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Abstract Let �t be a Poisson point process with intensity measure t�, t > 0,
over a Borel space X, where � is a fixed measure. Another point process �t on
the real line is constructed by applying a symmetric function f to every k-tuple
of distinct points of �t. It is shown that �t behaves after appropriate rescaling like
a Poisson point process, as t ! 1, under suitable conditions on �t and f . This
also implies Weibull limit theorems for related extreme values. The result is then
applied to investigate problems arising in stochastic geometry, including small cells
in Voronoi tessellations, random simplices generated by non-stationary hyperplane
processes, triangular counts with angular constraints, and non-intersecting k-flats.
Similar results are derived if the underlying Poisson point process is replaced by a
binomial point process.

1 Introduction

This chapter deals with the application of the Malliavin–Chen–Stein method for
Poisson approximation to problems arising in stochastic geometry. More precisely,
we will develop a general framework which yields Poisson point process conver-
gence and Weibull limit theorems for the order-statistic of a class of functionals
driven by an underlying Poisson or binomial point process on an abstract state space.

To motivate our general theory, let us describe a particular situation to which our
results can be applied (see Remark 4 and also Example 4 in [29] for more details).
Let K be a convex body in R

d, d � 2, (that is a compact convex set with interior
points) whose volume is denoted by `d.K/. For t > 0 let �t be the restriction to K of
a translation-invariant Poisson point process in R

d with intensity t and let .�t/t>0 be
a sequence of real numbers satisfying t2=d�t ! 1, as t ! 1. Taking �t as vertex
set of a random graph, we connect two different points of �t by an edge if and only if
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their Euclidean distance does not exceed �t. The so-constructed random geometric
graph, or Gilbert graph, is among the most prominent random graph models (see
[25] for some recent developments and [22] for an exhaustive reference). We now
consider the order statistic �t D fM.m/

t W m 2 Ng defined by the edge-lengths of
the random geometric graph, that is, M.1/

t is the length of the shortest edge, M.2/
t is

the length of the second-shortest edge etc. Now, our general theory implies that the
rescaled point process t2=d�t converges towards a Poisson point process on RC with
intensity measure given by B 7! ˇd

R
B ud�1 du for Borel sets B � RC, where ˇ D

�d`d.K/=2 and �d stands for the volume of the d-dimensional unit ball. Moreover,
it implies that there is a constant C > 0 only depending on K such that

ˇ
ˇ
ˇ
ˇ
ˇ
P

�
t2=dM.m/

t > y
�

� e�ˇyd
m�1X

iD0

.ˇyd/i

iŠ

ˇ
ˇ
ˇ
ˇ
ˇ

� C maxfydC1; y2dg t�2=d

for any m 2 N, y 2 .0; t2=d�t/ and t � 1. In particular, the distribution of the rescaled
length t2=dM.1/

t of the shortest edge of the random graph converges, as t ! 1, to a
Weibull distribution with survival function y 7! e�ˇyd

, y � 0, at rate t�2=d .
Our purpose here is to establish a general framework that can be applied to a

broad class of examples. We also allow the underlying point process to be a Poisson
or a binomial point process. Our main result for the Poisson case refines those in [29]
or [30] and improves the rate of convergence. Its proof follows the ideas of Peccati
[21] and Schulte and Thäle [29], but uses the special structure of the functional
under consideration as well as recent techniques from [20] around Mehler’s formula
on the Poisson space. This saves some technical computations related to the product
formula for multiple stochastic integrals (cf. [18], in this volume, as well as [19, 32]).
In case of an underlying binomial point process we use a bound for the Poisson
approximation of (classical) U-statistics from [1]. As application of our main results,
we present a couple of examples, which continue and complement those studied in
[29, 30]. These are

1. Cells with small (nucleus-centered) inradius in a Voronoi tessellation.
2. Simplices generated by a class of rotation-invariant hyperplane processes.
3. Almost collinearities and flat triangles in a planar Poisson or binomial process.
4. Arbitrary length-power-proximity functionals of non-intersecting k-flats.

The rest of this chapter is organized as follows. Our main results and their
framework are presented in Sect. 2. The application to problems arising in stochastic
geometry is the content of Sect. 3. The proofs of the main results are postponed to
the final Sect. 4.
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2 Results

Let �t (t > 0) be a Poisson point process on a measurable space .X;X / with
intensity measure �t WD t�, where � is a fixed �-finite measure on X. To avoid
technical complications, we shall assume in this chapter that .X;X / is a standard
Borel space. This ensures, for example, that any point process on X can almost
surely be represented as a sum of Dirac measures. Let further k 2 N and f W Xk ! R

be a measurable symmetric function. Our aim here is to investigate the point process
�t on R which is induced by �t and f as follows:

�t WD 1

kŠ

X

.x1;:::;xk/2�k
t;¤

ıf .x1;:::;xk/ : (1)

Here �k
t;¤ stands for the set of all k-tuples of distinct points of �t and ıx is the unit

Dirac measure concentrated at the point x 2 R. We shall assume that

�k
t . f �1.Œ�s; s�// < 1 for all s > 0 ;

to ensure that �t is a locally finite counting measure on R.
For m 2 N we denote by M.m/

t the distance from the origin to the m-th point of �t

on the positive half-line RC WD .0; 1/, and by M.�m/
t the distance from the origin to

the m-th point on the negative half-line R� WD .�1; 0�. If �t has less than m points
on the positive or negative half-line, we put M.m/

t D 1 or M.�m/
t D 1, respectively.

Fix 	 2 R and for y1; y2 2 R define

˛t.y1; y2/ WD 1

kŠ

Z

Xk

1ft�	 y1 < f .x1; : : : ; xk/ � t�	 y2g �k
t .d.x1; : : : ; xk// :

We remark that, as a consequence of the multivariate Mecke formula for Poisson
point processes (see [18, formula (1.11)]), ˛t.y1; y2/ can be interpreted as

˛t.y1; y2/ D 1

kŠ
E

X

.x1;:::;xk/2�k
t;¤

1ft�	 y1 < f .x1; : : : ; xk/ � t�	 y2g ;

which is the expected number of points of �t in .t�	 y1; t�	 y2� if y1 < y2 and zero if
y1 � y2. Moreover, let, for k � 2,

rt.y/ WD max
1�`�k�1

Z

X`

� Z

Xk�`

1fj f .x1; : : : ; xk/j � t�	 yg �k�`
t .d.x`C1; : : : ; xk//

�2

�`
t .d.x1; : : : ; x`//

for y � 0 and put rt � 0 if k D 1.
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Theorem 1 Let 
 be a �-finite non-atomic Borel measure on R. Then, there is a
constant C � 1 only depending on k such that

ˇ
ˇ
ˇ
ˇP.t	 M.m/

t > y/ � e�
..0;y�/

m�1X

iD0


..0; y�/i

iŠ

ˇ
ˇ
ˇ
ˇ � j
..0; y�/ � ˛t.0; y/j C C rt.y/

and

ˇ
ˇ
ˇ
ˇP.t	 M.�m/

t � y/ � e�
..�y;0�/

m�1X

iD0


..�y; 0�/i

iŠ

ˇ
ˇ
ˇ
ˇ � j
..�y; 0�/ � ˛t.�y; 0/j C C rt.y/

for all m 2 N and y � 0. Moreover, if

lim
t!1 ˛t.y1; y2/ D 
..y1; y2�/ for all y1; y2 2 R with y1 < y2 (2)

and

lim
t!1 rt.y/ D 0 for all y > 0 ; (3)

the rescaled point processes .t	 �t/t>0 converge in distribution to a Poisson point
process on R with intensity measure 
.

Remark 1 Let us comment on the particular case k D 1. Here, the point process
�t is itself a Poisson point process on R with intensity measure derived from ˛t as
a consequence of the famous mapping theorem, for which we refer to Sect. 2.3 in
[16]. This is confirmed by our Theorem 1.

Remark 2 Theorem 1 generalizes earlier versions in [29, 30], which have a similar
structure, but where the quantity

Ort.y/ WD sup
.Ox1;:::;Ox`/2X`

1�`�k�1

�k�`
t

�˚
.x1; : : : ; xk�`/ 2 X

k�` W

j f .Ox1; : : : ; Ox`; x1; : : : ; xk�`/j � t�	 yg/

for y � 0 is considered instead of rt.y/. It is easy to see that rt.y/ and Ort.y/ are
related by

rt.y/ � inf
">0

˛t.�y � "; y/ Ort.y/ for all y � 0 :

In particular, this means that the rate of convergence of the order statistics in
Theorem 1 improves that in [29, 30] by removing a superfluous square root from
Ort.y/. Moreover and in contrast to [29, 30], the constant C only depends on the
parameter k.
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In our applications presented in Sect. 3, the function f is always strictly positive
so that �t is concentrated on RC. Moreover, the measure 
 will be of a special form.
The following corollary deals with this situation. To state it, we use the convention
that ˛t.y/ WD ˛t.0; y/ for y � 0.

Corollary 1 Let ˇ; � > 0. Then there is a constant C > 0 only depending on k such
that

ˇ
ˇ
ˇ
ˇP.t	 M.m/

t > y/ � e�ˇy�
m�1X

iD0

.ˇy� /i

iŠ

ˇ
ˇ
ˇ
ˇ � jˇy� � ˛t.y/j C C rt.y/

for all m 2 N and y � 0. If, additionally,

lim
t!1 ˛t.y/ D ˇy� and lim

t!1 rt.y/ D 0 for all y > 0 ; (4)

the rescaled point processes .t	 �t/t>0 converge in distribution to a Poisson point
process on RC with the intensity measure


.B/ D ˇ�

Z

B

u��1 du; B � RC Borel : (5)

Remark 3 The limiting Poisson point process appearing in the context of Corol-
lary 1 is usually called a Weibull process on RC, the reason for this being that the
distance from the origin to the next point follows a Weibull distribution.

If � is a finite measure, i.e., if �.X/ < 1, one can replace the underlying
Poisson point process �t by a binomial point process �n having a fixed number of n
points which are independent and identically distributed according to the probability
measure �. � /=�.X/. Without loss of generality we assume that �.X/ D 1 in what
follows. In this situation, we consider instead of �t defined at (1) the derived point
process O�n on R given by

O�n WD 1

kŠ

X

.x1;:::;xk/2�k
n;¤

ıf .x1;:::;xk/ ;

where �k
n;¤ stands for the collection of all k-tuples of distinct points of �n. For m 2 N

let bM.m/
n and bM.�m/

n be defined similarly as M.m/
n and M.�m/

n above with �t replaced by
O�n. For n; k 2 N we denote by .n/k the descending factorial n �.n�1/ � : : : �.n�kC1/.
Using the notation

˛n.y1; y2/ WD .n/k

kŠ

Z

Xk

1 fn�	 y1 < f .x1; : : : ; xk/ � n�	 y2g �k.d.x1; : : : ; xk// ;
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rn.y/ WD max
1�`�k�1

.n/2k�`

Z

X`

� Z

Xk�`

1 fj f .x1; : : : ; xk/j � n�	 yg

�k�`.d.x`C1; : : : ; xk//

�2

�`.d.x1; : : : ; x`//

for y1; y2; y 2 R, we can now present the binomial counterpart of Theorem 1.

Theorem 2 Let � be a probability measure on X and 
 be a �-finite non-atomic
Borel measure on R. Then, there is a constant C � 1 only depending on k such that

ˇ
ˇ
ˇ
ˇP.n	 bM.m/

n > y/ � e�
..0;y�/

m�1X

iD0


..0; y�/i

iŠ

ˇ
ˇ
ˇ
ˇ

� j
..0; y�/ � ˛n.0; y/j C C
�

rn.y/ C ˛n.0; y/

n

�

and

ˇ
ˇ
ˇ
ˇP.n	 bM.�m/

n � y/ � e�
..�y;0�/

m�1X

iD0


..�y; 0�/i

iŠ

ˇ
ˇ
ˇ
ˇ

� j
..�y; 0�/ � ˛n.�y; 0/j C C
�

rn.y/ C ˛n.�y; 0/

n

�

for all m 2 N and y � 0. Moreover, if

lim
n!1 ˛n.y1; y2/ D 
..y1; y2�/ for all y1; y2 2 R with y1 < y2

and

lim
n!1 rn.y/ D 0 for all y > 0 ;

the rescaled point processes .n	 O�n/n�1 converge in distribution to a Poisson point
process on R with intensity measure 
.

As in the Poisson case, Theorem 2 allows a reformulation as in Corollary 1 for
the special situation in which f is nonnegative and 
 has a power-law density. As
above, we use the convention that ˛n.y/ WD ˛n.0; y/ for y � 0.

Corollary 2 Let ˇ; � > 0. Then there is a constant C > 0 only depending on k such
that

ˇ
ˇ
ˇ
ˇP.n	 bM.m/

n > y/ � e�ˇy�
m�1X

iD0

.ˇy� /i

iŠ

ˇ
ˇ
ˇ
ˇ � jˇy� � ˛n.y/j C C

�
rn.y/ C ˛n.y/

n

�
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for all m 2 N and y � 0. If, additionally,

lim
n!1 ˛n.y/ D ˇy� and lim

n!1 rn.y/ D 0 for all y > 0 ;

the rescaled point processes .n	 O�n/n�1 converge in distribution to a Poisson point
process on RC with intensity measure given by (5).

3 Examples

In this section we apply the results presented above to problems arising in stochastic
geometry, see [11]. The minimal nucleus-centered inradius of the cells of a Voronoi
tessellation is considered in Sect. 3.1. This example is inspired by the work [5] and
was not previously considered in [29], although it is closely related to the minimal
edge length of the random geometric graph discussed in the introduction. Our
next example generalizes Example 6 of [29] from the translation-invariant case to
arbitrary distance parameters r � 1. In dimension two it also sheds some new light
onto the area of small cells in line tessellations. Our third example is inspired by
a result in [31] and deals with approximate collinearities and flat triangles induced
by a planar Poisson or binomial point process. Our last example deals with non-
intersecting k-flats. The result generalizes Example 1 in [29] and one of the results
in [30] to arbitrary distance powers a > 0.

3.1 Voronoi Tessellations

For a finite set  ¤ ; of points in R
d, d � 2, the Voronoi cell v.x/ with nucleus

x 2  is the (possibly unbounded) set

v.x/ D ˚
z 2 R

d W kx � zk � kx0 � zk for all x0 2  n fxg�

of all points in R
d having x as their nearest neighbor in . The family

V D fv.x/ W x 2 g

subdivides Rd into a finite number of random polyhedra, which form the so-called
Voronoi tessellation associated with , see [27, Chap. 10.2]. For  D ; we put V; D
fRdg. One characteristic measuring the size of a Voronoi cell v.x/ is its nucleus-
centered inradius R.x; /. It is defined as the radius of the largest ball included in
v.x/ and having x as its midpoint. Note that R.x; / takes the value 1 if  D fxg.
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Define

R.V/ WD minfR.x; / W x 2 g

for nonempty  and R.V;/ WD 1.
In [5] the asymptotic behavior of R.V/ has been investigated in the case that

 is a Poisson point process in a convex body K of intensity t > 0, as t ! 1.
Using Corollary 1 we can get back one of the main results of [5] and add a rate
of convergence to the limit theorem (compare with [5, Eq. (2b)] in particular).
Moreover, we provide a similar result for an underlying binomial point process.

Corollary 3 Let �t be a Poisson point process with intensity measure t`djK, where
`djK stands for the restriction of the Lebesgue measure to a convex body K and
t > 0. Then, there exists a constant C > 0 depending on K such that

ˇ
ˇ
ˇP
�
t2=dR.V�t / > y

� � e�2d�1�d`d.K/yd
ˇ
ˇ
ˇ � C t�2=d maxfydC1; y2dg

for all y � 0 and t � 1. In addition, if �n is a binomial point process with n � 2

independent points distributed according to `d.K/�1 `djK, then

ˇ
ˇ
ˇP
�
n2=dR.V�n/ > y

�� e�2d�1�d`d.K/yd
ˇ
ˇ
ˇ � C n�2=d maxfyd; y2dg

for y � 0 and with a constant C > 0 depending on K.

Proof To apply Corollary 1 we first have to investigate ˛t.y/ for fixed y > 0. For this
we abbreviate V�t by Vt and observe that—by definition of a Voronoi cell—R.Vt/ is
half of the minimal interpoint distance of points from �t, i.e.

R.Vt/ D 1

2
min

˚kx1 � x2k W .x1; x2/ 2 �2
t;¤g :

Consequently, we have

˛t.y/ D t2

2

Z

K

Z

K

1fkx1 � x2k � 2yt�	g dx2 dx1

D t2

2

Z

Rd

`d.K \ Bd
2yt�	 .x1// dx1 � t2

2

Z

RdnK

`d.K \ Bd
2yt�	 .x1// dx1 ;

where Bd
r .x/ is the d-dimensional ball of radius r > 0 around x 2 R

d. From
Theorem 5.2.1 in [27] (see Eq. (14) in particular) it follows that

t2

2

Z

Rd

Vd.K \ Bd
2yt�	 .x1// dx1 D t2

2
`d.K/ �d.2yt�	 /d D 2d�1`d.K/�dydt2�	d :
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Moreover, Steiner’s formula [27, Eq. (14.5)] yields

t2

2

Z

RdnK

`d.K \ Bd
2yt�	 .x1// dx1

� �d

2
t2.2yt�	 /d `d

�	

z 2 R
d n K W inf

z02K
kz � z0k � 2yt�	


�

D �d

2
t2.2yt�	 /d

d�1X

jD0

�d�jVj.K/.2yt�	 /d�j ;

where V0.K/; : : : ; Vd�1.K/ are the so-called intrinsic volumes of K, see [11] or [27].
Choosing 	 D 2=d, this implies that ˛t.y/ is dominated by its first integral term and
that

ˇ
ˇ˛t.y/ � 2d�1�d`d.K/yd

ˇ
ˇ � c1 t�2=d maxfydC1; y2dg

for t � 1 with a constant c1 only depending on K.
Finally, we have to deal with rt.y/. Here, we have

rt.y/ D t3
Z

K

�Z

K

1fkx � yk � 2yt�	g dy

�2

dx

� t3`d.K/ .t�2�d2dyd/2 D `d.K/ 4d�2
d y2dt�1 :

In the binomial case, one can derive analogous bounds for ˛n.y/ and rn.y/, y > 0.
Since min.2=d; 1/ D 2=d for all d � 2, application of Corollaries 1 and 2 completes
the proof. ut
Remark 4 We have used in the proof that R.V�t / is half of the minimal inter-point
distance between points of �t in K. Thus, Corollary 3 also makes a statement about
this minimal inter-point distance. Consequently, 2R.V�t/ is also the same as the
shortest edge length of a random geometric graph based on �t as discussed in the
introduction (cf. [25] and [22] for an exhaustive reference on random geometric
graphs) or as the shortest edge length of a Delaunay graph (see [11] or [6, 27]
for background material on Delaunay graphs or tessellations). A similar comment
applies if �t is replaced by a binomial point process �n.

3.2 Hyperplane Tessellations

Let H be the space of hyperplanes in R
d, fix a distance parameter r � 1 and a

convex body K � R
d, and define as in [12, Sect. 3.4.5] a (finite) measure � on H
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by the relation

Z

H

g.H/ �.dH/ D
Z

Sd�1

1Z

0

g.u? C pu/1f.u? C pu/ \ K ¤ ;g pr�1 dp du ;

where g � 0 is a measurable function on H, u? is the linear subspace of all
vectors that are orthogonal to u, and du stands for the infinitesimal element of the
normalized Lebesgue measure on the .d�1/-dimensional unit sphere Sd�1. By �t we
mean in this section a Poisson point process on H with intensity measure �t WD t�,
t > 0. Let us further write for n 2 N with n � d C 1, �n for a binomial process on
H consisting of n 2 N hyperplanes distributed according to the probability measure
�.H/�1 �.

If K D R
d in the Poisson case, one obtains a tessellation of the whole R

d into
bounded cells. In this context one is interested in the so-called zero cell Z0, which
is the almost surely uniquely determined cell containing the origin. If r D 1, Z0

has the same distribution as the zero-cell of a rotation- and translation-invariant
Poisson hyperplane tessellation. If r D d, Z0 is equal in distribution to the so-called
typical cell of a Poisson–Voronoi tessellation as considered in the previous section,
see [27]. Thus, the tessellation induced by �t interpolates in some sense between
the translation-invariant Poisson hyperplane and the Poisson–Voronoi tessellation,
which explains the recent interest in this model [8, 9, 12]. For more background
material about random tessellations (and in particular Poisson hyperplane and
Poisson–Voronoi tessellations) we refer to Chap. 10 in [27] and Chap. 9 in [6] and
also to [11].

We are interested here in the simplices generated by the hyperplanes of �t

or �n, which are contained in the prescribed convex set K. For a .d C 1/-tuple
.H1; : : : ; HdC1/ of distinct hyperplanes of �t or �n let us write ŒH1; : : : ; HdC1� for
the simplex generated by H1; : : : ; HdC1 and define the point processes

�t WD 1

.d C 1/Š

X

.H1;:::;HdC1/2�
dC1
t;¤

ı`d.ŒH1;:::;HdC1�/ 1
˚
ŒH1; : : : ; HdC1� � K

�

and

O�n WD 1

.d C 1/Š

X

.H1;:::;HdC1/2�
dC1
n;¤

ı`d.ŒH1;:::;HdC1�/ 1
˚
ŒH1; : : : ; HdC1� � K

�
:

By M.m/
t and bM.m/

n we mean the mth order statistics associated with �t and O�n,
respectively. In particular M.1/

t and bM.1/
n are the smallest volume of a simplex

included in K. Moreover, for fixed hyperplanes H1; : : : ; Hd in general position let
z.H1; : : : ; Hd/ WD H1 \ : : : \ Hd be the intersection point of H1; : : : ; Hd. By Hı;u

we denote the hyperplane with unit normal vector u 2 S
d�1 and distance ı > 0 to



Poisson Point Process Convergence 265

the origin. The following result generalizes [29, Theorem 2.6] from the translation-
invariant case r D 1 to arbitrary distance parameter r � 1.

Corollary 4 Define

ˇ WD 1

.d C 1/Š

Z

Hd

Z

Sd�1

1fH1 \ : : : \ Hd \ K ¤ ;g juTz.H1; : : : ; Hd/jr�1

� `d.ŒH1; : : : ; Hd; z.H1; : : : ; Hd/ C H1;u�/�1=d du �d.d.H1; : : : ; Hd// :

Then td.dC1/�t and nd.dC1/ O�n converge, as t ! 1 or n ! 1, in distribution to a
Poisson point process on RC with intensity measure given by

B 7! ˇ

d

Z

B

u.1�d/=d du

for Borel sets B � RC. In particular, for each m 2 N, td.dC1/M.m/
t and nd.dC1/bM.m/

n

converge towards a random variable with survival function

y 7! exp
� � ˇ y1=d

� m�1X

iD0

.ˇy1=d/i

iŠ
; y � 0 :

Proof For y > 0 we have

˛t.y/ D tdC1

.d C 1/Š

Z

HdC1

1fŒH1; : : : ; HdC1� � Kg

� 1f`d.ŒH1; : : : ; HdC1�/ � yt�	 g �dC1.d.H1; : : : ; HdC1// :

For fixed hyperplanes H1; : : : ; Hd in general position we parametrize HdC1 by a pair
.ı; u/ 2 Œ0; 1/ �S

d�1, where ı is the distance of HdC1 to the origin. Then ˛t.y/ can
be rewritten as

˛t.y/ D 1

2.d C 1/Š

Z

Hd

Z

Sd�1

1Z

�1
tdC11fŒH1; : : : ; Hd; Hı;u� � Kg

� 1f`d.ŒH1; : : : ; Hd; Hı;u�/ � yt�	 gjıjr�1 dı du �d.d.H1; : : : ; Hd// :
(6)

Since the hyperplane Hı;u has the distance juTz.H1; : : : ; Hd/ � ıj to z.H1; : : : ; Hd/,
we have that

`d.ŒH1; : : : ; Hd; Hı;u�/

D juTz.H1; : : : ; Hd/ � ıjd `d.ŒH1; : : : ; Hd; z.H1; : : : ; Hd/ C H1;u�/ :
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Let 	 D d.d C 1/ and M WD maxfkzkr�1 W z 2 Kg. For fixed H1; : : : ; Hd 2 Hd such
that H1 \ : : : \ Hd \ K ¤ ; and u 2 S

d�1 we can estimate the inner integral in (6)
from above by

M

1Z

�1
tdC11fjuTz.H1; : : : ; Hd/ � ıjd

`d.ŒH1; : : : ; Hd; z.H1; : : : ; Hd/ C H1;u�/ � yt�	 g dı

� 2M `d.ŒH1; : : : ; Hd; z.H1; : : : ; Hd/ C H1;u�/�1=d y1=d:

The hyperplanes H1 � z.H1; : : : ; Hd/; : : : ; Hd � z.H1; : : : ; Hd/ partition the unit
sphere S

d�1 into 2d spherical caps S1; : : : ; S2d . For each u 2 Sj (1 � j � 2d),
transformation into spherical coordinates shows that

`d.ŒH1; : : : ; Hd; z.H1; : : : ; Hd/ C H1;u�/ � cd `d�1.Sj/ ;

where cd > 0 is a dimension dependent constant and `d�1.Sj/ is the spherical
Lebesgue measure of Sj. Consequently, we have

˛t.y/ � M

.d C 1/Š

Z

Hd

1fH1 \ : : : \ Hd \ K ¤ ;g

�
2d
X

jD1

Z

Sj

�
y

cd `d�1.Sj/

�1=d

du �d.d.H1; : : : ; Hd//

� M

.d C 1/Š

Z

Hd

1fH1 \ : : : \ Hd \ K ¤ ;g

�
2d
X

jD1

`d�1.Sj/

�
y

cd `d�1.Sj/

�1=d

�d.d.H1; : : : ; Hd// :

Since the last expression is finite, we can apply the dominated convergence theorem
in (6). By the same arguments we used to obtain an upper bound for the inner
integral in (6), we see that, for H1; : : : ; Hd 2 Hd and u 2 S

d�1,

lim
t!1

1Z

�1
tdC11 fŒH1; : : : ; Hd; Hı;u� � Kg1 f`d.ŒH1; : : : ; Hd; Hı;u�/ � yt�	 g jıjr�1 dı

D 21 fH1 \ : : : \ Hd \ K ¤ ;g `d.ŒH1; : : : ; Hd; z.H1; : : : ; Hd/ C H1;u�/�1=d

� juTz.H1; : : : ; Hd/jr�1y1=d :
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Altogether, we obtain that

lim
t!1 ˛t.y/ D ˇy1=d :

By the same estimates as above, we have that, for any ` 2 f1; : : : ; dg,

t`
Z

H`

�

tdC1�`

Z

HdC1�`

1fŒH1; : : : ; HdC1� � H; Vd.ŒH1; : : : ; HdC1�/ � yt�	 g

�dC1�`
�
d.H`C1; : : : ; HdC1/

�
�2

�`
�
d.H1; : : : ; H`/

�

� t`
Z

H`

�

Mt�`

Z

Hd�`

Z

Sd�1

1fH1 \ : : : \ Hd \ K ¤ ;g y1=d

`d
�
ŒH1; : : : ; Hd; z.H1; : : : ; Hd/ C H1;u�

��1=d
du �d�`

�
d.H`C1; : : : ; Hd/

�
�2

�`
�
d.H1; : : : ; H`/

�
:

Hence, rt.y/ ! 0 as t ! 1 so that application of Corollary 1 completes the proof
of the Poisson case. The result for an underlying binomial point process follows
from similar estimates and Corollary 2. ut
Remark 5 Although Corollary 1 or Corollary 2 deliver a rate of convergence, we
cannot provide such rate for this particular example. This is due to the fact that
the exact asymptotic behavior of ˛t.y/ or ˛n.y/ depends in a delicate way on the
smoothness behavior of the boundary of K.

Corollary 4 admits a nice interpretation in the planar case d D 2. Namely, the
smallest triangle contained in K coincides with the smallest triangular cell included
in K of the line tessellation induced by �t or �n (note that this argument fails in
higher dimensions). This way, Corollary 4 also makes a statement about the area of
small triangular cells, which generalizes Corollary 2.7 in [29] from the translation-
invariant case r D 1 to arbitrary distance parameters r � 1:

Corollary 5 Denote by At or An the area of the smallest triangular cell in K of a
line tessellation generated by a Poisson line process �t or a binomial line process
�n with distance parameter r � 1, respectively. Then t6At and n6An both converge
in distribution, as t ! 1 or n ! 1, to a Weibull random variable with survival
function y 7! exp.�ˇ y1=2/, y � 0, where ˇ is as in Corollary 4.
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3.3 Flat Triangles

So-called ley lines are expected alignments of a set of locations that are of
geographical and/or historical interest, such as ancient monuments, megaliths and
natural ridge-tops [4]. For this reason, there is some interest in archaeology, for
example, to test a point pattern on spatial randomness against an alternative favoring
collinearities. We carry out this program in case of a planar Poisson or binomial
point process and follow [31, Sect. 5], where the asymptotic behavior of the number
of so-called flat triangles in a binomial point process has been investigated.

Let K be a convex body in the plane and let � be a probability measure on
K which has a continuous density ' with respect to the Lebesgue measure `2jK

restricted to K. By �t we denote a Poisson point process with intensity measure
�t WD t�, t > 0, and by �n a binomial process of n � 1 points which are independent
and identically distributed according to �. For a triple .x1; x2; x3/ of distinct points
of �t or �n we let �.x1; x2; x3/ be the largest angle of the triangle formed by x1; x2

and x3. We can now build the point processes

�t WD 1

6

X

.x1;x2;x3/2�3
t;¤

ı���.x1;x2;x3/

and

O�n WD 1

6

X

.x1;x2;x3/2�3
n;¤

ı���.x1;x2;x3/

on the positive real half-line. The interpretation is as follows: if for a triple
.x1; x2; x3/ in �3

t;¤ or �3
n;¤ the value ���.x1; x2; x3/ is small, then the triangle formed

by these points is flat in the sense that its height on the longest side is small.

Corollary 6 Define

ˇ WD
Z

K

Z

K

1Z

0

s.1 � s/ '.sx1 C .1 � s/x2/ kx1 � x2k2 ds �.dx1/ �.dx2/:

Further assume that the density ' is Lipschitz continuous. Then the rescaled point
processes t3�t and n3 O�n both converge in distribution to a homogeneous Poisson
point process on RC with intensity ˇ, as t ! 1 or n ! 1, respectively. In
addition, there is a constant Cy > 0 depending on K, ' and y such that

ˇ
ˇ
ˇ
ˇ
ˇ
P.t3M.m/

t > y/ � e�ˇy
m�1X

iD0

.ˇy/i

iŠ

ˇ
ˇ
ˇ
ˇ
ˇ

� Cy t�1
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and

ˇ
ˇ
ˇ
ˇ
ˇ
P.n3M.m/

n > y/ � e�ˇy
m�1X

iD0

.ˇy/i

iŠ

ˇ
ˇ
ˇ
ˇ
ˇ

� Cy n�1

for all t � 1, n � 3 and m 2 N.

Proof To apply Corollary 1 we have to consider the limit behavior of ˛t.y/ and rt.y/

for fixed y > 0, as t ! 1. For x1; x2 2 K and " > 0 define A.x1; x2; "/ as the set of
all x3 2 K such that � � �.x1; x2; x3/ � ". Then we have

˛t.y/ D t3

6

Z

K

Z

K

Z

K

1fx3 2 A.x1; x2; yt�	 /g '.x1/'.x2/'.x3/ dx3 dx2 dx1 :

Without loss of generality we can assume that x3 is the vertex adjacent to the largest
angle. We indicate this by writing x3 D LA.x1; x2; x3/. We parametrize x3 by its
distance h to the line through x1 and x2 and the projection of x3 onto that line, which
can be represented as sx1 C .1 � s/x2 for some s 2 Œ0; 1�. Writing x3 D x3.s; h/, we
obtain that

˛t.y/ D t3

2

Z

K

Z

K

1Z

0

1Z

�1
1fx3.s; h/ 2 A.x1; x2; yt�	 /; x3 D LA.x1; x2; x3/g

� '.x1/'.x2/'.x3.s; h//kx1 � x2k dh ds dx2 dx1 :

The sum of the angles at x1 and x2 is given by

arctan.jhj=.skx1 � x2k// C arctan.jhj=..1 � s/kx1 � x2k// :

Using, for x � 0, the elementary inequality x � x2 � arctan x � x, we deduce that

jhj
s.1 � s/kx1 � x2k � h2

s2.1 � s/2kx1 � x2k2

� arctan.jhj=.skx1 � x2k// C arctan.jhj=..1 � s/kx1 � x2k//

� jhj
s.1 � s/kx1 � x2k :

Consequently, � � �.x1; x2; x3.s; h// � yt�	 is satisfied if

jhj � s.1 � s/kx1 � x2kyt�	
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and cannot hold if

jhj � s.1 � s/kx1 � x2k.yt�	 C 2y2t�2	 /

and t is sufficiently large. Let Ay;t be the set of all x1; x2 2 K such that

Bd
tan.t�	 y=2/kx1�x2k.x1/; Bd

tan.t�	 y=2/kx1�x2k.x2/ � K :

Now the previous considerations yield that, for t sufficiently large and .x1; x2/ 2 Ay;t,

t3

2

1Z

0

1Z

�1
1fx3.s; h/ 2 A.x1; x2; yt�	 /; x3.s; h/ D LA.x1; x2; x3/g

� kx1 � x2k '.x1/'.x2/'.x3.s; h// dh ds

D t3
1Z

0

�
s.1 � s/kx1 � x2kyt�	 C R.x1; x2; s/

�kx1 � x2k

� '.x1/'.x2/'.sx1 C .1 � s/x2/ ds

C t3

2

1Z

0

1Z

�1
1fx3.s; h/ 2 A.x1; x2; yt�	 /; x3.s; h/ D LA.x1; x2; x3/gkx1 � x2k

� '.x1/'.x2/
�
'.x3.s; h// � '.sx1 C .1 � s/x2/

�
dh ds

with R.x1; x2; s/ satisfying the estimate jR.x1; x2; s/j � 2s.1�s/kx1 �x2ky2t�2	 . For
.x1; x2/ 62 Ay;t the right hand-side is an upper bound. The choice 	 D 3 leads to

j˛t.y/ � ˇyj

�
Z

K2nAy;t

1Z

0

s.1 � s/kx1 � x2k2y '.x1/'.x2/'.sx1 C .1 � s/x2/ ds d.x1; x2/

C 2t�3

Z

K2

1Z

0

s.1 � s/y2kx1 � x2k2 '.x1/'.x2/'.sx1 C .1 � s/x2/ ds d.x1; x2/

C t3

2

Z

K2

1Z

0

1Z

�1
1fx3.s; h/ 2 A.x1; x2; yt�	 /gkx1 � x2k '.x1/'.x2/

� ˇˇ'.x3.s; h// � '.sx1 C .1 � s/x2/
ˇ
ˇ dh ds d.x1; x2/ :
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Note that `2
2.K n Ay;t/ is of order t�3 so that the first integral on the right-hand side

is of the same order. By the Lipschitz continuity of the density ' there is a constant
C' > 0 such that

j'.x3.s; h// � '.sx1 C .1 � s/x2/j � C'h :

This implies that the third integral is of order t�3. Combined with the fact that also
the second integral above is of order t�3, we see that there is a constant Cy;1 > 0

such that

j˛t.y/ � ˇyj � Cy;1t�3

for t � 1.
For given x1; x2 2 K, we have that

Z

K

1fx3 2 A.x1; x2; yt�	 /g '.x3/ dx3 � M
Z

K

1fx3 2 A.x1; x2; yt�	 /g dx3

with M D supz2K '.z/. By the same arguments as above, we see that the integral
over all x3 such that the largest angle is adjacent to x3 is bounded by

M

1Z

0

s.1 � s/kx1 � x2kyt�3 C 2s.1 � s/kx1 � x2ky2t�6ds

� 2Mdiam.K/.yt�3 C 2y2t�6/ ;

where diam.K/ stands for the diameter of K. The maximal angle is at x1 or x2 if
x3 is contained in the union of two cones with opening angle 2t�3y and apices at
x1 and x2, respectively. The integral over these x3 is bounded by 2Mdiam.K/2t�3y.
Altogether, we obtain that

Z

K

1fx3 2 A.x1; x2; yt�	 /g'.x3/ dx3

� 2Mdiam.K/.yt�3 C 2y2t�6/ C 2Mdiam.K/2yt�3:

This estimate implies that, for any ` 2 f1; 2g,

t`
Z

K`

�

t3�`

Z

K3�`

1fx3 2 A.x1; x2; yt�3/g �3�`.d.K`C1; : : : ; K3//

�2

�`.d.K1; : : : ; K`//

� t6�`.M`2.K//4�`
�
2Mdiam.K/.yt�3 C 2y2t�6/ C 2Mdiam.K/2yt�3

�2
:



272 M. Schulte and C. Thäle

Since the upper bound behaves like t�` for t � 1, there is a constant Cy;2 > 0 such
that

rt.y/ � Cy;2t�1

for t � 1. Now an application of Corollary 1 concludes the proof in case of an
underlying Poisson point process. The binomial case can be handled similarly using
Corollary 2. ut
Remark 6 We have assumed that the density ' is Lipschitz continuous. If this is not
the case, one can still show that the rescaled point processes t3�t and n3 O�n converge
in distribution to a homogeneous Poisson point process on RC with intensity ˇ.
However, we are then no more able to provide a rate of convergence for the
associated order statistics M.m/

t .

Remark 7 In [31, Sect. 5] the asymptotic behavior of the number of flat triangles
in a binomial point process has been investigated, while our focus here was on
the angle statistic of such triangles. However, these two random variables are
asymptotically equivalent so that Corollary 6 also delivers an alternative approach
to the results in [31]. In addition, it allows to deal with an underlying Poisson point
process, where it provides rates of convergence in the case of a Lipschitz density.

3.4 Non-Intersecting k-Flats

Fix a space dimension d � 3 and let k � 1 be such that 2k < d. By G.d; k/ let
us denote the space of k-dimensional linear subspaces of R

d, which is equipped
with a probability measure & . In what follows we shall assume that & is absolutely
continuous with respect to the Haar probability measure on G.d; k/. The space of k-
dimensional affine subspaces of Rd is denoted by A.d; k/ and for t > 0 a translation-
invariant measure �t on A.d; k/ is defined by the relation

Z

A.d;k/

g.E/ �t.dE/ D t
Z

G.d;k/

Z

L?

g.L C x/ `d�k.dx/ &.dL/ ; (7)

where g � 0 is a measurable function on A.d; k/. We will use E and F to indicate
elements of A.d; k/, while L and M will stand for linear subspaces in G.d; k/, see [11,
formula (1)] in this book. We also put � D �1. For two fixed k-flats E; F 2 A.d; k/

we denote by d.E; F/ D inffkx1 � x2k W x1 2 E; x2 2 Fg the distance of E and
F. For almost all E and F it is realized by two uniquely determined points xE 2 E
and xF 2 F, i.e. d.E; F/ D kxE � xFk, and we let m.E; F/ WD .xE C xF/=2 be the
midpoint of the line segment joining xE with xF .

Let K � R
d be a convex body and let �t be a Poisson point process on A.d; k/

with intensity measure �t as defined in (7). We will speak about �t as a Poisson k-flat
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process and denote, more generally, the elements of A.d; k/ or G.d; k/ as k-flats. We
will not treat the binomial case in what follows since the measures �t are not finite.
We notice that in view of [27, Theorem 4.4.5 (c)] any two k-flats of �t are almost
surely in general position, a fact which from now on will be used without further
comment.

Point processes of k-dimensional flats in R
d have a long tradition in stochastic

geometry and we refer to [6] or [27] as well as to [11] for general background
material. Moreover, we mention the works [10, 26], which deal with distance
measurements and the so-called proximity of Poisson k-flat processes and are close
to what we consider here. While in these papers only mean values are considered,
we are interested in the point process �t on RC defined by

�t WD 1

2

X

.E;F/2�2
t;¤

ıd.E;F/a 1fm.E; F/ 2 Kg

for a fixed parameter a > 0. A particular case arises when a D 1. Then M.1/
t ,

for example, is the smallest distance between two k-flats from �t that have their
midpoint in K.

Corollary 7 Define

ˇ D `d.K/

2
�d�2k

Z

G.d;k/

Z

G.d;k/

ŒL; M� &.dL/&.dM/ ;

where ŒL; M� is the 2k-dimensional volume of a parallelepiped spanned by two
orthonormal bases in L and M. Then, as t ! 1, t2a=.d�2k/�t converges in
distribution to a Poisson point process on RC with intensity measure

B 7! .d � 2k/
ˇ

a

Z

B

u.d�2k�a/=a du ; B � RC Borel :

Moreover, there is a constant C > 0 depending on K, & and a such that

ˇ
ˇ
ˇ
ˇ
ˇ
P.t2a=.d�2k/M.m/

t > y/ � exp
��ˇy.d�2k/=a

� m�1X

iD1

�
ˇy.d�2k/=a

�i

iŠ

ˇ
ˇ
ˇ
ˇ
ˇ

� C .y2.d�2k/=a C yd�kC2.d�2k/=a/ t�1

for any t � 1, y � 0 and m 2 N.
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Proof For y > 0 and t > 0 we have that

˛t.y/ D t2

2

Z

A.d;k/

Z

A.d;k/

1fd.E; F/ � y1=at�	=a; m.E; F/ 2 Kg �.dE/�.dF/ :

We abbreviate ı WD y1=at�	=a and evaluate the integral

I WD
Z

A.d;k/

Z

A.d;k/

1fd.E; F/ � ı; m.E; F/ 2 Kg �.dE/�.dF/ :

For this, we define V WD E C F and U WD V? and write E and F as E D L C x1

and F D M C x2 with L; M 2 G.d; k/ and x1 2 L?, x2 2 M?. Applying now
the definition (7) of the measure � and arguing along the lines of the proof of
Theorem 4.4.10 in [27], we arrive at the expression

I D
Z

G.d;k/

Z

G.d;k/

Z

U

Z

U

ŒL; M� `2k

�

K \
�

V C
�

x1 C x2

2

���

� 1fkx1 � x2k � ıg `d�2k.dx1/`d�2k.dx2/&.dL/&.dM/ :

Substituting u D x1 � x2, v D .x1 C x2/=2 (a transformation having Jacobian equal
to 1), we find that

I D
Z

G.d;k/

Z

G.d;k/

Z

U

Z

U

ŒL; M� `2k
�
K \ .V C v/

�
1fkuk � ıg

`d�2k.du/`d�2k.dv/&.dL/&.dM/ :

(8)

Since U has dimension d � 2k, transformation into spherical coordinates in U gives

Z

U

1.kuk � ı/ du D .d � 2k/�d�2k

ıZ

0

rd�2k�1 dr D �d�2kı
d�2k :

Moreover,

Z

U

`2k
�
K \ .V C v/

�
`d�2k.dv/ D `d.K/
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since V D U?. Combining these facts with (8) we find that

I D ıd�2k `d.K/ �d�2k

Z

G.d;k/

Z

G.d;k/

ŒL; M� &.dL/&.dM/

and that

˛t.y/ D 1

2
`d.K/ �d�2k y.d�2k/=a t2�	.d�2k/=a

Z

G.d;k/

Z

G.d;k/

ŒL; M� &.dL/&.dM/ :

Consequently, choosing 	 D 2a=.d � 2k/ we have that

˛t.y/ D ˇy.d�2k/=a :

For the remainder term rt.y/ we write

rt.y/ D t
Z

A.d;k/

�

t
Z

A.d;k/

1fd.E; F/a � yt�	 ; m.E; F/ 2 Kg �.dF/

�2

�.dE/ :

This can be estimated along the lines of the proof of Theorem 3 in [30]. Namely,
using that Œ � ; � � � 1 and writing diam.K/ for the diameter of K, we find that

rt.y/ � t�d�k.diam.K/ C 2t�	 y/d�k
Z

G.d;k/

�

t
Z

G.d;k/

Z

.LCM/?

1fkxka � yt�	g

��k.diam.K/=2/k `d�2k.dx/&.dM/

�2

&.dL/

� t�d�k.diam.K/ C 2t�	 y/d�k
�
t�d�2k.yt�	 /.d�2k/=a�k.diam.K/=2/k

�2

D �d�k.diam.K/ C 2t�2a=.d�2k/y/d�k�2
d�2k�

2
k .diam.K/=2/2k y2.d�2k/=a t�1 ;

where we have used that 	 D 2a=.d � 2k/. This puts us in the position to apply
Corollary 1, which completes the proof. ut
Remark 8 A particularly interesting case arises when the distribution & coincides
with the Haar probability measure on G.d; k/. Then the double integral in the
definition of ˇ in Corollary 7 can be evaluated explicitly, namely we have

Z

G.d;k/

Z

G.d;k/

ŒL; M� &.dL/&.dM/ D
�d�k

k

�
�2

d�k�d
k

�
�d�d�2k

according to [13, Lemma 4.4].
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Remark 9 Corollary 7 generalizes Theorem 4 in [30] (where the case a D 1 has
been investigated) to general length-powers a > 0. However, it should be noticed
that the set-up in [30] slightly differs from the one here. In [30] the intensity
parameter t was kept fixed, whereas the set K was increased by dilations. But
because of the scaling properties of a Poisson k-flat process and the a-homogeneity
of d.E; F/a, one can translate one result into the other. Moreover, we refer to [14]
for closely related results including directional constraints.

Remark 10 In [29] a similar problem has been addressed in the case where &

coincides with the Haar probability measure on G.d; k/. For a pair .E; F/ 2 �2
t;¤

satisfying E\K ¤ ; and F\K ¤ ;, the distance between E and F was measured by

dK.E; F/ D inffkx1 � x2k W x1 2 E \ K; x2 2 F \ Kg;

and it has been shown in Theorem 2.1 ibidem that the associated point process

�t WD 1

2

X

.E;F/2�2
t;¤

ıdK .E;F/ 1fE \ K ¤ ;; F \ K ¤ ;g

converges, after rescaling with t2=.d�2k/, towards the same Poisson point process as
in Corollary 7 when & is the Haar probability measure on G.d; k/ and a D 1.

4 Proofs of the Main Results

4.1 Moment Formulas for Poisson U-Statistics

We call a Poisson functional S of the form

S D
X

.x1;:::;xk/2�k
t;¤

f .x1; : : : ; xk/

with k 2 N0 WD N[f0g and f W Xk ! R a U-statistic of order k of �t, or a Poisson U-
statistic for short (see [17]). For k D 0 we use the convention that f is a constant and
S D f . In the following, we always assume that f is integrable. Moreover, without
loss of generality we assume that f is symmetric since we sum over all permutations
of a fixed k-tuple of points in the definition of S.

In order to compute mixed moments of Poisson U-statistics, we use the following
notation. For ` 2 N and n1; : : : ; n` 2 N0 we define N0 D 0, Ni D Pi

jD1 nj; i 2
f1; : : : ; `g, and

Ji D
(

fNi�1 C 1; : : : ; Nig; Ni�1 < Ni

;; Ni�1 D Ni

; i 2 f1; : : : ; `g:
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Let ˘.n1; : : : ; n`/ be the set of all partitions � of f1; : : : ; N`g such that for any
i 2 f1; : : : ; `g all elements of Ji are in different blocks of � . By j� j we denote
the number of blocks of � . We say that two blocks B1 and B2 of a partition � 2
˘.n1; : : : ; n`/ intersect if there is an i 2 f1; : : : ; `g such that B1 \ Ji ¤ ; and
B2 \ Ji ¤ ;. A partition � 2 ˘.n1; : : : ; n`/ with blocks B1; : : : ; Bj� j belongs to
Q̆ .n1; : : : ; n`/ if there are no nonempty sets M1; M2 � f1; : : : ; j� jg with M1 \M2 D

; and M1 [ M2 D f1; : : : ; j� jg such that for any i 2 M1 and j 2 M2 the blocks Bi

and Bj do not intersect. Moreover, we define

˘¤.n1; : : : ; n`/ D f� 2 ˘.n1; : : : ; n`/ W j� j > minfn1; : : : ; n`gg:
If there are i; j 2 f1; : : : ; `g with ni ¤ nj, we have ˘¤.n1; : : : ; n`/ D ˘.n1; : : : ; n`/.

For � 2 ˘.n1; : : : ; n`/ and f W XN` ! R we define f� W Xj� j ! R as the function
which arises by replacing in the arguments of f all variables belonging to the same
block of � by a new common variable. Since we are only interested in the integral
of this new function in the sequel, the order of the new variables does not matter.
For f .i/ W Xni ! R, i 2 f1; : : : ; `g, let ˝`

iD1f .i/ W XN` ! R be given by

�˝`
iD1 f .i/

�
.x1; : : : ; xN`

/ D
Ỳ

iD1

f .i/.xNi�1C1; : : : ; xNi/ :

The following lemma allows us to compute moments of Poisson U-statistics (see
also [23]. Here and in what follows we mean by a Poisson functional F D F.�t/

a random variable only depending on the Poisson point process �t for some fixed
t > 0.

Lemma 1 For ` 2 N and f .i/ 2 L1
s .�

ki
t / with ki 2 N0, i D 1; : : : ; `, such that

Z

Xj�j

j�˝`
iD1 f .i/

�
�
j d�

j� j
t < 1 for all � 2 ˘.k1; : : : ; k`/ ;

let

Si D
X

.x1;:::;xki /2�
ki
t;¤

f .i/.x1; : : : ; xki/; i D 1; : : : ; ` ;

and let F be a bounded Poisson functional. Then

E

h
F
Ỳ

iD1

Si

i
D

X

�2˘.k1;:::;k`/

Z

Xj�j

�˝`
iD1 f .i/

�
�
.x1; : : : ; xj� j/

� E

2

4F

0

@�t C
j� jX

iD1

ıxi

1

A

3

5 �
j� j
t .d.x1; : : : ; xj� j// :
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Proof We can rewrite the product as

F.�t/
Ỳ

iD1

X

.x1;:::;xki /2�
ki
t;¤

f .i/.x1; : : : ; xki/

D
X

�2˘.k1;:::;k`/

X

.x1;:::;xj�j/2�
j�j

t;¤

�˝`
iD1 f .i/

�
�
.x1; : : : ; xj� j/F.�t/

since points occurring in different sums on the left-hand side can be either equal or
distinct. Now an application of the multivariate Mecke formula (see [18, formula
(1.11)]) completes the proof of the lemma. ut

4.2 Poisson Approximation of Poisson U-Statistics

The key argument of the proof of Theorem 1 is a quantitative bound for the Poisson
approximation of Poisson U-statistics which is established in this subsection. From
now on we consider the Poisson U-statistic

SA D 1

kŠ

X

.x1;:::;xk/2�k
t;¤

1f f .x1; : : : ; xk/ 2 Ag ;

where f is as in Sect. 2 and A � R is measurable and bounded. We assume that
k � 2 since SA follows a Poisson distribution for k D 1 (see Sect. 2.3 in [16], for
example). In the sequel, we use the abbreviation

h.x1; : : : ; xk/ WD 1

kŠ
1f f .x1; : : : ; xk/ 2 Ag; x1; : : : ; xk 2 X :

It follows from the multivariate Mecke formula (see [18, formula (1.11)]) that

sA WD EŒSA� D
Z

Xk

h.x1; : : : ; xk/ �k
t .d.x1; : : : ; xk// :

In order to compare the distributions of two integer-valued random variables Y and
Z, we use the so-called total variation distance dTV defined by

dTV.Y; Z/ D sup
B�Z

ˇ
ˇP.Y 2 B/ � P.Z 2 B/

ˇ
ˇ :
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Proposition 1 Let SA be as above, let Y be a Poisson distributed random variable
with mean s > 0 and define

%A WD max
1�`�k�1

Z

X`

� Z

Xk�`

h.x1; : : : ; xk/ �k�`
t

�
d.x`C1; : : : ; xk/

�
�2

�`
t

�
d.x1; : : : ; x`/

�
:

Then there is a constant C � 1 only depending on k such that

dTV.SA; Y/ � jsA � sj C C min

	

1;
1

sA




%A : (9)

Remark 11 The inequality (9) still holds if Y is almost surely zero (such a Y can be
interpreted as a Poisson distributed random variable with mean s D 0). In this case,
we obtain by Markov’s inequality that

dTV.SA; Y/ D P.SA � 1/ � ESA D sA:

Our proof of Proposition 1 is a modification of the proof of Theorem 3.1 in [21].
It makes use of the special structure of SA and improves of the bound in [21] in case
of Poisson U-statistics. To prepare for what follows, we need to introduce some
facts around the Chen–Stein method for Poisson approximation (compare with [3]).
For a function f W N0 ! R let us define �f .k/ WD f .k C 1/ � f .k/, k 2 N0, and
�2f .k/ WD f .k C 2/ � 2f .k C 1/ C f .k/, k 2 N0. For B � N0 let fB be the solution
of the Chen–Stein equation

1fk 2 Bg � P.Y 2 B/ D sf .k C 1/ � kf .k/; k 2 N0 : (10)

It is known (see Lemma 1.1.1 in [2]) that fB satisfies

k fBk1 � 1 and k�fBk1 � min

	

1;
1

s




DW "1 ; (11)

where k � k1 is the usual supremum norm.
Besides the Chen–Stein method we need some facts concerning the Malliavin

calculus of variations on the Poisson space (see [18]). First, the so-called integration
by parts formula implies that

EŒ fB.SA/.SA � EŒSA�/� D E

Z

X

Dx fB.SA/.�DxL�1SA/ �t.dx/ ; (12)

where D stands for the difference operator and L�1 is the inverse of the Ornstein–
Uhlenbeck generator (this step requires that E

R
X
.DxSA/2 �t.dx/ < 1, which is a

consequence of the calculations in the proof of Proposition 1). The following lemma
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(see Lemma 3.3 in [24]) implies that the difference operator applied to a Poisson U-
statistic leads again to a Poisson U-statistic.

Lemma 2 Let k 2 N, f 2 L1
s .�k

t / and

S D
X

.x1;:::;xk/2�k
t;¤

f .x1; : : : ; xk/ :

Then

DxS D k
X

.x1;:::;xk�1/2�k�1
t;¤

f .x; x1; : : : ; xk�1/ ; x 2 X :

Proof It follows from the definition of the difference operator and the assumption
that f is a symmetric function that

DxS D
X

.x1;:::;xk/2.�tCıx/k
¤

f .x1; : : : ; xk/ �
X

.x1;:::;xk/2�k
t;¤

f .x1; : : : ; xk/

D
X

.x1;:::;xk�1/2�k�1
t;¤

�
f .x; x1; : : : ; xk�1/ C � � � C f .x1; : : : ; xk�1; x/

�

D k
X

.x1;:::;xk�1/2�k�1
t;¤

f .x; x1; : : : ; xk�1/

for x 2 X. This completes the proof. ut
In order to derive an explicit formula for the combination of the difference

operator and the inverse of the Ornstein–Uhlenbeck generator of SA, we define
h` W X` ! R, ` 2 f1; : : : ; kg, by

h`.x1; : : : ; x`/ WD
Z

Xk�`

h.x1; : : : ; x`; Ox1; : : : ; Oxk�`/ �k�`
t .d.Ox1; : : : ; Oxk�`// :

We shall see now that the operator �DL�1 applied to SA can be expressed as a sum
of Poisson U-statistics (see also Lemma 5.1 in [28]).

Lemma 3 For x 2 X,

�DxL�1SA D
kX

`D1

X

.x1;:::;x`�1/2�`�1
t;¤

h`.x; x1; : : : ; x`�1/ :
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Proof By Mehler’s formula (see Theorem 3.2 in [20] and also [18, Sect. 1.7]) we
have

�L�1SA D
1Z

0

Z
1

s
E

2

6
4

X

.x1;:::;xk/2.�
.s/
t C/k

¤

h.x1; : : : ; xk/ � sA

ˇ
ˇ�t

3

7
5P.1�s/�t.d/ ds

where �
.s/
t , s 2 Œ0; 1�, is an s-thinning of �t and P.1�s/�t is the distribution of a

Poisson point process with intensity measure .1�s/�t. Note in particular that �
.s/
t C

is a Poisson point process with intensity measure s�t C .1 � s/�t D �t. The last
expression can be rewritten as

�L�1SA D
1Z

0

Z
1

s
E
� X

.Ox1;:::;Oxk/2k
¤

h.Ox1; : : : ; Oxk/ � sA

ˇ
ˇ�t
�
P.1�s/�t.d/ ds

C
kX

`D1

 
k

`

! 1Z

0

Z
1

s
E
� X

.x1;:::;x`/2.�
.s/
t /`

¤

X

.Ox1;:::;Oxk�`/2k�`
¤

h.x1; : : : ; x`; Ox1; : : : ; Oxk�`/
ˇ
ˇ�t
�
P.1�s/�t.d/ ds :

By the multivariate Mecke formula (see [18, formula (1.11)]), we obtain for the first
term that

1Z

0

Z
1

s
E

2

6
4

X

.Ox1;:::;Oxk/2k
¤

h.Ox1; : : : ; Oxk/ � sA

ˇ
ˇ�t

3

7
5 P.1�s/�t .d/ ds

D
1Z

0

Z
1

s

� X

.Ox1;:::;Oxk/2k
¤

h.Ox1; : : : ; Oxk/ � sA

�

P.1�s/�t .d/ ds D
1Z

0

.1 � s/k � 1

s
ds sA :

To evaluate the second term further, we notice that for an `-tuple .x1; : : : ; x`/ 2 �`
t;¤

the probability of surviving the s-thinning procedure is s`. Thus

E

2

6
4

X

.x1;:::;x`/2.�
.s/
t /`

¤

X

.Ox1;:::;Oxk�`/2k�`
¤

h.x1; : : : ; x`; Ox1; : : : ; Oxk�`/
ˇ
ˇ�t

3

7
5

D s`
X

.x1;:::;x`/2�`
t;¤

X

.Ox1;:::;Oxk�`/2k�`
¤

h.x1; : : : ; x`; Ox1; : : : ; Oxk�`/
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for ` 2 f1; : : : ; kg. This leads to

�L�1SA D
1Z

0

.1 � s/k � 1

s
ds sA

C
kX

`D1

 
k

`

! 1Z

0

Z
s`�1

X

.x1;:::;x`/2�`
t;¤

X

.Ox1;:::;Oxk�`/2k�`
¤

h.x1; : : : ; x`; Ox1; : : : ; Oxk�`/

P.1�s/�t.d/ ds :

Finally, we may interpret  as .1�s/-thinning of an independent copy of �t, in which
each point has survival probability .1 � s/. Then the multivariate Mecke formula
([18, formula (1.11)]) implies that

�L�1SA D
1Z

0

.1 � s/k � 1

s
ds sA

C
kX

`D1

 
k

`

! 1Z

0

s`�1.1 � s/k�` ds
X

.x1;:::;x`/2�`
t;¤

h`.x1; : : : ; x`/ :

Together with

1Z

0

s`�1.1 � s/k�` ds D .` � 1/Š.k � `/Š

kŠ
; ` 2 f1; : : : ; kg;

we see that

�L�1SA D sA

1Z

0

.1 � s/k � 1

s
ds C

kX

`D1

1

`

X

.x1;:::;x`/2�`
t;¤

h`.x1; : : : ; x`/ :

Applying now the difference operator to the last equation, we see that the first term
does not contribute, whereas the second term can be handled by using Lemma 2.

ut
Now we are prepared for the proof of Proposition 1.

Proof (of Proposition 1) Let YA be a Poisson distributed random variable with mean
sA > 0. The triangle inequality for the total variation distance implies that

dTV.SA; Y/ � dTV.Y; YA/ C dTV.YA; SA/ :
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A standard calculation shows that

dTV.Y; YA/ � js � sAj

so that it remains to bound

dTV.YA; SA/ D sup
B�N0

jP.SA 2 B/ � P.YA 2 B/j :

For a fixed B � N0 it follows from (10) and (12) that

P.SA 2 B/ � P.YA 2 B/ D E ŒsA�fB.SA/ � .SA � sA/fB.SA/�

D E

2

4sA�fB.SA/ �
Z

X

Dx fB.SA/.�DxL�1SA/ �t.dx/

3

5 :

(13)

Now a straightforward computation using a discrete Taylor-type expansion as in
[21] shows that

Dx fB.SA/ D fB.SA C DxSA/ � fB.SA/

D
DxSAX

kD1

�
fB.SA C k/ � fB.SA C k � 1/

�

D
DxSAX

kD1

�fB.SA C k � 1/

D �fB.SA/DxSA C
DxSAX

kD2

�
�fB.SA C k � 1/ � �fB.SA/

�
:

Together with (11), we obtain that

ˇ
ˇ
ˇ
ˇ

DxSAX

kD2

�
�fB.SA C k � 1/ � �fB.SA/

�
ˇ
ˇ
ˇ
ˇ � 2k�fBk1 maxf0; DxSA � 1g

� 2"1;A maxf0; DxSA � 1g

with

"1;A WD min
n
1;

1

sA

o
:
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Hence, we have

Dx fB.SA/ D �fB.SA/DxSA C Rx;

where the remainder term satisfies jRxj � 2"1;A maxf0; DxSA�1g. Together with (13)
and �DxL�1SA � 0, which follows from Lemma 3, we obtain that

jP.SA 2 B/ � P.YA 2 B/j

�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
E

2

4sA�fB.SA/ � �fB.SA/

Z

X

DxSA.�DxL�1SA/ �t.dx/

3

5

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

C 2"1;A

Z

X

EŒmaxf0; DxSA � 1g.�DxL
�1SA/� �t.dx/ :

(14)

It follows from Lemmas 2 and 3 that

E

2

4�fB.SA/

Z

X

DxSA.�DxL�1SA/ �t.dx/

3

5

D E

2

6
4�fB.SA.�t//

Z

X

0

B
@k

X

.x1;:::;xk�1/2�k�1
t;¤

h.x; x1; : : : ; xk�1/

1

C
A

�

0

B
@

kX

`D1

X

.x1;:::;x`�1/2�`�1
t;¤

h`.x; x1; : : : ; x`�1/

1

C
A �t.dx/

3

7
5 :

Consequently, we can deduce from Lemma 1 that

E

2

4�fB.SA/

Z

X

DxSA.�DxL�1SA/ �t.dx/

3

5

D k
kX

`D1

X

�2˘.k�1;`�1/

Z

Xj�jC1

E

2

4�fB

0

@SA

0

@�t C
j� jX

iD1

ıxi

1

A

1

A

3

5

.h.x; �/ ˝ h`.x; �//� .x1; : : : ; xj� j/ �
j� jC1
t .d.x; x1; : : : ; xj� j// :
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For the particular choice ` D k and j� j D k � 1 we have

Z

Xj�jC1

E

2

4�fB

0

@SA

0

@�t C
j�jX

iD1

ıxi

1

A

1

A

3

5
�
h.x; �/ ˝ h`.x; �/�

�
.x1; : : : ; xj�j/

�j�jC1
t .d.x; x1; : : : ; xj�j//

D 1

kŠ

Z

Xk

E

"

�fB

 

SA

 

�t C
k�1X

iD1

ıxi

!!#

h.x1; : : : ; xk/ �k
t .d.x1; : : : ; xk//

D 1

kŠ

Z

Xk

E

"

�fB

 

SA

 

�t C
k�1X

iD1

ıxi

!!

� �fB.SA.�t//

#

h.x1; : : : ; xk/ �k
t .d.x1; : : : ; xk//

C 1

kŠ

Z

Xk

E Œ�fB.SA.�t//� h.x1; : : : ; xk/ �k
t .d.x1; : : : ; xk//

D 1

kŠ

Z

Xk

E

"

�fB

 

SA

 

�t C
k�1X

iD1

ıxi

!!

� �fB.SA.�t//

#

h.x1; : : : ; xk/ �k
t .d.x1; : : : ; xk//

C 1

kŠ
E
�
�fB.SA/�sA :

Since there are .k � 1/Š partitions � 2 ˘.k � 1; k � 1/ with j� j D k � 1, we obtain
that

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
E

2

4sA�fB.SA/ � �fB.SA/

Z

X

DxSA.�DxL�1SA/ �t.dx/

3

5

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� k
kX

`D1

X

�2˘¤.k�1;`�1/

Z

Xj�jC1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
E

2

4�fB

0

@SA

0

@�t C
j� jX

iD1

ıxi

1

A

1

A

3

5

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

.h.x; �/ ˝ h`.x; �//� .x1; : : : ; xj� j/ �
j� jC1
t .d.x; x1; : : : ; xj� j//

C
Z

Xk

ˇ
ˇ
ˇ
ˇ
ˇ
E

"

�fB

 

SA

 

�t C
k�1X

iD1

ıxi

!!

� �fB.SA.�t//

#ˇˇ
ˇ
ˇ
ˇ

h.x1; : : : ; xk/ �k
t .d.x1; : : : ; xk// :
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Now (11) and the definition of %A imply that, for ` 2 f1; : : : ; kg,

X

�2˘¤.k�1;`�1/

Z

Xj�jC1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
E

2

4�fB

0

@SA

0

@�t C
j� jX

iD1

ıxi

1

A

1

A

3

5

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�
h.x; �/ ˝ h`.x; �/�

�
.x1; : : : ; xj� j/ �

j� jC1
t .d.x; x1; : : : ; xj� j//

� "1;A j˘¤.k � 1; ` � 1/j%A :

Hence, the first summand above is bounded by

k"1;A

kX

`D1

j˘¤.k � 1; ` � 1/j%A :

By (11) we see that

ˇ
ˇ
ˇ
ˇ
ˇ
E

"

�fB

 

SA

 

�t C
k�1X

iD1

ıxi

!!

� �fB.SA.�t//

#ˇˇ
ˇ
ˇ
ˇ

� 2"1;AE

"

SA

 

�t C
k�1X

iD1

ıxi

!

� SA.�t/

#

;

and the multivariate Mecke formula for Poisson point processes (see [18, formula
(1.11)]) leads to

E

" 

SA

�
�t C

k�1X

iD1

ıxi

�
!

� SA.�t/

#

D
X

;¤I�f1;:::;k�1g

kŠ

.k � jIj/Š E
X

.y1;:::;yk�jIj/2�
k�jIj
t;¤

h.xI; y1; : : : ; yk�jIj/

D
X

;¤I�f1;:::;k�1g

kŠ

.k � jIj/Š hjIj.xI/ ;

where for a subset I D fi1; : : : ; ijg � f1; : : : ; k � 1g we use the shorthand notation
xI for .xi1 ; : : : ; xij/. Hence,

Z

Xk

ˇ
ˇ
ˇ
ˇ
ˇ
E

"

�fB

 

SA

 

�t C
k�1X

iD1

ıxi

!!

� �fB.SA.�t//

#ˇˇ
ˇ
ˇ
ˇ

h.x1; : : : ; xk/ �k
t .d.x1; : : : ; xk//
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� 2"1;A

Z

Xk

X

;¤I�f1;:::;k�1g
hjIj.xI/

kŠ

.k � jIj/Š h.x1; : : : ; xk/ �k
t .d.x1; : : : ; xk//

� 2"1;A kŠ.2k�1 � 1/%A :

This implies that

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
E

2

4sA�fB.SA/ � �fB.SA/

Z

X

DxSA.�DxL�1SA/ �t.dx/

3

5

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� "1;A

�

k
kX

`D1

j˘¤.k � 1; ` � 1/j C 2kŠ.2k�1 � 1/

�

%A DW C1 "1;A%A :

(15)

For the second term in (14) we have

2

Z

X

E
�

maxf0; DxSA � 1g.�DxL
�1SA/

�
�t.dx/

� 2

k

Z

X

E
�

maxf0; DxSA � 1gDxSA
�

�t.dx/

C 2

Z

X

E
�

maxf0; DxSA � 1g jDxL�1SA C DxSA=kj��t.dx/

� 2

k

Z

X

E
�
.DxSA � 1/DxSA

�
�t.dx/

C 2

Z

X

E

hp
DxSA.DxSA � 1/ jDxL�1SA C DxSA=kj

i
�t.dx/

� 3

Z

X

E
�
.DxSA � 1/DxSA

�
�t.dx/ C

Z

X

E
�jDxL�1SA C DxSA=kj2��t.dx/ :

It follows from Lemmas 2 and 1 that
Z

X

E
�
.DxSA � 1/DxSA

�
�t.dx/

D
Z

X

k2
X

�2˘.k�1;k�1/

Z

Xj�j

.h.x; �/ ˝ h.x; �//� d�
j� j
t �t.dx/ � k

Z

Xk

h d�k
t :
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Since there are .k � 1/Š partitions with j� j D k � 1 and for each of them

.h.x; �/ ˝ h.x; �//�.x1; : : : ; xj� j/ D 1

kŠ
h.x; x1; : : : ; xj� j/ ;

this leads to
Z

X

E
�
.DxSA � 1/DxSA

�
�t.dx/

D k2
X

�2˘¤.k�1;k�1/

Z

X

Z

Xj�j

.h.x; �/ ˝ h.x; �//� d�
j� j
t �t.dx/

� k2j˘¤.k � 1; k � 1/j%A :

Lemmas 2 and 3 imply that

DxL�1SA C DxSA=k D �
k�1X

`D1

X

.x1;:::;x`�1/2�`�1
t;¤

h`.x; x1; : : : ; x`�1/

so that Lemma 1 yields

Z

X

E
�jDxL

�1SA C DxSA=kj2��t.dx/

D
Z

X

k�1X

i;jD1

X

�2˘.i�1;j�1/

Z

Xj�j

.hi.x; �/ ˝ hj.x; �//� d�
j� j
t �t.dx/

�
k�1X

i;jD1

j˘.i � 1; j � 1/j%A :

From the previous estimates, we can deduce that

2"1;A

Z

X

E
�

maxf0; DxSA � 1g.�DxL
�1SA/

�
�t.dx/

� "1

�

3k2j˘¤.k � 1; k � 1/j C
k�1X

i;jD1

j˘.i � 1; j � 1/j
�

%A DW C2 "1;A%A :

(16)
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Combining (14) with (15) and (16) shows that

dTV.SA; Y/ � jsA � sj C .C1 C C2/"1;A%A ;

which concludes the proof. ut
Remark 12 As already discussed in the introduction, the proof of Proposition 1—
the main tool for the proof of Theorem 1—is different from that given in [29].
One of the differences is Lemma 3, which provides an explicit representation for
�DxL�1SA based on Mehler’s formula. We took considerable advantage of this in the
proof of Proposition 1 and remark that the proof of the corresponding result in [29]
uses the chaotic decomposition of U-statistics and the product formula for multiple
stochastic integrals (see [18]). Another difference is that our proof here does not
make use of the estimates established by the Malliavin–Chen–Stein method in [21].
Instead, we directly manipulate the Chen–Stein equation for Poisson approximation
and this way improve the rate of convergence compared to [29] . A different method
to show Theorems 1 and 2 is the content of the recent paper [7].

4.3 Poisson Approximation of Classical U-Statistics

In this section we consider U-statistics based on a binomial point process �n

defined as

SA D 1

kŠ

X

.x1;:::;xk/2�k
n;¤

1f f .x1; : : : ; xk/ 2 Ag ;

where f is as in Sect. 2 and A � R is bounded and measurable. Recall that in the
context of a binomial point process �n we assume that �.X/ D 1. Denote as in the
previous section by sA WD EŒSA� the expectation of SA. Notice that

sA D .n/k

Z

Xk

h.x1; : : : ; xk/ �k.d.x1; : : : ; xk// (17)

with h.x1 : : : ; xk/ D .kŠ/�11f f .x1; : : : ; xk/ 2 Ag.

Proposition 2 Let SA be as above and let Y be a Poisson distributed random
variable with mean s > 0 and define

%A WD max
1�`�k�1

.n/2k�`

Z

X`

� Z

Xk�`

h.x1; : : : ; xk/ �k�`.d.x`C1; : : : ; xk//

�2

�`
�
d.x1; : : : ; x`/

�
:
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Then there is a constant C � 1 only depending on k such that

dTV.SA; Y/ � jsA � sj C C min
n
1;

1

sA

o�
%A C s2

A

n

�
:

Proof By the same arguments as at the beginning of the proof of Proposition 1 it
is sufficient to assume that s D sA in what follows. To simplify the presentation we
put N WD fI � f1; : : : ; ng W jIj D kg and rewrite SA as

SA D
X

I2N

1f f .XI/ 2 Ag ;

where X1; : : : ; Xn are i.i.d. random elements in X with distribution � and where XI

is shorthand for .Xi1 ; : : : ; Xik / if I D fi1; : : : ; ikg. In this situation it follows from
Theorem 2 in [1] that

dTV.S; Y/ � min

	

1;
1

sA


X

I2N

0

B
@P. f .XI/ 2 A/2 C

k�1X

rD1

X

J2N
jI\JjDr

P. f .XI/ 2 A/P. f .XJ/ 2 A/

1

C
A

C min

	

1;
1

sA


X

I2N

k�1X

rD1

X

J2N
jI\JjDr

P. f .XI/ 2 A; f .XJ/ 2 A/ :

Since sA D EŒSA� D .n/k
kŠ
P. f .X1; : : : ; Xk/ 2 A/, we have that

X

I2N

0

B
@P. f .XI/ 2 A/2 C

k�1X

rD1

X

J2N
jI\JjDr

P. f .XI/ 2 A/P. f .XJ/ 2 A/

1

C
A

D .n/k

kŠ

0

B
@

�
kŠ

.n/k
sA

�2

C
k�1X

rD1

X

J2N
jI\JjDr

�
kŠ

.n/k
sA

�2

1

C
A

D kŠ

.n/k
s2

A

 

1 C
k�1X

rD1

 
k

r

! 
n � k

k � r

!!

� kŠ

.n/k
s2

A 2k.n � 1/k�1

� 2kkŠs2
A

n
:
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For the second term we find that

X

I2N

k�1X

rD1

X

J2N
jI\JjDr

P. f .XI/ 2 A; f .XJ/ 2 A/

D .n/k

kŠ

k�1X

rD1

 
k

r

! 
n � k

k � r

!

P. f .X1; : : : ; Xk/ 2 A; f .X1; : : : ; Xr; XkC1; : : : ; X2k�r/ 2 A/

� .n/k

kŠ

k�1X

rD1

 
k

r

! 
n � k

k � r

!
.kŠ/2

.n/2k�r
%A

� 2kkŠ %A :

Putting C WD 2kkŠ proves the claim. ut

4.4 Proofs of Theorems 1 and 2 and Corollaries 1 and 2

Proof (of Theorem 1) We define the set classes

I D fI D .a; b� W a; b 2 R; a < bg

and

V D fV D
n[

iD1

Ii W n 2 N; Ii 2 I; i D 1; : : : ; ng:

From [15, Theorem 16.29] it follows that .t	 �t/t>0 converges in distribution to a
Poisson point process � with intensity measure 
 if

lim
t!1P.�t.t

�	 V/ D 0/ D P.�.V/ D 0/ D exp.�
.V//; V 2 V ; (18)

and

lim
t!1P.�t.t

�	 I/ > 1/ D P.�.I/ > 1/ D 1�.1C
.I// exp.�
.I//; I 2 I : (19)

Note that I � V and that every set V 2 V can be represented in the form

V D
n[

iD1

.ai; bi� with a1 < b1 < � � � < an < bn and n 2 N :
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For V 2 V we define the Poisson U-statistic

SV;t D 1

kŠ

X

.x1;:::;xk/2�k
t;¤

1f f .x1; : : : ; xk/ 2 t�	 Vg ;

which has expectation

EŒSV;t� D 1

kŠ
E

X

.x1;:::;xk/2�k
t;¤

1f f .x1; : : : ; xk/ 2 t�	 Vg

D
nX

iD1

1

kŠ
E

X

.x1;:::;xk/2�k
t;¤

1f f .x1; : : : ; xk/ 2 t�	 .ai; bi�g D
nX

iD1

˛t.ai; bi/:

Since �.V/ is Poisson distributed with mean 
.V/ D Pn
iD1 
..ai; bi�/, it follows

from Proposition 1 that

dTV.SV;t; �.V// �
ˇ
ˇ
ˇ
ˇ

nX

iD1

˛t.ai; bi/ �
nX

iD1


..ai; bi�/

ˇ
ˇ
ˇ
ˇC C rt.ymax/

with ymax WD maxfja1j; jbnjg and C � 1. Now, assumptions (2) and (3) yield that

lim
t!1 dTV.SV;t; �.V// D 0 :

Consequently, the conditions (18) and (19) are satisfied so that .t	 �t/t>0 converges
in distribution to �. Choosing V D .0; y� and using the fact that t	 M.m/

t > y is
equivalent to S.0;y�;t < m lead to the first inequality in Theorem 1. The second one

follows analogously from V D .�y; 0� and by using the equivalence of t	 M.�m/
t � y

and S.�y;0�;t < m. ut
Proof (of Corollary 1) Theorem 1 with 
 defined as in (5) yields the assertions of
Corollary 1. ut
Proof (of Theorem 2 and Corollary 2) Since the proofs are similar to those of
Theorem 1 and Corollary 1, we skip the details. ut
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