
Stochastic Analysis for Poisson Processes

Günter Last

Abstract This chapter develops some basic theory for the stochastic analysis of
Poisson process on a general �-finite measure space. After giving some fundamental
definitions and properties (as the multivariate Mecke equation) the chapter presents
the Fock space representation of square-integrable functions of a Poisson process
in terms of iterated difference operators. This is followed by the introduction
of multivariate stochastic Wiener–Itô integrals and the discussion of their basic
properties. The chapter then proceeds with proving the chaos expansion of square-
integrable Poisson functionals, and defining and discussing Malliavin operators.
Further topics are products of Wiener–Itô integrals and Mehler’s formula for the
inverse of the Ornstein–Uhlenbeck generator based on a dynamic thinning proce-
dure. The chapter concludes with covariance identities, the Poincaré inequality, and
the FKG-inequality.

1 Basic Properties of a Poisson Process

Let .X;X / be a measurable space. The idea of a point process with state space
X is that of a random countable subset of X, defined over a fixed probability
space .˝;A ;P/. It is both convenient and mathematically fruitful to define a point
process as a random element � in the space N� .X/ � N� of all �-finite measures �

on X such that �.B/ 2 ZC [ f1g for all B 2 X . To do so, we equip N� with the
smallest �-field N� .X/ � N� of subsets of N� such that � 7! �.B/ is measurable
for all B 2 X . Then � W ˝ ! N� is a point process if and only if

f�.B/ D kg � f! 2 ˝ W �.!; B/ D kg 2 A

for all B 2 X and all k 2 ZC. Here we write �.!; B/ instead of the more clumsy
�.!/.B/. We wish to stress that the results of this chapter do not require special
(topological) assumptions on the state space.
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2 G. Last

The Dirac measure ıx at the point x 2 X is the measure on X defined by ıx.B/ D
1B.x/, where 1B is the indicator function of B 2 X . If X is a random element of
X, then ıX is a point process on X. Suppose, more generally, that X1; : : : ; Xm are
independent random elements in X with distribution Q. Then

� WD ıX1 C � � � C ıXm (1)

is a point process on X. Because

P.�.B/ D k/ D
 

m

k

!
Q.B/k.1 � Q.B//m�k; k D 0; : : : ; m;

� is referred to as binomial process with sample size m and sampling distribution
Q. Taking an infinite sequence X1; X2; : : : of independent random variables with
distribution Q and replacing in (1) the deterministic sample size m by an indepen-
dent ZC-valued random variable � (and interpreting an empty sum as null measure)
yields a mixed binomial process. Of particular interest is the case where � has a
Poisson distribution with parameter � � 0, see also (5) below. It is then easy to
check that

E exp

�
�
Z

u.x/�.dx/

�
D exp

�
�
Z

.1 � e�u.x//�.dx/

�
; (2)

for any measurable function u W X ! Œ0; 1/, where � WD �Q. It is convenient to
write this as

E expŒ��.u/� D exp
� � �.1 � e�u/

�
; (3)

where 	.u/ denotes the integral of a measurable function u with respect to a measure
	. Clearly,

�.B/ D E�.B/; B 2 X ; (4)

so that � is the intensity measure of �. The identity (3) or elementary probabilistic
arguments show that � has independent increments, that is, the random variables
�.B1/; : : : ; �.Bm/ are stochastically independent whenever B1; : : : ; Bm 2 X are
pairwise disjoint. Moreover, �.B/ has a Poisson distribution with parameter �.B/,
that is

P.�.B/ D k/ D �.B/k

kŠ
expŒ��.B/�; k 2 ZC: (5)

Let � be a �-finite measure on X. A Poisson process with intensity measure �

is a point process � on X with independent increments such that (5) holds, where
an expression of the form 1e�1 is interpreted as 0. It is easy to see that these two



Stochastic Analysis for Poisson Processes 3

requirements determine the distribution P� WD P.� 2 �/ of a Poisson process �. We
have seen above that a Poisson process exists for a finite measure �. In the general
case, it can be constructed as a countable sum of independent Poisson processes,
see [12, 15, 18] for more details. Equation (3) remains valid. Another consequence
of this construction is that � has the same distribution as

� D
�.X/X
nD1

ıXn ; (6)

where X1; X2; : : : are random elements in X. A point process that can be (almost
surely) represented in this form will be called proper. Any locally finite point
process on a Borel subset of a complete separable metric space is proper. However,
there are examples of Poisson processes which are not proper.

Let � be a Poisson process with intensity measure �. A classical and extremely
useful formula by Mecke [18] says that

E

Z
h.�; x/�.dx/ D E

Z
h.� C ıx; x/�.dx/ (7)

for all measurable h W N� � X ! Œ0; 1�. One can use the mixed binomial
representation to prove this result for finite Poisson processes. An equivalent
formulation for a proper Poisson process is

E

Z
h.� � ıx; x/�.dx/ D E

Z
h.�; x/�.dx/ (8)

for all measurable h W N� � X ! Œ0; 1�. Although � � ıx is in general a signed
measure, we can use (6) to see that

Z
h.� � ıx; x/�.dx/ D

X
i

h

�X
j¤i

ıXj ; Xi

�

is almost surely well defined. Both (7) and (8) characterize the distribution of a
Poisson process with given intensity measure �.

Equation (7) admits a useful generalization involving multiple integration. To
formulate this version we consider, for m 2 N, the m-th power .Xm;X m/ of
.X;X /. Let � be a proper point process given by (6). We define another point
process �.m/ on Xm by

�.m/.C/ D
X¤

i1;:::;im��.X/

1C.Xi1 ; : : : ; Xim/; C 2 X m; (9)

where the superscript ¤ indicates summation over m-tuples with pairwise different
entries. (In the case �.X/ D 1 this involves only integer-valued indices.) In the
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case C D Bm for some B 2 X we have that

�.m/.Bm/ D �.B/.�.B/ � 1/ � � � .�.B/ � m C 1/:

Therefore �.m/ is called m-th factorial measure of �. It can be readily checked that,
for any m 2 N,

�.mC1/ D
Z � Z

1f.x1; : : : ; xmC1/ 2 �g�.dxmC1/ (10)

�
mX

jD1

1f.x1; : : : ; xm; xj/ 2 �g
�
�.m/.d.x1; : : : ; xm//;

where �.1/ WD �. This suggests a recursive definition of the factorial measures of a
general point process, without using a representation as a sum of Dirac measures.
The next proposition confirms this idea.

Proposition 1 Let � be a point process on X. Then there is a uniquely determined
sequence �.m/, m 2 N, of symmetric point processes on Xm satisfying �.1/ WD � and
the recursion (10).

The proof of Proposition 1 is given in the appendix and can be skipped without
too much loss. It is enough to remember that �.m/ can be defined by (9), whenever �

is given by (6) and that any Poisson process has a proper version.
The multivariate version of (7) (see e.g. [15]) says that

E

Z
h.�; x1; : : : ; xm/�.m/.d.x1; : : : ; xm//

D E

Z
h.� C ıx1 C � � � C ıxm ; x1; : : : ; xm/�m.d.x1; : : : ; xm//; (11)

for all measurable h W N� � Xm ! Œ0; 1�. In particular the factorial moment
measures of � are given by

E�.m/ D �m; m 2 N: (12)

Of course (11) remains true for a measurable h W N� � Xm ! R provided that the
right-hand side is finite when replacing h with jhj.

2 Fock Space Representation

In the remainder of this chapter we consider a Poisson process � on X with �-finite
intensity measure � and distribution P�.
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In this and later chapters the following difference operators (sometimes called
add-one cost operators) will play a crucial role. For any f 2 F.N� / (the set of all
measurable functions from N� to R) and x 2 X the function Dx f 2 F.N�/ is defined
by

Dx f .�/ WD f .� C ıx/ � f .�/; � 2 N� : (13)

Iterating this definition, for n � 2 and .x1; : : : ; xn/ 2 Xn we define a function
Dn

x1;:::;xn
f 2 F.N�/ inductively by

Dn
x1;:::;xn

f WD D1
x1

Dn�1
x2;:::;xn

f ; (14)

where D1 WD D and D0f D f . Note that

Dn
x1;:::;xn

f .�/ D
X

J�f1;2;:::;ng
.�1/n�jJjf

�
� C

X
j2J

ıxj

	
; (15)

where jJj denotes the number of elements of J. This shows that Dn
x1;:::;xn

f is
symmetric in x1; : : : ; xn and that .x1; : : : ; xn; �/ 7! Dn

x1;:::;xn
f .�/ is measurable. We

define symmetric and measurable functions Tn f on Xn by

Tnf .x1; : : : ; xn/ WD EDn
x1;:::;xn

f .�/; (16)

and we set T0f WD Ef .�/, whenever these expectations are defined. By h�; �in we
denote the scalar product in L2.�n/ and by k � kn the associated norm. Let L2

s .�n/

denote the symmetric functions in L2.�n/. Our aim is to prove that the linear
mapping f 7! .Tn. f //n�0 is an isometry from L2.P�/ into the Fock space given
by the direct sum of the spaces L2

s .�n/, n � 0 (with L2 norms scaled by nŠ�1=2) and
with L2

s .�0/ interpreted as R. In Sect. 4 we will see that this mapping is surjective.
The result (and its proof) is from [13] and can be seen as a crucial first step in the
stochastic analysis on Poisson spaces.

Theorem 1 Let f ; g 2 L2.P�/. Then

Ef .�/g.�/ D Ef .�/Eg.�/ C
1X

nD1

1

nŠ
hTn f ; Tngin; (17)

where the series converges absolutely.

We will prepare the proof with some lemmas. Let X0 be the system of all
measurable B 2 X with �.B/ < 1. Let F0 be the space of all bounded and
measurable functions v W X ! Œ0; 1/ vanishing outside some B 2 X0. Let G
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denote the space of all (bounded and measurable) functions g W N� ! R of the
form

g.�/ D a1e��.v1/ C � � � C ane��.vn/; (18)

where n 2 N, a1; : : : ; an 2 R and v1; : : : ; vn 2 F0.

Lemma 1 Relation (17) holds for f ; g 2 G.

Proof By linearity it suffices to consider functions f and g of the form

f .�/ D expŒ��.v/�; g.�/ D expŒ��.w/�

for v; w 2 F0. Then we have for n � 1 that

Dnf .�/ D expŒ��.v/�.e�v � 1/˝n;

where .e�v � 1/˝n.x1; : : : ; xn/ WD Qn
iD1.e

�v.xi/ � 1/. From (3) we obtain that

Tn f D expŒ��.1 � e�v/�.e�v � 1/˝n: (19)

Since v 2 F0 it follows that Tn f 2 L2
s .�n/, n � 0. Using (3) again, we obtain that

Ef .�/g.�/ D expŒ��.1 � e�.vCw//�: (20)

On the other hand we have from (19) (putting �0.1/ WD 1) that

1X
nD0

1

nŠ
hTn f ; Tngin

D expŒ��.1 � e�v/� expŒ��.1 � e�w/�

1X
nD0

1

nŠ
�n...e�v � 1/.e�w � 1//˝n/

D expŒ��.2 � e�v � e�w/� expŒ�..e�v � 1/.e�w � 1//�:

This equals the right-hand side of (20). ut
To extend (17) to general f ; g 2 L2.P�/ we need two further lemmas.

Lemma 2 The set G is dense in L2.P�/.

Proof Let W be the space of all bounded measurable g W N� ! R that can be
approximated in L2.P�/ by functions in G. This space is closed under monotone and
uniformly bounded convergence and also under uniform convergence. Moreover, it
contains the constant functions. The space G is stable under multiplication and we
denote by N 0 the smallest �-field on N� such that � 7! h.�/ is measurable for all
h 2 G. A functional version of the monotone class theorem (see e.g. Theorem I.21
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in [1]) implies that W contains any bounded N 0-measurable g. On the other hand
we have that

�.C/ D lim
t!0C t�1.1 � e�t�.C//; � 2 N� ;

for any C 2 X . Hence � 7! �.C/ is N 0-measurable whenever C 2 X0. Since � is
�-finite, for any C 2 X there is a monotone sequence Ck 2 X0, k 2 N, with union
C, so that � 7! �.C/ is N0-measurable. Hence N 0 D N� and it follows that W
contains all bounded measurable functions. But then W is clearly dense in L2.P�/

and the proof of the lemma is complete. ut
Lemma 3 Suppose that f ; f 1; f 2; : : : 2 L2.P�/ satisfy f k ! f in L2.P�/ as k ! 1,
and that h W N� ! Œ0; 1� is measurable. Let n 2 N, let C 2 X0 and set B WD Cn.
Then

lim
k!1E

Z
B

jDn
x1;:::;xn

f .�/ � Dn
x1;:::;xn

f k.�/jh.�/�n.d.x1; : : : ; xn// D 0: (21)

Proof By (15), the relation (21) is implied by the convergence

lim
k!1E

Z
B

ˇ̌̌
f
�
� C

mX
iD1

ıxi

	
� f k

�
� C

mX
iD1

ıxi

	ˇ̌̌
h.�/�n.d.x1; : : : ; xn// D 0 (22)

for all m 2 f0; : : : ; ng. For m D 0 this is obvious. Assume m 2 f1; : : : ; ng. Then the
integral in (22) equals

�.C/n�mE

Z
Cm

ˇ̌̌
f
�
� C

mX
iD1

ıxi

	
� f k

�
� C

mX
iD1

ıxi

	ˇ̌̌
h.�/�m.d.x1; : : : ; xm//

D �.C/n�mE

Z
Cm

j f .�/ � f k.�/jh
�
� �

nX
iD1

ıxi

	
�.m/.d.x1; : : : ; xm//

� �.C/n�mEj f .�/ � f k.�/j�.m/.Cm/;

where we have used (11) to get the equality. By the Cauchy–Schwarz inequality the
last expression is bounded above by

�.C/n�m.E. f .�/ � f k.�//2/1=2.E.�.m/.Cm//2/1=2:

Since the Poisson distribution has moments of all orders, we obtain (22) and hence
the lemma. ut
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Proof of Theorem 1 By linearity and the polarization identity

4hu; vin D hu C v; u C vin � hu � v; u � vin

it suffices to prove (17) for f D g 2 L2.P�/. By Lemma 2 there are f k 2 G,
k 2 N, satisfying f k ! f in L2.P�/ as k ! 1. By Lemma 1, Tf k, k 2 N, is a
Cauchy sequence in H WD R ˚ ˚1

nD1L2
s .�n/. The direct sum of the scalar products

.nŠ/�1h�; �in makes H a Hilbert space. Let Qf D .Qfn/ 2 H be the limit, that is

lim
k!1

1X
nD0

1

nŠ
kTn f k � Qfnk2

n D 0: (23)

Taking the limit in the identity Ef k.�/2 D hTf k; Tf kiH yields Ef .�/2 D hQf ; Qf iH.
Equation (23) implies that Qf0 D Ef .�/ D T0f . It remains to show that for any n � 1,

Qfn D Tn f ; �n-a.e. (24)

Let C 2 X0 and B WD Cn. Let �n
B denote the restriction of the measure �n to

B. By (23) Tn f k converges in L2.�n
B/ (and hence in L1.�n

B/) to Qfn, while by the
definition (16) of Tn, and the case h � 1 of (22), Tn f k converges in L1.�n

B/ to Tn f .
Hence these L1.P/ limits must be the same almost everywhere, so that Qfn D Tn f �n-
a.e. on B. Since � is assumed �-finite, this implies (24) and hence the theorem. ut

3 Multiple Wiener–Itô Integrals

For n � 1 and g 2 L1.�n/ we define (see [6, 7, 28, 29])

In.g/ WD
X
J�Œn�

.�1/n�jJj
“

g.x1; : : : ; xn/�.jJj/.dxJ/�
n�jJj.dxJc/; (25)

where Œn� WD f1; : : : ; ng, Jc WD Œn� n J and xJ WD .xj/j2J . If J D ;, then the inner
integral on the right-hand side has to be interpreted as �n.g/. (This is to say that
�.0/.1/ WD 1.) The multivariate Mecke equation (11) implies that all integrals in (25)
are finite and that EIn.g/ D 0.

Given functions gi W X ! R for i D 1; : : : ; n, the tensor product ˝n
iD1gi is

the function from Xn to R which maps each .x1; : : : ; xn/ to
Qn

iD1 gi.xi/. When the
functions g1; : : : ; gn are all the same function h, we write h˝n for this tensor product
function. In this case the definition (25) simplifies to

In.h
˝n/ D

nX
kD0

 
n

k

!
.�1/n�k�.k/.h˝k/.�.h//n�k: (26)
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Let ˙n denote the set of all permutations of Œn�, and for g 2 Xn ! R define the
symmetrization Qg of g by

Qg.x1; : : : ; xn/ WD 1

nŠ

X

2˙n

g.x
.1/; : : : ; x
.n//: (27)

The following isometry properties of the operators In are crucial. The proof is
similar to the one of [16, Theorem 3.1] and is based on the product form (12)
of the factorial moment measures and some combinatorial arguments. For more
information on the intimate relationships between moments of Poisson integrals and
the combinatorial properties of partitions we refer to [16, 21, 25, 28].

Lemma 4 Let g 2 L2.�m/ and h 2 L2.�n/ for m; n � 1 and assume that fg ¤
0g � Bm and fh ¤ 0g � Bn for some B 2 X0. Then

EIm.g/In.h/ D 1fm D ngmŠhQg; Qhim: (28)

Proof We start with a combinatorial identity. Let n 2 N. A subpartition of
Œn� is a (possibly empty) family � of nonempty pairwise disjoint subsets of Œn�.
The cardinality of [J2�J is denoted by k�k. For u 2 F.Xn/ we define u� W
Xj� jCn�k�k ! R by identifying the arguments belonging to the same J 2 � . (The
arguments x1; : : : ; xj� jCn�k�k have to be inserted in the order of occurrence.) Now
we take r; s 2 ZC such that r C s � 1 and define ˙r;s as the set of all partitions of
f1; : : : ; r C sg such that jJ \ f1; : : : ; rgj � 1 and jJ \ fr C 1; : : : ; r C sgj � 1 for all
J 2 � . Let u 2 F.XrCs/. It is easy to see that

“
u.x1; : : : ; xrCs/�

.r/.d.x1; : : : ; xr//�
.s/.d.xrC1; : : : ; xrCs//

D
X

�2˙r;s

Z
u� d�.j� j/; (29)

provided that �.fu ¤ 0g/ < 1. (In the case r D 0 the inner integral on the left-hand
side is interpreted as 1.)

We next note that g 2 L1.�m/ and h 2 L1.�n/ and abbreviate f WD g ˝ h. Let
k WD m C n, J1 WD Œm� and J2 WD fm C 1; : : : ; m C ng. The definition (25) and
Fubini’s theorem imply that

Im.g/In.h/ D
X
I�Œk�

.�1/n�jIj
•

f .x1; : : : ; xk/

�.jI\J1j/.dxI\J1/�
.jI\J2j/.dxI\J2 /�

n�jIj.dxIc/;

(30)

where Ic WD Œk� n I and xJ WD .xj/j2J for any J � Œk�. We now take the expectation
of (30) and use Fubini’s theorem (justified by our integrability assumptions on g
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and h). Thanks to (29) and (12) we can compute the expectation of the inner two
integrals to obtain that

EIm.g/In.h/ D
X

�2˙�

m;n

.�1/k�k�k
Z

f� d�k�k�kCj� j; (31)

where ˙�
m;n is the set of all subpartitions � of Œk� such that jJ \J1j � 1 and jJ \J2j �

1 for all J 2 � . Let ˙�;2
m;n � ˙�

m;n be the set of all subpartitions of Œk� such that
jJj D 2 for all J 2 � . For any 
 2 ˙�;2

m;n we let ˙�
m;n.
/ denote the set of all

� 2 ˙�
m;n satisfying 
 � � . Note that 
 2 ˙�

m;n.
/ and that for any � 2 ˙�
m;n there

is a unique 
 2 ˙�;2
m;n such that � 2 ˙�

m;n.
/. In this case

Z
f� d�k�k�kCj� j D

Z
f
d�k�k
k;

so that (31) implies

EIm.g/In.h/ D
X


2˙
�;2
m;n

Z
f
 d�k�k
k X

�2˙�

m;n.
/

.�1/k�k�k: (32)

The inner sum comes to zero, except in the case where k
k D k. Hence (32)
vanishes unless m D n. In the latter case we have

øEIm.g/In.h/ D
X


2˙
�;2
m;mWj
jDm

Z
f
 d�m D mŠhQg; Qhim;

as asserted. ut
Any g 2 L2.�m/ is the L2-limit of a sequence gk 2 L2.�m/ satisfying the

assumptions of Lemma 4. For instance we may take gk WD 1.Bk/mg, where
�.Bk/ < 1 and Bk " X as k ! 1. Therefore the isometry (28) allows
us to extend the linear operator Im in a unique way to L2.�m/. It follows
from the isometry that Im.g/ D Im.Qg/ for all g 2 L2.�m/. Moreover, (28)
remains true for arbitrary g 2 L2.�m/ and h 2 L2.�n/. It is convenient
to set I0.c/ WD c for c 2 R. When m � 1, the random variable Im.g/

is the (m-th order) Wiener–Itô integral of g 2 L2.�m/ with respect to the
compensated Poisson process O� WD � � �. The reference to O� comes from
the explicit definition (25). We note that O�.B/ is only defined for B 2 X0.
In fact, f O�.B/ W B 2 X0g is an independent random measure in the sense of
[7].
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4 The Wiener–Itô Chaos Expansion

A fundamental result of Itô [7] and Wiener [29] says that every square integrable
function of the Poisson process � can be written as an infinite series of orthogonal
stochastic integrals. Our aim is to prove the following explicit version of this
Wiener–Itô chaos expansion. Recall definition (16).

Theorem 2 Let f 2 L2.P�/. Then Tn f 2 L2
s .�n/, n 2 N, and

f .�/ D
1X

nD0

1

nŠ
In.Tn f /; (33)

where the series converges in L2.P/. Moreover, if gn 2 L2
s .�n/ for n 2 ZC satisfy

f .�/ D P1
nD0

1
nŠ

In.gn/ with convergence in L2.P/, then g0 D Ef .�/ and gn D Tn f ,
�n-a.e. on Xn, for all n 2 N.

For a homogeneous Poisson process on the real line, the explicit chaos expan-
sion (33) was proved in [8]. The general case was formulated and proved in [13].
Stroock [27] has proved the counterpart of (33) for Brownian motion. Stroock’s
formula involves iterated Malliavin derivatives and requires stronger integrability
assumptions on f .�/.

Theorem 2 and the isometry properties (28) of stochastic integrals show that the
isometry f 7! .Tn. f //n�0 is in fact a bijection from L2.P�/ onto the Fock space.
The following lemma is the key for the proof.

Lemma 5 Let f .�/ WD e��.v/, � 2 N� .X/, where v W X ! Œ0; 1/ is a measurable
function vanishing outside a set B 2 X with �.B/ < 1. Then (33) holds P-a.s.
and in L2.P/.

Proof By (3) and (19) the right-hand side of (33) equals the formal sum

I WD expŒ��.1 � e�v/� C expŒ��.1 � e�v/�

1X
nD1

1

nŠ
In..e�v � 1/˝n/: (34)

Using the pathwise definition (25) we obtain that almost surely

I D expŒ��.1 � e�v/�

1X
nD0

1

nŠ

nX
kD0

 
n

k

!
�.k/..e�v � 1/˝k/.�.1 � e�v//n�k

D expŒ��.1 � e�v/�

1X
kD0

1

kŠ
�.k/..e�v � 1/˝k/

1X
nDk

1

.n � k/Š
.�.1 � e�v//n�k

D
NX

kD0

1

kŠ
�.k/..e�v � 1/˝k/; (35)
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where N WD �.B/. Assume for the moment that � is proper and write ıX1 C� � �C ıXN

for the restriction of � to B. Then we have almost surely that

I D
X

J�f1;:::;Ng

Y
i2J

.e�v.Xi/ � 1/ D
NY

iD1

e�v.Xi/ D e��.v/;

and hence (33) holds with almost sure convergence of the series. To demonstrate
that convergence also holds in L2.P/, let the partial sum I.m/ be given by the right-
hand side of (34) with the series terminated at n D m. Then since �.1 � e�v/ is
nonnegative and j1 � e�v.y/j � 1 for all y, a similar argument to (35) yields

jI.m/j �
min.N;m/X

kD0

1

kŠ
j�.k/..e�v � 1/˝k/j

�
NX

kD0

N.N � 1/ � � � .N � k C 1/

kŠ
D 2N :

Since 2N has finite moments of all orders, by dominated convergence the series (34)
(and hence (33)) converges in L2.P/.

Since the convergence of the right-hand side of (34) as well as the almost sure
identity I D e��.v/ remain true for any point process with the same distribution as �

(that is, for any Poisson process with intensity measure �), it was no restriction of
generality to assume that � is proper. ut
Proof of Theorem 2 Let f 2 L2.P�/ and define Tnf for n 2 ZC by (16). By (28) and
Theorem 1,

1X
nD0

E
� 1

nŠ
In.Tn f /

	2 D
1X

nD0

1

nŠ
kTn f k2

n D Ef .�/2 < 1:

Hence the infinite series of orthogonal terms

S WD
1X

nD0

1

nŠ
In.Tn f /

converges in L2.P/. Let h 2 G, where G was defined at (18). By Lemma 5 and
linearity of In.�/ the sum

P1
nD0

1
nŠ

In.Tnh/ converges in L2.P/ to h.�/. Using (28)
followed by Theorem 1 yields

E.h.�/ � S/2 D
1X

nD0

1

nŠ
kTnh � Tnf kn D E. f .�/ � h.�//2:
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Hence if E. f .�/�h.�//2 is small, then so is E. f .�/�S/2. Since G dense in L2.P�/

by Lemma 2, it follows that f .�/ D S almost surely.
To prove the uniqueness, suppose that also gn 2 L2

s .�n/ for n 2 ZC are such thatP1
nD0

1
nŠ

In.gn/ converges in L2.P/ to f .�/. By taking expectations we must have
g0 D Ef .�/ D T0f . For n � 1 and h 2 L2

s .�n/, by (28) and (33) we have

Ef .�/In.h/ D EIn.Tnf /In.h/ D nŠhTnf ; hin

and similarly with Tnf replaced by gn, so that hTn f � gn; hin D 0. Putting h D
Tn f � gn gives kTn f � gnkn D 0 for each n, completing the proof of the theorem.

ut

5 Malliavin Operators

For any p � 0 we denote by Lp
� the space of all random variables F 2 Lp.P/ such

that F D f .�/ P-almost surely, for some f 2 F.N� /. Note that the space Lp
� is a

subset of Lp.P/ while Lp.P�/ is the space of all measurable functions f 2 F.N� /

satisfying
R j f jp dP� D Ej f .�/jp < 1. The representative f of F 2 Lp.P/ is is P�-

a.e. uniquely defined element of Lp.P�/. For x 2 X we can then define the random
variable DxF WD Dxf .�/. More generally, we define Dn

x1;:::;xn
F WD Dn

x1;:::;xn
f .�/ for

any n 2 N and x1; : : : ; xn 2 X. The mapping .!; x1; : : : ; xn/ 7! Dn
x1;:::;xn

F.!/ is
denoted by DnF (or by DF in the case n D 1). The multivariate Mecke equation (11)
easily implies that these definitions are P ˝ �-a.e. independent of the choice of the
representative.

By (33) any F 2 L2
� can be written as

F D EF C
1X

nD1

In. fn/; (36)

where fn WD 1
nŠ
EDnF. In particular we obtain from (28) (or directly from Theorem 1)

that

EF2 D .EF/2 C
1X

nD1

nŠk fnk2
n: (37)

We denote by dom D the set of all F 2 L2
� satisfying

1X
nD1

nnŠk fnk2
n < 1: (38)
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The following result is taken from [13] and generalizes Theorem 6.5 in [8] (see
also Theorem 6.2 in [20]). It shows that under the assumption (38) the pathwise
defined difference operator DF coincides with the Malliavin derivative of F. The
space dom D is the domain of this operator.

Theorem 3 Let F 2 L2
� be given by (36). Then DF 2 L2.P ˝ �/ iff F 2 dom D. In

this case we have P-a.s. and for �-a.e. x 2 X that

DxF D
1X

nD1

nIn�1. fn.x; �//: (39)

The proof of Theorem 3 requires some preparations. Since

Z � 1X
nD1

nnŠk fn.x; �/k2
n�1

	
�.dx/ D

1X
nD1

nnŠ

Z
k fnk2

n;

(28) implies that the infinite series

D0
xF WD

1X
nD1

nIn�1fn.x; �/ (40)

converges in L2.P/ for �-a.e. x 2 X provided that F 2 dom D. By construction of
the stochastic integrals we can assume that .!; x/ 7! .In�1fn.x; �//.!/ is measurable
for all n � 1. Therefore we can also assume that the mapping D0F given by .!; x/ 7!
D0

xF.!/ is measurable. We have just seen that

E

Z
.D0

xF/2�.dx/ D
1X

nD1

nnŠ

Z
k fnk2

n; F 2 dom D: (41)

Next we introduce an operator acting on random functions that will turn out to
be the adjoint of the difference operator D, see Theorem 4. For p � 0 let Lp

�.P˝ �/

denote the set of all H 2 Lp.P˝ �/ satisfying H.!; x/ D h.�.!/; x/ for P˝ �-a.e.
.!; x/ for some representative h 2 F.N� � X/. For such a H we have for �-a.e. x
that H.x/ WD H.�; x/ 2 L2.P/ and (by Theorem 2)

H.x/ D
1X

nD0

In.hn.x; �//; P-a.s.; (42)

where h0.x/ WD EH.x/ and hn.x; x1; : : : ; xn/ WD 1
nŠ
EDn

x1;:::;xn
H.x/. We can then

define the Kabanov–Skorohod integral [3, 10, 11, 26] of H, denoted ı.H/, by

ı.H/ WD
1X

nD0

InC1.hn/; (43)
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which converges in L2.P/ provided that

1X
nD0

.n C 1/Š

Z
Qh2

nd�nC1 < 1: (44)

Here

Qhn.x1; : : : ; xnC1/ WD 1

.n C 1/Š

nC1X
iD1

EDn
x1;:::;xi�1;xiC1;:::;xnC1

H.xi/ (45)

is the symmetrization of hn. The set of all H 2 L2
�.P ˝ �/ satisfying the latter

assumption is the domain dom ı of the operator ı.
We continue with a preliminary version of Theorem 4.

Proposition 2 Let F 2 dom D. Let H 2 L2
�.P ˝ �/ be given by (42) and assume

that

1X
nD0

.n C 1/Š

Z
h2

nd�nC1 < 1: (46)

Then

E

Z
.D0

xF/H.x/�.dx/ D EFı.H/: (47)

Proof Minkowski inequality implies (44) and hence H 2 dom ı. Using (40)
and (42) together with (28), we obtain that

E

Z
.D0

xF/H.x/�.dx/ D
Z � 1X

nD1

nŠhfn.x; �/; hn�1.x; �/in�1

�
�.dx/;

where the use of Fubini’s theorem is justified by (41), the assumption on H and the
Cauchy–Schwarz inequality. Swapping the order of summation and integration (to
be justified soon) we see that the last integral equals

1X
nD1

nŠhfn; hn�1in D
1X

nD1

nŠhfn; Qhn�1in;

where we have used the fact that fn is a symmetric function. By definition (43)
and (28), the last series coincides with EFı.H/. The above change of order is
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permitted since

1X
nD1

nŠ

Z
jhfn.x; �/; hn�1.x; �/in�1j�.dx/

�
1X

nD1

nŠ

Z
k fn.x; �/kn�1khn�1.x; �/kn�1�.dx/

and the latter series is finite in view of the Cauchy–Schwarz inequality, the finiteness
of (36) and assumption (46). ut
Proof of Theorem 3 We need to show that

DF D D0F; P ˝ �-a.e. (48)

First consider the case with f .�/ D e��.v/ with a measurable v W X ! Œ0; 1/

vanishing outside a set with finite �-measure. Then nŠfn D Tn f is given by (19).
Given n 2 N,

n � nŠ

Z
f 2
n d�n D 1

.n � 1/Š
expŒ2�.e�v � 1/�.�..e�v � 1/2//n

which is summable in n, so (38) holds in this case. Also, in this case, Dx f .�/ D
.ev.x/ � 1/f .�/ by (13), while fn.�; x/ D .e�v.x/ � 1/n�1fn�1 so that by (40),

D0
xf .�/ D

1X
nD1

.e�v.x/ � 1/In�1. fn�1/ D .e�v.x/ � 1/f .�/

where the last inequality is from Lemma 5 again. Thus (48) holds for f of this form.
By linearity this extends to all elements of G.

Let us now consider the general case. Choose gk 2 G, k 2 N, such that Gk WD
gk.�/ ! F in L2.P/ as k ! 1, see Lemma 2. Let H 2 L2

�.P� ˝ �/ have the
representative h.�; x/ WD h0.�/1B.x/, where h0 is as in Lemma 5 and B 2 X0. From
Lemma 5 it is easy to see that (46) holds. Therefore we obtain from Proposition 2
and the linearity of the operator D0 that

E

Z
.D0

xF � D0
xGk/H.x/�.dx/ D E. f � Gk/ı.H/ ! 0 as k ! 1: (49)

On the other hand,

E

Z
.DxF � DxGk/H.x/�.dx/ D E

Z
B

.Dx f .�/ � Dxgk.�//h0.�/�.dx/;
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and by the case n D 1 of Lemma 3, this tends to zero as k ! 1. Since D0
xgk D Dxgk

a.s. for �-a.e. x we obtain from (49) that

E

Z
.D0

x f /h.�; x/�.dx/ D E

Z
.Dx f .�//h.�; x/�.dx/: (50)

By Lemma 2, the linear combinations of the functions h considered above are dense
in L2.P� ˝ �/, and by linearity (50) carries through to h in this dense class of
functions too, so we may conclude that the assertion (48) holds.

It follows from (41) and (48) that F 2 dom D implies DF 2 L2
�.P ˝ �/. The

other implication was noticed in [22, Lemma 3.1]. To prove it, we assume DF 2
L2

�.P ˝ �/ and apply the Fock space representation (17) to E.DxF/2 for �-a.e. x.
This gives

Z
E.DxF/2�.dx/ D

1X
nD0

1

nŠ

“
.EDnC1

x1;:::;xn;x/
2�n.d.x1; : : : ; xn//�.dx/

D
1X

nD0

.n C 1/.n C 1/Šk fnC1k2
nC1

and hence F 2 dom D. ut
The following duality relation (also referred to as partial integration, or inte-

gration by parts formula) shows that the operator ı is the adjoint of the difference
operator D. It is a special case of Proposition 4.2 in [20] applying to general Fock
spaces.

Theorem 4 Let F 2 dom D and H 2 dom ı. Then,

E

Z
.DxF/H.x/�.dx/ D EFı.H/: (51)

Proof We fix F 2 dom D. Theorem 3 and Proposition 2 imply that (51) holds if
H 2 L2

�.P ˝ �/ satisfies the stronger assumption (46). For any m 2 N we define

H.m/.x/ WD
mX

nD0

In.hn.x; �//; x 2 X: (52)

Since H.m/ satisfies (46) we obtain that

E

Z
.DxF/H.m/.x/�.dx/ D EFı.H.m//: (53)
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From (28) we have

Z
E.H.x/ � H.m/.x//2�.dx/ D

Z � 1X
nDmC1

nŠkhn.x; �/k2
n

�
�.dx/

D
1X

nDmC1

nŠkhnk2
nC1:

As m ! 1 this tends to zero, since

E

Z
H.x/2�.dx/ D

Z
E.H.x//2�.dx/ D

1X
nD0

nŠkhnk2
nC1

is finite. It follows that the left-hand side of (53) tends to the left-hand side of (51).
To treat the right-hand side of (53) we note that

Eı.H � H.m//2 D
1X

nDmC1

E.InC1.hn//2 D
1X

nDmC1

.n C 1/ŠkQhnk2
nC1: (54)

Since H 2 dom ı this tends to 0 as m ! 1. Therefore E.ı.H/ � ı.H.m///2 ! 0

and the right-hand side of (53) tends to the right-hand side of (51). ut
We continue with a basic isometry property of the Kabanov–Skorohod integral.

In the present generality the result is in [17]. A less general version is [24,
Proposition 6.5.4].

Theorem 5 Let H 2 L2
�.P ˝ �/ be such that

E

“
.DyH.x//2�.dx/�.dy/ < 1: (55)

Then, H 2 dom ı and moreover

Eı.H/2 D E

Z
H.x/2�.dx/ C E

“
DyH.x/DxH.y/�.dx/�.dy/: (56)

Proof Suppose that H is given as in (42). Assumption (55) implies that H.x/ 2
dom D for �-a.e. x 2 X. We therefore deduce from Theorem 3 that

g.x; y/ WD DyH.x/ D
1X

nD1

nIn�1.hn.x; y; �//
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P-a.s. and for �2-a.e. .x; y/ 2 X2. Using assumption (55) together with the isometry
properties (28), we infer that

1X
nD1

nnŠkQhnk2
nC1 �

1X
nD1

nnŠkhnk2
nC1 D E

“
.DyH.x//2�.dx/�.dy/ < 1;

yielding that H 2 dom ı.
Now we define H.m/ 2 dom ı, m 2 N, by (52) and note that

Eı.H.m//2 D
mX

nD0

EInC1.Qhn/2 D
mX

nD0

.n C 1/ŠkQhnk2
nC1:

Using the symmetry properties of the functions hn it is easy to see that the latter sum
equals

mX
nD0

nŠ

Z
h2

nd�nC1 C
mX

nD1

nnŠ

“
hn.x; y; z/hn.y; x; z/�2.d.x; y//�n�1.dz/: (57)

On the other hand, we have from Theorem 3 that

DyH.m/.x/ D
mX

nD1

nIn�1.hn.x; y; �//;

so that

E

Z
H.m/.x/2�.dx/ C E

“
DyH.m/.x/DxH.m/.y/�.dx/�.dy/

coincides with (57). Hence

Eı.H.m//2 D E

Z
H.m/.x/2�.dx/ C E

“
DyH.m/.x/DxH.m/.y/�.dx/�.dy/:

(58)

These computations imply that gm.x; y/ WD DyH.m/.x/ converges in L2.P ˝ �2/

towards g. Similarly, g0
m.x; y/ WD DxH.m/.y/ converges towards g0.x; y/ WD Dxg.y/.

Since we have seen in the proof of Theorem 4 that H.m/ ! H in L2.P ˝ �/ as
m ! 1, we can now conclude that the right-hand side of (58) tends to the right-
hand side of the asserted identity (56). On the other hand we know by (54) that
Eı.H.m//2 ! Eı.H/2 as m ! 1. This concludes the proof. ut

To explain the connection of (55) with classical stochastic analysis we assume for
a moment that X is equipped with a transitive binary relation < such that f.x; y/ W
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x < yg is a measurable subset of X2 and such that x < x fails for all x 2 X. We also
assume that < totally orders the points of X �-a.e., that is

�.Œx�/ D 0; x 2 X; (59)

where Œx� WD X n fy 2 X W y < x or x < yg. For any � 2 N� let �x denote the
restriction of � to fy 2 X W y < xg. Our final assumption on < is that .�; y/ 7! �y is
measurable. A measurable function h W N� � X ! R is called predictable if

h.�; x/ D h.�x; x/; .�; x/ 2 N� � X: (60)

A process H 2 L0
�.P˝�/ is predictable if it has a predictable representative. In this

case we have P ˝ �-a.e. that DxH.y/ D 0 for y < x and DyH.x/ D 0 for x < y. In
view of (59) we obtain from (56) the classical Itô isometry

Eı.H/2 D E

Z
H.x/2�.dx/: (61)

In fact, a combinatorial argument shows that any predictable H 2 L2
�.P ˝ �/ is in

the domain of ı. We refer to [14] for more detail and references to the literature.
We return to the general setting and derive a pathwise interpretation of the

Kabanov–Skorohod integral. For H 2 L1
�.P ˝ �/ with representative h we define

ı0.H/ WD
Z

h.� � ıx; x/�.dx/ �
Z

h.�; x/�.dx/: (62)

The Mecke equation (7) implies that this definition does P-a.s. not depend on the
choice of the representative. The next result (see [13]) shows that the Kabanov–
Skorohod integral and the operator ı0 coincide on the intersection of their domains.
In the case of a diffuse intensity measure � (and requiring some topological
assumptions on .X;X /) the result is implicit in [23].

Theorem 6 Let H 2 L1
�.P ˝ �/ \ dom ı. Then ı.H/ D ı0.H/ P-a.s.

Proof Let H have representative h. The Mecke equation (7) shows the integrability
E
R jh.� � ıx; x/j�.dx/ < 1 as well as

E

Z
Dx f .�/h.�; x/�.dx/ D Ef .�/ı0.H/; (63)

whenever f W N� ! R is measurable and bounded. Therefore we obtain from (51)
that EFı0.H/ D EFı.H/ provided that F WD f .�/ 2 dom D. By Lemma 2 the space
of such bounded random variables is dense in L2

�.P/, so we may conclude that the
assertion holds. ut
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Finally in this section we discuss the Ornstein–Uhlenbeck generator L whose
domain dom L is given by the class of all F 2 L2

� satisfying

1X
nD1

n2nŠk fnk2
n < 1:

In this case one defines

LF WD �
1X

nD1

nIn. fn/:

The (pseudo) inverse L�1 of L is given by

L�1F WD �
1X

nD1

1

n
In. fn/: (64)

The random variable L�1F is well defined for any F 2 L2
�. Moreover, (37) implies

that L�1F 2 domL. The identity LL�1F D F, however, holds only if EF D 0.
The three Malliavin operators D; ı, and L are connected by a simple formula:

Proposition 3 Let F 2 dom L. Then F 2 dom D, DF 2 dom ı and ı.DF/ D �LF.

Proof The relationship F 2 dom D is a direct consequence of (37). Let H WD DF.
By Theorem 3 we can apply (43) with hn WD .n C 1/fnC1. We have

1X
nD0

.n C 1/Škhnk2
nC1 D

1X
nD0

.n C 1/Š.n C 1/2k fnC1k2
nC1

showing that H 2 dom ı. Moreover, since InC1.Qhn/ D InC1.hn/ it follows that

ı.DF/ D
1X

nD0

InC1.hn/ D
1X

nD0

.n C 1/InC1. fnC1/ D �LF;

finishing the proof. ut
The following pathwise representation shows that the Ornstein–Uhlenbeck

generator can be interpreted as the generator of a free birth and death process on X.

Proposition 4 Let F 2 dom L with representative f and assume DF 2 L1
�.P ˝ �/.

Then

LF D
Z

. f .� � ıx/ � f .�//�.dx/ C
Z

. f .� C ıx/ � f .�//�.dx/: (65)
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Proof We use Proposition 3. Since DF 2 L1
�.P ˝ �/ we can apply Theorem 6 and

the result follows by a straightforward calculation. ut

6 Products of Wiener–Itô Integrals

In this section we study the chaos expansion of Ip. f /Iq.g/, where f 2 L2
s .�p/ and

g 2 L2
s .�q/ for p; q 2 N. We define for any r 2 f0; : : : ; p ^ qg (where p ^ q WD

minfp; qg) and l 2 Œr� the contraction f ?l
r g W XpCq�r�l ! R by

f ?l
r g.x1; : : : ; xpCq�r�l/ (66)

WD
Z

f .y1; : : : ; yl; x1; : : : ; xp�l/

� g.y1; : : : ; yl; x1; : : : ; xr�l; xp�lC1; : : : ; xpCq�r�l/�
l.d.y1; : : : ; yl//;

whenever these integrals are well defined. In particular f ?0
0 g D f ˝ g.

In the case q D 1 the next result was proved in [10]. The general case is treated
in [28], though under less explicit integrability assumptions and for diffuse intensity
measure. Our proof is quite different.

Proposition 5 Let f 2 L2
s .�p/ and f 2 L2

s .�q/ and assume f ?l
r g 2 L2.�pCq�r�l/

for all r 2 f0; : : : ; p ^ qg and l 2 f0; : : : ; r � 1g. Then

Ip. f /Iq.g/ D
p^qX
rD0

rŠ

 
p

r

! 
q

r

!
rX

lD0

 
r

l

!
IpCq�r�l. f ?l

r g/; P-a.s. (67)

Proof First note that the Cauchy–Schwarz inequality implies f ?r
r g 2 L2.�pCq�2r/

for all r 2 f0; : : : ; p ^ qg.
We prove (67) by induction on p C q. For p ^ q D 0 the assertion is trivial. For

the induction step we assume that p ^ q � 1. If F; G 2 L0
�, then an easy calculation

shows that

Dx. fG/ D .DxF/G C F.DxG/ C .DxF/.DxG/ (68)

holds P-a.s. and for �-a.e. x 2 X. Using this together with Theorem 3 we obtain
that

Dx.Ip. f /Iq.g// D pIp�1. fx/Iq.g/ C qIp. f /Iq�1.gx/ C pqIp�1. fx/Iq�1.gx/;
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where fx WD f .x; �/ and gx WD g.x; �/. We aim at applying the induction hypothesis to
each of the summands on the above right-hand side. To do so, we note that

.fx ?l
r g/.x1; : : : ; xp�1Cq�r�l/ D f ?l

r g.x1; : : : ; xp�1�l; x; xp�1�lC1 : : : ; xp�1Cq�r�l/

for all r 2 f0; : : : ; .p � 1/ ^ qg and l 2 f0; : : : ; rg and

. fx ?l
r gx/.x1; : : : ; xp�1Cq�1�r�l/ D f ?l

rC1 g.x; x1; : : : ; xp�1Cq�1�r�l/

for all r 2 f0; : : : ; .p � 1/ ^ .q � 1/g and l 2 f0; : : : ; rg. Therefore the pairs . fx; g/,
. f ; gx/ and . fx; gx/ satisfy for �-a.e. x 2 X the assumptions of the proposition. The
induction hypothesis implies that

Dx.Ip. f /Iq.g// D
.p�1/^qX

rD0

rŠp

 
p � 1

r

! 
q

r

!
rX

lD0

 
r

l

!
IpCq�1�r�l. fx ?l

r g/

C
p^.q�1/X

rD0

rŠq

 
p

r

! 
q � 1

r

!
rX

lD0

 
r

l

!
IpCq�1�r�l. f ?l

r gx/

C
.p�1/^.q�1/X

rD0

rŠpq

 
p � 1

r

! 
q � 1

r

!
rX

lD0

 
r

l

!
IpCq�2�r�l. fx ?l

r gx/:

A straightforward but tedious calculation (left to the reader) implies that the above
right-hand side equals

p^qX
rD0

rŠ

 
p

r

! 
q

r

!
rX

lD0

 
r

l

!
.p C q � r � l/IpCq�r�l�1..Af ?l

r g/x/;

where the summand for p C q � r � l D 0 has to be interpreted as 0. It follows that

Dx.Ip. f /Iq.g// D DxG; P-a.s.; �-a.e. x 2 X;

where G denotes the right-hand side of (67). On the other hand, the isometry
properties (28) show that EIp. f /Iq.g/ D EG. Since Ip. f /Iq.g/ 2 L1

�.P/ we can
use the Poincaré inequality of Corollary 1 in Sect. 8 to conclude that

E.Ip. f /Iq.g/ � G/2 D 0:

This finishes the induction and the result is proved. ut
If ff ¤ 0g � Bp and fg ¤ 0g � Bq for some B 2 X0 (as in Lemma 4), then (67)

can be established by a direct computation, starting from (30). The argument is
similar to the proof of Theorem 3.1 in [16]. The required integrability follows from
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the Cauchy–Schwarz inequality; see [16, Remark 3.1]. In the case q � 2 we do not
see, however, how to get from this special to the general case via approximation.

Equation (67) can be further generalized so as to cover the case of a finite product
of Wiener–Itô integrals. We again refer the reader to [28] as well as to [16, 21].

7 Mehler’s Formula

In this section we assume that � is a proper Poisson process. We shall derive a
pathwise representation of the inverse (64) of the Ornstein–Uhlenbeck generator.

To give the idea we define for F 2 L2
� with representation (36)

TsF WD EF C
1X

nD1

e�nsIn. fn/; s � 0: (69)

The family fTs W s � 0g is the Ornstein–Uhlenbeck semigroup, see e.g. [24] and also
[19] for the Gaussian case. If F 2 domL then it is easy to see that

lim
s!0

TsF � F

s
D L

in L2.P/, see [19, Proposition 1.4.2] for the Gaussian case. Hence L can indeed be
interpreted as the generator of the semigroup. But in the theory of Markov processes
it is well known (see, e.g., the resolvent identities in [12, Theorem 19.4]) that

L�1F D �
1Z

0

TsFds; (70)

at least under certain assumptions. What we therefore need is a pathwise represen-
tation of the operators Ts. Our guiding star is the birth and death representation in
Proposition 4.

For F 2 L1
� with representative f we define,

PsF WD
Z

EŒf .�.s/ C �/ j ��˘.1�s/�.d�/; s 2 Œ0; 1�; (71)

where �.s/ is a s-thinning of � and where ˘�0 denotes the distribution of a Poisson
process with intensity measure �0. The thinning �.s/ can be defined by removing the
points in (6) independently of each other with probability 1 � s; see [12, p. 226].
Since

˘� D E

� Z
1f�.s/ C � 2 �g˘.1�s/�.d�/

�
; (72)
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this definition does almost surely not depend on the representative of F. Equa-
tion (72) implies in particular that

EPsF D EF; F 2 L1
�; (73)

while Jensen’s inequality implies for any p � 1 the contractivity property

E.PsF/p � EjFjp; s 2 Œ0; 1�; F 2 L2
�: (74)

We prepare the main result of this section with the following crucial lemma from
[17].

Lemma 6 Let F 2 L2
�. Then, for all n 2 N and s 2 Œ0; 1�,

Dn
x1;:::;xn

.PsF/ D snPsD
n
x1;:::;xn

F; �n-a.e. .x1; : : : ; xn/ 2 Xn; P-a.s. (75)

In particular

EDn
x1;:::;xn

PsF D snEDn
x1;:::;xn

F; �n-a.e..x1; : : : ; xn/ 2 Xn: (76)

Proof To begin with, we assume that the representative of F is given by f .�/ D
e��.v/ for some v W X ! Œ0; 1/ such that �.fv > 0g/ < 1. By the definition of a
s-thinning,

E
�
e��.s/.v/ j �

� D exp

� Z
log



.1 � s/ C se�v.y/

�
�.dy/

�
; (77)

and it follows from Lemma 12.2 in [12] that

Z
exp.��.v//˘.1�s/�.d�/ D exp

�
� .1 � s/

Z
.1 � e�v/d�

�
:

Hence, the definition (71) of the operator Ps implies that the following function fs is
a representative of PsF:

fs.�/ WD exp

�
� .1 � s/

Z 

1 � e�v

�
d�

�
exp

� Z
log



.1 � s/ C se�v.y/

�
�.dy/

�
:

Therefore we obtain for any x 2 X that

DxPsF D fs.� C ıx/ � fs.�/ D s


e�v.x/ � 1

�
fs.�/ D s



e�v.x/ � 1

�
PsF:

This identity can be iterated to yield for all n 2 N and all .x1; : : : ; xn/ 2 Xn that

Dn
x1;:::;xn

PsF D sn
nY

iD1



e�v.xi/ � 1

�
PsF:
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On the other hand we have P-a.s. that

PsD
n
x1;:::;xn

F D Ps

nY
iD1



e�v.xi/ � 1

�
F D

nY
iD1



e�v.xi/ � 1

�
PsF;

so that (75) holds for Poisson functionals of the given form.
By linearity, (75) extends to all F with a representative in the set G of all linear

combinations of functions f as above. There are fk 2 G, k 2 N, satisfying Fk WD
fk.�/ ! F D f .�/ in L2.P/ as k ! 1, where f is a representative of F (see [13,
Lemma 2.1]). Therefore we obtain from the contractivity property (74) that

EŒ.PsFk � PsF/2� D EŒ.Ps. fk � F//2� � EŒ. fk � F/2� ! 0;

as k ! 1. Taking B 2 X with �.B/ < 1, it therefore follows from [13,
Lemma 2.3] that

E

Z
Bn

jDn
x1;:::;xn

PsFk � Dn
x1;:::;xn

PsFj�.d.x1; : : : ; xn// ! 0;

as k ! 1. On the other hand we obtain from the Fock space representation (17)
that EjDn

x1;:::;xn
Fj < 1 for �n-a.e. .x1; : : : ; xn/ 2 Xn, so that linearity of Ps and (74)

imply

E

Z
Bn

jPsD
n
x1;:::;xn

Fk � PsD
n
x1;:::;xn

Fj�.d.x1; : : : ; xn//

�
Z
Bn

EjDn
x1;:::;xn

. fk � F/j�.d.x1; : : : ; xn//:

Again, this latter integral tends to 0 as k ! 1. Since (75) holds for any Fk we
obtain that (75) holds P ˝ .�B/n-a.e., and hence also P ˝ �n-a.e.

Taking the expectation in (75) and using (73) proves (76). ut
The following theorem from [17] achieves the desired pathwise representation of

the inverse Ornstein–Uhlenbeck operator.

Theorem 7 Let F 2 L2
�. If EF D 0 then we have P-a.s. that

L�1F D �
1Z

0

s�1PsFds: (78)
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Proof Assume that F is given as in (36). Applying (36) to PsF and using (76) yields

PsF D EF C
1X

nD1

snIn. fn/; P-a.s.; s 2 Œ0; 1�: (79)

Furthermore,

�
mX

nD1

1

n
In. fn/ D �

1Z
0

s�1

mX
nD1

snIn. fn/ds; m � 1:

Assume now that EF D 0. In view of (64) we need to show that the above right-
hand side converges in L2.P/, as m ! 1, to the right-hand side of (78). Taking
into account (79) we hence have to show that

Rm WD
1Z

0

s�1

�
PsF �

mX
nD1

snIn. fn/

�
ds D

1Z
0

s�1

� 1X
nDmC1

snIn. fn/

�
ds

converges in L2.P/ to zero. Using that EIn. fn/Im. fm/ D 1fm D ngnŠk fnk2
n we

obtain

ER2
m �

1Z
0

s�2E

� 1X
nDmC1

snIn. fn/

�2

ds D
1X

nDmC1

nŠk fnk2
n

1Z
0

s2n�2ds

which tends to zero as m ! 1. ut
Equation (79) implies Mehler’s formula

Pe�s F D EF C
1X

nD1

e�nsIn. fn/; P-a.s.; s � 0; (80)

which was proved in [24] for the special case of a finite Poisson process with a
diffuse intensity measure. Originally this formula was first established in a Gaussian
setting, see, e.g., [19]. The family fPe�s W s � 0g of operators describes a special
example of Glauber dynamics. Using (80) in (78) gives the identity (69).

8 Covariance Identities

The fundamental Fock space isometry (17) can be rewritten in several other
disguises. We give here two examples, starting with a covariance identity from [5]
involving the operators Ps.
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Theorem 8 Assume that � is a proper Poisson process. Then, for any F; G 2
dom D,

EFG D EF EG C E

Z 1Z
0

.DxF/.PtDxG/dt�.dx/: (81)

Proof The Cauchy–Schwarz inequality and the contractivity property (74) imply
that

�
E

Z 1Z
0

jDxFjjPsDxGjds�.dx/

�2

� E

Z
.DxF/2�.dx/E

Z
.DxG/2�.dx/

which is finite due to Theorem 3. Therefore we can use Fubini’s theorem and (75)
to obtain that the right-hand side of (81) equals

EF EG C
Z 1Z

0

s�1E.DxF/.DxPsG/ds�.dx/: (82)

For s 2 Œ0; 1� and �-a.e. x 2 X we can apply the Fock space isometry Theorem 1 to
DxF and DxPsG. Taking into account Lemma 6, (73) and applying Fubini again (to
be justified below) yields that the second summand in (82) equals

Z 1Z
0

s�1EDxF EDxPsG ds�.dx/

C
1X

nD1

1

nŠ

“ 1Z
0

s�1EDnC1
x1;:::;xn;xF EDnC1

x1;:::;xn;xPsG ds�n.d.x1; : : : ; xn//�.dx/

D
Z

EDxF EDxG�.dx/

C
1X

nD1

1

nŠ

“ 1Z
0

snEDnC1
x1;:::;xn;xF EDnC1

x1;:::;xn;xG ds�n.d.x1; : : : ; xn//�.dx/

D
1X

mD1

1

mŠ

Z
EDm

x1;:::;xm
F EDm

x1;:::;xm
G �m.d.x1; : : : ; xm//:

Inserting this into (82) and applying Theorem 1 yield the asserted formula (81).
The use of Fubini’s theorem is justified by Theorem 1 for f D g and the Cauchy–
Schwarz inequality. ut
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The integrability assumptions of Theorem 8 can be reduced to mere square
integrability when using a symmetric formulation. Under the assumptions of
Theorem 8 the following result was proved in [4, 5]. An even more general version
is [13, Theorem 1.5].

Theorem 9 Assume that � is a proper Poisson process. Then, for any F 2 L2
�,

E

Z 1Z
0

.EŒDxF j �.t/�/2dt�.dx/ < 1; (83)

and for any F; G 2 L2
�,

EFG D EF EG C E

Z 1Z
0

EŒDxF j �.t/�EŒDxG j �.t/�dt�.dx/: (84)

Proof It is well known (and not hard to prove) that �.t/ and � � �.t/ are independent
Poisson processes with intensity measures t� and .1 � t/�, respectively. Therefore
we have for F 2 L2

� with representative f that

EŒDxFj�t� D
Z

Dxf .�.t/ C �/˘.1�t/�.d�/ (85)

holds almost surely. It is easy to see that the right-hand side of (85) is a measurable
function of (the suppressed) ! 2 ˝ , x 2 X, and t 2 Œ0; 1�.

Now we take F; G 2 L2
� with representatives f and g. Let us first assume that

DF; DG 2 L2.P ˝ �/. Then (83) follows from the (conditional) Jensen inequality
while (85) implies for all t 2 Œ0; 1� and x 2 X, that

E.DxF/.PtDxG/ D EDxF
Z

Dxg.�.t/ C �/˘.1�t/�.d�/

D EEŒDxF EŒDxG j �.t/�� D EEŒDxF j �.t/�EŒDxG j �.t/�:

Therefore (84) is just another version of (81).
In this second step of the proof we consider general F; G 2 L2

�. Let Fk 2 L2
�,

k 2 N, be a sequence such that DFk 2 L2.P ˝ �/ and E. f � Fk/
2 ! 0 as k ! 1.

We have just proved that

VarŒFk � Fl� D E

Z
.EŒDxFk j �.t/� � EŒDxFl j �.t/�/2��.d.x; t//; k; l 2 N;
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where �� is the product of � and Lebesgue measure on Œ0; 1�. Since L2.P ˝ ��/ is
complete, there is an h 2 L2.P ˝ ��/ satisfying

lim
k!1E

Z
.h.x; t/ � EŒDxFk j �.t/�/2��.d.x; t// D 0: (86)

On the other hand it follows from Lemma 3 that for any C 2 X0Z
C�Œ0;1�

E
ˇ̌
EŒDxFk j �.t/� � EŒDxF j �.t/�

ˇ̌
��.d.x; t//

�
Z

C�Œ0;1�

EjDxFk � DxFj��.d.x; t// ! 0

as k ! 1. Comparing this with (86) shows that h.!; x; t/ D EŒDxF j �.t/�.!/ for
P ˝ ��-a.e. .!; x; t/ 2 ˝ � C � Œ0; 1� and hence also for P ˝ ��-a.e. .!; x; t/ 2
˝ � X � Œ0; 1�. Therefore the fact that h 2 L2.P ˝ ��/ implies (84). Now let Gk,
k 2 N, be a sequence approximating G. Then Eq. (84) holds with . fk; Gk/ instead
of . f ; G/. But the second summand is just a scalar product in L2.P ˝ ��/. Taking
the limit as k ! 1 and using the L2-convergence proved above yield the general
result. ut

A quick consequence of the previous theorem is the Poincaré inequality for
Poisson processes. The following general version is taken from [30]. A more direct
approach can be based on the Fock space representation in Theorem 1, see [13].

Theorem 10 For any F 2 L2
�,

Var F � E

Z
.DxF/2�.dx/: (87)

Proof It is no restriction of generality to assume that � is proper. Take F D G in (84)
and apply Jensen’s inequality. ut

The following extension of (87) (taken from [17]) has been used in the proof of
Proposition 5.

Corollary 1 For F 2 L1
�,

EF2 � .EF/2 C E

Z
.DxF/2�.dx/: (88)

Proof For s > 0 we define

Fs D 1fF > sgs C 1f�s � F � sgF � 1fF < �sgs:
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By definition of Fs we have Fs 2 L2
� and jDxFsj � jDxFj for �-a.e. x 2 X. Together

with the Poincaré inequality (87) we obtain that

EF2
s � .EFs/

2 C E

Z
.DxFs/

2�.dx/ � .EFs/
2 C E

Z
.DxF/2�.dx/:

By the monotone convergence theorem and the dominated convergence theorem,
respectively, we have that EF2

s ! EF2 and EFs ! EF as s ! 1. Hence letting
s ! 1 in the previous inequality yields the assertion. ut

As a second application of Theorem 9 we obtain the Harris-FKG inequality for
Poisson processes, derived in [9]. Given B 2 X , a function f 2 F.N�/ is increasing
on B if f .� C ıx/ � f .�/ for all � 2 N� and all x 2 B. It is decreasing on B if .�f /

is increasing on B.

Theorem 11 Suppose B 2 X . Let f ; g 2 L2.P�/ be increasing on B and
decreasing on X n B. Then

Ef .�/g.�/ � Ef .�/Eg.�/: (89)

It was noticed in [30] that the correlation inequality (89) (also referred to as
association) is a direct consequence of a covariance identity.

Acknowledgements The proof of Proposition 5 is joint work with Matthias Schulte.

Appendix

In this appendix we prove Proposition 1. If � 2 N is given by

� D
kX

jD1

ıxj (90)

for some k 2 N0 [ f1g and some points x1; x2; : : : 2 X (which are not assumed to
be distinct) we define, for m 2 N, the factorial measure �.m/ 2 N.Xm/ by

�.m/.C/ D
X¤

i1;:::;im�k

1f.xi1 ; : : : ; xim/ 2 Cg; C 2 X m: (91)
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These measures satisfy the recursion

�.mC1/ D
Z � Z

1f.x1; : : : ; xmC1/ 2 �g �.dxmC1/ (92)

�
mX

jD1

1f.x1; : : : ; xm; xj/ 2 �g
�

�.m/.d.x1; : : : ; xm//:

Let N<1 denote the set of all � 2 N with �.X/ < 1. For � 2 N<1 the
recursion (92) is solved by

�.m/ D
Z

� � �
Z

1f.x1; : : : ; xm/ 2 �g
�

� �
m�1X
jD1

ıxj

�
.dxm/ � � � �.dx1/; (93)

where the integrations are with respect to finite signed measures. Note that �.m/ is
a signed measure such that �.m/.C/ 2 Z for all C 2 X m. At this stage it might
not be obvious that �.m/.C/ � 0. If, however, � is given by (90) with k 2 N,
then (93) coincides with (91). Hence �.m/ is a measure in this case. For any � 2
N<1 we denote by �.m/ the signed measure (93). This is in accordance with the
recursion (92). The next lemma shows that �.m/ is a measure.

Lemma 7 Let � 2 N<1 and m 2 N. Then �.m/.C/ � 0 for all C 2 X m.

Proof Let B1; : : : ; Bm 2 X and let ˘m denote the set of partitions of Œm�. The
definition (93) implies that

�.m/.B1 � � � � � Bm/ D
X


2˘m

c


Y
J2


�.\i2JBi/; (94)

where the coefficients c
 2 R do not depend on B1; : : : ; Bm and �. For instance

�.3/.B1 � B2 � B3/ D �.B1/�.B2/�.B3/ � �.B1/�.B2 \ B3/

� �.B2/�.B1 \ B3/ � �.B3/�.B1 \ B2/ C 2�.B1 \ B2 \ B3/:

It follows that the left-hand side of (94) is determined by the values of � on the
algebra generated by B1; : : : ; Bm. The atoms of this algebra are all nonempty sets of
the form

B D Bi1
1 \ � � � \ Bim

m ;

where i1; : : : ; im 2 f0; 1g and, for B � X, B1 WD B and B0 WD X n B. Let A denote
the set of all these atoms. For B 2 A we take x 2 B and let �B WD �.B/ıx. Then the
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measure

�0 WD
X
B2A

�B

is a finite sum of Dirac measures and (94) implies that

.�0/.m/.B1 � � � � � Bm/ D �.m/.B1 � � � � � Bm/:

Therefore it follows from (91) (applied to �0) that �.m/.B1 � � � � � Bm/ � 0.
Let Am be the system of all finite and disjoint unions of sets B1 � � � � � Bm.

This is an algebra; see Proposition 3.2.3 in [2]. From the first step of the proof and
additivity of �.m/ we obtain that �.m/.A/ � 0 holds for all A 2 Am. The system M

of all sets A 2 X m with the property �.m/.A/ � 0 is monotone. Hence a monotone
class theorem (see e.g. Theorem 4.4.2 in [2]) implies that M D X m. Therefore �.m/

is nonnegative. ut
Lemma 8 Let �; 	 2 N<1 and assume that � � 	. Let m 2 N. Then �.m/ � 	.m/.

Proof By a monotone class argument it suffices to show that

�.m/.B1 � � � � � Bm/ � 	.m/.B1 � � � � � Bm/ (95)

for all B1; : : : ; Bm 2 X . Fixing the latter sets we define the system A of atoms of
the generated algebra as in the proof of Lemma 7. For B 2 A we choose x 2 B and
define �B WD �.B/ıx and 	B WD 	.B/ıx. Then

�0 WD
X
B2A

�B; 	0 WD
X
B2A

	B

are finite sums of Dirac measures satisfying �0 � 	0. By (94) we have

�.m/.B1 � � � � � Bm/ D .�0/.m/.B1 � � � � � Bm/:

A similar identity holds for 	.m/ and .	0/.m/. Therefore (91) (applied to �0 and 	0)
implies the asserted inequality (95). ut

We can now prove a slightly more detailed version of Proposition 1.

Proposition 6 For any � 2 N� there is a unique sequence �.m/, m 2 N, of sym-
metric �-finite measures on .Xm;X m/ satisfying �.1/ WD � and the recursion (92).
Moreover, the mapping � 7! �.m/ is measurable. Finally, �.m/.Bm/ � �.B/m for all
m 2 N and B 2 X .

Proof For � 2 N<1 the functionals defined by (93) satisfy the recursion (92) and
are measures by Lemma 7.
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For a general � 2 N� we proceed by induction. For m D 1 we have �.1/ D
� and there is nothing to prove. Assume now that m � 1 and that the measures
�.1/; : : : ; �.m/ satisfy the first m � 1 recursions and have the properties stated in the
proposition. Then (92) enforces the definition

�.mC1/.C/ WD
Z

K.x1; : : : ; xm; �; C/ �.m/.d.x1; : : : ; xm// (96)

for C 2 X mC1, where

K.x1; : : : ; xm; �; C/

WD
Z

1f.x1; : : : ; xmC1/ 2 Cg �.dxmC1/ �
mX

jD1

1f.x1; : : : ; xm; xj/ 2 Cg:

The function KWXm � N� � X m ! .�1; 1� is a signed kernel in the following
sense. The mapping .x1; : : : ; xm; �/ 7! K.x1; : : : ; xm; �; C/ is measurable for all
C 2 X mC1, while K.x1; : : : ; xm; �; �/ is �-additive for all .x1; : : : ; xm; �/ 2 Xm�N� .
Hence it follows from (96) and the measurability properties of �.m/ (which are part
of the induction hypothesis) that �.mC1/.C/ is a measurable function of �.

Next we show that

K.x1; : : : ; xm; �; C/ � 0 �.m/-a.e. .x1; : : : ; xm/ 2 Xm (97)

holds for all � 2 N� and all C 2 X mC1. Since �.m/ is a measure (by induction
hypothesis) (96), (97) and monotone convergence then imply that �.mC1/ is a
measure. Fix � 2 N� and choose a sequence .�n/ of finite measures in N� such
that �n " �. Lemma 7 (applied to �n and m C 1) implies that

K.x1; : : : ; xm; �n; C/ � 0 .�n/.m/-a.e. .x1; : : : ; xm/ 2 Xm; n 2 N:

Indeed, we have for all B 2 X m thatZ
B

K.x1; : : : ; xm; �n; C/ .�n/.m/.d.x1; : : : ; xm// D .�n/.mC1/..B � X/ \ C/ � 0:

Since K.x1; : : : ; xm; �; C/ is increasing, this implies

K.x1; : : : ; xm; �; C/ � 0 .�n/.m/-a.e. .x1; : : : ; xm/ 2 Xm; n 2 N:

By induction hypothesis we have that .�n/.m/ " �.m/ so that (97) follows.
Finally we note that �.m/.Bm/ � �.B/m follows by induction. In particular, �.m/

is �-finite. To prove the symmetry of �.m/ it is then sufficient to show that the
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restriction of �.m/ to Bm is symmetric, for any B 2 X with �.B/ < 1. This fact
follows from (94). ut

For any � 2 N, B 2 X with �.B/ < 1, and m 2 N it follows by induction that

�.m/.Bm/ D �.B/.�.B/ � 1/ � � � .�.B/ � m C 1/:

Since � and �.m/ are �-finite, this extends to any B 2 X . In particular �.m/ is the
zero measure whenever �.X/ < m.
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