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Daniel Hug and Matthias Reitzner

Abstract This chapter introduces some of the fundamental notions from stochastic
geometry. Background information from convex geometry is provided as far as this
is required for the applications to stochastic geometry.

First, the necessary definitions and concepts related to geometric point processes
and from convex geometry are provided. These include Grassmann spaces and
invariant measures, Hausdorff distance, parallel sets and intrinsic volumes, mixed
volumes, area measures, geometric inequalities and their stability improvements.
All these notions and related results will be used repeatedly in the present and in the
subsequent chapters of the book.

Second, a variety of important models and problems from stochastic geometry
will be reviewed. Among these are the Boolean model, random geometric graphs,
intersection processes of (Poisson) processes of affine subspaces, random mosaics,
and random polytopes. We state the most natural problems and point out important
new results and directions of current research.

1 Introduction

Stochastic geometry is a branch of probability theory which deals with set-valued
random elements. It describes the behavior of random configurations such as
random graphs, random networks, random cluster processes, random unions of
convex sets, random mosaics, and many other random geometric structures. Due to
its strong connections to the classical field of stereology, to communication theory,
and to spatial statistics it has a large number of important applications.

The connection between probability theory and geometry can be traced back
at least to the middle of the eighteenth century when Buffon’s needle problem
(1733), and subsequently questions related to Sylvester’s four point problem (1864)
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and Bertrand’s paradox (1889) started to challenge prominent mathematicians and
helped to advance probabilistic modeling. Typically, in these early contributions a
fixed number of random objects of a fixed shape was considered and their interaction
was studied when some of the objects were moved randomly. For a short historical
outline of these early days of Geometric Probability see [104, Chap. 8] and [105,
Chap. 1].

Since the 1950s, the framework broadened substantially. In particular, the
focus mainly switched to models involving a random number of randomly chosen
geometric objects. As a consequence, the notion of a point process started to play a
prominent role in this field, which since then was called Stochastic Geometry.

In this chapter we describe some of the classical problems of stochastic geometry,
together with their recent developments and some interesting open questions. For a
more thorough treatment we refer to the seminal book on “Stochastic and Integral
Geometry” by Schneider and Weil [104].

2 Geometric Point Processes

A point process � is a measurable map from some probability space .˝;A ;P/ to
the locally finite subsets of a Polish space X (endowed with a suitable �-algebra),
which is the state space. The intensity measure of �, evaluated at a measurable set
A � X, is defined by �.A/ D E�.A/ and equals the mean number of elements of �

lying in A. 32
In many examples considered in this chapter, X is either Rd, the space of

compact (convex) subsets of Rd, or the space of flats (affine subspaces) of a certain
dimension in Rd. More generally,X could be the family F.Rd/ of all closed subsets
of Rd endowed with the hit-and-miss topology (which yields a compact Hausdorff
space with countable basis).

In this section, we start with processes of flats. In the next section, we discuss
particle processes in connection with Boolean models.

2.1 Grassmannians and Invariant Measures

Let X be the space of linear or affine subspaces (flats) of a certain dimension in Rd.
More specifically, for i 2 f0; : : : ; dg we consider the linear Grassmannian

G.d; i/ D fL linear subspace of Rd W dim L D ig

and the affine Grassmannian

A.d; i/ D fE affine subspace of Rd W dim E D ig:
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These spaces can be endowed with a canonical topology and with a metric inducing
this topology. In both cases, we work with the corresponding Borel �-algebra. Other
examples of spaces X are the space of compact subsets or the space of compact
convex subsets of Rd. All these spaces are subspaces of F.Rd/ and are endowed
with the subspace topology.

In each of these examples, translations and rotations act in a natural way on the
elements of X as well as on subsets (point configurations) of X. It is well known and
an often used fact that there is—up to normalization—only one translation invariant
and locally finite measure on Rd, the Lebesgue measure `d.�/. It is also rotation
invariant and normalized in such a way that the unit cube Cd D Œ0; 1�d satisfies
`d.Cd/ D 1.

Analogously, there is only one rotation invariant probability measure on G.d; i/,
which we denote by �d

i and which by definition satisfies �d
i .G.d; i// D 1. Observe

that �d
d�1 coincides (up to normalization) with (spherical) Lebesgue measure �d

on the unit sphere Sd�1, by identifying a unit vector u 2 Sd�1 with its orthogonal
complement u? D L 2 G.d; d�1/. A corresponding remark applies to �d

1 on G.d; 1/

where a unit vector is identified with the one-dimensional linear subspace it spans.
In a similar way, there is—up to normalization—only one rotation and translation

invariant measure on A.d; i/, the Haar measure �d
i , which is normalized in such a

way that �d
i .fE 2 A.d; i/ W E \Bd ¤ ;g/ D �d�i, where Bd is the unit ball in Rd and

�d denotes its volume. Since the space A.d; i/ is not compact, its total �d
i -measure

is infinite.
It is often convenient to describe the Haar measure �d

i on A.d; i/ in terms of the
Haar measure �d

i on G.d; i/. The relation is

�d
i .A/ D

Z

G.d;i/

Z

L?

1A.L C x/ `d�i.dx/ �d
i .dL/; (1)

for measurable sets A � A.d; i/. This is based on the obvious fact that each i-flat
E 2 A.d; i/ can be uniquely written in the form E D L C x with L 2 G.d; i/ and
x 2 L?, the orthogonal complement of L. If a locally finite measure � on A.d; i/ is
only translation invariant, then it can still be decomposed into a probability measure
� on G.d; i/ and, given a direction space L 2 G.d; i/, a translation invariant measure
on the orthogonal complement of L, which then coincides up to a constant with
Lebesgue measure on L?. In fact, a more careful argument shows the existence of a
constant t � 0 such that

�.A/ D t
Z

G.d;i/

Z

L?

1A.L C x/ `d�i.dx/ �.dL/;

for all measurable sets A � A.d; i/. In this situation, � D �d
i if and only if � is also

rotation invariant and therefore � D �d
i , at least up to a constant factor.
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The Haar measures `d, �d
i , and �d

i are the basis of the most natural constructions
of point processes on X D Rd; G.d; i/ and A.d; i/, if some kind of invariance is
involved.

2.2 Stationary Point Processes

Next we describe point processes on these spaces in a slightly more formal way than
at the beginning of this section and refer to [71] for a general detailed introduction.
A point process (resp. simple point process) � on X is a measurable map from the
underlying probability space .˝;A ;P/ to the set of locally finite (resp. locally finite
and simple) counting measures N.X/ (resp., Ns.X/) on X, which is endowed with
the smallest �-algebra, so that the evaluation maps ! 7! �.!/.A/ are measurable,
for all Borel sets A � X. For z 2 X, let ız denote the unit point measure at z. It can
be shown that a point process can be written in form

� D
�X

iD1

ı	i ;

where � is a random variable taking values in N0 [ f1g and 	1; 	2; : : : is a
sequence of random points in X. In the following, we will only consider simple
point processes, where 	i ¤ 	j for i ¤ j. If � is simple and identifying a
simple measure with its support, we can think of � as a locally finite random set
� D f	i W i D 1; : : : ; �g.

Taking the expectation of � yields the intensity measure

�.A/ D E�.A/

of �. As indicated above, the most convenient point processes from a geometric
point of view are those where the intensity measure equals the Haar measure, or
at least a translation invariant measure, times a constant t > 0, the intensity of
the point process. If we refer to this setting, we write �t and �t to emphasize the
dependence on the intensity t. In the following, we make this precise under the
general assumption that the intensity measure is locally finite. As usual we say that
a point process � is stationary if any translate of � by a fixed vector has the same
distribution as the process �.

Let us discuss the consequences of the assumptions of stationarity or some
additional distributional invariance in some particular cases. If � is a stationary point
process on X D Rd, then �t.A/ D t`d.A/ for all Borel sets A � Rd. Clearly, this
measure is also rotation invariant.

Furthermore, if � is a stationary flat process on X D A.d; i/ and A � Rd is a
Borel set, we set ŒA� D fE 2 A.d; i/ W E \ A ¤ ;g. Then the number of i-flats of the
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process meeting A is given by �.ŒA�/ and its expectation can be written as

�t.ŒA�/ D t
Z

G.d;i/

Z

L?

1ŒA�.L C x/ `d�i.dx/ �.dL/;

where � is a probability measure on G.d; i/ and t � 0 is the intensity. This
follows from what we said in the previous subsection, since the intensity measure
is translation invariant by the assumption of stationarity of �. Here, the indicator
function 1ŒA�.L C x/ equals 1 if and only if x is in the orthogonal projection AjL? of
A to L?. Thus

�t.ŒA�/ D t
Z

G.d;i/

`d�i.AjL?/ �.dL/:

A special situation arises if � is also isotropic (its distribution is rotation invariant).
In this case and for a convex set A, the preceding formula can be expressed as an
intrinsic volume, which will be introduced in the next section.

2.3 Tools from Convex Geometry

We work in the d-dimensional Euclidean space Rd with Euclidean norm kxk Dphx; xi, unit ball Bd and unit sphere Sd�1. The set of all convex bodies, i.e., compact
convex sets in Rd, is denoted by Kd. The Hausdorff distance between two sets
A; B is defined as dH.A; B/ D inff" � 0 W A � B C "Bd and B � A C "Bdg
where “C” denotes the usual vector or Minkowski addition. When equipped with
the Hausdorff distance, Kd is a metric space. The elements of the convex ring Rd

are the polyconvex sets, which are defined as finite unions of convex bodies.
If Lebesgue measure is applied to elements of Kd, we usually write Vd instead of

`d. Using the Minkowski addition on Kd, we can define the surface area of a convex
body by

lim
"!0C

Vd.K C "Bd/ � Vd.K/

"
:

Classical results in convex geometry imply that the limit exists. The mean width of
a convex body K is the mean length of the projection KjL of the set onto a uniform
random line L through the origin,

Z

G.d;1/

V1.KjL/ �d
1 .dL/:
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These two quantities, which describe natural geometric properties of convex bodies,
are just two examples of a sequence of characteristics associated with convex bodies.

2.3.1 Intrinsic Volumes

More generally, we now introduce intrinsic volumes Vi of convex bodies, i D
1; : : : ; d. These can be defined through the Steiner formula which states that, for
any convex body K 2 Kd , the volume of K C"Bd is a polynomial in " � 0 of degree
d. The intrinsic volumes are the suitably normalized coefficients of this polynomial,
namely,

Vd.K C "Bd/ D
dX

iD0

�iVd�i.K/"i; " � 0;

where �i is the volume of the i-dimensional unit ball. Clearly, the functional 2Vd�1 is
the surface area, V1 is a multiple of the mean width functional, and V0 corresponds
to the Euler characteristic.

The intrinsic volumes Vi are translation and rotation invariant, homogeneous of
degree i, monotone with respect to set inclusion, and continuous with respect to
the Hausdorff distance. The intrinsic volumes are additive functionals, also called
valuations, which means that

Vi.K [ L/ C Vi.K \ L/ D Vi.K/ C Vi.L/

whenever K; L; K [ L 2 Kd. Moreover, it is a convenient feature of the intrinsic
volumes that for K � Rd � RN the value Vi.K/ is independent of the ambient
space, Rd or RN , in which it is calculated. In particular, for L 2 G.d; 1/ the intrinsic
volume V1.KjL/ is just the length of KjL.

A famous theorem due to Hadwiger (see [104, Sect. 14.4]) states that the intrinsic
volumes can be characterized by these properties. If � is a translation and rotation
invariant, continuous valuation on Kd, then

� D
dX

iD0

ciVi

with some constants c0; : : : ; cd 2 R depending only on �. If in addition � is
homogeneous of degree i, then � D ciVi. To give a simple example for an
application of Hadwiger’s theorem, observe that the mean projection volume

Z

G.d;i/

`d�i.KjL?/ �d
i .dL/
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of a convex body K to a uniform random .d � i/-dimensional subspace defines
a translation invariant, rotation invariant, monotone and continuous valuation of
degree d � i. Hence, up to a constant factor (independent of K), it must be equal
to Vd�i.K/. This yields Kubota’s formula

Vd�i.K/ D cd;i

Z

G.d;i/

`d�i.KjL?/ �d
i .dL/;

with certain constants cd;i which can be determined by comparing both sides for
K D Bd. This formula explains why the intrinsic volumes are often encountered in
stereological or tomographic investigations and are also called “Quermassintegrals”,
which is the German name for an integral average of sections or projections of a
body.

Applications to stochastic geometry require an extension of intrinsic volumes
to the larger class of polyconvex sets. Requiring such an extension to be additive
on Rd suggests to define the intrinsic volumes of polyconvex sets by an inclusion–
exclusion formula. The fact that this is indeed possible can be seen from a result due
to Groemer [38], [104, Theorem 14.4.2], which says that any continuous valuation
on Kd has an additive extension to Rd. Volume and surface area essentially preserve
their interpretation for the extended functionals and also Kubota’s formula remains
valid for all intrinsic volumes. On the other hand, continuity with respect to the
Hausdorff metric is in general not available on Rd.

2.3.2 Mixed Volumes and Area Measures

The Steiner formula can be extended in different directions. Instead of considering
the volume of the Minkowski sum of a convex body and a ball, more generally, the
volume of a Minkowski combination of finitely many convex bodies K1; : : : ; Kk 2
Kd can be taken. In this case, Vd.
1K1 C : : : C 
kKk/ is a homogeneous polynomial
in 
1; : : : ; 
k � 0 of degree d, whose coefficients are nonnegative functionals of the
convex bodies involved (see [101, Chap. 5.1]), which are called mixed volumes. We
mention only the special case k D 2,

Vd.
1K1 C 
2K2/ D
dX

iD0

 
d

i

!

i

1

d�i
2 V.K1Œi�; K2Œd � i�/I

the bracket notation KŒi� means that K enters with multiplicity i. In particular, for
K; L 2 Kd we thus get

d � V.KŒd � 1�; L/ D lim
"!0C

Vd.K C "L/ � Vd.K/

"
;
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which provides an interpretation of the special mixed volume V.KŒd � 1�; L/ as a
relative surface area of K with respect to L. In particular, d � V.KŒd � 1�; Bd/ is the
surface area of K. The importance of these mixed functionals is partly due to sharp
geometric inequalities satisfied by them. For instance, Minkowski’s inequality (see
[101, Chap. 7.2]) states that

V.KŒd � 1�; L/d � Vd.K/d�1Vd.L/: (2)

If K; L are d-dimensional, then (2) holds with equality if and only if K and L are
homothetic. Note that the very special case L D Bd of this inequality is the classical
isoperimetric inequality for convex sets.

Although Minkowski’s inequality is sharp, it can be strengthened by taking into
account that the left side is strictly larger than the right side if K and L are not
homothetic. Quantitative improvements of (2) which introduce an additional factor
.1 C f .d.K; L// on the right-hand side, with a nonnegative function f and a suitable
distance d.K; L/, are extremely useful and are known as geometric stability results.

A second extension is obtained by localizing the parallel sets involved in the
Steiner formula. For a given convex body K, this leads to a sequence of Borel
measures Sj.K; �/, j D 0; : : : ; d � 1, on Sd�1, the area measures of the convex body
K. The top order area measure Sd�1.K; �/ can be characterized via the identity

d � V.KŒd � 1�; L/ D
Z

Sd�1

h.L; u/ Sd�1.K; du/;

which holds for all convex bodies K; L 2 Kd , and where

h.L; u/ WD maxfhx; ui W x 2 Lg; u 2 Rd;

defines the support function of L. Moreover, for any Borel set ! � Sd�1 we have

Sd�1.K; !/ D Hd�1.fx 2 @K W hx; ui D h.K; u/ for some u 2 !g/;

where Hd�1 denotes the .d�1/-dimensional Hausdorff measure. Further extensions
and background information are provided in [101] and summarized in [104].

3 Basic Models in Stochastic Geometry

3.1 The Boolean Model

The Boolean model, which is also called Poisson grain model [41], is a basic
benchmark model in spatial stochastics. Let �t D P1

iD1 ıxi denote a stationary
Poisson point process in Rd with intensity t > 0. By Kd

0 we denote the set of all
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convex bodies K 2 Kd for which the origin is the center of the circumball. Let Q
denote a probability distribution on Kd

0, and let Z1; Z2; : : : be an i.i.d. sequence of
random convex bodies (particles) which are also independent of �t. If we assume that

Z

Kd
0

Vj.K/Q.dK/ < 1 (3)

for j D 1; : : : ; d, then

Z D
1[

iD1

.Zi C xi/

is a stationary random closed set, the Boolean model with grain (or shape)
distribution Q and intensity t > 0. Alternatively, one can start from a stationary
point process (particle process) �t on Kd. Then the intensity measure �t D E�t of
�t is a translation invariant measure on Kd which can be decomposed in the form

�t.�/ D t
Z

Kd
0

Z

Rd

1fK C x 2 �g `d.dx/Q.dK/:

The Poisson particle process �t is locally finite if and only if its intensity measure
�t is locally finite, which is equivalent to (3). We obtain again the Boolean model
by taking the union of the particles of �t, that is,

Z D Z.�t/ D
[
K2�t

K:

In order to explore a Boolean model Z, which is observed in a window W 2 Kd,
it is common to consider the values of suitable functionals of the intersection
Z \ W as the information which is available. Due to the convenient properties
and the immediate interpretation of the intrinsic volumes Vi, i 2 f0; : : : ; dg, for
convex bodies, it is particularly natural to study the random variables Vi.Z \ W/,
i 2 f0; : : : ; dg, or to investigate random vectors composed of these random
elements. From a practical viewpoint, one aims at retrieving information about the
underlying particle process, that is, its intensity and its shape distribution, from such
observations.

3.1.1 Mean Values

Let Z0 be a random convex body having the same distribution as Zi, i 2 N, which is
called the typical grain. Formulas relating the mean values EVi.Z \ W/ to the mean
values of the typical grain vj D EVj.Z0/, j 2 f0; : : : ; dg, have been studied for a
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long time. Particular examples of such relations are

EVd.Z \ W/ D Vd.W/
�
1 � e�tvd

�
;

EVd�1.Z \ W/ D Vd.W/tvd�1e�tvd C Vd�1.W/
�
1 � e�tvd

�
:

If r.W/ denotes the radius of the inball of W, we deduce from these relations that

lim
r.W/!1

EVd.Z \ W/

Vd.W/
D 1 � e�tvd ;

lim
r.W/!1

EVd�1.Z \ W/

Vd.W/
D tvd�1e�tvd ;

where the first limit is redundant and equal to p D P.o 2 Z/ D EVd.Z\W/=Vd.W/,
the volume fraction of the stationary random closed set Z. For the other intrinsic
volumes Vi, i 2 f0; : : : ; d � 2g, the mean values EVi.Z \ W/ of the Boolean model
Z can still be expressed in terms of the intensity and mean values of the typical grain,
but the relations are more complicated and in general they involve mixed functionals
of translative integral geometry. The formulas simplify again if Z is additionally
assumed to be isotropic (if Z0 is isotropic). For a stationary and isotropic Boolean
model, all mean values EVi.Z\W/ can be expressed in terms of the volume fraction
p and a polynomial function of tvi; : : : ; tvd. Moreover, the limits

ıi WD lim
r.W/!1

EVi.Z \ W/

Vd.W/

exist and are called the densities of the intrinsic volumes for the Boolean model.
The system of equations which relates these densities to the (intensity weighted)
mean values tv0; : : : ; tvd can be used to express the latter in terms of the densities
ı0; : : : ; ıd of the Boolean model.

3.1.2 Covariances

While such first order results (involving mean values) have been studied for quite
some time (see [104] for a detailed description), variances and covariances of
arbitrary intrinsic volumes (or of more general functionals) of Boolean models have
been out of reach until recently. In [58], second order information for functionals
of the Boolean model is derived systematically under optimal moment assumptions.
To indicate some of these results, we define for i; j 2 f0; : : : ; dg

�i;j D lim
r.W/!1

Cov
�
Vi.Z \ W/; Vj.Z \ W/

�
Vd.W/

(4)
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as the asymptotic covariances of the stationary Boolean model Z, provided the limit
exists. The following results are proved in [58] and ensure the existence of the limit
under minimal assumptions. Note that condition (3) is equivalent to EVi.Z0/ < 1
for i D 1; : : : ; d.

Theorem 1 Assume that EVi.Z0/
2 < 1 for i 2 f1; : : : ; dg.

(1) Then �i;j is finite and independent of W for all i; j 2 f0; : : : ; dg. Moreover, �i;j

can be expressed as an infinite series involving the intensity t and integrations
with respect to the grain distribution Q and the intensity measure � of �t.

(2) The asymptotic covariance matrix is positive definite if Z0 has nonempty interior
with positive probability.

(3) If even EVi.Z0/
3 < 1 for i 2 f0; : : : ; dg, then the rate of convergence in (4) is

of the (optimal) order 1=r.W/.

A more general result is obtained in [58], which applies to arbitrary translation
invariant, additive functionals which are locally bounded and measurable (geometric
functionals). Further examples of such functionals are mixed volumes and certain
integrals of area measures. The basic ingredients in the proof are the Fock space
representation of Poisson functionals as developed in [73] (see also the contribution
by Günter Last in this volume) and new integral geometric bounds for geometric
functionals.

For an isotropic Boolean model, the infinite series representation for �i;j can be
reduced to an integration with respect to finitely many curvature based moment
measures of the typical grain Z0. As a basic example, which does not require Z to
be isotropic, we mention (assuming a full-dimensional typical grain Z0) that

�d�1;d D �e�2tvd tvd�1

Z �
etCd.x/ � 1

�
`d.dx/

C e�2tvd t
Z

etCd.x�y/ Md�1;d.d.x; y//;

where Cd.x/ D EŒVd.Z0 \ .Z0 C x//�, for x 2 Rd, defines the mean covariogram of
the typical grain and

Md�1;d.�/ WD 1

2
E

Z

Z0

Z

@Z0

1f.x; y/ 2 �gHd�1.dx/ `d.dy/

is a mixed moment measure of the typical grain. A formula for the asymptotic
covariance �d�1;d�1 is already contained in [42]. For a stationary and isotropic
Boolean model in the plane R2, explicit formulas are provided in [58] for all
covariances involving the Euler characteristic �0;0; �0;1; �0;2. Moreover, again in
general dimensions and for a stationary Boolean model whose typical grain is a
deterministic ball, some of these formulas can be specified even further and used to
plot the covariances as a function of the intensity. It is an interesting task to interpret



156 D. Hug and M. Reitzner

these plots and to determine rigorously the analytic properties (e.g., zeros, extremal
values) or the asymptotic behavior of the covariances and correlation functions for
increasing intensity.

In addition, in [58] univariate and multivariate central limit theorems, including
rates of convergence, are derived from general new results on the normal approx-
imation of Poisson functionals via the Malliavin–Stein method [81, 82]. For these
we refer to the survey [17], in this volume. Again these results are established for
quite general geometric functionals, employing also tools from integral geometry.
Some of these results do not require stationarity of the Boolean model or translation
invariance of the functionals.

3.2 Random Geometric Graphs

Random graphs play an important role in graph theory since Renyi introduced his
famous random graph model. Since then several models of random graphs have been
investigated. The use of random graphs as a natural model for telecommunication
networks (see, e.g., Zuyev’s survey in [115]) gave rise to additional investigations.
Here we concentrate on random graphs with a geometric construction rule.

The most natural and best investigated graph is the so-called Gilbert graph. Let
�t be a Poisson point process on Rd with an intensity measure of the form �t.�/ D
t`d.�\W/, where W � Rd is a compact convex set with `d.W/ D 1. Let .ıt W t > 0/

be a sequence of positive real numbers such that ıt ! 0 as t ! 1. The Gilbert
graph, or random geometric graph, is obtained by taking the points of �t as vertices
and by connecting two distinct points x; y 2 �t by an edge if and only if kx�yk � ıt.
There is a vast literature on the Gilbert graph and one should have a look at the
seminal book [83] by Penrose or check the recent paper by Reitzner et al. [93] for
further references. For natural generalizations one replaces the role of the norm
by a suitable symmetric function G W Rd ! Œ0; 1�, where two points of �t are
connected with probability G.y � x/. An important particular case is when G is the
indicator function of a symmetric set. Recent developments in this direction are due
to Bourguin and Peccati [16], and Lachièze-Rey and Peccati [66, 67].

Denote by G D .V;E/ the resulting graph where V D �t are the vertices and
E � �2

t;¤ are the occurring edges. Objects of interest are clearly the number of
edges Nt and, more general, functions of the edge lengths

X
.x;y/2E

g.ky � xk/:

In particular, one is interested in the edge length powers

L.˛/
t D 1

2

X
.x;y/2�2

t;¤

1fkx � yk � ıtg kx � yk˛:
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Clearly L.0/
t D Nt. It is well known that for any ˛ > �d

EL.˛/
t D d�d

2.˛ C d/
t2ı˛Cd

t Vd.W/.1 C O.ıt// :

This especially shows that the number of edges of the Gilbert graph is of order t2ıd
t ,

whereas its total edge length is of order t2ıdC1
t . The asymptotic variance is given by

VarL.˛/
t D

�
d �d

2 .2˛ C d/
t2 ı2˛Cd

t C d2 �2
d

.˛ C d/2
t3 ı2˛C2d

t

�
Vd.W/.1 C O.ıt//;

and the asymptotic covariance matrix is computed in [93].
Many investigations benefit from the fact that these functions are Poisson

U-statistics of order 2, and thus are perfectly suited to apply the Wiener–Itô chaos
expansion, Malliavin calculus and Stein’s method. We refer to [91] and [69] (in
this volume) for more details. There limit theorems are stated and more recent
developments are pointed out.

Questions of interest not mentioned in the current notes concern for instance
percolation problems. For recent developments in this context, we refer, e.g., to the
recent book by Haenggi [40].

3.2.1 Random Simplicial Complexes

A very recent line of research is based on the use of random geometric graphs for
constructing random simplicial complexes. For instance, given the Gilbert graph of
a Poisson point process �t, we construct the Vietoris–Rips complex R.ıt/ by calling
F D fxi1 ; : : : ; xikC1

g a k-face of R.ıt/ if all pairs of points in F are connected by
an edge in the Gilbert graph. This results in a random simplicial complex, and it is
particularly interesting to investigate its combinatorial and topological structure.

For example, counting the number N.k/
t of k-faces is equivalent to a particular

subgraph counting. By definition this is a U-statistic given by

N.k/
t D N.k/

t .W; ıt/ D 1

.k C 1/Š

X
.x1;:::;xkC1/2�

kC1
t;¤

1fkxi � xjk � ıt; 81 � i; j � k C 1g:

Using the Slivnyak–Mecke theorem (see [104, Sect. 3.2]), the expectation of N.k/
t

can be computed. Central limit theorems and a concentration inequality follow from
results for local U-statistics. A particularly tempting problem is the asymptotic
behavior of the Betti-numbers of this random simplicial complex. We refer to
[29, 60, 62, 69] and to the recent survey article by Kahle [61] for further information.
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3.3 Poisson Processes on Grassmannians

Let �t be a Poisson process on the space A.d; i/ of affine i-flats with a �-finite
intensity measure �t D t�1, t > 0. Assume in particular that �t is absolutely
continuous with respect to the Haar measure �d

i on A.d; i/. This implies that two
subspaces L1; L2 2 �2

t;¤ are almost surely in general position. If 2i < d the
intersection L1 \ L2 is almost surely empty and of interest is the linear hull of the
subspace parallel to L1 and L2, which is of dimension 2i with probability one. If
2i � d, then the dimension of the linear hull of the subspace parallel to L1 and L2 is
d and of interest is the intersection L1 \L2, which is an affine subspace of dimension
2i � d with probability one.

Crucial in all the following results mentioned for both cases is the fact that
the functionals of interest are Poisson U-statistics and thus admit a finite chaos
expansion. This makes it particularly tempting to use methods from the Malliavin
calculus for proving distributional results.

3.3.1 Intersection Processes of Poisson Flat Processes

Starting from a stationary process �t of i-flats in Rd with d=2 � i � d �1, we obtain
for given k � d=.d � i/ a stationary process �

.k/
t of Œki � .k � 1/d�-flats by taking the

intersection of any k flats from �t whose intersection is of the correct dimension. If
�t is Poisson, then the intensity t.k/ and the directional distribution �.k/ of this k-fold
intersection process �

.k/
t of �t can be related to the intensity t and the directional

distribution � of �t by

t.k/�.k/.�/ D tk

kŠ

Z

A.d;i/

: : :

Z

A.d;i/

1fL1 \ : : : \ Lk 2 �gŒL1; : : : ; Lk� �.dLk/ : : : �.dL1/;

where the subspace determinant ŒL1; : : : ; Lk� is defined as the k.d � i/-dimensional
volume of the parallelepiped spanned by orthonormal bases of L?

1 ; : : : ; L?
k . Natural

questions which arise at this point are the following:

• For which choice of � will t.k/ be maximal if t is fixed?
• Are t and � uniquely determined by the intersectional data t.k/ and �.k/?
• If uniqueness holds, is there a stability result as well? That is, are t� and Ot O� close

to each other (in a quantitative sense) if t.k/�.k/ and Ot.k/ O�.k/ are close?

For further information on this topic, see Sect. 4.4 in [104].
Since in applications the intersection process can only be observed in a convex

window W, one is in particular interested in the sum of their j-th intrinsic volumes
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given by

˚t D 1

kŠ

X
.L1;:::;Lk/2�k

t;¤

Vj.L1 \ : : : \ Lk \ W/

for j D 0; : : : ; d � k.d � i/. The fact that the summands in the definition of ˚t are
bounded and have a bounded support ensures that the sum exists.

The expectation of ˚t can be calculated using the Slivnyak–Mecke theorem,
which yields

E˚t D 1

kŠ
tk
Z

: : :

Z
Vj.L1 \ : : : \ Lk \ W/ �1.dL1/ : : : �1.dLk/:

If �t is also translation invariant this leads to the question to determine certain chord
power integrals of the observation window W or more general integrals involving
powers of the intrinsic volumes of intersections L\W where L is an affine subspace.

Recent contributions deal with variances and covariances, multivariate central
limit theorems [74] (see also [69]), and the distribution of the m-smallest intersection
[108]. For further detailed investigations we refer to the recent contribution by Hug
et al. [59].

3.3.2 Proximity of Poisson Flat Processes

A different situation arises if we consider a stationary process of i-flats in Rd with
1 � i < d=2. In this case, generically we expect that any two different i-flats
L1; L2 2 �t are disjoint. A natural way to investigate the geometric situation in
this setting is to study the distances between disjoint pairs of i-dimensional flats, or
more generally to consider the proximity functional.

We associate with such a pair .L1; L2/ 2 �2
t;¤ (in general position) a unique pair

of points x1 2 L1 and x2 2 L2 such that kx1 � x2k equals the distance between L1

and L2. This gives rise to a process of triples .m.L1; L2/; d.L1; L2/; L.L1; L2//, where
m.L1; L2/ WD .x1 C y2/=2 is the midpoint, d.L1; L2/ WD kx1 � x2k is the distance,
and L.L1; L2/ 2 G.d; 1/ is the subspace spanned by the vector x1 � x2.

The stationary process of midpoints and its intensity have been studied in [97] for
a Poisson process (see also Sect. 4.4 in [104]), and more recently in [109]. Assume
that �t is a Poisson process on the space A.d; i/, i < d

2
, with intensity measure

�t D t�1. The midpoints m.L1; L2/ D 1
2
.x1 C x2/ form a point process of infinite

intensity, hence we restrict it to the point process

fm.L1; L2/ W d.L1; L2/ � ı; L1; L2 2 �2
t;¤g
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and are interested in the number of midpoints in W, that is,

˘t D ˘t.W; ı/ D 1

2

X
.L1;L2/2�2

t;¤

1fd.L1; L2/ � ı; m.L1; L2/ 2 Wg:

The Slivnyak–Mecke formula shows that E˘t is of order t2ıd�2i. Schulte and
Thäle [109] proved convergence of the suitably normalized random variable ˘t

to a normally distributed variable with error term of order t� d�i
2 . Moreover, they

showed that after suitable rescaling the ordered distances asymptotically form an
inhomogeneous Poisson point process on the positive real axis. In [69], the authors
add to this a concentration inequality around the median mt of ˘t which shows that
the tails of the distribution are bounded by

exp

�
�1

4

up
u C mt

�

for up
uCmt

� e2 supL02ŒW� �t.fL W d.L0; L/ � ıg/.
For the process of triples .m.L1; L2/; d.L1; L2/; L.L1; L2// a more detailed anal-

ysis has been carried out in [59], which also emphasizes the duality of concepts
and results as compared to the intersection process (of order k D 2) described
before. While the proximity process provides a “dual counterpart” to the intersection
process of order two, no satisfactory analogue for intersection processes of higher
order is known so far.

3.4 Random Mosaics

Another widely used model of stochastic geometry is that of a random mosaic
(tessellation). A deterministic mosaic of Euclidean spaceRd is a family of countably
many d-dimensional convex bodies Ci � Rd, i 2 N, with mutually disjoint
interiors, whose union is the whole space and with the property that each compact
set intersects only finitely many of the sets. The individual sets of the family, which
necessarily are polytopes, are called the cells of the tessellation. It is clear that
this concept can be extended in various directions, for instance by dropping the
convexity assumption on the cells or by allowing local accumulations of cells, which
leads to a more general partitioning of space.

Formally, a random mosaic (tessellation) X in Rd is defined as a simple particle
process such that for each realization the collection of all particles constitutes a
mosaic. In addition to the cells of the mosaic, the collection of k-dimensional faces
of the cells, for each k 2 f0; : : : ; dg, provides an interesting geometric object
which combines features of a particle process, a random closed set (considering for
instance the union set), or a random geometric graph. For example, coloring the cells
of the tessellation black or white, independently of each other and independently
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of X, one can ask for the probability of an infinite black connected component or
study the asymptotic behavior of mean values and variances of functionals of the
intersection sets ZB \ W, where ZB denotes the union of the black cells and W is
an increasing observation window. For an introduction to such percolation models
we refer the reader to [12, 13, 72, 77]. A first systematic investigation of central
limit theorems in more general continuous percolation models related to stationary
random tessellations is carried out in [78].

3.4.1 Typical Cells and Faces

In the following, we always consider stationary random tessellations X in Rd. By
stationarity, the intensity measure EX of X, which we always assume to be locally
finite and nonzero, is translation invariant. Let c W Kd ! Rd denote a center
function. By this we mean a measurable function which is translation covariant,
that is, c.K C x/ D c.K/ C x for all K 2 Kd and x 2 Rd. W.l.o.g. we take c.K/ to be
the center of the circumball, and define Kd

0 WD fK 2 Kd W c.K/ D og as in Sect. 2.3.
Then

EX D t
Z

Kd
0

Z

Rd

1fC C x 2 �g `d.dx/Q.dC/;

where t > 0 and Q is a probability measure on Kd
0 which is concentrated on convex

polytopes. A random polytope Z with distributionQ is called a typical cell of X. This
terminology can be justified by Palm theory or in a “statistical sense.” In addition to
such a “mean cell” we also consider the cell containing a fixed point in its interior.
Because of stationarity, we may choose the origin and hence the zero cell Z0 of a
given stationary tessellation. Applying the same kind of reasoning to the stationary
process X.k/ of k-faces of X, we are led to the intensity t.k/ and the distribution Q.k/

of the typical k-face Z.k/ of X which are determined by

t.k/Q.k/.�/ D E

2
4 X

F2X.k/

1fc.F/ 2 Bg1fF � c.F/ 2 �g
3
5 ;

where B � Rd is a Borel set with `d.B/ D 1 and

t.k/ D E

2
4 X

F2X.k/

1fc.F/ 2 Bg
3
5 :
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Let Mk denote a random measure concentrated on the union of the k-faces of X
which is given by

Mk.�/ D
X

F2X.k/

Hk. � \ F/:

Then the distribution of the k-volume weighted typical k-face Z.k/
0 is defined by

1

EMk.B/
E

Z

B

1
˚
Fk.X

.k/ � x/ 2 �� Mk.dx/;

where again B � Rd is a Borel set with `d.B/ D 1 and Fk.X.k/ � x/ is the P-a.s.
unique k-face of X.k/ � x containing o if x is in the support of Mk. Then, for any
nonnegative, measurable function h on convex polytopes, we obtain

Eh
�

Z.k/
0 � c.Z.k/

0 /
�

D EŒh.Z.k/Vk.Z.k//�

EŒVk.Z.k//�
; (5)

which also explains why Z.k/
0 is called the volume weighted typical k-face of X.

This relation between the two types of typical faces is implied by Neveu’s exchange
formula. In the particular case k D d we have Z.d/

0 D Z0. Here we followed the
presentation in [7, 8, 98, 99].

For general stationary random mosaics it is apparently difficult to establish
distributional results. More is known about various mean values and intensities. For
instance,

dX
iD0

.�1/it.i/ D 0 (6)

is an Euler type relation for the intensities, which points to an underlying general
geometric fact (Gram’s relation). If Zk denotes the union of the k-faces of X (its
k-skeleton), then the specific Euler characteristic

N�k WD lim
r!1

1

rd
E�.Zk \ rŒ0; 1�d/

exists and satisfies

N�k D
kX

iD0

.�1/it.i/:

Mean value relations for the mean number of j-faces contained in (or containing)
a typical k-faces if j < k (respectively, j � k) or relations for the mean intrinsic
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volumes of the typical k-faces t.k/EVj.Z.k// are also known (see [104, Sect. 10.1] for
this and related results). More generally, asymptotic mean values and second order
properties for functionals of certain colored random mosaics have been investigated
in [78].

A different setting is considered in [43]. The starting point is a general stationary
ergodic random tessellation in Rd. With each cell a random inner structure is
associated (for instance, a point pattern, fiber system, or random tessellation)
independently of the given mosaic and of each other. Formally, this inner structure is
generated by a stationary random vector measure J0. In this framework, with respect
to an expanding observation window strong laws of large numbers, asymptotic
covariances and multivariate central limit theorems are obtained for a normalized
functional, which provides an unbiased estimator for the intensity vector of J0.
Applications to communication networks are then discussed in dimension two
under more specific model assumptions involving Poisson–Voronoi and Poisson line
tessellations as the frame tessellation as well as the tessellations used for the nesting
sequence.

3.4.2 Poisson Hyperplane Mosaics

A hyperplane process �t in Rd with intensity t > 0 naturally divides Rd into
convex polytopes, and the resulting mosaic is called hyperplane mosaic. In the
following, we assume that all required intensities are finite (and positive). Let X
be the stationary hyperplane mosaic induced by �t. Let

d.k/
j

t.k/
D
Z

Vj.K/Q.k/.dK/ D EVj.Z
.k//

denote the mean j-th intrinsic volume of the typical k-face Z.k/ of the mosaic X,
where t.k/ is again the intensity of the process of k-faces. We call d.k/

j the specific
j-th intrinsic volume of the k-face process X.k/. If nk;j, for 0 � j � k � d, denotes
the mean number of j-faces of the typical k-face, then the relations

d.k/
j D

 
d � j

d � k

!
d. j/; t.k/ D

 
d

k

!
t.0/; nk;j D 2k�j

 
k

j

!

complement the Euler relation (6) valid for any random tessellation (see [104,
Theorem 10.3.1]). In the derivation of these facts the property is used that each j-face
of X lies in precisely

�d�j
d�k

�
flats of the .d � k/-fold intersection process �t;.d�k/ and

therefore in 2k�j
�d�j

d�k

�
faces of dimension k of X. Further results can be obtained, for

instance, if the underlying stationary hyperplane process �t is Poisson. To prepare
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this, we observe that the intensity measure of �t is of the form

t
Z

Sd�1

Z

R

1fu? C xu 2 �g `1.dx/ �.du/; (7)

where t > 0 and � is an even probability measure on the unit sphere. Since for
u 2 Rd the left-hand side of

t

2

Z

Sd�1

jhu; vij �.dv/ DW h.˘X; u/

is a positively homogeneous convex function (of degree 1), it is the support function
of a uniquely defined convex body ˘X 2 Kd, which is called the associated zonoid
of X. This zonoid can be used to express basic quantities of the mosaic X. For
instance, we have

d.k/
j D

 
d � j

d � k

!
Vd�j.˘X/; t.k/ D

 
d

k

!
Vd.˘X/

(see [104, Theorem 10.3.3]). If X (or �t) is isotropic, then ˘X is a ball and these
relations are directly expressed in terms of constants and the intensity t.

In [102], Schneider found an explicit formula for the covariances of the total face
contents of the typical k-face of a stationary Poisson hyperplane mosaic. Let Li.P/

be the total i-face contents of a polytope P � Rd, that is,

Li.P/ D
X

F2Fi.P/

Hi.F/:

The main result is a general new formula for the second moments E.LrLs/.Z.k//,
which is obtained by an application of the Slivnyak–Mecke formula and clever
geometric dissection arguments (refining ideas of R. Miles) in combination with
the mean values

ELr.Z
.k// D 2k�r

�k
r

�
t
�d

r

� Vd�r.˘X/;

which follow from [100]. As a consequence of these formulas and deep geometric
inequalities, namely the Blaschke–Santaló inequality and the Mahler inequality for
zonoids, he deduced that the variance Var. f0.Z.k/// is maximal if and only if X
is isotropic and minimal if and only if X is a parallel process (involving d fixed
directions only). A similar result is obtained for the variance of the volume of the
typical cell. In the isotropic case, explicit formulas for these variances and, more
generally, for the covariances of the face contents are obtained.
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In addition to the typical cell Z D Z.d/ of a stationary hyperplane tessellation,
we consider the almost surely unique cell Z0 D Z.d/

0 containing the origin (the zero
cell). One relation between these two random polytopes is given in (5). Another
one describes the distribution of the typical cell (where here the highest vertex in a
certain admissible direction is chosen as the center function) as the intersection of Z0

with a random cone T.H1; : : : ; Hd/ generated by d independent random hyperplanes
sampled according to a distribution determined by the direction distribution � of �t.
From this description, one can deduce that up to a random translation, Z is contained
in Z0 (see Theorem 10.4.7 and Corollary 10.4.1 in [104]).

For the zero cell, mean values of some functionals are explicitly known. For
instance,

ELr.Z0/ D 2�ddŠVd�r.˘X/Vd.˘ı
X /;

where ˘ı
X is the polar body of the associated zonoid of X. Choosing r D 0, we get

the mean number of vertices, and the choice r D d gives the mean volume of Z0. It
follows, for instance, that

2d � Ef0.Z0/ � dŠ2�d�2
d

with equality on the left side if X is a parallel process, and with equality on the right
side if X is isotropic. A related stability result has been established in [14].

3.4.3 Distributional Results

One of the very few distributional results which are known for hyperplane processes
is the following. It involves the inradius r.K/ of a convex body K, which is
defined as the maximal radius of a ball contained in K. We call a hyperplane
process nondegenerate if its directional distribution is not concentrated on any great
subsphere.

Theorem 2 Let Z be the typical cell of a stationary mosaic generated by a
(nondegenerate) stationary Poisson hyperplane process �t with intensity t > 0. Then

P.r.Z/ � a/ D 1 � exp.�2ta/; a � 0:

Clearly r.Z/ � a if and only if a ball of radius a is contained in Z. An extension
covering more general inclusion probabilities (for homothetic copies of an arbitrary
convex body) and typical k-faces has been established in [54, Sect. 4, (9)].

In order to study distributional properties of lower-dimensional typical faces,
Schneider [98] showed that for k 2 f1; : : : ; d � 1g the distribution of the volume-
weighted typical k-face can be described as the intersection of the zero cell with a
random k-dimensional linear subspace. To state this result, let �t denote a stationary
Poisson hyperplane process in Rd with intensity measure as given in (7). Further, let
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t.d�k/ denote the intensity and �.d�k/ the directional distribution (a measure on the
Borel sets of G.d; k/) of the intersection process �t;.d�k/ of order d � k of �t. Both
quantities are determined by the relation

t.d�k/�.d�k/.�/ D td�k

.d � k/Š

Z

.Sd�1/d�k

1fu?
1 \ : : : \ u?

d�k 2 �g

Œu1; : : : ; ud�k� �d�k.d.u1; : : : ; ud�k//;

where Œu1; : : : ; ud�k� denotes the .d � k/-volume of the parallelepiped spanned by
u1; : : : ; ud�k.

The next theorem summarizes results from [98, Theorem 1] and from [54,
Theorem 1].

Theorem 3 Let X denote the stationary hyperplane mosaic generated by a station-
ary Poisson hyperplane process �t. Then the distribution of the volume-weighted
typical k-face of X is given by

P.Z.k/
0 2 �/ D

Z

G.d;k/

P.Z0 \ L 2 �/ �.d�k/.dL/:

The distribution of the typical k-face equals

P.Z.k/ 2 �/ D
Z

G.d;k/

P.Z.X \ L/ 2 �/ Rk.dL/;

hence it is described in terms of the typical cells of the induced mosaics X \ L in
k-dimensional subspaces sampled according to the directional distribution

Rk.�/ D Vd�k.˘X/�d
k

�
Vd.˘X/

Z

G.d;k/

1fL 2 �gVk.˘XjL/ �.d�k/.dL/

of the typical k-face of X.

These results turned out to be crucial for extending various results for typical
(volume-weighted) faces, which had been obtained before for the typical cell (the
zero cell).

3.4.4 Large Cells: Kendall’s Problem

Next we turn to Kendall’s problem on the asymptotic shape of the large cells
of a stationary but not necessarily isotropic Poisson hyperplane tessellation. The
original problem (Kendall’s conjecture) concerned a stationary isotropic Poisson
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line tessellation in the plane and suggested that the conditional law for the shape of
the zero cell Z0, given its area V2.Z0/ ! 1, converges weakly to the degenerate law
concentrated at the circular shape. Miles [75] provided some heuristic ideas for the
proof of such a result and suggested also various modifications. The conjecture was
strongly supported by Goldman [34], a first solution came from Kovalenko [64, 65].
Still the approaches of these papers were essentially restricted to the Euclidean plane
and made essential use of the isotropy assumption.

The contribution [56] marks the starting point for a sequence of investigations
which provide a resolution of Kendall’s problem in a substantially generalized form.
To describe the result in some more detail, let �t be a (nondegenerate) stationary
Poisson hyperplane process in Rd with intensity t > 0 and directional distribution
� . In order to find a potential asymptotic shape for the zero cell Z0 of the induced
Poisson hyperplane tessellation, we first have to exhibit a candidate for such a shape
(if it exists), then we have to clarify what we mean by saying that two shapes are
close and finally it remains to determine a quantity which should be used instead of
the “area” of Z0 to measure the size of the zero cell.

Clearly, a natural candidate for a size functional is the volume Vd. The answer
to the first question is less obvious, but is based on a strategy that has repeatedly
been used in the literature with great success (see [104, Sect. 4.6] for various
examples and references). The main idea is to describe the direction distribution
� in geometric terms. This allows one to apply geometric inequalities such as
Minkowski’s inequality (2) and its stability improvement, which then can be
reinterpreted again in probabilistic terms. Instead of the associated zonoid, for the
present problem the Blaschke body associated with �t, alternatively the direction
body B of �t, turns out to be the right tool. This auxiliary body B is characterized as
the unique centered (that is, B D �B) d-dimensional convex body B 2 Kd such that
the area measure of B satisfies Sd�1.B; �/ D � . The existence and uniqueness of B,
for given � , is a deep result from convex geometry which in its original form is also
due to Minkowski (see [101]). Finally, we say that the shape of K 2 Kd is close to
the shape of B if

rB.K/ D inffs=r � 1 W rB C z � K � sB C z; z 2 Rd; r; s > 0g

is small. In particular, rB.K/ D 0 if and only if K and B are homothetic. Let Kd
.o/

denote the set of all K 2 Kd with o 2 K. For any such K we introduce the constant

� D minft�1E�t.ŒK�/ W K 2 Kd
.o/; Vd.K/ D 1g

of isoperimetric type, which can also be expressed in the form

e�� t D maxfP.K � Z0/ W K 2 Kd
.o/; Vd.K/ D 1g:

The following theorem summarizes Theorems 1 and 2 in [56] and a special case
of Theorem 2 in [51]. The latter provides a far reaching generalization of a result
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in [34] on the asymptotic distribution of the area of the zero cell of an isotropic
stationary Poisson line tessellation in the plane.

Theorem 4 Under the preceding assumptions, there is a positive constant c0,
depending only on B, such that for every  2 .0; 1/ and for every interval I D Œa; b/

with a1=dt � 1,

P.rB.Z0/ �  j Vd.Z0/ 2 I/ � c exp
��c0

dC1a1=dt
�

;

where c is a constant depending on B and . Moreover,

lim
a!1 a�1=d lnP.Vd.Z0/ � a/ D �� t:

The same result holds for the typical cell Z.

If the size of Z0 is measured by some other intrinsic volume Vi.Z0/, for i 2
f2; : : : ; d � 1g, a similar result is true if �t is also isotropic (see [57, Theorem 2]).
No such result can be expected for the mean width functional V1. In fact, no limit
shape may exist if size is measured by the mean width, which is proved in [51,
Theorem 4] for directional distributions with finite support. Most likely a limit shape
does not exist if size is measured by the mean width, but for arbitrary � or in case
of the typical cell this is still an open question. Crucial ingredients in the proofs of
the results described so far are geometric stability results, which refine geometric
inequalities and the discussion of the equality cases for these inequalities.

3.4.5 A General Framework

The results described so far suggest the general question which size functionals
indeed lead to asymptotic or limit shapes and how these asymptotic or limit shapes
are determined. A general axiomatic framework for analyzing these questions is
developed in [51]. The main object of investigation is a Poisson hyperplane process
�t in Rd (and its induced tessellation) with intensity measure of the form

E�t D t
Z

Sd�1

1Z

0

1fH.u; x/ 2 �gxr�1 `1.dx/ �.du/; (8)

where t > 0, r � 1, and � is an even nondegenerate (that is, not concentrated on
any great subsphere) probability measure on the Borel sets of the unit sphere. The
case r D 1 corresponds to the stationary case. We refer to t as the intensity, r as the
distance exponent, and � as the directional distribution of �t. Let

˚.K/ WD t�1E�t.ŒK�/ D 1

r

Z

Sd�1

h.K; u/r �.du/; K 2 Kd
.o/;
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which is called the hitting or parameter functional of �t, since t˚.K/ is the mean
number of hyperplanes of �t hitting K. Moreover, we have

P.�t.ŒK�/ D n/ D Œ˚.K/t�n

nŠ
exp .�˚.K/t/ ; n 2 N0;

by the Poisson assumption on �t.
In Theorem 4 we used the volume functional to bound the size of the zero cell.

Many other functionals are conceivable such as the (centered) inradius, the diameter,
the width in a given direction, or the largest distance to a vertex of Z0. It was
realized in [51] that in fact any functional ˙ on Kd

.o/ which satisfies some natural
axioms (continuity, homogeneity of a fixed degree k > 0 and monotonicity under set
inclusion) qualifies as a size functional. From this it already follows that a general
sharp inequality of isoperimetric type is satisfied, that is,

˚.K/ � �˙.K/r=k; K 2 Kd
.o/; (9)

with a positive constant � > 0. The convex bodies K for which equality is attained
are called extremal. Among the bodies of size ˙.K/ D 1 these are precisely the
bodies for which

P.K � Z0/ � e�� t

holds with equality (thus maximizing the inclusion probability). The final ingredient
required in this general setting, if ˚; ˙ are given, is a deviation functional # on
fK 2 Kd

.o/ W ˙.K/ > 0g, which should be continuous, nonnegative, homogeneous
of degree zero, and satisfy #.K/ D 0 for some K with ˙.K/ > 0 if and only if K is
extremal. Then exponential bounds of the form

P.#.Z0/ �  j ˙.Z0/ 2 Œa; b�/ � c exp
��c0f ./ar=kt

�
(10)

with a function f W RC ! RC which is positive on .0; 1/, with f .0/ D 0, and
which satisfies

˚.K/ � .1 C f .//�˙.K/r=k if #.K/ � ;

are established in [51]. Thus if we know that K has positive distance #.K/ from an
extremal body, we can again use this information to obtain an improved version
of a very general inequality of isoperimetric type. As mentioned before, results
of this form are known as stability results. Note that for the choice ˙ D ˚ , the
inequality (9) becomes a tautological identity and all K 2 Kd

.o/ with K ¤ fog are
extremal. Hence, in this case # is identically zero and (10) holds trivially.

Moreover, for the asymptotic distributions of size functionals it is shown that

lim
a!1 a�r=k lnP.˙.Z0/ � a/ D �� t;
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thus providing a far reaching extension of the result for the volume functional [51].
The paper [51] contains also a detailed discussion of various specific choices of
parameters and functionals which naturally occur in this context and which exhibit
a rich variety of phenomena. In the next subsection we point out how this setting
extends to Poisson–Voronoi tessellations. In the case of stationary and isotropic
Poisson hyperplane tessellations, a similar general investigation is carried out in
[52]. Extensions to lower-dimensional faces in Poisson hyperplane mosaics, which
are based on the above-mentioned distributional results for k-faces, are considered
in [53, 54].

Much less is known about the shape of small cells, although this has also been
asked for by Miles [75]. For parallel mosaics in the plane, some work has been done
in [10]. Recently, limit theorems for extremes of stationary random tessellations
have been explored in [22, 27], but the topic has not been exhaustively investigated
so far. In the survey [21], Calka discusses some generalizations of distributional
results for the largest centered inball (centered inradius) RM, the smallest centered
circumball (centered circumradius) and their joint distribution, for an isotropic
Poisson hyperplane process with distance exponent r � 1. These radii are related
to covering probabilities of the unit sphere by random caps. The two-dimensional
situation had already been considered in [20]. In particular, Calka points out that
after a geometric inversion at the unit sphere and by results available for convex hulls
of Poisson point processes in the unit ball (see [23, 24]), the asymptotic behavior of
P.RM � t C tı j Rm D t/ can be determined for a suitable choice of ı as t ! 1. In
addition, L1-convergence, a central limit theorem, and a moderate deviation result
are available for the number of facets and the volume of Z0.

3.4.6 Random Polyhedra

The techniques developed for the solution of Kendall’s problem turned out to be
useful also for the investigation of approximation properties of random polyhedra
derived from a stationary Poisson hyperplane process �t with intensity t > 0 and
directional distribution � . Here the basic idea is to replace the zero cell by the
K-cell ZK

t defined as the intersection of all half-spaces H� bounded by hyperplanes
H 2 �t for which K � H�. Let dH denote the Hausdorff distance of compact sets in
Rd, and let Ky be the convex hull of K and fyg. If the support of the area measure
Sd�1.K; �/ is contained in the support of � , then

P.dH.K; ZK
t / > / � c1./ exp .�c2t�.K; �; // ;

where c1."/; c2 are constants and

�.K; �; / D min
y2@.KCBd/

Z

Sd�1

Œh.Ky; u/ � h.K; u/� �.du/ > 0I
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see [55, Theorem1]. Using this bound as a starting point, under various assumptions
on the relation between the body K to be approximated and the directional
distribution � of the approximating hyperplane process, almost sure convergence
dH.K; ZK

t / ! 0 is shown as the intensity t ! 1, including bounds for the speed of
convergence. It would be interesting to consider the rescaled sequence

�
t

log t

� 2
dC1

dH.K; ZK
t /

and to obtain further geometric information about the limit, for instance, if � is
bounded from above and from below by a multiple of spherical Lebesgue measure.

3.4.7 Poisson–Voronoi and Delaunay Mosaics

Perhaps the most common and best known tessellation in Euclidean space is the
Voronoi tessellation. A Voronoi tessellation arises from a locally finite set �t � Rd

(deterministic or random) of points by associating with each point x 2 �t the cell

v�t .x/ WD fz 2 Rd W kz � xk 6 kz � yk for all y 2 �tg

with nucleus (center) x. One reason for the omnipresence of Voronoi tessellations is
that they are related to a natural growth process starting simultaneously at all nuclei
at the same time. If �t is a stationary Poisson process with intensity t > 0, then the
collection of all cells v�t .x/, x 2 �t, is a random tessellation X of Rd which is called
Poisson–Voronoi tessellation. The distribution of the typical cell of X is naturally
defined by

Q.�/ WD 1

t
E

Z

B

1fv�t .x/ � x 2 �g �t.dx/; (11)

where B � Rd is an arbitrary Borel set with volume 1. A random polytope Z with
distribution Q is called typical cell of X. An application of the Slivnyak–Mecke
theorem shows that the typical cell Z is equal in distribution to v�tCıo.o/, hence Z
is stochastically equivalent to the zero cell of a Poisson hyperplane tessellation with
generating Poisson hyperplane process given by Y D P

x2�t
ıH.x/, where H.x/ is the

mid-hyperplane of o and x. It is easy to check that Y is isotropic but nonstationary
with intensity measure

EY.�/ D 2dt
Z

Sd�1

1Z

0

1fH.u; x/ 2 �g xd�1 `1.dx/Hd�1.du/; (12)
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where H.u; x/ WD u? C xu is the hyperplane normal to u and passing through
xu. Hence, Y perfectly fits into the framework of the parametric class of Poisson
hyperplane processes discussed before. This also leads to the following analogue
(see [57]) of Theorem 4. To state it, let #.K/, for a convex body K containing the
origin in its interior, be defined by #.K/ WD .Ro � ro/=.Ro C ro/, where Ro is
the radius of the smallest ball with center o containing K and ro is the radius of the
largest ball contained in K and center o.

Theorem 5 Let X be a Poisson–Voronoi tessellation as described above with
typical cell Z. Let k 2 f1; : : : ; dg. There is a constant cd, depending only on the
dimension, such that the following is true. If " 2 .0; 1/ and I D Œa; b/ (b D 1
permitted) with ad=kt � 1, then

P .#.Z/ � " j Vk.Z/ 2 I/ � cd;" exp
��cd".dC3/=2ad=kt

�
;

where cd;" is a constant depending on d and ".

It should be noted that conditioning on the mean width V1 is not excluded here.
Moreover, asymptotic distributions of the intrinsic volumes of the typical cell can
be determined as well. Although in retrospect this follows from the general results
in [51], specific geometric stability results have to be established.

The shape of large typical k-faces in Poisson–Voronoi tessellations, with respect
to the generalized nucleus as center function, has been explored in [53]. Here
large typical faces are assumed to have a large centered inradius. A corresponding
analysis for large k-volume seems to be difficult. In this context, the joint distribution
of the typical k-face and the typical k-co-radius is described explicitly and related
to a Poisson process of k-dimensional halfspaces with explicitly given intensity
measure.

The distributional results obtained in [53] complement fairly general distri-
butional properties of stationary Poisson–Voronoi tessellations that have been
established by Baumstark and Last [7]. In particular, they describe the joint
distribution of the d �k C1 neighbors of the k-dimensional face containing a typical
point (i.e., a point chosen uniformly) on the k-faces of the tessellation. Thus they
generalize in particular the classical result about the distribution of the typical cell
of the Poisson–Delaunay tessellation, which is dual to the given Poisson–Voronoi
tessellation. The combinatorial nature of this duality and its consequences are nicely
described in [104, Sect. 10.2]. Kendall’s problem for the typical cell in Poisson–
Delaunay tessellations is explored in [50] (see also [48]).

3.4.8 High-Dimensional Mosaics and Polytopes

Despite significant progress, precise and explicit information about mean values or
even variances and higher moments in stochastic geometry is rather rare. This is one
reason why often asymptotic regimes are considered, where the number of points,
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the intensity of a point process, or the size of an observation window is growing to
infinity. On the other hand, high-dimensional spaces are a central and challenging
topic which has been explored for quite some time, motivated by intrinsic interest
and applications.

Let X be a Poisson–Voronoi tessellation generated by a stationary Poisson
point process with intensity t in Rd. As before, let Z denote its typical cell. By
definition (11), Z contains the origin in its interior. It is not hard to show that t�k �
EŒVd.Z/k� � kŠt�k, in particular, EŒVd.Z/� D 1=t. These bounds are independent
of the dimension d. Using a much finer analysis, Alishahi and Sharifitabar [1]
showed that

c

t2
p

d

�
4

3
p

3

�d

� Var.Vd.Z// � C

t2
p

d

�
4

3
p

3

�d

;

where c; C > 0 are absolute constants. In a sense, this suggests that Vd.Z/ gets
increasingly deterministic. On the other hand, if Bd.u/ is a ball of volume u centered
at the origin, then

Vd.Z \ Bd.u// ! t�1
�
1 � e�tu

�
; d ! 1;

in L2 and in distribution. The paper [1] was the starting point for a more general
high-dimensional investigation of the volume of the zero cell Z0 in a parametric
class of isotropic but not necessarily stationary Poisson hyperplane tessellations.
This parametric class is characterized by the intensity measure of the underlying
Poisson hyperplane process which is of the form (8) but with � being the normalized
spherical Lebesgue measure. That the case of the typical cell of a Poisson–Voronoi
tessellation is included in this model can be seen from (12) by choosing the distance
exponent r D d and by adjusting the intensities. Depending on the intensity t,
the distance parameter r, and the dimension d, explicit formulas for the second
moment E.Vd.Z0/2/ and the variance Var.Vd.Z0// as well as sharp bounds for these
characteristics were derived in [45]. Depending on the tuning of these parameters,
the asymptotic behavior of Vd.Z0/ can differ dramatically.

To describe an interesting consequence of such variance bounds, we define
by Z WD Vd.Z/�1=dZ the volume normalized typical cell of a Poisson–Voronoi
tessellation with intensity t (as above). Let L � Rd be a co-dimension one linear
subspace. Then there is an absolute constant c > 0 such that

P
�
Vd�1

�
Z \ L

� � p
e=2

� � 1 � c � 1p
d

�
4

3
p

3

�d

:

This is a very special case of Theorem 3.17 in [46]. It can be paraphrased by saying
that with overwhelming probability the hyperplane conjecture, a major problem in
the asymptotic theory of Banach spaces, is true for this class of random polytopes,
see Milman and Pajor [76].
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In [46] also the high-dimensional limits of the mean number of faces and an
isoperimetric ratio of a mean volume and a mean surface area are studied for the
zero cell of a parametric class of random tessellations (as an example of a random
polytope). As a particular instance of such a result, we mention that

lim
d!1 d�1=2 d

p
Ef`.Z0/ D p

2�b;

where r D bd (with b fixed) increases proportional to the dimension d and ` is
fixed. It is remarkable that this limit is independent of `. At the basis of this and
other results are identities connecting the f -vector of Z0 to certain dual intrinsic
volumes of projections of Z0 to a deterministic subspace.

3.4.9 Poisson–Voronoi Approximation

Let A be a Borel set in Rd and let �t be a Poisson point process in Rd. Assume that
we observe �t and the only information about A at our disposal is which points of
�t lie in A, i.e., we have the partition of the process �t into �t \ A and �t n A. We
try to reconstruct the set A just by the information contained in these two point sets.
For that aim we approximate A by the set A�t of all points in Rd which are closer to
�t \ A than to �t n A.

Applications of the Poisson–Voronoi approximation include nonparametric
statistics (see Einmahl and Khmaladze [32, Sect. 3]), image analysis (reconstructing
an image from its intersection with a Poisson point process, see [63]), quantization
problems (see, e.g., Chap. 9 in the book of Graf and Luschgy [35]), and numerical
integration (approximation of the volume of a set A using its intersection with a
point process �t \ A).

More formally, let �t be a homogeneous Poisson point process of intensity t > 0,
and denote by v�t .x/ the Voronoi cell generated by �t with center x 2 �t. Then the
set A�t is just the union of the Poisson–Voronoi cells with center lying in A, i.e.,

A�t D
[

x2�t\A

v�t .x/:

We call this set the Poisson–Voronoi approximation of the set A. It was first
introduced by Khmaladze and Toronjadze in [63]. They proposed A�t to be an
estimator for A when t is large. In particular, they conjectured that for arbitrary
bounded Borel sets A � Rd, d > 1;

Vd.A�t / ! Vd.A/; t ! 1;

Vd.A4A�t/ ! 0; t ! 1; (13)
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almost surely, where 4 is the operation of the symmetric difference of sets. In full
generality this was proved by Penrose [84].

It can be easily shown that for any Borel set A � Rd we have

EVd.A�t / D Vd.A/;

since �t is a stationary point process. Thus Vd.A�t / is an unbiased estimator for the
volume of A. Relation (13) suggests that

EVd.A4A�t/ ! 0; t ! 1; (14)

although this is not a direct corollary. The more interesting problems are to find
exact asymptotic of EVd.A4A�t/, VarVd.A�t /, and VarVd.A4A�t/.

Very general results in this direction are provided by Reitzner et al. [92].
Their results for Borel sets with finite volume Vd.A/ depend on the perimeter
Per.A/ of the set A in the sense of variational calculus. If A is a compact set
with Lipschitz boundary (e.g., a convex body), then Per.A/ equals the .d � 1/-
dimensional Hausdorff measure Hd�1.@A/ of the boundary @A of A. In the general
case Per.A/ 6 Hd�1.@A/ holds.

If A � Rd is a Borel set with Vd.A/ < 1 and Per.A/ < 1, then

EVd.A4A�t/ D cd � Per.A/ � t�1=d.1 C o.1//; t ! 1; (15)

where cd D 2d�2� .1=d/�d�1�
�1�1=d
d .

The asymptotic order of the variances of A�t and A4A�t as t ! 1 was first
studied in [44] for convex sets and then extended in [92] to arbitrary Borel sets,
where also sharp upper bounds in terms of the perimeter are given. A very general
result in this direction is due to Yukich [114]. If A � Rd is a Borel set with Vd.A/ <

1 and finite .d � 1/-dimensional Hausdorff measure Hd�1.@A/ of the boundary of
A, then

VarVd.A�t / D C1.A/t�1�1=d.1 C o.1//;

and

VarVd.A4A�t/ D C2.A/t�1�1=d.1 C o.1//; t ! 1;

with explicitly given constants Ci.A/.
A breakthrough was achieved by Schulte [107] for convex sets A and, more

generally, by Yukich [114] for sets with a boundary of finite .d � 1/-dimensional
Hausdorff measure. They proved central limit theorems for Vd.A�t/ and Vd.A4A�t/.

Recently, Lachièze-Rey and Peccati [68] proved bounds for the variance, higher
moments, and central limit theorems for a huge class of sets, including fractals.
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Another interesting open problem is to measure the quality of approximation
of a convex set K by K�t in terms of the Hausdorff distance between both sets.
First estimates for the Hausdorff distance are due to Calka and Chenavier [22],
very recently Lachièze-Rey and Vega [70] proved precise results on the Hausdorff
distance even for irregular sets.

Since A�t ! A in the sense described above, it is of interest to compare the
boundary @A to the boundary of the Poisson–Voronoi approximation @A�t . This has
been explored recently by Yukich [114] who showed that Hd�1.@A�t /—scaled by
a suitable factor independent of A—is an unbiased estimator for Hd�1.@A/, and he
also obtained variance asymptotics. We also mention a very recent deep contribution
due to Thäle and Yukich [111] who investigate a large number of functionals of A�t .

3.5 Random Polytopes

The investigation of random polytopes started 150 years ago when Sylvester
stated in 1864 his four-point-problem in the Educational Times. Choose n points
independently according to some probability measure in Rd. Denote the convex hull
of these points by convfX1; : : : ; Xng. Sylvester asked for the distribution function of
the number of vertices of convfX1; : : : ; X4g in the case d D 2.

Random polytopes are linked to other fields and have important applications.
We mention the connection to functional analysis: Milman and Pajor [76] showed
that the expected volume of a random simplex is closely connected to the so-called
isotropic constant of a convex set which is a fundamental quantity in the local theory
of Banach spaces.

In this section we will concentrate on recent contributions and refer to the surveys
by Hug [49], Reitzner [90], and Schneider [103] for additional information. Let �t

be a Poisson point process with intensity measure of the form �t D t�1, t > 0,
where �1 is an absolutely continuous probability measure on Rd. Then the Poisson
polytope is defined as ˘t D conv.�t/.

There are only few results for given t and general probability measures �1. In
analogy to Efron [31], it immediately follows from the Slivnyak–Mecke theorem
that Ef0.˘t/ D t � E�t.˘t//, connecting the probability content E�t.˘t/ and the
expected number of vertices Ef0.˘t/. Identities for higher moments have been given
by Beermann and Reitzner [9] who extended this further to an identity between the
generating function gI.˘t/ of the number of non-vertices or inner points I.˘t/ D
j�tj � f0.˘t/ and the moment generating function h�t.˘t/ of the �t-measure of ˘t.
Both functions are entire functions on C and satisfy

gI.˘t/.z C 1/ D h�t.˘t/.z/; z 2 C;

thus relating the distributions of the number of vertices and the �t-measure of ˘t.
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3.5.1 General Inequalities

Assume that K � Rd is a compact convex set and set �t.�/ D tVd.K \ �/. We denote
by ˘K

t D convŒ�t� the Poisson polytope in K.
In this section we describe some inequalities for Poisson polytopes. Based on the

work of Blaschke [11], Dalla and Larman [28], Giannopoulos [33], and Groemer
[36, 37] showed that

EVd.˘B
t / � EVd.˘K

t / � EVd.˘4
t / (16)

where ˘4
t , resp. ˘B

t denotes the Poisson polytope where the underlying convex
set is a simplex, resp. a ball of the same volume as K. The left inequality is true
in arbitrary dimensions, whereas the right inequality is just known in dimension
d D 2 and open in higher dimensions. To prove this extremal property of the simplex
in arbitrary dimensions seems to be very difficult and is still a challenging open
problem. A positive solution to this problem would immediately imply a solution to
the hyperplane conjecture, see Milman and Pajor [76].

There are some elementary questions concerning the monotonicity of functionals
of ˘K

t . First, it is immediate that for all K 2 Kd and i D 1; : : : ; d,

EVi.˘
K
t / � EVi.˘

K
s /

for t � s. Second, an analogous inequality for the number of vertices is still widely
open. It is only known, see [30], that for t � s

Ef0.˘
K
t / � Ef0.˘

K
s /

for d D 2 (and also for smooth convex sets K � R3 if t is sufficiently large). Thirdly,
the very natural implication

K � L ) EVd.˘K
t j �t.K/ D n/ � EVd.˘L

t j �t.L/ D n/

was asked by Meckes and disproved by Rademacher [85]. He showed that for
dimension d � 4 there are convex sets K � L such that for t sufficiently small
EVd.˘K

t j �t.K/ D n/ > EVd.˘L
t j �t.L/ D n/. In addition, Rademacher showed

that in the planar case this natural implication is true. The case d D 3 is still open.

3.5.2 Asymptotic Behavior of the Expectations

Starting with two famous articles by Rényi and Sulanke [94, 95], the investigations
focused on the asymptotic behavior of the expected values as t tends to infinity.
Due to work of Wieacker [113], Schneider and Wieacker [106], Bárány [2], and



178 D. Hug and M. Reitzner

Reitzner [87], for i D 1; : : : ; d,

Vi.K/ � EVi.˘
K
t / D ci.K/t�

2
dC1 C o

�
t�

2
dC1

�
(17)

if K is sufficiently smooth. Investigations by Schütt [110] and more recently by
Böröczky et al. [15] succeeded in weakening the smoothness assumption. Clearly,
Efron’s identity yields a similar result for the number of vertices.

The corresponding results for polytopes are known only for i D 1 and i D d. In
a long and intricate proof, Bárány and Buchta [3] showed that

Vd.K/ � EVd.˘K
t / D cd.K/t�1 lnd�1 t C O

�
t�1 lnd�2 t lln t

�
:

For i D 1, Buchta [18] and Schneider [96] proved that

V1.K/ � EV1.˘
K
t / D c.K/t� 1

d C o.t� 1
d /:

Somehow surprisingly, the cases 2 � i � d � 1 are still open.
Due to Efron’s identity, the results concerning EVd.˘K

t / can be used to
determine the expected number of vertices of ˘K

t . In [89], Reitzner generalized
these results for Ef0.˘K

t / to arbitrary face numbers Ef`.˘K
t /, ` 2 f0; : : : ; d � 1g.

3.5.3 Variances

In the last years several estimates have been obtained from which the order of the
variances can be deduced, see Reitzner [86, 88, 89], Vu [112], Bárány and Reitzner
[5], and Bárány et al. [6]. The results can be summarized by saying that there are
constants c.K/; c.K/ > 0 such that

c.K/t�1EVi.˘
K
t / � VarVi.˘

K
t / � c.K/t�1EVi.˘

K
t /

and

c.K/t�1Ef`.˘
K
t / � Varf`.˘K

t / � c.K/t�1Ef`.˘
K
t /

if K is smooth or a polytope. It is conjectured that these inequalities hold for general
convex bodies. That the lower bound holds in general has been proved in Bárány
and Reitzner [5], but the general upper bounds are missing.

A breakthrough are recent results by Calka et al. [26] and Calka and Yukich [25]
who succeeded in giving the precise asymptotics of these variances,

VarVi.˘
K
t / D cd;i.K/ t�

dC3
dC1 C o.t�

dC3
dC1 /
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for i D 1; d, and

Varf`.˘K
t / D Ncd;`.K/ t

d�1
dC1 C o.t

d�1
dC1 /

if K is a smooth convex body. The dependence of Ncd;`.K/ on K is known explicitly.

3.5.4 Limit Theorems

First CLTs have been proved by Groeneboom [39], Cabo and Groeneboom [19], and
Hsing [47] but only in the planar case. In recent years, methods have been developed
to prove CLTs for the random variables Vd.˘K

t / and f`.˘K
t / in arbitrary dimensions.

The main ingredients are Stein’s method and some kind of localization arguments.
For smooth convex sets this was achieved in Reitzner [88], and for polytopes in a
paper by Bárány and Reitzner [4]. The results state that there is a constant c.K/ and
a function ".t/, tending to zero as t ! 1, such that

ˇ̌
ˇ̌
ˇP
 

Vd.˘K
t / � EVd.˘K

t /p
VarVd.˘K

t /
� x

!
� ˚.x/

ˇ̌
ˇ̌
ˇ � c.K/ ".t/

and
ˇ̌
ˇ̌
ˇP
 

f`.˘K
t / � Ef`.˘K

t /p
Varf`.˘K

t /
� x

!
� ˚.x/

ˇ̌
ˇ̌
ˇ � c.K/ ".t/:

A surprising recent result is due to Pardon [79, 80] who proved in the Euclidean
plane a CLT for the volume of ˘K

t for all convex bodies K without any restriction
on the boundary structure of K. A similar general result in higher dimensions seems
to be out of reach at the moment.
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