full elsewhere), a UCSC browser framework that allows the loading of align-
ments as HAL files from user defined URLs, and their display using a new track
that we call an alignment snake.

To demonstrate its performance with resequencing data, we created a
pangenome reference for the MHC region, where there is a wealth of public
data available. We used 16 human assemblies (see Supp. Data) plus the chim-
panzee genome as an outgroup. To generate the Cactus alignment we used its
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default parameters and set θ = 10−4 (tested θ values between 10−2 and 10−6

produce similar results). The pangenome reference covers just over 5 megabases,
and with respect to it the samples collectively contain tens of thousands of in-
dels and hundreds of more complex rearrangements. The complete alignment
and comparative assembly hub files are in the supplementary material, and can
be used to load the demoed browsers. Fig. 6 shows example browser screen-
shots for the MHC. Each shows the alignment of a genome with respect to the
pangenome reference (along the horizontal axis), which is converted into a con-
sensus nucleotide sequence by creating a consensus sequence for each block and
then concatenating these subsequences together in the order of the pangenome
reference. Each screenshot shows a sequence of alignment snake tracks, arranged
vertically, one for each of the aligned target genomes. Each alignment snake
is a sequence of blue/red rectangles (depending on strand) connected together
by lines. The rectangles represent subsequences of a target genome aligned to
the reference, the lines represent the adjacencies between these aligned subse-
quences. The red tick marks within the rectangles represent single nucleotide
variations (SNVs). The top panel of Fig. 6 shows indels; as no sequence apart
from the pangenome reference contains all the blocks, only the pangenome ref-
erence browser can show the contents of all the segregating indel subsequences.
The middle panel of the figure shows a segregating combination of an inver-
sion and deletion. The chromosome reference sequence for the human reference
genome (GRCh37) has the inversion, but the pangenome reference, being a com-
prehensive consensus, both includes the subsequences missing the chromosome
reference sequence and orients the inversion according to the majority of the
samples. In the bottom panel a tandem duplication is shown. All the human
assemblies are either incomplete or have two copies of the tandemly duplicated
subsequence, however, the pangenome reference, containing a single copy of the
tandem duplication subsequence is able to cleanly display the event using the
basic semantics of the alignment snake track.

3 Discussion and Conclusion

We have defined a problem useful for creating a pangenome reference between
closely related genomes, proved it is NP-hard and described principled heuristics
to find (approximate) solutions. We demonstrated in simulations the tradeoffs
between optimising for conserved order relationships and minimising DCJ op-
erations. Finally, we have demonstrated the method’s utility in constructing
visualizations of variation data in the UCSC browser, providing a view of the
alignment not typically possible from any input genome.

We have demonstrated the relationship of the pangenome reference problem
to a method for ancestral reconstruction, but the pangenome reference problem
also has close similarities with sequence assembly problems, which have vari-
ants explicitly described on bidirected graphs [13] In particular, the scaffolding
problem given paired reads involves arranging a set of “scaffold” sequences in a
partial order to essentially maximise the numbers of consistently ordered, ori-
ented and spaced paired reads. Apart from the additional constraint on spacing,
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Fig. 6. UCSC pangenome reference browser screenshots. Top: Indels. Middle: A seg-
regating inversion. Bottom: An apparently fixed tandem duplication. For reasons of
space some samples are omitted from the screenshots. The human reference genome
is labeled with the prefix hg19, the chimpanzee sequences are labelled with the prefix
panTro and details of the other samples are in the supplementary material.

the scaffolding problem with paired reads can be defined equivalently to the
pangenome reference problem.

Though our primary motivation in this paper is visualisation, pangenome ref-
erences, being comprehensive and consensus orderings, are likely to prove useful
for other purposes. Where reference genomes are currently used for computa-
tional convenience, for example in read compression, and are not integral for
biological interpretation, a pangenome reference may present a useful alterna-
tive to current reference genomes. Additionally, given that (sequence) graphs do
not have a implicit linear decomposition, having a pangenome coordinate system
on such graphs could prove useful in processing multiple alignments.

The source code for this project is at: https://github.com/benedictpaten/
matchingAndOrdering/tree/development.

Supplementary Material. The Cactus alignment source is in one convenient
distribution at: https://github.com/glennhickey/progressiveCactus. It in-
cludes the source code for this project, as well as the HAL source code, which
contains the hal2AssemblyHub.py script, for generating comparative assembly

https://github.com/benedictpaten/matchingAndOrdering/tree/development
https://github.com/benedictpaten/matchingAndOrdering/tree/development
https://github.com/glennhickey/progressiveCactus
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hubs that can be viewed using the UCSC browser. The MHC assemblies and the
comparative assembly hub is at: http://hgwdev.cse.ucsc.edu/ benedict/

MHCBrowserForRecomb.
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Abstract. Methods for translating gene expression signatures into clin-
ically relevant information have typically relied upon having many sam-
ples from patients with similar molecular phenotypes. Here, we address
the question of what can be done when it is relatively easy to obtain
healthy patient samples, but when abnormalities corresponding to dis-
ease states may be rare and one-of-a-kind. The associated computational
challenge, anomaly detection, is a well-studied machine learning prob-
lem. However, due to the dimensionality and variability of expression
data, existing methods based on feature space analysis or individual
anomalously-expressed genes are insufficient. We present a novel ap-
proach, CSAX, that identifies pathways in an individual sample in which
the normal expression relationships are disrupted. To evaluate our ap-
proach, we have compiled and released a compendium of public microar-
ray data sets, reformulated to create a testbed for anomaly detection. We
demonstrate the accuracy of CSAX on the data sets in our compendium,
compare it to other leading anomaly-detection methods, and show that
CSAX aids both in identifying anomalies and in explaining their un-
derlying biology. We note the potential for the use of such methods in
identifying subclasses of disease. We also describe an approach to char-
acterizing the difficulty of specific expression anomaly detection tasks
and discuss how one can estimate the feasibility of a specific task. Our
approach provides an important step towards identification of individual
disease patterns in the era of personalized medicine.

1 Introduction

The development in the 1990’s of techniques for genome-wide monitoring of ex-
pression data [1,2] has had a dramatic impact on the field of molecular medicine.
Personalized diagnostics based on expression array signatures are increasingly
moving into the clinic [3, 4]. However, methods for designing microarray-based
diagnostics or discovering disease subtypes require a reasonable number of sam-
ples representing each patient class [5]. There are techniques for boosting the

� Author’s current address: AncestryDNA (Ancestry.com), 153 Townsend St., Suite
800, San Francisco, CA 94107.
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signal when relatively few samples are available [6, 7], but these don’t eliminate
the need for a representative set of samples that fully characterize the molecular
variability underlying the phenotypes of interest. For rare diseases or genetically
heterogeneous disorders, another analysis paradigm is needed. Here we demon-
strate that by characterizing the expression patterns of “normal” samples, it
is often possible to identify abnormal samples even when each abnormality is
one-of-a-kind.

The problem of determining which samples to flag as abnormal, given only
normal training data, is related to the computational field of anomaly detection,
sometimes called outlier detection. Anomaly detection is an active research area
in both statistics and data mining [8]. It is regularly applied to such problems as
spam detection, identifying potential credit-card theft, verifying online identities,
and correcting errors in census data.

There have been several previous efforts that explicitly apply anomaly de-
tection methods to bioinformatics problems, including correction in genome an-
notation [9] and identifying changes in the steady-state behavior of stochastic
gene regulatory networks [10]. A related approach by Torkamani and Schork [11]
identifies genes whose expression pattern is unusual in a given cellular context.
With respect to gene expression microarray data in particular, the task of iden-
tifying differentially expressed genes has been viewed in the framework of outlier
detection [12–15], as has the problem of identifying array artifacts [16]. Perhaps
the closest approach to that we describe here is that of Tomlins, et al. [17],
who use outlier detection to identify common translocations in cancer, but the
outliers still refer to individual genes rather than samples.

The underlying machine learning problem, that of identifying “abnormal”
samples given only “normal” samples as training data, is a challenging one.
Microarray data is particularly ill-suited for anomaly detection, as for many
other machine learning problems, because of its noise level, the dimensionality
of a typical data set (hundreds of samples but tens of thousands of genes),
and the expectation that only a small fraction of those genes may provide any
information about the classification of the samples.

Fortunately, other characteristics make the problem potentially tractable. We
expect meaningful expression changes to reflect unusual regulation in specific
functional pathways. We can therefore use prior knowledge about the relation-
ships between genes to identify anomalous examples. Such information has the
added advantage that it may provide hints to the underlying cause of the de-
tected anomalies.

To evaluate the utility of such an approach, we created a compendium of data
sets for anomaly detection from published microarray classification data sets.
On this compendium, we compare several state-of-the-art methods for anomaly
detection, including CSAX, a novel approach that we designed to boost the signal
from the prior method most robust to irrelevant features [18] while identifying
the gene sets that best distinguish each anomalous sample. Our results show
that in many cases, anomaly detection can both identify unusual samples and
produce meaningful information about the nature of the anomalous data.
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There is also a question of what abnormalities we can expect to identify. For
example, a single abnormal sample characterized by abnormal expression of a
single gene could not possibly be detected by any method – the data are simply
too noisy. Our method is applicable when a sizable number of genes’ expres-
sion levels are sufficiently different. We characterize the classes of anomalies we
can expect to detect, and we discuss how clinical intuition might be applied to
identify anomalies suitable for these methods.

2 Data and Methods

2.1 Compendium of Microarray Anomaly Detection Data Sets

We assembled a compendium of 28 microarray anomaly detection tasks from
published classification studies that involve at least two classes of samples (e.g.,
healthy vs. disease, or multiple tissue types). We created an anomaly detection
task from a microarray data set by (i) designating one class (usually the least-
abundant or the least physiologically-normal) as the “anomalous” class, and all
samples from the other classes as the “normal” class, which may therefore be
quite heterogeneous; (ii) creating a training set from some of the normal microar-
rays, chosen at random, and (iii) creating a test set from the rest of the normal
microarrays and all of the samples in the anomalous class (see Figure 1). We cre-
ated our compendium from suitably-sized data sets (with several human microar-
ray samples from at least two clearly- defined classes) found by browsing GEO
(www.ncbi.nlm.nih.gov/geo) or from publications known to us, combined with
a testbed of expression classification data sets assembled elsewhere for the devel-
opment of computational methods (see Acknowledgements). The compendium
includes all the data sets with which we experimented that had previouly been
released publicly. Details and data can be found at bcb.cs.tufts.edu/csax.

In most envisioned applications, such as diagnosing rare diseases from blood
samples, anomalies are likely to be one of a kind. However, in each data set in this
compendium, we have a collection of relatively similar anomalies and we know
which samples we should expect to identify as anomalous. We can therefore use
this compendium as a “gold standard” data set to evaluate the accuracy of our
methods.

2.2 A New Method for Expression Anomaly Detection

There are many existing computational methods for anomaly detection in generic
high-dimensional data sets. The most successful general approaches include
density-based methods such as the Local Outlier Factor (LOF) [19], which iden-
tifies outliers by comparing their distances from their nearest neighbors to the
typical distances between nearby training examples, and one-class support vec-
tor machines (SVMs) [20]. However, neither of these methods is especially well
suited for handling the dimensions of expression microarray data.

We recently developed an anomaly-detection method called Feature Regres-
sion and Classification, or FRaC [18]. When applied to expression data, FRaC

www.ncbi.nlm.nih.gov/geo
bcb.cs.tufts.edu/csax
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Fig. 1. To create an anomaly
detection task from a microar-
ray study with two classes of
samples, A and B, we ran-
domly select a portion of the
A samples for the test set and
use the remainder for train-
ing. The task is then to iden-
tify samples from class B after
training on samples from class
A alone.

predicts the expression level of each gene based on the levels of the others. A
gene’s expression level is considered “surprising” if a reliable relationship learned
from the training data is violated in the test sample, as measured by the so-called
“suprisal” [21] (or log-loss) score from the field of information theory. Anomaly
scores for samples are computed by summing surprisal scores over all genes.
FRaC is known to be robust to large numbers of irrelevant variables [18], mak-
ing it well suited for identifying outliers in microarray data.

However, FRaC simply classifies samples as outliers without explicitly pro-
viding information about the nature of each anomaly. Instead, we would like to
identify gene sets or pathways in which the sample is particularly anomalous. We
therefore also developed a robust method, “Characterizing Systematic Anoma-
lies in eXpression data” (CSAX), for doing so that uses the FRaC surprisal
scores for each gene. Briefly, CSAX incorporates the following steps:

1. Using FRaC, measure the extent to which the expression levels of individual
genes in the test sample are surprising, given the training data.

2. Measure the extent to which genes with surprising expression levels are in-
volved in the same pathway or biological process. To do this, we rank the
genes by their surprisal scores and look for gene sets with many high-surprisal
genes using GSEA [22, 23]. One can use any collection of pre-defined gene
sets for this step. We chose the Reactome gene sets (www.reactome.org)
here, as a reasonable-sized yet sufficiently broad collection.

3. Measure the variance of the gene sets selected in the previous step to improve
the robustness of the predictions via bootstrap aggregation, or bagging, a
common machine learning technique. We find that (i) the gene sets that
appear enriched using FRaC and GSEA alone are not necessarily the same

www.reactome.org
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as those consistently enriched over several iterations of bagging, and (ii) the
anomaly detection accuracy is noticeably higher using bagging.1

Given a training set, an unlabeled microarray, and a collection of related gene
sets, the output of CSAX is (i) a real-valued anomaly score—a measure of our
confidence that the microarray is anomalous, and (ii) a measurement attached
to each gene set, indicating the extent to which it is likely to explain an anomaly
in the microarray data. Further details of CSAX can be found in the Appendix.

2.3 Evaluating Anomaly Detection Methods

The goal of any anomaly detection approach is to assign a high anomaly score to
unlabeled samples that are not part of the normal class. To measure the success
of each anomaly detection method on a compendium data set, we construct an
ROC curve [24] from the test set labels (normal or anomalous) and the method’s
predicted anomaly scores, and we calculate the area under the curve (AUC). The
AUC can be viewed as the likelihood that an anomaly detector assigns a higher
anomaly score to a test set anomaly than it does to a test set normal. Thus,
higher AUC scores are better, the best possible score being 1.0. The AUC is a
common performance measure that is independent of both the number and the
proportion of anomalies in the test set.

For each expression data set in our compendium, we create an anomaly de-
tection task (see Section 2.1 and Figure 1) by randomly selecting 75% of the
normal microarrays for training. The remaining 25% of the normal microarrays
and all of the anomalous microarrays are put in random order to make up the
test set. We repeat this process 20 times and report an average AUC for each
anomaly detection method for each data set.

We compare the performance of CSAX to that of two top-performing anomaly
detection methods: computing the local outlier factor (LOF) [19], and using
one-class support vector machines (SVMs) [20]. We also compare against the
performance of our own method, FRaC [18].

3 Results

3.1 Detection and Characterization of Anomalous Samples

The AUC scores of CSAX, FRaC, LOF and SVMs on our compendium data
sets are shown in Table 1. Each of the methods has the best performance on
some data set. If we average the AUC scores over all the data sets, FRaC and
CSAX are tied for the best performance. Overall, FRaC has the highest AUC
(or is tied for highest AUC) on the largest number of data sets (16). Yet none of
FRaC, SVMs, or LOF directly implicates specific gene sets as contributing to the
identification of anomalous samples. CSAX, which was created to take advantage

1 The anomaly ranking with bagging is more accurate on 20 of the 28 data sets in our
compendium (data in online supplementary materials).
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Average AUC
Task SVM LOF FRaC CSAX
atrt 1.00 1.00 1.00 0.99
bcat 0.97 0.95 0.97 0.87
bild 0.78 0.77 0.88 1.00
biomarkers 0.59 0.93 0.95 0.94
breast.basal 0.75 0.69 0.76 0.73
breast.er 0.65 0.78 0.83 0.82
desmoplastic 0.43 0.41 0.43 0.53
diabetes 0.49 0.45 0.49 0.44
downs 0.65 0.66 0.64 0.58
ethnic 0.59 0.65 0.66 0.67
gender 0.85 0.65 0.83 0.98
hematopoiesis 0.69 0.79 0.89 0.92
leukemia 0.93 0.88 0.93 0.92
lymphomas 0.59 0.84 0.87 0.81
meningiomas 0.55 0.61 0.65 0.69
meta.1.2 1.00 0.94 0.98 0.87
mind.body 0.43 0.61 0.54 0.53
multitumor 1.00 0.88 1.00 0.99
revlimid 0.64 0.47 0.56 0.66
ross2 0.96 0.91 0.98 0.98
ross3 0.98 1.00 1.00 1.00
roth07 0.63 0.59 0.67 0.65
sepsis 0.61 0.64 0.68 0.64
shakes 0.43 0.45 0.45 0.43
smokers 0.65 0.62 0.58 0.60
smokers2 0.55 0.63 0.72 0.73
survey 0.61 0.67 0.88 0.86
tzd 0.57 0.54 0.60 0.59
Best AUC 7 5 16 10
Avg AUC 0.699 0.751 0.765 0.765

Table 1. The average AUC over 20 repli-
cate experiments of four anomaly detection
methods on the tasks in our compendium:
One-class SVMs [20], LOF [19], FRaC [18],
and CSAX. A different random subset of
the normal class is chosen as the training
data for each replicate. “Best AUC” shows
a count of the number of data sets in which
the method has the highest AUC of the four
(or is tied for the highest). “Average AUC”
averages the AUC scores over all the data
sets for that method.

of FRaC’s strong performance while offering a useful functional characterization
of the anomalous samples, also performs well and identifies the gene sets that are
most surprisingly dysregulated. These can provide valuable information about
the pathways disrupted in the anomalous samples.

For example, the “bild” data set consists of human mammary epithelial cells
in which exogenous oncogenes (either myc, ras, E2F3, β- catenin, or src) are
expressed. The src pathway was selected as the anomalous class for the com-
pendium because it had the fewest samples. The most anomalous pathway across
all of the src samples according to CSAX is “NCAM signaling for neurite out-
growth,” with a median rank of 2, meaning that this pathway was ranked either
first or second in at least half of the bagging trials. The next two top path-
ways, both with median rank 3, were “Signaling by FGFR” and “Downstream
signaling of activated FGFR.” FGFR signaling is mediated by src [25]. NCAM
binds to FGFR-1 and its role in cell migration depends on both FGFR-1 and
src activation [26], showing that src activation in the anomalous samples pro-
duces anomalous gene sets reflecting the direct effects of src expression. These
low median rank scores suggest that there is remarkable consistency across the
different test samples, which of course need not be the case for all envisioned
applications.

As another example, the “leukemia” data set distinguishes between acute
myeloid (“normal”) and acute lymphoblastic leukemia (“anomalous”) samples.
The top gene set identified by CSAX, with a median rank of 5, is “Regulation
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of signaling by CBL.” CBL, an oncogene known to be translocated or mutated
in many acute myeloid leukemias, has more recently been discovered to play a
broader role in many myeloid neoplasms [27].

We note that these gene sets do not indicate differential expression in the
genes in these sets between normal and anomalous samples, in the way that
typical gene set analyses do. Rather, they emphasize that relationships between
the expression levels of genes in the indicated sets (to other genes in the genome)
that are reliably established in the training samples are broken in the anomalous
samples.

3.2 Characterizing Heterogeneity through Anomaly Detection

CSAX is also valuable for characterizing heterogeneity among anomalous sam-
ples. The hematopoiesis data set is the compendium data set with the most
well-characterized heterogeneity in the anomalous class (cell lines of lymphoid
origin): it includes B-cells, pre-B-cells, natural killer cells, and T-cells, all of which
are collectively to be distinguished from hematopoietic cells of myeloid lineage.
Figure 2A plots the first two principal components in a principal component
analysis (PCA) of the normalized gene expression data from the lymphoid sam-
ples. While a subset of the T-cells stands out, the rest of the samples are rather
jumbled together. Adding the third component (not shown) does little to im-
prove these class distinctions. However, a similar plot (Figure 2B) on a matrix of
the CSAX output (rows represent gene sets, columns represent samples, and the
data are the median ranks of the gene sets in those samples) on the same input
data does a much nicer job of separating the four sub-classes. Coincidentally, the
top two principal components in both of these analyses explain approximately
55% of the variance in their data sets (54.92 and 54.88 respectively). Adding in
the third principal component (Figure 2C) makes it clear that there appear to
be two distinct T-cell subclasses.

Several prior methods such as PADGE [13], COPA [17,28], and GTI [12] that
identify outlier expression of genes were intended to solve this problem of finding
subgroups of samples grouped by which genes show unusual expression. However,
CSAX may be more powerful at characterizing heterogeneity because it relies not
on unusual expression of any particular genes, but on detecting a breakdown in
the expected relationships in gene expression in a single sample, and identifying
pathways enriched for such broken relationships. Accordingly, even if no two
samples in a data set have the same dysregulated genes, CSAX may be able to
find common patterns, allowing characterization of the heterogeneous anomalies
into functionally-related subclasses.

3.3 How Hard Is an Anomaly Detection Task?

The variation in performance across the compendium seems to depend strongly
on characteristics of the individual data sets. For example, on the “leukemia”
data, where differential expression is known to be substantial across a large
number of genes, all four methods perform quite well, while on the “diabetes”
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(a) Expression Data (b) CSAX Output (c) CSAX Output 3D

Fig. 2. Using anomaly detection to characterize heterogeneity. a: Plot of the first two
principal components of the gene expression data for all anomalous samples in the
hematopoiesis data set. Red “T”s correspond to T-cells, gold “B”s to B-cells, green
“P”s to pre-B-cells, and blue “N”s to natural killer cells. b: Plot of the first two
principal components of the results of CSAX on the hematopoiesis data set. Labels are
the same as in part a. c: Adding the third principal component to the results from
part b, in a three-dimensional plot, shows the clear separation of the different types of
samples in the CSAX results. Furthermore, two distinct subgroups of T-cells emerge.
Colors are the same as in parts a and b.

data set, which is known to have only subtle expression differences between the
normal and anomalous classes [23], all the methods perform poorly. We would
like to be able to predict what sorts of anomalous expression patterns should be
detectable by these methods. Accordingly, we sought to characterize the difficulty
of each of the compendium data sets.

We found no reliable way to characterize the difficulty of a data set using only
the training data. Given our compendium of gold-standard data, however, we
can still learn about characteristics of solvable problems using what we know
about the test data sets. We can then apply this information to help us predict
the utility of anomaly detection in applications where we don’t know the right
answer.

We discovered that the ratio between the median distance separating the
training data from an anomalous example and the median distance between
the training data and a test-set normal example is an excellent predictor of the
eventual performance (measured by AUC) of an anomaly detector, regardless of
which anomaly detector we use. We refer to this measure as the relative anomaly
aggregate distance (RAAD).

We define RAAD as:

RAAD =

median
x∈X ,q∈Qa

|x− q|

median
x∈X ,q∈Qn

|x− q| (1)

where X is the training set, Qa are the test set anomalous instances, Qn are the
test set normal instances, and |x − q| indicates the vector distance between a
training and test set instance (i.e., each gene’s expression is one component of
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Fig. 3. A scatterplot comparing
RAAD with test set performance
over the 28 compendium data sets
(each shown in its own color). Points
show 20 replicates (random selection
of training/test samples) for each
data set. Horizontal and vertical lines
show an AUC of 0.5 (random guess-
ing) and a RAAD of 1.0 (normal and
anomalous instances equidistant),
respectively. (Scatter plots showing
individual data sets are available in
supplementary material.)

a high-dimensional vector). We use the l1 norm (“Manhattan” distance) when
computing vector distance because it is intuitive–the total distance is the sum
of differences in gene expression between two microarrays.

The scatterplot in Figure 3 shows the relationship between RAAD and per-
formance using FRaC.

In real applications, where the test data labels are unknown, clinicians’ in-
tuition about the degree of expression variation one might expect among the
normal class and among the types of envisioned anomalies can be used to es-
timate whether anomaly detection methods are likely to be helpful. Further, a
small test set with some heterogeneous anomalies can be used to estimate the
RAAD score, helping to determine the value of obtaining and analyzing addi-
tional samples.

4 Discussion

We have shown that it is often possible to detect and characterize anomalous
expression data given training data from normal samples only, and that the
two methods designed with expression data in mind perform best, albeit with
different strengths. FRaC learns reliable relationships between genes’ expression
patterns from the training data, and identifies anomalies when these patterns
break down. This method is therefore entirely data-driven; it does not rely on
prior knowledge about gene sets or relationships. Yet it makes sense that many
clinically-important anomalies would be characterized by a breakdown in the
expected relationships between genes’ expression patterns. So it is perhaps not
surprising that FRaC is particularly effective on these large data sets.

On the average, CSAX is about as accurate as FRaC (Table 1), but it has two
very important differences: (i) it identifies gene sets that may help to explain
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the nature of the anomaly, and (ii) it uses fewer gene expression features in
its predictions (because of the discount in Equation 3 in the Appendix), instead
gaining its power from using known gene sets to integrate prior knowledge about
gene relationships into the anomaly detection process.

The identification of gene sets with known functional roles associated with
an anomaly is one of the primary goals of our work. It provides insight into the
nature of the anomaly, and allows experts to follow up by ordering relevant tests.
The fact that the performance of CSAX is comparable to that of FRaC while
using fewer genes is evidence that the gene sets identified by our method are
indeed relevant, because in general the use of fewer features hurts performance.

We also observed that performance depends less on the computational method
used than on the difficulty of the data set itself. While the RAAD score is
useful for characterizing the difficulty of anomalies whose classification is already
known, in most cases such data will not be available. Thus, clinical intuition
about the nature of anticipated anomalies will need to come into play. If the
anomalous samples are likely to be no more different from the normal samples
than the normal samples are from each other, no method is likely to succeed.
Prior knowledge about expression variability and heterogeneity of the samples
under consideration is expected to be helpful here.

This paradigm is also particularly useful for handling heterogeneity in expres-
sion data. If the anomalous samples are sufficiently heterogeneous, traditional
classification methods are likely to struggle. The anomaly detection paradigm,
however, can provide information about the particular characteristics of each
sample, allowing clustering of the samples into classes. Potential applications in-
clude diseases such as lung cancer that are suspected to represent heterogeneous
collections of related disorders, but where traditional approaches to molecular
classification have not been sufficiently effective. Demonstrating the strength of
CSAX for this application will be an important next step.

We note that as the cost of sequencing continues to decrease, genome-wide
studies of expression will continue shifting away from microarrays towards RNA-
seq approaches. However, there is no reason that CSAX cannot be applied in
an RNA-seq setting. Indeed, it might be even more powerful, as changes in
the relative abundance of different isoforms can be integrated into the analysis.
Future work should therefore include demonstrating CSAX’s power to identify
systematic anomalies in RNA-seq data.

Overall, we have demonstrated that in many biomedically-interesting cases,
it is indeed possible to identify and characterize individual anomalous samples
from their expression patterns. Such one-of-a-kind analyses are crucial steps as
we move towards the era of personalized medicine.
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Appendix: Methods Details

FRaC

In 2010, we developed feature regression and classification (FRaC [18,29]). Given
a training set and an unlabeled example, the steps involved in FRaC are for all
genes i:

1. Infer a predictive model Ci of the expression of gene i from some of the
training data. The model will use the expression of some of the other genes
to make its predictions. For this step, we use an ε-SVR (support vector
regression) model with a linear kernel, the ε parameter (in the loss function)
set to zero, and the C parameter (for regularization) set to 1.0. Preliminary
experiments with microarray anomaly detection showed that FRaC is not
very sensitive to these choices, and these settings prove to work well (data
not shown).

2. Use held-aside training data (i.e., not used in the previous step) to estimate
the accuracy of the model; e.g., to build a model Ei of the predictive error.
We use leave-one-out cross-validation to sample the predictive error and we
model Ei as a normal distribution N (μ, σ), where μ and σ are set to the
sample mean and standard deviation, respectively.

3. Use the predictive model Ci to predict the expression of gene i in the unla-
beled example.

4. Compute the likelihood of the error of the prediction using the error model
Ei.

5. The anomaly score we assign to gene i is the log loss, or surprisal, of the
likelihood computed in the previous step.

The input to FRaC is a training set and a test set. The output of FRaC is a ta-
ble of anomaly scores, one for each gene and for each test instance. When running
FRaC by itself, the anomaly score is computed as the sum of the anomaly scores
for each gene. When running FRaC for the purpose of generating input data
for GSEA (i.e., CSAX), aggregating gene anomaly scores is not necessary. In
either case, we follow the method outlined above using our own implementation.
Source code and documentation are available at bcb.cs.tufts.edu/frac/.

CSAX

CSAX uses FRaC (as described in the previous section) to compute an anomaly
score for each gene, and uses GSEA to see which gene sets are associated with
genes whose expression is particularly surprising.

The input to GSEA is (i) a list of genes, ranked by some measure of differential
expression between two classes, and (ii) a collection of gene sets. The output of
GSEA is a list of the gene sets, ranked by their “enrichment,” a measure of their
significance in distinguishing between the two classes of microarray. GSEA is

bcb.cs.tufts.edu/frac/
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implemented in Java and available at http://www.broadinstitute.org/gsea/
downloads.jsp. We use the Java archive (gsea2-2.07.jar) and run the “pre-
ranked” version of GSEA (xtools.gsea.GseaPreranked) on gene sets with at
least seven and at most 500 genes, with 1000 permutations and a weighted scor-
ing scheme (see GSEA documentation). The output of GSEA is a table, listing
each gene set, its enrichment score (see [22,23] for details), and other statistics,
including a normalized version of the enrichment score that considers the size of
each gene set.

This approach has the important advantage of identifying the gene sets that
may best explain an anomaly, which is one of the primary goals of our research.
However, applying this method to test set microarrays that come from the normal
class will also identify gene sets that that are statistically enriched, even though
these sets are effectively random and depend on how accurately the training
set represents the true distribution of the normal class. Specifically, when the
training set is too small to capture the full diversity of the normal sample space,
there will be false positive results. For the envisioned applications, we need
to better distinguish the results characterizing normal test samples from those
characterizing anomalies.

We therefore use bagging to address this effect: over multiple iterations, we
take a random subset of the training set and run FRaC and GSEA on it. This
process produces multiple GSEA enrichment rankings for each gene set. The gene
sets that best explain a true difference between an unlabeled microarray and the
training set will appear at or near the top of GSEA’s ranked list over multiple
iterations of bagging, whereas the gene sets that are only enriched because their
genes are misrepresented in the training set (because of the small sample size)
are less likely to do so.

The challenge that remains is how to select the informative gene sets from the
GSEA output lists, and how to combine their enrichment into a single anomaly
score. A single gene set may not be enough by itself to fully characterize an
anomaly, so we must consider multiple gene sets, but we only want the most
informative ones—those that are ranked highly in GSEA’s output tables. The
method that we use is to first look at the collection of rankings for each gene
set and to compute its median. For example, if a gene set appears in the #1
position more often than not, its median rank will be 1.

Formally, let G be our collection of G gene sets, and B be the number of
bagging iterations. Let rb(g) be the ranking (i.e., 1, 2, ...) of gene set g in the bth

iteration of bagging, when ordered by enrichment score. Let V (g) be the median
of all the rankings of gene set g, i.e.,

V (g) = median
b∈1...B

[rb(g)]. (2)

We consider the gene sets with the best median rankings (lowest values of V )
to be the most informative ones. Let M be the G gene sets in G, ordered by
their median ranking V , i.e., M1 is the gene set g with the lowest V (g), and
V (Mi) ≤ V (Mi+1) for all i ∈ [1, 2, ..., G− 1].

http://www.broadinstitute.org/gsea/downloads.jsp
http://www.broadinstitute.org/gsea/downloads.jsp
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We also run FRaC and GSEA on the entire training set (as opposed to the
iterations of bagging). Let ES(g) be the enrichment score calculated by GSEA
for gene set g on the full training set. We define ES(g) = 0 for any gene set g
that does not appear in the table. Note that GSEA normalizes its enrichment
score for gene set size. This normalization depends on the enrichment scores and
is helpful when comparing against other gene sets on the same microarray, but
is not helpful when comparing across microarrays. Therefore, we use normalized
enrichment score for ranking, but ES refers to the raw enrichment score.

To compute an anomaly score, we combine the enrichment scores of each gene
set, discounted by their position in M as

anomaly score =
G∑
i=1

γi−1 × ES(Mi). (3)

The single parameter γ controls how many of the highest-ranking gene sets are
included in the computation of the anomaly score, and, by extension, how many
genes influence the predictions.

In our experiments, we set γ = 0.95. Overall, we observe similar performance
for different values of γ (results in supplementary materials online). In our ex-
periments, we perform B = 40 iterations of bagging and use the G = 1, 079
Reactome pathways gene sets [30]. Source code and documentation for CSAX
can be found at http://bcb.cs.tufts.edu/csax/.

One-class Support Vector Machines

To compare our approach to one-class support vector machines [20], we use the
LIBSVM [31] implementation with default settings. Preliminary investigation
showed the AUC scores are not sensitive to a wide range of parameter settings
(data not shown).

LOF

To compare our approach to LOF [19], we use our own implementation. LOF
requires the specification of a single parameter, MinPts, which is the size of the
neighborhood of microarrays. Following a suggestion in the original presentation
of LOF [19], we compute the LOF using all possible values of MinPts, and take
the maximum LOF. Source code and documentation for our implementation can
be found at http://bcb.cs.tufts.edu/csax/.

http://bcb.cs.tufts.edu/csax/
http://bcb.cs.tufts.edu/csax/
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Abstract. The human genome is diploid, that is each of its chromo-
somes comes in two copies. This requires to phase the single nucleotide
polymorphisms (SNPs), that is, to assign them to the two copies, beyond
just detecting them. The resulting haplotypes, lists of SNPs belonging
to each copy, are crucial for downstream analyses in population genetics.
Currently, statistical approaches, which avoid making use of direct read
information, constitute the state-of-the-art. Haplotype assembly, which
addresses phasing directly from sequencing reads, suffers from the fact
that sequencing reads of the current generation are too short to serve
the purposes of genome-wide phasing.

Future sequencing technologies, however, bear the promise to generate
reads of lengths and error rates that allow to bridge all SNP positions in
the genome at sufficient amounts of SNPs per read. Existing haplotype
assembly approaches, however, profit precisely, in terms of computational
complexity, from the limited length of current-generation reads, because
their runtime is usually exponential in the number of SNPs per sequenc-
ing read. This implies that such approaches will not be able to exploit
the benefits of long enough, future-generation reads.

Here, we suggest WhatsHap, a novel dynamic programming approach
to haplotype assembly. It is the first approach that yields provably opti-
mal solutions to the weighted minimum error correction (wMEC) prob-
lem in runtime linear in the number of SNPs per sequencing read, making
it suitable for future-generation reads. WhatsHap is a fixed parameter
tractable (FPT) approach with coverage as the parameter. We demon-
strate that WhatsHap can handle datasets of coverage up to 20x, pro-
cessing chromosomes on standard workstations in only 1-2 hours. Our
simulation study shows that the quality of haplotypes assembled by
WhatsHap significantly improves with increasing read length, both in
terms of genome coverage as well as in terms of switch errors. The switch
error rates we achieve in our simulations are superior to those obtained
by state-of-the-art statistical phasers.
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1 Introduction

The human genome is diploid, that is, each of its chromosomes comes in two
copies (except for sex chromosomes in males), one from the mother and one
from the father. These parental copies are affected by different single nucleotide
polymorphisms (SNPs), and assigning the variants to the copies is an important
step towards the full characterization of an individual genome. The correspond-
ing assignment process is referred to as phasing and the resulting groups of
SNPs are called haplotypes. Phasing SNPs in population studies allows to, for
example, identify selective pressures and subpopulations, and to link possibly
disease-causing SNPs with one another [13]. This explains that phasing SNPs
has been an instrumental step in many human whole-genome projects [5,28].
In the meantime, globally concerted efforts have generated reference panels of
haplotypes, for various populations, which may serve corresponding downstream
analyses [29,30].

There are two major approaches to phasing variants. The first class of ap-
proaches relies on genotypes as input, which are lists of SNP alleles, together
with their zygosity status. While homozygous alleles show on both chromosomal
copies, and obviously apply for both haplotypes, heterozygous alleles show on
only one of the copies, and have to be partitioned into two groups. If m is the
number of heterozygous SNP positions, there are 2m many possible haplotypes.
This illustrates that directly phasing from genotype data is a hard computational
problem. The corresponding approaches are usually statistical in nature, and
they integrate existing reference panels. The underlying assumption is that the
haplotypes to be computed are a mosaic of reference haplotype blocks that arises
from recombination during meiosis. The output is the statistically most likely
mosaic, given the observed genotypes. Most prevalent approaches are based on
latent variable modeling [17,21,26]. Other approaches use Markov chain Monte
Carlo techniques [23].

The other class of approaches makes direct usage of sequencing read data. Such
approaches virtually assemble reads from identical chromosomal copies and are
referred to as haplotype assembly approaches. Following the parsimony principle,
the goal is to compute two haplotypes to which one can assign all reads with
the least amount of sequencing errors to be corrected and/or erroneous reads to
be removed. Among such formulations, the minimum error correction (MEC)
problem has gained most of the recent attention. The MEC problem, which we
will formally define in Section 2, consists of finding the minimum number of
corrections to the SNP values to be made to the input in order to be able to
arrange the reads into two haplotypes without conflicts. A major advantage of
MEC is that it can be easily adapted to a weighted version (wMEC), in order
to deal with phred-based error probabilities. Such error schemes are common in
particular for next-generation sequencing (NGS) data. An optimal solution for
the wMEC problem then translates to a maximum likelihood scenario relative
to the errors to be corrected.

In tera-scale sequencing projects, e.g., [5,28], ever increasing read length and
decreasing sequencing cost make it clearly desirable to phase directly from read
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data. However, statistical approaches are still the methodology of choice be-
cause: (i) most NGS reads are still too short to bridge so-called variant deserts.
Successful read-based phasing, however, requires that all pairs of neighboring
heterozygous SNP alleles are covered; and (ii) the MEC problem is NP-hard,
and so are all other similar problem formulations.

Most advanced existing algorithmic solutions to MEC [6,16] take time expo-
nential in the number of variants per read, and, ironically, often benefit precisely
from variant deserts, because these allow to decompose a problem instance into
independent parts. A major motivation behind read-based approaches, however,
is to handle long reads that cover as many variants as possible, thereby bridging
all variant deserts. Hence, the current perception of haplotype assembly is often
that it underlies theoretical limitations that are too hard to overcome.

Here, we present a fixed parameter tractable (FPT) approach to wMEC where
coverage, that is the number of fragments that cover a SNP position, is the only
parameter. Hence, the runtime of our approach is, for the first time, polynomial
(in fact: linear) in the number of SNPs per read, which addresses the future
sequencing technologies that will generate reads of several tens of thousands of
base pairs (bp) in length, and that the currently existing approaches are not
suitable for processing such data. A carefully engineered implementation of our
algorithm allows the treatment of whole-genome datasets of maximum coverage
up to 20x on the order of hours on a standard workstation. For datasets of higher
coverage, we provide a technique for choosing a reasonable selection of reads.
We demonstrate that the resulting haplotypes suffer from only minor amounts
of errors, even on high-coverage datasets, while we provide a provably optimal
solution to the wMEC problem on bounded-coverage datasets. To do so, we test
against a long-read benchmark dataset that we produced. Such a dataset will be
useful for future tools that leverage long reads.

2 The Minimum Error Correction (MEC) Problem

The input to the MEC problem is a matrix F with entries in {0, 1,−}. Each row
of F corresponds to a fragment/read. Each column of F corresponds to a SNP
position. The “−” symbol, which is referred to as a hole, is used when a fragment
does not contain any information at the corresponding SNP position. This can
be either because the SNP position is not covered by the read, or because the
read gives no accurate information at that position. Let n be the number of rows
(or fragments) of F and m the number of columns (or SNP positions).

A haplotype can formally be defined as a string of length m consisting of 0’s
and 1’s. If h is a haplotype, then the i-th row of F is said to conflict with h if
there is some SNP position j for which h(j) �= F(i, j) while F(i, j) �= −. We say
that F is conflict free if there exist two haplotypes h1, h2 such that each row
of F does not conflict with at least one of h1 and h2. Under the all-heterozygous
assumption, where all columns correspond to heterozygous sites, h1 must be the
complement of h2.

The goal of MEC is to make F conflict free by flipping a minimum number
of entries of F from 0 to 1 or vice versa. The weighted variant of MEC, denoted
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wMEC, has an additional weight function w as input. This weight function
assigns a non-negative weight w(i, j) to each entry F(i, j) of F . This weight can
reflect the relative confidence that the entry is correctly sequenced. The goal of
wMEC is to make F conflict free by flipping entries in F with a minimum total
weight.

The MEC problem, which is also called minimum letter flip, was introduced
by Lippert et al. [22]. Cilibrasi et al. [7] showed that this problem is NP-hard
even if each fragment is “gapless”, i.e., if it consists of a consecutive sequence of
0’s and 1’s with holes to the left and to the right. Panconesi and Sozio [25] were
the first to propose a practical heuristic for solving MEC. An exact branch and
bound algorithm and a heuristic genetic algorithm were presented by Wang et
al. [31]. Levy et al. [19] designed a greedy heuristic to assemble the haplotype of
the genome of J. Craig Venter. Bansal et al. [4] developed an MCMC method to
sample a set of likely haplotypes. In a follow-up, some of the authors proposed
a much faster MAX-CUT-based heuristic algorithm called HapCUT [3], which
they show to outperform [25,19], while showing similar accuracy to [4] in shorter
running time. Very recently, Selvaraj et al. [27] combine the HapCUT [3] al-
gorithm with proximity-ligation, which exploits information from “chromosome
territories”, to develop a method which reports good results on whole-genome
haplotype reconstruction. In another recent paper, He et al. [16] proposed an
exact dynamic programming algorithm. However, their algorithm depends ex-
ponentially on the length of the longest read, which means that for practical
data this method has to ignore all long reads.

The weighted variant of MEC was first suggested by Greenberg et al. [12].
Zhao et al. [34] propose a heuristic for a special case of wMEC and present
experiments showing that wMEC is more accurate than MEC.

More recently, in 2012, Aguiar and Istrail [2,1] propose a different heuris-
tic approach for MEC which they show to perform well compared to previous
methods. Exact integer linear programming (ILP) based approaches were also
proposed very recently by Fouilhoux and Mahjoub [11] and Chen et al. [6]. Both
methods have difficulties solving practical instances optimally. For this reason,
Chen et al. also propose a heuristic for solving difficult subproblems.

3 A Dynamic Programming Algorithm for wMEC

We now present the WhatsHap algorithm for solving wMEC. WhatsHap is
an exact dynamic programming approach that solves wMEC instances in linear
time if we assume bounded coverage.

Consider the input matrix F of the wMEC problem. Each entry F(i, j) �= −
is associated with a confidence degree w(i, j) telling how likely it is that F(i, j)
is correctly sequenced and that its fragment i is correctly mapped to location
j. We use such values as a weight for the correction we need to minimize in the
wMEC model. When these weights are log-likelihoods, summing them up corre-
sponds to multiplying probabilities and, thus, finding a minimum weight solution
corresponds to finding a maximum likelihood bipartition of the reads/fragments.
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Our dynamic programming (DP) formulation is based on the observation that,
for each column, only active fragments need to be considered; a fragment i is
said to be active in every column j that lies in between its leftmost non-hole
entry and its rightmost non-hole entry. Thus, paired-end reads remain active in
the “internal segment” between the two reads. Let F (j) be the set of fragments
that are active at SNP position j and let F be the set of all fragments. The aim
is to find a bipartition (R∗, S∗) of F such that the changes in R∗ and S∗ to make
F conflict free have minimum total weight.

Proceeding columnwise from SNP position 1 to m, our approach computes
a DP table column C(j, ·) for each j ∈ {1, . . . ,m}. We say that a bipartition
B′ = (R′, S′) of all fragments F extends bipartition B = (R,S) of F (j), if
R ⊆ R′ and S ⊆ S′. We define B(X) to be the set of all bipartitions of X . Given
a bipartition (R,S), we denote B

(
X | (R,S)

)
the set of all bipartitions of X that

extend (R,S), that is,

B
(
X
∣∣ (R,S)

)
:=

{
(R′, S′) ∈ B(X)

∣∣R ⊆ R′ and S ⊆ S′} .

The basic idea of our dynamic program is as follows: for every bipartition
B = (R,S) of F (j), entry C(j, B) gives the minimum cost of a bipartition of all
fragments F that renders positions 1, . . . , j conflict free and which extends B.
By definition of C(j, B), the cost of an optimal solution to the wMEC problem
then equals minB∈F (m)C(m,B). An optimal bipartition of the fragments can be
obtained by backtracking along the columns of the DP table up to the first SNP
position in F .

To compute the contributionΔC(j, (R,S)) of column j to the cost C
(
j, (R,S)

)
of bipartition (R,S), we define the following quantities.

Definition 1. For a position j and a set R of fragment indices in F (j), let
W 0(j, R) (resp. W 1(j, R)) denote the cost of setting position j on all fragments
of R to 0 (resp. 1), flipping if required: i.e.,

W 0(j, R) =
∑
i∈R

F(i,j)=1

w(i, j) and W 1(j, R) =
∑
i∈R

F(i,j)=0

w(i, j) .

Hence, given a bipartition (R,S) of F (j), the minimum cost to make position
j conflict free is

ΔC

(
j, (R,S)

)
:= min{W 0(j, R),W 1(j, R)} +min{W 0(j, S),W 1(j, S)} .

Notice that, under the all heterozygous assumption, where one wants to enforce
all SNPs to be heterozygous, the equation becomes

ΔC

(
j, (R,S)

)
:= min{W 0(j, R) +W 1(j, S),W 1(j, R) +W 0(j, S)} .

In both cases, we only need the four values W 0(j, R), W 1(j, R), W 0(j, S), and
W 1(j, S) to compute ΔC

(
j, (R,S)

)
. We now proceed to state in detail our DP

formulation.
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Fig. 1. WhatsHap toy example. The small numbers next to the matrix of entries F
denote the flipping weights.

Initialization. The first column C(1, ·) of C is initialized to ΔC(1, ·) as defined
above.

Example. AssumeF (1) = {f0, f1, f2}withF(0, 1) = 0,F(1, 1) = 1, andF(2, 1) =
1. Moreover, let w(0, 1) = 5, w(1, 1) = 3, and w(2, 1) = 6. See Figure 1. Then
C(1, ·) is filled in as follows:

C
(
1, ({f0, f1, f2}, ∅)

)
= min{9, 5}+min{0, 0} = 5

C
(
1, ({f0, f1}, {f2})

)
= min{3, 5}+min{6, 0} = 3

C
(
1, ({f0, f2}, {f1})

)
= min{6, 5}+min{3, 0} = 5

C
(
1, ({f1, f2}, {f0})

)
= min{9, 0}+min{0, 5} = 0

Note that we need consider only half of the 2|F (1)| bipartitions, because
C
(
j, (R,S)

)
= C

(
j, (S,R)

)
for every bipartition B = (R,S) and every SNP

position j.

Recurrence. We compute C(j + 1, ·) from C(j, ·) as follows. When computing
costs of bipartitions for F (j + 1) we need only to keep track of the effect that
this has on the bipartition of F (j) through their intersection, which we denote
by F∩

j+1 = F (j) ∩ F (j + 1). For a bipartition (R,S) of F (j + 1) we define
R∩

j+1 = R ∩ F∩
j+1 and S∩

j+1 = S ∩ F∩
j+1. The recursion then becomes:

C
(
j + 1, (R,S)

)
= ΔC

(
j + 1, (R,S)

)
+ min

B∈B(F (j) | (R∩
j+1,S

∩
j+1))

C(j, B) . (1)

The first term accounts for the cost of the current SNP position, while the second
term accounts for costs incurred at previous SNP positions. The minimum selects
the best score with respect to the first j positions over all partitions that extend
(R,S).

Example (continued). We extend the example with a second SNP position. As-
sume F (2) = {f1, f2, f3} with F(1, 2) = 0, F(2, 2) = 1, and F(3, 1) = 0. More-
over, let w(1, 2) = 2, w(2, 2) = 1, and w(3, 1) = 2. See Figure 1. Then C(2, ·) is
filled in as follows:
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C
(
2, ({f1, f2, f3}, ∅)

)
= min{4, 1}+min{0, 0}+

min
{
C
(
1, ({f0, f1, f2}, ∅)

)
, C
(
1, ({f1, f2}, {f0})

)}
= 4 + 0 +min{5, 0} = 4

C
(
2, ({f1, f2}, {f3})

)
= min{1, 2}+min{0, 2}+

min
{
C
(
1, ({f0, f1, f2}, ∅)

)
, C
(
1, ({f1, f2}, {f0})

)}
= 1 + 0 +min{5, 0} = 1

C
(
2, ({f1, f3}, {f2})

)
= min{0, 4}+min{1, 0}+min

{
C
(
1, ({f0, f1}, {f2})

)}
= 0 + 0 + 3 = 3

C
(
2, ({f2, f3}, {f1})

)
= min{1, 2}+min{0, 2}+min

{
C
(
1, ({f0, f2}, {f1})

)}
= 1 + 0 + 5 = 6

AlgorithmEngineering. To compute a column, say j, of the DP table, we have
to go through all bipartitions of the active fragments F (j) = {f0, . . . , f|F (j)|−1} at
SNP position j. Because of the observed symmetry it is sufficient to store 2|F (j)|−1

entries in column j. We order these entries by a mapping of indices k ∈ {0,
. . . , 2|F (j)|−1−1} to bipartitions, using a binary encoding such that each bit k� in
the binary representation of k tells whether fragment f� is in the first or in the sec-
ond part of the bipartition.We break the above mentioned symmetry by assigning
f|F (j)|−1 always to the first set. Formally, this results in the mapping:

B : k '→
(
{f|F (j)|−1} ∪ {f� | k� = 0}, {f� | k� = 1} | � < |F (j)| − 1

)
for all k ∈ {0, 1}|F (j)|−1.

Example. Assume there is a SNP position j for which F (j) = {f0, f1, f2}. Then
k ∈ {0, 1, 2, 3} and thus C(p, ·) has four entries each one being encoded in two bits
as follows. 00 '→

(
{f0, f1, f2}, ∅

)
, 01 '→

(
{f0, f2}, {f1}

)
, 11 '→

(
{f2}, {f0, f1}

)
,

10 '→
(
{f1, f2}, {f0}

)
. Notice that f|F (p)|−1 = f2, as a sort of pivot, is always in

the first part of the bipartition.

For an efficient computation of ΔC

(
j, Bj(k)

)
, we enumerate all bipartitions

k ∈ {0, . . . , 2|F (j)|−1 − 1} in Gray code order. This ensures that at most one
bit is flipped between two consecutive bipartitions. Therefore, in moving from
one bipartition to the next, only one fragment swaps sides and updating the
four values W 0(j, R), W 1(j, R), W 0(j, S), and W 1(j, S) can be done in constant
time. As ΔC

(
j, (R,S)

)
can be computed from these values in constant time, and

moving from one Gray code to the next can be done in (amortized) constant
time using the algorithm from [24], we conclude that ΔC

(
j, ·
)
can be computed

in O(2cov(j)−1) time, where cov(j) = |F (j)| denotes the physical coverage at
SNP position j.

To efficiently implement the DP recursion, one can compute an intermediate
projection column as follows. For all B ∈ B(F∩

j+1), store

C
(
j, B

)
= min

B′∈B(F (j) |B)
C(j, B′) .
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Table C(j, ·) can be filled while computing C(j, ·) without any additional (asymp-
totic) runtime expense. Using this precomputed table, Recursion (1) can be
written as

C
(
j + 1, (R,S)

)
= ΔC

(
j + 1, (R,S)

)
+ C

(
j, (R∩

j+1, S
∩
j+1)

)
.

The algorithm has a runtime of O(2k−1m), where k is the maximum value
of cov(·), and m is the number of SNP positions. Note that the runtime is
independent of read length.

An optimal bipartition can be obtained by backtracking. To do this efficiently,
we store tables D(j, ·) that store the indices of the partitions that define the
minima in C(j, ·). Formally,

D
(
j, B

)
= argmin

B′∈B(F (j) |B)

C(j, B′) .

Using these auxiliary tables, the sets of fragments that are assigned to each
allele can be reconstructed in O(km) time. To backtrace an optimal bipartition,
we need to store the rightmost DP column C(m, ·) and the backtracking tables
D(j, B) for j ∈ {1, . . . ,m − 1}, which takes total space O(2k−1m). This leads
to a dramatically reduced memory footprint in practice compared to storing the
whole DP table C.

Backtracking gives us optimal fragment bipartitions (R∗
j , S

∗
j ) for each position

j. It is then straightforward to derive the two haplotypes h1 and h2 from this as
follows:

h1(j) =

{
0 if W 0(j, R∗

j ) < W 1(j, R∗
j )

1 otherwise ,
and

h2(j) =

{
0 if W 0(j, S∗

j ) < W 1(j, S∗
j )

1 otherwise .

4 Experimental Results

The focus of the present paper is on very long reads and the promise they hold
for read-based phasing. Since such data sets are not available today, we perform a
simulation study. We use all variants, that is SNPs, deletions, insertions, and in-
versions, reported by [19] to be present in Venter’s genome. These variants were
introduced into the reference genome (hg18) to create a reconstructed diploid
human genome with fully known variants and phasings. Using the read simulator
SimSeq [10], we simulated a variety of data sets, that reflect current technology
as well as possible future developments. Regarding the former, we used HiSeq
and MiSeq error profiles to generate a 2x100bp and a 2x250bp paired-end data
set, respectively. The distribution of the internal segment size (i.e., fragment
size minus size of read ends) was chosen to be 100bp and 250bp, respectively,
which reflects current library preparation protocols. Furthermore, we created an
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additional MiSeq data set with 2.5 kbp internal segment size resembling mate-
pair sequencing. Longer reads with 1 000bp, 5 000 bp, 10 000bp, and 50 000 bp
were simulated with two different uniform error rates of 1% and 5%. All data
sets were created to have 30x average coverage and were mapped to the human
genome using BWA MEM [20].

To not confound results by considering positions of (possibly) wrongly called
SNPs, we always used the set of true positions of heterozygous SNPs that were
introduced into the genome. We extracted all reads that covered at least two such
SNP positions to be used for phasing. Next, we pruned the data sets to target
coverages of 5x, 10x, 15x, and 20x by removing (randomly selected) reads that
violated the coverage constraints until no more such reads exist. The resulting
problem instances were then solved to optimality using WhatsHap, the DP
algorithm described above.

To our knowledge, no other methods exist that can solve instances of wMEC
with very long reads to optimality in practice. The DP approach of He et al. [16]
has a worst-case complexity linear in 2r where r is the length of the longest read
(in terms of the number of SNPs covered). For coverage pruned at 15x and read
length 5 000, r equals 30. For read length 50 000, r reaches a value of 147, which
is clearly too large to run He et al.’s approach. In the ILP approach of Chen et
al. [6], the key to solving MEC to optimality is to decompose the problem into
independent blocks. Such a decomposition becomes less and less possible for
longer reads, thus rendering such an approach infeasible for very long reads.
After submission of this article, we found the similar yet independently devel-
oped DP approach of [9] that, however, addresses only the unweighted MEC.
Moreover, due to our careful algorithm engineering, we have a lower asymptotic
run-time, and can practically manage coverage up to 20x rather than 12x. A
detailed performance analysis against all of these tools will appear in the full
version of this work.

Our approach solved any problem instance with 15x coverage or below in
less than 10 minutes on a single core (of an Intel Xeon E5-2620 CPU). For
coverage 20x no problem instance took longer than 2.5 hours. The accuracy
performance is summarized in Figure 2. There, the percentage of chromosome
1 that could be phased (y-axis) is plotted against the percentage of errors in
the predicted haplotypes (x-axis) for different read lengths and coverages. A
SNP position is unphasable if it is not covered by any read that also covered
another SNP. Furthermore, we report an unphasable position whenever one of
the two haplotypes contains no read at that position. Among those positions
that are phasable of the reported haplotypes, we compute the number of errors,
which is the sum of zygosity errors and switch errors, by comparing to the true
haplotypes. A zygosity error occurs when a position is reported to be homozygous
when it is truly heterozygous (and vice versa). A switch operation at position t
on a binary string s is defined to result in the binary string s[1 . . . t]s̄[t+1 . . . |s|],
where the ·̄ operation flips all bits in a binary string. The switch error is now
defined as the minimum number of such operations needed to transform the
predicted haplotype (after all positions with zygosity errors have been removed)
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Fig. 2. Performance of phasing human chromosome 1 with 68 184 heterozygous SNPs
in total using different simulated data sets and different coverages. The unphasable
positions percentage (y-axis) gives the fraction of the SNP positions that could not
be phased due to not being covered by reads that span more than one SNP position.
Length 1 000, 5 000, 10 000, and 50 000 refer to reads of this length from a hypothetical
sequencer with an error rate of 1%. HiSeq/MiSeq refers to using error profiles specific
to these instruments during read sampling; in parentheses: mean/standard deviation
of internal segment size (i.e., fragment size minus length of read ends). Data sets are
pruned to four different target coverages (5x, 10x, 15x, 20x) encoded by circle diameter
in the plot (larger means more coverage).

into the true haplotype. Note that the number of switch errors can increase
when the number of unphasable positions goes down (see MiSeq experiments in
Figure 2, for instance), as less gaps mean more contiguous fragments where such
errors can be made.

Figure 2 clearly shows that long reads will indeed facilitate read-based phas-
ing. For short reads of current HiSeq or MiSeq instruments, large portions of
chromosome 1 cannot be phased. This was to be expected since short reads can-
not span SNP deserts and, in general, rarely contain many SNPs. For the HiSeq
data set, we found a paired-end read to cover only 2.2 SNPs on average. For the
long read data sets (i.e., non-HiSeq/MiSeq) shown in Figure 2, an error rate of
1% was used. Repeating the experiments with an error rate of 5% yields nearly
identical results. This exemplifies that errors are indeed corrected by solving the
wMEC problem on sufficiently long reads.

Interestingly, the importance of a high coverage seems to be limited, especially
for long reads. For 10x, 15x, and 20x, the corresponding circles in Figure 2 are
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often close together. On the other hand, the influence of read length was much
more drastic, highlighting that our approach, which is able to handle long reads
but only limited coverage, is well suited for future data sets that allow for read
based phasing.

5 Conclusions and Further Work

We have presentedWhatsHap, a dynamic programming approach for haplotype
assembly. WhatsHap is the first exact approach for the wMEC problem with
runtime linear in the number of SNPs. WhatsHap is thus ready to benefit from
increasing read lengths, which will boost the quality of haplotype assembly-based
predictions.

While our approach handles datasets with possibly long reads, it can only deal
with limited coverage. Although WhatsHap can handle coverage as large as 20x
on a standard workstation, and larger coverage does not seem to significantly im-
prove the quality of the predicted haplotypes as shown in our simulation study,
a number of possible ways to cope with higher coverage are under investigation.
A first possibility is a divide and conquer heuristic approach that operates on
high coverage portions of the matrix by (i) (randomly/suitably) splitting the
fragments into as many subsets as necessary to make each one of them a slice of
limited coverage, (ii) solving each slice separately using the dynamic program-
ming approach, and finally (iii) merging the resulting super-reads and applying
iteratively the method again. Another possibility is to just properly select reads
up to the manageable coverage and to discard the rest.

In the literature there are several graph representations of haplotype data
(the fragment conflict graph defined in [18] and many of its variants), and conse-
quently the optimization problems we have mentioned are seen there as finding
the minimum number of graph editing operations that make the graph bipar-
tite. In particular, for the conflict graph variant used in [11], the MEC problem
turns out to be equivalent to finding the Maximum Induced Bipartite Subgraph
(MIBS). It follows that our dynamic programming approach for MEC can be
generalized to a FPT approach for MIBS where the parameter is the pathwidth
of the graph.

In this work we have concentrated on assembling SNP haplotypes from reads
of a sequenced genome. As a next step we will integrate predictions from statis-
tical phasers into our approach. In some sense, the super-read obtained from a
slice, mentioned above, can be viewed as a reference haplotype from a reference
panel for an existing population. Hence, reference haplotypes can be seamlessly
integrated into this merging step (iii) for a hybrid approach. Hybrid methods are
the future of sequencing data analysis, and the field is already moving quickly
in this direction [8,15,14,27,32,33].

In addition, haplotyping mostly refers to only SNPs for historical reasons
[29,30]. To fully characterize an individual genome, however, haplotyping must
produce exhaustive lists of both SNPs and non-SNPs, that is, larger variants.
This has become an essential ingredient of many human whole-genome projects
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[5,28]. In this paper we focused on SNPs variants and we identify the integration
of non-SNP-variants as a challenging future research direction.

Lastly, we used prior knowledge of the true SNP positions in the genome in
our simulation study. But since our method only scales linearly in the number of
SNP positions, one could conceivably use as input the raw read input, to produce
a “de novo” haplotype. Since SNPs comprise roughly 5% of positions, and the
runtime of our method is on the order of 10 minutes on average (for sufficient 15x
coverage), such a de novo haplotype could be generated in about 3 hours. The
heterozygous sites of this constructed haplotype then correspond to the SNP
positions. It hence follows that this tool could be used for SNP discovery, and
perhaps for larger variants as well.
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Abstract. Recent cancer sequencing studies provide a wealth of somatic
mutation data from a large number of patients. One of the most in-
triguing and challenging questions arising from this data is to determine
whether the temporal order of somatic mutations in a cancer follows any
common progression. Since we usually obtain only one sample from a pa-
tient, such inferences are commonly made from cross-sectional data from
different patients. This analysis is complicated by the extensive varia-
tion in the somatic mutations across different patients, variation that is
reduced by examining combinations of mutations in various pathways.
Thus far, methods to reconstruction tumor progression at the pathway
level have restricted attention to known, a priori defined pathways.

In this work we show how to simultaneously infer pathways and the
temporal order of their mutations from cross-sectional data, leveraging
on the exclusivity property of driver mutations within a pathway. We de-
fine the Pathway Linear Progression Model, and derive a combinatorial
formulation for the problem of finding the optimal model from mutation
data. We show that while this problem is NP-hard, with enough sam-
ples its optimal solution uniquely identifies the correct model with high
probability even when errors are present in the mutation data. We then
formulate the problem as an integer linear program (ILP), which allows
the analysis of datasets from recent studies with large number of sam-
ples. We use our algorithm to analyze somatic mutation data from three
cancer studies, including two studies from The Cancer Genome Atlas
(TCGA) on large number of samples on colorectal cancer and glioblas-
toma. The models reconstructed with our method capture most of the
current knowledge of the progression of somatic mutations in these can-
cer types, while also providing new insights on the tumor progression at
the pathway level.
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1 Introduction

Cancer is a disease caused by the accumulation of somatic mutations, changes
in the genome that appear during the lifetime of an individual. High-throughput
DNA sequencing technologies are now measuring these mutations in thousands of
cancer genomes through projects such as The Cancer Genome Atlas (TCGA) [26],
International Cancer Genome Consortium (ICGC) [34] and many others. In the
analysis of somatic mutations in cancer, two important questions arise. First,
which mutations are the driver mutations responsible for cancer and which are
merely random, passenger mutations? Second, is there any temporal order to the
driver mutations in a single cancer patient? While the first question might be
addressed in part by comparing the observed frequencies of mutations across dif-
ferent individuals [10, 20], the second question is much more difficult to address
from cross-sectional data, sequencing data taken from single time-points across
different individuals. Answering the question about temporal progression, and
more specifically determining what mutations occur early in the progression of
cancer, is essential for both a basic understanding of cancer biology and for deve-
loping targeted treatments. The ideal dataset to determine temporal progression
is a longitudinal dataset consisting of measurements of somatic mutations from
multiple time-points in a single individual. However, such datasets are nearly
impossible to obtain from human tumors: it is difficult to obtain multiple sam-
ples from the same patient without also perturbing the tumor with surgery,
chemotherapy, or other treatments.

A number of methods for inferring temporal progression of mutations from
cross-sectional data have been introduced [12, 11, 6, 5, 23, 28, 18, 16, 2–4, 17, 24,
25] (see Section 1.1). These methods consider models of increasing complexity for
cancer progression: trees, mixtures of trees, and Bayesian network models with
different constraints. However, such approaches infer progression at the level of
individual mutations, or individual genes. The difficulty with this approach is
that cancers exhibit extensive mutational heterogeneity: the somatic mutations,
including driver mutations, vary widely across individuals with the same cancer.
Thus, the main signal used to infer temporal order, co-occurrence of mutations in
different samples, is very weak. A major reason for this mutational heterogeneity
is that somatic mutations perturb various signaling, regulatory, and metabolic
pathways [31]. Thus, different individuals may harbor driver mutations in differ-
ent genes within the same pathway. Since driver mutations target pathways, it is
possible that the order in which mutations arises is at the pathway level, not at
the gene level. There has been some initial work in inferring pathway order [17, 8].
These approaches demonstrated some advantages over gene based approaches,
but restricted attention to known, annotated pathways. Most annotated path-
ways are large and overlap with other pathways, thus creating problems for the
discovery of mutation progression in smaller sets of interacting genes.

An alternative to known pathways is to examine sets of genes or mutations de
novo. However, the large number of such combinations will quickly overwhelm
such an exhaustive approach. Recently, it has been observed that driver mu-
tations in pathways tend to be mutually exclusive meaning that an individual
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rarely has more than one driver mutation in a pathway [33] and this observation
has been used to successfully identify pathways in cancer datasets [22, 29, 9, 21].
Mutual exclusivity is a powerful signal to constrain the combinations of genes
and mutations to examine. In this paper, we design an algorithm to infer simulta-
neously pathways and their temporal order from cross-sectional data, leveraging
on the expected exclusivity of mutations within pathways. We apply this algo-
rithm to simulated and real sequencing data from colorectal and glioblastoma
cancers. The progression models produced by our method are in agreement with
the current knowledge of the progression of mutations in these cancer types, and
also propose some novel hypothesis. The sets identified by our method mostly
correspond to known pathways or sets of interacting genes, showing the abil-
ity of our approach to simultaneously identify cancer pathways and the tumor
progression they define.

1.1 Previous Work

After the seminal work of Fearon and Vogelstein [14] that proposed a model
for progression of mutations in colorectal cancer, a number of computational
methods have been designed to reconstruct the progression of genetic events
leading to cancer from cross-sectional data assuming that the order is at the gene
level. These methods consider models of increasing complexity. The model of
Fearon and Vogelstein [14] describes a linear sequence (or path) on genes. Desper
et. al [12, 11] considered trees on the genes. A number of works [6, 5, 23, 28], have
proposed the inference of mixture of trees on the genes to model the progression
of cancer. While providing a first advance in understanding cancer progression,
these methods assume that cancer progresses through disjoint paths, with no
possible convergence of different paths, that is a stringent constraint on the
model. More general methods that include convergence describe the model in
terms of probabilistic directed acyclic graphs, or Bayesian networks [18, 16, 2–
4, 17, 24, 25]. These methods impose different restrictions on the model to limit
the search space and to represent possible features of cancer progression. In
practice these methods can include at most a dozen of genes in their analysis;
the exception is the method presented in [25] that uses a mixed integer linear
program (MILP) to infer the best (constrained) Bayesian network. However they
consider only models (networks) in which the number of parents of a node is
bounded by a small value k (in [25] values of k ≤ 4 are used).

We note that the model we are interested in could be defined as a Bayesian
network in which the genes in a pathway are the parents of all the genes in the
next pathway in the progression, and the probability model should reflect the
exclusivity among mutations in the parents of a particular node. None of the
methods above has considered the exclusivity among genes (or mutations) in
their model, and to the best of our knowledge no such model has been proposed
in the machine learning literature.

Two recent works [17, 8] have considered the inference of the progression
model at the pathway level, where the assignment of genes into pathways was
defined a priori and provided in input to the method. As pointed out in the
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introduction, the a priori assignment of genes into pathways is complicated by
the fact that such pathways are large and moreover often a gene is assigned to
multiple pathways, that limit the ability to detect smaller sets of interacting
genes related to tumor progression.

1.2 Contributions

This work initiates the study of the simultaneous identification of cancer path-
ways and their mutation order in tumor progression from cross-sectional data,
without relying on the a priori definition of pathways, and contains the follow-
ing contributions. First, we formalize the Pathway Linear Progression Model for
tumor progression, in which mutations within each pathway are mutually ex-
clusive, while they satisfy a linear progression across pathways. We show that
the computational problem, that we call Pathway Linear Progression Recon-
struction problem, of identifying the model that provides the best (in terms of
number of errors) explanation of the observed data is NP-hard. Moreover, we
prove that under reasonable assumptions and with enough samples, the correct
progression model is uniquely identified by the optimal solution of the Pathway
Linear Progression Reconstruction problem even when the data contains errors.

Second, we formulate the Pathway Linear ProgressionReconstruction problem
as an Integer Linear Program (ILP), providing an exact solution for datasets of
realistic size. Using simulated data we show that the correct progression model
is identified by our algorithm under realistic assumptions for the error model
when enough samples are considered. We also show that when genes that are
not correlated with tumor progression are included in the analysis, our algorithm
identifies the correct order among genes in pathways driving the progression.

Third, we run our algorithm on somatic mutation data from The Cancer
Genome Atlas (TCGA) studies on colorectal and glioblastoma cancers, and on a
different colorectal cancer study. We show that the progression models produced
by our method recapitulate most of the current knowledge of the progression
of mutations in colorectal cancer, and also propose novel hypothesis for the
progression driving colorectal and glioblastoma cancer. In particular, on somatic
mutation data from 224 TCGA samples of colorectal cancer, our algorithm iden-
tifies models that are in agreement with current knowledge of the progression of
mutations in this cancer type. Moreover our method groups members of the Raf-
Ras pathways and SMADs and interacting genes in different sets. On somatic
mutation data from 251 glioblastoma multiforme samples, our method defines a
model with gene sets corresponding to part of the Rb1, PI3K, and p53 pathway.

2 Methods and Algorithms

2.1 Model and Problem Definition

We are given mutation data from m samples s1, s2, . . . , sm, consisting of the
mutation status of each of n genes g1, g2, . . . , gn. This data is represented by a
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m × n binary mutation matrix M , with samples on the rows and genes on the
columns, where Mi,j = 1 if gj is mutated in sample si, and Mi,j = 0 otherwise.
We use ri to denote the ith row of M , and cj to denote the jth column of M . We
now define a model in which the mutation data comes from a linear progression
on sets of genes (see Figure 1a).

Pathway Linear Progression Model (PLPM). Am×n mutation matrix M
satisfies the Pathway Linear ProgressionModel PLPM(K) with parameterK >
1 if there exists a partition P = {P1, P2, . . . , PK} of the columns {c1, . . . , cn} of
M into K sets such that:

1. for each row ri of M , 1’s within each set Pk are mutually exclusive, that is:
for all 1 ≤ k ≤ K we have |{cj ∈ Pk : Mi,j = 1}| ≤ 1;

2. each row ri ofM satisfies the progression on the sets P1, . . . , PK , that is: for all
1 < k ≤ K, if |{cj ∈ Pk : Mi,j = 1}| > 0 then |{cj ∈ Pk−1 : Mi,j = 1}| > 0.
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Fig. 1. The Pathway Linear Progression Model(PLPM). (a) A linear progression on
gene sets (pathways) generates a mutation matrix with exclusive mutation within each
set, and a progression of mutations across the sets. In real data errors that disrupt the
exclusivity or the progression are present. (b-c) Problems of considering only exclusivity
or only progression in reconstructing a PLPM. (b) Left: the correct progression model.
Right: the (incorrect) partition that is inferred by maximizing the (total) exclusivity
of sets. Since the correct model does not show perfect exclusivity (due to errors, etc.,
present in real data), maximizing the exclusivity does not lead to recover the correct
model. (c) Left: the correct progression model. Right: genes pairwise comparison reveals
no information about the progression. Progression at the genes level needs to appear
as significant co-occurrence between 1’s in two columns, while in the example for each
pair of columns in P1×P2 the number of samples in which they are both 1 is exactly the
expected number under the independence of the two columns. An arbitrary partition,
most probably not correct, would then be reported by considering only the progression
signal among genes.
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Given m and P , let PLPM(P) be the set of m × n mutation matrices M
for which the constraints 1 and 2 are satisfied. We denote a mutation matrix
M ∈ PLPM(P) by saying that M satisfies the PLPM defined by P . Therefore a
mutation matrix M satisfies the Pathway Linear Progression Model PLPM(K)
if there exists a partition P = {P1, P2, . . . , PK} such that M ∈ PLPM(P).
Each set Pk in a partition P defines a set of genes, or pathway, that by their
interaction perform a certain function or process in the cell. When at least one
of the columns of Pk has value 1 in ri, we say that Pk is mutated in ri.

Due to a number of factors (passenger mutations in driver genes, false posi-
tives and false negatives in mutations detection, etc.), a mutation matrix M is a
noisy observation from the PLPM, and M may therefore no satisfy PLPM(K),
or equivalently there is no partition P for which M ∈ PLPM(P). For a given
K, we are thus interested in finding a partition P = {P1, P2, . . . , PK} such that
M is close to satisfy the Pathway Linear Progression Model having P as as
partition. In particular, we look for a partition P∗ that minimizes the number
of entries of M that must be changed (flips of 0 → 1 or 1 → 0) so that the
resulting mutation matrix M ′ ∈ PLPM(P∗). More formally, given two binary
m×n matrices M,M ′, let d(M,M ′) =

∑m
i=1

∑n
j=1 |Mi,j−M ′

i,j|. For a mutation
matrix M and a partition P , we define f(M,P) = minM ′∈PLPM(P) d(M,M ′).
Let P(K) be the set of all possible partitions (of the columns of M) into K sets.

Pathway Linear Progression Reconstruction Problem. Given am×nmu-
tation matrix M and an integer value K > 1, find P∗ = argminP∈P(K) f(M,P).

In our formulation, there are two requirements that a partition has to satisfy:
the exclusivity of mutations within each set of the partition, and the progression
across the sets. One may think that considering only one of the two requirements
for the optimization is enough. The examples of Figure 1b show that this is not
true.

We therefore need to identify the best partition P∗ by simultaneously con-
sidering both exclusivity and progression. We have the following result. (Due to
space constraints, proofs are omitted from this manuscript.)

Theorem 1. The Pathway Linear Progression Reconstruction problem is NP-
hard for any value of K.

2.2 Conditions for Reconstruction with Errors

Real mutation data has various sources of error that result in both false positive
and false negative mutations. Thus, rather than observing a mutation matrix M
satisfying PLPM(K), we observe a perturbed mutation matrix M̃ . A natural
question is to determine conditions under which the partition P that defines M
can be recovered as a solution of the Pathway Linear Progression Reconstruction
problem when either M or M̃ is given as input. In this section, we prove that if
the number m of samples is large enough, then with bounded error probability
P∗ is the unique solution to Pathway Linear Progression Reconstruction under
two different models for generating M and M̃ , respectively.
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First, given a partition P of K sets P1, P2, . . . , PK , we define a uniform gen-
erative model UPLPM(P) for an m×n mutation matrix M as follows. For each
row ri, i = 1, . . . ,m, we select the positions for the 1’s by: i) choose the stage in
the progression of ri, that is a value t ∈ {1, 2, . . . ,K}, uniformly at random; ii)
for each j, 1 ≤ j ≤ t, choose one of the columns in Pj uniformly at random to
be 1 in ri. We have the following.

Theorem 2. Let M be a m× n mutation matrix generated from UPLPM(P).
If m ≥ Kn2 ln 2n2

δ , then P is the unique optimal solution to the Pathway Linear
Progression Reconstruction problem with probability ≥ 1− δ.

Next, we consider the case of a mutation matrix M̃ that is a perturbation of
an m × n mutation matrix M generated from UPLPM(P). We generate such
an M̃ as follows. We assume that for each P ∈ P : |P | = n

K , and in each
row one entry chosen uniformly at random has been flipped with probability q,
independently for each row. We call the set of such matrices UPLPM(P , q). We
prove the following.

Theorem 3. Let q = K2n(K−εn2)
n3(K−1)2+n3K−2Kn2+2K3 ≥ 0 for some ε > 0, and let M̃

be an m× n mutation matrix from UPLPM(P , q) . If m ≥ 8
ε2 ln

2n2

δ , then P is
the unique optimal solution to the Pathway Linear Progression Reconstruction
problem with probability ≥ 1− δ.

2.3 Algorithm

We now formulate the Pathway Linear Progression Reconstruction problem as
an integer linear program (ILP). For a partition P , let pj,k be a 0-1 variable with
pj,k = 1 if column cj is assigned to set Pk, and pj,k = 0 otherwise. Let ai,k be
a 0-1 variable with ai,k = 1 if the set Pk is considered mutated (after required
flips are made) in row ri, and ai,k = 0 otherwise. We also define auxiliary 0-1
variables fi,k for 1 ≤ i ≤ m and 1 ≤ k ≤ K, where intuitively fi,k = 1 if we
need to flip one of the entries of columns in Pk for Pk to be mutated in row
ri, and 0 otherwise. A valid solution to our problem then satisfies the following
constraints:

– each column is assigned to exactly one set: for 1 ≤ j ≤ n,
∑K

k=1 pj,k = 1;
– for each set Pk, at least one column is assigned to it: for 1 ≤ k ≤ K,∑n

j=1 pj,k ≥ 1;
– for each sample the progression model is satisfied: for 1 ≤ i ≤ m and 1 ≤

k ≤ K − 1, ai,k ≥ ai,k+1;
– for each row ri, the set Pk is considered mutated if it has a 1 in ri or if

one of its entries in row ri is flipped to make it mutated (i.e., fi,k = 1): for
1 ≤ k ≤ K and 1 ≤ i ≤ m,

∑n
j=1 Mi,jpj,k + fi,k ≥ ai,k.
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For a particular partition P , the value of the objective function is the minimum
number of entries of M that we need to flip to satisfy the constraints defined by
P . If we consider a given sample ri and a given set Pk, after variables pj,k, ai,k,
and fi,k have been fixed, the number of entries of Pk that are flipped in ri is
given by

∑n
j=1 Mi,jpj,k−ai,k+2fi,k. Since we want to minimize the total number

of entries that are flipped, the objective function is:

min

m∑
i=1

K∑
k=1

⎛⎝ n∑
j=1

Mi,jpj,k − ai,k + 2fi,k

⎞⎠ .

The contribution of one row to the objective function is interpreted as follows.
The term

∑n
j=1 Mi,jpj,k counts the number of observed 1’s in ri for set Pk.

Assume that
∑n

j=1 Mi,jpj,k > 0: if we consider set Pk mutated in ri (ai = 1),
the number of entries of M that we need to flip to satisfy the progression model
is
∑n

j=1 Mi,jpj,k − 1, and it is
∑n

j=1 Mi,jpj,k otherwise (ai,k = 0). If instead∑n
j=1 Mi,jpj,k = 0, if we do not consider Pk mutated (ai,k = 0) then the number

of entries to be flipped is 0, while if we consider Pk mutated (ai,k = 1) then the
number of flips is 1, obtained by having fi,k = 1 as enforced by the last constraint
above. Note that this reasoning assumes that fi,k = 0 whenever

∑n
j=1 Mi,jpj,k >

0 or ai,k = 0, that is not forced by the constraints above but is obtained when
the objective function is minimized.

3 Experimental Results

In this section we present the results of our experimental analysis on simulated
data, and on data from cancer studies. In all cases we solved the ILP using
CPLEX v12.3 with default parameters.

3.1 Simulated Data

We performed a number of experiments using simulated data to assess the ro-
bustness of our method to different levels of noise. We considered data coming
according to a progression model P to which noise was added. In particular, we
considered a progression model with K = 5 stages, each containing 5 genes, and
generated 100 datasets with m samples from this model, adding noise by flipping
each entry of the corresponding mutation matrix with probability p. Note that
this error model is more complex and more realistic than the one we analyzed
in Theorem 3. The progression stage for each sample was chosen uniformly at
random (between 1 and 5), and for a sample the mutated gene in a stage is
chosen uniformly at random. We considered values of m = 50, 100, 500, 1000,
and p = 0.001, 0.01, 0.05, that are values in the expected range for passenger
mutation probability given the background mutation rate and the length of the
genes [29, 30]. (Note that when p = 0.05, the expected number of errors per
sample is > 1.)
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Fig. 2. Fraction of times (over 100 trials) the entire correct order is identified by the
ILP on m samples where the mutation matrix M comes from a progression model with
K sets each containing � genes. Each entry of M is flipped with probability p; the
results for different values of p are shown. (a) Results for K = 5, � = 5. (b) Results for
K = 4, � = 4.

For each combination m, p we recorded the fraction of times in which the
optimal solution identified by solving the ILP (fed with the correct value for
K) corresponded to P (Figure 2a). As we can see, when m = 50 samples are
included in the analysis, most of the time the correct progression model is not
identified, even when the error probability is not very high (p = 0.001). However,
for p ≤ 0.01, when 100 samples are analyzed the correct progression model is
reported most of the times, and when 500 samples are analyzed the correct
model is reported every time. In contrast, when p = 0.05, with 500 samples the
correct model is reported only 65% of the times, and it is reported 95% of the
times when 1000 samples are considered. These results show that while data
from reasonably sized cancer studies can sometimes be used to infer the correct
progression model, studies of size larger then currently available may be required
to identify the correct progression model if the noise level (i.e., p) is high.

To understand how the complexity (i.e., number of sets, number of genes in
each set) of P impact the number of samples required to reliably identify the
correct model, we considered a “simpler” model, consisting of K = 4 stages of
progression, each including 4 genes (Figure 2b). Mutations from this model were
generated as for the model above, and we considered the same values for m and
p. In this case, for a given pair (m, p), the fraction of times the correct model
is reported is always greater or equal to the fraction of times the correct model
with 5 sets and 5 events in each set was identified for the same pair (m, p). For
example, when p ≤ 0.01 and m = 50 samples are considered, the correct model
is reported at least 70% of the times, while with 500 samples the correct model
is reported every time even when p = 0.05.

These results show that the number of samples required to identify the correct
model is sensitive to the parameters of the progression model, confirming and
extending the analytical results of Section 2.2, and moreover show that currently
available cancer studies have sufficient samples sizes to identify progression mod-
els where the number of sets and the number of genes in each set is not too high,
while more samples may be required to correctly identify models with a large



Simultaneous Inference of Cancer Pathways and Tumor Progression 259

number of sets (stages) and a large number of genes, or when the probability of
false positives and false negatives is very high.

We also used simulations to assess the impact of the inclusion of genes not
related to the progression on the accuracy of our method. We considered the
progression model with K = 5 stages, each consisting of 5 genes related to
the progression, described above, and also included mutations for 25 additional
genes, not related to the progression, each mutated in 5% of the samples inde-
pendently of all other events. We generated 100 datasets from this model for each
of the values m =50, 100 500, fixing p = 0.001. For m = 50, the inferred model
never corresponded to the correct model on the 25 genes related to progression;
for m = 100, the inferred model on the 25 genes related to the progression was
reported 41% of the times, while for m = 500 this happened 100% of the times.
This shows that even when genes not associated with the progression model are
included in the analysis, our method is able to correctly reconstruct the rela-
tionship between the genes associated with the progression when the number of
samples is sufficiently high. Our analysis also shows that spurious associations
are more likely to be observed in late stages of the inferred progression (data
not shown).

3.2 Cancer Data

We used our ILP to analyze somatic mutation data from published cancer stud-
ies. We first analyzed the dataset from a colorectal cancer study [32] considered
in [17]. We then analyzed two large datasets from The Cancer Genome Atlas
(TCGA) studies on colorectal cancer [27] and glioblastoma multiforme [7].

For all these datasets we used the ILP to identify the set P∗
K of cardinality

K of minimum weight for K = 2, . . . , 8, and then considered the best progres-
sion model to be the set P∗ of minimum weight among the different solutions
obtained: P∗ = argminK∈{2,...,8} f(P∗

K). To assess the statistical significance of
our observation we computed a p-value using a permutation test, estimating the
probability of obtaining a set of size K of weight less or equal to P∗ when the
mutations are place independently in the samples preserving the mutation fre-
quency of the genes. For each gene we also computed the fraction of times it is
reported in a particular stage of the progression using bootstrap datasets [13];
this measures the stability to random fluctuations in the samples population of
the assignment of a particular gene to a stage in the progression.

Colorectal Cancer. We analyzed the mutations reported from the 95 sam-
ples considered in [32], for the 8 genes mutated with frequency above 5%: APC,
EPHA3, EVC2, FBXW7, KRAS, PIK3CA, TCF7L2, TP53. The PLPM of min-
imum weight is shown in Figure 3a. The progression model inferred with our
method shares some similarities with the one inferred in [17] (Figure 3b), and
is consistent with the proposed linear order of mutations in colorectal cancer:
mutations in APC occur early in the progression, while KRAS mutations appear
later.
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Fig. 3. Progression models for colorectal
data [32]. (a) PLPM inferred using our
method. The p-value from the permutation
test is reported. For each gene, the fraction
of times it appears in the same stage out of
100 bootstrap dataset is shown. (b) Model
from [17]. In [17] all parents of a node must
be mutated for a gene to be mutated. TP53
is independent of other genes.

Interestingly, in [17] the order of
TP53 mutations were reported as in-
dependent of other mutations and
mutations in PIK3CA were reported
as independent of KRAS mutations,
while in our model mutations in
TP53 and PIK3CA are reported to
appear after APC mutations, but
before KRAS mutations. TP53 mu-
tations have been reported to appear
after APC in [1], while TP53 muta-
tions are considered to appear after
KRAS mutations [14, 15]. TP53 mu-
tations and PIK3CA mutations are
significantly exclusive in this dataset
(p < 0.008 by Fisher exact test), and
are therefore potentially related. Of
the 71 samples that contain a TP53
mutation or a PIK3CA mutation (or
both - 1 sample), 51 also present a KRAS mutation, while only 8 samples with a
KRAS mutation do not have a TP53 mutation or a PIK3CA mutation. There-
fore, the most reasonable explanation, assuming a linear order among pathways,
is that KRAS mutations come after TP53/PIK3CA mutations.

Since the model inferred in [17] considers TP53 mutations as independent
of the other mutations, we assessed how well the data is described by the two
models when TP53 is ignored. In particular, we found that 12 samples have
mutations that (ignoring TP53 and assuming no errors) do not conform to the
PLPMmodel in Figure 3a, while 22 samples have mutations that (ignoring TP53
and assuming no errors) do not conform to the model of [17]. For example, none
of the 5 samples with EPHA3 mutations come from the model of [17], while only
1 such sample does not come from the PLPM model in Figure 3a. Therefore our
model provides a better explanation of the colorectal cancer data from [32].

TCGA Colorectal Cancer. We analyzed 224 colorectal samples from the
TCGA study on this cancer type. We download mutation data from the Broad
GDAC Firehose1, including single nucleotide variants and indels. We restricted
our analysis to the 14 genes identified as recurrently mutated by MutSigCV [20].

The progression model inferred by our method is shown in Figure 4a. Inter-
estingly, the progression model restricted to the genes APC, TP53, PIK3CA,
and KRAS is the same we identify from the smaller dataset of [32]. Moreover,
the bootstrap analysis reveals that these genes and NRAS have the most stable
assignments to the different stages of the progression.

1 https://confluence.broadinstitute.org/display/GDAC/Home

https://confluence.broadinstitute.org/display/GDAC/Home
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Fig. 4. PLPM models from TCGA cancer datasets.
(a) PLPM for TCGA colorectal data [27]. Dashed
boxes identify genes in the same pathway, with dif-
ferent colors for different pathways. (b) PLPM for
TCGA glioblastoma multiforme data [7]. Dashed
boxes identify genes that are in a set with at least an-
other gene in the same pathway (as annotated in [7]),
with different colors for different pathways. For each
PLPM, the p-value from the permutation test is re-
ported, and the fraction of times genes appear in the
same stage out of 100 bootstrap dataset is shown.

As noted before, TP53
mutations are usually re-
ported as appearing after
KRAS mutations. However,
even considering only (TP53,
PIK3CA) in the second stage
of the progression model, and
considering (BRAF, NRAS,
KRAS) in the third stage, we
have that 58 samples contain
a mutation in the set (TP53,
PIK3CA) and not in (BRAF,
NRAS, KRAS), while 48
samples contain a mutation
in (BRAF, NRAS, KRAS)
and not in (TP53, PIK3CA),
therefore is more reasonable
to assume that mutations in
(TP53, PIK3CA) (that show
again significant exclusivity
of mutations - p < 0.0032
by Fisher exact test) appear
before mutations in (BRAF,
NRAS, KRAS). Moreover, a
recent analysis [19] suggested
that in 3 other cancer types mutations in TP53 appear early during tumorigen-
esis, while KRAS mutations appear later in the tumor development.

Two sets in our model contain genes all in the same pathway or interacting.
In particular, (BRAF, KRAS, NRAS) is part of the Ras-Raf pathway, and SOX9
interacts with SMAD2, that interacts with SMAD4. (For both these sets, the
probability that these genes are assigned to the same set in the partition under
a random assignment is < 0.05.) This shows that our method identifies sets that
correspond to pathways or sets of interacting genes without any a priori infor-
mation about the interactions among genes and their assignment to pathways.

TCGA Glioblastoma Multiforme. We analyzed 251 samples from a recent
TCGA study on this cancer type [7]. We restricted our analysis to the 27 genes
reported in [7] as part of the landscape of pathway alterations in GBM, mostly
obtained from manual curation.

For each gene, we considered single nucleotide variants, indels, and copy num-
ber aberrations consistent with the report in [7] for these genes. The progression
model inferred by our method is shown in Figure 4b. In 4 of the 6 sets in the
progression model inferred by our method, at least 50% of the genes are part
of the same pathway (as annotated in [7]), and each set has such genes coming
from a different pathway; for 3 of these sets, all but 1 gene are part of the same
pathway. In particular, the second set in the progression contains mostly genes
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from the Rb1 pathway, the third set contains mostly genes in the PI3K pathway,
and the fourth set in the progression contains mostly genes in the p53 pathway.
Moreover, 5 of the 6 sets in the model (i.e., all sets with at least 2 genes) contain
at a least a pair of genes that are in the same pathway. The bootstrap analysis
reveals that on average the assignment (in terms of progression stage) of genes
that are in a set with at least another gene in the same pathway is more stable
than the assignment of the other genes. For the first 4 sets in the progression
model, this is true also considering only the genes in the specific set. This show
that the model reported by our method identifies pathway relations among genes
in the different stages.

4 Conclusions

In this paper we study the problem of the simultaneous identification of can-
cer pathways and the tumor progression from cross-sectional mutation data. We
formally define a model in which mutations within each pathway are exclusive,
while they satisfy a linear progression at the pathway level. We prove that the
problem of reconstructing the best model is NP-hard, and provide an ILP for-
mulation to solve the problem for reasonably sized datasets. Moreover we show,
analytically and with synthetic data, that under reasonable assumptions on the
progression model and on the errors occurring in real data the optimal solution
provided by our method captures the correct progression model when enough
samples are considered.

We analyze somatic mutations data from three cancer studies, and show that
most of the current knowledge of the mutation progression in these studies is
captured by the models produced by our method. Most of the sets in the models
obtained from these datasets correspond to interacting genes or part of known
pathways, showing the ability of our method to correctly infer cancer pathways
while inferring the progression of genetic events leading to cancer.

There are many directions in which our work can be extended. In certain cases
more information about the probability of false positives and false negatives is
known, even for each single gene. Our ILP formulation can easily incorporate
such such information whenever available. Moreover, while our current formu-
lation requires all the genes to be included in the model, the inclusion in the
analysis of all measured somatic mutations from whole-exome or whole-genome
sequencing requires to explicitly model the fact that some genes have mutations
not associated with tumor progression; our model can be modified to not include
all the genes in the cancer pathways defining the progression. For example, this
can obtained by relaxing the constraint that each gene appears in exactly one
set of the model and including in the objective function a penalization term for
mutations that are not included in the model. Finally, more complex models at
the pathway level could be considered. However, the challenges of simultaneous
reconstruction of cancer pathways and complex models among them from a fi-
nite number of samples imply that these generalizations, and the comparison of
the different models one can obtain, will not be straightforward.
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Abstract. While the number of sequenced diploid genomes of interest
have been steadily increasing in the last few years, assembly of highly
polymorphic (HP) diploid genomes remains challenging. As a result,
there is shortage of tools for assembling HP genomes from NGS data.
The initial approaches to assembling HP genomes were proposed in the
pre-NGS era and are not well suited for NGS projects. We present the
first de Bruijn graph assembler dipSPAdes for HP genomes and demon-
strate that it significantly improves on the state-of-the-art in the HP
genome assembly.

Keywords: genome assembly, polymorphism, de Bruijn graph, SPAdes.

1 Introduction

Assembly of highly polymorphic (HP) diploid genomes is a complex computa-
tional problem. When two haplomes are very similar, e.g., as human haplomes
that differ from each other by only ≈ 0.1% of nucleotides, both haplomes are
usually assembled as a single reference genome (with further analysis of SNPs).
Assembling found SNPs into human haplomes is a difficult but well studied prob-
lem (Aguiar and Istrail, 2012 [1], Xie et al., 2008 [18], He et al., 2010 [11], Zhao
et al., 2005 [20], Bansal et al., 2008 [4]).

This paper addresses an even more challenging problem of assembling hap-
lomes that differ from each other by 0.4–10% (e.g., like in HP sea squirt genomes).
The standard assembly approaches fail to reconstruct individual haplomes in HP
genomes; moreover, it is not clear whether the algorithms proposed for human
haplome assembly can contribute to assembling HP genomes.

Assembly of a diploid genome can result in two types of contigs: haplocontigs
(contigs representing both haplomes) and consensus contigs (representing a con-
sensus of both haplomes for the orthologous regions) (Fig. 1). Consensus contigs
do not adequately represent haplomes but are rather a mosaic of segments from
both haplomes. Thus, in each polymorphic site of a diploid genome, the alleles
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© Springer International Publishing Switzerland 2014
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present in a consensus contig are somewhat randomly chosen from one of hap-
lomes. In practice, since some regions of HP genome are less polymorphic than
others, conventional assemblers generate a mixture of haplocontigs and consen-
sus contigs while assembling HP genomes. We also define double contigs, a pair of
haplocontigs representing both haplomes for the same genomic regions (Fig. 1).

Two approaches were proposed for assembling HP genomes (referred to as
HP assemblies below). The first approach for HP assembles (applied to fish F.
rubripes) was proposed in the pre-NGS era and was based on generating consen-
sus contigs by intentionally ignoring differences between haplomes. To achieve
this goal, Aparicio et al., 2002 [2] constructed the overlap graph of Sanger reads
while allowing large differences in overlaps between reads. A similar approach
was applied to genome assembly of the sea squirt S. intestinalis (Dehal et al.,
2002 [8]). The resulting assembly was further used as a reference to align reads
and restore both haplomes. This approach, while feasible with Sanger reads, is
not very practical in the case of NGS reads that are more amenable to the de
Bruijn graph approaches.

The second approach (Huang et al., 2012 [12], Vinson et al., 2005 [17]) is to
generate haplocontigs using a conventional assembly algorithm and to further
reconstruct allelic relationships between haplotypes based on pairwise contig
alignments. In reality, such approaches generate a mixture of haplocontigs and
consensus contigs since the degree of polymorphism varies along the HP genomes.
As the result, assemblies generated by this approach tend to be fragmented since
they represent a mosaic of consensus and haplocontigs. Recently, Donmez and
Brudno, 2011 [9] proposed advanced methods of generating haplocontigs based
on the overlap graph approach.

We present dipSPAdes, a new algorithm for assembling HP genomes.
dipSPAdes uses the de Bruijn graph constructed by SPAdes assembler [3] to
generate both consensus and haplocontigs. Instead of analyzing contigs or long
read alignments (as in the previous approaches), we use the de Bruijn graph to
mask polymorphism in contigs and to produce a more comprehensive represen-
tation of the genome by both consensus contigs and haplocontigs. The question
how accurate are these assemblies constructed in the pre-NGS era remains open
since there is no gold standard for checking the validity of HP assemblies. Such
benchmarking of HP assemblies is an important goal of this paper.

To provide the first comprehensive benchamarking of HP assemblies, we took
advantage of a unique dataset generated in the course of a recent massive effort
to sequence 37 genomes of S. commune conducted in Dr. Alexey Kondrashov
laboratory at Moscow State University (see below for description of all datasets
that were analyzed in this paper).

S. commune is a model organism (wood-degrading mushroom) whose genome
is ideally suited for benchmarking HP genome assemblers. The unique feature of
the widely distributed haploid S. commune is that two different organisms differ
by 7− 12% even if collected on the same continent (and up to 25% on different
continents). Thus, combining reads from two S. commune genomes perfectly
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models an HP genome, yet allowing one to test the quality of assembly, the
bottleneck in previous studies of assembly algorithms for diploid genomes.

Benchmarking of dipSPAdes on both simulated and real fungi datasets
(with polymorphism rate varying from 0.4 to 10 percent) demonstrated that
dipSPAdes significantly improves assemblies of HP genomes. dipSPAdes is
also an excellent comparative assembler that can be used to generate a consen-
sus assembly of multiple similar genomes (due to lack of space this result will be
described elsewhere).

Fig. 1 shows dipSPAdes pipeline (green arrows) that allows to achieve the
goal of constructing double contigs (black arrow).

2 Definitions

Let DB(Genome, k) be the de Bruijn graph [7] of a genome Genome and its
reverse complement Genome

′, where vertices and edges correspond to (k − 1)-
mers and k-mers, respectively. Each chromosome in Genome and Genome

′

corresponds to a path in this graph; a set of these paths represents the
genome traversal of the graph. In this paper, we will work with condensed
de Bruijn graphs [3], where each edge is assigned a length (in k-mers) and
the length of a path is the sum of its edge lengths (rather than the num-
ber of edges in the condensed de Bruijn graph). Let DB(Reads, k) be the
de Bruijn graph constructed from a set Reads of reads from Genome

and their reverse complements. For simplicity we first consider an idealized
case with full coverage of Genome and error-free reads. In this case, the
graphs DB(Reads, k) and DB(Genome, k) coincide. In reality, dipSPAdes

analyzes error-prone reads and gaps in coverage.

Haplocontigs Consensus contigs

Consensus contigs and
corresponding haplocontigs

Double contigs

dipSPAdes

Fig. 1. The dipSPAdes pipeline (green arrows). Conventional assemblers generate hap-
locontigs that represent both haplomes shown in red and blue. However, in practice colors
of haplocontigs are unknown. dipSPAdes uses the de Bruijn graph to generate consen-
sus contigs by combining and extending haplocontigs. Afterwards, dipSPAdes restores
allelic relations using alignment of haplocontigs to the consensus contigs.
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A diploid genome Genome = (Genome1 ∪Genome2) can be viewed as two
similar double-stranded haplomes Genome1 and Genome2. Typically, differ-
ences between haplomes are represented as a collection of SNPs and short in-
dels. Given a pairwise alignment, we use the notion of percent identity (percent
of matches among all columns of the alignment) to measure similarity between
sequences. Correspondingly divergence is 100 minus percent identity. For exam-
ple, the distribution of the divergence in the alignment of two fungi genomes
from Schizophyllum commune demonstrates that ≈ 88 percent of genome length
have divergence below 20%.

3 Methods

3.1 Motivation

Consider an imaginary genome Genome = aRbRcRd with a perfectly conserved
long repeat R of multiplicity 3 and four unique regions a, b, c, d (Fig. 2(a)). The
de Bruijn graph DB(Genome, k) has five edges: R, a, b, c, d (Fig. 2(b)). Now
imagine that Genome evolved into two haplomes in such a way that in the first
haplome Genome1, 1st and 3rd copy of repeat R significantly diverged resulting
in unique regions R1 and R3. Similarly, in the second haplome Genome2, the
2nd copy of repeat R significantly diverged resulting in a unique region R2. The
resulting haplomes can be represented as aR1bRcR3d and aRbR2cRd (Fig. 2(c)).
The de Bruijn graph DB(Genome1∪Genome2, k) is shown in Fig. 2(d). While
the genomic traversal in the assembly graph is unknown, SPAdes and other
assemblers generate a set of subpaths of this traversal referred to as contigs. For
example, consider an edge R1 in DB(Genome1 ∪Genome2, k). Note that the
only edge that can follow R1 in genome traversal is b. Similarly, the only edge
that can precede R1 in genome traversal is a. Thus, aR1b and similarly bR2c
and cR3d are substrings of either Genome1 or Genome2. Moreover, analysis of
these contigs reveals that aR1b overlaps with bR2c that in turn overlaps with
cR3d and thus would lead to the assembly of the entire genome into a consensus
contig aR1bR2cR3d (Fig. 2(e)).

In other words, the endpoints of haplocontigs from different haplomes do
not match since breakpoints of haplocontigs often happen at different positions
on different haplomes. As a result, overlaps between these haplocontigs allow
one to assemble them into longer sequences. The example above illustrates how
divergence in diploid genomes helps to improve the assembly of HP genomes
but presents a highly idealized case. In practice, this approach will not work for
a variety of reasons, e.g., fragment b in two haplomes may be highly diverged
preventing one from detecting an overlap between aR1b and bR2c. To address
this problem, dipSPAdes uses a polymorphism masking algorithm described
below that essentially suppresses differences between b in aR1b and b in bR2c
(Subsection 3.2). We refer to the resulting contigs as masked haplocontigs and
acknowledge that such polymorphism masking may produce a version of b that
belongs to neither Genome1 nor Genome2.
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Thus, dipSPAdes consists of two parts. First, it masks polymorphisms to
reveal overlaps between contigs in graph DB(Genome1∪Genome2, k) (Subsec-
tion 3.2). Second, it searches for overlaps in masked contigs and extends them,
thus improving the quality of assembly (Subsection 3.3). However, at the last
stage of dipSPAdes, we reconstruct double contigs in both haplomes (Subsec-
tion 3.4).

3.2 Polymorphism Masking

De Bruijn Graphs of Diploid Genomes. Since haplomes Genome1

and Genome2 are similar, the de Bruijn graphs DB(Genome1, k) and
DB(Genome2, k) are also similar. Fig. 3(a) and 3(b) show two imaginary hap-
lomes with low and high polymorphism rates, respectively. Polymorphic sites are
shown by red in one haplome and blue in another. We color a k-mer (edge in the
de Bruijn graph) as red, blue, or black, depending on whether it belongs only to
the first genome, only to the second genome or to both genomes, respectively.
Red/blue edges in DB(Genome1 ∪Genome2, k) often aggregate into red/blue
paths as shown in Fig. 3(c), 3(d). A red and a blue path between the same
vertices form a bulge. We refer to paths forming a bulge as alternative paths.

The average bulge length depends on the polymorphism rate: bulges are short
in the case of low polymorphism rate (Fig. 3(e)) and long in the case of of high
polymorphism rate (Fig. 3(f)). Distributions of bulge lengths for C. albicans (low
polymorphism rate) and A. protococcarum (high polymorphism rate) genomes
show that average bulge lengths (for k-mers size 56) are ≈ 139 nt and ≈ 833 nt,
respectively. Bulges are very prominent in HP genomes, e.g., in the de Bruijn
graph of A. protococcarum genome, 99.2% of the total length of edges in the
graph belongs to bulges of length less than 25000 (for k-mers size 56).

We distinguish between bulges caused by sequencing errors and bulges caused
by polymorphisms. The former type of bulges are artifacts that are removed
by existing fragment assembly algorithms while the later type of bulges are
important for HP genome assembly. We assume that bulges caused by errors in
reads have been removed by SPAdes (e.g., by removing alternative paths with
lower coverage) before dipSPAdes even starts analyzing later type of bulges.

Haplocontigs versus Consensus Contigs. HP genomes represent a mosaic
of regions with varying degrees of polymorphisms. Conventional assemblers con-
sider the non-polymorphic regions of HP genomes as repeats, attempt to resolve
them (e.g., by using read-pairs), and output the resulting haplocontigs.

As was advocated in [3], for regions with low polymorphism rate, it makes
sense to intentionally collapse short bulges rather than retain information about
polymorphisms. The resulting consensus contigs represent a mixture of haplomes
Genome1 and Genome2 since parts of genome that contain deleted polymor-
phic variations are not represented in the assembly. We refer to such a mixture
of haplomes as ConsensusGenome, i.e. in each polymorphic site of a diploid
genome, the alleles present in the ConsensusGenome are somewhat randomly
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Fig. 2. Fig. (a) shows a genome Genome that contains a repeat R with multiplic-
ity 3. Fig. (b) shows the de Bruijn graph DB(Genome, k). Fig. (c) illustrates highly
polymorphic haplomes Genome1 and Genome2. In the first haplome, the 1st and the
3rd copy of the repeat R diverged, resulting in a unique regions R1 and R3. In the
second haplome, the 2nd copy of the repeat R diverged, resulting in a unique region
R2. Fig. (d) shows the de Bruijn graph DB(Genome1 ∪ Genome2, k). Fig. (e) shows
overlaps between contigs obtained from DB(Genome1 ∪Genome2, k) allowing one to
construct the consensus as a single contig. Fig. (f) shows ConsensusGraph. Fig. (g)
shows contigs (red, blue, and green paths) that map to graph in Fig. (f).
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Fig. 3. Low (left) and high (right) rates of polymorphisms result in short and long
bulges in the de Bruijn graphs. Genomes ((a), (b)), uncondensed de Bruijn graphs
((c), (d)), and condensed de Bruijn graph ((e), (f)).
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chosen from one of haplomes (Fig. 4(a)). For the sake of simplicity, we assume
that there are no rearrangements between Genome1 and Genome2. In practice,
dipSPAdes considers micro-inversions and micro-transpositions (inversions and
transpositions with short span) as polymorphisms. The breakpoints of genome
rearrangements with longer span usually turn into breakpoints within contigs
output by dipSPAdes.

Polymorphism Masking Algorithm. As we mentioned above, polymor-
phisms in a diploid genome are represented by bulges of varying lengths in the
de Bruijn graph DB(Genome1∪Genome2, k). dipSPAdes uses a different and
more complex bulge finding approach than existing assemblers that typically deal
with rather short bulges (e.g. ≈ 250 nt long). In contrast, dipSPAdes collapses
bulges that may be two order of magnitude longer since bulges formed by highly
diverged regions tend to be very long. Here we describe an algorithm for find-
ing and masking polymorphisms by collapsing bulges (compare with aggressive
bulge collapsing in [3]).

For a bulge (P1, P2) formed by alternative paths P1 and P2 in the de Bruijn
graph, we define divergence(P1, P2) as the divergence between these paths. We
collapse bulge (P1, P2) (CollapseBulge procedure in the pseudocode below)
if divergence(P1, P2) is below a fixed threshold maxDivergence. Distributions
of divergence in bulges for C. albicans (low polymorphic rate) and A. proto-
coccarum (high polymorphic rate) illustrate that the vast majority of bulges
have divergence below 20% for both low and high polymorphism rates. We used
the divergence threshold maxDivergence = 20% for the tests described in the
Results section.

We refer to the graph after the aggressive bulge collapsing as the
ConsensusGraph and represent the ConsensusGenome as a traversal in this
graph. Fig. 4(b) shows two bulges corresponding to two polymorphic sites. When
these bulges are collapsed (Fig. 4(c)) parts of the genome that correspond to
edges 2 and 6 are no longer present in the ConsensusGraph.

Note that this procedure sometimes collapses bulges that do not represent
orthologous regions of a diploid genome but instead collapses non-orthologous
regions with spurious similarities. On the other hand, it does not collapse some
highly diverged orthologous regions. Also some subgraphs of the de Bruijn graph
are so tangled that it is difficult to find and collapse bulges in these subgraphs.
Effective algorithms for bulge finding will be described elsewhere. For simplicity,
we further assume that all orthologous regions were collapsed correctly.

Polymorphism Masking in Contigs. Most fragment assembly algorithms
discard information about the alternative paths removed during the bulge col-
lapsing. In contrast, dipSPAdes capitalizes on a unique feature of SPAdes and
projects k-mers from the removed alternative path to the retained alternative
paths (see [3]). Thus, the projection procedure defines mapping of every path
in DB(Genome1 ∪Genome2, k) to a path in ConsensusGraph. E.g., one can
map haplocontigs and even haplomes Genome1 and Genome2 (if they were
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Fig. 4. Fig. (a) illustrates a possible ConsensusGenome of haplomes Genome1 and
Genome2. Fig. (b) shows the de Bruijn graph DB(Genome1∪Genome2, k). The direc-
tions of green arrows match the direction of the bulge collapsing in the polymorphism
masking algorithm. Fig. (c) shows ConsensusGraph generated by the polymorphism
masking algorithm. Fig. (d) shows haplocontigs representing Genome1 and Genome2

that map to the same paths in ConsensusGraph.

known) to ConsensusGraph. Both Genome1 and Genome2 map to the same
path that corresponds to ConsensusGenome (Fig. 4(d)).

We apply the described polymorphism masking procedure to haplocontigs to
obtainmasked haplocontigs. Since haplocontigs are substrings of eitherGenome1

or Genome2, masked haplocontigs are substrings of ConsensusGenome. It is
much easier to analyze overlaps of masked haplocontigs (as compared to over-
laps of haplocontigs) since in most cases the overlapping segments of masked
haplocontigs are 100% similar and thus, are easy to detect.

Consider again the example shown in Fig. 2(f). After extracting contigs aR1b,
bR2c, and cR3d from the de Bruijn graph, we collapse bulges eventually trans-
forming it into a graph shown in Fig. 2(d). For the sake of simplicity, Fig. 2(f)
assumes an unrealistic case when regions a, b, c, d have not diverged at all. How-
ever, even if these regions diverged, dipSPAdes would mask polymorphisms
between these regions. We remark that while the graph in Fig. 2(b) is merely a
different drawing of the graph in Fig. 2(g), it also contains information about
contigs that map to this graph (red, blue, and green paths in Fig. 2(d)). In par-
ticular, the contigs aR1b, bR2c, and cR3d in Fig. 2(f) have collapsed to paths
aRb, bRc, and cRd in Fig. 2(d). As a result, the collapsed bulges in Fig. 2(d) turn
into superpaths in Fig. 2(f) (see [15]). This transformation allows us to extend
the described approach from the idealized (Fig. 2(e)) to real and complex de
Bruijn graph. Below we describe how dipSPAdes benefits from superpaths we
generate at this stage.

3.3 Consensus Overlap Graph

Edges of the ConsensusGraph represent the consensus contigs that are typ-
ically rather fragmented. Moreover, even when we use paired reads to resolve
repeats in this graph (e.g., using the read-pair analysis tool in SPAdes), the
resulting assembly remains fragmented (see Results). Below we show how diver-
gence between haplomes can be used to improve the consensus assembly.
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In the previous subsection we described how to mask polymorphisms
in haplocontigs. Though the masked haplocontigs represent substrings of
ConsensusGenome and cover ConsensusGenome, each position in the
ConsensusGenome is covered twice by masked haplocontigs (e.g., in Fig. 4(d),
each edge of the ConsensusGraph is covered by two haplocontigs with masked
polymorphisms). In such an assembly, some masked haplocontigs may become
redundant, (i.e., contained within other masked haplocontigs), and thus can be
removed. In Fig. 4(d), contigs corresponding to Genome1 and Genome2 are
the same and one contig from each pair can be safely removed.

dipSPAdes generates the consensus contigs that significantly improve the
consensus assembly. This method utilizes superpaths and uses a strategy illus-
trated in Fig. 2. We apply the overlap graph assembly technique [6] to utilize
information about the overlaps between the masked haplocontigs.

The Overlap Graph of Masked Haplocontigs. dipSPAdes constructs an
overlap graph on the set of masked haplocontigs. A set of strings Strings is
called proper if no string in this set is a substring of another string. Given a
proper set of strings Strings, we construct the overlap graph as follows. The ver-
tices of the overlap graph are strings from Strings. We connect vertices string1
and string2 by a directed edge if a sufficiently long suffix of string1 equals to
a prefix of string2 (the default overlap length threshold is minOverlap = 1500
nucleotides). The overlap graph is obtained from this graph after removing all
transitive edges, i.e., we remove an edge (string1, string2) if there is an alter-
native directed path from string1 to string2 in the graph. The non-branching
paths in the overlap graph are reported as consensus contigs.

3.4 Haplotype Assembly

Each consensus contig C corresponds to regions C1 and C2 in haplomes that are
similar to C. Below we describe how dipSPAdes reconstructs sequences of C1

and C2 based on the projection of haplocontigs to the consensus contigs. Since
each haplocontig is projected to a masked haplocontig and masked haplocontigs
are assembled into consensus contigs, each haplocontig is aligned to a substring
of a consensus contig.

For a consensus contig C, let Haplo(C) denote the set of haplocontigs that
are projected to C. Ideally each contig from Haplo(C) is a substring of either
C1 or C2. Thus, our goal is to split Haplo(C) into disjoint subsets D1 and D2

such that contigs from D1 correspond to C1 and contigs from D2 correspond
to C2. Afterwards, we reconstruct C1 and C2. Due to lack of space algorithms
for splitting Haplo(C) and for reconstruction of C1 and C2 will be described
elsewhere.
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3.5 dipSPAdes Algorithm

The pseudocode below computes haplocontigs using procedure Compute-

Contigs. In dipSPAdes, it is implemented using SPAdes assembly pipeline.
dipSPAdes can also use haplocontigs computed by other tools.

Algorithm dipSPAdes workflow

1: procedure dipSPAdes(Reads, k,maxDivergence,minOverlap)
2: Graph← DeBruijnGraph(Reads, k)
3: HaploContigs← Contigs(Graph,Reads)
4: for each bulge formed by alternative paths P1 and P2 in Graph

5: if Divergence(P1, P2) ≤ maxDivergence
6: CollapseBulge(P1, P2)
7: ConsensusGraph← Graph

8: MaskedHaploContigs←MaskPolymorphisms(ConsensusGraph,HaploContigs)
9: ConsensusContigs← ConsensusContigs(MaskedHaploContigs,minOverlap)

10: DoubleContigs← HaplotypeAssembly(ConsensusContigs,MaskedHaploContigs)
11: return ConsensusContigs,DoubleContigs

4 Results

Datasets. We benchmarked dipSPAdes and other assembly tools on simulated
and real datasets (Table 1). To simulate a diploid genome we used a single
haplome of the diploid fungus Candida dubliniensis (haplome size 14.6 Mbp).
We generated a polymorphic copy of each chromosome with divergence 10%
using the uniform random distribution of SNPs and indels and simulated error-
free paired-end reads with read length 100, insert size 270 and 11× coverage. It
results in perfect coverage of genome by 56-mers.

We also analyzed three real datasets of Illumina reads for genomes of Schizo-
phyllum commune, Candida albicans and recently sequenced (unpublished)
fungus Amoeboaphelidium protococcarum, strain X–5. Sequencing data for
S. commune and A. protococcarum were provided by the Laboratory of Evo-
lutionary Genomics at Moscow State University directed by Dr. Alexey Kon-
drashov. Sequencing data for Candida albicans were obtained from NCBI
(accession number SRX113442).

S. commune [14] is a haploid fungus, but divergence between genomes of any
two S. commune organisms is high (≥ 7%). A. protococcarum is a diploid fungus
with extremely high rate of divergence between haplomes (≈ 10%). Finally we
analyzed diploid fungus Candida albicans (divergence ≈ 0.4%) to estimate the
performance of various algorithms for low-polymorphism data.

Assembly Tools. Currently, HaploMerger is the only available (and practical)
tool for assembling HP genomes from short reads. Thus, we benchmarked the
performance of dipSPAdes and HaploMerger (build 20120810) [12] in generat-
ing consensus contigs. We also benchmarked the performance of SPAdes 2.5.1 [3]
and Velvet 1.2.10 [19] in generating haplocontigs. In addition, we benchmarked
SPAdes* (aggresive bulge collapsing in dipSPAdes followed by the repeat res-
olution algorithm implemented in SPAdes 2.5.1) in generating consensus con-
tigs. We introduced SPAdes* in our benchmarking to illustrate advantages of
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dipSPAdes as compared to standard assemblers run in the mode of the aggre-
sive bulge collapsing.

We ran Velvet and HaploMerger with default parameters. While dipSPAdes

and HaploMerger can be run on any set of haplocontigs, in this study we applied
them to SPAdes haplocontigs (as shown in a recent independent benchmarking
study by Magoc at al., 2013 [13], SPAdes typically improves on other assemblers
in the case of relatively small genomes). To generate results for SPAdes and
SPAdes*, we turned off the bulge removal procedure in SPAdes and removed all
edges with low coverage instead. We expect Velvet and SPAdes to produce as-
semblies with total length close to the double length of a haplome, and SPAdes*,
dipSPAdes, and HaploMerger to produce assemblies with total length close to
the length of haplome. In each row of the benchmarking tables we highlighted
the entries with the best results. In all tables, only contigs of length ≥ 500 bp
were used.

Analysis of the assembly errors is a non-trivial task in the case of HP genomes.
While there are excellent tools for analyzing assemblies (e.g., QUAST [10],
GAGE [16], and others), neither of them is designed for HP genomes. For ex-
ample, QUAST often reports misassemblies that represent alignment artifacts
specific for HP genomes rather than assembly errors. We thus resorted to manual
analysis of all misassemblies reported by QUAST in assemblies of simulated HP
diploid genome. This manual analysis revealed 2, 1, 1, and 0 misassemblies for
HaploMerger, SPAdes, dipSPAdes, and Velvet, respectively. We also investi-
gated assembly errors in consensus assembly of S. commune where also very few
potential misassemblies were found. This analysis will be presented elsewhere.

Benchmarking. Table 2 shows results of assembly of simulated HP diploid
genome based on C. dubliniensis haplome. We mixed two libraries of S. com-
mune and computed contigs from the graph that was constructed from the re-
sulting mixed library. Such assembly tends to be very fragmented due to the very
tangled de Bruijn graph structure (see Table). In the case of A. protococcarum,
we had 2 Illumina paired-end libraries (see Table 1). dipSPAdes allows one to
mix contigs from assemblies of different libraries. To obtain haplocontigs we as-
sembled two libraries separately and mixed computed contigs. Tables 4 and 5
present benchmarking results for A. protococcarum and C. albicans , respectively.

Summary. Table 2 reveals some limitations of HaploMerger: for simulated
C.dubliniensis data it results in N50 equal to only ≈ 6 Kbp, (as compared to
≈ 116 Kbp for dipSPAdes). This disappointing performance reflects limitations
of HaploMerger in the case when the original assembly is fragmented. One can
see that in this case, HaploMerger hardly improved on the original fragmented
assembly by SPAdes (slightly increasing N50 from 5392 to 5876). This limitation
(acknowledged in [12]) often prevents application of HaploMerger for NGS data
where N50 is typically small.

Table 3 illustrates the difficulties of the diploid assembly in a real setting. As
expected, SPAdes generates rather short contigs (N50 = 3598) since S. commune
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Table 1. Information about genomes and sequencing data. For S. commune, the cov-
erage of 4 strains varied from 15 to 34. All datasets were sequenced using Illumina
technology with read length 100 bp.

Dataset name Estimated genome
size (Mbp)

Average
divergence
(%)

Insert
size (bp)

Average
coverage

Simulated HP diploid genome 14.6× 2 10.0 270 11

S. commune (4 strains) 38.9 7.0 233 34

A. protococcarum (1st library) 11.0× 2 10.0 270 667

A. protococcarum (2nd library) 11.0× 2 10.0 170 166

C. albicans 14.5× 2 0.4 196 43

Table 2. Assembly of simulated HP diploid genome based on C. dubliniensis haplome.

Velvet SPAdes HaploMerger SPAdes* DipSPAdes

Expected total
length (Mbp)

29.2 29.2 14.6 14.6 14.6

Total length (Mbp) 28.41 28.11 14.64 16.3 14.45

# contigs 7626 7973 3739 525 433

Largest contig 29486 29488 29488 491990 491969

N50 5378 5392 5876 88380 116291

N75 3085 3094 3345 40720 50879

Table 3. Assembly of two S. commune (A8 and B3) genomes. Haplocontigs were
obtained from the assembly graph that was constructed from a mixed library of A8
and B3 reads. HaploMerger failed to produce results on these haplocontigs since it
typically requires contigs with N50 exceeding tens of Kbp.

Velvet SPAdes HaploMerger SPAdes* DipSPAdes

Expected total
length (Mbp)

77.8 77.8 38.9 38.9 38.9

Total length (Mbp) 39.15 60.33 N/A 45.91 38.85

# contigs 34406 26820 N/A 5721 3147

Largest contig 37580 44596 N/A 231443 181171

N50 1219 3598 N/A 24931 27625

N75 761 1694 N/A 8477 14065

Table 4. Assembly of A. protococcarum. Columns ”SPAdes (IS = 170)” and ”SPAdes
(IS = 270)” illustrate results of assemblies of libraries with corresponding insert sizes.
For obtaining consensus contigs we used mixture of contigs from these runs.

Velvet SPAdes
(IS=170)

SPAdes
(IS=270)

Haplo-
Merger

SPAdes* DipSPAdes

Expected total
length (Mbp)

22.0 22.0 22.0 11.0 11.0 11.0

Total length (Mbp) 19.57 23.25 24.45 12.24 16.5 11.15

# contigs 13926 4620 1902 742 1490 230

Largest contig 90937 138704 200276 200276 205337 435986

N50 1656 8760 28942 38265 30393 130702

N75 994 4689 14470 19842 12787 62530

Table 5. Assembly of C. albicans.

Velvet SPAdes HaploMerger SPAdes* DipSPAdes

Expected total
length (Mbp)

29.0 29.0 14.5 14.5 14.5

Total length (Mbp) 11.28 17.37 2.84 14.85 13.93

Number of contigs 6731 4007 337 1540 1174

Largest contig 34870 112388 92126 116985 116985

N50 2276 8788 23529 25691 27961

N75 1155 3300 8115 10639 12456
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strains represent a mosaic of highly diverged and conserved regions. As a result,
HaploMerger failed to produce results on this dataset. In contrast, dipSPAdes

was able to significantly improve on SPAdes (N50 = 27625). Table 3 also shows
some shortcomings of SPAdes* that generated assembly with excessive total
length due to its inability to collapse some polymorphisms.

Table 4 illustrates performance of dipSPAdes and other tools on real HP
diploid genome. One can see that dipSPAdes greatly improved assembly (from
N50 = 28942 to N50 = 130702).

Table 5 illustrates that even in the case of the low polymorphism rate
(≈ 14 times lower than in S. commune but ≈ 5 times higher than in human).
dipSPAdes allows one to significantly improve assembly (from N50 = 8788 to
N50 = 27961). In contrast, HaploMerger generated very poor assembly that
covers only ≈ 20% of the genome.

Discussion. While the number of sequenced diploid genomes of interest have
been steadily increasing in the last few years, assembly of polymorphic diploid
genomes remains challenging. The lion’s share of diploid genomes (proba-
bly most) feature much higher polymorphism rates than the human genome
(≈ 0.1%). Since assembly of HP diploid genomes is challenging, inbreeding is
often a necessary step to enable high-quality assemblies [5]. This strategy al-
lows one to breed organisms with ≈ 10–fold reduction in polymorphism rates
after sufficient number of generations. However, the inbreeding approach is time-
consuming and often fails to generate viable offspring due to the high death rates
of inbred organisms [5].

While HaploMerger remains the only practical NGS assembler for HP
genomes, it relies on standard assembly tools and is primarily designed for an-
alyzing long contigs produced by these tools. However, the reality is that, in
the case of HP genomes, the contigs produced by these tools are often short and
are not well suited for further analysis by HaploMerger. Moverover HaploMerger
is optimized for genomes with very high rate of polymorphisms. For example,
we observed that HaploMerger produces low-quality incomplete assemblies of
genomes with relatively low polymorphism rates (Table 5). Thus, there is plenty
of room for further improvement of assemblies of HP genomes. dipSPAdes is
the first de Bruijn graph assembly tool for NGS data that is optimized for HP
genomes (both medium and extremely high divergence). We have shown that
dipSPAdes generates consensus assemblies that significantly improve on the
state-of-the-art tools.
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Abstract. Computing the edit distance between two genomes is a basic prob-
lem in the study of genome evolution. The double-cut-and-join (DCJ) model has
formed the basis for most algorithmic research on rearrangements over the last
few years. The edit distance under the DCJ model can be computed in linear time
for genomes without duplicate genes, while the problem becomes NP-hard in
the presence of duplicate genes. In this paper, we propose an ILP (integer linear
programming) formulation to compute the DCJ distance between two genomes
with duplicate genes. We also provide an efficient preprocessing approach to sim-
plify the ILP formulation while preserving optimality. Comparison on simulated
genomes demonstrates that our method outperforms MSOAR in computing the
edit distance, especially when the genomes contain long duplicated segments. We
also apply our method to assign orthologous gene pairs among human, mouse and
rat genomes, where once again our method outperforms MSOAR.

Keywords: DCJ distance, adjacency graph, maximum cycle decomposition,
orthology assignment.

1 Introduction

The combinatorics and algorithmics of genomic rearrangements have been the sub-
ject of much research since the problem was formulated in the 1990s [1]. The advent
of whole-genome sequencing has provided us with masses of data on which to study
genomic rearrangements. Genomic rearrangements include inversions, transpositions,
circularizations, and linearizations, all of which act on a single chromosome, and translo-
cations, fusions, and fissions, which act on two chromosomes. These operations can all
be described in terms of the single double-cut-and-join (DCJ) operation [2, 3], which
has formed the basis for most algorithmic research on rearrangements over the last few
years [4–8]. A DCJ operation makes two cuts in the genome, either in the same chromo-
some or in two different chromosomes, producing four cut ends, then rejoins the four
cut ends in a different order.

A basic problem in genome rearrangements is to compute the edit distance between
two genomes, i.e., the minimum number of operations needed to transform one genome
into another. Under the inversion model, Hannenhalli and Pevzner gave the first
polynomial-time algorithm to compute the edit distance for unichromosomal genomes
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[9], which was later improved to linear time [10]. As for the multichromosomal genomes,
the edit distance under the Hannenhalli-Pevzner model (inversions and translocations)
has been studied through a series of papers [9, 11–13], culminating in a fairly complex
linear-time algorithm [4]. Under the DCJ model, the edit distance can be computed in
linear time for two multichromosomal genomes in a simple and elegant way [2].

All of these algorithms assume genomes contain no duplicate genes. However, gene
duplications are widespread events and have long been recognized as a major driving
force of evolution [14, 15]. For example, in human genomes segmental duplications
are hotspots for non-allelic homologous recombination leading to genomic disorders,
copy-number polymorphisms, and gene and transcript innovations [16]. The problem
of computing the inversion distance for genomes in the presence of duplicate genes
has been proved NP-hard [17]. Suksawatchon et al. proposed a heuristic for this prob-
lem using binary integer programming [18], which was later extended to handle gene
deletion [19]. Chen et al. decomposed this problem into two new optimization prob-
lems, called the minimum common partition and the maximum cycle decomposition, for
which efficient heuristics were designed [17]. They packaged the whole algorithms into
the SOAR software system, and applied SOAR to assign orthologs on a genome-wide
scale. Later, they extended SOAR to unite rearrangements and single-gene duplications
as a new software package, called MSOAR, which can be applied to detect inparalogs
in addition to orthologs [20]. Recently, they incorporated tandem duplications into their
model, and demonstrated that the new system achieved a better sensitivity and speci-
ficity than MSOAR [21].

In this paper, we focus on the problem of computing the edit distance for two genomes
with duplicate genes under the DCJ model. This problem is also NP-hard, which can
be proved by a reduction from the NP-hard problem of breakpoint graph decomposi-
tion [22]. We first reduce this problem to the problem of finding the optimal consistent
decomposition of the corresponding adjacency graph, then formulate the latter problem
as an integer linear program. We also provide an efficient preprocessing approach to re-
duce the ILP formulation while preserving optimality. Finally, we compare our method
with MSOAR on both simulated and biological datasets.

2 Problem Statement

We model one genome as a set of chromosomes, and each chromosome as a linear
or circular list of genes. Homologous genes are grouped into gene families. In this
paper, we study two genomes with the same gene content: each gene family has the
same number of genes in both genomes. Assuming that two genomes G1 and G2 have
the same gene content, we say a bijection between G1 and G2 is valid if it specifies
n homologous gene pairs, where n is the number of genes in each genome. If G1

and G2 contain only singleton gene families (exactly one gene in each family in each
genome), then there is a unique valid bijection between G1 and G2, and the DCJ dis-
tance between G1 and G2 can be computed in linear time [2]. If G1 and G2 contain
gene families with multiple genes in each genome, then there are many valid bijections
between G1 and G2. Different valid bijections define different one-to-one correspon-
dences between homologous genes, yielding possibly different DCJ distances between
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Fig. 1. An example of adjacency graph and its two consistent decompositions. Genome 1 con-
tains one linear chromosome, (a1,b1,a2,c1), and genome 2 also contains one linear chromosome
(−a3,−b2,−c2,a4). Genes in the same gene family are represented by the same label, and distin-
guished by different superscripts. All black edges are represented by long thin lines, and all grey
edges are represented by short thick lines. (a) The corresponding adjacency graph, in which head
extremities are represented by circles, while tail extremities are represented by diamonds. (b) A
consistent decomposition with 2 odd-length paths, whose corresponding valid bijection maps a1

to a3 and a2 to a4. (c) Another consistent decomposition with 2 odd-length paths and 1 cycle,
whose corresponding valid bijection maps a1 to a4 and a2 to a3.

G1 and G2. In this paper, we study the following generalized DCJ distance problem:
given two genomes G1 and G2 with the same gene content, find a valid bijection be-
tween G1 and G2 that minimizes the DCJ distance. We denote the generalized DCJ
distance between G1 and G2 as d(G1,G2).

We use the notation introduced by Bergeron et al. [2] for gene orders. The two ends
of a gene g are called extremities, the head as gh and the tail as gt . If genes f and g
are homologous, its corresponding extremities ( fh and gh, ft and gt) are also homol-
ogous. Two consecutive genes a and b can be connected by one adjacency, which is
represented by a set of two extremities; thus adjacencies come in four types: {at ,bt},
{ah,bt}, {at ,bh}, and {ah,bh}. If gene g lies at one end of a linear chromosome, then
this end can be represented by a set of one extremity, {gt} or {gh}, called a telomere.
The set of all extremities of a genome is called the extremity set.

Let G1 and G2 be two genomes with the same gene content, and let S1 and S2 be
the extremity sets of G1 and G2, respectively. The adjacency graph with respect to G1

and G2 can be written as AG = (V,E), with V = S1 ∪ S2 and where E is composed of
two types of edges, black edges and grey edges. Two extremities in different extremity
sets (one is in S1 and the other one is in S2) are connected by one black edge if they are
homologous, and two extremities in the same extremity set are connected by one grey
edge if they form an existing adjacency. Figure 1a gives an example.

We say that a cycle (or path) in the adjacency graph is alternating if any two adjacent
edges in this cycle (or path) consist of one black edge and one grey edge. The length
of a cycle (or path) is defined as the number of its black edges. A decomposition of
the adjacency graph is a set of vertex-disjoint alternating cycles and paths that cover
all vertices and all grey edges. We say a decomposition is consistent if for any two
homologous genes f and g, either both ( fh,gh) and ( ft ,gt) are in this decomposition,
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or neither of them is in this decomposition. Figure 1b and 1c give two examples of
consistent decompositions.

Given two genomes G1 and G2 with the same gene content, there is a natural one-to-
one correspondence between the set of all possible valid bijections from G1 to G2 and
the set of all possible consistent decompositions of the adjacency graph with respect to
G1 and G2. In fact, if one valid bijection is given, which maps gene f in G1 to a homol-
ogous gene g in G2, then we can keep the black edges ( fh,gh) and ( ft ,gt) in the decom-
position. We do the same thing for every pair of genes specified by this valid bijection;
this process culminates in a consistent decomposition. On the other hand, if we are
given a consistent decomposition of the corresponding adjacency graph, we can collect
all homologous gene pairs ( f ,g) indicated by black edges ( fh,gh) and ( ft ,gt), which
form a valid bijection from G1 to G2. Given a consistent decomposition with c cycles
and o odd-length paths, exactly (|V |/4− c− o/2) DCJ operations are needed to trans-
form G1 into G2 [2]. Thus, we can write d(G1,G2) = minD∈D(|V |/4− cD− oD/2) =
|V |/4−maxD∈D(cD + oD/2), where D is the space of all consistent decompositions,
and cD and oD are the numbers of cycles and odd-length paths in a decomposition D,
respectively. This formula transforms the generalized DCJ distance problem into the
maximum cycle decomposition problem, which asks for a consistent decomposition of
the adjacency graph such that the number of cycles plus half the number of odd-length
paths in this decomposition is maximized.

3 ILP for the Maximum Cycle Decomposition Problem

In [23], we described a capping method to remove telomeres by introducing null ex-
tremities. All null extremities are homologous to each other, but none is homologous
to any other extremity. Let AG = (V = S1∪S2,E) be the adjacency graph with respect
to two given genomes G1 and G2. Suppose that G1 and G2 contain 2 · k1 and 2 · k2

telomeres respectively. The “telomere removal” proceeds as follows (see Figure 2 for
an example). For each extremity u ∈ S1 coming from each telomere in G1, we add one
null extremity τ to S1 and add one grey edge to E that connects u and τ. Similarly, for
each extremity v ∈ S2 coming from each telomere in G2, we add one null extremity τ to
S2 and add one grey edge to E that connects v and τ. If we additionally have k1 < k2,
we then add (k2− k1) pairs of null extremities to S1, each of which is connected by one
more grey edge added to E . We finally add black edges connecting all possible pairs
of null extremities between S1 and S2. We can prove that this telomere removal process
does not change d(G1,G2) using the same argument as in [7, 23]. In the following we
assume that each vertex is adjacent to exactly one grey edge in the adjacency graph, and
that the consistent decompositions consist of only cycles.

Now we formulate the maximum cycle decomposition problem as an integer linear
program. Let AG = (V,E) be the adjacency graph with respect to two given genomes
G1 and G2 with the same gene content. For each edge e ∈ E , we create binary variable
xe to indicate whether e will be in the final decomposition. First, we require that all grey
edges be in the final decomposition:

xe = 1, ∀e that are grey

Second, we require that the final decomposition be consistent:
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Fig. 2. An example of the telomere removal. Genome 1 contains one linear chromosome,
(a1,b1,a2,c1), and genome 2 contains one circular chromosome (−a3,−b2,−c2,a4). (a) The
corresponding adjacency graph. (b) The adjacency graph after the telomere removal, in which
null extremities are represented by squares.

x( fh,gh) = x( ft ,gt), ∀ f ∈ G1 and ∀g ∈ G2 that are homologous

Third, we require that for each vertex exactly one adjacent black edge adjacent be
chosen:

∑
(u,v)∈E, v∈S2

x(u,v) = 1, ∀u ∈ S1

∑
(u,v)∈E, u∈S1

x(u,v) = 1, ∀v ∈ S2

These three groups of constraints guarantee that all selected edges form a consistent
decomposition.

Now we count the number of cycles. We first index the vertices arbitrarily, V =
{v1,v2, · · · ,v|V |}. For each vertex vi, we create variable yi to indicate the label of vi. We
set a distinct positive bound i for each yi:

0≤ yi ≤ i, 1≤ i≤ |V |

We require that all vertices in the same cycle in the final decomposition have the same
label, which can be guaranteed by requiring that, for each selected edge, the two adja-
cent vertices have the same label:

yi ≤ y j + i · (1− xe), ∀e = (vi,v j) ∈ E

y j ≤ yi + j · (1− xe), ∀e = (vi,v j) ∈ E

Then, for each vertex vi, we create binary variable zi to indicate whether yi is equal to
its upper bound i:

i · zi ≤ yi, 1≤ i≤ |V |

Since all vertices in the same cycle have the same label and all upper bounds are distinct,
there is exactly one vertex in each cycle whose label can be equal to its upper bound.
Finally, we set the objective to
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max ∑
1≤i≤|V |

zi,

which is equal to the number of cycles.
There are O(|E|) variables and O(|E|) constraints in this ILP formulation.

4 Fixing Cycles of Length Two

A cycle of length two in the adjacency graph indicates one shared adjacency. The fol-
lowing theorem gives a sufficient condition to fix this cycle while preserving optimality,
which can be used to narrow the search for an optimal bijection.

Theorem 1. Given an adjacency graph AG = (V,E), if a length-two cycle C contains
some vertex with total degree 2, then there exists an optimal consistent decomposition
of AG that contains C.

Proof. Let
{

a1
h,b

1
h,a

2
h,b

2
h

}
be the four vertices of C, where a1

h and b1
h form an adjacency

in G1 while a2
h and b2

h form an adjacency in G2, and (a1
h,a

2
h) and (b1

h,b
2
h) are the two

black edges of C. Let a1
h be the vertex of total degree 2; then the gene family of {a1,a2}

is a singleton family, and thus edge (a1
h,a

2
h) appears in every consistent decomposi-

tion. Now we prove the theorem by contradiction. Suppose that edge (b1
h,b

2
h) is not in

any optimal consistent decomposition. Take any optimal consistent decomposition D,
in which b1

h is linked to b4
h and b2

h is linked to b3
h. Since D is consistent, we know that

edges (b1
t ,b

4
t ) and (b2

t ,b
3
t ) are also in D. We now transform D into a new decomposition

D′′ that contains edge (b1
h,b

2
h) by exchanging two pairs of edges. Figure 3 illustrates this

process. First, we remove edges (b1
h,b

4
h) and (b3

h,b
2
h) from D and add edges (b1

h,b
2
h) and

(b3
h,b

4
h); denote this inconsistent decomposition by D′. Since in this step one cycle is

split into two small cycles, we have that cD′ = cD + 1. Now, we remove edges (b1
t ,b

4
t )

and (b3
t ,b

2
t ) from D′ and add edges (b1

t ,b
2
t ) and (b3

t ,b
4
t ) to obtain the consistent de-

composition D′′. This step involves at most two cycles of D′, and merges these two

a1
h b1h b1t b3h b3t

a2
h b2h b2t b4h b4t

(a)

a1
h b1h b1t b3h b3t

a2
h b2h b2t b4h b4t

(b)

a1
h b1h b1t b3h b3t

a2
h b2h b2t b4h b4t

(c)

Fig. 3. The process of building a new optimal consistent decomposition that contains edge
(b1

h,b
2
h). (a) One optimal consistent decomposition D without edge (b1

h,b
3
h). Star represents unre-

lated extremities. (b) The inconsistent decomposition D′. (c) The consistent decomposition D′′.
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cycles together in the worst case. Thus, we have cD′′ ≥ cD′ − 1. Overall, we have that
cD′′ ≥ cD, which means D′′ is also an optimal consistent decomposition—the desired
contradiction. ��

If all four vertices in a cycle of length two have degree larger than 2, then it is possible
that this cycle is not part of any optimal consistent decomposition. Figure 4 gives such
an example. Moreover, this example also shows that if a shared adjacency appears ex-
actly once in each genome, it is still possible that the corresponding cycle of length two
is not part of any optimal consistent decomposition.

5 Experimental Results

We compare our method with MSOAR on both simulated and biological datasets. The
input for both methods is two genomes with the same gene content, and the output
is a bijection between the two genomes, plus the DCJ distance calculated as n− c−
o/2, where n is the number of genes in each genome, and c and o are the numbers of
cycles and odd-length paths in the adjacency graph induced by the bijection. We use
both the accuracy of the bijection, which is defined as the percentage of correct gene
pairs (compared with a reference bijection), and the deviation from the true evolutionary
distances, to evaluate the performance of the two methods.
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Fig. 4. An example of a cycle of length two that is not part of any optimal consistent decom-
position. (a) A consistent decomposition with 4 cycles that contains the cycle of length two of
{a1

h,b
1
h,a

3
h,b

3
h}. (b) An optimal consistent decomposition with 5 cycles.
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For our method, given two genomes, we first build the adjacency graph and then em-
ploy the telomere removal technique to obtain a new adjacency graph without telom-
eres. Then we apply Theorem 1 to fix possible cycles of length two, and finally invoke
GUROBI [24] to solve the ILP formulation. Since the ILP solver might take a long time,
we set a time limit of two hours for each instance in our experiments—the best solution
will be returned if the ILP solver does not terminate in two hours. For MSOAR, we run
its binary version downloaded from http://msoar.cs.ucr.edu/. We compare our
method with MSOAR, rather than the latest version MSOAR 2.0, because we focus on
genomes with the same gene content, which implicitly requires that, after the speciation
event, only DCJ operations are involved. Compared with MSOAR, MSOAR 2.0 aims to
identify tandem duplications of genes after the speciation. Thus, under our evolutionary
model that does not contain postspeciation duplications, MSOAR and MSOAR 2.0 are
equivalent.

5.1 Simulation Results

We simulate artificial genomes under an evolutionary model including segmental du-
plications and DCJs. We introduce duplicated genes through segmental duplications.
For each segmental duplication, we uniformly select a position to start duplicating a
segment of the genome and place the new copy to a new position. Since the average
copy number of each gene in human, mouse and rat genomes, are 1.46, 1.55 and 1.28,
respectively, we set the average copy number to 1.5 in our simulation. From a genome
of 1,000 distinct genes, we generate an ancestor genome with 1,500 genes, by randomly
performing 500/L segmental duplications of length L (in terms of the number of genes
in the segment). We then simulate two extant genomes from the ancestor by randomly
performing N DCJs (in terms of inversions) independently. Thus, the true evolutionary
distance between the two extant genomes is 2 ·N. The reference bijection consists of
those gene pairs that correspond to the same gene in the ancestor. We test three different
lengths for segmental duplications (L = 1,2,5); results illustrate the trends and capabil-
ities of the two methods in handling genomes with duplicated segments. We also vary
the number of DCJs over a broad range (N = 200,210, · · · ,500) that reaches beyond the
saturation point. For each setting, we randomly simulate 5 independent instances, and
calculate the average accuracy of the bijection and the average deviation from the true
evolutionary distances over these 5 instances for both methods.

Figure 5 shows the deviation from the true evolutionary distances for both methods.
The first observation is that saturation starts occurring for a true evolutionary distance of
720: the DCJ distance obtained from the reference bijection is smaller than the true evo-
lutionary distance, and the gap increases along with the increase of the true evolution-
ary distance. Second, when the true evolutionary distance is less than 720, our method
obtains very accurate DCJ distances while MSOAR usually overestimates the DCJ dis-
tance. The difference is particularly pronounced for L ≥ 2: in such cases, there exist
identical segments in each genome, a situation that creates problems when MSOAR
tries to partition each genome into a minimum number of common segments [17].
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Fig. 5. Deviation from the true evolutionary distances on simulation data. Diamonds track
MSOAR, circles track our method, and triangles track the reference bijection.
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Fig. 6. The accuracy of the bijections on simulation data. Diamonds track MSOAR, while circles
track our method.
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Figure 6 shows the the accuracy of the bijections for both methods. For L = 1, both
methods can correctly identify most gene pairs. For L ≥ 2, our method significantly
outperforms MSOAR. For large L, the accuracy of our method decreases rapidly beyond
saturation, but continues to dominate MSOAR.

The running time of MSOAR grows slowly as the the true evolutionary distance
increases. For the most complicated case of L = 5 and the true evolutionary distance is
1000, MSOAR can finish in less than 2000 seconds. Regarding our method, when the
true evolutionary distance is relatively small (≤ 640 when L = 5, ≤ 740 when L = 2,
and ≤ 820 when L = 1), the preprocessing method can fix a considerable portion of
the adjacency graph, leaving a small ILP instance that can be solved very quickly (even
faster than MSOAR). When the true evolutionary distance is relatively large, the ILP
solver cannot terminate in two hours and a sub-optimal solution is obtained. Usually,
this solution is equal or very close to the optimal solution, because the ILP solver can
find the optimal solution very quickly, but must spend more time to verify that it is
optimal. This observation is also verified by the very high accuracy before the saturation
point shown in Figure 6.

5.2 Application to Orthology Assignment

Under a parsimonious evolutionary scenario, the optimal valid bijection between two
genomes with the same gene content minimizes the number of DCJs after speciation,
and thus infers the orthologous gene pairs [17]. We test both methods for assigning
orthologous genes between pairs of genomes. Human, mouse, and rat genomes are
well annotated, so we chose them to evaluate the performance of the two methods.
For each species, we downloaded the information for all protein-coding genes from
Ensembl (http://www.ensembl.org), including gene family names, positions on the
chromosomes and gene symbols. If a gene has multiple alternative products, we keep its
longest isoform. Two genes are considered homologous if they have the same Ensembl
gene family name; they are considered orthologous if they have the same gene symbol.
(Note that two orthologous genes are necessarily homologous, but two homologous
genes need not be orthologous.) For a pair of genomes, we keep only orthologous gene
pairs, thereby obtaining two genomes with the same gene content; our reference bijec-
tion is then defined by these orthologous gene pairs. For both methods, we use gene
family and position information to infer orthologous relationships and compare them to
the reference bijection.

The results of comparing these three genomes are shown in Table 1. Both methods
mostly agree with annotation, indicating that the parsimonious model is appropriate

Table 1. Comparison of human, mouse and rat genomes

species pairs gene pairs
accuracy of bijection (%) DCJ distance
MSOAR our method MSOAR our method

human mouse 14876 98.63 99.18 933 894
human rat 12971 98.79 99.28 1320 1294
mouse rat 13525 98.60 99.26 968 916
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Fig. 7. Comparison of the reference bijection with our bijection. (a) Two identical segments.
Our bijection is shown by solid lines while reference bijection is shown by dashed lines. (b) The
adjacency graph corresponding to the our bijection, in which there are 3 cycles. (c) The adjacency
graph corresponding to the reference bijection, in which there is only 1 cycle.

when comparing these genomes; our method obtains slightly better accuracy. On human
and mouse for example, our bijection has 122 different gene pairs compared with the
reference bijection. Among these pairs, 34 of them can be explained by a simple struc-
ture, illustrated in Figure 7. For two identical segments, our method outputs a sequential
bijection for which no DCJ operation is needed, while the reference bijection contains
a crossover, for which at least two DCJ operations are needed. The other 87 pairs can
be explained by 32 pairs of segments, for each of which our bijection needs fewer DCJ
operations than the reference bijection. On the comparison of the DCJ distance, our
method gets fewer DCJ operations than MSOAR in all three pairs of genomes.

6 Conclusion

We formulated the maximum cycle decomposition problem as an integer linear pro-
gram. We proved a theorem that can be used to reduce the complexity while preserving
optimality. The combination of the two gives a practical method to compute the exact
DCJ distance for genomes with duplicate genes. Such a method is crucial for compara-
tive genomics, since duplicate genes are commonly observed in most species.

The ILP formulation can be extended in various ways. First, we can use the relaxed
LP (linear programming) techniques to design possible approximation algorithms.
Second, when we apply it to do orthology assignment, we can also take the sequence
similarity information into account, by adding a term of the form ∑e∈E we · xe to the
objective function, where we can be set to the similarity of the two genes. How to com-
bine sequence similarity and DCJ distances remains an unexplored problem, but our
ILP formulation provides a first step by allowing us to study linear combinations of the
two.

We assumed that, after a speciation event, only DCJ operations are involved. This
assumption is clearly unrealistic—it was made to simplify the problem and enable us to
devise a first exact solution. However, now that our ILP method has proved successful,
we can combine it with our previous work [23] to include single-gene deletion and
single-gene insertion in the model.
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Abstract. A key challenge in cancer genomics is the identification and priori-
tization of genomic aberrations that potentially act as drivers of cancer. In this
paper we introduce HIT’nDRIVE, a combinatorial method to identify aberrant
genes that can collectively influence possibly distant “outlier” genes based on
what we call the “random-walk facility location” (RWFL) problem on an interac-
tion network. RWFL differs from the standard facility location problem by its use
of “multi-hitting time”, the expected minimum number of hops in a random walk
originating from any aberrant gene to reach an outlier. HIT’nDRIVE thus aims to
find the smallest set of aberrant genes from which one can reach outliers within
a desired multi-hitting time. For that it estimates multi-hitting time based on the
independent hitting times from the drivers to any given outlier and reduces the
RWFL to a weighted multi-set cover problem, which it solves as an integer linear
program (ILP). We apply HIT’nDRIVE to identify aberrant genes that potentially
act as drivers in a cancer data set and make phenotype predictions using only the
potential drivers - more accurately than alternative approaches.

1 Introduction

Over the past decade, high-throughput sequencing efforts have revealed the importance
of genomic aberrations in the progression of cancer [1]. During the time course of can-
cer evolution, tumor cells accumulate numerous genomic aberrations, however only a
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few “driver aberrations” are expected to confer crucial growth advantage - and have
potential to be used as therapeutic targets. The identification of these driver aberra-
tions and the specific genes they alter poses a significant challenge as they are greatly
outnumbered by functionally inconsequential “passenger” aberrations which contribute
further towards cancer heterogeneity [1, 2].

While several methods for finding drivers of cancer have been described previously,
most of them rely on the recurrence frequency of single nucleotide variants with respect
to the background mutation rate in a population of tumors [3, 4]. These approaches
are restricted to identifying only highly recurrent mutations as driver events. However,
recent whole-genome studies have revealed that important genes may be recurrently
mutated in only a small fraction of the tumor cohort under study, and can be subtype-
specific [5–7]. Furthermore, personalized rare drivers are likely to arise during later
stages of tumor evolution and be isolated to a small fraction of tumor cells [8, 9].

Perhaps the first computational method to consider large scale genomic variants as
driver events is by Akavia et al. [10], which correlates genes with highly recurrent copy
number alterations with variation in gene expression profiles within a Bayesian network.
Similarly, Masica and Karchin [11] correlate gene mutation information with expression
profile changes in other genes, again with no prior knowledge of pathways or protein
interactions. Another approach, (Multi) Dendrix [12] aims to simultaneously identify
multiple driver pathways, assuming mutual exclusivity of mutated genes among patients,
using either a Markov chain Monte Carlo algorithm or integer linear programming (ILP).
Finally, MEMo by Ciriello et al. [13], identifies sets of proximally-located genes from
interaction networks, which are also recurrently altered and exhibit patterns of mutual
exclusivity across the patient population. To the best of our knowledge, the first method
to link copy number alterations to expression profile changes within an interaction net-
work is by Kim et al. [14] which connects specific “causal” aberrant genes with potential
targets in a protein interaction network. Similarly, method, PARADIGM [15], computes
gene-specific inferences using factor graphs to integrate various genomic data to infer
pathways altered in a patient. A more recent tool, HotNet by Vandin et al. [16], was the
first to use a network diffusion approach to compute a pairwise influence measure be-
tween the genes in the (gene interaction) network and identify subnetworks enriched for
mutations. TieDIE [17] also uses the diffusion model to identify a collection of pathways
and subnetworks that associate a fixed set of driver genes to expression profile changes
in other genes. Briefly, the network diffusion approach aims to measure the influence
of one node over another by calculating the stationary proportion of a “flow” originat-
ing from the starting node, that ends up in the destination node. Since it is based on the
stationary distribution, the inferences that can be made by the diffusion model are time
independent. In that sense, the diffusion approach is very similar to Rooted PageRank,
the stationary probability of a random walk originating at a source node, being at a given
destination node. A final method, DriverNet by Bashashati et al [18], also aims to corre-
late single nucleotide alterations with target genes expression profile changes, but only
among direct interaction partners. The novel feature of DriverNet is that it aims to find
the “minimum” number of potential drivers that can “cover” targets.
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Our Contributions. In this paper we present a novel integrative method that considers
potential driver events at the genomic level, i.e. single nucleotide mutations, structural
or copy number changes. Our contributions are as follows:

1. We present HIT’nDRIVE, an algorithm that aims to identify “the most parsimo-
nious” set of patient specific driver genes which have sufficient “influence” over a
large proportion of outlier genes. HIT’nDRIVE formulates this as a “random-walk
facility location” problem (RWFL), a combinatorial optimization problem, which,
to the best of our knowledge, has not been explored earlier. RWFL differs from
the standard facility location problem by its use of “multi-source hitting time” (or
multi-hitting time) as an alternative distance measure between a set of aberrant
genes (potential drivers) and an outlier gene. Multi-hitting time generalizes the no-
tion of hitting time [19]: we define it as the expected minimum number of hops in
which a random walk originating from any aberrant gene reaches the outlier for the
first time (in the human gene or protein interaction network). RWFL problem thus
asks to find the smallest (the most parsimonious) set of aberrant genes from which
one can reach (at least a given fraction of) all outliers within a user defined multi-
hitting time. We believe that applications of RWFL problem may extend beyond its
application to driver gene identification - to influence analysis in social networks,
disease networks, etc.

2. Since RWFL problem is NP-hard, we estimate the multi-hitting time based on the
independent hitting times of the drivers to an outlier, which provides an upper
bound on the multi-hitting time. Our experiments show that this estimate works
well for the human protein interaction network.

3. More importantly, our estimate enables us to reduce the RWFL problem to a
weighted multi-set cover problem, for which we give an ILP formulation. For the
specific problem instances we consider, our ILP formulation is solvable exactly by
CPLEX in less than two days on a standard PC.

4. Note that hitting time as a measure for influence of one potential driver on an outlier
gene is quite different from the diffusion-based measures or the Rooted PageRank:
hitting time essentially measures the expected distance/time between a source node
and a destination node in a random walk. We argue that hitting time is a better mea-
sure to capture the influence of one (driver) node over another as it is (i) parameter
free (diffusion model introduces at least one additional parameter - the proportion
of incoming flow “consumed” at a node in each time step), (ii) it is time dependent
(while the diffusion model and PageRank measures the stationary behavior) and
(iii) it is more robust (w.r.t. small perturbations in the network; see [20]).

5. We also show that, by a simple Monte Carlo method, the hitting time in networks
with n nodes that have constant average degree and small diameter (as per the hu-
man protein interaction network) can be estimated in Õ(n2) time. For computing
the hitting time in general networks, alternative methods [21] require to perform a
complete matrix inversion, which takes O(n2+c) time for some c > 0.37.

6. We have applied HIT’nDRIVE to identify genes subject to somatic mutation and
copy number changes that potentially act as drivers in glioblastoma cancer. We then
used the identified potential drivers to perform phenotype prediction on the cancer
data set, solely based on gene expression profiles of small subnetworks “seeded”
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by the drivers. For that we extended the OptDis method [22] by focusing only
on driver-seeded subnetworks and achieved a higher accuracy than the alternative
approaches.

2 HIT’nDRIVE Framework

HIT’nDRIVE naturally integrates genome and transcriptome data from a number of
tumor samples for identifying and prioritizing aberrated genes as potential drivers. It
“links” aberrations at the genomic level to gene expression profile alterations through a
gene or protein interaction network. For that, it aims to find the smallest set of aberrated
genes that can “explain” most of the observed gene expression alterations in the cohort.
In other words, HIT’nDRIVE identifies the minimum number of potential drivers which
can “cause” a user-defined proportion of the downstream expression effects observed.

HIT’nDRIVE uses a particular “influence” value of a potential driver gene on other
(possibly distant) genes based on the (gene or protein) interaction network in use. In
order to capture the uncertainty of interaction of genes with their neighbours, it con-
siders a random walk process which propagates the effect of sequence alteration in one
gene to the remainder of the genes through the network. As a result, the influence is
defined to be the inverse of hitting-time, the expected length (number of hops) of a ran-
dom walk which starts at a given potential driver gene, and “hits” a given target gene
the first time in a (protein or gene) interaction network. More specifically, for any two
nodes u, v ∈ V of an undirected, connected graph G = (V, E), let the random variable
τu,v denote the number of hops in a random walk starting from u to visit v for the first
time. The hitting-time Hu,v, thus is defined as Hu,v = E[τu,v] [23].

In order to capture synthetic lethality like scenarios, HIT’nDRIVE also considers
multiple aberrated genes as potential drivers. For that, we define the influence value
(of a set of potential driver genes on a target) as the inverse of multi(source)-hitting
time, i.e., the expectation of the smallest number of hops in one of the random walk
processes, simultaneously starting at each one of the potential drivers and ending at a
given outlier for the first time. More specifically, let U ⊆ V be a subset of nodes of G
and v ∈ (V − {U}) be a single node. We thus define the multi(source)-hitting time HU,v

as HU,v = E[minu∈U τu,v].
HIT’nDRIVE formulates the process of potential driver gene discovery in terms of

the “random-walk facility location” (RWFL) problem, which, for a single patient can
be described as follows.

Let X be a set of potential driver genes andY be a set of expression altered (outlier)
genes. Then, for a user defined k, HIT’nDRIVE can aim to return k potential driver
genes as solution to the following optimization problem:

arg minX⊆X,|X |=k max
y∈Y

HX,y

where HX,y denotes the multi-hitting time from the gene set X to the gene y.
RWFL problem resembles the standard (minimax) “facility location” problem in which
one seeks a set of nodes as facilities in a graph such that the maximum distance from
any node in the graph to its closest facility is minimized. RWFL differs from standard



HIT’nDRIVE: Multi-driver Gene Prioritization Based on Hitting Time 297

facility location by its use of HX,y as a distance measure between a collection of nodes to
any other node, which aims to capture the uncertainty in molecular interactions during
the propagation of one or more signals, by random walks starting from one or more
origins (reminiscent of the underlying Brownian motion).

Since the standard facility location is an NP-hard problem, RWFL problem is NP
hard as well. As shown in the next section, we overcome this difficulty by introducing
a good estimate on the multi-hitting time that helps us to reduce RWFL problem to
the weighted multi-set cover problem, which we solve through an ILP formulation in
Section 3. (Although the use of set-cover for representing the most parsimonious so-
lution in a bioinformatics context is not new [24], to the best of our knowledge this is
the first use of the multi-set cover formulation for maximum parsimony.) In this for-
mulation, we use a slightly different objective: given a user defined upper bound on the
maximum multi-hitting time, we now aim to minimize the number of potential drivers
that can “cover” (a user defined proportion of) the outlier genes. For more than one
patient, we minimize the number of drivers that can “cover” (a user defined proportion
of) patient-specific outliers such that each such outlier is covered by potential drivers
that are aberrant in that patient.

2.1 Estimating Hitting Time on a Protein-Protein Interaction (PPI) Network

As mentioned before, HIT’nDRIVE estimates the multi-hitting time H(U, v) between a
set of nodes U and a single node v, as a function of independent hitting times H(u, v) for
all u ∈ U - as will be shown later. However, even computing H(u, v) is not a trivial task
in a general graph G = (V, E) as it requires a solution to a system of |V | linear equations
with |V | variables. Below we show how to efficiently calculate H(u, v) for all u, v ∈ V
for a graph G = (V, E) with constant average degree and small diameter - as per the
available human protein interaction network (or any small world network).

Let Hmax = max
u,v
{Hu,v}. Our aim is to estimate Hu,v empirically by performing in-

dependent random walks and taking the average of the observed hitting times. More
formally, for any given number of iterations m > 1 and pair u, v ∈ V , let X1, X2, ..., Xm

be a sequence of independent random variables which have the same distribution as τu,v

for every 1 ≤ i ≤ m. Then the empirical hitting time is defined as H̃u,v =
1
m ·
∑m

i=1 Xi.
The following theorem shows how fast H̃u,v converges to Hu,v.

Theorem 1. Assume that G is a graph such that the maximum hitting time satisfies
Hmax ≤ Cn for some constant C > 0 and let u, v be an arbitrary pair of nodes. Then for
any ε ∈ [ 1

n4 , 1], after m = (128C)2(1/ε)2(log2 n)3 iterations, the returned estimate H̃u,v

satisfies

Pr
[
|H̃u,v − Hu,v| ≤ εn

]
≥ 1 − n−3.

Moreover, with probability at least 1−n−7, the total number of random walk hops made
is at most m · 32Cn log2 n = O((1/ε)2n log4 n).

We provide the proof of Theorem 1 in the Supplements. To obtain the empirical esti-
mates of all n2 hitting times Hu,v efficiently, observe that taking a single random walk
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starting from u until all nodes are visited gives an estimate for all n hitting times Hu,v

with v ∈ V . Since for fixed v ∈ V , all m estimates for Hu,v (coming from m iterations)
are independent, we conclude by the first statement of Theorem 1 and the union bound
that with probability at least 1 − n−2, for fixed u ∈ V all n estimates H̃u,v approximate
Hu,v up to an additive error of εn. Similarly, the total number of random walk hops to
obtain all these n approximations is O((1/ε)2n log4 n) with probability at least 1 − n−6.
Finally, we do the above procedure for all n possible starting vertices u ∈ V , so that
with probability at least 1 − n−1, we have an εn-additive approximation for each of the
n2 hitting times, and the total number of random walk hops is O((1/ε)2n2 log4 n) with
probability at least 1 − n−5.

2.2 Estimating Multi-source Hitting Time via Single-Source Hitting Times

Given U = {u1, u2, . . . , uk}, we now show how to estimate HU,v by a function of inde-
pendent pairwise hitting times Hui ,v for all ui ∈ U. A natural estimate is

HU,v ≈ 1
∑k

i=1
1

Hui ,v

(1)

Let the conductance of graph G be defined asΦ(G) = min∅�S�V
|E(S ,V\S )|

min{vol(S ),vol(V\S )} .Many
real-world networks including preferential attachment graphs are known to have large
conductance [25]. For such graphs, our next theorem provides mathematical evidence
for the accuracy of our estimate in (1).

Theorem 2. Let G = (V, E) be any graph with constant conductance Φ > 0. Then
there is an integer C = C(Φ) > 0 such that, given an integer k, a set of nodes U =
{u1, u2, . . . , uk} and node v ∈ V satisfying 1

k· deg(v)
2|E|
≥ log1.5 n, the following inequality

holds:

HU,v ≤ C · 1
∑k

i=1
deg(v)
2|E|
.

In particular, for any pair of nodes u, v with deg(v) ≤ 2|E|
log1.5 n

we have Hu,v = O( |E|
deg(v) ).

We provide the proof in the Supplements. Note that the bound in Theorem 2 differs from
our estimate in equation (1) in that 1

Hui ,v
is replaced by deg(v)

2|E| . However, for graphs with
constant conductance, we have Hu,v ≤ Hπ,v +O(log n), where Hπ,v is the hitting time for
a random walk starting according to the stationary distribution π, given by π(w) = deg(w)

2|E|
for every w ∈ V . Hence 2|E|

deg(v) = Hv,v ≤ Hπ,v + O(log n). Since Hπ,v =
∑

u∈U π(u) · Hu,v,
it follows that, given any fixed node v, it holds for “most nodes” u that Hu,v is not much
smaller than 2|E|

deg(v) − O(log n).

3 Reformulation of RWFL as a Weighted Multi-set Cover Problem

Since RWFL is NP-hard we reduce it to the weighted set cover problem, which we
solve via an ILP formulation. This formulation also generalizes RWFL to allow patient-
specific drivers and outlier genes. Consider a bipartite graph Gbip(X,Y,E) where X is
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Fig. 1. Schematic overview of construction of bipartite graph in HIT’nDRIVE. The influence
matrix derived from the interaction network contains the inverse hitting time between every pair
of genes. A and B are gene-patient matrices showing the genomic abberations and expression
alteration events, respectively. The red color in A indicates the aberration status of a gene in a
patient. Similarly, the green color in B indicate expression altered genes in a patient. The edges
in the bipartite graph are weighted by the inverse hitting time within the PPI network.

the set of aberrant genes,Y is the set of patient-specific expression altered genes, and E
is the set of edges. If gene gi is mutated in a patient p, we set edges between gi and all
of the expression altered genes in the same patient (g j, p) where the edges are weighted
by the inverse pairwise-hitting times wi, j := H−1

gi ,gj
; see the Figure 1 for more details.

We now define a minimum weighted multi-set cover (WMSC) problem on Gbip, whose
solution provides an exact solution to RWFL problem, provided our estimate of the
multi-hitting times are accurate, i.e.

arg minX⊆X|X| such that max
y∈Y

HX,y ≤ Δ (2)

where Δ is the maximum allowed multi-hitting time from the drivers to any expression
altered gene.

WMSC asks to compute as the potential driver gene set, the smallest set which “suf-
ficiently” covers “most” of the patient specific expression altered genes:

arg minX∈X min
Y⊆Y,|Y |≥α|Y|

|X| such that ∀y ∈ Y :
∑

x∈X
wx,y ≥ γy (3)

where 0 < α ≤ 1 represents the fraction of patient-specific expression altered genes
that we believe are causally linked to the potential drivers. The left-hand-side of the
constraints in (2) and (3) are related by H−1

X,y ≈
∑

x∈X H−1
x,y, as mentioned in Section 2.2.

The introduction of γy makes it possible to control the minimum amount of “coverage”
needed for individual expression alteration events (each patient potentially indicates a
unique expression alteration event for each gene).
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3.1 An ILP Formulation for WMSC

minx1,..,x|X|
∑

i xi

s.t.
∀i, j : xi = ei j

∀ j :
∑

i ei jwi j ≥ y jγ
∑

i wi j∑
j y j ≥ α|Y|

xi, ei j, y j ∈ {0, 1}
Fig. 2. ILP formulation

We formulate WMSC as an ILP and solve it using
an off-the-shelf ILP solver. The ILP formulation for
our combinatorial optimization problem is as Figure 2
where there is a binary variable xi, y j, ei j, respec-
tively, for each potential driver, expression alteration
event, and edge in the bipartite graph. The first con-
straint ensures that a selected driver contributes to the
coverage of each of the expression alteration events
it is connected to - in each patient. The second con-
straint ensures that selected (patient-specific) driver
genes cover at least a (γ) fraction of the sum of all
incoming edge weights to each expression alteration
event. This constraint corresponds to setting a lower
bound on the joint influence (i.e. our estimate on the inverse of multi-hitting time) of
selected (patient specific) drivers on an expression alteration event. The third constraint
ensures that the selected driver genes collectively cover at least an α fraction of the set
of expression alteration events.

4 Evaluation Framework

Evaluating computational methods for predicting cancer drivers is challenging in the
absence of the ground truth (i.e. follow-up biological experiments). We refer to previous
studies [18] that observe the overlap between predicted driver genes and known cancer
genes compiled in public resources such as the Cancer Gene Census (CGC) database
[26] or the Catalogue of Somatic Mutations in Cancer (COSMIC) database [27] and
we provide those numbers as well. However, we mainly focused on testing whether
our predictions provide insight into the cancer phenotype and improve classification
accuracy on an independent cancer dataset. The classifiers we evaluate are based on
network “modules”, a set of functionally related genes (e.g. in a signaling pathway),
which are connected in an interaction network and include at least one potential driver.
They then use module features, such as the average expression of genes in the module,
for phenotype classification.

Using such module features, we hope that the classifier in use does not overfit on rare
drivers and is able to generalize the signal coming from rare drivers to new patients.

For classification purposes we primarily use OptDis [22] for de novo identification
of modules which include (i.e. are seeded by) at least one predicted driver gene. In
general, OptDis performs supervised dimensionality reduction on the set of connected
subnetworks.

It projects the high dimensional space of all connected subnetworks to a user-specified
lower dimensional space of subnetworks such that, in the new space, the samples belong-
ing to the same (different) class are closer (respectively, more distant) to each other with
respect to a normalized distance measure (typically L1).

Since the human PPI network has a small diameter, there is significant overlap be-
tween many modules seeded by potential driver genes. In order to limit the number of
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overlapping modules (and achieve further dimensionality reduction) we first compute
the top 10 modules seeded by each driver gene that have the best individual “discrimina-
tive scores” (a linear combination of the average in-class distance and out-class distance
[22]). The modules seeded by all potential drivers are then collectively sorted based on
their discriminative score. Among these modules, we greedily pick a subset in a way
that the ith module is added to our result subset R if its maximum pairwise node overlap
with any module already in R is no more than a user-defined threshold.

5 Experiments

We use a publicly available cancer dataset representing matched genomic aberration (so-
matic mutation, copy-number aberration) and transcriptomic patterns (gene-expression
data) of 156 Glioblastoma Multiforme (GBM) samples [5] from The Cancer Genome
Atlas (TCGA). We make use of a global network of protein-protein interaction (PPI)
from the Human Protein Reference Database (HPRD) version April 2010 [28] to derive
the influence values based on the hitting time. We use the same PPI Network for mod-
ule identification using our modification to OptDis. We ran HIT’nDRIVE with different
combinations of values for the variables α and γ as given in Figure 3-A. For a fixed γ,
the number of selected driver genes increased linearly with the value of α. The increase
in the number of drivers is expected as more drivers are required to cover larger fraction
of abnormal expression events.

Evaluation Based on CGC and COSMIC Databases. To assess whether the genes
identified by HIT’nDRIVE are essential players in cancer, we first analyzed the concor-
dance of the predicted drivers with the genes annotated in CGC and COSMIC database.
Gene sets resulting with the parameters γ = 0.7 and α = {0.1, 0.2, ..., 0.9} were ana-
lyzed (Figure 3-B). The fraction of driver genes affiliated with cancer in the CGC and
COSMIC databases increase with increasing values of α.The remainder of results are
obtained for parameter values γ = 0.7 and α = 0.9 this results in 107 driver genes
covering the majority (22933) of outlier genes in 156 patients.

Phenotype Classification Using Dysregulated Modules Seeded with the Predicted
Drivers. We evaluated the driver genes identified by HIT’nDRIVE using phenotype
classification (as described in Section 4 and results are shown in Figure 4). Briefly,
drivers identified from the TCGA dataset were used as seeds for discovering discrimina-
tive subnetwork modules. The module expression profiles were used to classify normal
vs. glioblastoma samples through repeated cross-validation on the validation dataset.
First, HIT’nDRIVE using hitting time based influence values, was compared against
DriverNet, which greedily identifies driver genes using direct gene interactions from
the HPRD network. Across the appreciable range of discriminative modules discovered
by OptDis, HIT’nDRIVE demonstrates better accuracy in classifying the cancer phe-
notype, with a maximum accuracy of 96.9% and a mean accuracy of 93.4% (Figure 4).
Next, comparing the HIT’nDRIVE deduced drivers against a comparable number of
genes with the highest node-degrees in the PPI network reveals a clear advantage to
HITnDRIVE. This trend was observed when genes were used as individual classifi-
cation features (blue vs. orange plots) as well as when they were used as seeds for
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Fig. 3. Behavior of HIT’nDRIVE as a function of α and γ. (A) The number of selected drivers
and covered outliers as α increases for various values of γ. Note that some of the data points are
missing for the problems which could not be solved within 48 hours. (B) Concordance of GBM
driver genes with that of COSMIC and Cancer Gene Census database for γ = 0.7.

module-based features (red vs. brown plots). Comparing the classification accuracy of
HITnDRIVE deduced drivers against 107 genes randomly selected from the entire list
of aberrant genes (red vs. grey plots) provides additional support for the relevance of
drivers selected by HITnDRIVE. This is also confirmed by comparing the performance
of hitting-time based influence values against those derived from the diffusion model
[16] (red vs. black plots) both employed by HITnDRIVE.

Sensitivity of HIT’nDRIVE to Small Perturbations of the PPI Network. We per-
turbed the PPI network by swapping endpoints at random of 20% edges and recalculated
pairwise hitting times. We observed that almost all changes are less than 10% relative
to the original values, most of them being between 1% and 5%. However, impact on
accuracy of classification using HIT’nDRIVE output can be noticed in Figure 4.

Prediction of Frequent and Rare Drivers. The 107 driver genes nominated by
HIT’nDRIVE are aberrated at varying frequencies in the tumor population (Figure 5-
A). CHEK2 and EGFR are the two most frequently aberrated drivers (at 46.8% and
42.3% respectively), followed by CDKN2A (31.4%), MTAP (30.1%) and CDKN2B
(29.5%). Some of these frequent drivers harbour different types of genomic aberrations in
different patients. For example, EGFR shows somatic mutation and high copy-number
gain in 14.2% and 32.7% of the patients, respectively. Similarly, PTEN harbours so-
matic mutation in 12.8% and homozygous deletion in 3.9% of the patients. Amplifi-
cation in EGFR, PDGFRA, mutations in CHEK2, TP53, PTEN, RB1, and deletions in
CDKN2A have been previously associated with GBM [5, 29, 30]. HIT’nDRIVE also
identified infrequent drivers, which we defined as genes that are genomically aberrant in
at most 2% of the cases. Out of 27 (25.2%) rare driver genes identified, four genes (FLI1,
BMPR1A, MYST4, and BRCA2) were implicated in the CGC database. Despite being
aberrant in a small fraction of patients, the rare drivers are specifically associated with
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Fig. 4. Phenotype classification using the identified drivers obtained by various methods.
The dysregulated sets of modules seeded by the 107 chosen drivers are used to predict phenotype
in the validation dataset using using k-nearest neighbour classifier with k=1. We used the HPRD-
PPI Network for module identification using our modification to OptDis.

Fig. 5. Characteristics of driver genes of GBM predicted by HIT’nDRIVE. (A) Recurrence
frequency of the aberration in the driver genes predicted by HIT’nDRIVE. (B) The centrality of
the predicted drivers in the PPI network.The size of the circles is proportional to the recurrence
frequency of the genomic aberration of the gene. (C) Centrality of the “driver” and “passenger”
genes is colored by red and blue dots respectively; all other nodes in the PPI network apart from
the driver and passenger genes are represented as grey dots.
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cancer development, DNA repair, cell growth and migration, cell death and survival.
Some rare drivers like MAG and BMPR1A have also been closely linked with GBM
progression [31, 32].

Prediction of Low-degree and High-degree Drivers. The drivers predicted by
HIT’nDRIVE include a number of well-known high-degree “hubs” such as TP53, EGFR,
RB1 and BRCA1, which occupy the central position (with high degree and high be-
tweenness, i.e. the proportion of shortest paths between all pairs of nodes that go through
that node, and high degree - computed by the igraph [33] R package.) in the PPI net-
work (Figure 5-B). If these genes are perturbed, they dysregulate several other genes and
the associated signaling pathways. Moreover, HIT’nDRIVE also identified low-degree
genes (such as IFNA2, UTY, and RYR3) that reside in the periphery of the PPI network.
Some of these low-degree genes are only aberrant in a small fraction of patients. Since
driver genes and passenger genes display similar network characteristics (Figure 5-C),
and identified driver genes have both low and high degrees in the network, HIT’nDRIVE
likely selects drivers irrespective of known network biases.

6 Conclusion and Future Work

We have presented HIT’nDRIVE, a combinatorial method to capture the collective ef-
fects of driver gene aberrations on possibly distant “outlier” genes based on what we
call the “random-walk facility location” (RWFL) problem. We introduced the notion of
“multi-source hitting time” and presented efficient and accurate methods to estimate it
based on single-source hitting time in large-scale networks. We applied HIT’nDRIVE
to identify genes subject to somatic mutation and copy number in GBM. Our results
showed that the predicted driver genes identified by HIT’nDRIVE are well-supported
in databases of important cancer genes. Furthermore, these drivers were able to perform
phenotype predictions more accurately than the alternative approaches. Importantly, the
discovery of these drivers were not biased by the frequency of aberration and/or the de-
gree of a gene in the PPI network. Our approach can easily integrate various aberration
types such as single nucleotide changes, copy number changes, structural variations,
and splice variations. Furthermore, it can be straightforwardly extended to incorporate
epigenome and/or gene-fusions data. As gene networks increase in density and volume
of interaction, HIT’nDRIVE will be able to capture such improvements naturally. Fi-
nally our method is well suited to identify patient-specific driver-aberrations which can
potentially be used as therapeutic targets.

Supplements: All supplementary material can be found and downloaded at
http://compbio.cs.sfu.ca/software-hitndrive.
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Recent years in cancer research were characterized by both accumulation of
data and growing awareness of its overwhelming complexity. Consortia like The
Cancer Genome Atlas [1] generated large collections of tumor samples, recording
presence or absence of genomic alterations, such as somatic point mutations,
amplifications, or deletions of genes. One of the basic tasks in the analysis of
tumor genomic data is to elucidate sets of genes involved in a common oncogenic
pathway. A de novo approach to this task is to search for mutually exclusive
patterns in cancer genomic data [2, 3, 4, 5], where these alterations tend not to
occur together in the same patient. Such patterns are commonly evaluated and
ranked by their coverage and impurity. Coverage is defined as the number of
patient samples in which at least one alteration occurred, while impurity refers
to non-exclusive, additional alterations that violate strict mutual exclusivity.
Mutually exclusive patterns have frequently been observed in cancer data, and
were associated with functional pathways [6].

Previous de novo approaches identified mutually exclusive patterns either with
an online learning approach [2], or by maximizing a mutual exclusivity weight,
which increases with coverage and decreases with impurity [3, 4, 5]. However, in
the absence of a statistical model of the data, the definition of the weight, al-
though intuitively reasonable, remains arbitrary. None of the existing approaches
deal with the problem of errors in the data, which may arise due to measure-
ment noise, as well as uncertainty in mutation calling and interpretation. We
show that ignoring errors in the data, particularly false positives, may lead to
false ranking of patterns.

To address these limitations, we propose a probabilistic, generative model of
mutually exclusive patterns in the data. The model contains coverage as well
as impurity as parameters, together with false positive and false negative rates.
We show analytically that the model parameters are identifiable, and propose
efficient algorithms for their estimation, as well as for pattern evaluation and
ranking. Via comparison of the mutual exclusivity model to the null model as-
suming independent alterations of genes, our approach allows statistical testing
for mutual exclusivity, both in the presence and absence of errors.

We first evaluate the performance of our approach in the case when, as it
is done in the literature, the data is assumed to record no false positive or
negative alterations. On simulated patterns our mutual exclusivity test proves
more powerful than the weight-based permutation test applied previously.
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In glioblastoma multiforme data [7], we find novel, biologically relevant patterns,
which are not detected by the permutation test. Next, we examine the bias in-
troduced in pattern ranking by ignorance of errors, especially false positives, and
show that when the error rates are known, our approach is able to accurately esti-
mate the true coverage and impurity and rank the patterns accordingly. Finally,
we analyze the practical limits of accurate parameter estimation in the most
difficult, but also most realistic case, where the data contains errors occurring at
unknown rates. We apply our approach to a large, pan-cancer collection of 3299
tumor samples from twelve tumor types [8], for which the model accounting for
the presence of false positives can accurately be estimated. This model is shown
to be more flexible than the model assuming no errors in the data, and is applied
to identify universal, significant mutual exclusivity patterns. Both extensive sim-
ulations, as well as application to glioblastoma and pan-cancer data show that
our statistical approach to mutual exclusivity provides increased flexibility and
power to detect cancer pathways from tumor data in the presence of noise.
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Genetic variability of virus populations within individual hosts is a key deter-
minant of pathogenesis, virulence, and treatment outcome. It is of clinical im-
portance to identify and quantify the intra-host ensemble of viral haplotypes,
called viral quasispecies. Ultra-deep next-generation sequencing (NGS) of mixed
samples is currently the only efficient way to probe genetic diversity of virus pop-
ulations in greater detail. Major challenges with this bulk sequencing approach
are (i) to distinguish genetic diversity from sequencing errors, (ii) to assemble
an unknown number of different, unknown, haplotype sequences over a genomic
region larger than the average read length, (iii) to estimate their frequency dis-
tribution, and (iv) to detect structural variants, such as large insertions and
deletions (indels) that are due to erroneous replication or alternative splicing.
Even though NGS is currently introduced in clinical diagnostics, the de-facto
standard procedure to assess the quasispecies structure is still single-nucleotide
variant (SNV) calling. Viral phenotypes cannot be predicted solely from indi-
vidual SNVs, as epistatic interactions are abundant in RNA viruses. Therefore,
reconstruction of long-range viral haplotypes has the potential to be adopted,
as data is already available.

We present HaploClique, a computational method that combines a probabilis-
tic model of sequence similarity and structural similarity with a graph theoretical
method to reconstruct viral quasispecies from NGS paired-end data. We define
a read alignment graph, in which nodes correspond to single-end and paired-end
alignments (Figure 1A right). We draw an edge between nodes if alignments (i)
have sufficient overlap, (ii) are compatible in the insert size (Figure 1A left),
defined as the unsequenced fragment between read pairs, and (iii) show that
sequences are sufficiently similar. Taken together these criteria ensure that both
reads are likely to stem from the same haplotype (Figure 1B). If alignments
stem from the same haplotype, their sequences are identical up to sequencing
errors in the intervals of overlap. The corresponding probability is computed
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Fig. 1. (A) Paired-end read alignment with a deletion harboring haplotype and the
corresponding read alignment graph with max-cliques of minimal size three, based on
the insert size compatibility. (B) Phred scores of paired-end reads are used to assess
sequence similarity. The unsequenced fragment is indicated by the gap symbol ’-’. Top
example is sequence compatible, as reads differ only in sequencing errors, bases with
low phred scores. Bottom example is not sequence compatible, because reads differ in
bases with high pred scores.

using the base calling quality scores (phred scores). In addition, we compute the
probability that the non-overlapping alignment sequences are identical.

We develop a maximal clique (max-clique) enumeration approach (Figure 1A
right) to cluster NGS reads. Max-cliques are fully connected subgraphs that
cannot be extended and consist of reads with mutually compatible alignments.
We use max-cliques to reconstruct haplotype sequences and detect indels. In
detail, the structural similarity of all reads in a max-clique and its deviation from
the empirical insert size distribution allows to detect large indels. The consensus
sequence of each max-clique, called super-read, is the predicted error-corrected
local haplotype. By iterating read alignment graph construction and max-clique
enumeration of super-reads, haplotype fragments grow in length and possibly
allow full-length reconstruction. Haplotype abundance estimation is performed
by counting original reads that participated in a super-read.

In extensive simulation studies, we benchmarked the accuracy and robustness
of estimating haplotype frequencies, the error correction performance, and the
minimal distance of two haplotypes to be perfectly distinguishable. We showed
that HaploClique outperforms the state-of-the-art tools ShoRAH, PredictHaplo,
and QuRe on a simulated dataset of five well known HIV strains with a low cov-
erage of 600x. HaploClique successfully reconstructed one haplotype at its full
length and the other strains are covered with reconstructed haplotypes of sizes
5-6 kb, where the original strain lengths are 9-10 kb. The structure prediction ac-
curacy and robustness was assessed for varying deletion sizes between 100 bp and
1 kb. We applied HaploClique to a clinical hepatitis C virus infected sample and
detected a novel deletion of size 357±167 bp, which was validated by two inde-
pendent long-read sequencing experiments. HaploClique is able to predict large
indels that cannot be detected by current computational methods and recon-
struct full-length haplotypes from low coverage samples. HaploClique’s imple-
mentation is available at https://github.com/armintoepfer/haploclique.



Correlated Protein Function Prediction

via Maximization
of Data-Knowledge Consistency�

Hua Wang1, Heng Huang2,��, and Chris Ding2

1 Department of Electrical Engineering and Computer Science
Colorado School of Mines, Golden, Colorado 80401, USA

2 Department of Computer Science and Engineering
University of Texas at Arlington, Arlington, Texas 76019, USA

huawangcs@gmail.com, {heng,chqding}@uta.edu

Abstract. Protein function prediction in conventional computational
approaches is usually conducted one function at a time, fundamentally.
As a result, the functions are treated as separate target classes. However,
biological processes are highly correlated, which makes functions assigned
to proteins are not independent. Therefore, it would be beneficial to make
use of function category correlations in predicting protein function. We
propose a novel Maximization of Data-Knowledge Consistency (MDKC)
approach to exploit function category correlations for protein function
prediction. Our approach banks on the assumption that two proteins
are likely to have large overlap in their annotated functions if they are
highly similar according to certain experimental data. We first establish
a new pairwise protein similarity using protein annotations from knowl-
edge perspective. Then by maximizing the consistency between the es-
tablished knowledge similarity upon annotations and the data similarity
upon biological experiments, putative functions are assigned to unan-
notated proteins. Most importantly, function category correlations are
elegantly incorporated through the knowledge similarity. Comprehensive
experimental evaluations on Saccharomyces cerevisiae data demonstrate
promising results that validate the performance of our methods.

Keywords: Protein Function Prediction, Mutli-Label Classification,
Symmetric Nonnegative Matrix Factorization.

1 Introduction

Due to its significant importance in post-genomic era, protein function predic-
tion has been extensively studied and many computational approaches have been
proposed in the past decade. Among numerous existing algorithms, graph based
approaches and data integration based approaches have demonstrated effective-
ness due to their clear connections to biological facts.
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Since many biological experimental data can be readily represented as net-
works, graph-based approaches are the most natural way to predict protein func-
tion [1]. Neighborhood-based methods [2–5] assign functions to a protein based
on the most frequent functions within a neighborhood of the protein, and they
mainly differ in how the “neighborhood” of a protein is defined. Network dif-
fusion based methods [6, 7] view the interaction network as a flow network, on
which protein functions are diffused from annotated proteins to their neighbors
in various ways. Other function prediction approaches via biological networks in-
clude graph cut based approaches [8, 9], and those derived from kernel methods
[10]. More recently, the authors developed a graph-based protein function pre-
diction method [11] using PPI graph to take advantage of the function-function
correlations by considering protein function prediction as a multi-label classifi-
cation problem, which takes the same perspective as this work. Experimental
data from one single source often incomplete and sometimes even misleading
[12], therefore predicting protein function using multiple biological data has at-
tracted increased attention. [13] proposed a kernel-based data fusion approach to
integrate multiple experimental data via a hybrid kernel and use support vector
machine (SVM) for classification. [14] presented a locally constrained diffusion
kernel approach to combine multiple types of biological networks. Artificial neu-
ral network is employed in [15] for the integration of different protein interaction
data.

Most existing computational approaches usually consider protein function pre-
diction as a standard classification problem [13, 16, 17]. Typically, these ap-
proaches make prediction one function at a time, fundamentally, i.e., the clas-
sification for each functional category is conducted independently. However, in
reality most biological functions are highly correlated, and protein functions can
be inferred from one another through their interrelatedness [11, 18]. These func-
tion category correlations, albeit useful, are seldom utilized in predicting protein
function. In this study, we explore this special characteristic of the protein func-
tional categories and make use of the function-function correlations to improve
the overall predictive accuracy of protein functions.

1.1 Multi-label Correlated Protein Function Prediction

Because a protein is usually observed to play several functional roles in differ-
ent biological processes within the same organism, it is natural to annotate it
with multiple functions. Therefore, protein function prediction is a multi-label
classification problem [19, 11, 20–22, 18]. Multi-label data, such as those used
in protein function prediction, present a new opportunity to improve classifica-
tion accuracy through label correlations, which are absent in single-label data.
For example, when applying Functional Catalogue (FunCat) annotation scheme
(version 2.1) [23] on yeast genome, we observe that there is a big overlap between
the proteins annotated to function “Cell Fate” (ID: 40) and those annotated to
“Cell Type Differentiation” (ID: 43). As shown in the left panel of Figure 1,
among 268 proteins annotated with function “Cell Fate” in yeast genome, 168
proteins are also annotated with function “Cell Type Differentiation”, whereas
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the average number of proteins annotated with other functions is only about 51.
As a result, we reasonably speculate that these two functions are statistically
correlated in a stronger way. As a result, if a protein is known to be annotated
with function “Cell Fate” by either experimental or computational evidences,
we have high confidence to annotate the same protein with function “Cell Type
Differentiation” as well.
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Fig. 1. Left: number of proteins annotated to both function 40 and one of the other
functions. Right: visualization of the correlation values defined by Eq. (1) among the
17 main functions in FunCat 2.1 to yeast genome.

1.2 Data-Knowledge Consistency and Our Motivations

In protein function prediction, we need both experimental data and biologi-
cal knowledge. Here we refer to data as original experimental measurements or
results, such as protein sequences, protein-protein interaction (PPI) networks
measured by yeast two-hybrid screening, gene expression profiles, etc. On the
other hand, knowledge refers to human-curated research findings recorded in well
structured databases or documented in biomedical literatures, such as human-
encoded annotation databases, ontologies, etc.

In most existing approaches for protein function prediction, knowledge are
routinely used as supervision in the classification tasks, i.e., protein annotations
are interpreted as labels assigned to data points. In this study, we employ knowl-
edge information from a new perspective. Motivated by the observation that label
indications in a multi-label classification task (i.e., protein function annotations
in protein function prediction problems) convey important attribute information
[21], we use the function annotations of a protein as its description, and assess
pairwise protein similarities upon such descriptions. The key assumption of our
work is that two proteins are likely to have large overlap in their annotated func-
tions if they are highly similar according to experimental data. More precisely,
let xi and xj be descriptions of two proteins abstracted from experimental data,
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and fi and fj be the labeling vectors that encode the annotated functions of
the same two proteins respectively, we evaluate the similarity between the two
proteins in the following two different ways. The first one is based upon exper-
imental data and denoted as SD (xi,xj), while the second one is based upon
biological knowledge and denoted as SK (fi, fj). If functions fi and fj are anno-
tated appropriately to proteins xi and xj , i.e., the data and the knowledge are
consistent, we would expect that the two similarity measurements should be close
given that they are normalized to the same scale, i.e., SD (xi,xj) ≈ SK (fi, fj).
With this assumption, we may determine the optimal function assignments to
unannotated proteins by minimizing the difference between the two sets of sim-
ilarities, i.e., maximizing the consistency between experimental data and bio-
logical knowledge. In this paper, we formalize this assumption and propose our
Maximization of Data-Knowledge Consistency (MDKC) approach. Through the
knowledge similarity SK (fi, fj), function category correlations are incorporated,
such that the predictive performance is expected to be enhanced.

1.3 Notations and Problem Formalization

In protein function prediction, we are givenK biological functions and n proteins.
Without losing generality, we assume the first l proteins are annotated, our goal
is to predict functions for the rest n− l unannotated proteins.

Let xi ∈ Rp denote a protein, which is a vector description of the i-th protein
constructed from certain biological experimental data, such as the amino acid
histogram of a protein sequence. The pairwise similarities among the proteins are
modeled as a symmetric matrix W ∈ Rn×n, where Wij measures how similar
proteins xi and xj are. W is usually seen as edge weight matrix of a graph
where proteins correspond to vertices. In the simplest case of a PPI network,
Wij = 1 if protein xi and protein xj interact, and 0 otherwise. Every protein
is assigned with a number of biological functions, which are described by a
function annotation vector yi ∈ {0, 1}K, such that yi (k) = 1 if protein xi is
annotated with the k-th function, yi (k) = 0 if it is not annotated with the k-th
function or unannotated. {yi}li=1 for the first l annotated proteins are known,
and our objective is to learn {yi}ni=l+1 for the n − l unannotated proteins. We

write Y = [y1, . . . ,yn]
T

=
[
y(1), . . . ,y(K)

]
, where y(k) ∈ Rn is a class-wise

function annotation vector. Besides the ground truth function assignment matrix
Y , we also define F = [f1, . . . , fn]

T ∈ Rn×K as the predicted function assignment
matrix, where Fik = fi (k) for l + 1 ≤ i ≤ n indicates our confidence to assign
the k-th function to an unannotated protein xi.

2 Formulation of Function Category Correlations

Before we proceed to the algorithm development of our new approach, we first
explore and formalize the function category correlations, as they are one of our
most important mechanism to boost protein function prediction performance.
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As shown in the left panel of Figure 1, proteins assigned to two different
functions may overlap. Statistically, the bigger the overlap is, the more closely
the two functions are related. Therefore, functions assigned to a protein are no
longer independent, but can be inferred from one another. In the extreme case,
such as in parent-child hierarchy of protein function annotation systems, once
we know a protein is annotated to a child function, we can immediately annotate
all the ancestor functions to the same protein.

Using cosine similarity, we define a function category correlation matrix, C ∈
RK×K , where Ckl captures the correlation between the k-th and l-th functions
as following:

Ckl = cos(y(k),y(l)) =
〈y(k),y(l)〉
‖y(k)‖ ‖y(l)‖ , (1)

where 〈·, ·〉 denotes the inner product of two vectors and ‖·‖ denotes the �2 norm
of a vector.

Using FunCat annotation scheme on yeast genome, function correlations de-
fined in Eq. (1) are illustrated in the right panel of Figure 1. The high correlation
value between functions “Cell Fate” and “Cell Type Differentiation” shown in
the figure implies that they are highly correlated, which agrees with the obser-
vations shown in the left panel. In addition, as can be seen in the right panel of
Figure 1, some other function pairs are also highly correlated, such as “Transcrip-
tion” and “Protein With Binding Function or Cofactor Requirement”, “Regula-
tion of Metabolism and Protein Function” and “Cellular Communication/Signal
Transduction Mechanism”, etc. All these observations strictly comply with the
biological truths, which justifies the correctness of our formulation for function
category correlations in Eq. (1) from biological perspective.

3 The Maximization of Data-Knowledge Consistency
(MDKC) Approach

We assume that two proteins tend to have large overlap in their assigned func-
tions if they are very similar in terms of some experimental data. In order to
predict protein functions upon this assumption, we evaluate the similarity be-
tween two proteins in the following two ways, one by experimental data called
as data similarity, and the other by biological knowledge called as knowledge
similarity. We denote the former as SD (xi,xj), and the latter as SK (fi, fj). If
the functions annotated to proteins are consistent with their experimental data,
we would expect the data similarity is close to the knowledge similarity:

min
∑
i,j

[SD (xi,xj)− SK (fi, fj)]
2
,

s.t. fi = yi, ∀ 1 ≤ i ≤ l,

(2)

where the constraint fixes the functions assigned to annotated proteins to be
ground truth. The optimization objective in Eq. (2) minimizes the overall differ-
ence between the two types of similarities, which thereby maximizes the data-
knowledge consistency.
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3.1 Optimization Framework of the MDKC Approach

In protein function prediction, the data similarity is already known in a priori.
Namely, SD (xi,xj) = W , and W depends on input experimental data. For
example, when input data are a PPI network, W could be the adjacency matrix
of the PPI graph in the simplest case or any derived topological similarity; when
input data are protein sequences, W could be the inverse Euclidean distances of
amino acid histogram vectors; etc. Because W is input dependent, we defer its
detailed definitions to Section 4 according to the experimental data used in the
respective empirical evaluations.

Now we consider knowledge similarity. The simplest method is to count the
number of common annotated functions of two proteins, i.e. fTi fj . However, the
problem of this straightforward similarity measurement lies in that it considers
all the biological functions to be independent and is unable to explore the cor-
relations among them. In particular, it will give zero similarity whenever two
proteins do not share any annotated functions, although they could be strongly
related if their annotated functions are highly correlated. For example, given a
pair of proteins, one annotated with function “Cell Fate” and the other anno-
tated with function “Cell Type Differentiation”, although they may not share
any common functions, they may still have certain similarities, either biologically
or statistically, as illustrated in Figure 1. In the extreme case, in the parent-child
annotation system, such as FunCat scheme used in this work, if protein xi is an-
notated with one of the ancestor function of protein xj ’s annotated function, the
two proteins are closely related even they do not share any common functions.
Therefore, in order to capture correlations among different functions, instead of
the simple dot product, we compute the knowledge similarity as following:

SK (fi, fj) = fTi C−1fj = fTi Afj , (3)

where, for notation simplicity, we denote A = C−1 in the sequel.
Note that, compared to the dot product similarity defined by fTi fj based on

the Euclidean distance, the knowledge similarity computed by Eq. (3) is based on
the Mahalanobis distance, where C acts as the covariance matrix encoding the
human-curated prior knowledge for the biological species of interest. Statistically
speaking, because the Euclidean distance is independent of input data while the
Mahalanobis distance captures the second-order statistics of the input data, the
latter is able to better characterize the relationships between the data points of a
given input data set when its distribution is known in a priori. In protein function
prediction, the Euclidean distance based knowledge similarity is independent
of the concerned biological species, whereas the Mahalanobis distance based
knowledge similarity is specific to the biological species of interest thereby has
increased statistical power. Most importantly, function-function correlations, the
most important advantage of a multi-label data set over the traditional single-
label data set, are exploited for the later protein annotations tasks, which is an
important contribution of the proposed method.
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Utilizing the knowledge similarity defined in Eq. (3), we can formalize the
data-knowledge consistency assumption in Eq. (2) by the following optimization
problem:

argmin
F

n∑
i,j=1

(Wij −
K∑

k,l=1

FikAklFjl)
2, (4)

s.t. Fik = Yik, ∀ 1 ≤ i ≤ l, 1 ≤ k ≤ K. (5)

In standard classification problems in machine learning, Fik (1 ≤ i ≤ l) are
fixed for labeled data points. Specifically, a big Fik indicates that data point xi

belongs to the k-th class, while a small Fik indicates that xi does not belong
the k-th class. However, this assumption does not hold in the problem of protein
function prediction. For an annotated protein, its associated functions refer to
those who have certain experimental supports for the associations between this
protein and its associated functions. On the other hand, the non-association be-
tween a protein and a function only means that we currently do not have any
biological or computational evidence for the corresponding association. In real-
ity, however, the protein could have the concerned function. And the exact goal
of computational methods for protein function prediction is to identify putative
protein functions, which could work as the candidates for further experimental
screening. As a result, instead of using the hard constraints in Eq. (5), it is rea-
sonable to relax the confidence variables Fik (1 ≤ i ≤ l) for annotated proteins
to be dynamic variables, which approximate the ground truth function assign-
ments. The constraint in Eq. (5) hence can be written to minimize the following
penalty function:

α
l∑

i=1

K∑
k=1

(Yik − Fik)
2 , (6)

where α > 0 controls the relative importance of the penalty. Following the
experiences in graph-based semi-supervised learning, we empirically set α = 0.1
in all our experiments.

Finally, we write our objective in a more compact way using matrices to
minimize the following:

JMDKC (F ) = ‖W − FAFT ‖2F + 2α tr
(
(Y − F )

T
V (Y − F )

)
,

s.t. F ≥ 0, (7)

where ‖ · ‖F denotes the Frobenius norm of a matrix and tr (·) denotes the trace
of a matrix. Here V ∈ Rn×n is a diagonal indicator matrix, whose diagonal entry
Vii = 1 if the i-th protein is an annotated protein, while Vii = 0 indicates that
the i-th protein is unannotated. In Eq. (7), the constraint F ≥ 0 is naturally
enforced because W is nonnegative by definition. Most importantly, with this
nonnegative constraint Eq. (7) will be enriched with clustering interpretation as
detailed soon later, which makes the mathematical formulation of the proposed
method more biologically meaningful.
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We call Eq. (7) as our proposed Maximization of Data-Knowledge Consistency
(MDKC) approach. Upon the solution of Eq. (7), we assign putative functions
to unannotated proteins.

3.2 Computational Algorithm of MDKC Approach

Mathematically, Eq. (7) is a regularized NMF problem [24–26]. Although the
optimization techniques for the NMF problem and its variants have been exten-
sively studied in literature [27, 28, 24–26, 29, 30], solving Eq. (7) is challenging.
Most, if not all, existing algorithms to solve NMF problems are only able to deal
with rectangle input matrices (the number of rows of a matrix is different from
that of columns) or asymmetric square matrices, but not symmetric input ma-
trices such as the one used in our objective in Eq. (7). This is because the latter
involves a fourth-order term due to the symmetric usage of the factor matrix F ,
which inevitably complicates the problem (More detailed analyses can be found
in our earlier works [31, 32]). Traditional solutions to symmetric NMF typically
rely on heuristics [27, 33], thus we introduce Algorithm 1 to solve Eq. (7) in a
principled way. Due to space limit, the proofs of its correctness and convergence
will be provided in the extended journal version.

Algorithm 1. Algorithm to solve Eq. (7)

Data: 1. Data similarity matrix W .
2. Function-function correlations matrix C.
3. Indication matrix Y derived from labels of annotated proteins.
Result: Factor matrices F .
1. Computer A = C−1.
2. Initialize F following [27].
repeat

3. Compute Fij ← Fij [
(WFA+αV Y )ij

(FAFTFA+αV F )ij
]
1
4 .

until Converges

4 Results and Discussion

We evaluate the proposed MDKC approach on Saccharomyces cerevisiae genome
data. We apply the proposed method on protein sequence data, and an integra-
tion of protein sequence data and PPI network data, respectively.

We use MIPS Functional Catalogue (FunCat) system [23] to annotate pro-
teins, which is an annotation scheme for the functional description of proteins
from prokaryotes, unicellular eukaryotes, plants and animals. Taking into account
the broad and highly diverse spectrum of known protein functions, FunCat (ver-
sion 2.1) consists of 27 main functional categories that cover general fields such
as cellular transport, metabolism, cellular communication, etc. 17 main function
categories in FunCat annotation scheme are involved to annotate yeast genome,
which are listed in Table 1.
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Table 1. Main functional categories in FunCat annotation scheme (version 2.1) and
the corresponding number of annotated proteins to yeast species

Function ID Function Description Size

01 Metabolism 1397
02 Energy 336
10 Cell Cycle and DNA Processing 981
11 Transcription 1009
12 Protein Synthesis 476
14 Protein Fate 1125
16 Protein with Binding Function 1019
18 Regulation of Metabolism and Protein Function 246
20 Transport Facilitation and Transport Routes 995
30 Cellular Communication and Signal Transduction 231
32 Cell Rescue, Defense and Virulence 515
34 Interaction with the Environment 446
38 Transposable Elements, Viral and Plasmid Proteins 59
40 Cell Fate 268
41 Development 67
42 Biogenesis of Cellular Components 827
43 Cell Type Differentiation 437

4.1 Evaluation on Protein Sequence Data

Because sequence is the most fundamental form to describe a protein, which
contains important structural, characteristic and genetic information, we first
evaluate the proposed MDKC approach using protein sequences. We compare
the predictive accuracy of our approach against functional similarity weight (FS)
approach [4] and kernel-based data fusion (KDF) approach [13]. We also report
the performance of majority voting (MV) approach [2] as a baseline. We employ
broadly used average precision and average F1 score [4] as performance metrics.

Adaptive Decision Boundary for Prediction. To predict specific putative
functions for unannotated proteins we need a decision boundary (threshold) for
learned ranking values, say y(k), of each class. In many semi-supervised learn-
ing algorithms, the threshold for classification is usually selected as 0, which,
however, is not necessary to be the best choice. We use an adaptive decision
boundary to achieve better predictive performance, which is adjusted such that
the weighted training errors on annotated proteins are minimized.

Considering the binary classification problem for the k-th functional cate-
gory, we denote bk as the decision boundary, S+ and S− as the sets of positive
and negative samples for the k-th class, and e+(bk) and e−(bk) as the numbers
of misclassified positive and negative training samples. The adaptive (optimal)
decision boundary is given as following [19, 11]:

boptk = argmin
bk

[
e+(bk)

|S+|
+

e−(bk)
|S−|

]
. (8)
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And the decision rule to assign a function to protein xi is given by:{
xi is annotated with the k-th function if F ∗

ik > boptk ;

xi is not annotated with the k-th function if F ∗
ik ≤ boptk ;

(9)

Data Preparation. We obtain sequence data from GenBank [34], and describe
a protein sequence through one kind of its elementary constituents, i.e., trimers
of amino acids. Trimer, a type of k-mer (when k = 3) broadly used in sequence
analysis, considers the statistics of one amino acid and its vicinal amino acids,
and regards any three consecutive amino acids as a unit to preserve order in-
formation, e.g., “ART” is one unit, and “MEK” is another one. The trimer
histogram of a sequence hence can be used to characterize a protein xi, which
is denoted as Pi. Because histogram indeed is a probability distribution, we use
Kullback-Leibler (KL) divergence [35], a standard way to assess the difference
between two probability distributions, to measure the distance between two pro-
teins, which is defined as:

DKL (Pi ‖ Pj) =
∑
k

Pi (k) log
Pi (k)

Pj (k)
, (10)

where k denotes the index of the k-th trimer. Because KL divergence is non-
symmetric, i.e., DKL (Pi ‖ Pj) �= DKL (Pj ‖ Pi), we use the symmetrized KL
divergence as following:

DS-KL (i, j) =
DKL (Pi ‖ Pj) +DKL (Pj ‖ Pi)

2
. (11)

Finally, the pairwise data similarity W is defined by converting the symmetrized
KL divergences through the standard way:

Wij = DS-KL (i, i) +DS-KL (j, j)− 2DS-KL (i, j)

= − [DKL (Pi ‖ Pj) +DKL (Pj ‖ Pi)] .
(12)

Improved Predictive Capability. We perform standard 5-fold cross valida-
tion to evaluate the compared approaches and report the average performance of
5 trials in Table 2. For FS approach, because it does not supply a threshold, we
use the one giving best F1 score to make prediction. We implement two versions
of our method to evaluate the contributions of each of its components. First, we
solve Eq. (7) by Algorithm 1, which is the proposed method. Second, we solve
a degenerate version of the problem in Eq. (7) by not incorporating the corre-
lations between functional categories. Specifically, we replace FAFT in Eq. (7)
by FFT , which is denoted by MDKC-S.

The results in Table 2 show that the MDKC-S and MDKC approaches clearly
outperform the other compared approaches, which concretely quantify the ad-
vantage of our approaches. The improvement on classification performance of
MDKC approach over MDKC-S approach clearly justify the usefulness of
function-function correlations in predict putative protein functions.
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Table 2. Average precision and average F1 score by the compared approaches in 5-fold
cross validation on the main functional categories of FunCat annotation scheme

Approaches Average Precision Average F1 score

FS 33.65% 22.78%
KDF 53.45% 38.10%
MV 32.07% 29.46%

MDKC-S 56.51% 39.04%
MDKC 61.38% 42.17%

4.2 Evaluation on Integrated Biological Data

As mentioned earlier, biological data from one single experimental source only
convey information for a certain aspect, which are usually incomplete and some-
times misleading. For example, similar sequences do not always have similar
functions. In the extreme case, proteins with 100% sequence identity could per-
form different functional roles [12]. Therefore, integration of different biological
data is necessary for more robust and complete protein function inferences. In
general, results learned from a combination of different types of data are likely to
lead to a more coherent model by consolidating information on various aspects of
the same biological process. In this subsection, we evaluate the predictive perfor-
mance using the integrated data from both PPI networks and protein sequences.

Data Preparation.We download PPI data for Saccharomyces cerevisiae species
from BioGRID (version 2.0.56) [36]. By removing the proteins connected by only
one PPI, we end up with 4403 annotated proteins with 86167 PPIs. We represent
the protein interaction network as a graph, with vertices corresponding to the
proteins, and edges corresponding to PPIs. The adjacency matrix of the graph
is denoted as B ∈ {0, 1}n×n where n = 4403, such that Bij = 1 if proteins xi

and xj interact, and 0 otherwise.
The adjacency matrix B itself measures the similarity among proteins in

the sense that two proteins are related if they interact. However, two critical
problems prevent us from directly using B as data similarity SD (xi,xj) to pre-
dict protein function. First, B only measures the local connectivity of a graph,
and contains no information for connections via more than one edge. Therefore
the important information contained in the global topology is simply ignored.
Second, PPI data suffer from high noise due to the nature of high-throughput
technologies, e.g., false positive rate in yeast two-hybrid experiments is esti-
mated as high as 50% [37]. Therefore, we use the Topological Measurement
(TM) method [38] to compute the data similarity matrix WPPI, which takes into
consideration paths with all possible lengths on a network and weights the influ-
ence of every path by its length. Specifically, (WPPI)ij between proteins xi and
xj is computed as:
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(WPPI)ij =

|V |−2∑
k=2

PRk (i, j) ,

PRk (i, j) =
PSk (i, j)

MaxPSk (i, j)
, (13)

where |V | is the number of vertices in the PPI graph, PRk (i, j) is the path
ratio of the paths of length k between proteins xi and xj , and PSk (i, j) and

MaxPSk (i, j) are defined as following:

PSk (i, j) =
(
Ak
)
ij
, (14)

where (·)ij denotes the ij-th entry of a matrix, and

MaxPSk (i, j) =

⎧⎪⎨⎪⎩
√
didj , if k = 2,

didj , if k = 3,∑
k∈N(i),l∈N(j) MaxPSk−2 (k, l) , if k > 3.

(15)

where di =
∑

j Bij is the degree of the i-th vertex, and N (i) denotes its neigh-
boring vertices. The detailed explanation of TM measurement can be referred
to [38].

We compute the sequence data similarity following the same ways in Sec-
tion 4.1, which is denoted as and Wsequence respectively. The integrated data
similarity W is hence computed as following:

W = WPPI + γWsequence, (16)

where γ is a parameter to balance the two data sources and we empirically select
it as:

γ =

∑
i,,i�=j WPPI (i, j)∑

i,,i�=j Wsequence (i, j)
. (17)

We compare the predictive performance of our MDKC approach to two data
integration based protein function prediction approaches: kernel-based data fu-
sion (KDF) approach [13] and locally constrained diffusion kernel (LCDK) ap-
proach [14], and two baseline approaches: majority voting (MV) approach [2]
and iterative majority voting (IMV) approach [8]. The function-wise prediction
performance measured by average precision and average F1 score in standard
5-fold cross validation are reported in Figure 2.

From the results in Figure 2(a) and Figure 2(b), we can see that the pro-
posed MDKC approach consistently better than other compared approaches,
sometimes very significantly, which again demonstrate the superiority of our
approach.

A more careful examination on the results in Figure 2 shows that, although our
approach outperforms the compared approaches in most functional categories,
but not always, e.g., the average precision for function “Transposable Elements,
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Fig. 2. Performance of 5-fold cross validation for the 17 main functional categories in
FunCat annotation scheme (version 2.1) by KDF, LCDK, MV, GMV and the proposed
MDKC approach

Viral and Plasmid Proteins” (ID: 38). By scrutinizing the function category
correlations, defined in Eq. (1) and illustrated in the right panel of Figure 1,
we can see the average correlation of function “Transposable Elements, Viral
and Plasmid Proteins” with other functional categories is among the lowest. As
a result, the presence/absence of this function category can not benefit from
other functional categories, because it only has weak correlations with them. In
contrast, prediction for the function categories with high correlations to others
generally can benefit from our approach. This observation firmly testify the
importance of function category correlations in predicting protein function.

5 Conclusions

In this paper, we presented a novel Maximization of Data-Knowledge Consis-
tency (MDKC) approach to predict protein function, which attempts to make
use of function category correlations to improve the predictive accuracy. Dif-
ferent from traditional approaches in predicting protein function, we employed
annotation knowledge in a novelly different way to measure pairwise protein sim-
ilarities. By maximizing consistency between the knowledge similarity computed
from annotations and the data similarity computed from biological experimen-
tal data, optimal function assignments to unannotated proteins are obtained.
Most importantly, function category correlations are incorporated in a natural
way through the knowledge similarity. Comprehensive empirical evaluations have
been conducted on Saccharomyces cerevisiae genome, promising results in the
experiments justified our analysis and validated the performance of our methods.
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Abstract. Multiple protein structure alignment is an important tool
in computational biology, with numerous algorithms published in the
past two decades. However, recently literature highlights a growing recog-
nition of the inconsistencies among alignments from different algorithms,
and the instability of alignments obtained by individual algorithms
under small fluctuations of the input structures. Here we present a
probabilistic model-based approach to the problem of multiple struc-
ture alignment, using an explicit statistical model. The resulting algo-
rithm produces a Bayesian posterior distribution over alignments which
accounts for alignment uncertainty arising from evolutionary variabil-
ity, experimental noise, and thermal fluctuation, as well as sensitivity to
alignment algorithm parameters. We demonstrate the robustness of this
approach on alignments identified previously in the literature as “diffi-
cult” for existing algorithms. We also show the potential for significant
stabilization of tree reconstruction in structural phylogenetics.

Keywords: protein structure alignment, Bayesian statistics, MCMC.

1 Introduction

Uncertainty in biological sequence alignments has received considerable atten-
tion recently, particularly in regard to its effect on phylogeny reconstruction
[42, 26]. Alignment uncertainty arises from multiple sources: the stochasticity
of the underlying evolutionary model, the limited information contained in the
pair or set of sequences to be aligned, and the sensitivity to input parameters
of alignment algorithms. In this paper we consider uncertainty arising in the
context of protein structure alignment. Structural alignment of proteins is a key
tool for understanding protein function, mechanism, and evolution (see [12, 18]
for reviews), and is commonly used as a “gold-standard” for evaluating or cali-
brating sequence alignments [25]. Uncertainties in pairwise structure alignments
have recently been considered by [37, 38, 31, 8] and again arise from multi-
ple sources. First, most current algorithms formulate structure alignment as an
optimization problem with respect to some similarity metric, and different met-
rics weight various structural properties differently (often with tunable weights),
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leading to considerable subjective or empirical bias [15, 19]. In addition, 3D
protein structures are intrinsically flexible and dynamic - variability exceeding
1Å is common, and conformational changes may vary over tens of angstroms
[6] - but high resolution (X-ray) structures are static snapshots. Sub-angstrom
structural variation can cause substantial inconsistencies and apparently incor-
rect alignments by existing methods [29]. Such shortcomings have led to calls for
new approaches to the multiple structure alignment problem [4]. Here we present
a probabilistic approach to multiple structure alignment which addresses these
issues explicitly.

Probabilistic modeling is a natural framework for accounting for uncertainty
arising from multiple sources. For biological sequence analysis, probabilistic mod-
eling has yielded highly effective tools for global and local pairwise sequence
alignment [44, 41], multiple sequence alignment [21, 3, 24, 23], secondary struc-
ture prediction of proteins [34–36] and RNA [11, 33], and protein tertiary struc-
ture prediction [39, 22, 43]. See [10] for an introduction emphasizing sequence
alignment and RNA base pairing. For multiple sequence alignment, probabilistic
models such as hidden Markov models (HMMs) and multinomial mixture mod-
els [24, 23] also have a computational advantage over optimizing all pairwise
distances, which is NP-hard [40]. The HMM approach instead aligns each input
sequence to a (albeit unknown) profile model, reducing the problem to one of
estimating the common profile using standard statistical algorithms, then pair-
wise aligning each input sequence to the model. Thus formulating the problem
in terms of an explicit probabilistic model yields practical algorithms.

Here we describe a probabilistic model-based approach to multiple structural
alignment. As with multiple sequence alignment, we build on the machinery of
HMMs. However, the application of HMMs to 3D structures requires significant
generalization and algorithmic development, so such models have not been ap-
plied to structure alignment previously. (Alexandrov and Gerstein [1] use an
HMM to represent the core residue profile in a multiple structure alignment ob-
tained by other means, but this does not address the alignment problem itself.)
Our approach directly accounts for multiple sources of uncertainty in the align-
ment process, using Bayesian inference to identify multiple possible alignments
and their relative probabilities. The alignment is obtained by averaging over
all remaining uncertainty in the model. This approach also handles unknown
alignment parameters (such as gap penalties and thresholds) to be adaptively
estimated from the data in a coherent statistical framework. We also address an
unresolved problem in sequence alignment HMMs - choosing the length of the
model - via Bayesian model averaging. The resulting algorithm is significantly
more robust; replaces heuristic optimization criteria with clear, testable statis-
tical assumptions; and results in structural alignments that lead to significantly
more stable and accurate phylogenies.

2 A Probabilistic Model for Protein Structure Families

Our approach to multiple structure alignment constructs a probabilistic model
of the underlying protein family. This generalizes the approach introduced by
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[37, 38, 31] for pairwise protein structure alignment, and the closely related
approach for matching residues of two protein active sites developed by [17].
Let Xj be an nj × 3 matrix containing the Cα coordinates of protein j, for
j = 1, . . . ,m. Our stochastic model represents each input structure Xj as being
generated from “mean” or model structure U , to which insertions are added or
deletions made stochastically, random noise added to the coordinates, and then
an arbitrary Euclidean transformation applied. In the special case that the noise
is independent Σε = φ−1I, this can be written

Xj = YjRj + 1Tvj Yj ∼ HMM (Θ)

where Rj is a rotation (special orthogonal matrix), and vj an arbitrary transla-
tion, applied to the coordinates Yj of the jth protein. Here Θ = {U,φ,μI, φI, Q}
denotes the collection of profile HMM model parameters (described below), with
U = [μM

1 , . . . ,μM
n ]T the matrix of mean structure coordinates, φ = {φM

i }ni=1 the
corresponding emission precisions, and 1 the column vector of ones.

This hierarchical model combines ideas from two distinct fields: probabilis-
tic sequence analysis [10], and statistical shape analysis [9]. The additive er-
ror ε models the combined effects of thermal fluctuation and conformational
variability, evolutionary drift, and experimental measurement error. The HMM
consists of Match (Mat), Insert (Ins), and Delete (Del) states, organized as
in profile HMM sequence alignment [21, 10]. However in our model the Mat
and Ins states emit 3D coordinate vectors from multivariate Gaussian distribu-
tions yi ∼ N (μM

i , ΣM
i ) with state-specific mean positions, rather than letters

of a nucleotide or amino acid sequence from discrete distributions. To simplify,
we assume Ins states share a common mean position μI and that covariance
matrices ΣI and ΣM

j are diagonal, i.e. Σj = φ−1
j I3. Importantly however, we

allow the precision parameters φj for each input structure j ∈ {1, . . . ,m} to be
distinct. As the φj ’s are estimated via Bayesian inference along with all other
parameters (see below), this enables the algorithm to adaptively determine the
precision of each input structure, allowing us to analyze structures of varying
experimental resolution and/or having a wide range of evolutionary divergence
times or rates. As demonstrated in Results, this provides significant benefits over
existing algorithms that implicitly weight each input structure equally. It also
helps determine the core conserved residues by evaluating fluctuations relative
to the variance in each structure. In addition, it aids in computation by pre-
venting kinetic trapping of the MCMC chain in regions having only a subset of
proteins aligned. Lastly, the Markov transition matrix Q assigns probabilities to
transitions between the three types of states. Since the transitions (Ins→ Del)
and (Del→ Ins) yield the same alignment, we constrain Q(Del→ Ins) = 0 as
commonly done [41, 31]. Note that the transition probabilities are not currently
site-dependent, but could be made so in future versions of the model.

3 Bayesian Multiple Alignment and MCMC Sampling

In our probabilistic framework, multiple structure alignment is achieved by si-
multaneous Bayesian estimation of the model parameters (including “mean”



Bayesian Multiple Structure Alignment 329

structure U) and the alignments of each input structure to the model. Let
A = {Aj}mj=1 with Aj denoting an adjacency matrix specifying the alignment
of protein j to the model, and (R, v) = {Rj, vj}mj=1 the corresponding rotations
and translations. Let Φ = (A,R, v). We compute the posterior distribution:

π(Θ,Φ|X1, . . . , Xm) ∝

p0(n)π0(Θ,Φ|n)
m−1∏
j=0

f(Xj |Rj ,vj , Aj , n, Θ)p(Aj |Θ, n)π0(Rj ,vj) (1)

where f() is the likelihood function obtained from the Gaussian emission distri-
butions and p(Aj | Θ, n) the prior on alignments implied by the Markov chain
indel process of the HMM. To compute (1) we construct a Markov chain Monte
Carlo (MCMC) algorithm [14] using Gibbs sampling and Metropolis-Hastings
steps to sample the alignments, translations, rotations and the models from
their joint posterior distribution. Here we emphasize non-standard steps in the
sampling requiring specialized solutions, especially the sampling of rotations and
changes to model dimension.

Let Cj = (Xj − vj)R
−1
j = [cj1, . . . , cjnj ] denote the coordinate matrix after

inverting the Euclidean transformation. The likelihood is then

f(Xj |Rj ,vj , Aj , n, Θ) ∝ exp(−1

2
s2)(φI)

1
2ηI (φM

j )
1
2ηjM

where ηjM = ΣlΣkδ
M
jkl, ηI = Σkδ

I
jk, and s2 = Σkδ

I
jkφ

I‖cjk−μI‖2+ΣkΣlδ
M
jklφ

M
j ·

‖cjk − μM
l ‖2. Here δMjkl equals 1 if cjk is emitted from the lth Mat state in

alignment Aj , and zero otherwise, and δIjk equals 1 if cjk is emitted from any
Ins state.

A key distinction between sequence and structure alignment is the need for
invariance under Euclidean transformations. Although an HMM that emits 3D
coordinates is easily defined, alignment of 3D coordinate sequences cannot be
done by straightforward application of sequence HMM techniques because each
matching implies a distinct (distribution of) rotation and translation which de-
pends on the matching globally. This requires joint evaluation of the likelihood
(emission probability) simultaneously rather than locally, and this global de-
pendence destroys the conditional independence structure required for efficient
forward/backward recursions in HMMs.

Some structural alignment algorithms simultaneously optimize over matchings
and rotation or translation transformations by iteratively maximizing the align-
ment given the superposition, and then the superposition given the alignment
(reviewed in [12]). This suggests an iterative sampling scheme for probabilistic
inference, a type of MCMC algorithm known as a Gibbs sampler [14], whereby
having defined a joint distribution π(Θ,Φ | X) over alignments and superposi-
tions, one iteratively samples from the conditional distributions:

π(Θ | Φ,X), π(A | Θ,R, v,X), and π(R, v | Θ,A,X)
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Given Θ and (R, v), the alignments Aj are conditionally independent and can be
sampled using standard stochastic dynamic programming recursions well-known
in the sequence alignment HMM literature [10].

Although natural, such alternation of alignments and superpositions (Gibbs
sampling) does not necessarily yield an efficient sampling method. Alignment
and superposition are strongly correlated, and the convergence rate of the Gibbs
sampler is determined by strength of that correlation. Thus is is important to
develop efficient sampling steps which modify both simultaneously.

Rotations. A random-walk Metropolis proposal was constructed on the space
SO(3) of 3D rotations using a unit quaternion parametrization:

q = [q0, q] = [cos(θ/2),v sin θ/2]

where θ is an angle around unit vector v ∈ R3. New rotations are proposed
by independently sampling a vector v′ uniformly on the unit sphere S2, and a
small angle of rotation around that vector θ′ ∼ Γ (1, 40) to form a rotation q′ =
[cos(θ′/2),v′ sin θ′/2]. The proposed rotation is then obtained by composition of
q′ with the current rotation q via quaternion multiplication: q∗ = q′ · q. This
proposal yields a symmetric random walk since the inverse rotation (θ,v)−1 =
(θ,−v). This approach performs much better than a random walk on q itself.

Because a change in rotation affects all atoms and can dramatically increase
the RMSD, the rotations are sampled jointly with alignments. Conditional on the
proposed rotation R′, a new alignment A′

j is drawn by dynamic programming,
and the pair (R′

j , A
′
j) are accepted or rejected together. This overcomes the

strong dependency between Rj and Aj that is problematic for a Gibbs sampler
updating Rj | Aj and Aj | Rj . Since this proposal is symmetric, the joint
acceptance probability is given by

α
(
(Rj , Aj), (R

′
j , A

′
j)
)
= min(1,

f(Xj |R′
j ,vj , Θ, n)

f(Xj |Rj ,vj , Θ, n)
)

Sampling of translations is achieved in an analogous manner, proposing v′
j ∼

N(0, σ2
vI3) (in practice σ2 = .1 works well), then proposing a new alignment

A′
j | v′

j and accepting or rejecting jointly.
The above moves involve only local perturbations to the rotation/translation.

For strongly multimodal posteriors, we previously developed a “library sam-
pling” technique [31] to allow jumps between significantly different rot/trans
pairs. We did not find this necessary here, perhaps due to additional mixing
achieved by the transdimensional moves below. For strongly multimodal exam-
ples (e.g. matching a single domain to a homo-dimer), this may be necessary.

Transdimensional Moves. Because the number of “core” positions in a pro-
tein family is unknown a priori, the number of states n in the HMM cannot be
fixed in advanced, and is subject to inference. The dimensions of the parameter
vectorΘ and alignments {Aj}mj=1 depend on n, and we use a reversible-jump step
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[16] to allow n to vary. We update (n,Θ, {Aj}) jointly by first sampling a new
(n′, Θ′), and then new alignments {A′

j} conditional on (n′, Θ′). n is proposed to
increase or decrease by 1 with equal probability:

– n→ n+ 1: Insert a new position of three states (Mat,Del,Ins)
– n→ n− 1: Delete an existing position of three states

The proposed location i ∈ (1, . . . , n + 1) for an inserted position is randomly
sampled with probability proportional to λmin(m,kIi) where kIi is the total num-
ber of Cα’s in all proteins emitted from the ith Ins state and λ > 1 is a constant
set at 1.2 to achieve a reasonable acceptance rate. This tends to propose new
positions into the model in locations where there are many insertions. The mean
of the proposed Mat state is sampled as follows:

– When the Ins state of the ith position has no emissions we set μM
i,new =

z + (μM
i−1 + μM

i )/2 for z ∼ N (0, σ2
ε I3)

– Otherwise we set μM
i,new = ω̂ + z for z ∼ N (0, σ̂2I3), where ω̂ is the sample

mean and σ̂ the sample s.d. of the coordinates emitted from the ith Ins state

In practice setting σε = 6 achieves reasonable acceptance rates. New alignments
{A′

j} are then sampled from their conditional distributions P (Aj |Θ′, Rj ,vj , Xj)
as above. Deletions are proposed by sampling i ∈ (1, . . . n) with weight

λ−min(m,kM
i ) where kMi is the number emissions from the ith Mat state, and

then sampling the Aj ’s from their conditional distributions. The Metropolis-
Hastings acceptance ratio for these transdimensional moves is: αIns = min(1, γ)
for

γ =
π(Θ′, A′, R, v, | X)p(u′

1)
∏m−1

j=0 p(Aj | Θ,Rj ,vj , Xj)

π(Θ,A,R, v | X)p(u1)p(u2|u1)
∏m−1

j=0 p(A′
j |Θ,Rj ,vj , Xj)

since
∣∣∣ ∂Θ′
∂(Θ,u2)

∣∣∣ = 1. Conversely, when deleting a layer αDel = min(1, γ−1).

For all examples in this paper we run at least three independent MCMC
chains, each using a different input structure to initialize the profile HMM model
and pre-aligning other input structures to the model with the pairwise structural
alignment program FAST [45]. We monitor convergence using the Gelman-Rubin
diagnostic [7].

Prior Distributions. Prior distributions for model parameters are taken as fol-
lows. Markov transition probability vectors Q(Mat→ ·) and Q(Ins→ ·) are given
Dir(α, α, α) priors with α = 1, and Q(Del → ·) is given Dir(α, 0, α) to enforce
the alignment uniqueness constraint discussed previously. Prior distributions for
means of the Mat and Ins state emission distributions were constructed from
quartiles (qa1, qa2, qa3) of the input structure Cα atom coordinates along each
axis a ∈ {x, y, z}. Prior distributions for μM

ia ’s are independently normal with
mean qa2 (median) and variance 1.5(qa3 − qa1) (interquartile range). Priors for
the precisions of these states’ emission distributions are taken to be Ga(.1, .01).
The profile model length n is given uniform prior distribution over the range
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[�0.5nmin�, �1.5nmax�], where nmin and nmax are the shortest and longest in-
put protein lengths, respectively. Independent uniform prior distributions over
rotations and translations are assigned to each structure, so p(Rj ,vj) ∝ 1.

4 Results

Alignment of Difficult Cases
We first test our algorithm on two example sets of protein structures that are
difficult to automatically align due to structural variability. The first is a set of
eight KH-domain type I structures taken from the SISYPHUS database (align-
ment: AL00054790, pdb ids: 1ec6a, 1dt4a, 1viga, 2fmra, 1j5ka, 1j4wa1, 1j4wa2,
1k1ga), which was previously identified as a difficult case for multiple alignment
algorithms [2]. Figures 1a and 1b highlight two regions in one of the structures
(scop id: d1k1ga ) with great uncertainties about their structural conservation
based on alignments from MUSTANG, MATT and POSA (recently evaluated as
the most accurate among current alignment algorithms [4]). Also shown is the
manual alignment from SISYPHUS.

Alignments from these algorithms give a binary assignment to each position,
either conserved or not conserved, in some cases jumping back and forth in
an evolutionarily implausible manner. In contrast, our algorithm computes a
smooth posterior probability of inclusion, reflecting the uncertainty from mul-
tiple possible good alignments. This avoids the instability of arbitrary cut-offs
and indicates to the user where the alignment is ambiguous. We see that these
two regions are assigned intermediate values which vary smoothly along the se-
quence; for example our method assigns 40% probability match to ’G’ where
Mustang includes and Matt/POSA exclude. Moreover, those positions with no
uncertainty (probability of conservation essentially equal to one) provide the
only alignment that is identical to the manual alignment in both regions.

In the second example, we aligned six GroES proteins (1p3hn, 1aono, 1aonp,
1aons, 1pcqo, 1pf9o), five from E. coli and one from M. tuberculosis. The five
E. coli GroES proteins have highly conserved structures (overall RMSD within
0.5Å) including their mobile loops, but GroEs fromM. tuberculosis differs signifi-
cantly in the mobile loop (Figure 1c). Pirovano et al [29] show that this structural
variation of M. tuberculosis causes all of several popular algorithms considered
(DALI, CE and even flexible alignment algorithms, MATT and FATCAT) to fail
to align the 5 E. coli structures in this region, as well as in two other regions
(boxes in Fig. 1d)) containing an insertion and a deletion, respectively. In sharp
contrast, our alignment is shown in Fig. 1d. We use upper and lower-case letters
to denote residues from Mat or Ins states for a sampled alignment, and color
red positions with marginal posterior probability 95% of being insertions. It is
seen that our algorithm successfully aligns all five E. coli structures perfectly,
identifying the mobile loop as one large insertion in M. tuberculosis, and also
identifying the single insertion and single deletion.
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c
d1p3hn_ NEAetttasglvipdtakekpQEGTVVAVGPGRWDEdGEKRI
d1aono_ KEVETKSAGGIVLTGSAAAKSTRGEVLAVGNGRILE-NGEVK
d1aonp_ KEVETKSAGGIVLTGSAAAKSTRGEVLAVGNGRILE-NGEVK
d1aons_ KEVETKSAGGIVLTGSAAAKSTRGEVLAVGNGRILE-NGEVK
d1pcqo_ KEVETKSAGGIVLTGSAAAKSTRGEVLAVGNGRILE-NGEVK
d1pf9o_ KEVETKSAGGIVLTGSAAAKSTRGEVLAVGNGRILE-NGEVK

d1p3hn_ PLDVAEGDTVIYSKY-GGTEIKYNGEEYLILSARDVLAVVSK
d1aono_ PLDVKVGDIVIFNDGYGVKSEKIDNEEVLIMSESDILAIVEA
d1aonp_ PLDVKVGDIVIFNDGYGVKSEKIDNEEVLIMSESDILAIVEA
d1aons_ PLDVKVGDIVIFNDGYGVKSEKIDNEEVLIMSESDILAIVEA
d1pcqo_ PLDVKVGDIVIFNDGYGVKSEKIDNEEVLIMSESDILAIVEA
d1pf9o_ PLDVKVGDIVIFNDGYGVKSEKIDNEEVLIMSESDILAIVEA
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Fig. 1. Examples of protein structures that are previously difficult to align due to
structural variability. (a) The manually curated alignment (AL00054790) from SISY-
PHUS database is compared with the alignments obtained from our algorithm (HMM)
and 6 other popular multiple alignment algorithms by looking at the two regions of
aligned proteins. X-axis: the representative protein’s sequences; Y-axis: the probability
(for HMM algorithm) or assignment (1 or 0 for other algorithms) of a residue being con-
served. (b) The representative protein structure d1k1ga (red) superposed by d1j5ka
based on SISYPHUS manual alignment. Region I and II corresponding to the starting
residues of ”IRGKGS” and ”GEDEPLH” in (a), respectively. (c) Visualization of the
aligned GroES proteins from E. coli and M. tuberculosis, adopted from the Figure 4c
in [29].(d) Our alignment of the six GroES proteins. Residues in lower case: insertions.
Red: identified insertions/deletions (including the mobile loop) M. tuberculosis. Boxes:
Regions poorly aligned by existing algorithms [29].

Hemoglobin Isoform Evolution
For the second test, we aligned 25 structures of vertebrate hemoglobin α subunit
(Table 1) from the SCOP database [27]. The appropriateness of this alignment
is assessed by visual inspection of the tree built from the RMSD matrix derived
from the alignment, and compared with those trees by the multiple structural
alignment algorithms SSM and MUSTANG, as well as the pairwise structural
alignment algorithm Mammoth, denoted as Pairwise tree, MUSTANG tree and
SSM tree, respectively. In particular the Pairwise Tree is constructed as follows:
Mammoth was used to obtain a pairwise alignment of each pair of input struc-
tures, and the resulting pairwise RMSD distance matrix was used to build a
Neighbor Joining (NJ) tree [32] with ClustalX.



334 R. Wang and S.C. Schmidler

Table 1. Hemoglobin subunits used in the analysis

species name PDB id α β Å type

Aldabra Giant Tortoise 1wmu deoxy deoxy 1.65 D
Bar-headed goose 1c40 aquo-met aquo-met 2.3 A
Bar-headed goose 1hv4 deoxy deoxy 2.8 A

Bluefin tuna 1v4u cmo cmo 2 A
Bluefin tuna 1v4x deoxy deoxy 1.6 A

Bovine 1fsx cmo cmo 2.1 A
Bovine 1hda deoxy deoxy 2.2 A
Chicken 1hbr deoxy deoxy 2.3 D

Dusky rockcod 1la6 cmo deoxy 2 A
Emerald rockcod 1hbh deoxy deoxy 2.2 A
Emerald rockcod 2h8d deoxy deoxy 1.78 A

Horse 1g0b cmo cmo 1.9 A
Horse 2dhb deoxy deoxy 2.8 A
Human 2dn3 cmo cmo 1.25 A
Human 1ird cmo cmo 1.25 A
Human 2dn2 deoxy deoxy 1.25 A
Human 1a3n deoxy deoxy 1.8 A

Rainbow trout 1ouu cmo cmo 2.5 I
Rainbow trout 1out deoxy deoxy 2.3 I
Red Stingray 1cg8 cmo cmo 1.9 A
Red Stingray 1cg5 deoxy deoxy 1.6 A

Spot 1spg cmo cmo 1.95 A
Hound shark 1gcw cmo cmo 2 A
Hound shark 1gcv deoxy deoxy 2 A
Yellow perch 1xq5 met met 1.9 A

As can be seen in Fig. 2a, all three structure-based trees show aberrant
branches (dashed circles): cmo-bound 1la6 clustered with deoxy proteins (Pair-
wise Tree); cmo-bound mammalian proteins clustered with deoxy avian proteins
(MUSTANG Tree and SSM Tree), which deviate greatly from the sequence-
based tree. For example, the SSM tree fails to identify the boundary between
fishes and non-fishes and proposes a mixed monophyly consisting of cartilagi-
nous fishes, reptiles/birds and mammals. The MUSTANG tree has the same
topology as ours for unliganded proteins, but clusters the liganded subunits
of horse and cow with the goose subunits. In contrast, all such these incon-
sistencies are resolved in our MAP tree (Figure 1b), correctly revealing three
major monophylies: mammals/reptile/birds, cartilaginous fishes (sharks/rays),
and bony fishes. This agrees with hemoglobins’ highly conserved function in
vertebrates. Note that the alignments obtained by the three multiple structural
alignment methods are of similar length and quality, as measured by mean pair-
wise RMSD (number residues aligned): 1.02 (136) for SSM, 1.08 (140.6) for
MUSTANG, and 0.918±0.004 (136.8±0.2) for our algorithm (posterior means).
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Fig. 2. Analysis of Hgb α subunits. (a) trees built from sequence alignment by
ClustalX, and three structural alignments by SSM, Mustang and our algorithm. (b)
trees based on multiple structural alignment by our algorithm and Mustang, after re-
placing the human CMO-bound Hgb with a lower resolution structure. Fonts in red:
liganded; black: unliganded; ellipses in blue: bony fishes; green: cartilagineous fishes;
yellow: reptiles and birds; brown: mammals. ’*’ Hgb D; ’+’ Hgb I; otherwise Hgb A.

Thus the improvement comes not from finding a better alignment, but in aver-
aging over alignment uncertainty to construct a more stable and accurate tree.

As emphasized above, our algorithm produces not just a single multiple align-
ment, but a posterior distribution over all alignments, allowing it to account for
uncertainty. We can take advantage of this to obtain a probabilistic estimate
of the NJ tree as follows: For each alignment sampled from the posterior, we
calculate the pairwise RMSD for every pair of input structures, and use them
construct a NJ tree. Trees with zero nodal distance [5] are combined. This calcu-
lation gives the Bayesianmarginal posterior distribution over (equivalence classes
of) tree, averaging over all possible alignments weighted according to their re-
spective posterior probabilities. This identifies two NJ trees which account for
> 98% of the posterior probability (78% (Figure 2a) and 20%, respectively).
They are 95.8% similar in topology [28], differing only in placement of chicken
and tortoise hemoglobins: the MAP (78%) tree places these with the two goose
proteins, while the less probable (20%) tree places them with the shark proteins.

To demonstrate the robustness of our algorithm to input noise, we repeated
the analysis replacing one of the human CMO-bound structures (2dn3, 1.25
Å) by a lower resolution predecessor (2hco, 2.7 Å). This effected a topological
change in trees obtained from Mustang alignments (Fig 2c), placing 2hco in
a separate branch from another human cmo-Hgb (1ird), and grouping the D
isoforms (1wmu,1hbr) with cartilagineous fish. In contrast, our algorithm retains
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the sistership of the human cmo-Hgbs (1ird and 2hco) with posterior probability
> 80%, but estimates their divergence (0.4) to be much larger than that of 1ird-
2dn3 (0.08). The low- and high-resolution structures differ significantly in only
a few positions, which have high posterior probability of insertion under our
model. The two most probable tree topologies (the only ones with probability
> 20%) remain unchanged, simply altering their relative probabilities to 26%
and 39%, respectively.

Running Time: The algorithm was deployed on Duke Shared Cluster Resource
in a parallel computing fashion. For a set of m structures of average length 100
residues, the sampler takes 3 seconds per iteration using m + 1 nodes (3G Hz,
leq512M RAM), and 150-200k iterations (5-7 days) to converge. The computa-
tion time can increase significantly if fewer (< m/2) nodes are available, or if
the size of input structures is large (e.g. > 300 aa), or the structures contain
higher percentage of flexible regions (> 30%). Thus the computational expense
of the current implementation prohibits large-scale comparisons with other mul-
tiple alignment algorithms at present, and we currently view the algorithm as a
tool for in-depth analysis of individual protein families, rather than for database
screening.

5 Discussion

We have described a probabilistic approach to multiple protein structure align-
ment based on an explicit statistical model of variability in protein families. The
Bayesian approach avoids sensitivity to alignment parameters by using statistical
inference to adaptively learn parameters. As described in [31] for pairwise align-
ments, this model generalizes many existing structural alignment algorithms,
which correspond to MAP alignments under varying choices of prior and noise
distributions. In addition, our results indicate that averaging over alignment un-
certainty makes phylogenetic tree reconstruction significantly more robust. The
model may be extended to treat tree topology as an additional parameter for
Bayesian inference, using algorithms for sampling phylogenetic trees from their
conditional posterior distributions. This would allow methods for simultaneous
sequence alignment/phylogeny reconstruction [42, 26] to incorporate structural
information, which is known to be conserved over much longer evolutionary time
scales than sequence.
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Abstract. Genome wide association studies (GWAS) have discovered
numerous loci involved in genetic traits. Virtually all studies have re-
ported associations between individual single nucleotide polymorphism
(SNP) and traits. However, it is likely that complex traits are influenced
by interaction of multiple SNPs. One approach to detect interactions
of SNPs is the brute force approach which performs a pairwise associ-
ation test between a trait and each pair of SNPs. The brute force ap-
proach is often computationally infeasible because of the large number of
SNPs collected in current GWAS studies. We propose a two-stage model,
Threshold-based Efficient Pairwise Association Approach (TEPAA), to
reduce the number of tests needed while maintaining almost identical
power to the brute force approach. In the first stage, our method per-
forms the single marker test on all SNPs and selects a subset of SNPs
that achieve a certain significance threshold. In the second stage, we
perform a pairwise association test between traits and pairs of the SNPs
selected from the first stage. The key insight of our approach is that we
derive the joint distribution between the association statistics of a single
SNP and the association statistics of pairs of SNPs. This joint distri-
bution allows us to provide guarantees that the statistical power of our
approach will closely approximate the brute force approach. We applied
our approach to the Northern Finland Birth Cohort data and achieved
63 times speedup while maintaining 99% of the power of the brute force
approach.

1 Introduction

Genome-wide association studies (GWAS) attempt to discover genetic variation
associated with disease traits. To perform GWAS, studies collect genetic vari-
ation of individuals and their disease status or disease related traits. GWAS
studies typically collect single nucleotide polymorphisms (SNPs) because tech-
nologies allow for very cost efficient collection of SNPs. Since SNPs are so preva-
lent in the genome, they are likely to be correlated with other genetic variations.
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Current GWAS studies collect about a million SNPs in thousands of individuals.
The standard approach for identifying associations between SNPs and traits is
that for each SNP, we compare the average trait value of individuals who have
one allele of a SNP and that of individuals who have the other allele of the SNP.
If the difference between the two average trait values is above a certain thresh-
old, we declare that the SNP is significant associated with the trait. We refer to
computing the difference in the average trait values for each SNP as the “single
marker test”, and it has successfully identified many individual SNPs associated
with several complex diseases [1, 2, 5, 6, 16].

Current studies on certain complex diseases have also suggested that some
SNPs influence diseases through interactions [3, 19, 23]. In an extreme scenario,
two SNPs may not have any effect on a disease independently, but they may
affect the disease when both are present. To detect an interaction of SNPs,
one needs to consider the association between a trait and a pair of SNPs. One
approach to find such associations is to divide individuals into two groups: one
group of individuals who have a certain combination of alleles for a pair of SNPs
and the other group of individuals who have different combinations of alleles
for the pair of SNPs. We then compute the difference in the average trait value
between the two groups to determine whether the pair of SNPs is significantly
associated with the trait. Finding an association between a trait and a pair of
SNPs is called the “pairwise association test”, and recently, several different
methods have been proposed [7, 13, 14, 24, 25].

One major challenge in discovering pairs of SNPs associated with a trait is that
it requires enormous computation. One needs to compute associations between
a trait and 4×

(
M
2

)
pairs of SNPs where M is the number of SNPs available

for testing. When M is close to one million as in current GWAS, an exhaustive
pairwise search that considers all pairs of SNPs considers 2000 billion pairs of
SNPs, which is a computationally challenging task. As the number of SNPs in
GWAS keeps increasing with the improvement of technologies to collect SNPs,
the exhaustive search becomes even more computationally infeasible.

In this paper, we present a Threshold-based Efficient Pairwise Association
Approach (TEPAA) for detecting associations between traits and pairs of SNPs
using a two-stage model. In the first stage, our method performs the single
marker test on all individual SNPs and selects a subset of SNPs that exceed
a certain significance threshold (called “the first stage threshold”) for further
consideration. In the second stage, individual SNPs that are selected in the first
stage are paired with each other, and we perform the pairwise association test on
those pairs. In this method, there exists a trade-off between the probability of the
method detecting a pair of SNPs associated with a trait (called “statistical power
of the method”) and the computational burden (or cost). Intuitively, statistical
power increases as we include more SNPs in the second stage, which means
higher cost. The first stage threshold determines this trade-off, and we derive
the analytical power of our method which allows us to determine the threshold
and to control this trade-off. The key insight of our approach is that we derive
the joint distribution between the association statistics of single SNP and the
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association statistics of pairs of SNPs. This joint distribution allows us to provide
guarantees that the statistical power of our approach will closely approximate
the brute force approach. We can accurately compute the analytical power of our
two stage model at any first stage threshold and compare it to the power of the
brute force approach. Hence, we are able to choose as few SNPs as possible in the
first stage while achieving almost the same power as the brute force approach.

While recently developed methods such as TEAM [25, 26] significantly re-
duce the computational burden of searching for pairs of associated SNPs, to our
knowledge very few methods are feasible to apply to full size human GWAS
datasets. The SIXPAC method developed by Pe’er and Prabhu utilizes a novel
randomization technique that requires 10× to 100× fewer tests than a brute-
force approach to find long-range interactions using standard two-locus test [15].
However, their method only handles case-control data and can not apply to
quantitative traits. Wan et al developed an approach BOOST, which designed
a Boolean representation of data and used a screening stage to filter out most
nonsignificant SNP interactions [22]. However, their method can not apply to
quantitative traits either.

The only existing method that is feasible on a full size human GWAS dataset
to detect SNP pairs associated with quantitative traits is FastEpistasis [17].
FastEpistasis is a brute-force approach which conducts pairwise associations for
all pairs of SNPs, or SNP pairs specified by users. The advantage of FastEpis-
tasis is that their method is parallelled and utilizes high-performance computer
architectures with multiple cores. Our method utilizes a two-stage strategy and
greatly reduced the number of pairwise association tests with little power loss.

We note that in this paper, we are only considering pairs of SNPs which are far
apart from each other. There is another class of methods which consider multiple
SNPs close to each other [12, 20, 21]. These problems are completely different
and characterized by very different challenges. For example, the computational
burden which is the focus of our paper is different because the number of pairs
of SNPs near each other is significantly smaller than the total number of pairs
of SNPs. In addition, neighboring SNPs are typically correlated with each other,
referred to as in linkage disequilibrium (LD). Pairs of SNPs far from each other
are typically independent or unlinked which is an observation that we leverage
in our approach.

2 Results

2.1 Overview of the Two-Stage Model TEPAA

We present a two-stage model, TEPAA, for detecting associations between traits
and pairs of SNPs. In this first stage, the association statistics for all SNPs
are computed. Any SNPs which have a statistic higher than a pre-determined
threshold then advance to the second stage in which all pairs of these SNPs are
evaluated. The first stage threshold is important in determining power and cost
of our method because it controls the number of SNPs to be selected in the first
stage. For a truly associated pair of SNPs to be identified using our approach,
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both SNPs must advance to the second round and thus must have association
statistics higher than the first stage threshold. Clearly, the more stringent the
threshold, the smaller the number of SNPs in the second stage and the smaller
number of pairs of SNPs which must be evaluated speeds up this method. On
the other hand, more stringent thresholds increase the chance that at least one
of the pair of truly associated SNPs will not be more significant than the first
stage threshold and the pair will not be identified by the method. Hence, there
is a trade-off between power and cost, which is determined by the first stage
threshold.

Our method chooses the first stage thresholds such that the two-stage model
loses only a small amount of power but increases computational efficiency dra-
matically compared to the exhaustive search. To find such thresholds, we first
derive the analytical power and cost of both the brute force approach and the
two-stage model. This analysis allows us to choose the threshold that yields the
desired power and cost, and hence it allows us to control the trade-off between
the two. To derive the analytical power of our two stage model, we use the
framework of Multivariate Normal Distribution(MVN) to model the association
statistics [8–10]. We use a MVN to approximate the joint distribution between
the association statistic of single SNP and the association statistic of pairs of
SNPs. The non-centrality parameters (NCPs) of statistics are considered to be
the mean vector in the MVN and correlations among statistics as a covariance
matrix in the MVN. The NCPs and correlations can be calculated from the data
and thus we obtained all the parameters of the MVN. The details of the analysis
are discussed in Section 3.4.

From our analysis, we observe that the thresholds which control the power loss
of the two stage approach depend on the minor allele frequency (MAF) of the
SNPs. In particular, more common SNPs can be filtered out with less significant
thresholds than rare SNPs. In order to efficiently implement TEPAA using MAF
dependent thresholds for each pair, we group the SNPs into bins based on their
MAFs to apply the correct thresholds to each possible pair. After disregarding
rare variants with MAF < 0.05, we categorize all common SNPs into 9 bins
according to their MAF, with step size 0.05. Each pair of SNPs would have two
thresholds, one for each SNP in the first stage. In total, we have

(
9
2

)
+9 categories

of SNP pairs. We pre-compute the first stage thresholds for each combination of
two MAFs in order to achieve 1% power loss, while achieving high cost savings.
We sort the SNPs within each bin by their association statistics and use binary
search to rapidly obtain the set of SNPs above a single threshold to efficiently
implement the first stage of our method.

2.2 Application of TEPAA to the NFBC Data

We applied TEPAA to the Northern Finland Birth Cohort (NFBC) data to
demonstrate the utility of our two stage model and the cost saving on a real
data. The Northern Finland Birth Cohort Data contains 5, 326 individuals, and
331, 476 SNPs are genotyped. The histogram of all SNPs’ MAFs is shown in
Fig. 1(a). As described in detail in Section 3.5, we categorize all common SNPs
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0.1 - 5.97 13.45 13.07 12.72 12.16 11.78 11.48 11.40 11.34
0.15 - - 7.57 14.71 14.32 13.69 13.26 12.93 12.84 12.77
0.2 - - - 7.15 13.91 13.31 12.89 12.56 12.48 12.41
0.25 - - - - 6.77 12.95 12.54 12.22 12.14 12.07
0.3 - - - - - 6.19 11.99 11.69 11.61 11.55
0.35 - - - - - - 5.81 11.32 11.25 11.18
0.4 - - - - - - - 5.52 10.96 10.90
0.45 - - - - - - - - 5.44 10.83
0.5 - - - - - - - - - 5.38

(b) The number of SNP pairs in each category.
Numbers are shown in factor of 100 millions.

Fig. 1. The Distribution of all SNPs’ MAFs and number of SNP pairs in each category

into 9 bins according to their MAFs. The number of SNP pairs in each category
is shown in Fig. 1(b). The first stage thresholds of TEPAA are pre-computed for
each category in order to have the power loss at 1% using the methods described
in Section 3.5. The cost saving for each category is summarized in Table 1. Based
on Fig. 1(b) and Table 1, the estimated overall cost saving is 63.2 times, which
is the ratio between total number of pairwise association tests in brute force
approach and that of TEPAA.

For all SNPs in each bin, we calculate the association statistics and sort the
SNPs in descending order of their statistics. We perform our analysis using the
dominant model which is standard for analysis of epistatic interactions. We note
that the basic approach of TEPAA can be extended to other models such as
recessive or additive as well.

We compare the performance of the brute force approach and TEPAA to
detect the SNP pairs associated with the phenotype “CRP” (C-reactive protein)
on a machine with 2.3 GHz AMD Opteron Processor. Since it is impractical to
run the brute force on the whole chromosome, the CPU time of the brute force
approach is estimated from one single chromosome by scaling, which is estimated
to be 1, 542 hours for phenotype “CRP”. The CPU time of TEPAA is 24.5 hours
for the same phenotype. We achieved 62.9 times of cost saving, which verifies
our analysis of the cost savings of TEPAA when achieving 1% of power loss.
However, both brute-force approach and two-stage model report no significant
SNP interactions under the significance threshold 10−12. This is understandable
since this data set contains only 5, 326 individuals. In the next section, we show
that the brute force approach and TEPAA have similar power when there exists
significant SNP interactions.

2.3 TEPAA Controls Power Loss in Simulated Data

To demonstrate that TEPAA has only 1% power loss using the pre-computed
first stage thresholds, we perform simulations where we implant a significant
SNP-SNP interaction to the NFBC data and then detect the SNP pair using
TEPAA.
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We created phenotype data using the phenotype “CRP” (C-reactive protein)
in the NFBC data as a starting point. To simulate the significant SNP pairs,
we randomly sample the MAF of each SNP from [0.05, 0.5). The alleles of each
individuals at these two simulated SNPs are then sampled from the MAF. The
phenotypes of the individuals with causal alleles at the SNP pairs are increased
by a selected effect size so that the pairs has 50% power in the brute-force
approach. Then we apply both the brute-force approach and the two-stage ap-
proach to the simulated dataset. The first stage significance thresholds in the
two-stage approach are selected in order to obtain 1% power loss.

We generated 10, 000 simulated SNP pairs and applied both approaches. The
power for each approach is calculated as the proportion of experiments that
the approach detected the implanted SNP pairs among all 10000 experiments.
The power of brute-force approach is 51% while the power of TEPPA is 50.8%.
The practical power loss is 0.4%. We note that the power loss is lower than
we expected because the thresholds are chosen for MAF frequency bins to be
conservative and valid for all members of that bin.

3 Methods

3.1 Association Test between One SNP and Traits

We first illustrate the method to detect association between traits and one SNP.
A traditional approach to identify the association is that for each SNP, we com-
pare the average trait value of individuals who carry the causal allele at the
SNP and that of the individuals who do not have the causal allele at the SNP of
interest. If the difference between those two values is above a certain threshold,
we declare that the investigated SNP has a significant correlation with the trait.
This approach is referred to as “single marker test” and has been successful in
many association studies. We analyze the power of the “single marker test” as
follows.

Assume we are investigating SNP A, with minor allele frequency (MAF) to be
pA and the causal allele is the minor allele (for the case where the causal allele is
the major allele, we have similar analysis). Let N be the number of individuals
and yi be the trait value of individual i. Then the number of individuals with
the minor allele at SNP A can be denoted as NA = N · pA and the number
of individuals without the minor allele at SNP A can be denoted as N¬A =
N · p¬A = N · (1 − pA) We use xA

i to denote the allele of individual i at SNP
A. yi is any real number and xA

i ∈ {0, 1}. We set xA
i = 1 when the allele of

individual i at SNP A is the minor allele and xA
i = 0 otherwise.

We assume that a trait value of individual i follows the normal distribution
with a certain mean μ and a variance σ2. If the minor allele affects the trait,
the mean trait value (μ) of individuals with the minor allele will increase by a
certain value βA (effect size). Now, we can obtain the distribution of yi as

yi ∼ N(μ+ xA
i βA, σ

2) (1)
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Let ȲA be the average trait value of individuals who have the causal allele at
SNP A and Ȳ¬A be the average trait value of individuals who do not carry the
causal allele at SNP A. Then we can derive the distributions of ȲA and Ȳ¬A as
follows:

ȲA =

∑
i:xA

i
=1 yi

NA
∼ N(μ+ βA,

σ2

N · pA
), Ȳ¬A =

∑
i:xA

i
=0 yi

N¬A
∼ N(μ,

σ2

N · p¬A
) (2)

We normalize the difference between ȲA and Ȳ¬A to obtain the following statistic
SA, which is normally distributed with mean λA

√
N (the non-centrality param-

eter) and unit variance.

SA =
ȲA − Ȳ¬A√

σ2

N·pA·(1−pA)

∼ N(λA

√
N, 1), where λA =

βA

√
pA(1− pA)

σ
(3)

Given the significance level α and the observed value of the test statistic SA,
the SNP is deemed as significant, or statistically associated with the trait, if
|SA| ≥ Φ−1(1−α/2), where Φ−1 is the quantile function of the standard normal
distribution. For simplicity, we use the notation T = Φ−1(1 − α/2) as the per-
SNP threshold.

We declare all those SNPs with statistic |SA| > T to be associated with
trait. So the per-causal-SNP power of a putative causal SNP A, which is the
probability of |SA| > T , can be calculated as

P1(A) = P (|SA| > T ) = Φ
(
−T + λA

√
N
)
+ 1− Φ

(
T + λA

√
N
)

(4)

The average power P1 is obtained by averaging per-causal-SNP powers over all
putative causal SNPs.

3.2 The Brute-Force Approach for Pairwise Association Test

Current studies on complex disease have also suggested that some SNPs influence
traits in pairs. Only when both causal alleles appear on a pair of SNPs, the
trait value is increased. To detect the interaction of SNPs that influence the
trait, we need to consider the association between a trait and a pair of SNPs
(pairwise association test). We analyze the power of the brute force approach
which calculates the association between a trait and all pairs of SNPs as follows.

We assume there exists a SNP pair AB, composed of SNP A and SNP B, that
influence a trait. Assume the causal alleles are minor alleles at both SNPs. Our
statistic is the difference between the average trait value of individuals who have
minor alleles on both SNPs and that of individuals who do not have minor allele
on at least one of the two SNPs A and B. Here we assume the two SNPs have
same (positive) direction of effect. We use the same notation as in section 3.1.
The expected number of individuals who have minor alleles at both SNPs can be
computed as NAB = N · pA · pB and the expected number of individuals who do
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not have minor alleles at both SNPs can be computed as N¬AB = N ·(1−pA ·pB).
If an individual carries the causal alleles at both SNPs A and B, the mean of
trait value is increased or decreased by the effect size of the SNP pairs, which is
denoted as βAB. Then we can write the distribution of yi as

yi ∼ N(μ+ xA
i x

B
i βAB , σ

2) (5)

Let ȲAB be the average trait value of individuals with causal alleles at both
SNPs and let Ȳ¬AB be the average trait value of individuals without causal alleles
at both SNPs. For simplicity, let

∑
11 denote

∑
i:xA

i =1∧xB
i =1, and similarly for∑

10,
∑

01,
∑

00 for different alleles of SNPs A and B. We can calculate ȲAB and
Ȳ¬AB as

ȲAB =
1

NAB

∑
11

yi ∼ N(μ+ βAB ,
σ2

NpApB
),

Ȳ¬AB =
1

N¬AB

∑
00,01,10

yi ∼ N(μ,
σ2

N(1− pApB)
) (6)

We normalize the difference between ȲAB and Ȳ¬AB to obtain the following
statistic SAB, which is normally distributed with mean λAB

√
N (the non-

centrality parameter) and unit variance.

SAB =
ȲAB − Ȳ¬AB√

σ2

NpApB(1−pApB)

∼ N(λAB

√
N, 1), where λAB =

βAB

√
pApB(1− pApB)

σ
(7)

According to [15], we set the per-SNP-pair significance level α = 10−12. The
per-SNP-pair statistic threshold is then T2 = −Φ−1(α/2) = 7.13. The per-
causal-SNP-pair power of a putative causal SNP pair AB can be estimated as

PBF (AB ) = Φ
(
−T2 + λAB

√
N
)
+ 1− Φ

(
T2 + λAB

√
N
)

(8)

The average power PBF is obtained by averaging per-causal-SNP-pair powers
over all putative causal SNP pairs.

Assuming the total number of SNPs is M , we define the cost of brute-force
method to be the total number of SNP pairs needed for association analysis,
that is, CBF (M) =

(
M
2

)
.

3.3 Two Stage Model

In the brute force approach, the total number of SNP pairs to be considered is(
M
2

)
and we need to compute the statistic SAB for all these pairs. Considering the

number of SNPs involved in current GWAS, the computational burden makes
this strategy infeasible.

We propose a two-stage model to reduce the number of tests needed while
maintaining similar power with the brute force approach. In the first stage, we
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propose two statistic thresholds Ta and Tb and perform the single marker test
on all SNPs. In the second stage, we pair all SNPs that are significant under
threshold Ta with those significant SNPs under threshold Tb. Then we perform a
pairwise association test between traits and all those pairs. The SNP pairs which
pass the per-SNP-pair statistic threshold T2 are considered to be statistically
associated with the trait.

The analysis of single marker test in the first stage is quite similar to that of
the one SNP association test in Section 3.1. We derive the similar equations with
(1), (2) and (3) except that the effect size of SNP A becomes pBβAB, when the
pair of SNP A and SNP B is the causal SNP pair. So the statistic SA of SNP A
becomes

SA =
ȲA − Ȳ¬A√

σ2

N·pA·(1−pA)

∼ N(λA

√
N, 1), where λA =

pBβAB

√
pA(1− pA)

σ
(9)

The analysis of SNP B is the same except that we switch pA and pB in the
equations.

Assume a pair of SNPs A and B are putatively associated with a trait. The
underlying effect size βAB could either be positive or negative. Here we first
analyze the case where the true effect size is positive. To find such positive
pairwise association in our model, SA must be no less than Ta, SB must be no
less than Tb (or vice versa, but here we only analyze one case since we will show
in Section 3.5 that the other case is not necessary) and SAB must be at least
T2. Hence, we need to consider three statistics and three thresholds to compute
the analytical power of the two-stage model. Under the assumption that we are
aware the effect size is positive, the per-causal-SNP-pair power of a putative
causal SNP pair AB can be denoted as

P+
2 (AB) = P (SA ≥ Ta, SB ≥ Tb and SAB ≥ T2) (10)

However, considering the fact that whether the effect size is positive or neg-
ative is hidden from us, we also need to calculate the probability where SAB is
less than −T2, that is,

P−
2 (AB) = P (SA ≤ −Ta, SB ≤ −Tb and SAB ≤ −T2) (11)

So, the per-causal-SNP-pair power of a putative causal SNP pair AB is

P2(AB) = P+
2 (AB) + P−

2 (AB) (12)

The analysis for the case where the true effect size is negative is exactly the same
except that the non-centrality parameters for SA, SB and SAB are negative.

To calculate the value of P2(AB), we need to take into account correlations
between statistics. The two statistics SA and SAB are correlated because both
involve SNP A. Similarly, we have a correlation between SB and SAB. We as-
sume SNPs are independent, and hence there is no correlation between SA and
SB. The average power P2 is obtained by averaging per-causal-SNP-pair powers



Gene-Gene Interactions Detection Using a Two-Stage Model 349

over all putative causal SNP pairs. Computing the analytical power of the two-
stage model is complicated as a result of the correlations between statistics. We
estimate the power using a multivariate normal distribution (MVN) framework
as in Section 3.4.

Denote the per-SNP significance level corresponding to the statistic thresholds
Ta and Tb in the first stage to be αA and αB, respectively. Then we have αA =
2Φ(−Ta) and αB = 2Φ(−Tb). The cost of the two stage model can be computed
as CTS(M,αA, αB) ≈M2αAαB/2.

Let’s measure the cost saving by the ratio between cost of brute-force method
(CBF ) and that of the two-stage model (CTS):

CBF (M)

CTS(M,αA, αB)
=

(
M
2

)
M2αAαB/2

≈ 1

αAαB
(13)

And we define the power loss to be

1− P2

PBF

(14)

For a given dataset, there exists a trade-off between the power loss and cost
saving. The trade off is controlled by the two thresholds Ta and Tb. We carefully
design the thresholds to achieve high cost saving while maintaining low power
loss. The details of the algorithm is summarized in Section 3.5.

3.4 Estimating the Two Stage Power Using the MVN

In this section, we provide an approach to compute the power of the two stage
model in Equation 12. The distribution of association statistics SA, SB and
SAB has been derived in Section 3.2 and 3.3. We aim to compute the power in
Equation 12 for any given thresholds Ta, Tb and T2.

For many widely used statistical tests, the statistics over multiple markers
asymptotically follow a Multivariate Normal Distribution(MVN) [11, 18]. To
derive the analytical power of our two stage model, we use the framework of
MVN proposed by [8]. This method creates a MVN using the non-centrality
parameters (NCPs) of statistics as a mean vector in the MVN. The NCPs of SA,
SB, and SAB are already derived in Equations (7) and (9). So the mean vector
is (λA

√
N, λB

√
N, λAB

√
N). The covariance matrix in the MVN will be the

correlations among statistics. We assume SNPs are independent of each other,
so the correlation between SA and SA is 1, and the correlation between SA and
SB is 0. The covariance matrix is as follows:

⎛
⎝

1 0 Cor(SA, SAB)
0 1 Cor(SB , SAB)

Cor(SA, SAB) Cor(SB , SAB) 1

⎞
⎠

We only need to compute the correlation between SA (or SB) and SAB to derive
the complete MVN. To find a correlation between two statistics, SA and SAB, we
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use the following formula where Var(X) denotes the variance ofX and Cov(X,Y )
denotes the covariance between X and Y ,

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ) (15)

In our model, X = SA and Y = SAB, and Var(SA) = Var(SAB) = 1. Then
we can compute Cov(SA, SAB) as

Cov(SA, SAB) = (1/2)Var(SA + SAB)− 1 (16)

Hence, we need to derive Var(SA + SAB) to find the covariance or the cor-
relation between statistics. The covariance and the correlation are equivalent in
this case because variances of statistics are 1.

Using Equations (7) and (9), we can write SA + SAB as

SA + SAB =
√
N/σ2

(
θA
(
ȲA − Ȳ¬A

)
+ θAB

(
ȲAB − Ȳ¬AB

))
(17)

where θA =
√
pA(1− pA) and θAB =

√
pApB(1− pApB).

We then decompose ȲA, Ȳ¬A and ȲAB in Equation (17) in terms of alleles of
SNPs A and B (xA

i and xB
i ). Substituting Equations (1), (2), (5) and (6) into

Equation (17) and rearranging common terms, we have

SA + SAB =

√
N

σ2

[
P
∑
11

yi +Q
∑
10

yi −R
∑
01

yi − S
∑
00

yi

]
(18)

where

P =
θA
NpA

+
θAB

NpApB
, Q =

θA
NpA

− θAB

N(1− pApB)

R =
θA

N(1− pA)
+

θAB

N(1− pApB)
, S =

θA
N(1− pA)

+
θAB

N(1− pApB)

Note that Equation (18) consists of independent terms: each
∑

ab yi term repre-
sents a sum of trait values of disjoint individuals, where ab = 11, 10, 01 and 00,
respectively. Hence, if we take the variance of SA + SAB, covariances among all
terms are 0, and Var(SA+SAB) is a sum of variances of

∑
ab yi terms. Also, note

that Var(yi) = σ2, and hence Var (
∑

11 yi) is a sum of σ2 over individuals who
have minor alleles at both SNPs A and B. We can then compute the variance of
SA + SAB as

N

σ2

[
P 2Var

(∑
11

yi
)
+Q2Var

(∑
10

yi
)
+R2Var

(∑
01

yi
)
+ S2Var

(∑
00

yi
)]

= N
[
P 2NpApB +Q2NpA(1− pB) +R2N(1− pA)pB + S2N(1− pA)(1− pB)

]
(19)

We can also compute Var(SB+SAB) similarly using Equation (19) by exchanging
pA and pB.

Up to now we obtained all parameters for the MVN framework. Then, we can
compute the power as the area outside of the significance threshold under the
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Fig. 2. The volume of the two cubes under the MVN is the power of our two stage
model

MVN we created. Fig. 2 helps to illustrate the ideas. We can see that in the three
dimension space of the MVN framework for statistics SA, SB and SAB, the two
cubes on the corners correspond to the significance region. Using the MVN, we
can compute the power of our two stage model for any given thresholds Ta, Tb

and TAB by summing up the volume of these two cubes under the MVN. This
method yields a very accurate estimate of power when there exist correlations
among statistics, and hence it provides an appropriate framework to compute
the analytical power of our model.

3.5 Efficient Pairwise Association Test Using TEPAA

In previous sections, we have illustrated how to calculate the power and cost sav-
ings of our two stage model for any given threshold. In this section, we provide a
framework, TEPAA, to determine the first thresholds which generate a relatively
small number of SNP pairs for pairwise association test in the second stage while
losing a small amount of power compared to the brute force approach.

From Equation 12 and Section 3.4, we can see that the joint distribution
between the association statistics of single SNPs and the association statistic of
a pair of SNPs depends on the MAFs of the pair of SNPs. MAFs are observable
values, so we can categorize all SNP pairs based on the combination of their
MAFs. Since MAFs are continuous value, we can discretize the MAFs into bins
to have a small number of combinations. After removing rare variants, we can
categorize all SNPs into 9 bins, with step size 0.05. In order to detect the pairwise
association for all SNP pairs, we break all combinations of SNP pairs into two
cases. First we pair SNPs within different bins and this results in

(
9
2

)
categories.

The second case is to combine SNPs within one bin. So totally we have
(
9
2

)
+9

categories of SNP pairs.
Assuming the power of brute force approach is 50%, we can calculate the

effect size βAB from Equation 8. Then for each category of SNP pairs, we can
compute the power loss and cost savings from Equations 13 and 14 with the



352 Z. Wang et al.

Table 1. The threshold for SNP A/SNP B and cost savings in various combination of
MAFs to achieve power loss of 1%. Here we assume the MAF of SNP A is smaller than
that of SNP B in each pair. The first and second number in each cell is the threshold
for SNP A (αA) and SNP B (αB), respectively. These two thresholds are scaled by
10−2. The third number in each cell is the cost saving, which is the ratio between cost
of brute-force method and that of the two-stage model.

MAF of SNP B

M
A
F

o
f
S
N
P

A

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.1 34/34

/8
8/50
/25

7/58
/25

5/62
/32

2/76
/66

0.82/84
/145

0.26/79
/487

0.10/84
/1190

0.02/90
/5555

0.15 - 14/14
/51

3/24
/139

3/31
/107

2/46
/108

1/58
/172

0.35/54
/529

0.13/62
/1241

0.03/69
/4830

0.2 - - 5/5
/400

2/9
/556

2/16
/312

1/21
/476

0.47/31
/686

0.19/58
/907

0.05/69
/2899

0.25 - - - 3/3
/1100

2/5
/1000

1/7
/1429

1/16
/625

0.26/21
/1831

0.10/42
/2380

0.3 - - - - 1/1
/1e5

1/3
/3333

1/4
/2500

0.62/12
/1344

0.13/16
/4807

0.35 - - - - - 0.6/0.6
/2.7e4

0.5/1
/2e4

0.1/2
/5e4

0.03/8
/4e4

0.4 - - - - - - 0.3/0.3
/1.1e5

0.1/0.6
/1.6e5

0.1/1
/1e5

0.45 - - - - - - - 0.2/0.2
/2.5e5

0.1/0.5
/2e5

0.5 - - - - - - - - 0.1/0.1
/1e6

MVN, given two first stage significance levels αA and αB. We do an exhaustive
search over the space [0, 1) with a small step size to find the optimal values of
αA and αB to achieve best cost saving while maintaining power loss 1%. The
values of αA and αB are shown in Table 1 when there are 5, 326 samples in the
dataset.

For SNPs in each bin, we carry out the single marker test and sort the as-
sociation statistics of single SNP. Then for each category of SNP pairs, we do
a binary search in each involved bin to find all significant SNPs under the pre-
computed significance level. The selected SNPs are then paired for the second
stage pairwise association test. Based on the pre-computed values of αA and αB ,
we can estimate the cost savings for each category of SNP pairs as in Table 1.
We propose a threshold for each bin for each category of SNP pairs, and the
bins are disjoint. So, in the calculation of Equation 10, we only need to consider
the case where SA > Ta and SB > Tb and it is not necessary to consider the
case SA > Tb and SB > Ta. We have the same conclusion in the calculation of
Equation 11.

Although the calculation is based on the assumption that the brute force
approach has power 50%, our approach is robust to the effect size. We did sim-
ulations for different effect sizes, which generate different power for the brute
force approach. The cost saving of TEPAA is stable when achieving 1% power
loss under various effect size.
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4 Conclusion

In this paper, we proposed a two-stage model to detect SNP pairs associated with
trait. The key idea behind our method is that we model the joint distribution
between association statistics at single SNPs and association statistics at pairs
of SNPs to allow us to apply a two-stage model that provides guarantees that we
detect associations of pairs of SNPs with small number of tests while losing very
little power. We rapidly eliminate from consideration pairs of SNPs which with
high probability are not associated with the trait. Using extensive simulations,
we show that our approach can reduce the computational time by a factor of 60
while only loosing approximately 1% of the power compared to the brute-force
approach.
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Abstract. An important feature of structural data especially those from
structural determination and protein-ligand docking programs is that
their distribution could be both uniform and non-uniform. Traditional
clustering algorithms developed specifically for non-uniformly distributed
data may not be adequate for their classification. Here we present a geo-
metric partitional algorithm that could be applied to both uniformly and
non-uniformly distributed data. The algorithm is a top-down approach
that recursively selects the outliers as the seeds to form new clusters
until all the structures within a cluster satisfy certain requirements. The
applications of the algorithm to a diverse set of data from NMR struc-
ture determination, protein-ligand docking and simulation show that it
is superior to the previous clustering algorithms for the identification of
the correct but minor clusters. The algorithm should be useful for the
identification of correct docking poses and for speeding up an iterative
process widely used in NMR structure determination.

Keywords: clustering algorithm, structure determination, protein-ligand
docking, structure classification.

1 Introduction

Recently, we have witnessed a rapid growth of not only DNA sequencing data
but also three-dimensional (3D)1 structural data such as those from biomolecu-
lar nuclear magnetic resonance (NMR) spectroscopy and protein-ligand docking
as well as molecular dynamics (MD) simulation and protein structure prediction.
These techniques output not a single but an ensemble of structures. A variety
of traditional clustering algorithms both of hierarchical and partitional [1, 2],
being able to first assign the data points to groups (clusters) and then identify a
representative for each cluster, have been applied to their analysis and visualiza-
tion in order to discover common structural features such as protein fold, active

� Corresponding author.
1 Abbreviations used: 3D, three dimensional; NMR, nuclear magnetic resonance; PDB,
protein data bank; RMSD, root-mean-square deviation; NOE, nuclear Overhauser
effect; VDW, van der Waals; MD, molecular dynamics; GA, genetic algorithm; MC,
Monte-Carlo; SA, simulated annealing; SAA, solvent accessible surface area.
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site and correct pose [3–10]. However, it remains unclear which algorithm is the
most suitable for the clustering of 3D structural data because of the inherent
difficulty associated with high dimensionality 2. For example, a past study con-
cluded that there was no perfect “one size fits all” algorithm for the clustering
of MD trajectories [4], and May [3] had questioned whether a hierarchical ap-
proach is appropriate for the clustering of structural data by forcing them into
a dendrogram. An important feature of structural data especially those from
NMR structural determination and protein-ligand docking is that their distribu-
tion could be rather uniform in a few large regions but non-uniform in others,
and thus may not be properly described by a Gaussian mixture model. Tradi-
tional clustering algorithms developed specifically for non-uniformly distributed
data may not be adequate for their classification. In this paper, we present a
novel geometric partitional algorithm that could be applied to both uniformly
and non-uniformly distributed data. The algorithm is a top-down approach that
recursively partitions all the data points of a previously-generated cluster into c
new clusters where c is a user-specified number. It stops and then outputs a final
set of clusters that satisfy the classification requirement that no metric distances
between any pair of data points in any cluster are larger than a user-specified
value. Compared with the previous clustering algorithms, the salient features of
our geometric partitional algorithm are (a) it uses the global information in the
beginning, (b) is deterministic, and (c) could handle both uniformly and non-
uniformly distributed data. We have applied the algorithm to the classification
of a diverse set of data: the intermediate structures from an NMR structure
determination project, poses from protein-ligand docking and MD trajectories
from an ab-initio protein folding simulation. A comparison with other partitional
algorithms such as k-medoids shows that our algorithm could classify the data
with higher accuracy. Though the final set of clusters from our algorithm may be
similar to those from complete-link or average-link hierarchical algorithms, the
clusters from our algorithm are more uniform in terms of their structural and
physical properties. More importantly, our algorithm outperforms the previous
algorithms in identifying the minor clusters with “good” properties (the correct
clusters) that are often to be discarded by other criteria used for the selection of
representative structures. The rest of the paper is organized as follows. In section
2 we first present the algorithm and then describe the data sets. In section 3
we present and compare the results of applying both our algorithm and three
other clustering algorithms to identify the clusters with good scores, and discuss
the significance of the geometric algorithm for speeding up the iterative NMR
structure determination process and for the selection of accurate docking poses.

2 The Algorithm and Data Set

In this section, we first present our novel geometric partitional algorithm for the
clustering of structural data. Then we describe the data sets used for assessing
the performance of the new and the previous three clustering algorithms.

2 A structure with Na atoms has dimension d = 3Na.
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2.1 The Geometric Partitional Algorithm

The similarity metric. Our algorithm employs a recursive top-down procedure
that clusters a set of structures (data points) S using a pairwise root-mean square
distance (RMSD) dij between two structures i, j as a similarity metric though
other metrics could also be used. All the pairwise dijs in S are pre-computed
and stored in set D.

The algorithm. The algorithm itself proceeds as follows. Let Cs denote the set
of clusters at recursive step s that are themselves generated at step s− 1. At the
initial step s = 1, C1 has only a single cluster S to which all the data belong.
At step s, for each cluster C ∈ Cs, the algorithm first computes m points, cμ ∈
C, μ = 1, . . . ,m, as the seeds for m new clusters, Cμ ∈ Cs+1, μ = 1, . . . ,m, and
then assigns all the remaining points in C to Cμ ∈ Cs+1, μ = 1, . . . ,m where 3 ≤
m ≤ Nc while Nc is a user-specified number. The abovem seed points are defined
and computed as follows. The first two points, c1 and c2, whose RMSD is the
largest among all the pairwise dij in cluster C ∈ Cs, seed the first two clusters,
C1 ∈ Cs+1 and C2 ∈ Cs+1. A point c3 in C − {c1, c2} that may seed a new
cluster, the third cluster C3 ∈ Cs+1, is the point that together with the above
two points c1, c2 form a triangle with the largest area among all the triangles in
C−{c1, c2}. Similarly, a point c4 in C−{c1, c2, c3} that may seed a new cluster,
the fourth cluster C4 ∈ Cs+1, is the point that together with c1, c2, c3 form a
tetrahedron with the largest volume among the tetrahedrons formed by all the
quadruples in C − {c1, c2, c3}. Finally, a point cm in C − {c1, c2, . . . , cm−1}
may seed the last cluster Cm ∈ Cs+1 that together with {c1, . . . , cm−1} form
a polyhedron that has the largest Cayley-Menger determinant [11] among the
polyhedra formed by all the n-tuples. For each point p ∈ C − {c1, c2, . . . , cm},
the algorithm assigns it to the kth cluster Ck ∈ Cs+1 where k is determined by

argmin
k

dpCk
, k = 1, ...,m (1)

where dpCk
is the RMSD between p and the seed ck.

In the following we present the key steps of the algorithm at recursive step s
with as an input one of clusters C ∈ Cs generated at step s− 1 and assume that
Nc = 4.

1. Search for the first two seed points, c1 and c2, whose metric d12 ∈ D, is the
largest among all the pairs of structures in C

2. If d12 ≤ dmax

Stop {no new clusters}
3. Initialize two new clusters C1 and C2 with c1 and c2 as their respective seeds
4. Search for the third seed point c3 in C−{c1, c2} that together with c1, c2 forms

a triangle with the largest area among all the possible triangles
5. If any of d13 and d23 is smaller than dmax

(a) For each point p in C− {c1, c2}
Assign it to C1 if dpc1 ≤ dpc2 , otherwise to C2

(b) For both clusters C1 and C2

Go to Step 1
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6. Seed a third cluster C3 with c3
7. Search for the fourth seed point c4 in C−{c1, c2, c3} that together with c1, c2, c3

forms a tetrahedron with the largest volume among all the possible tetrahedrons
8. If any of d14, d24, d34 is smaller than dmax

(a) Assign each point p in C − {c1, c2, c3} to either C1,C2,C3 according to
equation (1)

(b) For each cluster Cj , j = 1, 2, 3.
Go to Step 1

9. Else

(a) Seed a cluster C4 with c4
(b) Assign each point p in C− {c1, c2, c3, c4} to one of Cj , j = 1, 2, 3, 4
(c) For each cluster Cj , j = 1, 2, 3, 4

Go to Step 1

where dmax is a user-defined maximum RMSD such that all the structures in the
same cluster must have their pairwise RMSDs less than dmax. This condition
will be called the cluster restraint requirement. In step 2 if the largest pairwise
RMSD among all the points in a cluster is less than dmax, no more partition are
required, thus stops the recursive procedure.

The mathematical background. Our algorithm is based on the following two
propositions. Let dcicm , i = 1, ...,m− 1, denote the m− 1 RMSDs between the
last seed cm and the previous m− 1 seeds ci, i = 1, ...,m− 1.

Proposition 1. If all the dcicms are larger than dmax, there must exist at least
an mth cluster seeded with the point cm such that the polyhedron formed by points
ci, i = 1, . . . ,m has the largest Cayley-Menger determinant.

Proposition 2. If at least one of the m−1 RMSDs dcicm is less than dmax, then
there exists no new clusters at the current recursive step but further recursive
partition is required for the previous cluster.

Please see the Supplementary Materials for their proofs.

Running time. Let the number of structures be n. It takes O(n2) to populate the
set D of all pairwise RMSDs and |D| = O(n2) time to find the minimum value
in D. The worst-case time complexity occurs when dmax is so small that each
structure forms a separate cluster. In this case, the depth of recursive search
is O(logNc

n2) while at each recursive step, it takes O(n2) to find all the seeds
assuming that it takes a constant time to compute the area of a triangle, the
volume of a tetrahedron and a Cayley-Menger determinant. Thus the worst-case
time complexity is O(n2) logNc

n where Nc ≥ 4.

2.2 Structural Data Set

The structural data to which we have applied our algorithm as well as hierarchi-
cal (complete-link and average-link) and k-medoids algorithms includes (a) two
sets of intermediate structures from an NMR structure determination project,
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(b) 22 sets of poses from protein-ligand docking, and (c) a set of trajectories from
an ab-initio MD simulation. Due to the space limitation, we will not present the
application to the MD data here. In the following we describe both the data and
the computational processes through which they are generated.

NMR Data Set. The two sets of intermediate structures chosen for the com-
parison of clustering algorithms are from the structure determination project of
the protein SiR5 with 101 residues. Its NMR structure was determined by one of
the authors using an iterative procedure of automated/manual nuclear Overha-
suer effect (NOE) restraint assignment followed by structure computation using
CYANA/Xplor with conformational sampling achieved by simulated annealing
(SA). A large number of intermediates need to be generated during the iterative
process in order to properly sample the huge conformational space defined as the
set of all the structures that satisfy the experimentally-derived restraints to the
same extent. In contrast to the final set of 20 structures deposited in the PDB
(2OA4), the intermediates especially those from an early stage of the iterative
process are less uniform in terms of structural similarity, molecular mechanics
energy and restraint satisfaction. The pairwise RMSDs are computed only for
Cα atoms of residues 20-70 since almost no long-range NOEs were observed for
the rest. The dmax for both geometric and complete-link hierarchical clustering
algorithms are either 1.0Å or 1.5Å. Each cluster is assessed by its average van der
Waals (VDW) energy, NOE restraint violation defined as the number of NOE
restraints with violation ≥0.5 Å, and the average pairwise RMSD da between
all the pairs of structures within a cluster, and the average RMSD df between
the structures in the cluster and the centroid of the 20 structures in 2OA4.

The Set of Poses from Protein-Ligand Docking. Structural clustering
plays an increasingly important role in both protein-ligand docking and virtual
screening [10] since a large amount of poses or library hits are typically generated
during a docking or virtual screening process. To demonstrate the importance of
clustering to protein-ligand docking, we have performed rescoring experiments
on 22 sets of poses3 generated using GOLD software suit (version 1.2.1) [14].
Several rounds of docking are performed using a binding site specified by a
manually picked center with a 20.0Å radius. GOLD requires a user to pick a
point that together with a user-specified radius define a sphere inside which poses
are searched for using a genetic algorithm (GA). We use the default parameters
as provided by GOLD except the requirement that no two poses having their
pairwise RMSDs <1.5Å are generated. All the ligand heavy atoms are included in
the pairwise RMSD computation. The 3D starting conformation for each ligand
is generated by Corina [15]. A set of 500 poses are saved for each complex.

A well-known difficulty with the current scoring functions for protein-ligand
docking is that they often fail to rank in the top positions the poses that are most

3 The PDBIDs of the corresponding 22 protein-ligand complexes are 1AAQ, 1A9U,
1ACJ, 1BAF, 1CBS, 1CTR, 1DI8, 1EAP, 1FKG, 1TNI, 1V48, 1GPK, 1Q41, 1Q1G,
1P62, AOYT, 1NAV, 1N2J, 1GMY, 1VSN, 1MS6, 2XU5.
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similar to the experimentally-determined one. To investigate whether clustering
could provide the guarantee that the top-ranked clusters have high probability
to be composed of the poses that are most similar to the experimental one,
we first perform a series of clustering experiments with decreasing dmax values
using our geometric partitional algorithm. We then rank the most populated
clusters whose combined number of poses either exceed 90% of the total number
of poses for larger dmax or 75-50% for smaller dmax. The ranking is based on
their cluster-wide average values of both the GOLD scoring function Sg that
consists of three items: ligand internal energy Gi, intermolecular VDW energy
Gw and intermolecular hydrogen bond energy Ghb and our newly-developed
scoring function St that also has three items: Gi, Ee the electrostatic energy
computed using the partial charge from Corina and the electrostatic potential
from APBS [16], and Saa the change in solvent accessible surface area (SAA) of
the ligand before and after the binding.

Sg = Gi + geGw + gsGhb (2)

St = Gi + keEe + ksSaa (3)

where ge, gs, ke, ks are weighting factors. The details of our scoring function, its
rational and practical performance will be described elsewhere.

3 Results and Discussion

To evaluate the performance of our algorithm, to compare it with the previous
algorithms for structural data classification and to demonstrate the importance
of clustering to structural analysis, we have applied them to a diverse set of
data including two sets of intermediate structures from an NMR structure de-
termination project and 22 sets of poses from protein-ligand docking. In the
following, we first present the results in detail and then discuss their signifi-
cance for the selection of correct representative structures in the iterative NMR
structure determination process and the identification of the correct poses from
protein-ligand docking.

3.1 NMR Structural Ensemble

In theory the computation of structures using sparse and inexact geometric re-
straints derived from NMR experiments is an NP -hard problem [17] because of
restraint sparseness and measurement errors. At present, mainly heuristics such
as SA and Monte-Carlo (MC) have been employed to search for a small subset
of the set of all the structures that satisfy the restraints to the same extent,
the conformational space. In practice, due to possible assignment errors and the
difficulty of obtaining unambiguous assignment for many restraints especially in
the beginning, NMR structure determination is an iterative process in which ei-
ther a structural biologist or an automated program initializes the computation
with a small number of restraints that have unique assignments, then uses the
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computed structures to assign additional possibly ambiguous restraints that are
to become the input for the next cycle of computation. The process stops when
the computed structures converge according to certain criteria. During the iter-
ative process, a large number of intermediate structures are generated in order
to properly sample the conformational space. However, all but a small subset
of intermediates must be discarded in the next cycle due to time and space
limitation. There exists no well-established criteria for such a selection though
it is typically achieved using a user-specified threshold for a scoring function
used in the structure determination. Such a selection assumes that there exists
only a single or a few large clusters of structures that satisfy the restraints, a
condition that may be difficult to meet especially in the early stages when only
a small number of restraints per residue are available. A different selection of
representative structures in the iterative process may lead to different ensembles
of structures in the PDB as demonstrated by an investigation into two ensem-
bles of NMR-derived structures of the protein Sox-5 HMG-box reported by two
groups [7]. In this paper, we have applied four algorithms to two sets of interme-
diates to assess how the distribution of intermediates could affect the selection of
representative structures and which algorithms are most suitable for such a task.
The first set has 301 intermediates from an early stage of the SiR5 project while
the second has 159 intermediates from a late stage. The clusters are analyzed in
terms of the number of structures Ns per cluster, da, df , VDW energy and NOE
violation. In the following we only present the clusters obtained with dmax=1.5
Å. Similar but larger numbers of clusters are generated with dmax=1.0 Å.

Geometric clustering. The first set of 301 structures are classified into 18 clusters
with dmax=1.5Å, of which half are singletons. The five most populated clusters
have 283 structures in total accounting for 94% of all the structures (Table 1).
Their da and df values vary widely and they also have large VDW energy and
NOE violation. The largest cluster has 253 structures and these intermediates
differ largely from the final 20 structures with df=2.57Å. Among the top five
clusters, the third cluster with only 9 structures have the smallest df . By compar-
ison, the 159 structures in the second set (Table S1, Supplementary Materials)
distribute more uniformly in terms of both da and df , and their corresponding
VDW and NOE values are smaller and have narrower ranges. They are classified
into 35 clusters with dmax=1.5Å, of which about half (17) are singletons. The
seven most populated clusters have 122 structures in total accounting for 75% of
all the structures. The largest cluster has only 25 structures with da=1.02Å and
a range from 0.45Å to 1.49Å, and df=1.17 and a range from 1.02Å to 1.56Å.
The largest cluster has the second smallest df and differs from the smallest df by
only 0.1Å. In contrast, the largest cluster in the first set has the second largest
df among the top five clusters. For the second set, the more populated clusters
tend to have smaller da and df with narrower ranges, smaller VDW energy and
less NOE violation. This is in contrast with the clusters from the first set whose
corresponding values are not only larger but also have much bigger variation.
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Complete-link. The first set is classified into 15 clusters with dmax=1.5Å, of
which six are singletons. The first three largest clusters have 278 structures in
total accounting for 92% of all the structures (Table 1). They have da, df , VDW
energy and NOE violation similar to those from the geometric clustering. In
particular, the largest cluster is identical to that from geometric clustering. For
the second set, complete-link generates 34 clusters with 18 of them are singletons.
The first six most populated clusters have 118 structures accounting for 74% of
the total structures. These six clusters also have da, df , VDW and NOE values
similar to those from the geometric clustering for the second set. However, its
largest cluster has 66 structures that is more than the combined number of
structures in the top three clusters from the geometric algorithm.

Average-link. The clusters from the first set are almost identical to those from
complete-link except that da has larger range as expected (Table 1). For the
second set, it outputs 26 clusters with 15 of them being singletons and the first
two most populated clusters have 126 structures in total. Of the two clusters
da, df , VDW and NOE values are similar to those from both geometric and
complete-link clustering. However, the largest cluster from the second set has
120 structures: that is close to the combined number of structures of all the
non-singletons from either geometric or complete-link algorithm.

k-medoids. It classifies the first set into six clusters with one singleton cluster and
the largest cluster is almost identical to that from the other algorithms. However,
da has must wider range, e.g., from 0.12–3.09Å. For the second set, the k-medoids
only produces a single non-singleton with 126 structures. It basically merges all
the non-singletons from any of the above three algorithms into a single cluster.

The importance of clustering to the correct selection of representative structures.
The first set of 301 structures are from an early stage of the iterative process for
protein SiR5. The largest clusters generated by the four algorithms are similar
to each other, and include about 84% of the total structures (Table 1). However,
each of them has rather large df though their da, VDW and NOE values are
likely to be small. The selection of the largest but not representative cluster
based solely on molecular mechanics energy and NOE violation had led astray
of the iterative process that was only corrected late through manual interven-
tion. Had we applied any of the four algorithms, the correct clusters (the third
cluster from the geometric and the second from the complete-link, average-link
and k-medoids algorithms) might have not been discarded in the early stage
and the time-consuming manual intervention might have been avoided. Among
the correct clusters from the four algorithms, the geometric algorithm produces
the most accurate one. By the contrast, for the second set that is from a late
stage (the refinement stage) of the iterative process, almost any of the most
populated clusters from any of the four algorithms could be used to assign ad-
ditional NOEs (Table S1, Supplementary Materials). Of the four algorithms the
geometric algorithm tends to generate the largest number of evenly sized clusters
while both the k-medoids and average-link output only one or two large clusters.
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Table 1. A list of the clusters on the set of 301 structures by four clustering
algorithms. The listed are the most populated clusters with the number of structures
NS ≥3 from geometric and complete-link algorithms generated with a dmax=1.5 Å, and
the non-singletons from average-link and k-medoids algorithms. The cluster shown with
the boldfaced font has the smallest df among all the clusters. The three numbers are
respectively the range and average. For k-medoids the number of initial clusters is 10
with the initial centers to be selected randomly. Please refer to the Supplementary
Materials for the implementation of the complete-link, average-link and k-medoids
algorithms.

Geometric:

Cluster NS da df NOE viol VDW energy

1 253 0.12–1.44, 0.52 2.17–2.80, 2.57 91–123, 109 307.3–970.6, 468.6
2 10 0.38–1.39, 0.96 1.76–2.44, 2.01 112–164, 133 644.6–854.7, 727.7
3 9 0.44–1.39, 0.85 1.54–1.87, 1.73 112–134, 121 591.6–753.7, 690.4
4 7 0.59–1.39, 1.10 3.24–3.45, 3.37 146–172, 158 670.9–937.8, 811.6
5 4 0.71–1.47, 1.17 1.93–2.66, 2.31 115–158, 137 743.1–822.0, 780.8

Complete-link:

1 253 0.12–1.44, 0.52 2.17–2.80, 2.57 91–123, 109 307.3–970.6, 468.6
2 18 0.39–1.49, 0.91 1.64–2.44, 1.91 112–164, 128 591.6–854.7, 712.9
3 6 0.59–1.39, 1.11 3.24–3.45, 3.36 153–172, 160 670.9–937.8, 812.6

Average-link:

1 253 0.12–1.44, 0.52 2.17–2.80, 2.57 91–123, 109 307.3–970.6, 468.6
2 23 0.38–2.47, 1.12 1.54–2.66, 1.95 112–164, 129 591.6–854.7, 722.4
3 9 0.59–1.81, 1.21 3.18–3.50, 3.37 146–172, 159 670.9–937.8, 792.5

k-medoids:

1 255 0.12–3.09, 0.64 2.17–3.45, 2.60 91–172, 111 307.3–937.8, 469.0
2 19 0.38–1.97, 0.99 1.54–2.27, 1.85 112–164, 125 591.6–854.7, 709.9
3 10 1.07–3.29, 2.29 3.50–4.44, 3.98 116–286, 257 225.9–797.8, 320.3
4 10 0.30–2.12, 1.18 2.27–2.79, 2.48 101–158, 116 743.1–970.6, 844.5
5 6 1.25– 2.53, 1.74 2.96–3.73, 3.41 207–267, 242 268.4–351.2, 298.1

In conclusion, the geometric partitional algorithm is most suitable for the selec-
tion of minor but correct representatives from the ensemble of intermediates.

3.2 Protein-Ligand Docking

A well-known difficulty with the current scoring functions for protein-ligand
docking is that they often fail to rank the docked poses correctly [18] (Figs 1,
2). Because both the correct and incorrect poses are similarly ranked, it greatly
reduces the value of the computational results to the practitioners such as medic-
inal chemists for either lead identification or optimization. One reason for im-
proper ranking is that the scoring functions themselves have errors. From an
algorithmic viewpoint, the failure originates also from the formulation of the
docking problem as a global optimization problem that seeks to find the mini-
mum in a scoring function with many variables. The complexity of the scoring
functions forces the current docking programs to rely on heuristics such as GA



A Geometric Clustering Algorithm and Its Applications to Structural Data 365

or MC to search for the minimum. However, such a formulation is not consistent
with the statistical mechanics conclusion that an experimentally-measured pose
corresponds to the ensemble average, not necessary the global minimum of a
scoring function [19]. Assuming that a cluster represents a statistical ensemble,
a good scoring function should be able to identify the best (or correct) cluster
with high probability though it may fail to assign the best score to the pose
that is the closest to the experimental one. Here a best cluster means the cluster
whose average RMSD, df , to the experimental pose is the smallest among all
the clusters. Using our geometric partitional algorithm, we have applied both
GOLD and a newly-developed scoring functions (Eqn. 2, 3) to 22 sets of poses
to determine which one is better suitable for the identification of the best clus-
ters. In the following we describe in detail the results on two sets of poses that
represent the extreme cases among the 22 sets: our scoring function works well
for the first but no 100% guarantee is provided for the second.

The first example is human CRABP2 complexed with an RA analog (1CBS).
We first generate three sets of clusters with decreasing dmax values (dmax=5.0,
4.0, 3.0Å), the average scores are then computed for each cluster (Table 2).
Smaller dmax generates smaller but more accurate clusters. With dmax=5.0Å,
there are four major clusters while the poses in each of them distribute rather
uniformly (Figs 1a, 1c). Both GOLD and our scores could select correctly the
most populated cluster as the best cluster. However, with dmax=4.0Å, GOLD
picks wrongly the third cluster as the best one while our score identifies correctly
the second one. With dmax=3.0, GOLD still selects the wrong cluster (the third
cluster with 91 poses) (Figs 1b) while our score identifies correctly the 6th cluster
(15 poses) as the best one with df=2.2Å (Fig. 1d). The main reason for the failure
of the GOLD scoring function is that it does not include any term that accounts
for the contribution of the intermolecular electrostatic interactions to the binding
affinity. For CRABP2 it is well-known that the electrostatic interaction between
the carboxylic group of the RA analog and two arginine residues (R111 and
R132) contributes greatly to the binding [20].

The second example is an HIV protease complexed with a peptide analog
(1AAQ). We first generate three sets of clusters with decreasing dmax values
(dmax=4.5, 3.5, 3.0Å), the average scores are then computed for each cluster
(Table 3). We starts with dmax=4.5Å since only a single large cluster is generated
with dmax=5.0Å. With dmax=4.5Å there are four major clusters while the poses
in each of them distribute very uniformly (Figs 2a, 2c). GOLD picks wrongly
the third cluster as the best one while our score identifies the second as the best
though the most populated one has slightly smaller df . With dmax=3.5Å GOLD
still picks wrongly the third (76 poses) as the best (Fig. 2b) while our score
identifies the 4th (47 poses) (Fig. 2d), 5th (33 poses) and 7th (11 poses) clusters
as the best ones with respective df of 2.7Å, 3.5Å and 11.5Å. With dmax=3.0Å,
GOLD selects the wrong cluster (the 15th cluster with 5 poses) as the best while
our score identifies correctly the 14th cluster (6 poses) as the best with df=2.1Å.
For the HIV protease, the exclusion of electrostatic interaction in the GOLD
scoring function may still contribute to its failure though the latter likely plays
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Table 2. Gold score vs our score of the most populated clusters for 1CBS
poses. The clusters are generated using three decreasing dmaxs. The listed clusters
include more than 90% of the total poses. Ns, ST , SG and df are respectively the
number of structures in a cluster, the average score computed using our and GOLD
scoring functions, and the average RMSD between the GOLD generated poses and the
experimental pose. The lower a score, the better. The three columns with the boldfaced
numbers have the lowest average score as computed by our scoring function.

dmax = 5.0Å:

Ns 186 160 51 45

ST -10.0 -9.5 -6.5 -5.3

SG -44.1 -43.0 -35.5 -31.3

df 6.3 9.6 9.5 12.2

dmax = 4.0Å:

Ns 160 126 91 45 25 18 6

ST -9.5 -10.5 -10.0 -5.3 -6.5 -6.7 -5.7

SG -43.0 -41.9 -45.4 -31.3 -34.7 -37.7 -33.7

df 9.6 5.3 6.2 12.2 9.5 9.5 9.5

dmax = 3.0Å:

Ns 158 106 91 20 17 15 10 8 7 6

ST -9.4 -10.2 -10.0 -6.5 -5.0 -12.5 -6.8 -6.5 -5.3 -6.1

SG -43.1 -42.9 -45.4 -34.8 -30.6 -36.5 -37.6 -37.9 -31.6 -28.1

df 9.6 5.8 6.2 9.5 12.4 2.2 9.3 9.7 12.3 12.4

a small role. Though our scoring function outperforms the GOLD function in all
the 22 cases tested it remains challenging for our function to select the correct
cluster with 100% confidence. In this case, a dozen of outliers with very low
electrostatic energy or ligand internal energy must be removed, otherwise, with
small dmax, both our and GOLD score may mistake the wrong clusters as the
best ones. A systematic approach for such outlier detection and for minimizing
their ill-effects are under the development.

Table 3. Gold score vs our score of the most populated clusters for 1AAQ
poses. The clusters are generated using three decreasing dmaxs. With dmax=3.0Å the
clusters whose number of poses is ≤1.0% of the total number of poses are not shown.
The listed clusters include more than 85% of the total. The symbols have the same
meanings as those in Table 2.

dmax = 4.5Å:

Ns 179 131 80 52

ST -13.3 -13.6 -12.8 -13.5

SG -59.1 -58.8 -61.7 58.5

df (Å) 3.8 4.3 11.2 11.2

dmax = 3.5Å:

Ns 127 91 76 49 33 31 11 10

ST -12.8 -13.1 -12.7 -14.7 -14.7 -13.1 -14.7 -14.3

SG -58.7 -58.8 -61.8 -59.7 -59.3 -58.6 -59.9 -59.0

df 4.2 4.6 11.2 2.7 3.5 11.2 11.3 11.5

dmax = 3.0Å:

Ns 115 81 20 19 15 14 11 10 8 7 6 6 6 6

ST -12.7 -13.1 -12.7 -13.0 -13.8 -11.8 -14.5 -11.9 -13.7 -12.9 -14.2 -14.9 -15.1 -15.5

SG -59.3 -58.9 -62.5 -62.9 -57.6 -63.1 -55.9 -61.1 -60.7 -58.6 -53.6 -53.4 -62.2 -62.4

df 4.2 4.6 11.2 11.4 3.7 11.0 11.0 11.1 2.5 11.1 11.0 2.4 11.2 2.1
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(a) GOLD score vs df (b) The best cluster
picked by GOLD score

(c) Our score vs df (d) The best cluster
picked by our score

Fig. 1. A comparison of GOLD and our scoring functions for best cluster
selection for 1CBS. The x-axis and y-axis in (a, c) are respectively the score and df ,
the RMSD between the docked poses and experimental pose. GOLD ranks 82th the pose
with the smallest df while our score ranks it to the fifth. The lower a score, the better.
The clusters in (b, d) are generated using the geometric algorithm with a dmax=3.0Å.
The protein atoms C, O, N and H in the binding site are colored respectively in green,
red, blue and white while the C and O atoms of the ligand are colored in yellow and
magenta. The experimental pose is depicted in a stick-and-ball model. The figures are
prepared using our own molecule visualization program.

The complexity of the scoring functions force almost all of the current docking
programs to rely on heuristics for optimization. However, a heuristic search may
not cover the pose space adequately as being demonstrated in the above two
examples: the poses with small df to the experimental one are the minority:
less than 5% of the total poses. Another noticeable feature of the set of poses
generated by GOLD is that the poses inside a few large clusters have similar
GOLD scores though their df values differ greatly. Working together with our
scoring function the geometric algorithm, capable of classifying both uniformly
and non-uniformly distributed data, is ideally suitable for the identification of
these minor clusters populated with the correct poses.
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(a) GOLD score vs df (b) The best cluster
picked by GOLD score

(c) Our score vs df (d) The best cluster
picked by our score

Fig. 2. The comparison of GOLD vs our scoring function for best cluster
selection for 1AAQ. The x-axis and y-axis in (a, c) are respectively the score and
df . GOLD ranks 461th the pose with the smallest RMSD while our score ranks 188th.
The protein, ligand and the poses are depicted and their atoms are colored in the same
manner as in Fig.1. The figures are prepared using our molecule visualization program.

3.3 Algorithmic Comparison

Data classification as achieved by a clustering algorithm is a natural exploratory
process for discovery and thus such algorithms have found wide applications in
many different areas. However, as shown by Kleinberg [21] there exists no best
or universal clustering algorithm. The classification of structural data especially
those computed using restraints must take into consideration their unique fea-
tures such as the distribution of data may be both uniform and non-uniform
or both regular and irregular because of the sparseness of the input restraints,
the large error in the current scoring functions, the limited sampling provided
by heuristics and the extreme energy level degeneracy of biomolecules in solu-
tion [19]. In the following we discuss the unique features of the geometric parti-
tional algorithm and compare it with the previous algorithms to show that it is
both efficient and more suitable than the previous algorithms for the analysis of
structural data.

In our algorithm the seeds for new clusters are the data points that form the
largest polyhedron and the points of a previous cluster are divided into the new
clusters according to their minimum distances to the seeds. These seed points are
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likely to be labeled as “outliers” by previous algorithms but our algorithm ini-
tializes the clustering with them and thus ensures them and together with their
neighborhoods to be in different clusters. This is in contrast with the average-
link and k-medoids algorithms and their variants that try to assign the data into
the smallest number of clusters. Consequently, the representatives of the clusters
from our algorithm sample the data space more uniformly than hierarchical and
much more uniformly than k-medoids algorithms do. In additional, unlike hierar-
chical algorithms that only optimize an objective function locally, our algorithm
takes into consideration the global information at the very beginning. The time
complexity of our algorithm is O(n2 logn) that is the same as the agglomerative
hierarchical algorithm implemented with a priority queue [12]. Furthermore, the
implementation suggests that our algorithm is faster than the hierarchical algo-
rithms likely because of the base in the logarithmic function is ≥4 rather than
2 as in a typical hierarchical algorithm. The geometric algorithm is somewhat
similar to the minimum-diameter divisive hierarchical algorithm by Guenoche,
Hansen, and Jaumard [22]. Their key difference lies in how a previous cluster
is divided into new clusters: in the minimum-diameter hierarchical algorithm,
two new clusters are generated by an expensive search for the two balls with the
minimum diameters while in our algorithm up to four new clusters are initialized
with the seeds computed in linear time in terms of the number of data points in
the previous cluster.

The geometric algorithm differs largely from k-medoids algorithms and thus
have no problems associated with them such as (a) the tendency to find hy-
perspherical clusters, (b) the danger of falling into local minimal, and (c) the
variability in results that depends on the choice of the initial seeds. Because our
algorithm classifies the data by iteratively separating them into smaller clusters
according to their distances to the seeds, it is not to be affected by irregular
or non-uniform distributions as it is for a density-related clustering algorithm
such as the k-medoids. The results from the applications to the clustering of
both intermediate structures and poses suggest that the k-medoids algorithms
are not suitable for the classification of structural data.

A possible drawback of our algorithm is that a prior knowledge is required to
specify a dmax value and several dmax values may need to be tried in order to find
the best classification for a data set. As far as the structural data is concerned,
it is not difficult for the practitioners to find a reasonable value for dmax based
on the quality of the data or the required precision in the final clusters.
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Abstract. Ever since its introduction, the haplotype copy model has
proven to be one of the most successful approaches for modeling genetic
variation in human populations with applications ranging from ances-
try inference to genotype phasing and imputation. Motivated by coa-
lescent theory, this approach assumes that any chromosome (haplotype)
can be modeled as a mosaic of segments copied from a set of chromo-
somes sampled from the same population. At the core of the model is
the assumption that any chromosome from the sample is equally likely
to contribute a priori to the copying process. Motivated by recent works
that model genetic variation in a geographic continuum, we propose a
new spatial-aware haplotype copy model that jointly models geography
and the haplotype copying process. We extend hidden Markov models
of haplotype diversity such that at any given location, haplotypes that
are closest in the genetic-geographic continuum map are a priori more
likely to contribute to the copying process than distant ones. Through
simulations starting from the 1000 Genomes data, we show that our
model achieves superior accuracy in genotype imputation over the stan-
dard spatial-unaware haplotype copy model. In addition, we show the
utility of our model in selecting a small personalized reference panel for
imputation that leads to both improved accuracy as well as to a lower
computational runtime than the standard approach. Finally, we show
our proposed model can be used to localize individuals on the genetic-
geographical map on the basis of their genotype data.

1 Introduction

Complex population demography coupled with the presence of recombination
hotspots have shaped genetic variation in the human genome into blocks of
markers with similar recent ancestry [1–3]. This recent ancestry sharing induces
dependencies among variants in the form of linkage disequilibrium (LD), i.e.
the non-random association of alleles at two or more loci [4]. Therefore, the
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observed LD patterns across the genome are the result of a population’s demo-
graphic history and are modeled in a wide-range of problems from population
genetic inferences [5, 6] to medical population genetics [7, 8]. Most notably, LD
has enabled the era of genome-wide association studies that use a small number
of variants (as compared to all variation in the genome) to assay variation across
the entire human genome [9]. Thus, modeling population LD is a fundamental
problem in computational genetics with applications ranging from genotype im-
putation and haplotype inference to locus-specific and genome-wide ancestry
inference [7, 10–15].

Although many approaches for modeling LD have been proposed [3][16], one of
the most successful framework has been introduced by Li and Stephens (widely
referred to as the haplotype copy model [16]). Drawing on coalescent theory, in
this model, a haplotype sampled from a population is viewed as a mosaic of seg-
ments of previously sampled haplotypes. This mosaic structure can be efficiently
modeled within a hidden Markov model to achieve very accurate solutions to
many genetic problems such as genotype imputation [7, 10, 11], ancestry infer-
ence [14, 15], quality control in genome-wide association studies [17], detection of
identity by descent (IBD) segments [18, 19], estimating recombination rates [20],
haplotype phasing [21], migration rates [22] and calling of genotypes at low cov-
erage sequencing [23, 24].

At the core of the Li and Stephens [16] model lies a hidden Markov model
(HMM) that emits haplotypes through a series of segmental copies from the
pool of previously observed haplotypes. The hidden states in the HMM indicate
which haplotype from the reference panel to copy from while emission probabil-
ities allow for potential mutation events observed since the most recent common
ancestor of the target and the reference copy haplotype. Recombination events
are modeled through the transition probabilities; the probability of copying from
the same reference haplotype at successive loci is much higher than switching
to another haplotype, based on the idea the probability of having a recombi-
nation between two neighboring loci is low. Motivated by coalescent theory in
randomly mating populations, the a priori probability of switching the copy
process to another haplotype is equally likely among all the previously observed
haplotypes. However, since human populations show a tremendous amount of
structure across geography [25–27] (inline with isolation-by-distance models),
it is likely that haplotypes physically closer in geography to the target haplo-
type contribute significantly more to the copy process. Furthermore, with the
emergence of high-throughput sequencing that is generating massive amount of
data [28–30], existing methods are increasingly computationally intensive due to
the ever larger samples of haplotypes that can be used as reference. Although a
commonly used approach for reducing computational burden is to downsample
the reference panels [31–33] (often in an ad-hoc manner) a principled approach
for selection of a reference panel for optimizing performance is currently lacking.

In this paper, we propose a new approach to modeling genetic variation in
structured populations that incorporates ideas from both the haplotype copying
model [16] and the spatial structure framework that models genetic variation as



A Spatial-Aware Haplotype Copying Model 373

function of geography [26, 27]. That is, we propose a haplotype copy model that a
priorly up weights the contribution of haplotypes closer in geographical distance
to the copying process. We accomplish this by jointly modeling geography and
the copying process. Each haplotype is associated with a geographical position;
when copying into a new haplotype with known location, we instantiate an HMM
that has switching transition probabilities up weighted for haplotypes closer in
geographical space to the target haplotype.

We use real data from the 1000 Genomes project [2] to show that the our
spatial-aware approach fits the data significantly better than the standard model.
Through a masking procedure followed by a leave-one-out experiment we show
that our spatial-aware method significantly increases imputation accuracy espe-
cially for lower frequency variation (e.g. an improvement of 6% (2%) for low-
frequency (common) variation in Asian data). We also show that our approach
can be used to select a small personalized reference panel for imputation that
increases imputation accuracy while significantly reducing imputation runtime
(up to 10-fold). Finally, we show how our model can be used in a supervised
manner to infer locations on the genetic-geographic map for individuals based
on their genetic data.

2 Methods

2.1 The Standard Haplotype Copying Model

We start by briefly introducing the standard haplotype copying model [16] for
modeling LD in a population. Let H ∈ {0, 1}N×L be a matrix of haplotypes
(which we will refer to as the reference panel), where hij ∈ {0, 1} indicates
if the i-th individual at the j-th position (SNP) contains the reference or the
alternate allele. N denotes the number of haplotypes in the reference panel and
L the number of SNPs in the data. Let h ∈ {0, 1}1×L be a multi-locus haplotype
which we will refer to as the target haplotype where hi ∈ {0, 1} indicates the i-th
SNP. The haplotype copy model views the target haplotype as being composed
of a mosaic of segments from haplotypes of the reference panel.

Formally, we define a hidden Markov model (HMM) specified by a triple
(S, τ, ω), where S is the set of states, τ is the transition probability, and ω is the
emission probability function. The set S contains state variables {s1, . . . , sL}
where sk = {1, 2, · · ·N} indicates from what reference haplotype is the k-th
allele in the target haplotype copied from. The transition probability τ is non-
zero only between pairs of states in consecutive sets of states S, which can be
defined between SNP k and SNP k + 1 as follows

τk(i, j) =

{
θk + (1− θk)/N i = j

(1 − θk)/N i �= j
, where θk = exp(−ρdk).

Here dk is the physical distance between SNP k and SNP k + 1 and ρ = 4Nec
where Ne is the effective population size, c is the average rate of crossover per
unit physical distance per meiosis (e.g. 10−8). This can be easily extended to
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use recombination maps with varying recombination events at different loci in
the genome. The emission probability mimics the mutation process and can be
defined as follows

ω(hk, sk;H) =

{
1− ε hk = Hsk,k

ε otherwise
, where ε =

N

N +
(∑N−1

m=1 1/m
)−1 .

where N denotes the number of reference haplotypes. Intuitively the copying
process is more accurate as the reference sample size grows and it is more likely
to find in the reference a haplotype closely matching the target one.

The likelihood of the target haplotype h is defined as:

P (h|S,H ;λ) = P (S)
∏
k

P (hk|sk, H) =
∏
k

τk(sk−1, sk)

(∏
k

ω(hk, sk;H)

)
(1)

and can be efficiently estimated using the forward/backward algorithm. Inference
in this model is performed using standard HMM approaches such as Viterbi or
posterior decoding. For example, if the target haplotype has any of the alleles
missing, posterior decoding can be employed to estimate the most likely values
conditional on the model and the rest of the target haplotype.

Hap 1   :    A    C    C    G    T    A    T
Hap 2   :    A    C    G    T    A    C    T
Hap 3   :    A    C    C    G    T    A    T
Hap 4   :    A    C    G    T    A    C    T
Hap 5   :    A    C    C    G    T    A    T
Hap 6   :    A    C    G    T    A    C    T
Hap 7   :    A    C    C    G    T    A    T
Hap 8   :    A    C    G    T    A    C    T
Hap 9   :    A    C    C    G    T    A    T
Hap 10 :    A    C    G    T    A    C    T
 

Target :    ?    C    ?    T    A    ?    T  ?    C    ?   A    ?    TAT     

  A    C    G    T    A    C    T
  A    C    C    G    T    A    TA C C G T A T
  A    C    G    T    A    C    TA C G T A C T
  A    C    C    G    T    A    TA C C G T A T
  A    C    G    T    A    C    TA C G T A C T
  A    C    C    G    T    A    TA C C G T A T
  A    C    G    T    A    C    TA C G T A C T

A C G T A C T
  A    C    C    G    T    A    TA C C G T A T
  A    C    G    T    A    C    TA C G T A C T
  A    C    C    G    T    A    T

Fig. 1. An illustration of spatial haplotype copying model. In the left panel, the location
for target haplotype is shown using the star. All haplotypes in the data are color coded
using the distance to the target location (light more distant, darker are closer). We
enforce the transition rates (that encode the copy switching) to give higher weight to
haplotypes closer to the target haplotype. A haplotype at the target location is more
likely to contain mosaic segments from haplotypes that are closer to the target location.

2.2 A Spatial-Aware Haplotype Copying Model

A drawback of the standard haplotype copying model comes from the equal
treatment of reference haplotypes; that is, a priori all haplotypes from the ref-
erence panel are equally likely to contribute to the target haplotype. This effect
motivates us to propose the following approach to take spatial effect into account
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in the model. Let X = {x1, . . . , xN} indicate the locations for all N reference
haplotypes and x indicate the location for target haplotype. In a scenario where
the location of the individuals are not known, we estimate their locations from
genotype data using methods such as PCA [25], SPA [26] or LOCO-LD [27].
Then, instead of using uniform switching probability across all reference hap-
lotypes, we assign higher probability to haplotypes located closer to the target
haplotype. Formally, we redefine the transition rate τ between SNP k and SNP
k + 1 as:

τk(i, j) =

{
θk + (1− θk)pj i = j

(1 − θk)pj i �= j
where pj =

exp(−λψ(x, xj))

Z
.

The function ψ(x, xj) denotes a distance function between x and xj (e.g. Eu-
clidean distance) and Z is a normalization factor to ensure the probability defi-
nition. The parameter λ specifies the effect of geographical distance. It is worth
mentioning that this spatial-aware model can be reduced to standard haplotype
copying model by setting λ = 0, such that pj = 1/N ; therefore our approach
can be viewed as a generalization of the standard Li and Stephens model. An
illustration of our model is shown in Figure 1. Intuitively a large value for λ
indicates a more pronounced spatial effect (less probability to copy from distant
haplotypes), while λ = 0 reverts to assigning equal a priori probability.

The likelihood of the target haplotype is defined as before by summing on
all paths in the model (Eq 1). Inference in this model can be performed as in
the standard haplotype copy model using a combination of Viterbi and posterior
decoding as function of the particular application.

2.3 Estimation of Spatial Effect Parameter λ

A pre-requisite step in applying our model is the specification of λ. It is necessary
to estimate the λ before using the model for various applications, as the value
of λ could vary significantly across individuals or populations. We estimate λ
through maximum likelihood estimation (MLE). Starting from the likelihood of
the target haplotype h (Eq 1), we marginalize over all possible values of hidden
variables S to obtain likelihood as function of λ:

L(h;λ) =
∑
S

P (h|S,H) (2)

However, this overall likelihood function is infeasible to optimize directly, as the
number of all possible values of S is very large LN . Although the likelihood
computation can be reduced by forward-backward algorithm to O(NL), the
gradient is still very expensive to compute, as the calculation would involve
a forward-backward in O(NL) and a summation of O(N2L) terms. When the
number of reference haplotypes is large, this gradient would be infeasible to
compute. Fortunately, the gradient for the Q function in EM algorithm is much
simpler to compute than the gradient of likelihood function in (2). It is also
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Algorithm 1. Learning Algorithm for Parameter λ Estimation

1: Setting optimization parameters R and C (e.g., R = 1× 103 and C = 20)
2: Pre-computing ψ(x, xj) for all reference haplotype j, and θk for all k.
3: Randomly initialize λ(0) > 0
4: for t from 0 to T do
5: Perform forward-backward algorithm to get the forward/backward probability
6: Compute stochastic gradient g(λ(t)) by sampling R pairs of i and j in (4)

7: Setting λ(t+1) = λ(t) +
1

t+ C
· g(λ(t))

8: end for
9: Output λ(T+1)

guaranteed that the gradient of the Q function will be an increasing direction
for the original likelihood function, which is a theoretical property of the EM
algorithm. Thus, we resort to compute the gradient of the Q function instead of
the gradient of original likelihood function.

First, the Q function in EM algorithm can be written as follows

Q(λ, λ(t)) =
∑
S

P (S) lnP (h, S;λ)

∝
∑
kij

P (sk−1 = i, sk = j;λ(t)) ln τk(i, j;λ) (3)

The gradient for this Q function can be calculated as follows

∂Q

∂λ
= −

∑
kij

P (sk−1 = i, sk = j;λ(t))

⎛⎜⎜⎝ ψ(x, xj)−
∑

l ψ(x, xl)pl

1 + I(i = j)

(
θk

(1− θk)pj

)
⎞⎟⎟⎠ (4)

where the identity function I(i = j) is equal to 1 when i = j and 0 otherwise.
However, simply calculation of this gradient will also be inefficient with the com-
plexity O(N2L), which is still expensive for thousands of reference haplotypes
and millions of SNPs. We resort to computing a stochastic gradient for the Q
function, and apply it to the original likelihood function as a searching direction.
We estimate the gradient by sampling over N haplotypes, instead of enumer-
ating all of them. In practice, between each pair of SNP k and SNP k + 1, we
randomly sample 1000 pairs of sk−1 = i and sk = j, instead of all N2 pairs. The
overall algorithm for efficient optimization of the spatial effect parameter λ is
described in Algorithm 1.

2.4 Localization of Individuals Based on Their Genetic Data

Another appealing application for spatial-aware haplotype copying model is to
localize individuals on the map. That is, given locations X for all reference
panel haplotypes, we seek to find the best location x for the target haplotype
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to maximize the likelihood of the data. The algorithm follows similar procedure
as above section 2.3. The difference mainly comes from a different Q function as
follows

Q(x, x(t)) =
∑
S

P (S) lnP (h, S;x)

∝
∑
kij

P (sk−1 = i, sk = j;x(t)) ln τk(i, j;x) (5)

which is parameterized by x instead of λ as in Equation (3). However, this
change leads to non-concavity of the function in general. But since there is only
one parameter to estimate, and the function is well behaved in practice, we
can still compute the gradient for the Q function and apply it to the stochastic
gradient descent method. The gradient for the Q function in Equation (5) can
be calculated as follows

∂Q

∂x
= −

∑
kij

P (sk−1 = i, sk = j;x(t))λ

⎛⎜⎜⎝
∂ψ(x,Xj)

∂x
−
∑

l pl ·
∂ψ(x,Xj)

∂x

1 + I(i = j)

(
θk

(1− θk)pj

)
⎞⎟⎟⎠(6)

we can use Euclidean distance ψ(x,Xj) = ||x −Xj ||2 as a sufficient estimation
of spatial distance. Thus, the gradient of the distance metric becomes

∂ψ(x,Xj)

∂x
=

x−Xj

||x−Xj ||2

The overall algorithm is similar as Algorithm 1 for optimizing λ, except for
replacement of λ by x and the gradients correspondingly.

3 Experimental Results

3.1 Estimation of Spatial Copying Effect in the 1000 Genomes Data

We applied our methods to data generated part of the 1000 Genomes project [2].
A total of 1092 individuals were collected from 14 populations across the Euro-
pean, Asian, African and American continents. For all of our simulations we used
157, 827 SNPs on chromosome 22, where 79.5% of SNPs are rare SNPs (allele
frequency < 0.05), and the rest 20.5% are common SNPs; although the original
data contained 473, 481 SNPs, for computational efficiency we down sampled
to every third SNP. Among the considered SNPs, we assumed that only 2, 931
SNPs present on the Affymetrix 6.0 SNP array are collected and the remaining
SNPs will be imputed using our model. This amounts to using 1.86% SNPs to
impute the rest 98.14% SNPs. We apply PCA [25] to assign a geographical lo-
cation to each individual in the dataset. Although we note that the imputation
performance can be further improved if denser SNPs are assumed to be typed,
we expect the general trends reported below to maintain.
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Fig. 2. Estimated spatial copying effects λ∗ across different populations in 1000
Genomes data. Left shows the average λ∗ across all individuals in a given popula-
tion while right displays the log likelihood ratio of the model with λ∗ as compared to
λ = 0. The error bars indicate the standard deviations for each population.

Starting from the 2, 931 SNPs, we estimated the spatial effect parameter λ for
each of the 2, 184 haplotypes in the dataset. The average λ values are 1.54, 1.76,
1.30 and 1.32 for European, Asian, African and American populations, respec-
tively (Figure 2). Generally, the higher value of λ corresponds to stronger spatial
copying effect, which leads to more segments copied from nearby haplotypes. To
test the significance of spatial effect, we compared the likelihoods of the data (the
2,184 haplotypes) within the model assuming no spatial effect (λ = 0) versus
the model with spatial effect (λ∗ estimated from the data). The log likelihood
ratio between spatial haplotype copying model and standard haplotype model is
given in Figure 2. The likelihood is computed for each haplotype being emitted
from the rest of haplotypes. Across all populations we observe that the model
with a spatial effect fits the data much better than the model with no spatial
assignment. This is expected since we use haplotypes across all continents (ex-
cept the target) in the reference panel, and it is expected that haplotypes share
more continental-specific segments.

3.2 Spatial-Aware Model Improves Imputation Accuracy

Having established that the model with spatial effect fits the data much better
than the standard model with no spatial effect, we focused next on haplotype
imputation (a standard approach in genome-wide association studies through
pre-phasing [34]). We carry out a leave-one-out procedure to perform the eval-
uation. In each round, we select one haplotype as a target and use the rest as
the reference panel. To remove potential bias, instead of using all haplotypes,
we randomly select one haplotype from each individual to use a total of 1, 092
haplotypes (i.e. each round imputes one haplotype from the remaining 1, 091).
The imputation results are evaluated using the average per-SNP r2 correlation
coefficients averaged across all leave-one-out rounds for either all haplotypes, or
for data within each population.

We first demonstrate the effect of the lambda parameter on imputation ac-
curacy by applying our model using a wide range of lambda parameter values.
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Fig. 3. Effect of spatial copying parameter λ on imputation accuracy. Left shows results
for low-frequency (1−5%) while right displays results for common variants (> 5%). The
maximum accuracy is attained at a λ ≈ 2, close to the maximum likelihood estimate
for λ (1.3 to 1.7, see Section 3.1).

Compared with the baseline method (λ = 0), we observe that a clear improve-
ment is obtained for a value of λ around 2, especially for European and Asian
populations (see Figure 3). This is consistent with the spatial model fitting those
populations (see Figure 2). We also observe that the spatial model improves the
imputation of rare variants more significantly than common variants, which is
expected as the rare variants are more clustered geographically [35]. Moreover,
the improvement for Asian and European populations is larger than for African
and American populations.

Although we have shown that spatial model improves accuracy, in practice
the value of λ is unknown and needs to be estimated from the data. We re-
assessed the accuracy of our approach by not setting λ to pre-specified values
but by estimating it from the data. The performance of the model using the
maximum likelihood λ∗ over baseline method is given in Table 1. As before, we
observe a larger improvements for rare variants than common variants. A plau-
sible explanation for this effect is that that rare variants are more clustered in
geography [35] than common variants. Overall for all populations, the improve-
ment is highly correlated with allele frequency. The trend is shown in Figure 4,
where we can see that the improvement is higher for SNPs with lower allele
frequency.

3.3 Selection of a Personalized Reference Panel for Imputation to
Increase Performance

Inspired by the significant spatial haplotype copying effect in experiments, we hy-
pothesized that imputation efficiency can be improved by only using a personal-
ized reference panel composed only from geographically close haplotypes [32, 31].
First, we expect that most of the reference haplotypes are not contributing hap-
lotype segments to target haplotype. In Figure 5, we observe that the number
of copied haplotypes decreases with higher λ (e.g. an average of 100 haplotypes
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Fig. 5. Spatial effect on copied haplotypes from reference. Left shows that the number
of copied haplotypes decreases while the spatial effect parameter is larger. Right shows
that the averaged distance from copied haplotype decreases while the spatial effect
parameter is larger.

Table 1. Performance of spatial model compared to the standard model

Methods European Asian African American

Low Frequency Variants
Baseline (λ = 0) 0.5560 0.4115 0.4833 0.5549

Spatial model with λ∗ 0.5834 0.4364 0.4912 0.5654
Relative Improvement 4.92 % 6.05 % 1.63 % 1.89 %

Common Variants
Baseline (λ = 0) 0.7790 0.7189 0.6498 0.7701

Spatial model with λ∗ 0.7939 0.7326 0.6605 0.7765
Relative Improvement 1.90 % 1.91 % 1.64 % 0.84 %

are used in the copy process of a new target among 1091 reference haplotypes).
On the other hand, in Figure 5, we plot the distance of those useful reference
haplotypes from the target haplotype, weighted by the posterior. We observe
there is a significant decrease of haplotype copying distance for higher λ value.
It strongly suggests that the haplotype copying model can be significantly sped
up by only keeping a small number of nearby haplotypes as reference panel.
To assess this scenario, we re-imputed the target data using gradual decreasing
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Fig. 6. Imputation accuracy versus computational time. Left shows low-frequency vari-
ants (1-5%) while right shows results over common variants (> 5%).
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Fig. 7. Left shows results of PCA on chromosome 22 of the 1000 Genomes data while
right shows results of our leave one out procedure to localize 1000 Genomes individuals

sizes for the reference panel (1091, 800, 600, 400, 200, 100 and 50) where we
only keep the most nearby haplotypes in geographical space. The relation be-
tween imputation correlation coefficients and computational CPU time is shown
in Figure 6. We observe that the computational time can be improved linearly in
the size of reference panel but the imputation performance is also improved even
using less number of reference haplotypes. For rare variants, the best imputation
performance is obtained at 400 haplotypes and for common variants, the best
imputation performance is obtained at 200 haplotypes.

3.4 Localization of Individuals on a Map

Finally, we explored whether we can use our approach to infer the location on
the map of a new individual given data of individuals with known locations.
We localized individual haplotypes using spatial-aware copying model with op-
timal λ value estimated before assuming known locations for the rest of the
haplotype data. That is, in each round, we apply spatial-aware model to infer
the optimal x∗ for one individual using all other other individuals as reference
panel (PCA was used to infer locations for the reference panel). We observe that
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spatial-aware model is able to well identify individual locations, in terms of the
clear separating of different continents (see Figure 7). We observe a high cor-
relation coefficient between the PCA and our inferred geographical (r = 0.87),
thus showing that our approach can potentially be used to localize individuals
on a map given training data with known locations (see Figure 7) .

4 Conclusions

The haplotype copying model plays an important role in a wide variety of genetic
applications. A major drawback is that the model assumes that all haplotypes
in the reference panel equally contribute a priori to the observed haplotype.
In this paper, we have proposed a spatial-aware haplotype copying model that
takes the spatial effects into account. We have also presented a highly efficient
algorithm to estimate the spatial effect parameter before using the proposed
model. We applied the proposed model to the 1000 genomes data set for several
applications. First, we estimate the likelihood ratio between the spatial-aware
model and spatial-unaware model, and a significant improvement is observed.
Second, we test the application of imputation using spatial-aware model and ob-
tain significant improvement over standard model. Finally, we apply this model
to localize individuals and the results indicate high accuracy can be obtained.
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Abstract. It is becoming increasingly impractical to indefinitely store
raw sequencing data for later processing in an uncompressed state. In
this paper, we describe a scalable compressive framework, Read-Quality-
Sparsifier (RQS), which substantially outperforms the compression ratio
and speed of other de novo quality score compression methods while
maintaining SNP-calling accuracy. Surprisingly, RQS also improves the
SNP-calling accuracy on a gold-standard, real-life sequencing dataset
(NA12878) using a k-mer density profile constructed from 77 other in-
dividuals from the 1000 Genomes Project. This improvement in down-
stream accuracy emerges from the observation that quality score values
within NGS datasets are inherently encoded in the k-mer landscape of the
genomic sequences. To our knowledge, RQS is the first scalable sequence-
based quality compression method that can efficiently compress quality
scores of terabyte-sized and larger sequencing datasets.

Availability: An implementation of our method, RQS, is available for
download at: http://rqs.csail.mit.edu/.

Keywords: RQS, quality score, sparsification, compression, accuracy,
variant calling.

1 Introduction

In the past two decades, genomic sequencing capabilities have increased exponen-
tially, outstripping advances in computing power and storage [1, 2]. Capitalizing
on this deluge of data is heavily dependent on the ability to efficiently store, pro-
cess and extract meaningful biological insights from sequencing datasets, which
is becoming correspondingly more difficult as more data is generated.

Early studies on compressing NGS datasets have mainly focused on compress-
ing sequence data itself, aiming to leverage the inherent redundancy present in
read sequences to reduce the space needed for storing ‘raw’ reads [3–7]. Fur-
thermore, Loh et al. [8] demonstrated that it is possible to further exploit this
redundancy through the use of succinct data structures that allow us to operate
directly on the compressed data, saving CPU time as well as space.

That said, the Phred quality scores encoding the “base-calling confidence”
take up more than twice the space on disk as the read sequence itself

R. Sharan (Ed.): RECOMB 2014, LNBI 8394, pp. 385–399, 2014.
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(∼ 2.3x− 2.8x for Illumina reads). Furthermore, it is more challenging to com-
press the quality scores [9], as they not only have a larger alphabet size (ranging
from 63 to 94 characters depending on the sequencing technology), but also
have limited repetitive patterns as well as little direct correlation with the bases
sequenced.

Computational methods for NGS quality compression fall into twomain camps:
lossless compressionmethods that include general-purpose text-compressors, such
as GZIP, BZIP2 or 7zip, as well as methods specialized to exploit the local sim-
ilarity of quality values for further compression [7, 10, 11]; and lossy compres-
sion methods that aim to achieve further compression by sacrificing the ability to
reconstruct the original quality values [9, 12, 13].

A recent area of investigation in quality score compression is exploiting se-
quence read information within NGS datasets in order to boost the compression
of quality scores. Most of these methods need to compute expensive whole-
genome alignments of the NGS read dataset, then use additional position and
coverage information obtained from the alignments to compress quality values
[4, 6, 14]. However, it has been shown that alignment-agnostic methods can also
utilize sequence data to achieve better compression of quality values [15], but
again require costly operations (e.g. BWT) to be run on the entire read dataset.
Thus far neither approach has been able to truly address the scalability problem
of quality score compression for terabyte-sized or larger NGS datasets.

In this paper, we introduce a highly efficient, scalable, and alignment-free
k-mer based algorithm, “Read-Quality-Sparsifier” (RQS), which sparsifies qual-
ity score values by smoothing a large fraction of quality score values based on
the k-mer neighborhood of their corresponding positions in the read sequences.
In particular, RQS constructs a comprehensive database, or dictionary, of com-
monly occurring k-mers throughout a population-sized read dataset. Once this
database is constructed it can be used to compress any given read dataset by
identifying k-mers within each read that have a small Hamming distance from
the database; assuming that any divergent base in a k-mer likely corresponds to
a SNP or machine error, we preserve quality scores for probable variant locations
and discard the rest.

Our “coarse” representation of quality scores leads to great savings in storage.
Throwing away this much information significantly improves the compression ra-
tios, allowing us on average to store quality scores at roughly 0.4 bits per value
(from the original size of 6− 7 bits). The scalability of our method arises from
the fact that the k-mer database needs to be constructed only once for any given
species, and the quality sparsification stage is very efficient. As a surprising re-
sult, our quality sparsification method not only significantly outperforms other
de novo quality compression methods based on efficiency and compression ratio,
but is also able to improve downstream variant calling accuracy. The improve-
ment in downstream SNP-calling accuracy of the compressed dataset emerges
from the fact that base calling confidences within NGS datasets are inherently
encoded in the k-mer landscape of genomic sequences. Notably, supported by
experimental results on annotated real data, our study demonstrates that
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k-mer density profiles of read sequences are more informative on av-
erage than ∼95% of the quality score information.

We validate RQS on real NGS exome and genome read datasets taken from
1000 Genomes Project Phase 1 [16]. Specifically, we demonstrate the superior
compression ratio and efficiency of our method on Illumina read sequences of
77 British individuals (see Appendix B), comparing the variant call accuracy
to other de novo quality compression methods. We also give preliminary results
showing that, compared to a ground truth genotype annotation of NA12878,
RQS compression achieves better downstream SNP-call accuracy compared to
the uncompressed quality values.

While lossy compression of quality scores has not been widely adopted
by biologists due to loss of precision [6], our RQS method remediates this effect
by improving the accuracy of downstream genotyping applications. It does so by
capitalizing on the k-mer landscape of a read dataset. The usefulness of k-mer
frequencies for inferring knowledge about the error content of a read sequence
has been studied [17–19]—in fact, many sequence-correction and assembly meth-
ods directly or indirectly make use of this phenomenon [20–23]; however, to our
knowledge, RQS is the first such method to traverse the k-mer landscape for
quality score compression, thereby improving efficiency, compression-ratio, and
accuracy.

2 Methods

At a high level, RQS is divided into two separate stages (Figure 1). In the first
preprocessing stage, we generate a dictionary, D, of all k-mers that appear with
high multiplicity in a representative collection (corpus) of reads. In the second
sparsification stage, we look at the k-mers in a read. k-mers that are close to our
dictionary (as measured by Hamming distance) have nearly all of their quality
scores discarded. RQS keeps only the low quality scores for bases where the
k-mer differs from the dictionary.

More precisely, with NGS read data, we are given a corpus C of reads with
depth coverage t of some consensus sequence G. We will assume an independent
accuracy rate of p for each base call, and let q = 1 − p be the variation rate
(whether caused by machine error or by a SNP). As usual, we identify reverse
complements together. Let γk be the multiset of all k-mers that appear in a read
γ, counting multiplicity. Similarly, let Gk and Ck be respectively the multiset of
all k-mers that appear in G and the reads of C.

Let Δ(x, y) be the Hamming distance between two k-mers x and y, and let
Δ(x,D) be the minimum Hamming distance from x to any k-mer in D. Then
we generate a dictionary of all k-mers that appear at least r times in Ck, which
approximates Gk for r, k and p sufficiently large. These “good” k-mers are
then used to identify high confidence base calls in reads: if a k-mer is within
Hamming distance 1 from D, we assign high confidence to all locations where
there is concordance among it and all its Hamming neighbors in D. Each read
can be covered by overlapping k-mers, allowing us to identify high confidence
base calls in that case as well.
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The sparsification procedure then consists of two separate steps. First, we
discard quality values for all high confidence base calls. Then, we discard quality
values for all base calls above some threshold value Q. In our implementation,
for later downstream analysis, we replace all discarded values with Q.

Below we present pseudocode for a simplified version of RQS (an efficient im-
plementation is described in appendix A). DICT(C, k, r) (alg. 1) takes the corpus
of reads C and returns a list D of all k-mers that appear at least r times. Using
Hamming distance from D, MARK KMER(x,D) (alg. 2) generates a boolean
vector marking each position in a k-mer x that corresponds to a high-confidence
call. MARK READ(γ,D) (alg. 3) then repeatedly calls MARK KMER to gener-
ate the vector of high-confidence calls in read γ. SPARSIFY RQ(γ,Q,D,Q) (alg.
4) calls MARK READ to locate high-confidence calls and then discards both the
corresponding quality scores and quality scores above a cut-off threshold Q.

Input: C, k, r
Output: D

D = { }
A = [0, . . . , 0] ∈ N

4k

for x ∈ Ck do
A[x]+ = 1

for x ∈ [4k] do
if A[x] ≥ r then

D.append(x)
return D

Algorithm 1. DICT(C, k, r): Gener-
ates a dictionary of all k-mers that ap-
pear at least r times in a corpus C of
reads

Input: x,D
Output: M

if Δ(x,D) > 1 then
M = [F, . . . , F ] ∈ {T, F}k

else
M = [T, . . . , T ] ∈ {T, F}k
for y ∈ D s.t. Δ(x, y) = 1 do

for i ∈ [k] do
if xi 	= yi, then M [i] = F

return M

Algorithm 2. MARK KMER(x,D):
Marks high confidence locations in a k-
mer x using a dictionary D

Input: γ,D
Output: M

Let xa be the k-mer in γ starting at a.

Cover γ by k-mers {xa1 , . . . , xan}.
for i ∈ [n] do

M i = MARK KMER(xai , D)

M
i
= [F, . . . , F ] ∈ {T, F}length(γ)

for j ∈ [k] do M
i
j+ai−1 = M i

j

M = M
1
OR · · · OR M

n

return M
Algorithm 3. MARK READ(γ,D):
Marks high confidence calls in read γ us-
ing dictionary D

Input: γ,Q,D,Q
Output: Q′

Q′ = Q
M = MARK READ(γ,D)
for i ∈ length(γ) do

if (Qi > Q) OR (Mi = T ) then
Q′

i = Q
return Q′

Algorithm 4. SPARSIFY RQ
(γ,Q,D,Q): Sparsifies the quality
vector Q associated with read γ using
a dictionary D; discarded qualities
replaced with Q
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Fig. 1. Preprocessing. (a) A dictionary of k-mers that appear at least r times in
a corpus of NGS reads is generated. Sparsification. R is a read sequence and Q is
a corresponding quality score string. Ri,j is a k-mer within Ri starting at position
j. (b) We choose multiple k-mers to cover the read sequence. If a particular k-mer
is within Hamming distance 1 of a k-mer in the dictionary, then we can sparsify the
quality scores that correspond to the positions in the k-mer. (c) R1,1, R1,4, and R1,7

are exactly distance 1 from the dictionary. We mark the locations where they do not
match the dictionary k-mer and smooth all the other quality scores. Note that although
R1,4 has a mismatch, that location is still smoothed because the location is covered by
R1,1, which does not have a corresponding mismatch at the same position in the read.
(d) Only R2,1 is within Hamming distance 1 of the dictionary. However, it has two
Hamming neighbors in the dictionary. We only smooth the quality scores where there
is concord among all Hamming neighbors and R2,1. Neither R2,4 nor R2,7 contribute
because they are too far away from the dictionary. (e) Last, we smooth all quality
scores above a threshold.

2.1 Theoretical Guarantees

For completeness, we present an analysis of the composition of D, showing that
under certain conditions, D ≈ Gk. Let Σ = {A,C,G, T } ∼= Z/4Z be the alpha-
bet, and let G ∈ ΣN be the consensus sequence—note, we will assume that we
are not given G. Let the multiset counting multiplicity of all k-length substrings
of G be denoted by Gk.

We construct an idealized variation model combining both machine error in
the base call and the presence of SNPs. Let p ∈ [0, 1] and q = 1 − p. Let the
random variable σ : [0, 1]→ Σ be defined by

σ(ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if ω ∈ [0, p)

1, if ω ∈ [p, p+ q/3)

2, if ω ∈ [p+ q/3, 1− q/3)

3, if ω ∈ [1− q/3, 1]

(1)



390 Y.W. Yu, D. Yorukoglu, and B. Berger

Thus ∀l ∈ Σ, l + σ = l with probability p. This is to say that a base is read
correctly with probability p and incorrectly with probability q.

Given x ∈ Σk, define xi as the ith letter (base) of x. For all x ∈ Σk, define
independently the Σk-valued random variables Rx by ∀i, Rx

i = xi + σi, where
σi, . . . , σk are i.i.d. copies of σ. Thus, Rx can be thought of as a read of x,
including machine errors and SNPs. Let Ĝk ≡ {Rx|x ∈ Gk}. Ĝk thus corresponds
to a version of Gk with noise.

We are given t independent noisy copies Ĝk,1, . . . , Ĝk,t of Gk, but with a
low error rate q > 0. This assumption corresponds to being given reasonably
accurate reads covering the target genome t times and counting all k-mers. We
want to recover a dictionary Dr approximating Gk (without multiplicity) from
the collection Ḡk ≡ Ĝk,1, . . . , Ĝk,t. Let Ck be the multiset defined as the disjoint

union of Ĝk,1, . . . , Ĝk,t. We will construct the dictionary by simply taking all
k-mers that appear in Ck at least r times, where r is an adjustable parameter.
Intuitively, this process should work because provided the variation rate q is
small, Rx = x often so there will be many exact copies of x in Ck if x ∈ Gk;
however, then Rx = y only rarely for x ∈ Gk and y �∈ Gk, so there will not be
many copies of y in Ck.

Let Δ(x, y) be the Hamming distance between x, y ∈ Σk. Let Δ(x,Gk) =
miny∈Gk

Δ(x, y). Let α(x) = |{i : x ∈ Ĝk,i}|, the number of times x appears

in Ck. Let us denote the i.i.d. copies of Rx in Ĝk,1, . . . , Ĝk,t by Rx,1, . . . , Rx,t.
Then for x ∈ Gk,

P(x ∈ Ĝk,j) ≥ P(x = Rx,j) ≥ pk, (2)

which is just the chance that a noise-free version of x was stored in Ĝk,j . Let

1x∈Ĝk,j
be an indicator variable for the event {x ∈ Ĝk,j}. Then

(α(x)|x ∈ Gk) =

t∑
j=1

1x∈Ĝk,j
=⇒ E(α(x)|x ∈ Gk) ≥ tpk. (3)

Furthermore, by applying a Chernoff bound, for any δ1 > 0,

P
(
(α(x)|x ∈ Gk) < (1− δ1)tp

k
)
≤ e

−δ21tpk

2+δ1 . (4)

Recall that we defined our dictionary Dr ≡ {x ∈ Ck|α(x) ≥ r}, which consists
of all members of Ck with multiplicity at least r. Then,

E
∣∣{x ∈ Dtpk(1−δ1)|x ∈ Gk}

∣∣ ≥ |unique(Gk)|
(
1− exp

(
−δ21tpk
2 + δ1

))
, (5)

where unique(Gk) is the k-mer set obtained by discarding multiplicity of k-mers
in Gk. So long as tpk is reasonably large and (1− δ1) is not very big, most of Gk

is expected to fall in Dtpk(1−δ1).
We also want to be able to say that most elements not in Gk do not fall in Dr.

For simplicity of analysis, let us assume that all Gk is well-separated and sparse
in Σk (NB: this assumption does not hold for repetitive regions in the genome)
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so that for x, y ∈ Gk, P(R
x = Ry|x �= y) is negligible. Then we can separately

consider for each x ∈ Gk, the number of collisions among Rx,1, . . . , Rx,t. P(Rx =
y|Δ(x, y) = d) =

(
k
d

)
pk−dqd ≤ (kq)d. If kq < 1, the probability mass decreases

and is spread thinner for higher d, so it is sufficient to bound collisions conditional
upon all the probability mass staying within Hamming distance 1. Note that this
assumption also implies that |unique(Gk)| = |Gk|.

By symmetry, under these conditions, P(Rx = y|Δ(x, y) = 1) = 1
3k since there

are 3k possible positions for Rx to go. Let 1Rx=y be an indicator variable. Then
for every y,

(α(y)|Δ(x, y) = 1) =

t∑
j=1

1Rx,j=y =⇒ E(α(y)|Δ(x, y) = 1) =
t

3k
. (6)

By again applying Chernoff, for any δ2 > 0,

P

(
(α(y)|Δ(x, y) = 1) > (1 + δ2)

t

3k

)
≤ e

−δ22t

3k(2+δ2) . (7)

Putting it all together,

E

∣∣∣{x ∈ D t
3k (1+δ2)|x �∈ Gk}

∣∣∣ ≤ |Gk|3k exp
(

−δ22t
3k(2 + δ2)

)
. (8)

Thus, equation 8 shows that as read multiplicity r increases Dr contains
exponentially fewer k-mers that are not in Gk. Additionally, equation 5 shows
that if r is small compared tpk, Dr contains nearly all of Gk. Whether or not
there exists a value of r that makes Dr sufficiently close to Gk for our purposes
is of course dependent on the exact parameters k, q, and t. However, because the
simplifying assumptions we made do not perfectly reflect real data, instead of
attempting to compute r, we swept over different values of r in our results section.
These bounds do however show that as coverage t grows, there are parameters
for which Dr asymptotically approaches Gk. As we demonstrate in the results,
we are close enough to that regime for accurate and effective compression.

3 Results and Discussion

RQS performs impressively in terms of both compression rates and effects on
downstream variant calling. In the first experiments, we demonstrate that RQS’
performance is superior to existing methods in a more careful analysis of ef-
fects on downstream variant calling on chromosome 21 using the gold standard
of NA12878. Most interestingly, RQS improves downstream variant calling, de-
spite throwing away most of the quality scores. The second experiment demon-
strates RQS’ ability to successfully scale to the whole human genome by using a
sampling algorithm for generating the dictionary.



392 Y.W. Yu, D. Yorukoglu, and B. Berger

Datasets. We generated our dictionary from a subset of the reads from the
genomes of 77 British individuals with data taken from the 1000 Genomes
Project, Phase 1 (see Appendix B for details). Read lengths ranged from 50-
110bp, and there was a total depth coverage of 460 across all 77 individuals.
Variant calling was performed using samtools [24], and BZIP2 was used to fur-
ther compress the sparsified quality scores. For chromosome 21 analyses, we first
filtered the reads in our corpus by those mapping to chromosome 21 using BWA
[25] in combination with GATK [26]. For the whole human genome, we again
used the same 77 British individuals and considered all reads mapping to any
chromosome using a sampling approach.

Parameters. We chose k = 32 for two reasons. Importantly, 32-mers can be
stored efficiently in 64-bit numbers, facilitating both ease of implementation and
runtime. Additionally, our theoretical results were dependent on k-mers from our
corpus being sparse; thus, k needs to be sufficiently large. We chose Q = 40 as
40 was close to the average quality score in the corpus.

Choice of read multiplicity r for inclusion in the dictionary is highly dependent
on read depth of the corpus. Additionally, our theoretical guarantees assume
random distribution of k-mers in the corpus, which is not necessarily true for
repetitive regions of the human genome. Thus, we used several different values
of r in our experiments. For our last analysis though, we sweep over k-mer
multiplicity r = 25, 50, 100, 200, 350, 550 to provide some guidance as to the
trade-offs involved.

3.1 RQS Out-Performs Existing Compression Methods

Here we show that our method offers a reduction in size over state-of-the-art
lossless algorithms currently available and performs at least as well as lossy al-
gorithms we have encountered in the literature. We measured the performance
of several different compressors on the quality scores of HG02215, chromosome
21. General purpose lossless text compressors naturally have perfect fidelity for
downstream variant calling, but also are unable on their own to achieve compres-
sion levels better than roughly 3.6 bits per quality score, which is only just over
a 50% reduction in space. Of the three general purpose compressors we used,
7zip (PPMd) outperformed both BZIP2 and GZIP.

Read-Quality-Sparsifier, as implemented in this paper, only makes use of re-
dundancy by replacing scores with the constant threshold value Q, and so must
be paired with one of the general purpose compressors to compress the modified
scores. Surprisingly, the relative efficacy of compression after preprocessing with
RQS with r = 50 (see Section 3.4 for choice of read multiplicity parameter) did
not match that of the original scores; indeed, RQS + BZIP2 was by far the most
effective combination, using only 0.2540 bits per quality value for storage.

In addition to the usual general purpose compressors, we also compared our
compressive framework to QualComp [27], which features a tuning parameter to
specify the number of bits needed for quality scores per read. We chose to sweep
the QualComp parameter, bits per read, to match RQS’ compression level and
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accuracy. As displayed in Table 1, RQS performs considerably better on accuracy
than QualComp when a comparable compression level was chosen. Indeed, for
QualComp to match the F-measure of RQS, QualComp needed over 6 times the
space.

Lastly, we compared against the method of Janin et al, 2013 [15], which uses
a computation-intensive Burrows-Wheeler transform and least-common-prefixes
table to smooth high-confidence reads. To ensure comparability, we display in
Table 1 best-in-class parameters taken from those used in their paper. Although
one set of parameters did have slightly higher accuracy than RQS, it came at the
cost of needing over 10 times the disk space. Even at 5 times less compression,
their method was not as accurate at variant calling, as measured by the balanced
F-measure.

Table 1. Relative compression rates of different compressors on the HG02215, chromo-
some 21 dataset. For each method, best results with respect to F-measure are bolded.
Note that QualComp has its own quality storage format, whereas for Janin et al, we
used 7zip (PPMd) to postprocess the smoothed quality scores (as this gave the best
results for their method).

Method Size Bits/Q Precision Recall F-measure
Uncompressed 273 MiB 8.0000 1 1 1

GZIP 143 MiB 4.1923 1 1 1
BZIP2 133 MiB 3.8791 1 1 1

7zip (PPMd) 124 MiB 3.6269 1 1 1
RQS (r = 50) + GZIP 14 MiB 0.3825 0.9867 0.9963 0.9914

RQS (r = 50) + BZIP2 8.7 MiB 0.2540 0.9867 0.9963 0.9914
RQS (r = 50) + 7zip (PPMd) 11 MiB 0.2935 0.9867 0.9963 0.9914

QualComp (25 bits/read) 9.4 MiB 0.2747 0.8988 0.9934 0.9436
QualComp (50 bits/read) 19 MiB 0.5494 0.9329 0.9943 0.9625
QualComp (100 bits/read) 38 MiB 1.0988 0.9746 0.9949 0.9846

QualComp (150 bits/read) 57 MiB 1.6482 0.9874 0.9957 0.9914
Janin et al (2013) (c = 0, s = 1, r = 29) 3.4 MiB 0.0987 0.9279 0.9754 0.9509
Janin et al (2013) (c = 1, s = 1, r = 29) 4.4 MiB 0.1284 0.9283 0.9751 0.9510
Janin et al (2013) (c = 1, s = 5, r = 29) 43 MiB 1.2402 0.9903 0.9887 0.9894
Janin et al (2013) (c = 0, s = 5, r = 29) 43 MiB 1.2416 0.9902 0.9887 0.9894

Janin et al (2013) (c = 0, s = 10, r = 29) 90 MiB 2.6336 0.9953 0.9944 0.9948

3.2 Comparison of Effects on Genotyping Accuracy by RQS,
QualComp, and Janin et al

In the previous section, we considered any differences from the genotype informa-
tion obtained from the original uncompressed data to be errors. In this section we
show preliminary results suggesting that the differences between the SNP-calls
of the RQS-compressed data and uncompressed data do not necessarily indicate
errors, but actually some of them are corrections of the false positive and false
negative SNP-calls obtained using the uncompressed data, improving the over-
all area-under-curve (AUC) of the SNP-calls. To demonstrate this, we tested
our compressive framework on NA12878 genome, an extensively studied indi-
vidual within the 1000 Genomes Project, for which a high-quality trio-validated
genotype annotation is available [28].
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Method BitsQ Time (s) AUC (×10−05)
Uncompressed 8 0 4.4733
RQS, r = 50 0.2264 19 4.6239
QualComp† 0.2631 130 4.3499
Janin et al.* 0.7216 251 4.1903

† QualComp was run with parameters set so
that 20 bits per read were used.

* RQS was run with parameters c = 0, s = 2,
r = 29.
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Fig. 2. ROC curves of genotype calls made from the NA12878 dataset, both before
and after compression, for exome reads of length 76bp, genome reads of length 36bp
and 76bp. For the exome dataset (top), we also compared genotype call accuracies to
QualComp and Janin et al. AUC values are included, integrated up to the largest of
the maximum false positive rates to ensure comparability. To our knowledge, RQS is
unique in improving accuracy, as measured by AUC, through compression. Note that
the maximum true positive rate in the exome dataset is limited by the total fraction
of variants covered by exome reads.

Table 2. Depth-of-coverage and read length information for datasets used in Figure 2

Dataset Read depth-of-coverage Read length

NA12878, chromosome 21 (76bp) 16.9 2x76bp
NA12878, chromosome 21 (36bp) 22.5 2x36bp
NA12878, exome, chromosome 21 5.15 2x76bp

In order to compress the quality scores of NGS reads of NA12878 chromosome
21, we reused the dictionary generated from the set of 77 British individuals, of
which NA12878 is not a member. Table 2 shows the read length, coverage and
sequence type of the NGS datasets used for this experiment.

For each read set, we used samtools to call SNPs over the uncompressed
dataset and computed the ROC curve using annotated variant locations in chro-
mosome 21. Then the same test was performed after compressing the quality
scores. As it is demonstrated in Figure 2, even though the ROC curves occa-
sionally cross, AUC values favor the RQS-compressed data. Because the exome
dataset was much smaller, it was more tractable for multiple comparisons with
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other compression tools. Thus, for the exome dataset specifically, we also com-
pare the ROC curves of Qualcomp and Janin et al. at comparable compression
levels. Unlike the other methods, RQS does not decrease AUC when compared
to that of the uncompressed SNP calls. Furthermore, it is also demonstrably
faster.

3.3 Compressing Large-Scale Whole-Genome Sequencing Datasets
with RQS

We demonstrate that RQS scales to the whole genome using a probabilistic dic-
tionary construction algorithm, as counting the exact number of appearances
in the corpus of k-mers of a large whole-genome NGS dataset of 77 individuals
is computation and memory intensive. Our sampling-based dictionary construc-
tion method identifies 32-mers that in expectation appear at least 500 times in
the original corpus—by taking only 32-mers that appear at least 5 times in a
randomly-chosen 1% of the reads.

Compressing the sampled reads using this method resulted in an average com-
pression of 1.934 bits per quality score. Compressing all the reads—both sampled
and unsampled—of HG02215 (one representative genome from the corpus) re-
sulted in an average compression of 1.8406 bits/score. As is shown in the next
section, these compression levels are better than the rates achieved with r = 350
or r = 550 when analyzing just chromosome 21 (Figure 3). These preliminary
results indicate that we can effectively perform dictionary generation with a
probabilistic sampling scheme and also larger (and potentially more redundant)
genome sequences can facilitate better compression.

3.4 Effect of Read Multiplicity on Compression and Accuracy

We have used several different values for read multiplicity r. Here, we apply
RQS to the chromosome 21 reads in the corpus itself while sweeping over r
to demonstrate the effect on compression and accuracy of variant calling; F-
measure, precision, and recall are measured against the variant calls generated
from the uncompressed data. Note that it is the ratio of read multiplicity to total
depth coverage (here, 460) that matters, rather than absolute read multiplicity.
However, since each read is independently compressed, once the dictionary is
generated from the corpus, read coverage no longer affects the compression ratio.

As depicted in Figure 3, across multiple r values, RQS is able to maintain
high fidelity with respect to the variants called in the uncompressed dataset.
Furthermore, note that the loss of fidelity at r < 200 is not necessarily nega-
tive, as the improvements in accuracy shown in Figure 2 naturally require that
the SNP-calls after compression differ from those for the uncompressed quality
scores. However, we observe that compression rates become dramatically worse
with r values higher than 200. This indicates that, for r > 200, our dictionary
becomes too sparse to achieve high compression ratios.
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50 0.4009 0.9784 0.9933 0.9857
100 0.4134 0.9798 0.9896 0.9846
200 0.8797 0.9932 0.9957 0.9922
350 2.6542 0.9932 0.9981 0.9956
550 2.7770 0.9941 0.9984 0.9962

BZIP2 3.6090 1 1 1
GZIP 3.9173 1 1 1
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Fig. 3. (a) Box plots of precision, recall, F-measure, and compression ratios across
multiple values of read multiplicity r; each data point corresponds to one of the 77
genomes. Compression rates shown here include post-processing with BZIP2. (b) Table
of averages for the same data shown in (a), along with compression levels of BZIP2
and GZIP.

4 Conclusions

Here we have shown that our RQS compressive framework capitalizes on the
redundancies in the k-mer landscape of NGS read data to discard and sparsify
nearly all quality scores, while at the same time enhancing compression ratio,
speed, and downstream genotyping accuracy.
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A Experimental Setup and Implementation of RQS

In the Results section, in order to perform an in-depth comparison between the
performance of RQS and other compression methods on NGS reads from a large
number of individuals, we reduced the domain of the genome to chromosome 21
(∼ 1.5% of whole genome in size).

In sections 3.1 and 3.2, read alignments were generated using BWA [25] in
combination with GATK (Genome Analysis Toolkit) [26]. After chromosome 21
alignments were extracted, positional alignment information within mappings
were removed before running RQS and other compression schemes.

In section 3.3, we used the reads aligned to the whole genome (instead of
only chromosome 21), again removing all positional information from the align-
ments. Due to the large number of possible k-mers, it was not possible to fit the
entire hash table into memory during dictionary generation. Though it is pos-
sible to compute exact k-mer frequencies using a parallelization approach, here
we designed a less computation and memory intensive sampling-based dictio-
nary construction method and demonstrated that the quality of the constructed
dictionary is not affected.

In the RQS implementation, the dictionary generation from the corpus of
reads was implemented using an unordered set data type in C++. For detecting
all reads within Hamming distance 1 to the dictionary D; we stored D in a
Boost multi-index hash table with 4 keys. Each key covers 24 out of 32 bases
and each base of the 32-mer is covered exactly by 3 keys. Defining the key in
this way allows us to aggressively prune most 32-mers within the dictionary,
guaranteeing that each matching key implies a close match Δ(x,D) ≤ 8. If the
total number of matches is < 96, we check the remaining nucleotides to verify
that the matching 32-mers are within Hamming distance of 1. Otherwise, we
enumerate all 96 neighboring 32-mers of the query 32-mer and check whether
any of these exist in the dictionary.

During the sparsification step of our experiments, we choseQ, the replacement
quality value for discarded and smoothed positions, to be “40”. Although this is
a user-defined parameter within our implementation, we selected this value as it
was close to the average quality score value in our dataset.

After the sparsification step was completed, as a rough measure of entropy,
we ran the quality scores through BZIP2 and recorded the number of bits per
quality score required for storage. Although a production implementation would
probably use a custom file format storing only a subset of the quality scores,
using a modification of the standard SAM file format allowed for easy input into
downstream analysis tools.

As a lossy compression method, there are two separate criteria upon which
we can compare different methods: (1) the compression ratio and (2) the accu-
racy of downstream analysis. For the comparison between compression ratios, we
fixed an F-measure threshold of 0.99 and searched for the best compression ra-
tio of different tools across a range of input parameters, satisfying the minimum
accuracy threshold. For fixed accuracy-level, RQS displayed superior compres-
sion rates compared to other methods (see Table 1). For the comparison between
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downstream variant call accuracies, we fixed a compression rate of 25x and
searched for the best downstream variant call accuracy (with respect to the un-
compressed data) of different tools across a range of parameters, satisfying mini-
mum compression rate. For each fixed compression-level, RQS gave the most
accurate F-measure values.

B Data Sources

Corpus from 1000 Genomes Project Phase 1:

HG00096 HG00100 HG00103 HG00106 HG00108 HG00111 HG00112 HG00114 HG00115
HG00116 HG00117 HG00118 HG00119 HG00120 HG00122 HG00123 HG00124 HG00125
HG00126 HG00127 HG00131 HG00133 HG00136 HG00137 HG00138 HG00139 HG00140
HG00141 HG00142 HG00143 HG00145 HG00146 HG00148 HG00149 HG00150 HG00151
HG00152 HG00154 HG00155 HG00156 HG00157 HG00158 HG00159 HG00160 HG00231
HG00232 HG00233 HG00236 HG00237 HG00239 HG00242 HG00243 HG00244 HG00245
HG00246 HG00247 HG00249 HG00250 HG00251 HG00252 HG00253 HG00254 HG00256
HG00257 HG00258 HG00259 HG00260 HG00261 HG00262 HG00263 HG00264 HG00265
HG01334 HG01789 HG01790 HG01791 HG02215

Exome reads for NA12878: ftp://ftp-trace.ncbi.nih.gov/1000genomes/

ftp/phase1/data/NA12878/exome alignment/NA12878.mapped.illumina.

mosaik.CEU.exome.20110411.bam

Human Genome 18: ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
technical/working/20101201 cg NA12878/Homo sapiens assembly18.fasta

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase1/data/NA12878/exome_alignment/NA12878.mapped.illumina.mosaik.CEU.exome.20110411.bam
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase1/data/NA12878/exome_alignment/NA12878.mapped.illumina.mosaik.CEU.exome.20110411.bam
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase1/data/NA12878/exome_alignment/NA12878.mapped.illumina.mosaik.CEU.exome.20110411.bam
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20101201_cg_NA12878/Homo_sapiens_assembly18.fasta
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20101201_cg_NA12878/Homo_sapiens_assembly18.fasta
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Abstract. The Breakage Fusion Bridge (BFB) process is a key marker
for genomic instability, producing highly rearranged genomes in rela-
tively small number of cell cycles. While the process itself was observed
during the late 1930’s, little is known about the extent of BFB in tumor
genome evolution. This is partly due to methodological requiring the rare
observation of a spontaneous BFB occurence, or rigorous assays for iden-
tifying BFB-modified genomes after the process has ceased. Moreover,
BFB can dramatically increase copy numbers of chromosomal segments,
which in turn hardens the tasks of both reference assisted and ab initio
genome assembly.

Based on available data such as Next Generation Sequencing (NGS)
and Array Comparative Genomic Hybridization (aCGH) data, we show
here how BFB evidence may be identified, and how to predict all possi-
ble evolutions of the process with respect to observed data. Specifically,
we describe practical algorithms that, given a chromosomal arm segmen-
tation and noisy segment copy number estimates, produce all segment
count vectors supported by the data that can be produced by BFB, and
all corresponding BFB architectures. This extends the scope of analyses
described in our previous work, which produced a single count vector
and architecture per instance.

We apply these analyses to a comprehensive human cancer dataset,
demonstrate the effectiveness and efficiency of the computation, and sug-
gest methods for further assertions of candidate BFB samples. An online
Appendix, the source code of our tool, and analyses results, are available
at http://cseweb.ucsd.edu/~vbafna/bfb.

1 Introduction

The origin of a tumor cell is marked by genomic instability [9]. Spontaneous,
viral, or other kinds of mechanisms may cause genomic segment deletions, du-
plications, translocations, inversions, etc., producing rearranged genomes with
a possibly malignant nature. Thus, decoding mechanisms that generate rear-
ranged genomes is critical to understanding cancer. Numerous mechanisms were
proposed, including the faulty repair of double-stranded DNA breaks by re-
combination or end-joining and polymerase hopping caused by replication fork
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collapse [5,10]. These mechanisms are generally not directly observable, so their
elucidation requires the deciphering of often subtle clues after genomic instability
has ceased. An important source of information in this respect is the architec-
ture of the rearranged genome, i.e. the description of its chromosomes in terms
of concatenations of segments from the original genome.

Breakage Fusion Bridge (BFB) is one model of a genome rearrangement pro-
cess, which was first proposed by Barbara McClintock in the 1930’s [13,14]. Re-
cently, it has seen renewed interest as a possible mechanisms in tumor genome
evolution [3,4]. BFB begins with a telomeric loss on a chromosome, including
a loss of a sequential pattern that signals the location of chromosome termina-
tion. During cell division the telomere-lacking chromosome replicates, and its
two sister chromatids fuse together (possibly due to some DNA repair mecha-
nism falsely induced by the cell). This fusion produces a dicentric chromosome
of palindromic structure, which is later torn apart at some random point as the
centromeres of the dicentric chromosome migrate to opposite poles of the cell.
One part of the torn chromosome includes the fusion region and some tandemly
inverted chromosomal suffix duplication, and the other part lacks the corre-
sponding suffix. The two daughter cells receive these rearranged chromosomes,
both are missing the telomeric region, and the cycle can repeat again (Fig. 1).

�
�

�

�

�

�

�

�

�

�

�

�

�

Fig. 1. The BFB process. (a) A normal chromosome. (b) The chromosome looses its
telomere. (c) The chromosome is duplicated during cell devision. (d) Sister chromatids
are fused together. (e) Centromeres migrate to opposite poles of the cell. (f) The
fused chromosome is torn apart at some random position, causing one copy to have
an inverted suffix duplication, while the other copy has a trimmed suffix. Both copies
lack a telomere, and therefore may undergo additional BFB cycles. (g) After several
BFB cycles, the chromosome architecture exhibits significant increases in segment copy
numbers, as well as fold-back patterns.

In contrast to other mechanisms, BFB can actually be observed in progress
using methods that have been available for decades [14]. Cytogenetic techniques
can reveal the anaphase bridges, dicentric chromosomes, and homogeneously
staining regions that have long been the canonical evidence for BFB. However,
these techniques are useful only in cases where the BFB cycles are ongoing.
While useful in understanding the mechanism, they do not address the question
of whether BFB occurs extensively in evolving tumor genomes.
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Recently, researchers (including us) have started looking at modern available
data in order to demonstrate BFB occurrence after the process has ceased, in-
cluding Fluorescent In Situ Hybridization (FISH), Array Comparative Genomic
Hybridization (aCGH), and Next Generation Sequencing (NGS) data. These
methods take advantage of distinctive BFB features exposed by such data,
including the abundance of fold-back inversions (i.e. duplicated chromosomal
segments arranged in a head-to-head orientation) [3,4], patterns of interleaving
segments of alternating orientations [12,17], and combinatorial properties of seg-
ment counts when copy number variations are due to BFB [11,20]. In fact, if the
architecture of the rearranged genome is known, it is possible to decide if this
architecture can be produced by BFB [11].

Partial knowledge regarding the architecture can be reveled by FISH anal-
yses [12], which uses fluorescence markers to identify the physical locations of
predetermined sequences on the rearranged genome. However, such experiments
are relatively expensive, and can only be performed in a small number of cases.
A more common measurement is NGS data, which contain a big set of short
sequenced reads extracted from a donor genome. Such data is typically used
for predicting the entire donor genomic sequence by computationally assembling
the reads, sometimes facilitated by consulting a similar pre-sequenced reference
genome. Unfortunately, BFB and other mechanisms can produce massively rear-
ranged and highly repetitive genomes. This hardens the task of assembly-based
sequencing due to the multiple ambiguous manners the repetitive reads may be
assembled, and the lack of a relevant reference template. Nevertheless, NGS data
can still be analyzed in order to infer some indirect information regarding the
donor genome architecture [1,6,15,19]. After aligning the reads against a refer-
ence genome, their genomic location distribution can be used in order to identify
segments on the reference genome of coherent read coverage, and to estimate the
number of times each such segment repeats in the donor genome. We will refer to
the output of the latter kind of analysis as copy number data. Other methods to
obtain copy number data are based on analyzing aCGH data [7,8,16,18] (Fig. 2).
Due to the noisy nature of both NGS and aCGH data, count estimates may be
inaccurate, and the true segment count is likely to fall within some interval of
integers around the estimated value. We use the term noisy copy number data
when referring to information regarding such intervals of possible count values.
In addition to copy number data, NGS data can be used in order to produce
contigs (chromosomal segments which may be assembled unambiguously), and
aberrant segment adjacencies can be exposed by discordant reads, restricting the
set of possible contig-based architectures.

In previous work [11,20], we showed how to analyze noisy copy number data
in order to decide is it likely to observe the input data under the assumption
the underlying rearrangement process is BFB. Specifically, we designed algo-
rithms that produce a single BFB architecture over the given segments in which
segment counts are supported by the data, if such an architecture exists. We
applied these algorithm in order to analyze a comprehensive aCGH dataset of
cancer cell lines [2], as well as sequence data from primary tumors [4], and
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(a) aCGH data

�
(b) Noisy copy number data

Fig. 2. (a) aCGH data for a part of the q-arm of human chromosome 14 in the NCI-
H508 cell line. Each data point corresponds to a probe on the array, where its x-
coordinate gives the probe’s sequence chromosomal position, and y-coordinate gives
its measured intensity (log-ratio). The data points are clustered into segments, and
an estimated segment copy number appears above each segment. (b) Possible count
intervals around the estimated counts. The counts in the region under the red curly
bracket are supported by a BFB architecture, if changing the count estimate of the
second segment in this region from 12 to 13 or to 11, and of the seventh segment from
7 to 8. Data is taken from [2] (segmentation and copy number analysis were computed
using the PICNIC software [8]).

identified a small subset of candidate samples exhibiting BFB hallmarks. Here,
we extend the scope of the analysis, and describe algorithms that report all
count settings supported by the data which can be explained by BFB, and all
corresponding BFB architectures. Although the theoretical time bounds for these
new algorithms may be exponential, we show that in practice they are efficient,
and apply an Informed Search optimization that further improves their practical
efficiency.

Our proposed algorithms satisfy an important need, therefore. While our work
postulates the existence of BFB using statistical arguments, additional physical
assertions can be obtained with FISH and aberrant read analyses. Starting with
noisy copy number data, our tool can be used to enumerate all possible BFB
architectures. These candidate architectures can then be used towards a small
set of FISH experiments (with a limited number of fluorescence markers) to
validate and refine the genomic architecture.

2 Formalism and Previous Results

Computational BFB-related problems were previously formulated in [11,20]. For
completeness, we give here the main definitions from these works.

A DNA segment σ is a string over the DNA nucleotide alphabet A,C,G, T .
The reversed segment of a segment σ, denoted here by σ, is the string obtained
by reading σ backwards, and replacing each nucleotide with its complementary
nucleotide (A↔ T,C ↔ G). For example, the reverse of a segment σ = CGGAT
is the segment σ = ATCCG. In the rest of this paper, it is assumed we operate
on a given chromosomal arm with a fixed segmentation, and denote its list of
k segments by Σ = {σ1, σ2, . . . , σk}, ordered from the centromeric segment σ1

to the telomeric segment σk. The term “string” refers to a genomic architecture
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over these segments, i.e. a concatenation of segments from Σ and their reversed
forms. Greek letters α, β, γ, ρ denote strings, and bar notation indicates reversed
strings. For example, if α = σ1σ3σ2, α = σ2σ3σ1. An empty string is denoted
by ε. The notation αl,t represents the string σlσl+1 . . . σt (thus when t < l,
αl,t = ε). To facilitate reading, σ1, σ2, σ3, . . . are replaced by A, B, C, . . . in
concrete examples.

A BFB cycle applied over a chromosomal arm can be viewed as a special
rearrangement procedure, in which some telomeric suffix of the arm is dupli-
cated, inverted, and concatenated tandemly at the telomeric end of the arm. A
BFB process is a consecutive application of BFB cycles. This notion is formally
captured by the following definition.

Definition 1. For two strings α, β, say that α
BFB−→ β if α = β, or α = ργ for

some strings ρ, γ such that γ �= ε, and ργγ
BFB−→ β. Say that α is an l-BFB string

if αl,t
BFB−→ α for some t, and say that α is a BFB string if it is an l-BFB string

for some l.

Note that by definition ε = αl,l−1 is an l-BFB string for every l ≥ 1. The count
vector �n(α) = [n1, n2, . . . , nk] of a string α is a vector of integers, where for every
1 ≤ l ≤ k, nl is the total number of occurrences of σl and σl in α. For example,
for α = ABCDD̄C̄C, �n(α) = [1, 1, 3, 2]. Say that a vector �n is a BFB vector if
there exists some BFB string α such that �n = �n(α). In the previous example

�n(α) is a BFB vector, due to the BFB process α1,4 = ABCD
BFB−→ ABCDD̄C̄

BFB−→
ABCDD̄C̄C = α.

The computational analyses presented in this paper aim to detect evidence
for BFB, given a pre-analyzed segmentation of the genome and corresponding
copy number data. We assume that noisy copy number data is represented by
a weight function W = {wl,n | 1 ≤ l ≤ k, n = 0, 1, 2, . . .}, where wl,n is a
nonnegative weight of the count n with respect to the l-th segment. It may be
assumed w.l.o.g. that all weights wl,n satisfy 0 ≤ wl,n ≤ 1. The weight of a count

vector �n = [n1, n2, . . . , nk] is given by W (�n) =
∏

1≤i≤k

wi,ni , and by assumption

0 ≤W (�n) ≤ 1. In some cases, we refer to prefixes �n1,l−1 = [n1, n2, . . . , nl−1] and
suffixes �nl,k = [nl, nl+1, . . . , nk] of �n, which may be empty if l = 1 or l = k + 1,
respectively. Define the weights of such sub-vectors accordingly, i.e. W (�n1,l−1) =∏
1≤i<l

wi,ni and W (�nl,k) =
∏

l≤i≤k

wi,ni , where the weight of an empty vector is 1 by

definition. Thus, for every 1 ≤ l ≤ k + 1, W (�n) = W (�n1,l−1) ·W (�nl,k).
If some data analysis produces segment count probabilities Pr (nl = n) for

every segment σl and every count n = 0, 1, 2, . . ., weights can be set to these
probabilities choosing wl,n = Pr (nl = n). This way, the weight of a count vector
is the probability this vector reflects the true segment counts, given the observed
data. Another way to set weights given such probabilities would be to choose

weights by setting wl,n = Pr(nl=n)

Pr(nl=n∗
l )
, where n∗

l is the most likely count for the

l-th segment. Here, the weight of a count vector gives the ratio between its
probability and the probability of a most likely vector. Nevertheless weights
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are more general than probabilities, and can be used as a heuristic count error
modeling even when no probabilistic model is available.

In [20], several variants of BFB problems where formulated. Below we restate
these problems, and add two new variants addressed in the current work:

BFB Problem Variants
Input: a count vector �n, or a weight function W and a weight 0 < η ≤ 1.

1. The decision variant [20]: given �n, decide if �n is a BFB vector.
2. The string search variant [20]: if �n is a BFB vector, find a BFB string

α such that �n = �n(α).
3. The vector search variant (or the distance variant in [20]): given W

and η, report a maximum weight BFB vector �n in case there exists such a
vector with W (�n) ≥ η, and otherwise report “FAILED”.

4. The exhaustive vector search variant: given W and η, report all BFB
vectors �n with W (�n) ≥ η.

5. The exhaustive string search variant: given W and η, report all BFB
strings α such that W (�n(α)) ≥ η.

For a count vector �n, define N(�n) =
∑

1≤l≤k

nl and Ñ(�n) =
∑

1≤l≤k

log(nl).

Note that N(�n) is the total length of a string admitting �n, and Ñ(�n) is propor-
tional to the number of bits needed for representing �n. For a weight function
W and a weight η, define N(W, η) = max {N(�n) : W (�n) ≥ η}, and Ñ(W, η) =

max
{
Ñ(�n) : W (�n) ≥ η)

}
. In [20], it was shown that the BFB decision variant

can be solved using O(Ñ (�n)) bit operations (i.e. linear time in the input length),
the string search variant can be solved in O(N(�n)) operations (i.e. linear time
in the output length), and that the vector search variant can be solved using

at most a sub-exponential number of operations 2O(log2 N(W,η)). Here, we give
algorithms for the two new exhaustive search variants. While theoretically the
output of these algorithms can be exponential with respect to N(W, η), we show
that for realistic inputs this output is manageable. In addition, we describe an
Informed Search (IS) approach that significantly reduces the running time in
practice by eliminating irrelevant search paths and traversing only paths which
are guaranteed to produce valid solutions. Next, we describe some ideas taken
from [20], upon which the algorithms presented here are built.

An l-BFB palindrome is an l-BFB string of the form β = αα. It can be shown
that β = αα is an l-BFB palindrome if and only if α is an l-BFB string. By
definition, ε = εε is an l-BFB palindrome for every l ≥ 1. In addition, observe
that when β = αα we have that �n(β) = 2�n(α). This allows to replace the
question “is there a BFB string admitting the count vector �n” by the equivalent
question “is there a BFB palindrome admitting the count vector 2�n”.

An l-block is a string of the form β = σlβ
′σl, where β′ is an (l + 1)-BFB

palindrome. It can be shown that an l-block is a special form of an l-BFB palin-
drome, and that every l-BFB palindrome is some palindromic concatenation of
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l-blocks (though not every palindromic concatenation of l-blocks is a valid l-
BFB palindrome). These observations allow to adopt a “layered” view of BFB
palindromes, as follows (Fig. 3). Let β = αα be a 1-BFB palindrome, where
�n(β) = 2�n(α) = [2n1, 2n2, . . . , 2nk]. Therefore, β is a palindromic concatenation
of 1-blocks, and denote by B1 the collection of all these blocks. Every 1-block in
B1 is a string of the form Aβ′Ā, where β′ is some 2-BFB palindrome. As there
are 2n1 occurrences of A and Ā in β, and each block in B1 contains exactly two
such occurrences, the total number of blocks in B1 is exactly n1. Masking the
letters A and Ā from all blocks in B1, the collection becomes a 2-BFB palindrome
collection of size n1. The 2-BFB palindromes in this collection can be further
decomposed into 2-blocks, yielding a collectionB2 of 2-blocks. Similarly as above,
B2 contains exactly n2 blocks. This process can continue inductively, yielding
for every 1 ≤ l ≤ k a corresponding collection Bl of l-blocks, whose size is nl.
One may also imagine an additional collection in this series Bk+1, containing
zero (k + 1)-blocks.
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(a) A BFB process
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(b) Palindrome layers

Fig. 3. (a) A BFB process generating a string α: ABCD
BFB−→ ABCDD̄

BFB−→
ABCDD̄DD̄C̄B̄

BFB−→ ABCDD̄DD̄C̄B̄B
BFB−→ ABCDD̄DD̄C̄B̄BB̄BC. (b) The layers of the BFB

palindrome β = αα. The blocks in each layer are marked with annotations of the
form βi.

This layered view is exploited in a reversed order by the algorithms in [20],
developing a BFB palindrome given an input count vector �n = [n1, n2, . . . , nk]:
Starting with an empty collection Bk+1 of (k + 1)-blocks, the algorithm com-
putes iteratively a sequence of collections Bk, Bk−1, . . . , B1, each collection Bl

is an l-block collection of size nl. In order to generate Bl, the algorithm first
concatenates (l + 1)-blocks from Bl+1, forming a collection B of (l + 1)-BFB
palindromes of size nl (this procedure is called folding). Then, each (l+1)-BFB
palindrome β′ ∈ B is wrapped with a pair of σl segments, rendering it into an
l-block β = σlβ

′σl, and Bl is set to be the collection containing all these l-blocks.
The final collection of 1-blocks B1 is folded one more time into a single 1-BFB
palindrome β = αα, and the algorithm returns the half-length prefix α of this
palindrome as a BFB string admitting the input count vector �n.
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Fig. 3b illustrates a possible run of the algorithm over the input count vector
�n = [1, 5, 3, 4]. First, the algorithm initializes an empty collection of 5-blocks
B5. In the first iteration, there is a need to perform concatenations of blocks
in B5, and produce n4 = 4 5-BFB palindromes. Such 5-BFB palindromes may
only be obtained by concatenating zero elements (as there are no elements in
B5), and so four empty strings are generated in this folding process, yielding
the 5-BFB palindrome collection {4ε}. Next, each 5-BFB palindrome in this
collection is wrapped by σ4 = D and σ4 = D̄, producing the collection of 4-blocks
B4 =

{
4DεD̄

}
= {4β1}. In the next iteration, the collection B4 needs to reduce

its size from n4 = 4 into n3 = 3 by concatenating its elements to produce 3-
BFB palindromes. In this example, there are two concatenations of two elements
the form β1β1, and one concatenation of zero elements that produces an empty
string ε. The 4-BFB palindromes in the resulting folded collection {2β1β1, ε}
are wrapped by σ3 = C and σ3 = C̄, yielding the 3-block collection B3 ={
2Cβ1β1C̄,CεC̄

}
= {2β2, β3}. This process continues for two more iterations,

generating similarly the collections B2 = {2β4, β5, 2β6} and B1 = {β7}. All
elements in the last collection B1 are then concatenated into a single 1-BFB
palindrome β (in this example B1 contains a single element β7, and so β = β7),
and the returned string α is the half-length prefix of this palindrome.

The ability of the schematic algorithm above to process the entire input vector
�n and produce a corresponding BFB string depends on its ability to fold interme-
diate collections Bl computed along its run. In cases where it cannot fold some
intermediate block collection, it returns a fail message, implying no BFB string
admits the input vector �n. A case where folding cannot be applied is for example
the case where n2 = 2, B2 = {BCC̄B̄,BB̄}, and n1 = 1. In this case, since both
possible concatenations BCC̄B̄BB̄ and BB̄BCC̄B̄ of the two elements in B2 are
non-palindromic, the folding procedure must fail at this stage. Another example
of a fail folding is the case where n2 = 3, B2 = {BCC̄B̄, 2BB̄}, and n1 = 1. In
this case, though there exists a palindromic concatenation BB̄BCC̄B̄BB̄ of all
three elements in B2, this concatenation is not a valid BFB palindrome (since
any 2-BFB string containing the segment C must start with the prefix BC), and
so the collection may not be folded.

In [20], it was shown that the ability to fold a block collection depends
on a property called the signature of the collection. A signature of an l-BFB
palindrome collection is an infinite sequence of integers �s = [s0, s1, s2, . . .] with
the following properties: (1) the first nonzero element in �s (if there is such
an element) must be positive, (2) the cardinality of the signature, defined by

‖�s‖ =

∞∑
d=0

2dabs(sd) (where abs(sd) is the absolute value of sd), equals to the

size of the collection to which the signature corresponds, and (3) wrapping the
collection (i.e. replacing each l-BFB palindrome β in the collection with an (l−1)-
block σl−1βσl−1) does not change its signature. In this sense, a signature can
be thought of as a generalization of a binary representation of an integer, in
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which the coefficients may be other integers besides 0 and 1 (with the additional
restriction of a positive first nonzero element, and the fact the absolute coefficient
value is taken when computing the corresponding summation). The prefix of
a signature �s up to its d-th element is denoted by �sd = [s0, s1, . . . , sd]. Due
to being relatively technical, we omit here the formal signature definition and
refer intrigue readers to [20] for a full explanation on how to derive collection
signatures.

From the signature cardinality definition, it follows that for a signature �s such
that ‖�s‖ = n, all signature elements si for i > logn are zeros, thus signatures
can be explicitly represented by a (small) finite number of nonzero elements.
In addition, it follows that the only signature of an empty collection is �s =
[0, 0, . . .], and the only signature of a collection containing a single element is �s =
[1, 0, . . .] (the “. . .” notation implies that the remaining signature elements are
zeros). Otherwise, two collections of the same size may have different signatures.
Signatures can be ranked according to their lexicographic order. That is, say that
�s < �s ′ if there exists an index d such that �sd−1 = �s ′

d−1 and sd < s′d, and say
that �s ≤ �s ′ if �s < �s ′ or �s = �s ′.

Lemma 1. Let B be an l-block collection with a signature �s. For any folding B′

of B and its corresponding signature �s ′, �s ≤ �s ′. In addition, for any signature �s ′

such that (1) �s ≤ �s ′ and (2) �s ′ is the lexicographically minimal signature among
all signatures of cardinality ‖�s ′‖ that meet (1), there exists a folding B′ of B
whose signature is �s ′.

The proof of Lemma 1 follows from Claims 14 and 28 in [20] (Supporting Infor-
mation). The signatures corresponding to the 4 block collections implied by the
BFB palindrome presented in Fig. 3b are �s4 = [0, 0, 1, 0, . . .], �s3 = [1,−1, 0, . . .],
�s2 = [1, 0,−1, 0, . . .], and �s1 = [1, 0, . . .], respectively. Observe that the cardinal-
ity of each signature equals to the size of the corresponding collection (or the
corresponding count in �n = [1, 5, 3, 4]), and that �s l+1 ≤ �s l for every 1 ≤ l < 4.

It follows from Lemma 1 that a vector �n = [n1, n2, . . . , nk] is a BFB count
vector if and only if there exists a series of lexicographically non-increasing sig-
natures �s1, �s2, . . . , �sk such that nl =

∥∥�s l
∥∥ for every 1 ≤ l ≤ k, and the first

signature in this series satisfies �s1 ≤ [1, 0, . . .] (the signature of a collection with
one element, due to the last concatenation of all 1-blocks in B1 into a single
palindrome). Call such a signature series a valid signature series for �n, and so
we get the following conclusion:

Conclusion 1. A vector �n is a BFB vector if and only if it has a valid signature
series. Moreover, any sub-sequence of a BFB vector is also a BFB vector, evident
by the corresponding sub-series of a valid signature series for the full vector.

For example, the vector �n = [3, 4] is a BFB vector, due to the valid signa-
ture series �s1 = [1,−1, 0, . . .], �s2 = [0, 0, 1, 0, . . .]. A corresponding BFB string

may be obtained by AB
BFB−→ ABB̄

BFB−→ ABB̄BB̄Ā
BFB−→ ABB̄BB̄ĀA. An ex-

ample for a vector that does not have a valid signature series is the vector
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�n = [4, 3]: the only signatures with cardinality 4 are the signatures [0, 0, 1, 0, . . .],
[0, 2, 0, . . .], [2, 1, 0, . . .], [2,−1, 0, . . .], and [4, 0, . . .]. Among these signatures, the
only ones who lexicographically precede the signature [1, 0, . . .] are the signatures
[0, 0, 1, 0, . . .] and [0, 2, 0, . . .]. Nevertheless, the only signatures of cardinality 3
are [1,−1, 0, . . .], [1, 1, 0, . . .], and [3, 0, . . .], and none of them precedes the two
possible 4-cardinality signatures.

As a matter of fact, restating Algorithm DECISION-BFB in [20] (Supporting
Information), one can describe it as follows. Setting �sk+1 to be the the signa-
ture [0, 0, . . .] of an empty collection (which is also the lexicographically min-
imal among all signatures), the algorithm produces iteratively the signatures
�sk, . . . , �s1 in a valid signature series for the input vector �n = [n1, n2, . . . , nk].
Each signature �s l is obtained by applying the minimal lexicographic increment
to �s l+1 so that it would admit the cardinality

∥∥�s l
∥∥ = nl. The algorithm returns

true if and only if all increments are successful.

3 Algorithms

In this section we develop algorithms for the two exhaustive search variants of
the BFB problem. To do so, we first describe some ideas and subroutines that
would allow efficient implementations of these algorithms.

Let �n = [n1, n2, . . . , nk] be a BFB vector, and let 1 ≤ l ≤ k + 1. Define the
right-maximal signature R(�n1,l−1) of the prefix �n1,l−1 = [n1, n2, . . . , nl−1] of �n to
be [1, 0, . . .] if l = 1, and otherwise to be the lexicographically maximal signature
�s l−1 in some valid signature series �s1, . . . , �s l−1 for �n1,l−1. Similarly, define the
left-minimal signature L(�nl,k) of the suffix �nl,k = [nl, nl+1, . . . , nk] of �n to be
[0, 0, . . .] if l = k+1, and otherwise to be the lexicographically minimal signature
�s l in some valid signature series �s l, . . . , �sk for �nl,k.

Lemma 2. Let �n = [n1, n2, . . . , nk] be a BFB vector. For every 1 ≤ l′ ≤ l ≤
k + 1, L(�nl,k) ≤ R(�n1,l−1), R(�n1,l−1) ≤ R(�n1,l′−1), and L(�nl,k) ≤ L(�nl′,k).

Proof. We start by showing the first inequality in the lemma. If l = 1 or l = k+1,
L(�nl,k) ≤ R(�n1,l−1) follows immediately. Otherwise, consider a valid signature
series �s1, �s2, . . . , �sk for �n. Note that its prefix �s1, �s2, . . . , �s l−1 is a valid signature
series for �n1,l−1, and its suffix �s l, �s l+1, . . . , �sk is a valid signature series for �nl,k.
Thus, by definition, L(�nl,k) ≤ �s l ≤ �s l−1 ≤ R(�n1,l−1).

To show the second inequality in the lemma, let �s1, �s2, . . . , �s l−1 be a valid
signature series for �n1,l−1 such that �s l−1 = R(�n1,l−1). Observe similarly as above

that R(�n1,l−1) = �s l−1 ≤ �s l′−1 ≤ R(�n1,l′−1). The last inequality in the lemma is
shown symmetrically. ��

The MIN-DECREMENT procedure (Algorithm 1) gets as an input a signature
�s and an integer n ≥ 0, and returns the lexicographically maximal signature �s ′

such that �s ′ ≤ �s and ‖�s ′‖ = n if such a signature exists, and otherwise returns
a fail message. Here, for an integer m �= 0, the notation dm represents the parity
degree of m, which is defined to be the maximum integer dm such that m divides
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by 2dm . Thus, for example, d13 = d13·20 = 0, and d−12 = d−3·22 = 2. The
correctness of this computation is shown in the online Appendix. Symmetrically,
the MIN-INCREMENT procedure gets as an input a signature �s and an integer
n ≥ 0, and returns the lexicographically minimal signature �s ′ such that �s ≤ �s ′

and ‖�s ′‖ = n if such a signature exists, and otherwise returns a fail message. The
pseudo-code for this procedure is given in the online Appendix, and its proof is
symmetric to that of the MIN-DECREMENT procedure.

Algorithm 1. MIN-DECREMENT(�s, n)

Input: A signature �s and an integer n ≥ 0.
Output: The lexicographically maximal signature �s ′ ≤ �s such that

∥
∥�s ′∥∥ = n, or the

message “FAILED” if there is no such signature.

1 Let m = ‖�s‖ − n. If m = 0 then return �s.

2 Else if there is an integer 0 ≤ d ≤ dm such that n ≥ ‖�sd−1‖ + 2d max{−sd + 1, 0} then
3 Let d be the maximum integer meeting the condition above. Initialize �s ′ so that

�s ′
d−1 = �sd−1, and s′d = sd − 2 if d < dm, or s′d = sd − 1 if d = dm.

4 If n ≥ ∥
∥�s ′

d

∥
∥ then set s′d+1 ← n−‖�s ′

d‖
2d+1 .

5 Else set s′d ← n−
∥
∥
∥�s ′

d−1

∥
∥
∥

2d
.

6 Return �s ′.

7 Else return “FAILED”.

Lemma 3. If �n1,l−1 = [n1, . . . , nl−1] is a BFB vector, �s = R(�n1,l−1), and �s ′ =
MIN-DECREMENT(�s, nl), then �s ′ is the right-maximal signature for the BFB
vector �n1,l = [n1, . . . , nl−1, nl]. Symmetrically, if �nl+1,k = [nl+1, . . . , nk] is a
BFB vector, �s = L(�nl+1,k), and �s ′ = MIN-INCREMENT(�s, nl), then �s ′ is the
left-minimal signature for the BFB vector �nl,k = [nl, nl+1, . . . , nk].

Proof. We show the first part of the lemma, where the second part is shown sym-
metrically. First, note that the constructed vector �n1,l is indeed a BFB vector,
due to the corresponding valid signature series obtained by adding �s ′ to a valid
signature series for �nl−1 whose last signature is �s. Note that ‖R(�n1,l)‖ = ‖�s ′‖ =
nl. From Lemma 2 R(�n1,l) ≤ �s, and since �s ′ = MIN-DECREMENT(�s, nl) it
follows that R(�n1,l) ≤ �s ′. From the maximality of R(�n1,l), R(�n1,l) = �s ′. ��

In the rest of this section, let W be a weight function, and 0 < η ≤ 1 some
weight threshold. Let 0 ≤ l ≤ k, and consider the set of all signature-weight pairs
of the form 〈R(�n1,l),W (�n1,l)〉 such that �nl = [n1, n2, . . . , nl] is a BFB vector and
W (�n1,l) ≥ η. Say that the pair 〈�s, w〉 within this set dominates the pair 〈�s ′, w′〉
if �s ′ ≤ �s and w′ ≤ w. Define the l-th boundary curve Cl with respect to W and
η as the maximal subset of these pairs satisfying that no pair in Cl dominates
another pair in Cl, and note that Cl is unique. Traversing the pairs in Cl from
lowest to highest lexicographic signature rank, the series of signature values
strictly increases, while the series of weight values strictly decreases, yielding a
steps-like curve (Fig. 4). Algorithm 2 generates all boundary curves for W and
η, which will later be exploited by algorithms for the BFB exhaustive vector and
string search variants.
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Fig. 4. A boundary curve. Points correspond to pairs of the form 〈�s, w〉, with x-
coordinate reflecting the lexicographic rank of �s and y-coordinate equals to w. Blue
points belong to the boundary curve, and green points are dominated by points on the
curve.

Algorithm 2. BOUNDARY-CURVES (W, η)

Input: A weight function W and a weight η.
Output: All boundary curves for W and η.

1 Set C0 ← {〈[1, 0, . . .], 1〉}.
2 For l ← 1 to k do

3 Set Cl ← ∅.
4 For each n and

〈
�s ′, w′〉 ∈ Cl−1 s.t. w′ · wl,n ≥ η and MIN-DECREMENT(�s ′, n)

does not fail do
5 Let �s be the output of MIN-DECREMENT(�s ′, n), and let w = w′ · wl,n.

6 If 〈�s, w〉 is not dominated by any pair in Cl then

7 Add 〈�s, w〉 into Cl, and remove from Cl all pairs dominated by 〈�s, w〉.

8 Return
{

C0, C1, . . . , Ck
}

.

Proof (Algorithm 2). Note that a pair in C0 corresponds to a right-maximal
signature and a weight of an empty vector. By definition, the only such pair is
the pair 〈[1, 0, . . .], 1〉, and the algorithm correctly sets C0 to contain this single
pair (line 1). Now, assuming inductively the algorithm has computed correctly
the curve Cl−1, we prove it also computes correctly Cl. It is clear from lines 6
and 7 of the algorithm that no pair in the set Cl computed by the algorithm
dominates another pair in this set. It is therefore remains to show that after the
l-th loop iteration was executed (1) for every BFB vector �n1,l = [n1, . . . , nl] with
W (�n1,l) ≥ η there exists a pair 〈�s, w〉 ∈ Cl which dominates 〈R(�n1,l),W (�n1,l)〉,
and (2) for every pair 〈�s, w〉 ∈ Cl there exists some BFB vector �n1,l = [n1, . . . , nl]
such that �s = R(�n1,l) and w = W (�n1,l).

We start by showing (1). Let �n1,l = [n1, . . . , nl−1, nl] be a BFB vec-
tor with W (�n1,l) ≥ η, and consider its prefix �n1,l−1 = [n1, . . . , nl−1]. Ob-

serve that W (�nn,l−1) =
W (�n1,l−1)

wl,nl

≥ η. As �n1,l−1 is also a BFB vector, the
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inductive assumption implies that Cl−1 contains a pair 〈�s ′, w′〉 that domi-
nates 〈R(�n1,l−1),W (�n1,l−1)〉. From Lemma 2, R(�n1,l) ≤ R(�n1,l−1) ≤ �s ′. Since
‖R(�n1,l)‖ = nl, running MIN-DECREMENT (�s ′, nl) does not fail, and returns
a signature �s such that R(�n1,l) ≤ �s ≤ �s ′ and ‖�s‖ = nl. As w′ · wl,nl

≥
W (�n1,l−1) · wl,nl

= W (�n1,l) ≥ η, it follows that the algorithm runs the code
in lines 5-7 with respect to nl and 〈�s ′, w′〉. In particular, the algorithm updates
Cl with the pair 〈�s, w〉 for w = w′ · wl,nl

≥ W (�n1,l) (lines 6-7). Therefore,
at the end of the l-th iteration, either Cl contains 〈�s, w〉, or it contains some
other signature-weight pair that dominates 〈�s, w〉, and so it contains a pair that
dominates 〈R(�n1,l),W (�n1,l)〉.

To show (2), assume that Cl contains a pair 〈�s, w〉. This pair was added to
Cl in line 7 of the algorithm, which means there exists some pair 〈�s ′, w′〉 ∈ Cl−1

such that for nl = ‖�s‖, �s = MIN-DECREMENT(�s ′, nl), and w = w′ · wl,nl
≥ η.

From the inductive assumption, there is BFB vector �n1,l−1 = [n1, . . . , nl−1] such
that �s ′ = R(�n1,l−1) and w′ = W (�n1,l−1). For the vector �n1,l = [n1, . . . , nl−1, nl],
lemma 3 implies that �s = R(�n1,l). In addition W (�n1,l) = w, and the lemma
follows. ��

Finally, we present Algorithm 3 for the BFB exhaustive vector search variant.
The algorithm processes the segments of the input one by one, starting from the
k-th segment down to the first segment. The notation [n, �n] is used for denoting
a vector whose first element is the integer n, and its remaining suffix is the
vector �n.

Algorithm 3. EXHAUSTIVE-VECTOR-SEARCH (W, η)

Input: A weight function W and a weight 0 < η ≤ 1.
Output: All BFB vectors �n = [n1, n2, . . . , nk] satisfying W (�n) ≥ η.

1 Generate all boundary curves C0, C1, . . . , Ck with respect to W and η using Algorithm 2. If

Ck is empty, return the message “NO SOLUTION” and halt.

2 Set Qk+1 to be the collection containing a single empty vector.
3 For l ← k down to 1 do

4 Set Ql ← ∅.
5 For each �nl+1,k ∈ Ql+1 and count n such that W ([n, �nl+1,k]) ≥ η and

MIN-INCREMENT (L(�nl+1,k), n) does not fail do
6 Let �nl,k = [n, �nl+1,k], and let �s = MIN-INCREMENT(L(�nl+1,k), n).

7 If there exists a pair
〈
�s ′, w′〉 ∈ Cl−1 such that �s ≤ �s ′ and w′ ·W (�nl,k) ≥ η then

8 Add �nl,k to Ql.

9 Return Q1.

Proof (Algorithm 3). By definition, if the boundary curve Ck is empty, it im-
plies there is no BFB vector �n = [n1, . . . , nk] with W (�n) ≥ η. In this case, the
algorithm correctly reports there is no solution to the input (line 1).

Otherwise, we show for every 1 ≤ l ≤ k+1 that the following invariant holds:
After Ql is fully computed, Ql contains �nl,k = [nl, . . . , nk] if and only if �nl,k is
a suffix of some BFB vector �n = [n1, . . . , nk] of weight W (�n) ≥ η. In particular,
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this invariant proves that the returned value Q1 (line 9) is indeed the solution
for the BFB exhaustive vector search variant, and so it only remains to establish
the correctness of the invariant.

For l = k+1, the fact that Qk+1 contains a single empty suffix (line 2) derives
the invariant in a straightforward manner. Otherwise, assuming inductively the
invariant holds with respect to Ql+1, we prove it also holds with respect to Ql.

Let �n = [n1, . . . , nk] be a BFB vector of weight W (�n) ≥ η, and consider its
two suffixes �nl,k = [nl, nl+1 . . . , nk] and �nl+1,k = [nl+1 . . . , nk]. From the induc-
tive assumption, �nl+1,k ∈ Ql+1. From Lemma 3, �s = L(�nl,k) satisfies that �s =
MIN-INCREMENT(L(�nl+1,k), nl). Since W (�nl,k) ≥W (�n) ≥ η, the condition in
line 5 holds, and lines 6-8 are executed with respect to �nl,k and �s. Note that the
prefix �n1,l−1 = [n1, . . . , nl−1] of �n is a BFB vector with W (�n1,l−1) ≥W (�n) ≥ η.
From the definition of Cl−1, there exists a pair 〈�s ′, w′〉 ∈ Cl−1 that dominates
the pair 〈R(�n1,l−1),W (�n1,l−1)〉. From Lemma 2, L(�nl,k) ≤ R(�n1,l−1) ≤ �s ′. In
addition, w′ ·W (�nl,k) ≥ W (�n1,l−1) ·W (�nl,k) = W (�n) ≥ η, and so the condition
in line 7 holds, and the algorithm adds �nl,k into Ql in line 8.

For the other direction of the invariant, let �nl,k = [nl, nl+1, . . . , nk] ∈ Ql. Due
to the manner it was constructed (lines 5-6), its suffix �nl+1,k = [nl+1, . . . , nk] is
in Ql+1, and from Lemma 3, �nl,k is a BFB vector with L(�nl,k) = �s. From line 7,
there exists a pair 〈�s ′, w′〉 ∈ Cl−1 such that �s ≤ �s ′ and w′ ·W (�nl,k) ≥ η, and
so from the definition of Cl−1 there exists a BFB vector �n1,l−1 = [n1, . . . , nl−1]
for which R(�n1,l−1) = �s ′ and W (�n1,l−1) = w′. The concatenation of �n1,l−1

and �nl,k gives the vector �n = [n1, . . . , nl−1, nl, . . . , nk], whose weight satisfies
W (�n) = W (�n1,l−1) ·W (�nl,k) = w′ ·W (�nl,k) ≥ η. In addition, �n is a BFB vector,
due to the corresponding valid signature series obtained by concatenating a valid
signature series for �n1,l−1 that ends with �s ′ and a valid signature series for �nl,k

that starts with �s, concluding this direction of the proof. ��

The algorithm for the exhaustive BFB string search variant applies a similar
approach in order to produce all BFB strings whose count vector weights are at
least η. It starts by generating signature curves exactly as done by Algorithm 3.
Then, in each iteration l, instead of computing a set Ql of count vectors, the
algorithm computes a set P l of l-block collections. At the end of the iteration, P l

contains all l-block collections Bl such that there exists some 1-BFB palindrome
β in which the l-th layer’s block collection is Bl, and the weight of the vector �n
such that �n(β) = 2�n satisfies W (�n) ≥ η. The initial collection P k+1 contains a
single empty (k+1)-block collection. In the l-th iteration, for each (l+1)-block
collection Bl+1 ∈ P l+1, all possible foldings of Bl+1 are enumerated. For each
such folding, its signature and weight are examined against Cl−1 similarly as
done in line 7 of Algorithm 3, and if meeting the condition all elements in the
collection are wrapped, and the resulting l-block collection Bl is added into P l.
Due to space limits, we omit the details for the process of enumerating all foldings
of Bl+1, which will be described in an extended version of this manuscript.



414 S. Zakov and V. Bafna

4 Results

In order to test our algorithms we have used cancer data taken from the Can-
cer Genome Project dataset [2]. This data covers aCGH samples (Affymetrix
Genome-Wide Human SNP Array 6.0) from 746 human cancer cell lines. Seg-
mentation and segment copy numbers are as reported by [2], who used the
PICNIC software [8] for this analysis. In total, the dataset contains about 35
thousands chromosomal arms (746 samples, 23 or 24 chromosomes per sample,
two arms per chromosome), each arm is segmented, and each segment is assigned
an estimated copy number based on the observed aCGH data. As shown in [20],
short BFB-like count vectors have a high probability to emerge even when the
genome was rearranged with mechanisms different from BFB. Thus, in order to
detect significant BFB evidence we have filtered the set of chromosomal arms to
include only arms with at least eight consecutive segments such that no adja-
cent segments share the same copy number estimation. After this filtration, the
remaining subset included 6589 chromosomal arms. As the estimated counts re-
flect the expected segment copy numbers in all copies of the chromosome in the
sample, we have corrected the counts by reducing p−1 from each count, where p
is the ploidy (i.e. the number of copies) of the chromosome in the sample. Typi-
cally p = 2, but since these are heavily rearranged cancer genomes, chromosomal
losses and whole chromosomal duplications are not rare. We therefore allowed
the value of p to vary between 1 and 5, and run the BFB analyses for each value.

As currently no analysis tool available produces count weights, we have derived
such weights from the expected counts reported by PICNIC (after correcting for
ploidy). Specifically, for a segment whose observed count is n, the weight of a

count n′ was defined by Pr(n|n′)
Pr(n|n) , where Pr(x|λ) = λxe−λ

x! is the probability to

observe the value x for a random variable distributing according to the Poisson
distribution with parameter λ. For each of the obtained weight functions, we
used the DISTANCE-BFB algorithm from [20] to report all longest BFB sub-
vectors with weight at least η = 0.7. Out of the 6589 samples, 54 samples had
for at least one ploidy value 1 ≤ p ≤ 5 a BFB sub-vector of length at least 8.
Some samples had long BFB sub-vectors with respect to more than one ploidy
value, and the total number of obtained BFB vectors was 86.

Then, we considered the segment coordinates and weight functions corre-
sponding to the obtained sub-vectors, and run Algorithm 3 in order to find all
BFB vectors of weights at least η = 0.7 with respect to these weight functions.
For these 86 instances, a total number of 19154 heavy BFB vectors were found,
with an average of 222 solutions per-instance. This reviles an interesting prop-
erty of the problem when applied over this data: the vast majority of samples,
6535 out of 6589, cannot be explained by any BFB count vector (and thus are
unlikely to be obtained from BFB), yet each one of those 54 samples who can
be explained by BFB has about several tens or hundreds of corresponding count
vectors.



Reconstructing Breakage Fusion Bridge Architectures 415

The above analysis was run by two variants of our algorithm - the IS variant
described by Algorithm 3, and a variant that runs a similar procedure without
applying the IS optimization (essentially, it runs the same code as Algorithm 3,
with the exception it does not generate the signature curves in line 1, and does
not apply the condition in line 7 before adding new elements to collections Ql).
The disadvantage of the non-IS variant is in that sets of the form Ql main-
tain BFB vectors �nl,k = [nl, . . . , nk] which may not be suffixes of some BFB
vectors �n = [n1, . . . , nk] of weight at least η. To measure the gain of the IS al-
gorithm, we count the number of signature increment attempts the algorithms
perform (line 5). On average, the IS variant performed 57-fold less increments,
with a total number of 5672346 incrementation attempt over all 86 vectors, versus
325343441 for the non-IS algorithm. While the IS variant has a clear efficiency
advantage over the non-IS variant, this advantage might be considered more
modest than expected. A possible reason for that is that maximum copy num-
ber values reported in [2] were limited to 14, even when the data suggests higher
copy numbers. In general, higher copy numbers usually imply a higher number
of alternative heavy counts, which in turn induce a higher number of possible
heavy count vectors. For example, when comparing the two algorithms over the
synthetic count vector �n = [3, 8, 111, 8, 5, 150, 11, 170, 4, 53, 100, 75, 49, 10, 42, 18],
using the same Poisson-based weights as described above and requiring that out-
put vectors weigh at least η = 0.85, the non-IS algorithm runs 218 second1 and
performs over 20 million signature increments, whereas the IS algorithm runs
120 milliseconds and performs 635 signature increments. Both algorithms return
exactly the same output - a set of 18 BFB vectors. Other simulated inputs can
cause memory explosion for the non-IS variant, while handled efficiently by the
IS variant.

5 Discussion and Conclusions

The problem of detecting breakage fusion bridge is challenging, but significant
progress has been made in the last few years. Our work suggests that while rare,
BFB does occur in tumor derived cell lines and also in primary tumors. In this
work, we describe algorithms that can be used to enumerate all possible BFB
architectures given uncertain copy number data.

The results of our analyses heavily depend on the input weights, which in turn
depend on separated analyses applied to biological data. While we used here a
simple Poisson-based model in order to render fixed available count estimations
into weight functions, it is clear that more realistic weighing can be applied.
Examining Fig. 2 for example, one can observe that different segments demon-
strate different variance in signal intensities, implying that some count estimates
are more reliable than others. Incorporating segment lengths and signal variance
information when choosing count weights is likely to produce more meaningful
weights and improve the quality of the analyses output.

1 Running time was measured for an intel Core i7 processor with Microsoft Windows
7 operating system, code is implemented in Java.
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Different measurements can yield other types of BFB evidence. For example,
deep sequencing experiments can sequence reads spanning genomic breakpoints.
In a BFB modified genome, it is expected that many of these breakpoints reflect
fold-back inversions (i.e. concatenations between reference segments and their
inverted form), while such fold-back patterns are less common in other rear-
rangement mechanisms [4]. Thus, identification of high or low fold-back pattern
frequencies can support or weaken the conjecture BFB has occurred, respectively.
Such evidence is less frequent in currently available data, as reliable breakpoint
information requires sequencing to a relatively high depth of coverage (while
copy number data can be obtained also from sequencing with a lower depth of
coverage or from aCGH experiments). When given though, such information can
be integrated and improve the quality of BFB calling [20].
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Abstract. By reconciling the phylogenetic tree of a gene family with
the corresponding species tree, it is possible to infer lineage-specific du-
plications and losses with high confidence and hence annotate orthologs
and paralogs. However, the currently available reconciliation methods
for non-binary gene trees are computationally expensive for being ap-
plied on a genomic level. Here, an O(|G| + |S|) algorithm is presented
to reconcile an arbitrary gene tree G with its corresponding species tree
S, where | · | denotes the number of nodes in the corresponding tree.
The improvement is achieved through two innovations: a fast computa-
tion of compressed child-image subtrees and efficient reconstruction of
irreducible duplication histories.

1 Introduction

Given the importance of accurately annotated gene relationships in evolu-
tionary and functional studies of biological systems [15,23], significant efforts
have been invested in developing methods to identify orthologs and paralogs
[1,5,7,12,16,21,22]. A pair of genes in different species whose last common ances-
tor (LCA) corresponds to a speciation event are orthologs [10]. Two genes (in the
same or different species) that descend from a gene duplication event are par-
alogs. Knowing the orthologs and paralogs of species permits one to reconstruct
the duplication history within a gene family.

In practice, this is often done by reconciling the phylogenetic tree (the gene
tree) of a family with the corresponding species tree, and inferring the lineage-
specific duplication and loss events [11,16]. Although a plethora of reconciliation
methods have been developed over the past two decades (see the review paper
[6]), only recently has this reconciliation process been generalized to non-binary
gene trees (see the survey articles [9,24]). The ability to reconcile non-binary
gene trees substantially expands the application of this method in comparative
genomics. First, it expands the range of tools: many widely-used phylogenetic
programs such as MrBayes [14] produce non-binary gene trees if there is not
enough signal in the data to date the divergences. Moreover, reconciling non-
binary gene trees that have been obtained by contracting weak branches in binary
gene trees produces more accurate duplication events than working directly on
corresponding binary ones (our unpublished data). Second, our method allows
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us to design fast heuristic programs for genome-wide mapping of orthologs and
paralogs. For example, SYNERGY [23] implicitly assumes that the gene tree of
every gene family is a star tree and heuristically reconciles the star gene tree
with the input species tree, which relieves the substantial preprocessing burden
of building binary gene trees for individual gene families. It inspires us to work
on a bottom-up approach for reconciling non-binary gene trees.

For binary gene trees and species trees, there is an accepted reconciliation
process which has been proven to produce the unique duplication history with the
fewest gene duplications and losses [3,13], and whose computational complexity
is linear with respect to the number of nodes in the two trees [4,19,25]. However,
no one has yet designed a linear-time reconciliation algorithm for non-binary
gene trees that is guaranteed to generate the history with the minimum number
of duplication and loss events. Furthermore, the uniqueness of the result is not
so clear for non-binary gene trees, where reconciliation may produce different
duplication histories for different cost models [26], where a linear-time algorithm
was obtained for the duplication cost model. Chang and Eulenstein [2] developed
the first algorithm for the problem, but their solution has cubic complexity. The
dynamic programming algorithm of Durand et al. [8] has the same worst-case
time complexity but it can also solve the problem under any affine cost model.
Recently, a quadratic algorithm was proposed by Lafond et al. [17]. All these
methods are computationally intensive when applied on a genomic scale.

In this paper, we present a linear-time algorithm that solves the problem.
Our bottom-up approach can incorporate multiple sources of information on
gene similarity, including sequence similarity and conserved gene order, and is
efficient enough to be used on a genomic level. Hence, it provides a valuable
framework for the genome-wide mapping of orthologs and paralogs in any group
of species with a known phylogeny, while taking advantage of the rapid increase
in fully sequenced genomes.

The rest of this paper is divided into six sections. The reconciliation problem
and different cost models are introduced in Section 2. Section 3 presents an al-
gorithm to simultaneously computes all compressed child-image subtrees of the
species tree in linear time, which immediately leads to an improved reconcilia-
tion method. Section 4 introduces the concept of irreducible duplication history.
Section 5 presents a simple algorithm that takes O(|G|+ |S|) operations to rec-
oncile a gene tree G and the corresponding species tree S, where | · | denotes the
number of nodes in the corresponding tree. In Section 6, we use simulated data
to compare the time efficiency of our algorithm with other methods. We con-
clude with suggestions for future work. All the proofs omitted in this extended
abstract can be found in the full version of the work.

2 Concepts and Notions

2.1 Definitions

Let T = (V (T ), E(T )) be a rooted tree in which one node is designated as the
root and the branches are oriented away from the root. V (T ) is the set of all
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nodes, and E(T ) is the set of all branches (directed edges). For two nodes u, v ∈
V (T ), v is the parent of u (and, equivalently, u is a child of v) if (v, u) ∈ E(T ).
Further, v is an ancestor of u (equivalently, u is a descendant of v), written
v ≺ u, if the unique path from the root to u passes through v. We write v + u if
u = v or v ≺ u. For U ⊆ V (T ), lca(U) denotes the most recent common ancestor
of the nodes in U . The depth of a node in T is the number of branches in the
path from the root to it. In this paper, we also use the following notation:

– |T | denotes the number of nodes in T ;
– p(u) denotes the parent of a non-root node u ∈ V (T );
– Vlf(T ) denotes the set of leaves (terminal nodes) of T ;
– Vit(T ) denotes the set of internal (non-leaf) nodes of T ;
– Ch(u) denotes the set of children of u ∈ Vit(T );
– T (u) denotes the subtree consisting of u and all descendants of u;
– T |U denotes the subtree induced by a subset U ⊆ V (T ): the nodes of T |U

are V ′ = {v ∈ V (T ) | lca(U) + v + u ∈ U} and the edges of T |U are
E(T ) ∩ (V ′ × V ′).

A node v is said to be binary if it has two children. T is binary if every
internal node is binary. If T is non-binary, a binary tree T ′ is said to be a
binary refinement of T if, for every u ∈ V (T ), v ∈ V (T ′) exists such that
Vlf(T (u)) = Vlf(T

′(v)) or, equivalently, if T can be obtained from T ′ by branch
contraction.

2.2 Species Trees

A species tree S is a rooted tree in which each leaf is associated with a unique
species. For node u ∈ Vlf(S), the branch (p(u), u) represents the species that
labels u. For u ∈ Vit(S), (p(u), u) represents the common ancestor of all the
species that label the leaves in S(u) and u represents a speciation event.

In the present paper, we assume that a species tree is binary, and that the
branch entering the root represents the common ancestor of all the species in
the tree, called the root branch (Figure 1A).

2.3 Gene Trees and Gene Duplication History

The gene tree reconstructed from the DNA or protein sequences of a gene family
represents evolutionary relationships in these genes. However, it may not explic-
itly represent the duplication history of the gene family. Without knowing the
true orthologous and paralogous relationships in the family members, we do not
need to distinguish the members that are sampled from the same species. Hence,
we label each leaf in the gene tree that represents a gene with the species that
hosts the gene today. In the resulting tree, leaves are not uniquely labeled in
general. Also, gene trees do not need to be binary.

Consider a family F of genes sampled from a collection X of species with a
known phylogenetic tree S. Assume that F evolved from a unique ancestral gene
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Fig. 1. A. A binary species tree over six species 1–6. B. A gene tree of nine genes:
two each from species 2, 3 and 4, and one each from species 1, 5 and 6. The gene tree
has two non-binary nodes. The child-image subtree of g and its compressed version
are shown in panels C and D, respectively. Here, λ(g1) = u, λ(g2) = 4, λ(g3) = y,
λ(g4) = 3, and λ(g5) = r.

through k gene duplications and m gene losses in the ancestral species (that is,
branches) of S (Figure 2A). We further assume that (i) each duplication event
gives rise to one new copy of the gene involved; (ii) each copy, as well as the
original duplicated gene, has exactly one descendant gene in an species, unless
one of the m loss events occurs in the ancestors of that species. The topology H
of the duplication history H of F is a rooted tree whose leaves are labeled with
genes. Since S is binary, each degree-2 node u ∈ V (H) corresponds to a gene
loss, and each degree-3 node with children u and v represents a duplication if it
does not correspond to a species tree node (Figure 2C). We use such types of
trees to represent duplication histories.

The duplication (respectively loss) cost dH (lH) of H is defined as the number
of duplication (loss) events occurring in it. Its mutation cost is defined as dH+lH.
If we assign the weights wd and wl to duplication and loss events respectively,
the (wd, wl)-affine cost of H is defined as wddH + wllH.

2.4 The Reconciliation Problem

The duplication history H of a gene family F can be inferred by reconciling its
gene tree G and the corresponding species tree S. The symbol gs denotes a gene

g ∈ F in species s. For U ⊆ V (G), λ(U)
def
= {λ(u) | u ∈ U}. The lca reconciliation

is the map λ : V (G)→ V (S) defined as:
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λ(g) =

{
s if g = gs ∈ Vlf(G),
lca (λ(Ch(g))) if g ∈ Vit(G).

(1)

If G is binary, λ induces the unique duplication history of F that has the
minimum duplication and loss costs [3,13]. In other words, it finds the most
parsimonious evolution history in a reconciliation cost model. Furthermore, for
g ∈ Vit(G), g is inferred to be a duplication node if λ(g) ∈ {λ(g′) | g′ ∈ Ch(g)}.
The corresponding gene duplication event occurs in the branch (p(λ(g)), λ(g))
in S, and gene loss occurs in each branch off the path from λ(g) to λ(g′) for
each g′ ∈ Ch(g) in the inferred duplication history. We define the cost of the lca
reconciliation of G and S to be the cost of the corresponding duplication history
for each of the duplication, loss, and affine cost models.

If G is non-binary, it is not clear how many duplication events can be inferred
and where they should occur in the most parsimonious duplication history of F .
The problem of reconciling an arbitrary gene tree G and a binary species tree S
is formulated as follows [9]:

Instance: A contracted version of the true gene tree G of a family of genes F
observed in species with a known binary species tree S and a reconciliation cost
model c.

Solution: A duplication history of F whose cost is minG′∈BR(G) c(G
′, S), where

BR(G) is the set of all binary trees that refine G.

Note that V (G) ⊆ V (T ) for every T ∈ BR(G). The lca reconciliation of T and
S maps every node in G to the same node in S for every T ∈ BR(G). Therefore,
we simply need to infer the duplication history from each ancestral gene g to its
children in the subtree S|λ(Ch(g)) (called the child-image subtree) (Figure 1C),
for each g ∈ Vit(G) separately. In the next section, we discuss our algorithm for
non-binary nodes in G, which is identical to the simple rule mentioned above
when applied to binary nodes.

3 Compressed Image Subtrees

By definition, λ(g) is the root of S|λ(Ch(g)). If S|λ(Ch(g)) contains non-root degree-
2 nodes, its size can be much larger than |Ch(g)|. To design a fast algorithm for
reconciling G and S, we need to compress S|λ(Ch(g)) by contracting all non-
root degree-2 nodes except for those in λ(Ch(g)) for each g (Figure 1D). The
compressed version of S|λ(Ch(g)) is indicated by I(g) and defined as follows.

Let P be a path from p1 to p2 in S|λ(Ch(g)) such that p1 and p2 are either
of degree 3 or in λ(Ch(g)), and all the middle nodes are of degree 2 and not in
λ(Ch(g)). Note that any parsimonious duplication history from g to its children
can only have gene loss events in the first branch of P , gene duplication events
in the last branch of P , or both. I(g) is obtained from S|λ(Ch(g)) by replacing
each of these paths with a single branch. Note that if the depths of p1 and p2
in S are known, when working on I(g), we can compute the gene losses occurring
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Fig. 2. A. A duplication history that does not have a minimum duplication cost: in
the rightmost lineage, a duplication and a loss occur. B. An irreducible duplication
history equivalent to the duplication history in A. Here, the oldest gene lineage is
colored red, the right-handed copy in the first two leaves are the descendants of the
gene duplicate produced in the left lineage, and the right-handed copy in the rightmost
leaf is the descendant of the duplicate produced in the root branch. C. The gene tree
that represents the duplication history in B where circle nodes correspond to species
tree nodes and square nodes are duplication nodes. D. The numbers of genes flowing
into (top) and out of (bottom) all the branches for the irreducible duplication history
in B.

in the branches leading away from P . Most importantly, |I(g)| ≤ 2|Ch(g)| for
each g and hence

∑
g∈Vit(G) |I(g)| ≤ 2|G|. Additionally, we have the following

fact.

Theorem 1. It takes linear time O(|G|+ |S|) to construct the compressed child-
image subtrees of all the internal nodes of G in S.

Finally, we assume that for each s ∈ I(g), the depth d(s) in S is computed
and is stored in the data structure along with other information on node s. Note
that, for each s, d(s) − d(p(s)) is the number of branches in the path from p(s)
to s in S and is used to compute the gene loss cost of the duplication history
from g to its child genes in S.

Theorem 1 leads immediately to an improved method for tree reconciliation.
By implementing a dynamic programming algorithm to resolve different non-
binary gene tree nodes in their corresponding I(g), we can compute an optimal
reconciliation of G and S in time O(|S|+d2×|G|) in the affine cost model, where
d is the maximum degree of a node in G.
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4 Irreducible Duplication Histories

To develop a linear time algorithm for reconciling non-binary gene trees, we also
need to focus on a special type of duplication histories of gene families. In this
section, we introduce this type of duplication histories.

4.1 Equivalence of Gene Duplication Histories

Consider a feasible duplication history H from g to Ch(g) in the child-image
subtree S|λ(Ch(g)). If duplication and loss occur in the same branch (Figure 2A),
we can eliminate one duplication and one loss to obtain a new duplication history
with fewer events (Figure 2B), because we do not distinguish the elements in
Ch(g). Hence, the duplication history of Ch(g) with the smallest duplication
cost does not allow both duplication and loss to occur in the same branch.
Considering a branch e as the population of the representative species, we use
nin
H(e) and nout

H (e) to denote the numbers of genes flowing into and out of a
branch e. For u ∈ V

(
S|λ(Ch(g))

)
, we define:

ω(u)
def
= |{g′ ∈ Ch(g) : λ(g′) = u}| . (2)

The following conditions hold for a duplication history with the minimum du-
plication cost as shown in Figure 2D:

(C1) For e ∈ E
(
S|λ(Ch(g))

)
, nin

H(e) ≥ 1 and nout
H (e) ≥ 1. If e is the root

branch, nin
H(e) = 1.

(C2) For any leaf u, nout
H (e) = ω(u), where e = (p(u), u).

(C3) For e = (u, v) and e′ = (v, w) in S|λ(Ch(g)), n
out
H (e) = nin

H(e′) + ω(v).
(C4) In every branch e, k duplications occur iff nout

H (e)−nin
H(e) = k; similarly,

k losses occur in e iff nin
H(e)− nout

H (e) = k.
Define:

ΣH=
{(

e, nin
H(e), nout

H (e)
)

| e ∈ E
(
S|λ(Ch(g))

)}
. (3)

Two duplication histories H and H′ from g to Ch(g) are said to be equivalent if
ΣH = ΣH′ . Clearly, any given value of ΣH may be achieved by a large number
of histories with the same duplication and loss costs. In this work, we infer a
duplication history by determining the values of the three arguments defined
in (3) for all branches. One benefit of taking this approach is that our method
effectively outputs a large set of optimal duplication histories that reconcile the
input gene and species trees.

4.2 Irreducible Duplication Histories

A duplication process copies an existing gene, giving rise to two versions of the
gene. A duplication history from g to Ch(g) is irreducible if the ancestral gene
representing g in the root branch does not experience any loss event, so that
it has a descendant in every leaf of S|λ(Ch(g)) (the red lineage in Figure 2B),
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and if every duplication event copies the descendant of this oldest gene in the
branch where the event occurs. Note that a history with no duplication is also
irreducible. Such limiting cases are called speciation histories.

In general, different children of g may be mapped to the same node in
S|λ(Ch(g)). We consider λ(Ch(g)) to be a multiset, meaning that each element
has a multiplicity. It is not hard to see that an irreducible duplication history H
from g to Ch(g) induces the following decomposition of λ(Ch(g)) in S|λ(Ch(g)):

λ(Ch(g)) = D0 ,D1 , . . . ,Dk, (4)

where , is the sum operation for multisets1, such that the following
hold: (i) k equals the number of duplication events in H; (ii) D0 =

Vlf(S|λ(Ch(g))), representing the oldest gene lineage; (iii) Di
def
= {x ∈

λ(Ch(g)) |the gene made by Ei has a descendant in x}, where Ei is the i-th du-
plication event of H occurring in the branch entering lca(Di) for 1 ≤ i ≤ k.

For example, there are two duplication events in the irreducible duplication
history in Fig. 2B. Assume the species are named S1, S2, S3 from left to right in
the species tree, the duplicated gene produced in the first (i.e. top) duplication
event has descendants in S2 and S3, whereas the duplicated gene produced by
the second duplication has only one descendant in S1. Hence, this irreducible
duplication history corresponds to the following decomposition:

{S1, S2, S3} , {S2, S3} , {S1}.

Conversely, such a decomposition of λ(Ch(g)) uniquely defines an irreducible
duplication history from g to Ch(g) in S|λ(Ch(g)). Therefore, we have the follow-
ing theorem.

Theorem 2. Every duplication history H from g to Ch(g) is equivalent to an
irreducible duplication history H′ such that dH ≥ dH′ and lH ≥ lH′ .

5 Linear Time Reconciliation Algorithm

In order to infer a duplication history with the minimum mutation cost, by
Theorem 2, we need only to find the decomposition λ(Ch(g))/Vlf

(
S|λ(Ch(g))

)
=

D1 , D2 , · · · , Dk that minimizes k +
∑

li, where li is the loss cost of the
speciation history defined by Di. This is because the number of gene losses in
the speciation history defined by Vlf

(
S|λ(Ch(g))

)
is fixed. We refer to this as

a minimum decomposition. Note that D1 , D2 , · · · , Dk corresponds to the
set of all child genes that are the descendants of ancestral genes produced by
duplication. For each leaf in S|λ(Ch(g)), all but one of the genes mapped to the
leaf are descendants of duplicated ancestral genes; these gene children are called
redundant gene copies. The descendant of the oldest gene in each leaf is called
the basal gene copy.

1 The multiplicity of an element equals the sum of the multiplicities in the operands.
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A                            B                                        C                                 D 

Fig. 3. A schematic view of merging partial decompositions for the three possible
cases (A–C) where u has two children, and also for the case when u has only one
child (D). Good trees and defect trees are colored orange and blue respectively in the
decompositions D1 (left) and D2 (right). The ω(u) singleton trees added at the current
node are not shown in each case.

We now present a linear-time algorithm for finding a minimum decomposition
of the redundant gene copies by working on the compressed child-image subtree
I(g). For the sake of clarity, we assume that for any (u, v) ∈ E(I(g)), the differ-
ence between the depths of v and u in the species tree S is one. (We describe
how to generalize this to more general cases later.)

A rooted tree is called a defective tree if there is at least one degree-2 node in
the middle of every path from the root to a leaf. It is called a good tree if there
is a root-to-leaf path in which all but the end nodes are of degree 3. Note that
a speciation history is a subtree of I(g).

Theorem 3. Let
D : D1 ,D2 , · · · ,Dk

be the minimum decomposition of λ(Ch(g))/Vlf(I(g)). If D gives a duplication
history such that redundant gene copies have the minimum gene loss cost, com-
pared to all other duplication histories with the same mutation cost, then for
each i, the speciation history I(g)|Di satisfies the following:

(1). The subtree T (u) below any degree-2 node u cannot be a defective tree.
(2). I(g)|Di must be a good tree.

Theorem 3 motivated us to design a bottom-up recursive algorithm for find-
ing the minimum decomposition of λ(Ch(g))/Vlf(I(g)), thereby reconstructing a
duplication history from g to its children with the minimum mutation cost. By
the theorem, any component in a minimum decomposition of λ(Ch(g))/Vlf(I(g))
induces a good subtree that has a special structural property. Hence, for subset
V ′ ⊂ Vlf(I(g)), we use the induced subtree I(g)|V ′ to represent V ′. As such,
we use a set of subtrees to represent a partial decomposition obtained at each
internal node.

At a leaf u ∈ Vlf(I(G)), the partial decomposition consists of ω(u)−1 singleton
trees, which are considered good trees.

Let u be a node with two children in I(g), u1 and u2. Consider a partial
decompositionD1 of {x ∈ λ(Ch(g))/Vlf(I(g)) | x ∈ Vlf(I(g)(u1))} into b(u1) trees
and a partial decomposition D2 of {x ∈ λ(Ch(g))/Vlf(I(g)) | x ∈ Vlf(I(g)(u2))}
into b(u2) trees. We attempt to merge these two partial decompositions to obtain
a decomposition of {x ∈ λ(Ch(g))/Vlf(I(g)) | x ∈ Vlf(I(g)(u))}. By Theorem 3,
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each component of a minimum decomposition induces a good subtree. However,
for a good subtree X and an internal node y, X ∩ I(g)(y) can be a defective
tree. Hence, a partial decomposition may contain defective trees. We distinguish
between defect trees and good trees.

Assume that a(u1) out of b(u1) trees are good in D1, that a(u2) out of b(u2)
trees are good inD2, and that a(u2) ≤ a(u1). We mergeD1 andD2 by considering
the following two cases (Figure 3).

1. a(u2) ≤ b(u2) < a(u1) ≤ b(u1) (Figure 3A). Merge a(u2) pairs of good trees,
b(u2) − a(u2) pairs of good and defective trees, extend a(u1) − b(u2) good
trees from D1, and discard b(u1) − a(u1) defective trees from D1. Further,
add ω(u) singleton trees, which are good trees.

2. a(u2) ≤ a(u1) ≤ min{b(u1), b(u2)} (Figures 3B and 3C). Merge a(u2) pairs of
good trees, a(u1)−a(u2) pairs of good and defective trees, min{b(u1), b(u2)}−
a(u1) pairs of defective trees, and discard b(u2)− b(u1) defective trees from
D2 if b(u2) > b(u1) or b(u1)− b(u2) defective trees from D1 otherwise. Add
ω(u) singleton trees.

Proposition 1. Let m1 ≤ m2 ≤ m3 ≤ m4 be the arrangement of {a1, a2, b1, b2}
from smallest to largest. Merging D1 and D2 produces ω(u) +m2 good trees and
m3 −m2 defect trees to merge, and detects m4 −m3 defect trees to discard.

At an internal node u with only one child u1 (Figure 3D), we create ω(u)
singleton trees, extend all good trees, and discard all the defective trees in the
decomposition D1.

Using this bottom-up merging procedure, we obtain a set of good and defec-
tive trees at the root of I(g). This set of trees defines a minimal decomposition
of λ(Ch(g))/Vlf(I(g)). More specifically, each good tree corresponds to a compo-
nent of the minimal decomposition. However, each defective tree corresponds to
k ≥ 2 components, where k equals the cardinality of the maximum incomparable
degree-2 internal nodes in the tree. Similarly, each defective tree discarded at an
internal nodes also corresponds to several components of the minimal decompo-
sition.

For m real numbers i1, i2, · · · , im, we use median{i1, i2, . . . , im} to denote
their median if m is odd. For each u ∈ V (I(g)), we use b(u) to denote the
number of trees in the decomposition obtained at u in which a(u) out of b(u)
trees are good trees. For u and k ≥ 0, we define the following:

dist (k, [a(u), b(u)]) = min
x∈[a(u),b(u)]

|x− k|,

k′ = median{k, a(u), b(u)} − ω(u), (5)

f(u, k′) =

⎧⎪⎨
⎪⎩

0 if u is a leaf,

C(u1, k
′) + k′ if Ch(u) = {u1},

C(u1, k
′) +C(u2, k

′) if Ch(u) = {u1, u2},
and

C(u, k) = dist (k, [a(u), b(u)]) + f(u, k′). (6)
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Input An annotated compressed child-image subtree I(g);
Output The number of genes flowing into and out of branches in I(g).
1.Traversing I(g) in post-order

Compute a(u) and b(u) at node u:
if (u is a leaf) {

a(u) = ω(u)− 1; b(u) = ω(u)− 1;
} else if (Ch(u) = {u1, u2}) {

max a = max(a(u1), a(u2)); min b = min(b(u1), b(u2));
a(u) = ω(u) + min(max a, min b);
b(u) = ω(u) + max(max a, min b);

} else if (Ch(u) = {u1}) {
a(u) = ω(u); b(u) = a(u1) + ω(u);

}
2.Traversing I(g) in pre-order

/* in(u) and out(u) denote the number of genes */

/* flowing into and out of the branch (p(u), u) */

Compute in(u) and out(u) at node u:
if (u is the root) {

α(u) = 0; β(u) = a(u);
} else {

α(u) = β(p(u))− ω(p(u)); β(u) = median{α(u), a(u), b(u)};
}
/* factor in the basal copy in each branch */

in(u) = 1 + α(u); out(u) = 1 + β(u);

Fig. 4. A linear-time algorithm for reconstructing evolution from g to its children.
Here, we assume that d(u) = d(p(u)) + 1 for each u in I(g).

Theorem 4. Let r be the root of I(g). The decomposition Dr obtained by this
merging procedure determines a duplication history of redundant gene copies with
the minimum mutation cost C(r, 0).

Theorem 4 suggests a two-step algorithm for reconstructing evolution from g
to its children in linear time (Figure 4). First, we compute the numbers of good
and defective trees obtained at the internal nodes in I(g) by visiting all the
nodes in order from leaf to root, which guarantees that we visit all the children
of a node before the node itself. We then identify duplications and losses by
computing the numbers of genes flowing into and out of the branches in I(g),
top down from root to leaf. To take into account the basal gene copies, we add
one to the numbers of ancestral gene copies flowing into and out of each branch.
Figure 5 gives an example to illustrate this algorithm.

Recall that we assume d(u) = d(p(u))+1 for each u ∈ V (I(g)) in the algorithm
described above. It can be modified for general cases by (i) finding all maximal
subtrees of I(g) that do not contain any branch (u, v) such that d(v) > d(u) + 2
in S and then (ii) for each subtree T found in (i), replacing every branch (u, v)
such that d(v) = d(u)+2 by the two-branch path between u and v in S and then
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 a     b  α( )  β( )    
t      2     3     1     2     2 
v     2     3     2     2     2 
w    2     3     2     2     2 
x     1     1     1     2     1 
y     1     2     2     2     2 
z     1     2     1     2     2 
s     1     2     2     2     2 
r      2    2     2     0     2 

Fig. 5. Illustration of the reconciliation algorithm. A. A compressed child-image tree
I(g) with basal (empty circles) and redundant (solid circles) child genes of g drawn
beside their image nodes. B. The values of a, b, α and β at internal nodes. C. The
subtrees to be merged at each node in I(g). Two good trees are obtained after the
merging process terminates at the root. A subtree obtained at each node is good if
its root is connected to one blue branch at most. D. The optimal duplication history
from g to its children (in the compressed child-image tree) obtained from the optimal
decomposition in C, whose minimum mutation cost is 6; the basal gene copies are not
shown.

applying the algorithm to the resulting subtree T ′. The complete version of this
algorithm can be found in the full version of this work.

6 Experimental Tests

We compared a naive dynamic programming method (DP) (found in [8]) and
a modified dynamic programming method (DP+C) (which applies the dynamic
programming technique to the compressed child-image subtrees) to the proposed
linear-time method (LT) using simulated data. For fair comparison, we imple-
mented DP. Our version of DP is slightly faster than the dynamic-programming-
based program found in NOTUNG [8] but, to be fair, the latter has several other
features, such as listing all the inferred optimal solutions.

All three programs were run to reconcile non-binary gene trees with the mu-
tation cost, using the same machine (3.4GHz and 8G RAM). We measured their
run times for 100 reconciliations between a non-binary tree containing 1.2n genes
and its corresponding species trees over n species. For each size n, both species
tree and a binary gene tree with 1.2n leaves were generated using the Yule
model. Finally, a non-binary gene tree was obtained from the binary gene tree
by contracting each edge with a fixed rate p. We examined 40 cases by allowing
n to take 10 different values in the range from 1,000 to 10,000 and setting the
edge contraction rate p to 0.4, 0.6, 0.7 or 0.8 (Figure 6). We also ran LT on 50
different tree sizes in the range from 2,000 to 100,000, which are too large for
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Fig. 6. Comparison of three algorithms: dynamic programming (DP), dynamic pro-
gramming with compressed child-image subtrees (DP+C) and the proposed linear time
(LT) algorithm. Four figures are drawn for the four different edge contraction rates 0.4
(top left), 0.6 (top right), 0.7 (bottom left), and 0.8 (bottom right). The run time is
given in microseconds and the number of species is in thousands.

the other two methods (Figure 7). The results summarized in the figure confirm
that the run times of LT are linearly proportional to the size of the gene trees.
LT is slightly faster than DP+C , and 5 to 20 times faster than DP for gene
trees with thousands of genes.

We also ran the program PolytomeSolver, which implements the algorithm
presented in [17]. Both LT and DP+C were faster than PolytomeSolver for gene
trees with hundreds of leaves. However, PolytomeSolver aborted on some large
species trees (those of height >64, for example). We exclude it from comparison
analyses in this conference version.
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Fig. 7. The run times of LT are linearly proportional to the sizes of gene trees
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7 Discussion and Future Work

Here we present a linear-time algorithm to reconcile the non-binary gene tree of
a gene family and the corresponding species tree to reconstruct the duplication
history of the gene family with the minimum mutation cost. The reconciliation
time is an order of magnitude faster than others achieved using compressed
child-image trees and working on irreducible duplication histories.

Our approach has several important benefits. First, we do not consider incom-
plete lineage sorting (ILS) events, which may not be rare and hence cannot be
ignored in certain circumstances [18,20,27]. Since the effect of an ILS event on
the divergence of gene and species trees is similar to that of a duplication event,
the concepts proposed here can easily be extended to take ILS events in account.
Second, the output of our program is actually a class of optimal duplication his-
tories, not just one individual history. This is because the program may assign
multiple duplications to a branch in the species trees, and these duplications can
be arranged in different ways. Third, our linear-time algorithm is fast and hence
is ideal for providing an on-line service for tree reconciliation (see our TxT server
http://phylotoo2.appspot.com/rgt/, where the source code is also available). Fi-
nally, our bottom-up approach can incorporate multiple sources of information
on gene similarity, including sequence similarity and conserved gene order, when
it is applied to genome-wide studies of the evolution of gene families. This is
definitely an interesting future project.
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Abstract. Transcriptional regulation is directly enacted by the interac-
tions between DNA and many proteins, including transcription factors,
nucleosomes, and polymerases. A critical step in deciphering transcrip-
tional regulation is to infer, and eventually predict, the precise locations
of these interactions, along with their strength and frequency. While re-
cent datasets yield great insight into these interactions, individual data
sources often provide only noisy information regarding one specific aspect
of the complete interaction landscape. For example, chromatin immuno-
precipitation (ChIP) reveals the precise binding positions of a protein,
but only for one protein at a time. In contrast, nucleases like MNase
and DNase reveal binding positions for many different proteins at once,
but cannot easily determine the identities of those proteins. Here, we
develop a novel statistical framework that integrates different sources of
experimental information within a thermodynamic model of competitive
binding to jointly learn a holistic view of the in vivo protein-DNA in-
teraction landscape. We show that our framework learns an interaction
landscape with increased accuracy, explaining multiple sets of data in ac-
cordance with thermodynamic principles of competitive DNA binding.
The resulting model of genomic occupancy provides a precise, mech-
anistic vantage point from which to explore the role of protein-DNA
interactions in transcriptional regulation.

Keywords: protein-DNA interaction landscape, thermodynamic
modeling, genomic data integration, competitive binding, compete.

1 Introduction

As an essential component of transcriptional regulation, the interaction between
DNA-binding factors (DBFs) and DNA has been studied extensively by experi-
mentalists. To map genome-wide protein-DNA interactions, two basic categories
of experimental techniques have been developed: chromatin immunoprecipitation

� Corresponding author.

R. Sharan (Ed.): RECOMB 2014, LNBI 8394, pp. 433–447, 2014.
c© Springer International Publishing Switzerland 2014



434 J. Zhong, T. Wasson, and A.J. Hartemink

(ChIP) based methods (numerous studies in many organisms, but a few exam-
ples for yeast are [9, 18, 19]); and nuclease digestion based methods that profile
chromatin with either DNase [11] or MNase [10]. To reveal high-resolution DNA
interaction sites for a single antibody-targeted factor, ChIP methods can be used,
especially the recently developed ChIP-exo methods [19] that use lambda exonu-
clease to obtain precise positions of protein binding. Nuclease digestion methods
can be used to efficiently assay genome-wide DNA occupancy of all proteins at
once, without explicit information about protein identities. These and other ex-
perimental efforts over the past decade have generated a large amount of data
regarding the chromatin landscape and its role in transcriptional regulation. We
now need computational models that can effectively integrate all this data to
generate deeper insights into transcriptional regulation.

A popular set of computational models use this data to search for over-
represented DNA sequences bound by certain DBFs; these are often applied
in the setting of motif discovery [4, 9, 15, 23]. More recently, models have been
applied to DNase-seq data to identify ‘digital footprints’ of DBFs [3, 11, 14, 16].
However, many of these approaches share certain drawbacks. First, protein bind-
ing is typically treated as a binary event amenable to classification: either a pro-
tein binds at a particular site on the DNA sequence or it does not. However,
both empirical and theoretical work has demonstrated that proteins bind DNA
with continuous occupancy levels (as reviewed by Biggin [1]). Second, most com-
putational methods model the binding events for one protein at a time instead
of taking into consideration the interactions among different DBFs, especially
nucleosomes. Although the work of Segal et al. [22], Kaplan et al. [12], and Teif
and Rippe [24] are notable exceptions, these all consider small genomic regions
and include only a few transcription factors (TFs); Segal et al. [22] ignored the
role of nucleosomes altogether. Third, and most importantly, almost all current
methods fail to integrate different kinds of datasets. This is insufficient because
data from one kind of experiment only reveals partial information about the
in vivo protein-DNA interaction landscape. For example, ChIP datasets only
contain binding information for one specific protein under a specific condition;
nuclease digestion datasets provide binding information for all proteins, but do
not reveal the identities of the proteins; and protein binding microarray (PBM)
experiments only look at sequence specificity of one isolated protein in an in
vitro environment.

We previously published a computational model of protein-DNA interactions,
termed compete [25], that overcomes the first two drawbacks above by repre-
senting the competitive binding of proteins to DNA within a thermodynamic
ensemble. Interactions between proteins and DNA are treated as probabilis-
tic events, whose (continuous) probabilities are calculated from a Boltzmann
distribution. compete can easily include a large number of DBFs, including
nucleosomes, and can efficiently profile entire genomes with single base-pair res-
olution. However, a major limitation of compete is that it is a purely theoretical
model of binding, based on thermodynamic first principles but not guided by
data regarding in vivo binding events. Indeed, it is possible for compete to
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predict superfluous binding events that are inconsistent with observed data (see
Supplemental Figure S1). It is therefore necessary to develop a new computa-
tional framework for jointly interpreting experimentally-derived data regarding
genomic occupancy within a model built upon the thermodynamic foundation
of compete.

Here, we develop just such a method: a general framework for combining both
a thermodynamic model for protein-DNA interactions (along the lines of com-
pete) and a new statistical model for learning from experimental observations
regarding those interactions. Information from different experimental observa-
tions can be integrated to infer the actual thermodynamic interactions between
DBFs and a genome. In this particular study, we demonstrate the use of this
framework by integrating paired-end micrococcal nuclease sequencing (MNase-
seq) data, which reveals information about the binding occupancy of both nu-
cleosomes and smaller (subnucleosomal) factors. Our framework also integrates
protein binding specificity information from PBM data and produces a more
accurate and realistic protein-DNA interaction landscape than compete alone,
along with a mechanistic explanation of MNase-digested fragments of different
sizes. The cross-validated performance of our framework is significantly higher
than several baselines to which we compared it. Our framework is flexible and
can easily incorporate other data sources as well, and thus represents a general
modeling framework for integrating multiple sources of information to produce
a more precise view of the interaction landscape undergirding transcriptional
regulation.

2 Methods

2.1 Modeling Protein-DNA Interaction

We model the binding of DBFs (e.g., transcription factors and nucleosomes) to
DNA along a probabilistic continuum, and we incorporate explicit competition
between different DBFs. The ensemble average of the probability with which a
particular DBF binds a specific position of the sequence can be derived from ther-
modynamic principles. To calculate this average probability, consider a specific
binding configuration i from the ensemble, where i can be viewed as an instanta-
neous snapshot of the dynamic competition between DBFs for binding sites along
the genome. Following the Boltzmann distribution, the unnormalized probabil-
ity wi of configuration i can be shown to be wi =

∏Ni

t=1 Xt × P (St, Et|DBFt),
where t is an index over the Ni DBF binding sites in configuration i. To sim-
plify notation, we have treated each unbound nucleotide as being bound by a
special kind of ‘empty’ DBF. In the above expression, Xt denotes a weight as-
sociated with DBF t, while St and Et denote the start and end position of the
DBF binding site, respectively. P (St, Et|DBFt) is the probability of observing
the DNA sequence between St and Et, given that DBF t is bound there. If we
use pi to denote the probability of configuration i after normalization by the
partition function, we can write the probability that DBF t binds at a specific
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position j as
∑

i∈I(t,j) pi, where I(t, j) is the subset of binding configurations in
the ensemble that have DBF t bound at sequence position j.

This model can be formulated analogously to a hidden Markov model (HMM)
[17], in which the states correspond to the binding of different DBFs and the
observations are the DNA sequence. The various probabilities, along with the
partition function, can then be calculated efficiently using the forward-backward
algorithm. For transcription factors, we have chosen to represent P (St, Et|DBFt)
using a position weight matrix (PWM), but more sophisticated models can also
be used (e.g., relaxing positional independence, or based on energies rather than
probabilities [26]). Regardless, binding models from different sources and of dif-
ferent forms can be easily incorporated into our model, generating the appropri-
ate states and sequence emission probabilities. We use the curated PWMs from
Gordân et al. [7], derived from in vitro PBM experiments, as the input protein
binding specificities and consider them fixed (though our framework also could
allow them to be updated).

The analogues of HMM transition probabilities in our model are the DBF
weights, but these are not constrained to be probabilities. To allow this flexibility,
we adopt a more general statistical framework called a Boltzmann chain [21]
which can be understood as a HMM that allows the use of any positive real
numbers for these weights. Because of the analogy with an HMM, we henceforth
refer to these DBF weights as ‘transition weights’ and denote them collectively
as a vector X = (X1, X2, . . . , XD), where D is the number of different kinds of
DBFs. We treat the D elements of X as free parameters, and we will fit them
using experimentally-derived genomic data.

We should note that the DBF transition weights in a Boltzmann chain are
sometimes called ‘concentrations’. However, it is important to point out that
these transition weights are not the same as bulk cellular protein concentra-
tions, of the kind that can sometimes be measured experimentally [5]. Bulk
cellular protein concentrations are not necessarily indicative of the availability
of a DBF to bind DNA, because they do not account for phenomena like sub-
cellular localization or extra-nuclear sequestration, protein activation through
post-translational modification or ligand or co-factor binding, or the number of
DBFs already bound to DNA. In contrast, our transition weights correspond
to nuclear concentrations of active proteins that are free and available to bind
DNA. In this sense, our weight parameters are more reasonably interpreted not
as cellular concentrations but rather as the chemical potentials of the DBFs for
interacting with the genome.

2.2 Using Paired-End MNase-Seq Data as a Measure of Genomic
Occupancy Level of DNA-Binding Proteins

We used paired-end MNase-seq data from Henikoff et al. [10]. Based on their pro-
tocol, the length of the sequencing fragments correspond roughly to the size of
the protein protecting that part of the DNA; the number of fragments mapping
to the location correlates with the binding strength or occupancy. Therefore, to
measure the level of occupancy of different DNA binding proteins, we separate
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Fig. 1. Overview of objective function evaluation. (A) Predicted probability that each
particular DBF binds at a given genome position, as calculated by compete, given cur-
rent DBF weights. We then separate these probabilities into two profiles: (B) predicted
nucleosome binding profile and (C) predicted composite TF binding profile in which
protein identities have been removed; the latter is smoothed to make it comparable to
a short fragment coverage profile. Similarly, we separate the observed MNase-seq frag-
ments (F) into long (140–200bp) and short (0–100bp) fragments, which are summed
to produce measures of coverage. (D) Total long fragment coverage is processed into
a large protein binding profile, which is compared to predicted nucleosomal binding,
arriving at Pearson correlation r1. (E) Total short fragment coverage is processed into
a small protein binding profile, which is compared to predicted composite TF binding,
arriving at Pearson correlation r2. For this promoter, the quantity h that appears in our
objective function (the pseudo-likelihood) is simply the geometric mean of the two cor-
relations, after they are rescaled to lie in the interval [0, 1]: h = 1

2

√
(1 + r1)× (1 + r2).

The complete pseudo-likelihood over all promoters is then optimized with respect to
the DBF weights using the inference method described below.

the fragments into long (140–200bp) and short (0–100bp) fragment groups and
count the number of fragments in each group that cover a specific genomic loca-
tion (called long and short fragment coverage, respectively). The long fragment
coverage is used as a measure of the occupancy of large protein complexes, which
are mainly nucleosomes, while the short fragment coverage is used as a measure
of the occupancy of smaller proteins, which are mainly transcription factors.

To reduce noise in the MNase-seq data, we process the noisy fragment data
into binding profiles through thresholding and smoothing. We define two thresh-
olds: a bottom threshold Tb and a top threshold Tt. Coverage values that are
below Tb are converted to 0, while those above Tt are converted to 1; cover-
age values between the two thresholds are normalized linearly to [0, 1]. We then
smooth the track using a Gaussian kernel of bandwidth Bm. We process long
and short fragment coverage data separately to get the large and small protein
binding profiles, respectively (Figure 1 D and E). We choose Tb = 200 and Tt =
500, with Bm = 10 for short fragment coverage and Bm = 30 for long fragment
coverage. These values give satisfying results in terms of reducing noise while
retaining clear peaks. Because the choices are a little arbitrary, we performed a
sensitivity analysis and observed that our results are largely unaffected across
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a broad range of these parameters (see Supplemental Figure S2). We also note
that MNase is known to prefer to cut A/T compared to G/C. We assessed the
severity of this well-known bias and observed that it does not affect our final
results (see Supplemental Figure S3). This is primarily because we are not using
profiles of the total number of cuts at each genomic position, but rather using the
full fragments (available as a result of paired-end sequencing) to generate pro-
files of fragment coverage; while the former would be highly sensitive to MNase
bias, the latter is relatively insensitive to the small fluctuations in fragment end
locations introduced by MNase bias.

2.3 Selecting a Subset of TFs and Promoter Regions

Our framework has the capability to include all S. cerevisiae transcription fac-
tors. However, our choice of transcription factors is limited by available high
quality binding preference data. In addition, adding more TFs increases the
dimensionality of the parameter space and therefore the computation time re-
quired to explore the space. In this study, we chose a set of 42 TFs with avail-
able high quality binding preference data. These TFs cover a wide range of
cellular functions, including the widely-studied transcriptional regulators Reb1,
Rap1, and Abf1 (possessing some chromatin remodeling activity), TFs involved
in pheromone response (Ste12 and Tec1), TFs involved in stress response (like
Msn4), and TFs involved in cell cycle regulation (Fkh1, Mbp1, and so forth). We
also included some TFs, like Pho2 and Phd1, that regulate a large number of
genes according to MacIsaac et al. [15]. While these 42 do not represent all yeast
TFs, they are collectively responsible for 66% of the genome-wide protein-DNA
interactions reported by MacIsaac et al. [15] (at p-value< 0.005 and conservation
level 3).

Having selected our 42 TFs, we next chose a set of promoter regions that,
according to MacIsaac et al. [15] (at p-value < 0.005 and conservation level 3),
seem to be bound exclusively by those TFs. For this study, we focus on 81 such
promoter regions, and extracted MNase-seq data for these loci as follows. If the
promoter is divergently transcribed, we extracted the MNase-seq data between
the two TATA elements, plus 200bp downstream of each TATA element. For the
other (non-divergent) promoters, we extracted MNase-seq data 500bp upstream
of the TATA element (or 100bp upstream of the end of the upstream gene,
whichever is smaller), and 200bp downstream of the TATA element. Locations
of TATA elements were taken from Rhee and Pugh [20].

2.4 Incorporating MNase-seq Data through an Objective Function

We model MNase-seq data through a pseudo-likelihood function, conditioned on
compete outputs. To calculate the pseudo-likelihood function, we process the
compete output TF binding probabilities as following: the binding probability
of each compete output TF binding event is expanded to a flanking region of
Ce bp, and is then dropped linearly to 0 for another Cr bp; we then sum the
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expanded binding probability of all TFs (truncating values larger than 1) and
smooth the track using a Gaussian kernel of bandwidth Bc to get a compos-
ite TF binding profile (Figure 1C). We process the occupancy profile in such
a way for two reasons: (a) the resolution of the short fragment coverage does
not distinguish protection from adjacent proteins, and (b) MNase does not com-
pletely digest all unprotected DNA, leaving some additional nucleotides flanking
any TF’s actual binding site. We choose Ce = Cr = Bc = 10, though, as with
the threshold and bandwidth parameters discussed above, varying the specific
values tends to have only small effects on the model predictions. We do not
process the nucleosome profile predicted by compete since the model already
takes nucleosome padding into consideration.

For promoter region m, we calculate two correlations: the Pearson correlation
r1,m between the nucleosome binding profile and the MNase-seq long fragment
coverage profile, and the Pearson correlation r2,m between the composite TF
binding profile and the MNase-seq small protein coverage profile. The complete
pseudo-likelihood function we seek to maximize is defined as:

L(X) =

M∏
m=1

hm(X) where hm(X) =
1

2

√
(1 + r1,m)× (1 + r2,m).

Note that hm(X), which depends on the vector of DBF weights X, is the geo-
metric mean of the two rescaled correlations for promoter region m (an example
is shown in Figure 1). In this study, M = 81.

2.5 Inference Method

We use Markov chain Monte Carlo (MCMC) to explore a posterior distribution
based on the pseudo-likelihood function. However, since correlation measures the
overall goodness of fit for many genomic locations at once, our pseudo-likelihood
function is much flatter than typical likelihood functions. This property can be
useful in preventing overfitting, but it also imposes some difficulty for parameter
inference. To alleviate this concern, and allow for more efficient MCMC explo-
ration, we apply a temperature parameter τ to each dimension of the search space
in order to concentrate the mass of L(X) around its modes. We apply a possi-
bly different temperature to each dimension (i.e., each element of the vector X)
because the pseudo-likelihood in one dimension may be more or less flat than in
others. We base our choice of temperature parameter on the MCMC acceptance
rate, and empirically set τ for each dimension to be one of {0.1, 0.05, 0.01, 0.002}.
Note that none of these choices change the local maxima of our objective function
in any way; they simply may make convergence more efficient.

As for the prior over X, a nice feature of our framework is that we can use
non-uniform priors if there is reason to do so; later, we explore the possibility
of including mildly informative priors for certain TFs where measurements of
cellular concentrations in S. cerevisiae are available [5]. However, when no rele-
vant information is available, a uniform prior distribution is a natural choice. In
what follows, we use a uniform prior over [−10, 2] for log transition weights of
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TFs and a uniform prior over [0, 3] for the log transition weight of nucleosomes.
Such values are chosen based on the range of TF dissociation constants at their
respective optimal binding sites (Kd, as defined and computed by Granek and
Clarke [8]). Sig1 has the highest log Kd value of −2.5 and Asg1 has the lowest log
Kd value of −7.6. Empirical observations also show that MCMC never produced
samples outside these ranges.

In our Gibbs-style MCMC, each iteration consists of an update for each of the
transition weight parameters in the model. On a commodity computer cluster,
we could compute roughly 25 such iterations per hour.

2.6 Incorporating Pre-initiation Complexes

The pre-initiation complex (PIC) assembles at nucleosome-free promoter regions
and facilitates transcription initiation and regulation. PICs compete with other
DBFs for binding sites when they are assembled around TATA or TATA-like
elements (henceforth referred to as TATA boxes, for simplicity). To account
for this competition, we calculate the TATA-binding protein (TBP) binding
probability in our model using the DNA binding specificity derived from Rhee
and Pugh [20]. Because of the degenerate nature of the TBP binding motif,
we amend our model to allow this competition to occur only at TATA boxes
(essentially, we set the transition weight for TBP to be 0 at all sequence locations
except TATA boxes).

Rhee and Pugh [20] report that core PICs (TBP-associated factors and general
transcription factors) assemble approximately 40bp downstream of TATA boxes.
The MNase digestion data used here also show an enrichment of short fragments
coverage at the same location. Therefore, we approximate the PIC protection by
adding the same MNase short fragment coverage shape (scaled by the probability
of TBP binding) to the predicted small protein binding probability downstream
of the TATA box (see Supplemental Figure S4 for details).

3 Results

3.1 Overall Inference Performance Evaluated by Cross Validation

We randomly split our 81 promoter regions into nine equal sets and performed
a standard nine-fold cross validation: parameters were trained on 72 promoter
regions using MCMC and we used the average of MCMC samples as trained
DBF weights X̂; we then calculated h(X̂) values for the held out nine promoter

regions. Figure 2 shows boxplots of h(X̂) values of all the training and testing
promoter regions from all the folds of cross validation. We compare the perfor-
mance to five baselines: (a) average performance when log transition weights are
drawn 1000 times uniformly under the prior; or setting the nucleosome transition
weight to 35 and TF transition weights to either (b) 8 Kd, (c) 16 Kd, (d) 32 Kd,
or (e) 64 Kd.

As Figure 2 shows, our learned model outperforms all five baselines by a signif-
icant amount. Note that h(X) = 0.5 indicates no correlation on average between
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Fig. 2. Comparison of cross validated inference performance to various baselines. Data
from the 81 promoter regions were split into nine equal parts. A standard nine-fold
cross validation procedure was applied: 72 promoter regions were used as training data
to obtain trained DBF weights X̂; we then calculated h(X̂) values of the held out nine
promoter regions (testing results). ‘CV training result’ considers the h(X̂) values for
each promoter when used as training data. ‘CV testing result’ shows the h(X̂) values
for each promoter when used as testing data. Uniformly drawn TF transition weights
and different multiples of Kd are used as baseline comparisons. Variance is reduced in
the random baseline case because each result is the average of 1000 random samples.

the model predictions and observed data. We observe that median performance
for the random baseline is still larger than 0.5 even though the TF transition
weights are uninformed guesses; this is because the model’s emission parameters
(derived from in vitro experimental data regarding TF and nucleosome binding
specificity) are highly informed.

3.2 A Mechanistic Explanation for Paired-End MNase-seq Data

Owing to in vitro experiments, our model has knowledge about inherent DBF
sequence specificities. The thermodynamic interaction and competition between
these DBFs are accounted for by compete. By adding information about in
vivo DBF binding occupancy levels present in MNase-seq data, our framework
can now infer a DBF binding landscape that provides a mechanistic explanation
for the observed data.

Figure 3 illustrates examples of predicted binding profiles for each DBF in six
promoter regions in the test sets of the nine-fold cross validation, in comparison
with the corresponding MNase-seq binding profile tracks (see Supplemental Fig-
ure S3 for raw coverage and Supplemental Figure S5 for additional comparisons
between composite predicted profiles and processed MNase-seq fragment cover-
ages). These examples span the full spectrum of our framework performance,
from strong performance to weak performance. In all cases, our predictions for
the TF binding profiles provide a good or fair explanation for the MNase-seq
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Fig. 3. Predicted binding profiles versus MNase-seq binding profiles. For six promoter
regions in our 81 promoter set, we plot the predicted binding profiles when they were
evaluated as testing data. We also indicate reported binding sites from ChIP-exo [19]
underneath the predicted binding profiles; these have the same color as the corre-
sponding TF’s binding probability. No binding event is reported by MacIsaac et al.
[15, p-value < 0.001 and conservation level 3] for these promoter regions.

data and are much more consistent with the data compared to random base-
line predictions (see Supplemental Figure S1), considering the simplicity of our
approach and the complexity of the problem.

One difficulty in interpreting high-throughput nuclease digestion data is iden-
tifying the binding proteins at read-enriched regions. Traditional motif matching
is not satisfactory when there are multiple potentially overlapping motifs, nor
can it assess the strength of protein binding. In contrast, our framework pro-
vides a principled interpretation for the data in terms of distinct binding events,
each with its own probability of occurrence based on evaluating the probability
of every possible binding configuration in the ensemble. This is demonstrated,
for example, in the YDL012C and YPR016C promoter regions. Our approach
can also capture weak binding events, such as the Reb1 binding events in the
YPR016C and YNL157W promoter regions, which are missed in ChIP-chip
experiments [15] but are captured in ChIP-exo experiments [19] (Figure 3; re-
ported ChIP-exo binding sites are indicated underneath the predicted TF binding
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landscape; no binding event is reported by MacIsaac et al. [15, p-value < 0.001
and conservation level 3] for these promoter regions).

Our predictions of nucleosome binding profiles match the data well in spite
of the fact that nucleosome positioning is less precise than TF positioning. The
predictions reflect the intrinsic uncertainty about nucleosome positioning re-
lated to their mobility and only mildly sequence preferences, especially when
the MNase-seq large protein binding profile is more noisy, as in the promoter
regions of YBL014C and YNL157W (Figure 3; see Supplemental Figure S3 for
raw coverage).

3.3 Incorporating Measurements of Protein Concentration through
Prior Distributions

We have demonstrated that our framework can achieve good performance using
non-informative priors. However, the framework could potentially perform better
by incorporating prior information when it is available. For instance, Ghaem-
maghami et al. [5] measured cellular protein concentrations using Western blots
in S. cerevisiae during log phase growth. As discussed above, although cellu-
lar protein concentrations are not precisely equivalent to the transition weights
we are estimating, the two still might be expected to loosely correlate with one
another. We can therefore use these measurements to construct weak prior distri-
butions for the corresponding DBF transition weights. To account for the loose
correlation between the two, as well as experimental measurement error, we use
a truncated normal prior for log transition weights with a large standard devi-
ation of 2 (so a standard deviation in each direction corresponds to multiplying
the weight by 1/100 or 100, respectively). We calculate the mean for this nor-
mal prior by converting measurements from Ghaemmaghami et al. [5] to molar
concentration using a yeast cell volume of 5 × 10−14L [2]. The resulting prior
means are in the range of −8 to −6 in log scale. Note that nine of the 42 TFs
in our model do not have measurements available, and thus their priors remain
uniform, as described above.

When we utilize this prior information, we observe no change in training per-
formance and a marginal increase in testing performance (median h(X̂) increases
by 0.013; Figure 4). Such an insignificant result could arise for multiple reasons:
(a) the aforementioned difference between cellular concentration and the model’s
transition weights means that the information provided by the measured concen-
trations might not even be relevant; (b) the noisy physiological measurements
of both cellular concentration and cell volume means that the measurements we
used might not be quite accurate; or (c) the weak prior we utilized in the model
because the measured concentrations are not trusted to be very precise means
that the objective function landscape might change only slightly.

4 Discussion

We show that integrating information from experimental data within a gen-
eral framework built on a thermodynamic ensemble model of competitive factor
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Fig. 4. Comparison of cross validation performance with and without prior information
regarding measured cellular protein concentration. Performance for each promoter is
measured by the geometric mean (h(X̂)) of the two Pearson correlations defined in
Figure 1. Each boxplot shows the performance summary of the 81 promoter regions
across all the cross validation trials.

binding can improve the accuracy of inferred protein-DNA interactions, pro-
viding a more biologically plausible view of the protein-DNA interaction land-
scape. Such a landscape gives a mechanistic explanation for observed paired-end
MNase-seq fragments through various protein binding events, each with its own
probability of occurrence. Many of those binding events are weak binding events
that are typically missed in other modeling methods, but are captured in our
framework; these weaker binding events are also supported by higher resolution
experimental data where available [20]. These weak binding events are impor-
tant: It has been reported that low affinity protein-DNA interactions may be
involved in fine-tuning transcriptional regulation and are common along the
genome [1, 22, 23]. Our framework’s predictions agree with this viewpoint: 72%
of the binding events in our predicted profiles have a probability lower than 0.5.
Our framework could thus form an important basis for future computational
work that connects transcriptional activity with the protein-DNA interaction
landscape.

Our framework does not successfully predict a few TF binding events reported
by high resolution ChIP-exo experiments [19], most notably some of the binding
sites for Phd1 and Reb1. We believe the primary reason is occasional mismatches
between our input TF PWMs and these proteins’ actual in vivo DNA-binding
specificities. For Phd1, Rhee and Pugh [20] report several distinct in vivo mo-
tifs. However, the Phd1 PWM we used in our framework comes from in vitro
data [27] and does not match the in vivo DNA-binding specificity of Phd1 re-
ported by Rhee and Pugh [20]. Similarly, for Reb1, Rhee and Pugh [20] report
that 40% of Reb1 binding sites are so-called ‘secondary binding sites’, with mo-
tifs that deviate from the TTAGGC consensus of the in vitro PWM we are using.
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This mismatch in DNA binding specificity may account for much of the discrep-
ancy between our predicted profiles and reported binding sites. However, some
caution should be taken when interpreting in vivo ChIP data, since the assay
cannot distinguish between direct protein-DNA interaction and indirect inter-
action [6]. We also note that our current framework only includes a subset of
all yeast TFs. Some unexplained short fragment coverage peaks, such as those
in the YBL014C promoter region, could indicate the binding of DBFs that are
not in our set. These and other discrepancies may have an impact on our over-
all inference, resulting in missing binding events (or possibly even superfluous
binding events, because of the competition that is inherent in our model).

In the promoters of YNL157W and YDL012C, our predictions do not include
Rap1 binding events even though they are reported in ChIP-exo experiments.
However, we believe this results from the nature of Rap1 binding: Lickwar et al.
[13] report that Rap1 binding on non-ribosomal protein promoters, like the two
mentioned above, is highly dynamic and involves fast turnover. Such binding
events are possibly captured in ChIP experiments because of cross-linking, but
may be difficult to observe in an MNase-based digestion experiment if the latter
does not involve a cross-linking step. Incidentally, the two ChIP-determined
Rap1 binding events are not close to MNase-seq small fragment coverage peaks.
One possible use of our framework for extending the results shown here would
be to incorporate data from ChIP-based experiments and use the framework to
estimate parameters that reflect information from both kinds of data.

We designed our model to take advantage of published data on PIC positions
[20]. Such data provides additional protein occupancy information that is likely
the result of mechanisms beyond TBP-related protein sequence specificity and
protein competition. We observed that adding PICs allowed the nucleosome free
regions to agree better with the MNase fragment data, because the PICs both
enhance the exclusion of nucleosomes and explain some of the small MNase
fragments downstream of the TATA-like element (so that TFs are not needed to
provide that explanation).

We also demonstrate the use of prior information in our framework through
incorporating measured bulk cellular protein concentration. The model perfor-
mance improved marginally, which can be interpreted two ways. On the one
hand, it is reassuring that one need not have measured cellular protein con-
centrations in order to perform effective inference. The fact that our uniform
priors work as well as having priors informed by measured concentrations means
that the measured concentrations available currently are not critical for good
performance. However, that said, it is also reassuring that our framework has
the ability to incorporate this sort of prior information when available because
we anticipate such data will only improve. As measurement technologies enable
us to move from bulk cellular concentrations toward nuclear concentrations of
active TFs, we anticipate that the ability to incorporate prior information will
become more useful, if not for achieving better results then perhaps at least
for more rapid convergence toward optima when we move to higher-dimensional
inference (e.g., more TFs).
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With adequately fitted parameters, our framework has the potential to per-
form in silico simulation for various environmental conditions by changing the
protein concentrations. For example, we could simulate in silico heat shock by
increasing the concentration of heat shock response factors in our model. We
could also investigate how certain single nucleotide polymorphisms (SNP) affect
the overall protein-DNA interaction landscape, not just at the site of the SNP
but propagating to the surrounding region due to altered competition.

This work represents a first step toward a more general framework. By speci-
fying probabilistic distributions appropriate for other kinds of experiments—like
ChIP-seq, FAIRE-seq, or DNase-seq—the framework can integrate other sources
of data through a joint likelihood. As more and larger-scale sequencing projects
are carried out, such a framework will prove extremely valuable for integrating
different pieces of information to infer a more precise view of the protein-DNA
interactions that govern transcriptional regulation.

Supplemental information is available from http://www.cs.duke.edu/~amink/
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Abstract. A popular large-scale gene interaction discovery platform is
the Epistatic Miniarray Profile (E-MAP). E-MAPs benefit from quan-
titative output, which makes it possible to detect subtle interactions.
However, due to the limits of biotechnology, E-MAP studies fail to mea-
sure genetic interactions for up to 40% of gene pairs in an assay. Missing
measurements can be recovered by computational techniques for data
imputation, thus completing the interaction profiles and enabling down-
stream analysis algorithms that could otherwise be sensitive to largely
incomplete data sets. We introduce a new interaction data imputation
method called interaction propagation matrix completion (IP-MC). The
core part of IP-MC is a low-rank (latent) probabilistic matrix completion
approach that considers additional knowledge presented through a gene
network. IP-MC assumes that interactions are transitive, such that latent
gene interaction profiles depend on the profiles of their direct neighbors
in a given gene network. As the IP-MC inference algorithm progresses,
the latent interaction profiles propagate through the branches of the net-
work. In a study with three different E-MAP data assays and the consid-
ered protein-protein interaction and Gene Ontology similarity networks,
IP-MC significantly surpassed existing alternative techniques. Inclusion
of information from gene networks also allows IP-MC to predict interac-
tions for genes that were not included in original E-MAP assays, a task
that could not be considered by current imputation approaches.

Keywords: genetic interaction, missing value imputation, epistatic
miniarray profile, matrix completion, interaction propagation.

1 Introduction

The epistatic miniarray profile (E-MAP) technology [1–4] is based on a synthetic
genetic array (SGA) approach [5,6] and generates quantitative measures of both
positive and negative genetic interactions (GIs) between gene pairs. E-MAP
was developed to study the phenomenon of epistasis, wherein the presence of
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one mutation modulates the effect of another mutation. The power of epistasis
analysis is greatly enhanced by quantitative GI scores [2]. E-MAP has provided
high-throughput measurements of hundreds of thousands of GIs in yeast [1,4,7]
and has been shown to significantly improve gene function prediction [7]. How-
ever, E-MAP data suffer from a large number of missing values, which can be
as high as ∼40% for a given assay (see also Table 1). Missing values correspond
to pairs of genes for which the strength of the interaction could not be mea-
sured during the experimental procedure or that were subsequently removed
due to low reliability. A high proportion of missing values can adversely affect
analysis algorithms or even prevent their use. For instance, missing data might
introduce instability in clustering results [8] or bias the inference of prediction
models [9]. Accurate imputation of quantitative GIs is therefore an appealing
option to improve downstream data analysis and correspondence between ge-
netic and functional similarity [7, 10–13]. Imputed quantitative GIs can be a
powerful source for understanding both the functions of individual genes and
the relationships between pathways in the cell.

The missing value problem in E-MAPs resembles that from gene expression
data, where imputation has been well studied [9, 14, 15]. The objective in both
tasks is to estimate the values of missing entries given the incomplete data
matrix. Both types of data may exhibit a correlation between gene or mutant
profiles, which is indicative of co-regulation in the case of gene expression data
and pathway membership in the case of E-MAP data [16]. E-MAP data sets
are therefore often analyzed with tools originally developed for gene expression
data analysis [17]. However, there are important differences between E-MAP
and gene expression data that limit the direct application of gene expression
imputation techniques to E-MAPs [16]. E-MAP data are pairwise, symmetric
and have substantially different dimensionality than gene expression data sets.
They contain considerably more missing values than gene expression data sets
(the latter have up to a 5% missing data rate, see [9, 18]). These differences,
coupled with the biological significance of E-MAP studies, have spurred the
development of specialized computational techniques for recovering missing data
in E-MAP-like data sets [16].

In this paper, we propose IP-MC (“interaction propagation matrix comple-
tion”), a hybrid and knowledge assisted method for imputing missing values in
E-MAP-like data sets. IP-MC builds upon two concepts, matrix completion and
propagation of interaction. Matrix completion uses information on global corre-
lation between entries in the E-MAP score matrix. The interaction propagation
serves to exploit the local similarity of genes in a gene network. The use of back-
ground knowledge in the form of gene networks gives IP-MC the potential to
improve imputation accuracy beyond purely data-driven approaches. This could
be especially important for data sets with a small number of genes and a high
missing data rate, such as E-MAPs. In the following, we derive a mathematical
formulation of the proposed approach and, in a comparative study that includes
several state-of-the-art imputation techniques, demonstrate its accuracy across
several E-MAP data sets.
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2 Related Work

Imputation algorithms for gene expression data sets are reviewed in Liew et
al. (2011) [9], who categorized them into four classes based on how they uti-
lize or combine local and global information from within the data (local, global
and hybrid algorithms) and their use of domain knowledge during imputation
(knowledge-assisted algorithms). Local methods, such as k-nearest neighbors
(KNNimpute) [14], local least squares (LLS) [19] and adaptive least squares
(LSimpute) [18], rely on the local similarity of genes to recover the missing val-
ues. Global methods are based on matrix decompositions, such as the singular
value decomposition (e.g. SVDimpute [14]), the singular value thresholding al-
gorithm for matrix completion (SVT) [20] and Bayesian principal component
analysis (BPCA) [21]. A hybrid imputation approach for gene expression data
by Jörnsten et al. (2005) [22] estimates missing values by combining estimates
from three local and two global imputation methods.

Only a handful of missing data imputation algorithms directly address E-
MAP-like data sets. Ulitsky et al. (2009) [23] experimented with a variety of
genomic features, such as the existence of physical interaction or co-expression
between gene pairs, that were used as input to a classification algorithm. The
IP-MC differs from this approach as it directly uses the matrix of measured GI
scores and does not require data-specific feature engineering. Ryan et al. (2010,
2011) [16, 24] considered four general strategies for imputing missing values –
three local methods and one global method – and adapted these strategies to
address E-MAPs. They modified unweighted and weighted k-nearest neighbors
imputation methods (uKNN and wNN, respectively). They also adapted LLS
and BPCA algorithms to handle symmetric data. We refer the reader to Ryan et
al. (2010) [16] for details on the algorithm modifications. We compare their im-
putation approaches with the IP-MC (see Sec. 5). Pan et al. (2011) [25] proposed
an ensemble approach to combine the outputs of two global and four local im-
putation methods based on diversity of estimates of individual algorithms. In
this paper we focus on the development of a single algorithm that if necessary
could be used in an ensemble, and therefore compare it only with ensemble-free
algorithms.

Another avenue of research focuses on predicting qualitative, i.e. binary, in-
stead of quantitative interactions. Qualitative predictions estimate the presence
or absence of certain types of interaction rather than their strength [26–29]. A
major distinction between these techniques and the method proposed in the pa-
per is that we aim at accurate imputation of quantitative genetic interactions
using the scale of GI scores. Individual GI may by itself already provide valu-
able biological insight, as each interaction provides evidence for a functional
relationship between a gene pair. Prediction of synthetic sick and lethal interac-
tion types in S. cerevisiae was pioneered by Wong et al. (2004) [26], who applied
probabilistic decision trees to diverse genomic data. Wong et al. [26] introduced
2-hop features for capturing the relationship between a gene pair and a third
gene. They showed that, for example, if protein g1 physically interacts with pro-
tein g2, and gene g3 is synthetic lethal with the encoding gene of g2, then this
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increases the likelihood of a synthetic lethal interaction between the encoding
gene of g1 and gene g3. Two-hop features were shown to be crucial when pre-
dicting GIs [11, 23, 26] and are the rationale behind our concept of interaction
propagation.

3 Methods

We first introduce a probabilistic model of matrix completion for missing value
imputation in E-MAP-like data sets. The model predicts scores for missing in-
teraction measurements by employing only the E-MAP score matrix. We then
extend it with the notion of interaction propagation. The resulting method, IP-
MC, is able to exploit the transitivity of interactions, that is, the relationship
between a gene pair and a third gene (see Sec. 2). IP-MC predicts missing values
from both E-MAP data and the associated gene network that encodes domain
knowledge. Any type of knowledge that can be expressed in the form of a net-
work can be passed to IP-MC. In this paper, we use the Gene Ontology [30]
semantic similarity network and protein-protein interaction network.

3.1 Problem Definition and Preliminaries

In the E-MAP study we have a set of genes (g1, g2, . . . , gn). The genetic interac-
tion between a pair of genes is scored according to the fitness of the corresponding
double mutant and reported through an S-score that reflects the magnitude and
sign of the observed GI [2]. Scored GIs are reported in the form of a partially
observed matrix G ∈ Rn×n. In this matrix, Gi,j contains a GI measurement be-
tween gi and gj . Here, G is symmetric, Gi,j = Gj,i. Without loss of generality,
we map GIs to the [0,1]-interval by normalizing G (step 1 in Fig. 2). Following

the imputation, we re-scale the completed (imputed) matrix Ĝ to the original
scale of S-scores (step 5 in Fig. 2).

In a gene network every gene gi has a set of Ngi neighbors, and Pi,j denotes
the value of influence that gene gj ∈ Ngi has on gi. These values are given in
matrix P ∈ Rn×n. We normalize each row of P such that

∑n
j=1 Pi,j = 1. A

non-zero entry Pi,j denotes dependence of the gi-th latent feature vector to the
gj-th latent feature vector. Using this idea, latent features of genes that are
indirectly connected in the network become dependent after a certain number
of algorithm steps, the number of steps being determined by the path distance
between genes. Hence, information about gene latent representation propagates
through the network.

The model inference task is defined as follows: given a pair of genes, gi and
gj, for which Gi,j (and Gj,i) is unknown, predict the quantitative GI between
gi and gj using G and P. We employ a probabilistic view of matrix completion
to learn gene latent feature vectors. Let F ∈ Rk×n and H ∈ Rk×n be gene latent
feature matrices with column vectors Fi and Hj representing k-dimensional
gene-specific latent feature vectors of gi and gj , respectively. The goal is to learn
these latent feature matrices and utilize them for missing value imputation in
E-MAP-like data sets.
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3.2 Matrix Completion Model

We start our derivation by formulating basic matrix completion approach for
recovering missing values in G without considering the additional gene network.
Throughout the paper, this approach is denoted by MC. In order to learn low-
dimensional gene latent feature matrices F and H, we factorize observed values
in G. The conditional probability of observed GIs is defined as:

p(G|F,H, σ2
G) =

n∏
i=1

n∏
j=1

N (Gi,j |g(FT
i Hj), σ

2
G)I

G
i,j , (1)

where N (x|μ, σ2) is a normal distribution with mean μ and variance σ2 and
IGi,j is an indicator function that is equal to 1 if a GI score between gi and gj
is available and is 0 otherwise. Notice that Eq. (1) deals only with observed en-
tries in matrix G. Thus, predictions are not biased by setting missing entries in
G to some fixed value, which is otherwise common in matrix factorization algo-
rithms. The function g is a logistic function, g(x) = 1/(1+e−0.5x), which bounds
the range of g(FT

i Hj) within interval (0, 1). We assume a zero-mean Gaus-
sian prior for gene latent feature vectors in F as p(F|σ2

F) =
∏n

i=1N (Fi|0, σ2
FI)

and similarly, the prior probability distribution for H is given by p(H|σ2
H) =∏n

i=1N (Hi|0, σ2
HI).

Through Bayesian inference we obtain the following equation for the log-
posterior probability of latent feature matrices F and H given the interaction
measurements in G:

ln p(F,H|G, σ2
G, σ2

F, σ
2
H) = − 1

2σ2
G

n∑
i=1

n∑
j=1

IGi,j(Gi,j − g(FT
i Hj))

2 − 1

2σ2
F

n∑
i=1

FT
i Fi

− 1

2σ2
H

n∑
j=1

HT
j Hj −

1

2
(

n∑
i=1

n∑
j=1

IGi,j) ln σ
2
G − 1

2
nk(ln σ2

F + ln σ2
H) + C. (2)

We select the factorized model by finding the maximum a posteriori (MAP) es-
timate. This is equivalent to solving a minimization problem with the objective:

L(G,F,H) =
1

2

n∑
i=1

n∑
j=1

IGi,j(Gi,j − g(FT
i Hj))

2 +
λF

2

N∑
i=1

FT
i Fi +

λH

2

N∑
j=1

HT
j Hj , (3)

where λF = σ2
G/σ2

F and λH = σ2
G/σ2

H. Interactions in G are normalized
before numerical optimization such that they are between 0 and 1 because their
estimates g(FTH) are also bounded. We keep the observation noise variance σ2

G

and prior variances σ2
F and σ2

H fixed and use a gradient descent algorithm to
find the local minimum of L(G,F,H) to infer gene latent feature matrices.

3.3 Interaction Propagation Matrix Completion Model

Interaction propagation matrix completion (IP-MC) extends the basic matrix
completion model MC by borrowing latent feature information from neighbor-
ing genes in the network P. A graphical example of IP-MC is shown in Fig. 1.
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The biological motivation for the propagation of interactions stems from the
transitive relationship between a gene pair and a third gene (see Sec. 2) and in-
dicates that the behavior of a gene is affected by its direct and indirect neighbors
in the underlying gene network P. In other words, the latent feature vector of
gene g, Fg, is in each iteration dependent on the latent feature vectors of its di-

rect neighbors h ∈ Ng in P. The influence is formulated as F̂g =
∑

h∈Ng
Pg,hFh,

where F̂g is the estimated latent feature vector of g given feature vectors of its
direct neighbors. Thus, the latent feature vectors in F of genes that are indi-
rectly connected in network P are dependent and thus, information about their
latent representation propagates as the algorithm progresses according to the
connectivity of network P.

Fig. 1. An example application of the interaction propagation matrix com-
pletion algorithm (IP-MC). A hypothetical E-MAP data set with five genes
(g1, . . . , g5) is given. Their measured GI profiles are listed next to corresponding nodes
in gene network P (left) and are shown in the sparse and symmetric matrix G (right).
Different shades of grey quantify interaction strength, while white matrix entries in G
denote missing values. Matrices F and H are gene latent feature matrices. Gene latent
feature vector Fgi depends in each iteration of IP-MC on the latent feature vectors
of gi’s direct neighbors in P. For instance, the latent vector of gene g1 in F depends
in the first iteration of the IP-MC update (in red) only on its direct neighbors, the
latent vectors of g4 and g5 (Fg4 and Fg5 are shown on input edges of g1), whose level
of influence is determined by P1,4 and P1,5, respectively. In the second iteration, the
update of Fg1 (in green) also depends indirectly on the latent vector of g2, Fg2 . Thus,
the influence of gene latent feature vectors propagates in P. Gene latent feature matrix
H is not influenced by the gene neighborhood in P.

Notice that considering gene network P does not change the conditional
probability of observed measurements (Eq. (1)). It only affects gene latent fea-
ture vectors in F. We describe them with two factors: the zero-mean Gaussian
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prior to avoid overfitting and the conditional distribution of gene latent feature
vectors given the latent feature vectors of their direct neighbors:

p(F|P, σ2
F, σ

2
P) ∝

n∏
i=1

N (Fi|0, σ2
FI)×

n∏
i=1

N (Fi|
∑
j∈Ni

Pi,jFj , σ
2
PI). (4)

Notice that such formulation of gene latent matrix F keeps gene feature vec-
tors Fi both small and close to the latent feature vectors of their direct neighbors.
Much like the previous section, we get the following equation through Bayesian
inference for the posterior probability of gene latent feature matrices F and H
given observed GI scores G and gene network P:

p(F,H|G,P, σ2
G, σ2

P, σ
2
F, σ

2
H) ∝

n∏
i=1

n∏
j=1

N (Gi,j |g(FT
i Hj), σ

2
G)I

G
i,j

×
n∏

i=1

N (Fi|
∑
j∈Ni

Pi,jFj , σ
2
P I)×

n∏
i=1

N (Fi|0, σ2
FI) ×

n∏
j=1

N (Hj |0, σ2
HI). (5)

We then compute the log-posterior probability to obtain an equation similar to
Eq. (2) but with an additional term due to the interaction propagation concept.
To maximize conditional posterior probability over gene latent features, we fix
the prior and observation noise variance and employ gradient descent on F and
H. In particular, we minimize the objective function similar to Eq. (3) that
has an additional term to account for the conditional probability of gene latent
features given their neighborhoods in gene network P. The complete algorithm
of IP-MC is presented in Fig. 2. In each iteration, gene latent feature matrices F
andH are updated based on the latent feature vectors from the previous iteration
and network neighborhood in P. Successive updates of Fi and Hj converge to
a maximum a posteriori (MAP) estimate of the posterior probability in Eq. (5).

4 Experimental Setup

In the experiments we consider an existing incomplete E-MAP matrix and ar-
tificially introduce an additional 1% of missing values for a set of arbitrarily
selected gene pairs [16, 25]. These gene pairs and their data constitute a test
set on which we evaluate the performance of imputation algorithms. Because of
E-MAP symmetry, for a given test gene pair and its corresponding entry Gi,j ,
we also hide the value of Gj,i. We repeat this process 30 times and report on
the averaged imputation performance.

Notice that the standard performance evaluation procedure of missing value
imputation methods for gene expression data is not directly applicable to E-
MAPs for the several reasons discussed in [16]. This approach constructs a
complete gene expression data matrix by removing genes with missing data
and then artificially introduces missing values for evaluation. In gene expression
data, a substantially lower fraction of data is missing than in E-MAPs (Table 1)
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Input: Sparse matrix G ∈ R
n×n containing S-scores of measured E-MAP interactions,

gene network P ∈ R
n×n and parameters λF = λH, λP, rank k and learning rate α.

Output: Completed E-MAP matrix Ĝ.

1. Normalize G̃ = (G − mini,j Gi,j)/maxi,j Gi,j .
2. Normalize each row of P such that

∑n
j=1 Pi,j = 1.

3. Sample F ∼ U [0, 1]k×n and H ∼ U [0, 1]k×n.
4. Repeat until convergence:

• For i, j ∈ 1, 2, . . . , n :

∂L
∂Fi

=

n∑

j=1

IG̃
i,jHjg

′(FT
i Hj)(g(F

T
i Hj) − G̃i,j) + λFFi +

+λP(Fi −
∑

j∈Ni

Pi,jFj) − λP

∑

{j|i∈Nj}
Pj,i(Fj −

∑

l∈Nj

Pj,lFl),

∂L
∂Hj

=

n∑

i=1

I
G̃
i,jFig

′
(F

T
i Hj)(g(F

T
i Hj) − G̃i,j) + λHHj .

• Set Fi ← Fi − α ∂L
∂Fi

for i = 1, 2, . . . , n.

• Set Hj ← Hj − α ∂L
∂Hj

for j = 1, 2, . . . , n.

5. Compute Ĝ = g(FTH) · maxi,j Gi,j + mini,j Gi,j . Impute missing entry (i, j) as

(Ĝi,j + Ĝj,i)/2.

Fig. 2. Interaction propagation matrix completion (IP-MC) algorithm. We
observed that parameter values λH = λF = 0.01 and α = 0.1 gave accurate results
across a number of different data sets. Parameter λP, which controls the influence of
gene network P on gene latent feature vectors Fi, depended on data set complexity [15].
In data sets with higher complexity, we used a larger λP (λP = 1).

and removing a small number of genes and experimental conditions does not
significantly reduce the size of the data set.

In our experiments we select the number of latent dimensions k and regu-
larization parameters λF and λP of IP-MC with the following procedure: For
each data set and before the performance evaluation, we leave out 1% of ran-
domly selected known values and attempt to impute them with varying values
of parameters in a grid search fashion. Parameter values that result in the best
estimation of the left-out values are then used in all experiments involving the
data set. Notice that the left-out values are determined before the performance
evaluation and are therefore not included in the test data set.

We consider two measures of imputation accuracy. These are the Pearson cor-
relation (CC) between the imputed and the true values, and the normalized root
mean squared error (NRMSE) [21] given as NRMSE =

√
E((ŷ − y)2)/Var(y),

where y and ŷ denote vectors of true and imputed values, respectively. More
accurate imputations give a higher correlation score and a lower NRMSE.

To test if the differences in performance between imputation methods are
significant, we use the Wilcoxon signed-rank test, a non-parametric equivalent
of a paired t-test. Its advantage is that it does not require a normal distribution
or homogeneity of variance, but it has less statistical power, so there is the risk
that some differences are not recognized as significant.
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5 Results and Discussion

We considered three E-MAP data sets and compared IP-MC to five state-of-
the-art methods for imputing missing values in E-MAP-like data sets [16]. We
set the parameters of these methods to values as proposed in [16] (wNN, LLS,
BPCA) or optimized the parameter selection through a grid search (SVT, MC,
IP-MC). The evaluated data sets are from the budding yeast S. cerevisiae; they
differ in their size, the subset of genes that are studied and the proportion of
missing values (Table 1). We used GI S-scores reported in original publications:

• Chromosome Biology [7]: This is the largest of the E-MAPs, encompassing
interactions between 743 genes involved in various aspects of chromosome
biology, such as chromatid segregation, DNA replication and transcriptional
regulation.

• RNA processing (RNA) [4]: It focuses on the relationships between and
within RNA processing pathways involving 552 mutations, 166 of which are
hypomorphic alleles of essential genes.

• The Early Secretory Pathway (ESP) [1]: It generates genetic interaction
maps of genes acting in the yeast early secretory pathway to identify pathway
organization and components of physical complexes.

Table 1. Overview of the E-MAPs considered

Data set Genes Missing Measured
Interactions Interactions

Chromosome Biology [7] 743 34.0% 187,000
Early Secretory Pathway [1] 424 7.5% 83,000
RNA [4] 552 29.6% 107,000

IP-MC considered two different data sources for gene network P. The first
network was constructed from Gene Ontology [30] (GO) annotation data as a
weighted network of genes included in the E-MAP study in which edge weights
corresponded to the number of shared GO terms between connected genes, ex-
cluding annotations inferred from GI studies (i.e. those with the igi evidence
code). The second network represented physical interaction data from BioGRID
3.2 [31]. The physical interaction network was a binary network in which two
genes were connected if their gene products physically interact. Both networks
were normalized as described in Sec. 3.1. Depending on a network, we denote
their corresponding IP-MC models by IP-MC-GO and IP-MC-PPI, respectively.

5.1 Imputation Performance

Table 2 shows the CC and NRMSE scores of imputation algorithms along with
the baseline method of filling-in with zeros. IP-MC-PPI and IP-MC-GO demon-
strated the best accuracy on all considered data sets. We compared their scores
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with the performance of the second-best method (i.e. LLS on Chromosome Bi-
ology data set, SVT on ESP data set and MC on RNA data set) and found that
improvements were significant in all data sets.

We did not observe any apparent connection between the proportion of miss-
ing values in a data set and the performance of any of the imputation methods.
The performance was better on smaller ESP and RNA data sets, although dif-
ferences were small and further investigation appears to be worthwhile.

The baseline method of filling-in with zeros had the worst performance for
all data sets. While this approach seems näıve, it is justified by the expecta-
tion that most genes do not interact. We observed that BPCA failed to match
the performance of weighted neighbor-based and local least squares methods,
wNN and LLS, respectively, despite BPCA being an improvement of the KNN
algorithm. Both local imputation methods, wNN and LLS, demonstrated good
performance across all three data sets. The good performance of neighbor-based
methods on larger data sets could be explained by a larger number of neighbors
to choose from when imputing missing values, which resulted in more reliable
missing value estimates.

Global methods, BPCA, SVT and MC, performed well on the ESP data set
but poorly on the much larger Chromosome Biology data set. These methods
assume the existence of a global covariance structure among all genes in the
E-MAP score matrix. When this assumption is not appropriate, i.e. when the
genes exhibit dominant local similarity structures, their imputation becomes
less accurate. Notice that the comparable performance of SVT and MC across
data sets was expected. Both methods solve related optimization problems and
operate under the assumption that the underlying matrix of E-MAP scores is
low-rank.

The superior performance of IP-MC models over other imputation methods
can be explained by their ability to include circumstantial evidence. As a hybrid
imputation approach, IP-MC can benefit from both global information present
in E-MAP data and local similarity structure between genes. One could vary
the level of influence of global and local imputation aspects on the inferred IP-
MC model through the λP parameter, where a higher value of λP indicates
more emphasis on locality. In this way, our approach can adequately address the
data of varying underlying complexity [15], where the complexity denotes the
difficulty with which the data can be mapped to a lower dimensional subspace.
Brock et al. (2008) [15] devised an entropy-based imputation algorithm selection
scheme based on their observation that global imputation methods performed
better on gene expression data with lower complexity and that local methods
performed better on data with higher complexity. Thus, their selection scheme
could be adapted to work with E-MAP-like data sets and be used to set λP in
an informed way, which is left for our future work. In additional experiments
(results not shown), we found that the performance of IP-MC is robust for a
broad range of λP parameter values.
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Table 2. Accuracy as measured by the Pearson correlation coefficient (CC)
and normalized root mean squared error (NRMSE) across three E-MAP
data sets and eight imputation methods. MC denotes the matrix completion
model (Sec. 3.2). The IP-MC-GO and IP-MC-PPI models are interaction propagation
matrix completion models (Sec. 3.3) that utilize annotation and physical interaction
data, respectively. For descriptions of other methods see Related Work. Highlighted
results are significantly better than the best non-IP-MC method according to the
Wilcoxon signed-rank test at 0.05 significance level.

Approach Chromosome Biology ESP RNA

CC NRMSE CC NRMSE CC NRMSE

Filling with zeros 0.000 1.021 0.000 1.011 0.000 1.000
BPCA (k = 300) 0.539 0.834 0.619 0.796 0.589 0.804
wNN (k = 50) 0.657 0.744 0.625 0.776 0.626 0.787
LLS (k = 20) 0.678 0.736 0.626 0.764 0.626 0.776

SVT (k = 40) 0.631 0.753 0.672 0.719 0.649 0.765
MC (k = 40) 0.641 0.742 0.653 0.722 0.651 0.760

IP-MC-GO (k = 60) 0.691 0.693 0.732 0.648 0.727 0.641
IP-MC-PPI (k = 60) 0.722 0.668 0.742 0.667 0.701 0.652

5.2 Missing Value Abundance and Distribution

Ulitsky et al. (2009) [23] described three different scenarios of missing values in
E-MAP experiments (Fig. 3). The simplest and the most studied scenario is the
Random model, for which we assume that missing measurements are generated
independently and uniformly by some random process. The Submatrix model
corresponds to the case when all interactions between a subset of genes (e.g. es-
sential genes) are missing. The Cross model arises when all interactions between
two disjoint subsets of genes are missing. This model concurs with the situation
when two E-MAP data sets that share a subset of genes are combined into a
single larger data set. We identify another missing value configuration, which we
call the Prediction scenario (Fig. 4d). It occurs when GI profiles of a subset of
genes are completely missing. Learning in such a setting is substantially harder
as these genes do not have any associated measurements. In the previous sec-
tion, we compared the imputation methods on the Random configuration, and
study other configurations in this section. This time we were interested in the
effect these configurations have on IP-MC, and we compared the algorithm to
its variant MC that does not use additional knowledge (e.g. the gene network).

Fig. 4 reports the predictive performance of our matrix completion approach
obtained by varying the fraction of missing values in the four missing data sce-
narios from Fig. 3. For x = 5, 10, 20, . . . , 90 we hid x% of E-MAP measurements
in ESP data and inferred prediction models. Our results are reasonably accurate
(CC > 0.4) when up to 60% of the E-MAP values were hidden for the Ran-
dom and Submatrix model. Notice that when we hid 60% of the ESP E-MAP
measurements, the E-MAP scores were present in less than 40% of the matrix
because the original ESP data set already had ∼8% missing values (Table 1).
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Fig. 3. The four configurations producing missing values in E-MAP data.
In Random configuration, a random subset of GIs is hidden. In Submatrix or Cross
configurations all interactions between a random subset of genes or two random disjoint
subsets of genes, respectively, are hidden. In the Prediction scenario, complete profiles
of GIs of a random subset of genes are removed.

When more than 80% of the data were removed, the three considered models
still achieved higher accuracy (CC ≈ 0.2) than filling-in with zeros. As expected,
predictions were more accurate for the Random model than for the Submatrix
model for almost all fractions of hidden data (cf. Fig. 4a and Fig. 4b). However,
the difference in performance between the Random and the Submatrix models
tended to be small when less than 30% or more than 70% of the measurements
were hidden. We observed that inclusion of additional genomic data is more use-
ful in structured missing value scenarios, i.e. the Submatrix and Cross models
(Fig. 4b–4c).

Imputation accuracy improved (Fig. 4) when E-MAP data were combined
with gene annotation (IP-MC-GO) or protein-protein interaction (IP-MC-PPI)
networks. These results are not surprising as several studies [6,7,32] showed that
if two proteins act together to carry out a common function, deletions of the two
encoding genes have similar GI profiles and that gene annotations from the GO
and synthetic lethality are correlated, with 12 and 27% of genetic interactions
having an identical or similar GO annotation, respectively [6]. Thus, our IP-MC-
GO and IP-MC-PPI models could exploit the strong links between functionally
similar genes, physically interacting proteins and GIs. The performance of our
two integrated models indicates the importance of combining interaction and
functional networks for predicting missing values in E-MAP data sets.

Imputation accuracy deteriorated when complete profiles of GIs were removed
and IP-MC could only utilize circumstantial evidence (Fig. 4d). This suggests
that measured gene pairs in the E-MAP are the best source of information for
predicting missing pairs. However, as the percentage of missing GIs increases,
the inclusion of other genomic data is more helpful. With the exception of the
Prediction model, for which we observed the opposite behavior, the performance
difference between MC and IP-MC was small (∼10%) as long as <50% of the
data were removed, but rose to above 20% when ≥60% of the data were removed
(Fig. 4).
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(a) Random scenario
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(b) Submatrix scenario
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(c) Cross scenario
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(d) Prediction scenario

Fig. 4. Performance of imputation methods (Pearson correlation coefficient,
CC) proposed in this paper for different fractions of missing values and
scenarios of missing value distribution. Refer to the main text and Fig. 3 for
descriptions of the missing value scenarios. MC denotes the matrix completion approach
(Sec. 3.2). The integrated approaches are represented by IP-MC-GO and IP-MC-PPI
(Sec. 3.3). Performance was assessed for the ESP E-MAP data set because it contains
the least missing values. The ’Cross’ configuration is not applicable when more than
50% of values are missing.

6 Conclusion

We have proposed a new missing value imputation method IP-MC that targets
gene interaction data sets. The approach is unique in combining gene interaction
and network data through inference of a single probabilistic model. Experiments
on epistatic MAP interaction data sets show that the inclusion of additional
knowledge is crucial and helps IP-MC to perform better than a number of state-
of-the-art algorithms we have included in our study. The results are encour-
aging, have a potentially high practical value, and were intuitively expected.
Gene interaction studies use double-mutant phenotypes to uncover functional
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dependencies, and additional knowledge that could provide any information on
relations between genes should help. Driven by this intuition, the principal nov-
elty of the paper is thus a new knowledge-based missing value imputation ap-
proach and the demonstration of its successful application on E-MAP data sets.
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