
Chapter 15
Tracking Control of 1D Scalar Conservation
Laws in the Presence of Shocks

Rodrigo Lecaros and Enrique Zuazua

Abstract We analyze a model tracking problem for a 1D scalar conservation law.
It consists in optimizing the initial datum so to minimize a weighted distance to a
given target during a given finite time horizon.

Even if the optimal control problem under consideration is of classical nature, the
presence of shocks is an impediment for classical methods, based on linearization,
to be directly applied.

We adapt the so-called alternating descent method that exploits the generalized
linearization that takes into account both the sensitivity of the shock location
and of the smooth components of solutions. This method was previously applied
successfully on the inverse design problem and that of identifying the nonlinearity
in the equation.
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The efficiency of the method in comparison with more classical discrete methods
is illustrated by several numerical experiments.

15.1 Introduction

There is an extensive literature on the control, optimization and inverse design
of partial differential equations. But, when dealing with nonlinear models, most
often, the analysis requires to linearize the system under consideration. This is why
most of the existing results do not apply to hyperbolic conservation laws since the
shock discontinuities of solutions are an impediment to linearize the system under
consideration in a classical manner.

This paper is devoted to analyze this issue for 1D scalar conservation laws.
To complement previous related works by our group we consider the tracking
problem in which the goal is to optimally choose the initial datum so that the
solution is as close as possible to a prescribed trajectory. Our previous works are
devoted to the problem of inverse design in which the goal is to determine the initial
datum so that the solution achieves a given target at the final time (see, for instance,
[9, 10] or the nonlinearity entering in the conservation law [8]).

To be more precise, given a finite time T > 0, a target function ud 2 L2.R �
.0; T //, and a positive weight function � 2 L1.R � .0; T // with compact support
in R � .0; T /, we consider the functional cost to be minimized J , over a suitable
class of initial data Uad, defined by

J.u0/ D 1

2

Z T

0

Z
R

�.x; t/ju.x; t/ � ud .x; t/j2dx dt; (15.1)

where u WRx �Rt ! R is the unique entropy solution of the scalar conservation law

@t u C @x.f .u// D 0; in R � .0; T /I u.x; 0/ D u0.x/; x 2 R: (15.2)

Thus, the problem under consideration reads: To find u0;min 2 Uad such that

J.u0;min/ D min
u02Uab

J.u0/: (15.3)

Here the flux f W R ! R is assumed to be smooth: f 2 C 1.R;R/. The initial
datum u0 will be assumed to belong to a suitable admissible class Uad to ensure the
existence of a minimizer. As a preliminary fact we remind that for u0 2 L1.R/ \
L1.R/ \ BV.R/, there exists an unique entropy solution in the sense of Kružkov
(see [15]) in the class C 0.Œ0; T �I L1.R// \ L1.R � Œ0; T �/ \ L1.Œ0; T �I BV.R//.

As we will see, the existence of minimizers can be established under some natural
assumptions on the class of admissible data Uad, using the well-posedness and
compactness properties of solutions of the conservation law (15.2). The uniqueness
of the minimizers is false, in general, due, in particular, to the possible presence of
discontinuities in the solutions of (15.2).
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One of our main goals in this paper is to compare how the discrete approach
and the alternating descent methods perform in this new prototypical optimization
problem. This alternating descent method was introduced and developed in the
previous works by our group to deal with and exploit the sensitivity of shocks. In
other words, the solutions of the conservation law are seen as a multi-physics object
integrated by both the solution itself but also by the geometric location of the shock.
Perturbing the initial datum of the conservation law produces perturbations on both
components. Accordingly it is natural to analyze and employ both sensitivities to
develop descent algorithms leading to an efficient computation of the minimizer.
This is the basis of the alternating descent method [9].

As we shall see, in agreement with the results achieved in previously considered
examples, the alternating descent method performs better than the classical discrete
one which consists simply in applying a classical gradient descent algorithm to a
discrete version of the functional and the conservation law.

This paper is limited to the one dimensional case but the alternating descent
method can also be extended to the multi-dimensional frame, although this requires
a much more careful geometric treatment of shocks since, for instance in 2 � d ,
these are curves evolving in time whose location has to be carefully determined
and their motion and perturbation handled carefully to avoid numerical instabilities
(see [16]).

There are other possible methods that could be employed to deal with these
problems. In the present 1�d setting, for instance, whenever the flux is convex, one
could use the techniques developed in [1] based on the Lax-Oleinik representation
formula of solutions. One could also employ the nudging method developed by
J. Blum and coworkers [2, 3]. It would be interesting to compare in a systematic
manner the results obtained in this article with those that could be achieved by these
other methods.

The rest of this paper is organized as follows. In Sect. 15.2 we formulate the
problem under consideration more precisely and prove the existence of minimizers.

In Sect. 15.3 we introduce the discrete approximation of the continuous optimal
control problem. We prove the existence of minimizers for the discrete problem and
their �-convergence towards the continuous ones as the mesh-size parameters tend
to zero.

As we shall see, purely discrete approaches based on the minimization of the
resulting discrete functionals by descent algorithms lead to very slow iterative
processes. We thus need to introduce an alternated descent algorithm that takes into
account the possible presence of shock discontinuities in solutions. For doing this
the first step is to develop a careful sensitivity analysis. This is done in Sect. 15.4.

In Sect. 15.5 we present the alternating descent method which combines the
advantages of both the discrete approach and the sensitivity analysis in the presence
of shocks.

In Sect. 15.6 we explain how to implement both descent algorithms: The discrete
approach consists mainly in applying a descent algorithm to the discrete version
J� of the functional J , while the alternating descent method, by the contrary, is a
continuous method based on the analysis of the previous section on the sensitivity
of shocks.
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In Sect. 15.7 we present some numerical experiments illustrating the overall
efficiency of the alternating descent method. We conclude discussing some possible
extensions of the results and methods presented in the paper.

15.2 Existence of Minimizers

In this section we prove that, under certain conditions on the set of admissible initial
data Uad, there exists at least one minimizer of the functional J , given in (15.1).
To do this, we consider the class of admissible initial data Uad as:

Uad D fu0 2 L1.R/ \ BV.R/; supp.u0/ � K; ku0kL1 C TV.u0/ � C g;
(15.4)

where K � R is a given compact set and C > 0 a given constant. Note, however,
that the same theoretical results and descent strategies we shall develop here can be
applied to a much wider class of admissible sets.

Theorem 15.1. Assume that ud 2 L2.R � .0; T //, let Uad be defined in (15.4) and
f be a C 1 function. Then the minimization problem,

min
u02Uab

J.u0/; (15.5)

has at least one minimizer u0;min 2 Uad. Moreover, uniqueness is false in general.

The proof follows the classical strategy of the Direct Method of the Calculus
of Variations. We refer the reader to [9] for a similar proof in the case where the
functional J is replaced by the one in which the distance to a given target at the final
time t D T is minimized. Note that, in particular, for the class Uad of admissible
initial data considered, solutions enjoy uniform BV bounds allowing to prove the
needed compactness properties to pass to the limit. In the case of convex fluxes,
using the well-known one-sided Lipschitz condition, the class of admissible initial
data can be further extended.

We also observe that, as indicated in [9], the uniqueness of the minimizer is in
general false for this type of optimization problems.

15.3 The Discrete Minimization Problem

The purpose of this section is to show that discrete minimizers obtained by
a numerical approximation of (15.1) and (15.2), converge to a minimizer of
the continuous problem as the mesh-size tends to zero. This justifies the usual
engineering practice of replacing the continuous functional and model by discrete
ones to compute an approximation of the continuous minimizer.
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Let us introduce a mesh in R � Œ0; T � given by .xi ; tn/ D .i�x; n�t/ (i D
�1; : : : ; 1I n D 0; : : : ; N C 1; so that .N C 1/�t D T ), and let un

i be a
numerical approximation of u.xi ; tn/ obtained as solution of a suitable discretization
of Eq. (15.2).

Let us consider the following approximation of the functional J in (15.1):

J�.u0
�/ D �x �t

2

NX
nD0

1X
iD�1

�n
i

�
un

i � .ud /n
i

�2
; (15.6)

where u0
� D fu0

i g is the discrete initial datum and ud
� D f.ud /n

i g D …�ud is
the discretization of the target ud at .xi ; tn/, …� being a discretization operator.
A common choice consists in taking

…�ud D .ud /n
i D 1

�x�t

Z xiC1=2

xi�1=2

Z tnC1=2

tn�1=2

ud .x; t/ dx dt; (15.7)

where xi˙1=2 D xi ˙ �x=2 and tn˙1=2 D tn ˙ �t=2.
Moreover, we introduce an approximation of the class of admissible initial data

Uad denoted by Uad;� and constituted by sequences '� D f'i gi2Z for which the
associated piecewise constant interpolation function, that we still denote by '�,
defined by

'�.x/ D 'i ; x 2 .xi�1=2; xiC1=2/;

satisfies '� 2 Uad. Obviously, Uad;� coincides with the class of discrete vectors
with support on those indices i such that xi 2 K and for which the discrete L1 and
TV-norms are bounded above by the same constant C .

Let us consider S� W l1.Z/ ! l1.Z/; an explicit numerical scheme for (15.2),
where

un
� D Sn

�u0
�; (15.8)

is the approximation of the entropy solution u.�; t / D S.t/u0 of (15.2), i.e. un
� '

S.t/u0, with t D n�t . Here S W L1.R/ \ L1.R/ \ BV.R/ ! L1.R/ \ L1.R/ \
BV.R/, is the semigroup (solution operator)

S W u0 ! u D Su0;

which associates to the initial condition u0 2 L1.R/ \ L1.R/ \ BV.R/ the entropy
solution u of (15.2).

For each � D �t (with � D �t=�x fixed, typically given by the corresponding
CFL-condition for explicit schemes), it is easy to see that the discrete analogue of
Theorem 15.1 holds. In fact this is automatic in the present setting since Uad;� only
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involves a finite number of mesh-points. But passing to the limit as � ! 0 requires
a more careful treatment. In fact, for that to be done, one needs to assume that the
scheme under consideration, (15.8), is a contracting map in l1.Z/.

Thus, we consider the following discrete minimization problem: Find u0;min
�

such that

J�.u0;min
� / D min

u0
�2Uad;�

J�.u0
�/: (15.9)

The following holds

Theorem 15.2. Assume that un
� is obtained by a numerical scheme (15.8), which

satisfies the following:

• For a given u0 2 Uad, un
� D Sn

�…�u0 converges to u.x; t/, the entropy solution
of (15.2). More precisely, if n�t D t and T0 > 0 is any given number,

max
0�t�T0

kun
� � u.�; t /kL1.R/ ! 0; as � ! 0: (15.10)

• The map S� is L1-stable, i.e.

kS�u0
�kL1 � ku0

�kL1 : (15.11)

• The map S� is a contracting map in l1.Z/ i.e.

kS�u0
� � S�v0

�kL1 � ku0
� � v0

�kL1 : (15.12)

Then:

• For all �, the discrete minimization problem (15.9) has at least one solution
u0;min

� 2 Uad;�.
• Any accumulation point of u0;min

� with respect to the weak-� topology in L1, as
� ! 0, is a minimizer of the continuous problem (15.5).

The proof of this result can be developed as in [9]. We also refer to [16] for an
extension to the multi-dimensional case.

This convergence result applies for 3-point conservative numerical approxima-
tion schemes, where S� is given by

.S�v�/i D vi � �t

�x
.g.viC1; vi / � g.vi ; vi�1// ; (15.13)

and g is the numerical flux. This scheme is consistent with the corresponding
Eq. (15.2) when g.u; u/ D f .u/.

When the discrete semigroup S�.u; v; w/ D v � �.g.u; v/ � g.v; w//, with
� D �t=�x is monotonic increasing with respect to each argument, the scheme
is also monotone. This ensures the convergence to the weak entropy solutions of the
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continuous conservation law, as the discretization parameters tend to zero, under a
suitable CFL condition (see Ref. [12], Chap. 3, Th. 4.2).

All this analysis and results apply to the classical Godunov, Lax-Friedfrichs and
Engquist-Osher schemes, the corresponding numerical flux being:

gG.u; v/ D
�

minw2Œu;v� f .w/; if u � v;

maxw2Œu;v� f .w/; if u � v;
(15.14)

gLF.u; v/ D .f .u/ C f .v//

2
� .v � u/

2�x
; (15.15)

gEO.u; v/ D f .u/ C f .v/ � R v
u jf 0.�/jd�

2
: (15.16)

See Chapter 3 in [12] for more details.
These 1D methods satisfy the conditions of Theorem 15.2.

15.4 Sensitivity Analysis: The Continuous Approach

We divide this section in three subsections. Specifically, in the first one we consider
the case where the solution u of (15.2) has no shocks. In the second and third
subsections we analyze the sensitivity of the solution and the functional in the
presence of a single shock.

15.4.1 Sensitivity Without Shocks

In this subsection we give an expression for the sensitivity of the functional J with
respect to the initial datum based on a classical adjoint calculus for smooth solutions.
First we present a formal calculus and then we show how to justify it when dealing
with a classical smooth solution for (15.2).

Let C 1
0 .R/ be the set of C 1 functions with compact support and let u0 2 C 1

0 .R/

be a given initial datum for which there exists a classical solution u.x; t/ of (15.2)
that can be extended to a classical solution in t 2 Œ0; T C �� for some � > 0. Note
that this imposes some restrictions on u0 other than being smooth.

Let ıu0 2 C 1
0 .R/ be any possible variation of the initial datum u0. Due to

the finite speed of propagation, this perturbation will only affect the solution in a
bounded set of R� Œ0; T �. This simplifies the argument below that applies in a much
more general setting provided solutions are smooth enough.

Then, for " > 0 sufficiently small, the solution u".x; t/ corresponding to the
initial datum

u";0.x/ D u0.x/ C "ıu0.x/; (15.17)
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is also a classical solution in .x; t/ 2 R � .0; T / and u" 2 C 1.R � Œ0; T �/ can be
written as

u" D u C "ıu C o."/; with respect to the C 1 topology, (15.18)

where ıu is the solution of the linearized equation,

@t ıu C @x.f 0.u/ıu/ D 0; in R � .0; T /I ıu.x; 0/ D ıu0.x/; x 2 R: (15.19)

Let ıJ be the Gateaux derivative of J at u0 in the direction ıu0. We have,

ıJ.u0/Œıu0� D
Z T

0

Z
R

�.x; t/.u.x; t/ � ud .x; t//ıu.x; t/ dx dt (15.20)

where ıu solves the linearized system above (15.19). Now, we introduce the adjoint
system,

�@t p � f 0.u/@xp D � .u � ud /; in R � .0; T /I p.x; T / D 0; x 2 R:

(15.21)

Multiplying the equations satisfied by ıu by p, integrating by parts, and taking
into account that p satisfies (15.21), we easily obtain

Z T

0

Z
R

�.x; t/.u.x; t/ � ud .x; t//ıu.x; t/ dx dt D
Z
R

p.x; 0/ıu0.x/ dx: (15.22)

Thus, ıJ in (15.20) can be written as,

ıJ.u0/Œıu0� D
Z
R

p.x; 0/ıu0.x/dx: (15.23)

This expression provides an easy way to compute a descent direction for the
continuous functional J , once we have computed the adjoint state. We just take:

ıu0.x/ D �p.x; 0/: (15.24)

Under the assumptions above on u0; u; ıu and p can be obtained from their data
u0.x/, ıu0.x/ and � .u � ud / by using the characteristic curves associated to (15.2).
For the sake of completeness we briefly explain this below.

The characteristic curves associated to (15.2) are defined by

x0.t/ D f 0.u.x.t/; t//; t 2 .0; T /; x.0/ D x0: (15.25)

They are straight lines whose slopes depend on the initial data:

x.t/ D x0 C tf 0.u0.x0//; t 2 .0; T /:
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As we are dealing with classical solutions, u is constant along such curves and,
by assumption, two different characteristic curves do not meet each other in
R � Œ0; T C ��. This allows to define u in R� Œ0; T C �� in a unique way from
the initial data.

For " > 0 sufficiently small, the solution u".x; t/ corresponding to the initial
datum (15.17) has similar characteristics to those of u. This allows guaranteeing
that two different characteristic lines do not intersect for 0 � t � T if " > 0 is
small enough. Note that u" may possibly be discontinuous for t 2 .T; T C �� if
u0 generates a discontinuity at t D T C � but this is irrelevant for the analysis in
Œ0; T � we are carrying out. Therefore u".x; t/ is also a classical solution in .x; t/ 2
R � Œ0; T � and it is easy to see that the solution u" can be written as (15.18) where
ıu satisfies (15.19).

System (15.19) can be solved again by the method of characteristics. In fact, as
u is a regular function, the first equation in (15.19) can be written as

@t ıu C f 0.u/@xıu D �@x.f 0.u// ıu; (15.26)

i.e.

d

dt
ıu.x.t/; t/ D �@x.f 0.u// ıu; (15.27)

where x.t/ are the characteristic curves defined by (15.25). Thus, the solution ıu
along a characteristic line can be obtained from ıu0 by solving this differential
equation, i.e.

ıu.x.t/; t/ D ıu0.x0/ exp

�
�

Z t

0

@x.f 0.u//.x.s/; s/ds

�
:

Finally, the adjoint system (15.21) is also solved by characteristics, i.e.

� d

dt
p.x.t/; t/ D �.x.t/; t/.u.x.t/; t/ � ud .x.t/; t//:

This yields the steepest descent direction in (15.24) for the continuous functional:

p.x0; 0/ D u0.x0/

Z T

0

�.x.s/; s/ds �
Z T

0

�.x.s/; s/ud .x.s/; s/ds:

Remark 15.1. Note that for classical solutions the Gateaux derivative of J at u0 is
given by (15.23) and this provides an obvious descent direction for J at u0, given
by (15.24). However this fact is not very useful in practice since, even when we
initialize the iterative descent algorithm with a smooth u0, we cannot guarantee that
the solution remains classical along the iterative process.
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15.4.2 Sensitivity of the State in the Presence of Shocks

Inspired in several results on the sensitivity of solutions of conservation laws in the
presence of shocks in one-dimension (see [4–7, 13, 17]), we focus on the particular
case of solutions having a single shock. But the analysis can be extended to consider
more general one-dimensional systems of conservation laws with a finite number of
noninteracting shocks. We introduce the following hypothesis:

Hypothesis 15.1. Assume that u.x; t/ is a weak entropy solution of (15.2) with a
discontinuity along a regular curve † D f.'.t/; t/; t 2 .0; T /g, which is Lipschitz
continuous outside †. In particular, it satisfies the Rankine-Hugoniot condition
on †

'0.t/Œu�†t D Œf .u/�†t :

Here we have used the notation: Œv�†t D lim
"&0

v.'.t/ C "; t/ � v.'.t/ � "; t/, for the

jump at †t D .'.t/; t/ of any piecewise continuous function v with a discontinuity
at †t .

Note that † divides R � .0; T / into two parts: Q� and QC, the sub-domains of
R � .0; T / to the left and to the right of † respectively.

As we will see, in the presence of shocks, to deal correctly with optimal control
and design problems, the state of the system needs to be viewed as constituted by
the pair .u; '/ combining the solution of (15.2) and the shock location '. This is
relevant in the analysis of sensitivity of functions below and when applying descent
algorithms.

We adopt the functional framework based on the generalized tangent vectors (see
[7] and Definition 4.1 in [9]).

Let u0 be the initial datum, that we assume to be Lipschitz continuous to both
sides of a single discontinuity located at x D '0, and consider a generalized tangent
vector .ıu0; ı'0/ 2 L1.R/ � R for all 0 � T . Let u0;" be a path which generates
.ıu0; ı'0/. For " sufficiently small, the solution u".�; t / of (15.2) is Lipschitz
continuous with a single discontinuity at x D '".t/, for all t 2 Œ0; T �. Therefore,
u".�; t / generates a generalized tangent vector .ıu.�; t /; ı'.t// 2 L1.R/ � R.
Moreover, in [9] it is proved that it satisfies the following linearized system:

@t ıu C @x.f 0.u/ıu/ D 0; in Q� [ QC (15.28)

d

dt
.Œu�†t ı'/ D Œf 0.u/ıu�†t � Œıu�†t

d

dt
'; t 2 .0; T / (15.29)

ıu.x; 0/ D ıu0.x/; fx < '0g [ fx > '0g (15.30)

ı'.0/ D ı'0: (15.31)
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15.4.3 Sensitivity of the Cost in the Presence of Shocks

In this section we study the sensitivity of the functional J with respect to variations
associated with the generalized tangent vectors defined in the previous section.
We first define an appropriate generalization of the Gateaux derivative of J .

Definition 15.1. Let J W L1.R/ ! R be a functional and u0 2 L1.R/ be
Lipschitz continuous with a discontinuity in †0, an initial datum for which the
solution of (15.2) satisfies hypothesis (15.1). J is Gateaux differentiable at u0 in
a generalized sense if for any generalized tangent vector .ıu0; ı'0/ and any family
u0;" associated to .ıu0; ı'0/ the following limit exists,

ıJ D lim
"!0

J.u0;"/ � J.u0/

"
;

and it depends only on .u0; '0/ and .ıu0; ı'0/, i.e. it does not depend on the
particular family u0;" which generates .ıu0; ı'0/. The limit is the generalized
Gateux derivative of J in the direction .ıu0; ı'0/.

The following result easily provides a characterization of the generalized
Gateaux derivative of J in terms of the solution of the associated adjoint
system (15.33)–(15.38).

Proposition 15.1. The Gateaux derivative of J can be written as follows

ıJ.u0/Œıu0; ı'0� D
Z
R

p.x; 0/ıu0.x/dx � q.0/Œu�†0ı'0; (15.32)

where the adjoint state pair .p; q/ satisfies the system

� @t p � f 0.u/@xp D � .u � ud /; in Q� [ QC (15.33)

Œp�˙t D 0; t 2 .0; T / (15.34)

q.t/ D p.'.t/; t/; t 2 .0; T / (15.35)

� d

dt
q D .1 C . P'/2/1=2Œ� .u � ud /2�†t

2Œu�†t
; t 2 .0; T / (15.36)

p.x; T / D 0; fx < '.T /g [ fx > '.T /g (15.37)

q.T / D 0: (15.38)

Let us briefly comment the result of Proposition 15.1 before giving its proof.
System (15.33)–(15.38) has a unique solution. In fact, to solve the backward

system (15.33)–(15.38) we first define the solution q on the shock † from the
conditions for q (15.36) and (15.38). This determines the value of p along the shock.
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p is defined by the method of characteristics

X− X+t = 0

t = T

Σ

Σ0

Fig. 15.1 Characteristic lines entering on a shock and how they may be used to build the solution
of the adjoint system both away from the shock and on its region of influence

We then propagate this information, together with (15.33) and (15.37), to both sides
of †, by characteristics (see Fig. 15.1 where we illustrate this construction).

Formula (15.32) provides an obvious way to compute a first descent direction of
J at u0. We just take

.ıu0; ı'0/ D .�p.�; 0/; q.0/Œu�†0/: (15.39)

Here, the value of ı'0 must be interpreted as the optimal infinitesimal displacement
of the discontinuity of u0.

In [9], when considering the inverse design problem, it was observed that the
solution p of the corresponding adjoint system at t D 0 was discontinuous, with two
discontinuities, one in each side of the original location of the discontinuity at †0.
This was a reason not to use this descent direction and for introducing the alternating
descent method. In the present setting, however, the adjoint state p obtained is
typically continuous. This is due to the fact that p at both side of the discontinuity
is defined by the method of characteristics and that, on the region of influence of
the characteristics emanating from the shock, the continuity is preserved by the fact
that, on one hand, q D q.t/ itself is continuous as the primitive of an integrable
function and that the data for p and q at t D T are continuous too. Despite of
this, as we shall see, the implementation of the alternating descent direction method
is worth since it significantly improves the results obtained by the purely discrete
approach.

We finish this section with the proof of Proposition 15.1.

Proof (of Proposition 15.1). A straightforward computation shows that J is
Gateaux differentiable in the generalized sense of Definition 15.1 and that the
generalized Gateaux derivative of J in the direction of the generalized tangent
vector .ıu0; ı'0/ is given by
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ıJ.u0/Œıu0; ı'0� D
Z T

0

Z

fx>'.t/g[fx<'.t/g
�.x; t/.u.x; t/ � ud .x; t//ıu.x; t/ dx dt

�
Z

†

�
�

.u � ud /2

2

�
†t

ı'.t/ d†.t/; (15.40)

where the pair .ıu; ı'/ solves the linearized problem (15.28)–(15.30) with initial
data .ıu0; ı'0/.

Let us now introduce the adjoint system (15.33)–(15.38). Multiplying the
equations of ıu by p, and integrating we get

0 D
Z T

0

Z

fx>'.t/g[fx<'.t/g

�
@t ıu C @x.f 0.u/ıu/

�
p dx dt

D �
Z T

0

Z

fx>'.t/g[fx<'.t/g
ıu

�
@t p C f 0.u/@xp

�
dx dt

C
Z

fx>'.T /g[fx<'.T /g
ıu.x; T /p.x; T /dx �

Z

fx>'0g[fx<'0g
ıu0.x/p.x; 0/dx

�
Z

†

�
Œıu p�†t nt

† C Œf 0.u/ıu p�†t � nx
†

�
d†.t/; (15.41)

where .nx; nt / are the Cartesian components of the normal vector to the curve †.
Therefore, since p satisfies the adjoint equation (15.33), (15.37), from (15.40)

we obtain

ıJ.u0/Œıu0; ı'0� D
Z

fx>'0g[fx<'0g
ıu0.x/p.x; 0/dx

C
Z

†

�
Œıu p�†t nt

† C Œf 0.u/ıu p�†t � nx
†

�
d†.t/ �

Z
†

�
�

.u � ud /2

2

�
†t

ı'.t/ d†.t/:

(15.42)

The last two terms in the right hand side of (15.42) will determine the conditions
that p must satisfy on the shock.

Observe that for any functions f; g we have

Œfg�†t D f Œg�†t C gŒf �†t ;
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where g represents the average of g to both sides of the shock †t , i.e.

g.t/ D 1

2
lim
"&0

.g.'.t/ C "; t/ C g.'.t/ � "; t// ; 8t 2 .0; T /:

Thus we have

Z
†

�
Œıu p�†t nt

† C Œf 0.u/ıu p�†t � nx
†

�
d† D

Z
†

Œp�†t

	
ıunt

† C f 0.u/ıu � nx
†



d†

C
Z

†
p

�
Œıu�†t nt

† C Œf 0.u/ıu�†t � nx
†

�
d†:

(15.43)

Now, we note that the Cartesian components of the normal vector to † are
given by

nt D �'0.t/p
1 C .'0.t//2

; nx D 1p
1 C .'0.t//2

;

and d†.t/ D p
1 C .'0.t//2dt: Using (15.28), (15.34), we have

Z
†

�
Œıu p�†t nt

† C Œf 0.u/ıu p�†t nx
†

�
d† D

Z T

0

p
��Œıu�†t '0.t/ C Œf 0.u/ıu�†t

�
dt

D
Z T

0

p
d

dt
.Œu�†t ı'/ dt: (15.44)

Therefore, replacing (15.35), (15.36), (15.38) and (15.44) in (15.42), we
obtain (15.32).

This concludes the proof. ut

15.5 The Alternating Descent Method

Here we explain how the alternating descent method introduced in [9] can be
adapted to the present optimal control problem (15.3).

First let us introduce some notation. We consider two points

X� D '.T / � Tf 0.u�.'.T /; T //; XC D '.T / � Tf 0.uC.x; T //; (15.45)

.p; q/ the solutions of (15.33)–(15.38) and

p0;� D lim
x%X�

p.x; 0/; p0;C D lim
x&XC

p.x; 0/:
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Now, we introduce the two classes of descent directions we shall use in our
descent algorithm.

First directions: With this set of directions, we mainly modify the profile of u0.
We set the first directions d1 D .ıu0; ı'0/, given by:

ıu0 D

8̂
<̂
ˆ̂:

�p.x; 0/; x < X�;

�p0;�; x 2 .X�; '0/;

�p0;C; x 2 .'0; XC/;

�p.x; 0/; x > XC:

ı'0 D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

0; if
XCR
X�

p.x; 0/ıu0.x/dx � 0;

XCR
X�

p.x; 0/ıu0.x/dx

Œu0�†0q.0/
; if

XCR
X�

p.x; 0/ıu0.x/dx > 0; and q.0/ ¤ 0:

(15.46)

We note that, if q.0/ D 0 and
XCR
X�

p.x; 0/ıu0.x/dx > 0; these directions are not

defined.
Second directions: They are aimed to move the shock without changing the

profile of the solution to both sides. Then d2 D .ıu0; ı'0/, with:

ıu0 	 0; ı'0.x/ D Œu0�†0q.0/: (15.47)

We observe that d1 given by (15.46) satisfies

ıJ.u0/Œd1� D �
Z

x…ŒX�;XC�

jp.x; 0/j2dx

�p0;�
Z '0

X�

p.x; 0/dx � p0;C
Z XC

'0

p.x; 0/dx � Œu0�†0q.0/ı'0 � 0:

(15.48)

Note that in those cases where d1 is not defined, as indicated above, this descent
direction is simply not employed in the descent algorithm.

And for d2 given by (15.47) we have

ıJ.u0/Œd2� D �.Œu0�†0q.0//2 � 0: (15.49)

Thus, the two classes of descent directions under consideration have three
important properties:
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1. They are both descent directions.
2. They allow to split the design of the profile and the shock location.
3. They are true generalized gradients and therefore keep the structure of the data

without increasing its complexity.

15.6 Numerical Approximation of the Descent Direction

We have computed the gradient of the continuous functional J in several cases
(u smooth or having shock discontinuities) but, in practice, one has to work with
discrete versions of the functional J . In this section we discuss two possible ways of
searching discrete descent directions based either on the discrete or the continuous
approaches and in the later on the alternating descent method.

The discrete approach consists mainly in applying directly a descent algorithm
to the discrete version J� of the functional J by using its gradient. The alternating
descent method, by the contrary, is a method inspired on the continuous analysis of
the previous section in which the two main classes of descent directions that are,
first, identified and later discretized.

Let us first discuss the discrete approach.

15.6.1 The Discrete Approach

Let us consider the approximation of the functional J by J� defined (15.1)
and (15.6) respectively. We shall use the Engquist-Osher scheme which is a 3-
point conservative numerical approximation scheme for (15.2). More explicitly we
consider:

unC1
i D un

i � �t

�x

�
g.un

iC1; un
i / � g.un

i ; un
i�1/

�
; i 2 Z; n D 0; : : : ; N; (15.50)

where g is the numerical flux defined in (15.16).
The gradient of the discrete functional J� requires computing one derivative

of J� with respect to each node of the mesh. This can be done in a cheaper way
using the discrete adjoint state. We illustrate it for the Engquist-Osher numerical
scheme. However, as the discrete functionals J� are not necessarily convex the
gradient methods could possibly provide sequences that do not converge to a global
minimizer of J�. But this drawback and difficulty appears in most applications of
descent methods in optimal design and control problems.

As we will see, in the present context, the approximations obtained by discrete
gradient methods are satisfactory, although convergence is slow due to unnecessary
oscillations that the descent method introduces.
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The gradient of J�, rigorously speaking, requires the linearization of the
numerical scheme (15.50) used to approximate Eq. (15.2). Then the linearization
corresponds to

ıunC1
i D ıun

i � �t

�x

�
@ag.un

iC1; un
i /ıun

iC1 � @bg.un
i ; un

i�1/ıun
i�1

�

� �t

�x

�
@bg.un

iC1; un
i / � @ag.un

i ; un
i�1/

�
ıun

i ;

i 2 Z; n D 0; : : : ; N: (15.51)

In view of this, the discrete adjoint system of (15.51) can also be written for the
differentiable flux functions:

pN C1
i D 0; i 2 Z;

pn
i D pnC1

i C �t

�x
@bg.un

iC1; un
i /

�
pnC1

iC1 � pnC1
i

�

C �t

�x
@ag.un

i ; un
i�1/

�
pnC1

i � pnC1
i�1

� C F n
i ;

i 2 Z; n D 0; : : : ; N; (15.52)

where

F n
i D �t�n

i

�
un

i � .ud /n
i

�
; i 2 Z; n D 0; : : : ; N: (15.53)

In fact, when multiplying the equations in (15.51) by pnC1
i and adding in i 2 Z

and n D 0; : : : ; N; the following identity is easily obtained,

�x
X
i2Z

p0
i ıu0

i D �x

NX
nD0

X
i2Z

F n
i ıun

i : (15.54)

This is the discrete version of formula (15.22) which allows us to simplify the
derivative of the discrete cost functional.

Thus, for any variation ıu0
�; the Gateaux derivative of the cost functional defined

in (15.6) is given by

ıJ� D �x�t

NX
nD0

X
i2Z

�n
i

�
un

i � .ud /n
i

�
ıun

i ; (15.55)

where ıun
i;j solves the linearized system (15.51). If we consider pn

i the solution
of (15.52) with (15.53), we obtain that ıJ� in (15.55) can be written as,

ıJ� D �x
X
i2Z

p0
i ıu0

i ;
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and this allows to obtain easily the steepest descent direction for J� by considering

ıu0
� D �p0

�: (15.56)

Remark 15.2. We observe that for the Enquis-Osher’s flux (15.16), the
system (15.52) is the upwind method for the continuous adjoint system. We do
not address here the problem of the convergence of this adjoint scheme towards the
solution of the continuous adjoint system. Of course, this is an easy matter when u
is smooth but it is far from being trivial when u has shock discontinuities. Whether
or not this discrete adjoint system, as � ! 0, allows reconstructing the complete
adjoint system, with the inner Dirichlet condition along the shock (15.33)–(15.38),
constitutes an interesting problem for future research. We refer to [14] and [18] for
preliminary work on this direction in one-dimension.

15.6.2 The Alternating Descent Method

Now we describe the implementation of the alternating descent method.
The main idea is to approximate a minimizer of J alternating between two direc-

tions of descent: First we perturb the initial datum u0 using the direction (15.46),
which principally changes the profile of u0. Second we move the shock curve
without altering the profile of u0 at both sides of †, using the direction (15.47).

More precisely, for a given initialization u0
� and target function ud

�, we compute
†0

�, the jump-point of u0
�,u� and p0

� as the solutions of (15.51), (15.52) respec-
tively.

As numerical approximation of the adjoint state q.0/ we take the value of p0
�

over the point †0
�, i.e.

q0
� D p0

�.†0
�/ D p0

i ; †0
� 2 .xi�1=2; xiC1=2/:

The main advantage of this method introduced in [9] is that for an initial
datum u0 with a single discontinuity, the descent directions are generalized tangent
vectors, i.e. they introduce Lipschitz continuous variations of u0 at both sides of the
discontinuity and a displacement of the shock position. In this way, the new datum
obtained modifying the old one, in the direction of this generalized tangent vector,
has again a single discontinuity. The method can be applied in a much more general
context in which, for instance, the solution has various shocks since the method is
able both to generate shocks and to destroy them, if any of these facts contributes to
the decrease of the functional. This method is in some sense close to those employed
in shape design in elasticity in which topological derivatives (that would correspond
to controlling the location of the shock in our method) are combined with classical
shape deformations (that would correspond to simply shaping the solution away
from the shock in the present setting) [11].
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As mentioned above, in the context of the tracking problem we are considering,
the solutions of the adjoint system do not increase the number of shocks. Thus,
a direct application of the continuous method, without employing this alternating
variant, could make sense. Note that the purely discrete method is a limited version
of the continuous one since one simply employs the descent direction indicated by
p0 without paying attention to the value q0 corresponding to the shock sensitivity.
However, the numerical experiments we have done with the full continuous method
do not improve the results obtained by the discrete one since the definition of the
location of the shocks is lost along the iterative process.

15.7 Numerical Experiments

In this section we present some numerical experiments which illustrate the results
obtained in an optimization model problem with each one of the numerical methods
described in the previous section.

We have chosen as computational domain the interval .�4; 4/ and we have taken
as boundary conditions in (15.50), at each time step t D tn, the value of the initial
data at the boundary. This can be justified if we assume that the initial datum u0 is
constant in a sufficiently large inner neighborhood of the boundary x D ˙4 (which
depends on the size of the L1-norm of the data under consideration and the time
horizon T ), due to the finite speed of propagation. A similar procedure is employed
for the adjoint equation.

We underline once more that the solutions obtained with each method may
correspond to global minima or local ones since the gradient algorithm does not
distinguish them.

In the experiments we consider the Burgers’ equation, i.e. f .z/ D z2=2,

@t u C @x

�
u2

2

�
D 0; u.x; 0/ D u0.x/: (15.57)

The weight function �, under consideration in the experiments is given by

�.x; t/ D
�

1 t 2 .T=2; T /

0 otherwise.

And the time horizon T D 1.
To compare the efficiency of the different methods we consider a fixed �x D

1=20; � D �t=�x D 2=3 (which satisfies the CFL condition). We then analyze
the number of iterations that each method needs to attain a prescribed value of the
functional.
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Fig. 15.2 Experiment 1.
log.J / versus the number of
iterations in the descent
algorithm for the discrete and
the alternating descent
methods

15.7.1 Experiment 1

We first consider a piecewise constant target profile ud given by the solution
of (15.57) with the initial condition .ud /0 given by

.ud /0.x/ D
�

0:7 x 2 Œ�2; 1�

0 otherwise.
(15.58)

Note that, in this case, (15.58) yields a particular solution of the optimization
problem and the minimum value of J vanishes.

We solve the optimization problem (15.3) with the above described different
methods starting from the following initialization for u0:

u0.x/ D
�

0:5 x � 0

�0:1 x > 0;
(15.59)

which also has a discontinuity but located on a different point.
In Fig. 15.2 we plot log.J / with respect to the number of iterations, for both,

the purely discrete method and the alternating descent one. We see that the latter
stabilizes in fewer iterations.

In Figs. 15.3 and 15.4, we present the minimizers obtained by the methods above,
and the associated solutions, Figs. 15.5 and 15.6.

The initial datum u0 obtained by the alternating descent method (Fig. 15.4) is
a good approximation of (15.58). The solution given by the discrete approach
(Fig. 15.3) presents added spurious oscillations. Furthermore, the discrete method
is much slower and does not achieve the same level of accuracy since the functional
J� does not decrease so much.
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Fig. 15.3 Experiment 1: u0,
discrete method, iteration
k D 999

Fig. 15.4 Experiment 1: u0,
alternating descent method,
iteration k D 38

Fig. 15.5 Experiment 1:
Solution u.x; t/, discrete
method, iteration k D 999
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Fig. 15.6 Experiment 1:
Solution u.x; t/, alternating
descent method, iteration
k D 38

15.7.2 Experiment 2

The previous experiment indicates that the alternating descent method performs
significantly better. In order to show that this is a systematic fact, which arises
independently of the initialization of the method, we consider the target ud given
by the solution of (15.57) with the initial condition .ud /0 given by

.ud /0.x/ D
�

0:5 x � 0:5

0 otherwise,
(15.60)

but this time we compare the performance of both methods starting from different
initializations.

The obtained numerical results are presented in Fig. 15.7.
We see that, regardless the initialization considered, the alternating descent

method performs significantly better.
We observe that in the five experiments the alternating descent method perfumes

better ensuring the descent of the functional in much fewer iterations and yielding
smoother, less oscillatory approximation of the minimizer.

Note also that the discrete method, rather than yielding discontinuous approxima-
tions of the minimizer as the alternating descent method does, it produces an initial
datum with a Lipschitz front. Observe that these are two different configurations that
can lead to the same evolution for the Burgers equation after some time, once the
front develops the discontinuity. This is in agreement with the fact that the functional
to be minimized is only active in the time-interval T=2 � t � T .

15.8 Conclusions and Perspectives

In this paper we have adapted and presented the alternating descent method for a
tracking problem for a 1 � d scalar conservation law, the goal being to identify
an optimal initial datum so that the solution gets as close as possible to a given
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Fig. 15.7 Experiment 2. We present a comparison of the results obtained with both methods
starting out of five different initialization configurations. In the left column we exhibit the results
obtained with the discrete method. In the second one those achieved by the alternating descent
method. In the last one we plot the evolution of the functional with both methods
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trajectory. We have exhibited in a number of examples the better performance of the
alternating descent method with respect to the classical discrete method. Thus, the
paper extends previous works on other optimization problems such as the inverse
design or the optimization of the flux function.

The developments in this paper raise a number of interesting problems and
questions that will deserve further investigation. We summarize here some of
them:

• The alternating descent method and the discrete one do not seem to yield the
same minimizer. This should be further investigated in a more systematic manner
in other experiments.

The minimizer that the discrete method yields seems to replace the shock of
the initial datum by a Lipschitz function which eventually develops the same
dynamics within the time interval T=2 � t � T in which the functional we have
chosen is active. This is an agreement with the behavior of these methods in the
context of the classical problem of inverse design in which one aims to find the
initial datum so that the solution at the final time takes a given value. It would
be interesting to prove analytically that the two methods may lead to different
minimizers in some circumstances.

• The experiments in this paper concern the case where the target ud is exactly
reachable. It would be interesting to explore the performance of both methods in
the case where the target ud is not a solution of the underlying dynamics.

• It would be interesting to compare the performance of the methods presented in
the paper with the direct continuous method, without introducing the alternating
strategy. Our preliminary numerical experiments indicate that the continuous
method, without implementing the alternating strategy, does not improve the
results that the purely discrete strategy yields.

• In [16] the problem of inverse design has been investigated adapting and
extending the alternating descent method to the multi-dimensional case. It would
be interesting to extend the analysis of this paper to the multidimensional case
too.

• It would worth to compare the results in this paper with those that could be
achieved by the nudging method as in [2, 3].
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