Bocconi & Springer Series 7
Mathematics, Statistics, Finance and Economics

Giovanni Peccati
Matthias Reitzner Editors

I Stochastic
Analysis for
Poisson Point
Processes

Malliavin Calculus, Wiener-1t6 Chaos
Expansions and Stochastic Geometry

@ Springer



B&SS - Bocconi & Springer Series

Series Editors: Lorenzo Peccati * Sandro Salsa (Editors-in-Chief)
Carlo A. Favero * Peter Miiller » Eckhard Platen « Wolfgang J. Runggaldier

Volume 7



More information about this series at http://www.springer.com/series/8762


http://www.springer.com/series/8762

Giovanni Peccati * Matthias Reitzner
Editors

Stochastic Analysis for
Poisson Point Processes

Malliavin Calculus, Wiener-It6 Chaos
Expansions and Stochastic Geometry

Bocconi
UNIVERSITY

PRESS @ Springer



Editors

Giovanni Peccati Matthias Reitzner
Unité de Recherche en Mathématiques Osnabriick University
Université du Luxembourg Osnabriick, Germany

Luxembourg, Luxembourg

ISSN 2039-1471 ISSN 2039-148X  (electronic)
B&SS — Bocconi & Springer Series
ISBN 978-3-319-05232-8 ISBN 978-3-319-05233-5 (eBook)

DOI 10.1007/978-3-319-05233-5
Library of Congress Control Number: 2016945014

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing Switzerland



To Stefano Andrejs, Emma Eliza and leva
To llka, Jan and Lars Jesper






Preface

This book is a collection of original surveys focussing on two very active branches
of modern (theoretical and applied) probability, namely the Malliavin calculus of
variations and stochastic geometry. Our aim is to provide (for the first time!) a
lively, authoritative and rigorous presentation of the many topics connecting the two
fields, in a way that is appealing to researchers from both communities. Each survey
has been compiled by leading researchers in the corresponding area. Notation,
assumptions and definitions have been harmonized as closely as possible between
chapters.

Roughly speaking, stochastic geometry is the branch of mathematics that studies
geometric structures associated with random configurations, such as random graphs
and networks, random cluster processes, random unions of convex sets, random
tilings and mosaics, etc. Due to its strong connections to stereology and spatial
statistics, results in this area possess a large number of important applications, e.g.
to modelling and statistical analysis of telecommunication networks, geostatistics,
image analysis, material science, and many more.

On the other hand, the Malliavin calculus of variations is a collection of
probabilistic techniques based on the properties of infinite-dimensional operators,
acting on smooth functionals of general point processes and Gaussian fields. The
operators of Malliavin calculus typically generalize to an infinite-dimensional set-
ting familiar objects from classical analysis, like, for instance, gradients, difference
and divergence operators. When dealing with Malliavin calculus in the context of
point processes (as is the case in the present book), one has typically to deal with
a number of technical difficulties—related in particular to the intrinsic discrete
structure of the underlying objects. As explained in the sections to follow, a
crucial tool in partially overcoming these difficulties is given by Wiener—It6 chaotic
decompositions, which play a role analogous to that of orthogonal expansions into
series of polynomials for square-integrable functions of a real variable.

A fundamental point (which constitutes a strong motivation for the present book)
is that, for many prominent models in stochastic geometry, Wiener—Itd6 chaotic
decompositions and associated operators from Malliavin calculus are particularly
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viii Preface

accessible and amenable to analysis because the involved concepts and expressions
have an intrinsic and very natural geometric interpretation.

Of particular interest to us is the application of these techniques to the study
of probabilistic approximations in a geometric context, that is, of mathematical
statements allowing one to assess the distance between the distribution of a given
random geometric object and the law of some target random variable. Probabilistic
approximations are naturally associated with variance and covariance estimates, as
well as with limit theorems, such as Central Limit Theorems and Laws of Large
Numbers, and are one of the leading threads of the whole theory of probability.

The interaction between stochastic geometry and Malliavin calculus is a young
and active domain of research that has witnessed an explosion in interest during
the past 5 years. By its very nature, such an interaction is a topic that stands at the
frontier of many different areas of current research. Investigations gained particular
momentum during an Oberwolfach conference in 2013, where many prominent
researchers from both fields met for discussions. Since then, an increasing number
of collaborations have been initiated or strengthened. Also, although several remark-
able results have already been achieved in the field, for instance in the asymptotic
study of the Boolean model, random graphs, random polytopes and random k-flats,
many questions and problems (e.g. the derivation and use of effective concentration
inequalities) remain almost completely open for future investigation.

It is the aim of this book to survey these developments at the boundary between
stochastic analysis and stochastic geometry, to present the state of the art in both
fields and to point out open questions and unsolved problems with the intention of
initiating new research in and between the two areas.

The readership we have in mind includes researchers and graduate students who
have a basic knowledge of concepts of probability theory and functional analysis.
Most of the fundamental notions that are needed for reading the book are introduced
and developed from scratch.

Last but not least, as editors, we would like to thank the numerous colleagues
and friends who have been involved in this project: this book would not have
been possible without their excellent contributions, as well as their enthusiasm and
support.

Luxembourg, Luxembourg Giovanni Peccati
Osnabriick, Germany Matthias Reitzner
December 2015



Introduction

This book is composed of ten chapters, each of which contains a detailed state-of-
the-art survey of a topic lying at the boundary of stochastic analysis and stochastic
geometry.

The first four surveys can be seen as a “crash course” in stochastic analysis on
the Poisson space. Starting from the careful construction of Malliavin operators
on abstract Poisson spaces via Fock space representations (G. Last), the elegant
combinatorial properties of (multiple) Poisson stochastic integrals are explored (N.
Privault) and an introduction provided to variational formulae, allowing the reader to
deal with the analytical study of expectations of Poisson functionals (I. Molchanov
and S. Zuyev). Finally, J.-L. Solé and F. Utzet show how these tools can be extended
to the more general framework of random measures with independent increments
(sometimes called completely random measures) and Lévy processes.

The subsequent survey by D. Hug and M. Reitzner provides a careful introduc-
tion to the main objects of interest in modern stochastic geometry. As anticipated,
this is a crucial step in our text, since the chapters to follow are all motivated by
geometric considerations.

The reader will then enter the realm of the Stein and Chen-Stein methods
for probabilistic approximations and be shown how to combine these techniques
with Malliavin calculus operators (S. Bourguin and G. Peccati): this powerful
interaction represents the very heart of the so-called Malliavin—Stein method. The
survey by M. Reitzner and R. Lachi¢ze-Rey discusses how one can use Malliavin—
Stein techniques in order to deal with the asymptotic study of U-statistics. Further
deep results involving U-statistics and extreme values in stochastic geometry are
presented in the survey by M. Schulte and Ch. Thile, while the chapter by S.
Bourguin, C. Durastanti, D. Marinucci and G. Peccati focusses on some recent
applications of the Malliavin—Stein approach in the context of Poisson processes
defined on the sphere.

The book closes with an introduction (by L. Decreusefond, I. Flint, N. Privault
and G.L. Torrisi) to recently developed Malliavin calculus techniques—in particular,
integration by parts formulae—in the context of determinantal point processes.
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X Introduction

We now present a more detailed description of the individual contributions
composing the book.

Chapter 1: Stochastic Analysis for Poisson Processes (G. Last). The starting
point of this survey is the definition of a Poisson point process on a general o-finite
measure space, and the consequent explanation of the fundamental multivariate
Mecke equation. The next topic is the Fock space representation of square-integrable
functions of a Poisson process in terms of iterated difference operators. The survey
continues with the definition and properties of multiple stochastic Wiener—Ito
integrals, from which one can deduce the chaotic representation property of Poisson
random measures. This naturally leads to the definition of the fundamental Malliavin
operators, which represent one of the backbones of the entire book. The final
part presents the Poincaré inequality and related variance inequalities, as well as
covariance identities based on the use of Glauber dynamics and Mehler’s formula (in
a spirit close to [16]). The content of this chapter represents a substantial expansion
and refinement of the seminal reference [14] and provides a self-contained account
of several fundamental analytical results on the Poisson space (see e.g. [10, 20]). A
further connection with the classical logarithmic Sobolev estimates proved in [32]
is discussed in the subsequent survey by Bourguin and Peccati.

Chapter 2: Combinatorics of Poisson Stochastic Integrals with Random Inte-
grands (N. Privault). This survey provides a unique self-contained account of
recent results on moment identities for Poisson stochastic integrals with random
integrands, based on the use of functional transforms on the Poisson space. This
presentation relies on elementary combinatorics based on the Faa di Bruno formula,
partitions and polynomials, which are used together with multiple stochastic
integrals, finite difference operators and integration by parts. Important references
that are discussed in this chapter include [3, 6, 26, 27]. The combinatorial content of
many formulae can be regarded as a far-reaching generalization of classical product
and diagram formulae on the Poisson space—as presented, for example, in the
monograph [22].

Chapter 3: Variational Analysis of Poisson Processes (I. Molchanov and S.
Zuyev). The framework of this chapter is that of a family of finite Poisson point
process distributions on a general phase space. Given a functional F of point
configurations, the expectation IE(F) is regarded as a function of the intensity
measure of the corresponding Poisson processes. Thus, the domain of F is the set
of finite measures—which is a cone in the Banach space of all signed measures
with a finite total variation norm. By explicitly developing the expectation [E(F),
one can show that under rather mild assumptions the function [E(F) is analytic.
As a byproduct, one establishes Margulis—Russo type formulae for the Poisson
process and the Gamma-type result, which have proved extremely useful, for
example in percolation theory and in stochastic geometry. The variation formulae
obtained are then applied to constrained optimization where first order optimality
conditions are established for functionals of a measure. The final part of the survey
contains a discussion of applications of the above-described variational calculus, in
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particular, to numerical integration, statistical experiment design, and quantization
of distributions. This chapter expands and refines the content of the seminal paper
[17].

Chapter 4: Malliavin Calculus for Stochastic Processes and Random Measures
with Independent Increments (J. L. Solé and F. Utzet). The purpose of this survey
is twofold: first, to review the extension of Malliavin calculus for Poisson processes
based on the difference operator or add one cost operator to Lévy processes; second,
to extend that construction to some classes of random measures, mainly completely
random measures. For Lévy processes, the approach is based, on the one hand,
on the It6—Lévy representation (Itd [11]) and on the chaotic expansion property,
which provides a direct definition of the Malliavin operators, and, on the other hand,
a construction of the canonical space for Lévy processes that allows a pathwise
definition of the Malliavin derivative as a quotient operator (Solé et al. [31]). Recent
results of Murr [18] concerning extensions of Mecke’s formula to that setup will
also be discussed.

Chapter 5: Introduction to Stochastic Geometry (D. Hug and M. Reitzner).
This chapter introduces some fundamental notions from stochastic geometry and
from convex geometry (see e.g. [12, 25, 29] for some comprehensive references
on the subject). First, the necessary definitions from convex geometry are given,
including Hausdorff distance, Minkowski addition, parallel sets, intrinsic volumes
and their local extensions, which are used in the subsequent chapters of the book.
Second, some important models of stochastic geometry are introduced: the Boolean
model, random geometric graphs, intersection processes of Poisson flat processes
and random mosaics. A selection of open problems from stochastic geometry is
also presented, together with a description of important new results and directions
of research.

Chapter 6: The Malliavin—Stein Method on the Poisson Space (S. Bourguin
and G. Peccati). This chapter provides a detailed and unified discussion of a
collection of recently introduced techniques (see e.g. [16, 21, 23, 24]), allowing
one to establish limit theorems for sequences of Poisson functionals with explicit
rates of convergence, by combining Stein’s method (see e.g. [5, 19]) and Malliavin
calculus. The Gaussian and Poisson asymptotic regimes are discussed in detail. It is
also shown how the main estimates of the theory may be applied in order to deduce
information about the asymptotic independence of geometric objects (see [1]).

Chapter 7: U-Statistics in Stochastic Geometry (R. Lachi¢ze-Rey and M.
Reitzner). A U-statistic of order k with kernel f : X — R over a Poisson process is
defined in [28] as
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under appropriate integrability assumptions on f. U-statistics play an important
role in stochastic geometry since many interesting functionals can be written as
U-statistics, such as intrinsic volumes of intersection processes, characteristics of
random geometric graphs, volumes of random simplices, and many others (see
for instance [7, 13, 15, 28]). It turns out that the Wiener—It6 chaos expansion of
a U-statistic is finite and thus Malliavin calculus is a particularly suitable method.
Variance estimates, the approximation of the covariance structure and limit theorems
which have been out of reach for many years can be derived. In this chapter the
reader will find the fundamental properties of U-statistics as well as an investigation
of associated moment formulae. The main object of the chapter is to discuss the
available univariate and multivariate limit theorems.

Chapter 8: Poisson Point Process Convergence and Extreme Values in Stochas-
tic Geometry (M. Schulte and Ch. Théle). Let 5, be a Poisson point process of
intensity + > 0 over a measurable space X. One then constructs a point process
& on the real line by applying a measurable function f to every k-tuple of distinct
points of 7,. It is shown that & behaves after appropriate rescaling locally like a
Poisson point process as + — oo under suitable conditions on 7, and f. Via a de-
Poissonization argument a similar result is derived for an underlying binomial point
process. This method is applied to investigate several problems arising in stochastic
geometry, including the Gilbert graph, the Voronoi tessellation, triangular counts
with angular constraints, and line tessellations. The core of the survey rests on
techniques originally introduced in reference [30].

Chapter 9: U-Statistics on the Spherical Poisson Space (S. Bourguin, C.
Durastanti, D. Marinucci and G. Peccati). This survey reviews a recent stream
of research on normal approximations for linear functionals and more general
U-statistics of wavelet and needlet coefficients evaluated on a homogeneous
spherical Poisson field (see [2, 9]). It is shown how, by exploiting results from
[23] based on Malliavin calculus and Stein’s method, it is possible to assess the
rate of convergence to Gaussianity for a triangular array of statistics with growing
dimensions. These results can be applied in a number of statistical applications,
such as spherical density estimations, searching for point sources, estimation of
variance and the spherical two-sample problem.

Chapter 10: Determinantal Point Processes (L. Decreusefond, I. Flint, N.
Privault and G.L. Torrisi). Determinantal and permanental point processes were
introduced in the 1970s in order to incorporate repulsion and attraction properties
in particle models. They have recently regained interest due to their close links with
random matrix theory. In this paper we survey the main properties of such processes
from the point of view of stochastic analysis and Malliavin calculus, including
quasi-invariance, integration by parts, Dirichlet forms and the associated Markov
diffusion processes (see [4, 8]).
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Stochastic Analysis for Poisson Processes

Giinter Last

Abstract This chapter develops some basic theory for the stochastic analysis of
Poisson process on a general o-finite measure space. After giving some fundamental
definitions and properties (as the multivariate Mecke equation) the chapter presents
the Fock space representation of square-integrable functions of a Poisson process
in terms of iterated difference operators. This is followed by the introduction
of multivariate stochastic Wiener—It6 integrals and the discussion of their basic
properties. The chapter then proceeds with proving the chaos expansion of square-
integrable Poisson functionals, and defining and discussing Malliavin operators.
Further topics are products of Wiener—Itd integrals and Mehler’s formula for the
inverse of the Ornstein—Uhlenbeck generator based on a dynamic thinning proce-
dure. The chapter concludes with covariance identities, the Poincaré inequality, and
the FKG-inequality.

1 Basic Properties of a Poisson Process

Let (X, Z") be a measurable space. The idea of a point process with state space
X is that of a random countable subset of X, defined over a fixed probability
space (§2, <7, IP). It is both convenient and mathematically fruitful to define a point
process as a random element 7 in the space Ny (X) = N, of all o-finite measures y
on X such that y(B) € Z U {oo} for all B € 2. To do so, we equip N, with the
smallest o-field 45 (X) = 45 of subsets of N, such that y + y(B) is measurable
forall B € 2. Then n : 2 — N, is a point process if and only if

{n(B) = kj ={w € 2 :n(w,B) =k} € &
forall B € 2 and all k € Z. Here we write 7(w, B) instead of the more clumsy

n(w)(B). We wish to stress that the results of this chapter do not require special
(topological) assumptions on the state space.

G. Last (D)
Karlsruhe Institute of Technology, Institute of Stochastics, 76128 Karlsruhe, Germany
e-mail: guenter.last@kit.edu

© Springer International Publishing Switzerland 2016 1
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2 G. Last

The Dirac measure §, at the point x € X is the measure on X defined by 6,(B) =
15(x), where 1p is the indicator function of B € 2. If X is a random element of
X, then dx is a point process on X. Suppose, more generally, that X, ..., X, are
independent random elements in X with distribution Q. Then

n:=38x, + -+ 6x, (H

is a point process on X. Because

P(n(B) = k) = (Z)Q(B)k(l —QB)"™, k=0,....m,

n is referred to as binomial process with sample size m and sampling distribution
Q. Taking an infinite sequence Xj, X5, ... of independent random variables with
distribution Q and replacing in (1) the deterministic sample size m by an indepen-
dent Z -valued random variable x (and interpreting an empty sum as null measure)
yields a mixed binomial process. Of particular interest is the case where « has a
Poisson distribution with parameter A > 0, see also (5) below. It is then easy to
check that

Eexp [ -/ u(X)n(dx)} — exp [ - fa- e_”(*))u(dX)} @)

for any measurable function u : X — [0, 00), where p := AQ. It is convenient to
write this as

Eexp[—n(u)] = exp[ — u(1 —e™)], A3)

where v (1) denotes the integral of a measurable function u with respect to a measure
v. Clearly,

u(B) = En(B), Be Z, “

so that p is the intensity measure of 1. The identity (3) or elementary probabilistic
arguments show that 1 has independent increments, that is, the random variables
n(B1),...,n(B,) are stochastically independent whenever By,...,B,, € Z are
pairwise disjoint. Moreover, 1(B) has a Poisson distribution with parameter p(B),
that is

k
PO =k = "L oo u@). kez. )

Let u be a o-finite measure on X. A Poisson process with intensity measure [
is a point process n on X with independent increments such that (5) holds, where
an expression of the form coe™ is interpreted as 0. It is easy to see that these two
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requirements determine the distribution IP, := IP(n € -) of a Poisson process 7. We
have seen above that a Poisson process exists for a finite measure p. In the general
case, it can be constructed as a countable sum of independent Poisson processes,
see [12, 15, 18] for more details. Equation (3) remains valid. Another consequence
of this construction is that n has the same distribution as

1n(X)
=y 6, (6)
n=1
where X1, X5, ... are random elements in X. A point process that can be (almost

surely) represented in this form will be called proper. Any locally finite point
process on a Borel subset of a complete separable metric space is proper. However,
there are examples of Poisson processes which are not proper.

Let n be a Poisson process with intensity measure p. A classical and extremely
useful formula by Mecke [18] says that

E / WG,y = E / B + 6., () ™

for all measurable 2 : N, x X — [0,00]. One can use the mixed binomial
representation to prove this result for finite Poisson processes. An equivalent
formulation for a proper Poisson process is

E / W1 — 8, 0n(dn) = E / B, ) () ®)

for all measurable i : N, x X — [0, co]. Although n — &, is in general a signed
measure, we can use (6) to see that

[ =8 = S a(Fb.x)

i A

is almost surely well defined. Both (7) and (8) characterize the distribution of a
Poisson process with given intensity measure L.

Equation (7) admits a useful generalization involving multiple integration. To
formulate this version we consider, for m € IN, the m-th power (X", Z) of
(X, Z). Let n be a proper point process given by (6). We define another point
process 7™ on X" by

#
n"MC) = Y 1c(Xi.....X;,). Ce2™ 9)
ieesim <0(X)

where the superscript # indicates summation over m-tuples with pairwise different
entries. (In the case n(X) = oo this involves only integer-valued indices.) In the
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case C = B™ for some B € 2~ we have that
n"(B") = n(B)(n(B) —1)---(n(B) —m + 1).

Therefore n™ is called m-th factorial measure of 1. It can be readily checked that,
for any m € NN,

oD = / [ / L1 2g1) € 31(nsn) (10)

m

— Z L{(x1, ... X, X)) € }:| n(m)(d(xl, e X)),
j=1

where nV := 5. This suggests a recursive definition of the factorial measures of a
general point process, without using a representation as a sum of Dirac measures.
The next proposition confirms this idea.

Proposition 1 Let 1 be a point process on X. Then there is a uniquely determined
sequence n'™, m € N, of symmetric point processes on X" satisfying n'V := n and
the recursion (10).

The proof of Proposition 1 is given in the appendix and can be skipped without
too much loss. It is enough to remember that 7™ can be defined by (9), whenever 7
is given by (6) and that any Poisson process has a proper version.

The multivariate version of (7) (see e.g. [15]) says that

]E‘/}Kn,xh...,xm)n“m(d(xh...,xm))
= E/h(n—i-(?xl Foe By X1y e X)W (A L X)), (11)

for all measurable 2 : N, x X" — [0, 00]. In particular the factorial moment
measures of n are given by

En™ = pu™, meN. (12)

Of course (11) remains true for a measurable # : N, x X — R provided that the
right-hand side is finite when replacing & with |A|.
2 Fock Space Representation

In the remainder of this chapter we consider a Poisson process 1 on X with o-finite
intensity measure p and distribution PP,,.
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In this and later chapters the following difference operators (sometimes called
add-one cost operators) will play a crucial role. For any f € F(N,) (the set of all
measurable functions from N,; to R) and x € X the function D, f € F(N,) is defined
by

Dif(x) :=f(x+8)—f(x), x€Ns. (13)

Iterating this definition, for n > 2 and (x},...,x,) € X" we define a function
D}, ... € F(N;) inductively by

D . f:=DyDi" f (14)

Jc{1.2....n} i€l

where |J| denotes the number of elements of J. This shows that D} f is

symmetric in xy, ..., x, and that (xi,...,x,, ) — D”1 X” f(x) is measurable. We

define symmetric and measurable functions 7, f on X" by

Tof (x1,...,x) == EDY, . f(n), (16)
and we set Tof := IEf(n), whenever these expectations are defined. By (-, ), we
denote the scalar product in L*(u") and by || - ||,, the associated norm. Let L2(u")
denote the symmetric functions in L?(i"). Our aim is to prove that the linear
mapping f +> (T,,(f))a>0 is an isometry from L?(IP,) into the Fock space given
by the direct sum of the spaces L2(i"), n > 0 (with L? norms scaled by n!~!/?) and
with L2(1°) interpreted as R. In Sect. 4 we will see that this mapping is surjective.
The result (and its proof) is from [13] and can be seen as a crucial first step in the
stochastic analysis on Poisson spaces.

Theorem 1 Letf,g € L*(P,). Then

21
Ef ()g(n) = Bf () + Y — (Tuf. Tug)n, (17)
n=1""

where the series converges absolutely.

We will prepare the proof with some lemmas. Let 2 be the system of all
measurable B € 2" with u(B) < oo. Let Fy be the space of all bounded and
measurable functions v : X — [0, 00) vanishing outside some B € %p. Let G
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denote the space of all (bounded and measurable) functions g : N, — R of the

form
g(X) = ale_)((vl) + -4 ane_)f(””),

wheren € N, ay,...,a, € Rand vy,...,v, € Fy.
Lemma 1 Relation (17) holds forf, g € G.

Proof By linearity it suffices to consider functions f and g of the form

f() =exp[—=x()], g(x) = exp[—x(w)]

for v, w € Fy. Then we have for n > 1 that

Df(x) = exp[—x(v)](e™" — 1)®",

(18)

where (e — D)®*(xy,...,x,) 1= ]_[Ll(e_”("f) — 1). From (3) we obtain that

Tof = expl—p(1 — e ")](e™" — D®".

19)

Since v € Fy it follows that T, f € L% (u™), n > 0. Using (3) again, we obtain that

Ef(n)g(n) = exp[—u(l —e )]

On the other hand we have from (19) (putting °(1) := 1) that

>0 1

Z; Tof, Tug)n

n=0

(20)

21
= expl—p(1 —e ] expl—p(1 =™ Y —p"(((" = (™ = 1)®")
n=0""

= exp[—u(2—e" —e )] explu((e™ — D(e™ = D)].

This equals the right-hand side of (20).

To extend (17) to general f, g € L? (IP,;) we need two further lemmas.

Lemma 2 The set G is dense in LZ(]PU).

Proof Let W be the space of all bounded measurable g : N, — R that can be
approximated in L (IP,) by functions in G. This space is closed under monotone and
uniformly bounded convergence and also under uniform convergence. Moreover, it
contains the constant functions. The space G is stable under multiplication and we
denote by .#” the smallest o-field on N, such that y +— h(}) is measurable for all
h € G. A functional version of the monotone class theorem (see e.g. Theorem .21
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in [1]) implies that W contains any bounded .#”'-measurable g. On the other hand
we have that

x(C) = rli>10n+ t_l(l — e_’X(C)), X € Ng,

forany C € 2 . Hence y — x(C) is .#"’-measurable whenever C € 2. Since u is
o-finite, for any C € 2 there is a monotone sequence Cy € 2y, k € IN, with union
C, so that y +— x(C) is N’'-measurable. Hence .#” = .4, and it follows that W
contains all bounded measurable functions. But then W is clearly dense in L? ;)
and the proof of the lemma is complete. O

Lemma 3 Suppose that f,f',f2, ... € L*(P,) satisfy f* — f in L*(P,) as k — oo,
and that h : N, — [0, 1] is measurable. Let n € N, let C € 2y and set B := C".
Then

dim B [ D) =D, PO @G x) =0, 2D
B
Proof By (15), the relation (21) is implied by the convergence
klggolE/ 7(n+ Z;Sx,.) ~r(n+ Z;é’xi)‘h(n)u"(d(xl, LLE) =0 (22)
B i= =

forall m € {0, ...,n}. For m = 0 this is obvious. Assume m € {1,...,n}. Then the
integral in (22) equals

p@r e [ |r(n+ 38) <A (n+ 308, i @ 5
cm i=1 i=1

— (@ "E [ 1)~ la(n = 308, )1" @)
o i=1

< WO EIf(n) —f ()" ("),

where we have used (11) to get the equality. By the Cauchy—Schwarz inequality the
last expression is bounded above by

r(O)" B ) = A 0)D) P EE™ (C)H2.

Since the Poisson distribution has moments of all orders, we obtain (22) and hence
the lemma. O
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Proof of Theorem 1 By linearity and the polarization identity
Hu,v)y = (u+v,u+v)y —(u—v,u—0),

it suffices to prove (17) for f = g € L*(P,). By Lemma 2 there are f* € G,
k € IN, satisfying f* — f in L?(IP,) as k — oo. By Lemma 1, Tf*, k € IN, is a
Cauchy sequence in H:= R & &2 L2 (). The direct sum of the scalar products
(n))~'{-,-),, makes H a Hilbert space. Let f = (f,) € H be the limit, that is

[e’e)
- L _ppe 2

lim ) =T f* = /2 = 0. (23)
k—)oon=0n_

Taking the limit in the identity Ef*(n)? = (Tf*, Tf*)u yields Ef(n)> = (f.f)n.
Equation (23) implies that fo Ef(n) = Tyf. It remains to show that forany n > 1,

fo=T.f, u'-ae. 24)

Let C € %y and B := C". Let uj denote the restriction of the measure u" to
B. By (23) T, f* converges in L?(11%) (and hence in L'(11%)) to f,, while by the
definition (16) of T,,, and the case & = 1 of (22), T, f* converges in L' () to T, f.
Hence these L' (IP) limits must be the same almost everywhere, so that fo=Tof n'-
a.e. on B. Since  is assumed o -finite, this implies (24) and hence the theorem. 0O

3 Multiple Wiener-It6 Integrals

Forn > 1and g € L'(") we define (see [6, 7, 28, 29])

L@ = 2 0 [ o @ @), (25)

JC[n]

where [n] 1= {1,...,n},J¢ := [n] \ J and x; := (x))jes. If J = @, then the inner
integral on the right-hand side has to be interpreted as p"(g). (This is to say that
n(o) (1) := 1.) The multivariate Mecke equation (11) implies that all integrals in (25)
are finite and that I£7,(g) = 0.

Given functions g; : X — R fori = 1,...,n, the tensor product ®)_,g; is
the function from X" to R which maps each (xl, ce,Xy) tO ]_[lzl gi(x). When the
functions gy, . . ., g, are all the same function i, we Write h®" for this tensor product

function. In this case the definition (25) simplifies to

L(h®) =" (Z) D" O R (e (hyy . (26)

k=0
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Let X, denote the set of all permutations of [n], and for g € X" — R define the
symmetrization g of g by

- 1
g(X1,... 7-xn) = ; Z g(xﬂ(l)v'-- 7-x7'[(n))- (27)

‘mex,

The following isometry properties of the operators I,, are crucial. The proof is
similar to the one of [16, Theorem 3.1] and is based on the product form (12)
of the factorial moment measures and some combinatorial arguments. For more
information on the intimate relationships between moments of Poisson integrals and
the combinatorial properties of partitions we refer to [16, 21, 25, 28].

Lemma4 Let g € L>(u") and h € L*>(u") for m,n > 1 and assume that {g #
0} C B" and {h # 0} C B" for some B € Zy. Then

El,(g)L,(h) = L{m = n}m!(g, ). (28)

Proof We start with a combinatorial identity. Let n € IN. A subpartition of
[n] is a (possibly empty) family o of nonempty pairwise disjoint subsets of [n].
The cardinality of Uje,J is denoted by |o||. For u € F(X") we define u, :
XloHn=lol 5 ] by identifying the arguments belonging to the same J € o. (The
arguments Xxp, . .., Xg|4+n—|o| have to be inserted in the order of occurrence.) Now
we take r, s € Z such that r + s > 1 and define X, ; as the set of all partitions of
{L,....,r+s}tsuchthat |JN{l,...,r}| <land |JN{r+1,...,r+ s} < 1forall
J € 0. Letu € F(X"1%). It is easy to see that

/ f u(xr, .. X)) ([A s X))

-y / g dylo). (29)

0EX,

provided that n({u # 0}) < oo. (In the case r = 0 the inner integral on the left-hand
side is interpreted as 1.)

We next note that g € L'(u™) and h € L'(1") and abbreviate f := g ® h. Let
k:=m+mnJ, ;= [m]and J, := {m + 1,...,m + n}. The definition (25) and
Fubini’s theorem imply that

APTACED E il || FE

IC[K] (30)
D (g, )20 (g, ) M (e ),

where I := [k] \ I and x; := (x;)je; for any J C [k]. We now take the expectation
of (30) and use Fubini’s theorem (justified by our integrability assumptions on g
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and h). Thanks to (29) and (12) we can compute the expectation of the inner two
integrals to obtain that

EL L0 = Y (-0 [ g gttt G31)

oEXY

where X is the set of all subpartitions o of [] such that [JNJ;| < 1 and |[JNJ5| <
1 forall J € 0. Let %2 C X be the set of all subpartitions of [k] such that
|J| = 2forall J € 0. Forany w € X% we let X% () denote the set of all

o € X satisfying w C 0. Note that 7 € X (7r) and that for any o € X there
is a unique 7 € X%2 such that o € X% (). In this case

/f(,duk_”"”“" _ /fﬂduk—nnn’

so that (31) implies

ELy (L) = ) / T S G (32)
TESmn 0€ Xy ()
The inner sum comes to zero, except in the case where ||| = k. Hence (32)

vanishes unless m = n. In the latter case we have

CEL@LI = Y [ fedi =tz

reXmd|wl=m

as asserted. ]

Any g € L*(u™) is the L*-limit of a sequence gy € L?>(u™) satisfying the
assumptions of Lemma 4. For instance we may take g := 1(g,mg, where
w(Br) < oo and By 1t X as k — oo. Therefore the isometry (28) allows
us to extend the linear operator I, in a unique way to L*(u™). It follows
from the isometry that I,,(g) = I,(2) for all g € L?*(u™). Moreover, (28)
remains true for arbitrary g € L*>(u™) and h € L*(u"). It is convenient
to set Ip(c) := ¢ for ¢ € R. When m > 1, the random variable I,,(g)
is the (m-th order) Wiener—Ité integral of g € L>(u™) with respect to the
compensated Poisson process 7§ := 1n — u. The reference to 7 comes from
the explicit definition (25). We note that 7(B) is only defined for B € Z.
In fact, {7(B) : B € 2o} is an independent random measure in the sense of

[7].
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4 The Wiener-Ito Chaos Expansion

A fundamental result of Itd [7] and Wiener [29] says that every square integrable
function of the Poisson process 7 can be written as an infinite series of orthogonal
stochastic integrals. Our aim is to prove the following explicit version of this
Wiener—Ito chaos expansion. Recall definition (16).

Theorem 2 Letf € L*(P,). Then T, f € L*(u"), n € N, and

o

F) = Y2 (), (33)

n=0

where the series converges in L*(P). Moreover; if g, € L2(u") for n € Z.y satisfy
) =32 %In(gn) with convergence in L*(P), then gy = Ef (n) and g, = T,.f,
W'-a.e. on X",for alln € IN.

For a homogeneous Poisson process on the real line, the explicit chaos expan-
sion (33) was proved in [8]. The general case was formulated and proved in [13].
Stroock [27] has proved the counterpart of (33) for Brownian motion. Stroock’s
formula involves iterated Malliavin derivatives and requires stronger integrability
assumptions on f (7).

Theorem 2 and the isometry properties (28) of stochastic integrals show that the
isometry f +> (T,(f))n0 is in fact a bijection from L*(IP,) onto the Fock space.
The following lemma is the key for the proof.

Lemma 5 Letf(x) := e ¥V, y € N, (X), where v : X — [0, 00) is a measurable
function vanishing outside a set B € 2" with (t(B) < co. Then (33) holds P-a.s.
and in L*(P).

Proof By (3) and (19) the right-hand side of (33) equals the formal sum

Fi= explopn(l e+ explp(l— e Y SL(E D). (4

n=1

Using the pathwise definition (25) we obtain that almost surely

I=eplp(—e Y Y (k) 0™ = D) (1 = ™)y
n=0 " k=0

1

TGOS

o0 1 o0
=expl-p(1 —e )] )1 = D®H
k=0 " n=k

1
= " =1, (35)
k=0 """
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where N := 1(B). Assume for the moment that 7 is proper and write §x, + - - - + x,
for the restriction of 7 to B. Then we have almost surely that

I = Z H(e—v(Xi) -1 = ﬁe—v(Xi) — e—n(v)’

Jc{l,...N} i€J i=1

and hence (33) holds with almost sure convergence of the series. To demonstrate
that convergence also holds in L*(IP), let the partial sum I(m) be given by the right-
hand side of (34) with the series terminated at n = m. Then since (1 —e™") is
nonnegative and |1 — e=*®)| < 1 for all y, a similar argument to (35) yields

min(N,m) 1
e = 37 P e™ = D)
k=0
N
- ZN(N— D--(N—k+1) _ N
k=0 k!

Since 2" has finite moments of all orders, by dominated convergence the series (34)
(and hence (33)) converges in L>(IP).

Since the convergence of the right-hand side of (34) as well as the almost sure
identity I = ¢~"") remain true for any point process with the same distribution as 7
(that is, for any Poisson process with intensity measure (), it was no restriction of
generality to assume that 7 is proper. O

Proof of Theorem 2 Letf € L?(IP;) and define T,f forn € Z4 by (16). By (28) and
Theorem 1,

ZE(%’"(TJ))Z =2 %IITnflli = Ef (1)’ < cc.
n=0 ’ n=0

Hence the infinite series of orthogonal terms

o0

$:= 3 ()

n=0

converges in L?(IP). Let & € G, where G was defined at (18). By Lemma 5 and
linearity of 1,(-) the sum > oo/ %In(Tnh) converges in L>(IP) to h(n). Using (28)

followed by Theorem 1 yields

oo

B(in) — ) = 3 1Tk~ Tuflly = B( ) — ()

n=0
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Hence if E(f(n) —h(n))? is small, then so is E(f (1) —S)?. Since G dense in L*(IP,))
by Lemma 2, it follows that (1) = S almost surely.

To prove the uniqueness, suppose that also g, € Lf (u") for n € Z 4 are such that
3%, L 1,(gn) converges in L*(IP) to f(n). By taking expectations we must have

n=0 n!

g0 = IEf(n) = Tof . Forn > 1 and h € L*(u"), by (28) and (33) we have

Ef (M1,(h) = EL(Tof)In(h) = nY(Tof , h)n

and similarly with 7,f replaced by g,, so that (T,f — g, h), = 0. Putting h =
T.f — gn gives |Tnf — gulln = 0O for each n, completing the proof of the theorem.
O

S Malliavin Operators

For any p > 0 we denote by Lj the space of all random variables F € L”(P) such
that F = f(n) P-almost surely, for some f € F(N,). Note that the space L is a
subset of L7 (IP) while L”(IP,) is the space of all measurable functions f € F(N,)
satisfying [ | f|? dP,, = E|f(n)|? < oc. The representative f of F € LP(P) is is IP,-
a.e. uniquely defined element of L”(IP,). For x € X we can then define the random

any n € IN and xy,...,x, € X. The mapping (w,x1,...,x,) = D . F(o) is

denoted by D"F (or by DF in the case n = 1). The multivariate Mecke equation (11)
easily implies that these definitions are IP ® p-a.e. independent of the choice of the
representative.

By (33)any F € Lf] can be written as

F=EF+ Y L), (36)
n=1

where f,, 1= %ED”F . In particular we obtain from (28) (or directly from Theorem 1)
that

EF? = (EF)” + ) n!|l fll2. (37)

n=1

We denote by dom D the set of all F' € L% satisfying

Y mnlllfully < oe. (38)

n=1
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The following result is taken from [13] and generalizes Theorem 6.5 in [8] (see
also Theorem 6.2 in [20]). It shows that under the assumption (38) the pathwise
defined difference operator DF coincides with the Malliavin derivative of F. The
space dom D is the domain of this operator.

Theorem 3 Let F € L} be given by (36). Then DF € L*(P ® ) iff F € dom D. In
this case we have P-a.s. and for ji-a.e. x € X that

DF =Y nly-i(f(x. ). (39)

n=1

The proof of Theorem 3 requires some preparations. Since

/(inn!ﬂfn(x, ')Ilﬁ_l)u(dx) = inn‘/ (WA
n=1 n=1

(28) implies that the infinite series

oo

DLF =" nlfu(x.) (40)

n=1

converges in L?(IP) for p-a.e. x € X provided that F € dom D. By construction of
the stochastic integrals we can assume that (w, x) — (I,—1f,(x, -)) (@) is measurable
forall n > 1. Therefore we can also assume that the mapping D'F given by (w, x)
D! F(w) is measurable. We have just seen that

E/(D;F)Zu(dx) = Znn!/ If?.  F e domD. (41)
n=1

Next we introduce an operator acting on random functions that will turn out to
be the adjoint of the difference operator D, see Theorem 4. For p > 0 let L (P ® )
denote the set of all H € L”(IP ® p) satisfying H(w,x) = h(n(w), x) for P ® p-a.e.
(w, x) for some representative h € F(N, x X). For such a H we have for y-a.e. x
that H(x) := H(-,x) € L?>(P) and (by Theorem 2)

H(x) = Zln(hn(X, ), P-as., (42)
n=0

where ho(x) := EH(x) and h,(x, xq,...,Xx,) = %ED?I x” H(x). We can then

define the Kabanov—Skorohod integral [3, 10, 11, 26]‘0f H, denoted §(H), by

S(H) =Y Lu1(hn), (43)

n=0
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which converges in L2 (IP) provided that

o0

S+ 1)) / Rdut < oo, (44)
n=0
Here
n+1
o1, X)) o= M;ED; Y c A C0) (45)

is the symmetrization of %,. The set of all H € L% (P ® ) satisfying the latter
assumption is the domain dom § of the operator §.
We continue with a preliminary version of Theorem 4.

Proposition 2 Let F € domD. Let H € L%(IP ® 1) be given by (42) and assume

that
> n+ 1)!/h§dm+1 < o0. (46)
n=0
Then
E / (D.F)H(x)p(dx) = EF§(H). (47)

Proof Minkowski inequality implies (44) and hence H € domé. Using (40)
and (42) together with (28), we obtain that

B [ @) = [ (300 s (29) s (),
n=1

where the use of Fubini’s theorem is justified by (41), the assumption on H and the
Cauchy—Schwarz inequality. Swapping the order of summation and integration (to
be justified soon) we see that the last integral equals

oo

Zn'%’ n— 1 Zn' f;u n— 1

n=1

where we have used the fact that f,, is a symmetric function. By definition (43)
and (28), the last series coincides with IEF§(H). The above change of order is
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permitted since

St [ 1 s o)

n=1
= 3t [ I () 2@
n=1

and the latter series is finite in view of the Cauchy—Schwarz inequality, the finiteness
of (36) and assumption (46). ]

Proof of Theorem 3 'We need to show that
DF =D'F, P® u-ae. (48)

First consider the case with f(y) = e %) with a measurable v : X — [0, c0)
vanishing outside a set with finite p-measure. Then nlf, = T, f is given by (19).
Givenn € N,

1
et [ £ = o el = Dl — D)

which is summable in 7, so (38) holds in this case. Also, in this case, D, f(n) =
(€' — 1)f(n) by (13), while £,,(-,x) = (¢7"® — 1)n~'f,_; so that by (40),

Dif(m) = (e = Dlyy (fum1) = (7@ = Df (1)

n=1

where the last inequality is from Lemma 5 again. Thus (48) holds for f of this form.
By linearity this extends to all elements of G.

Let us now consider the general case. Choose gx € G, k € N, such that Gy :=
gi(n) — Fin L>(P) as k — oo, see Lemma 2. Let H € L%(]P,, ® ) have the
representative h(y, x) := h'(y)1p(x), where i’ is as in Lemma 5 and B € 2. From
Lemma 5 it is easy to see that (46) holds. Therefore we obtain from Proposition 2
and the linearity of the operator D’ that

E/(D;F — D/.Gy)H(x)pu(dx) = E(f — Gy)S(H) — 0 as k — oo. (49)
On the other hand,

E / (D.F — DyGYHMu(dy) = E / (Do f(n) — Dage (A () (),
B
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and by the case n = 1 of Lemma 3, this tends to zero as k — 00. Since D.gx = D,gk
a.s. for p-a.e. x we obtain from (49) that

E / (DL Hh( Op(dn) = E / (D f (D). )1 (d). (50)

By Lemma 2, the linear combinations of the functions 4 considered above are dense
in L*(P, ® p), and by linearity (50) carries through to / in this dense class of
functions too, so we may conclude that the assertion (48) holds.

It follows from (41) and (48) that F € dom D implies DF € L%(]P ® ). The
other implication was noticed in [22, Lemma 3.1]. To prove it, we assume DF €
Lfy (P ® ) and apply the Fock space representation (17) to IE(D,F)? for p-a.e. x.
This gives

[EOm@ =3~ [f @0t i@, )@
n=0

="+ D+ DU fusl 24y

n=0

and hence F € dom D. O

The following duality relation (also referred to as partial integration, or inte-
gration by parts formula) shows that the operator § is the adjoint of the difference
operator D. It is a special case of Proposition 4.2 in [20] applying to general Fock
spaces.

Theorem 4 Let F € domD and H € dom §. Then,
]E/(DXF)H(x),u(dx) = IEFS§(H). (51)

Proof We fix F € domD. Theorem 3 and Proposition 2 imply that (51) holds if
He L% (P ® ) satisfies the stronger assumption (46). For any m € IN we define

H™ (x) := Zln(hn(x, ), xeX. (52)

n=0

Since H™ satisfies (46) we obtain that

E / (DF)H™ (x) 11 (dx) = EFS(H™). (53)
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From (28) we have

oo

[ B - 1@ = ( S allln, -)Ilﬁ)u(dx)
n=m+1
= > .
n=m+1

As m — oo this tends to zero, since
o0
E [ HOPu@) = [ BE©) @ = 3 nlh .,
n=0

is finite. It follows that the left-hand side of (53) tends to the left-hand side of (51).
To treat the right-hand side of (53) we note that

oo oo
ESH—-H™) = Y Elwi1(h)’ = Y 1+ Dkl (54)
n=m+1 n=m+1

Since H € dom $ this tends to 0 as m — oo. Therefore E(§(H) — §(H"™))> — 0
and the right-hand side of (53) tends to the right-hand side of (51). O

We continue with a basic isometry property of the Kabanov—Skorohod integral.
In the present generality the result is in [17]. A less general version is [24,
Proposition 6.5.4].

Theorem S Let H € L% (P ® w) be such that

E [[ @07 pa@n@) < . (55)
Then, H € dom § and moreover
ES(H)? = E / H () + B /f DH®DHMu(AYu(dy).  (56)

Proof Suppose that H is given as in (42). Assumption (55) implies that H(x) €
dom D for p-a.e. x € X. We therefore deduce from Theorem 3 that

g(x,y) = DyH(-x) = ann—l(hn(xs Y, ))
n=1
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IP-a.s. and for u?-a.e. (x,y) € X2. Using assumption (55) together with the isometry
properties (28), we infer that

o0

o0
Sl = Y i, = E [f 00 p@in@) <o
n=1

n=1

yielding that H € dom§.
Now we define H™ € dom §, m € IN, by (52) and note that

IE(S(H(m))z = ZEIn+l(iln)2 = Z(n + 1)'||iln||i+l

n=0 n=0

Using the symmetry properties of the functions 4, it is easy to see that the latter sum
equals

St [ a4 3wt [[ by Do e @ 67
n=0 n=1
On the other hand, we have from Theorem 3 that

DyH(m)(X) = Z nln—l(hn(-xv Ys ))s

n=1

so that
E / H™ (x)*p(dx) + E // DyH"™ (x)DH™ (y) j1(dx) s (dy)

coincides with (57). Hence

ESH™) = B [ #700%u(@) + E [[ D" 0DH" 0u(@on@),
(58)

These computations imply that g, (x,y) := D,H"(x) converges in L*(P ® u?)
towards g. Similarly, g/ (x,y) := D,H"™ (y) converges towards g'(x,y) := D,g(y).
Since we have seen in the proof of Theorem 4 that H™ — H in L*(P ® ) as
m — 00, we can now conclude that the right-hand side of (58) tends to the right-
hand side of the asserted identity (56). On the other hand we know by (54) that
ES(H™)? — E§(H)? as m — oo. This concludes the proof. ]

To explain the connection of (55) with classical stochastic analysis we assume for
a moment that X is equipped with a transitive binary relation < such that {(x,y) :
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X <y} is a measurable subset of X? and such that x < x fails for all x € X. We also
assume that < totally orders the points of X p-a.e., that is

p(x) =0, xeX, (59)

where [x] ;= X\ {y € X : y<xorx<y}. Forany y € N, let y, denote the
restriction of y to {y € X : y < x}. Our final assumption on < is that (y,y) = x, is
measurable. A measurable function / : N, x X — R is called predictable if

h(x,x) = h()xx, %), (x.x) € Ng x X, (60)

A process H € L?I (P ® ) is predictable if it has a predictable representative. In this
case we have P @ p-a.e. that DyH(y) = 0 for y < x and DyH(x) = O forx < y.In
view of (59) we obtain from (56) the classical Itd isometry

ES(H)? =E / H(x)*11(dx). (61)

In fact, a combinatorial argument shows that any predictable H € Lf] (P ® w) is in

the domain of . We refer to [14] for more detail and references to the literature.
We return to the general setting and derive a pathwise interpretation of the

Kabanov-Skorohod integral. For H € L:] (P ® p) with representative & we define

§/(H) = / 7 — 8, n(dx) — / h(. ) (). 62)

The Mecke equation (7) implies that this definition does IP-a.s. not depend on the
choice of the representative. The next result (see [13]) shows that the Kabanov—
Skorohod integral and the operator 6 coincide on the intersection of their domains.
In the case of a diffuse intensity measure w (and requiring some topological
assumptions on (X, Z7)) the result is implicit in [23].

Theorem 6 Let H € L) (P ® p) Ndom§. Then §(H) = &'(H) P-a.s.

Proof Let H have representative h. The Mecke equation (7) shows the integrability
E [ |h(n — 8, x)|n(dx) < oo as well as

E / Dof (.3 (dx) = Ef(n)8' (), 63)

whenever f : N, — R is measurable and bounded. Therefore we obtain from (51)
that EF$'(H) = EFS(H) provided that F := f() € dom D. By Lemma 2 the space
of such bounded random variables is dense in Lf] (IP), so we may conclude that the
assertion holds. O
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Finally in this section we discuss the Ornstein—Uhlenbeck generator L whose
domain dom L is given by the class of all F' € Lfy satisfying

oo
2 2
Y renlll Al < oo.

n=1

In this case one defines
o0
LF := =Y nl,(f).
n=1

The (pseudo) inverse L™! of L is given by

o0

1
L'Fi==%" ~Li(fy). (64)

n=1

The random variable L™' F is well defined for any F € Lf]. Moreover, (37) implies

that L™'F € domL. The identity LL~'F = F, however, holds only if EF = 0.
The three Malliavin operators D, §, and L are connected by a simple formula:

Proposition 3 Let F € dom L. Then F € dom D, DF € dom § and §(DF) = —LF.

Proof The relationship F € dom D is a direct consequence of (37). Let H := DF.
By Theorem 3 we can apply (43) with &, := (n + 1)f,41. We have

o0 o0
Y 4 Dl = 0+ DI+ D2 furlog

n=0 n=0

showing that H € dom §. Moreover, since I,y (izn) = I,+1(h,) it follows that

S(DF) = Zln-i-l(hn) = Z(l’l + I)In-i-l(ﬁl-i-l) = —LF,

n=0 n=0

finishing the proof. O

The following pathwise representation shows that the Ornstein—Uhlenbeck
generator can be interpreted as the generator of a free birth and death process on X.

Proposition 4 Let F € dom L with representative f and assume DF € L,l7 P ® w).
Then

LF = / (F(n— 82 — Fm)n(dn) + / (F(n + 82 — F(m)(d). ©5)
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Proof We use Proposition 3. Since DF € L}7 (P ® ) we can apply Theorem 6 and
the result follows by a straightforward calculation. O

6 Products of Wiener-It6 Integrals

In this section we study the chaos expansion of 1,(f)1,(g), where f € L?(17) and
g € L}(u9) for p,q € IN. We define for any r € {0,...,p A q} (where p A ¢ :=
min{p, ¢}) and [ € [r] the contractionf . g : XPT4~"~! — R by

Il gCet, .. Xpgari) (66)
= /f(,)’h e ayla-xlv A 7-xp—l)

X g(Yl, s YL XLy e s X Xp—[4-15 - - - ,xp+q—r—l)ﬂl(d(,)717 e 7)’1))7

whenever these integrals are well defined. In particular f *8 g=f®g

In the case ¢ = 1 the next result was proved in [10]. The general case is treated
in [28], though under less explicit integrability assumptions and for diffuse intensity
measure. Our proof is quite different.

Proposition 5 Let f € L2(n”) and f € L2(u9) and assume f . g € L*(u+a—")
forallr€{0,...,pAgyandl €{0,...,r—1}. Then

PAqG r
LN =Y r! (” ) (q) 3 (;)Ipﬂ—r—z(f s g). Pas. (67)
r=0

=0

Proof First note that the Cauchy—Schwarz inequality implies f x" g € L2(uPT972")
forall r € {0,...,p A g}

We prove (67) by induction on p + g. For p A ¢ = 0 the assertion is trivial. For
the induction step we assume that p A ¢ > 1. If F, G € L°, then an easy calculation
shows that

holds PP-a.s. and for p-a.e. x € X. Using this together with Theorem 3 we obtain
that

D, (1,(/)1y(8) = ply—1(f)14(8) + qlp,(f)y—1(8x) + palp—1(f)l4—1(8x),
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where f; := f(x,-) and g, := g(x, -). We aim at applying the induction hypothesis to
each of the summands on the above right-hand side. To do so, we note that

(fx *f» g)(xl PRI ,xp—l+q—r—l) :f *5» g(xh cees Xp—1—1> Xy Xp—1—1+1 - - - axp—l-l—q—r—l)

forallr € {0,...,(p—1) Ag}and ! € {0,...,r} and

I !
(fe % 815 oo s Xp—1dg—1—r—1) = f %01 8, X1+ oy Xp—14g—1—r—1)

forallr € {0,...,(p — 1) A(g—1)}and [ € {0, ..., r}. Therefore the pairs (f, g),
(f, gv) and (f;, &) satisfy for p-a.e. x € X the assumptions of the proposition. The
induction hypothesis implies that

r

(P—DAg _
Dl (Nlg(e) = 3 r!p("rl) (Z)Z(j)c,ﬂ_l_r_l(ﬁ( *19)

r=0 =0

pAg=1) D\ (q—1\ < [r
+ Z r!Q(r) ( r ) Z (l)lp-i—q—l—r—l(f *Zr gx)
r=0

=0
(p—DA(g—=1) p—1\[q-1 .
+ Z r!pQ< e ) ( r ) Z (1) Ip+q—2—r—l(fx *i gx)-
r=0 =0

A straightforward but tedious calculation (left to the reader) implies that the above
right-hand side equals

J4Y r 1
I ——
r=0 =0

where the summand for p + g — r — I = 0 has to be interpreted as 0. It follows that
D.(I,(N)1,(g)) = D;G, P-as., p-ae. x€X,

where G denotes the right-hand side of (67). On the other hand, the isometry
properties (28) show that Itl,(f)I,(g) = EG. Since I,(f)I,(g) € L;(IP) we can
use the Poincaré inequality of Corollary 1 in Sect. 8 to conclude that

E(Ip(f)lq(g) - G)Z = 0.

This finishes the induction and the result is proved. O

If {f # 0} C B” and {g # 0} C B4 for some B € 2 (as in Lemma 4), then (67)
can be established by a direct computation, starting from (30). The argument is
similar to the proof of Theorem 3.1 in [16]. The required integrability follows from
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the Cauchy—Schwarz inequality; see [16, Remark 3.1]. In the case g > 2 we do not
see, however, how to get from this special to the general case via approximation.

Equation (67) can be further generalized so as to cover the case of a finite product
of Wiener—It0 integrals. We again refer the reader to [28] as well as to [16, 21].

7 Mehler’s Formula

In this section we assume that 7 is a proper Poisson process. We shall derive a
pathwise representation of the inverse (64) of the Ornstein—Uhlenbeck generator.
To give the idea we define for F € L% with representation (36)

o0
T,F:=FEF + Y ¢ ™IL(f). s=0. (69)

n=1

The family {7 : s > 0} is the Ornstein—Uhlenbeck semigroup, see e.g. [24] and also
[19] for the Gaussian case. If F' € domL then it is easy to see that

. T,F—F
lim =

s—0 N

L

in LZ(IP), see [19, Proposition 1.4.2] for the Gaussian case. Hence L can indeed be
interpreted as the generator of the semigroup. But in the theory of Markov processes
it is well known (see, e.g., the resolvent identities in [12, Theorem 19.4]) that

o
L 'F=— / T,Fds, (70)
0

at least under certain assumptions. What we therefore need is a pathwise represen-
tation of the operators 7. Our guiding star is the birth and death representation in
Proposition 4.

For F e L}7 with representative f we define,

PyF = / EF(® + ) | MiTayu(dp). s € [0. 1], a1

where 7 is a s-thinning of n and where IT v denotes the distribution of a Poisson
process with intensity measure ’. The thinning 7 can be defined by removing the
points in (6) independently of each other with probability 1 — s; see [12, p. 226].
Since

HIL = E[/ﬂ{ﬂ“) + x € '}H(l—x)u(d)():|v (72)
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this definition does almost surely not depend on the representative of F. Equa-
tion (72) implies in particular that

EP,F =EF, Fel,, (73)
while Jensen’s inequality implies for any p > 1 the contractivity property
E(P,F)’ <E|FFP, se€[0.1], FeL]. (74)

We prepare the main result of this section with the following crucial lemma from
[17].

Lemma 6 Let F € L. Then, for alln € N and s € [0, 1],

Dy . (PsF)=s"PDy  F, p'ae (x,...,x) € X", P-as. (75)
In particular
IED)"CI,___’XH P,F = s”IED)”C1 _____ . F, u'-ae(x,...,x,) €X". (76)

Proof To begin with, we assume that the representative of F is given by f(y) =
e %@ for some v : X — [0, 0o) such that u({v > 0}) < oo. By the definition of a
s-thinning,

E[e™"® | 5] = exp [ / log ((1 =) + se‘“‘y’)n(dy)} 7

and it follows from Lemma 12.2 in [12] that

/ exp(—x (W) 11—y (dy) = exp [ )] /(1 — e_”)d,ui|.

Hence, the definition (71) of the operator P, implies that the following function f; is
arepresentative of PsF:

fs(x) :==exp |: —(1- s)/ (1 - e_”)d,u:| exp |:/10g ((1 —5) + se_“(y)))((dy):|.
Therefore we obtain for any x € X that

D\PiF = f;(n + &) — fi(n) = s(e7"W — 1)f;(n) = s(e™"™ — 1)P,F.

This identity can be iterated to yield for all » € IN and all (x1,...,x,) € X" that

PF =s"[] ("™ —1)P,F.

i=1

n
Dy,
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On the other hand we have IP-a.s. that

lF:Ps (e—v(x,‘)_l)F: H(e—v(xi)_l)PJF’

i=1 i=1

PD7

so that (75) holds for Poisson functionals of the given form.

By linearity, (75) extends to all F' with a representative in the set G of all linear
combinations of functions f as above. There are f; € G, k € IN, satisfying Fj :=
fi(n) = F = f(n) in L*(IP) as k — oo, where f is a representative of F (see [13,
Lemma 2.1]). Therefore we obtain from the contractivity property (74) that

E[(P,F; — PsF)*] = E[(Ps(fi — F))*] < E[(fi — F)’] — 0,

as k — oo. Taking B € %2 with u(B) < oo, it therefore follows from [13,
Lemma 2.3] that

E/ﬂ& o PsFe =D PF|pu(d(x1, . ... x,)) = 0,

B"

as k — o00. On the other hand we obtain from the Fock space representation (17)
that ]E|D)’C‘1 ..... . F| < oo for pu"-a.e. (x1,...,x,) € X", so that linearity of P and (74)
imply

B

Again, this latter integral tends to 0 as k — oo. Since (75) holds for any Fj we
obtain that (75) holds IP ® (up)"-a.e., and hence also P ® u"-a.e.
Taking the expectation in (75) and using (73) proves (76). O

The following theorem from [17] achieves the desired pathwise representation of
the inverse Ornstein—Uhlenbeck operator.

Theorem 7 Let F € L%. If EF = 0 then we have P-a.s. that

1
L”F:—/f@fm. (78)
0
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Proof Assume that F is given as in (36). Applying (36) to P,F and using (76) yields

P,F =EF + ) s"L(f,). P-as.se[0.1]. (79)

n=1

Furthermore,

m 1 m
—Z %I,,(fn) = —/s_l Zs"ln(fn)ds, m> 1.
n=1 0 n=1

Assume now that EF = 0. In view of (64) we need to show that the above right-
hand side converges in L?(IP), as m — oo, to the right-hand side of (78). Taking
into account (79) we hence have to show that

o0

1 m 1
R, = s—l(PXF—Zs"In(m)ds= s‘l( > s"ln(.m)ds
[

1 0 n=m+1

converges in L*(P) to zero. Using that EZ,(f,)L,(f,) = 1{m = nin!||f,||> we
obtain

00 1

1 00 5
ER;, < / s—ZE( > s"ln(.m) ds= > a3 / s ds
o n=m+1 n=m+1 0

which tends to zero as m — o0. O

Equation (79) implies Mehler’s formula

o0
P—F =TF+Y ¢ ™L(f). Pas.s>0, (80)

n=1

which was proved in [24] for the special case of a finite Poisson process with a
diffuse intensity measure. Originally this formula was first established in a Gaussian
setting, see, e.g., [19]. The family {P.—s : s > 0} of operators describes a special
example of Glauber dynamics. Using (80) in (78) gives the identity (69).

8 Covariance Identities

The fundamental Fock space isometry (17) can be rewritten in several other
disguises. We give here two examples, starting with a covariance identity from [5]
involving the operators Ps.
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Theorem 8 Assume that 1 is a proper Poisson process. Then, for any F,G &
domD,

1
EFG = EFEG + E / / (DF)(P,D,G)dtu(dx). (81)
0

Proof The Cauchy—Schwarz inequality and the contractivity property (74) imply
that

1 2
- 2 2
(E / 0/ |DXF||PXDXG|dsu(dx>) <E / (DF) (A / (DG (d)

which is finite due to Theorem 3. Therefore we can use Fubini’s theorem and (75)
to obtain that the right-hand side of (81) equals

1
EFEG + / / s'E(DF)(D.P;G)dsi(dx). (82)
0

For s € [0, 1] and p-a.e. x € X we can apply the Fock space isometry Theorem 1 to
D, F and D,P;G. Taking into account Lemma 6, (73) and applying Fubini again (to
be justified below) yields that the second summand in (82) equals

1
/ / s 'ED,F ED,P;G dsu(dx)
0

1
o0
1 — i i n
+ Z; /f / sTUEDM  FEDI! PG s (d(xy, - . 0))p(d)
n=1 0
= / ED,F ED,G(dx)
00 1
1 n n+1 n+1 n
+y = SEDH  FED'™!  Gdsp(d(xi, . . ) p(d)
n=1 0

=Y — [ ED;  FED! . Gu"d(x.....xn).

Inserting this into (82) and applying Theorem 1 yield the asserted formula (81).
The use of Fubini’s theorem is justified by Theorem 1 for f = g and the Cauchy-
Schwarz inequality. O
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The integrability assumptions of Theorem 8 can be reduced to mere square
integrability when using a symmetric formulation. Under the assumptions of
Theorem 8 the following result was proved in [4, 5]. An even more general version
is [13, Theorem 1.5].

Theorem 9 Assume that n is a proper Poisson process. Then, for any F € L2,

1
E [ [ @D ) <. (83)
0
and for any F,G € L2,
1
EFG = EFEG + E / / E[DF | nV1E[D:G | n]dtu(dx). (84)
0

Proof Tt is well known (and not hard to prove) that ) and  — n” are independent
Poisson processes with intensity measures 714 and (1 — 7) i, respectively. Therefore
we have for F' € Lf] with representative f that

E[D,Fln] = [ D@ + 1)1 (d) 85)

holds almost surely. It is easy to see that the right-hand side of (85) is a measurable
function of (the suppressed) w € 2, x € X, and 7 € [0, 1].
Now we take F,G € L% with representatives f and g. Let us first assume that

DF,DG € L*>(P ® ). Then (83) follows from the (conditional) Jensen inequality
while (85) implies for all # € [0, 1] and x € X, that

E(D.F)(P.D,G) = ED,F / Dig(” + )M 1—p, (dp)
= EE[D,F E[D,G | n]] = EE[D,F | n”|E[D:G | n”].

Therefore (84) is just another version of (81).
In this second step of the proof we consider general F,G € Lfy. Let Fy € Lfy,

k € IN, be a sequence such that DF; € L*(P ® u) and E(f — F;)?> — 0 as k — oo.
We have just proved that

Var[Fy — F'] = E / (B[D.Fy | ] = B[DF' | "]’ u*(d(x, 1), k1€,
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where 11* is the product of & and Lebesgue measure on [0, 1]. Since L*(P ® u*) is
complete, there is an 4 € L>(IP ® p*) satisfying

lim I& / (h(x,1) = E[D.Fy | n"])* 1" (d(x, 1)) = 0. (86)
k—>00
On the other hand it follows from Lemma 3 that for any C € X

E|E[D:Fy | ] — E[D.F | ]| n* (d(x, 1))

cx[0.1]

< / E|D,Fy — DyFlu* (d(x. 1)) — 0

Cx[0,1]

as k — oo. Comparing this with (86) shows that h(w, x, 1) = E[D,F | n®](w) for
P® pu*-ae. (w,x,t) € 2 x C x [0, 1] and hence also for P ® u*-a.e. (w,x,t) €
2 x X x [0, 1]. Therefore the fact that & € L*(IP ® u*) implies (84). Now let Gy,
k € IN, be a sequence approximating G. Then Eq. (84) holds with (f;, Gi) instead
of (f,G). But the second summand is just a scalar product in L?(IP ® u*). Taking
the limit as k — oo and using the L?-convergence proved above yield the general
result. O

A quick consequence of the previous theorem is the Poincaré inequality for
Poisson processes. The following general version is taken from [30]. A more direct
approach can be based on the Fock space representation in Theorem 1, see [13].

Theorem 10 Forany F € L2,
VarF < B / (DsF)* 11 (dx). (87)

Proof Itis no restriction of generality to assume that 7 is proper. Take F = G in (84)
and apply Jensen’s inequality. O

The following extension of (87) (taken from [17]) has been used in the proof of
Proposition 5.

Corollary 1 For F € L},
EF? < (EF)’+E / (D<F)?pu(dx). (88)

Proof Fors > 0 we define

Fy =1{F > s}s + 1{—s < F < s}F — 1{F < —s}s.
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By definition of Fy; we have F € Lf] and |D,F,| < |D,F| for pu-a.e. x € X. Together
with the Poincaré inequality (87) we obtain that

EF < (BR) +E [(D.F)0(@) < (BR) +E [ (D5,

By the monotone convergence theorem and the dominated convergence theorem,
respectively, we have that EF? — EF? and EF, — EF as s — oo. Hence letting
s — oo in the previous inequality yields the assertion. O

As a second application of Theorem 9 we obtain the Harris-FKG inequality for
Poisson processes, derived in [9]. Given B € 27, a function f € F(N,) is increasing
onBif f(y + 8x) = f(y) forall y € N, and all x € B. It is decreasing on B if (—f)
is increasing on B.

Theorem 11 Suppose B € 2. Let f,g € L*(P,) be increasing on B and
decreasing on X \ B. Then

Ef(megmn) = Ef(n) Eg(n). (89)

It was noticed in [30] that the correlation inequality (89) (also referred to as
association) is a direct consequence of a covariance identity.

Acknowledgements The proof of Proposition 5 is joint work with Matthias Schulte.

Appendix

In this appendix we prove Proposition 1. If y € N is given by

r=2_8 (90)

for some k € INy U {oo} and some points xi, x2, ... € X (which are not assumed to
be distinct) we define, for m € IN, the factorial measure y™ € N(X™) by

™M (C) = Z# {(x;,....x;) €CY, Ce 2™ 1)
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These measures satisfy the recursion

XD = / I:/]l{(xls---sxm-‘rl) € -} x(dxm+1) (92)
— le{(xl, e Xy X)) € -}} 2™ d(x1, ... X).
j=1

Let N.so denote the set of all y € N with y(X) < oo. For y € N.y the
recursion (92) is solved by

m—1
1 = [ [t ey (x—Z&,)(dx@---x(dxl), 93)
=1

where the integrations are with respect to finite signed measures. Note that y™ is
a signed measure such that y(C) € Z for all C € 2™™. At this stage it might
not be obvious that ™ (C) > 0. If, however, y is given by (90) with k € IN,
then (93) coincides with (91). Hence X(m) is a measure in this case. For any y €
N_oo We denote by x™ the signed measure (93). This is in accordance with the
recursion (92). The next lemma shows that X(m) is a measure.

Lemma 7 Let y € N_o and m € N. Then y"(C) > 0 forall C € 2.

Proof Let By,...,B, € % and let I, denote the set of partitions of [m]. The
definition (93) implies that

A Br X x By) = Y ex [ [ x(NiesB), (94)

w€ll, JET
where the coefficients ¢, € R do not depend on By, ..., B,, and y. For instance
XV (B1 x By x B3) = x(B1) x(B2) x(B3) — x(B1) x(B2 N B3)
— x(B2) x(B1 N B3) — x(B3) x(B1 N By) + 2x(B1 N B N B3).

It follows that the left-hand side of (94) is determined by the values of y on the
algebra generated by By, .. ., B,,. The atoms of this algebra are all nonempty sets of
the form

B=B!N-.-NBn»

where iy, ..., i, € {0,1} and, for B C X, B' := Band B” := X \ B. Let A denote
the set of all these atoms. For B € A we take x € B and let yp := y(B)J,. Then the
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measure

X = ZXB

BeA

is a finite sum of Dirac measures and (94) implies that
(X)) (B1 x -+ x By) = g™ (Bi x -+ X By).

Therefore it follows from (91) (applied to x’) that y™ (B; x --- x B,,) > 0.

Let A,, be the system of all finite and disjoint unions of sets By X --- X By,.
This is an algebra; see Proposition 3.2.3 in [2]. From the first step of the proof and
additivity of ™ we obtain that y*(A) > 0 holds for all A € A,,. The system M
of all sets A € 2™ with the property x™(A) > 0 is monotone. Hence a monotone
class theorem (see e.g. Theorem 4.4.2 in [2]) implies that M = 2. Therefore X(m)
is nonnegative. O

Lemma 8 Let y,v € Nooo and assume that y < v. Let m € IN. Then )((’") < plm,

Proof By a monotone class argument it suffices to show that
X" By x - x By) < v (By X X By) 95)

for all By, ...,B, € Z . Fixing the latter sets we define the system A of atoms of
the generated algebra as in the proof of Lemma 7. For B € A we choose x € B and
define yp := x(B)d, and vg := v(B)J,. Then

¥y = Z)(B, Vo= Z\)B

BeA BeA

are finite sums of Dirac measures satisfying y’ < v’. By (94) we have
M, x...xB,) = ("B, x---xB
X (Brx X By) = (1) (B X -+ X Bp).
A similar identity holds for v and (v')™. Therefore (91) (applied to y’ and v’)
implies the asserted inequality (95). O

We can now prove a slightly more detailed version of Proposition 1.

Proposition 6 For any y € N, there is a unique sequence x"™, m € N, of sym-
metric o-finite measures on (X", Z™) satisfying yV := x and the recursion (92).
Moreover, the mapping y — x" is measurable. Finally, y™ (B™) < x(B)™ for all
meWNandB e 2.

Proof For y € N.o the functionals defined by (93) satisfy the recursion (92) and
are measures by Lemma 7.
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For a general y € N, we proceed by induction. For m = 1 we have y!) =
x and there is nothing to prove. Assume now that m > 1 and that the measures
2, ..., x™ satisfy the first m — 1 recursions and have the properties stated in the
proposition. Then (92) enforces the definition

1) = / K1s oo X 2 C) X" (d(x1s - . . X)) (96)

for C € 27!, where

K(xl,...,xm,)(, C)

= [ 1) € C @) = Y EG ) € C

j=1

The function K: X x Ny x ™ — (—00, 0] is a signed kernel in the following
sense. The mapping (x1,...,Xu, ) — K(xi,...,%n, X, C) is measurable for all
Ce 2"t while K(xy, ..., X, x.-) is o-additive for all (xy, ..., X,, x) € X"xN,.
Hence it follows from (96) and the measurability properties of y™ (which are part
of the induction hypothesis) that y ¥ (C) is a measurable function of y.

Next we show that

K&i, oo Xm0, C) =0 y™-ae. (x1,...,x,) € X" 97)

holds for all y € N, and all C € 2*!. Since y is a measure (by induction
hypothesis) (96), (97) and monotone convergence then imply that ™1 is a
measure. Fix y € N, and choose a sequence (y,) of finite measures in N, such
that y, T x. Lemma 7 (applied to y, and m + 1) implies that

K&i, oo X . ©) =0 () ™-ae. (x1,....xn) € X", neN.
Indeed, we have for all B € 2™ that
/K(xl, e X X ©) ) ™ (A (x1, X)) = () " T((B xX) N C) > 0.
B
Since K(xy, ..., Xn, -, C) is increasing, this implies

K@i, ..o X, 1, C) =0 (gn)™-ae. (x1,...,%n) € X" neN.

By induction hypothesis we have that (y,)™ 1 y so that (97) follows.
Finally we note that y" (B™) < y(B)™ follows by induction. In particular, y"
is o-finite. To prove the symmetry of y it is then sufficient to show that the
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restriction of y™ to B™ is symmetric, for any B € 2" with y(B) < oc. This fact
follows from (94). O

Forany y € N, B € 2 with y(B) < oo, and m € IN it follows by induction that
X" (B") = x(B)(((B) = 1)--- (x(B) —m +1).

Since y and ™ are o-finite, this extends to any B € 2". In particular y™ is the
zero measure whenever y(X) < m.
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Combinatorics of Poisson Stochastic Integrals
with Random Integrands

Nicolas Privault

Abstract We present a self-contained account of recent results on moment iden-
tities for Poisson stochastic integrals with random integrands, based on the use of
functional transforms on the Poisson space. This presentation relies on elementary
combinatorics based on the Faa di Bruno formula, partitions and polynomials, which
are used together with multiple stochastic integrals, finite difference operators and
integration by parts.

1 Introduction

The cumulants (kX),>1 of a random variable X have been defined in [33] and were
originally called the “semi-invariants” of X, due to the property kX t7 = «X + k7,
n > 1, when X and Y are independent random variables. Precisely, given the moment

generating function

|~

E[e*] =Y " —E[X"], (1)
n=0

of a random variable X, where ¢ is in a neighborhood of 0, the cumulants of X
are defined to be the coefficients (kX),> appearing in the series expansion of the
logarithmic moment generating function of X, i.e., we have

!

S

1
log(Ble™]) = 3 iy~ 2)
n=1 .
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where ¢ is in a neighborhood of 0. In relation with the Faa di Bruno formula, (1)
and (2) yield the classical identity

EX =% Y Kpyokpy  neN 3)

a=0 PyU--UP,={1.....n}

which links the moments (E[X"]),>; of a random variable X with its cumulants
(/cff)nzl, cf., e.g., Theorem 1 of [16], and also [15] or §2.4 and Relation (2.4.4) page
27 of [17].

The summation in (3) runs over the partitions Py, ..., P, of the set {1, ..., n},
i.e., each sequence Py, ..., P, is a family of nonempty and nonoverlapping subsets
of {1,...,n} whose union is {1, ..., n}, and |P;| denotes the cardinal of P;, cf. §2.2
of [21] for a complete review of the notion of set partition. For example, when X is
centered Gaussian we have K,’f = 0, n # 2, and (3) reads as Wick’s theorem for the
computation of Gaussian moments of X counting the pair partitions of {1,...,n},
cf. [10].

In this survey we derive moment identities for Poisson stochastic integrals with
random integrands, cf. Theorem 1 below, with application to invariance of Poisson
random measures. Our method relies on the tools from combinatorics appearing
in [3], i.e., the Faa di Bruno formula and related Stirling numbers, partitions and
polynomials, in relation with Poisson random measures, integration by parts on
Poisson probability spaces and multiple stochastic integrals. Such moment identities
have been recently extended to point processes with Papangelou intensities (see [6]
and [5], respectively, for the moments and for the factorial moments of such point
processes).

The outline of this survey is as follows. Section 2 starts with preliminaries on
combinatorics and the Faa di Bruno formula, providing the needed combinatorial
background to rederive the classical identity (3). Then, in Sect. 3 we introduce the
Poisson random measures and integration by parts on Poisson probability spaces,
along with the tools of 8§ and U transforms in view of applications to moment
identities. Single and joint moment identities themselves are then detailed in Sect. 4,
in relation with set-indexed adaptedness and invariance of Poisson measures.

Our computation of Poisson moments will proceed from the Bismut-Girsanov
approach to the stochastic calculus of variations (Malliavin calculus), via the use
of functional 8 and U-transforms, cf. Sects. 3.3 and 3.4. As an illustration, we start
with some informal remarks on that approach in the framework of the Malliavin
calculus on the Wiener space. Given (B;),er ., a standard Brownian motion and F()
a random functional of the Brownian path B;(w) = w(?), t € R4, we start from the
Girsanov identity

E[FE()] = E | F | o) + / Feds | | 4
0
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where f € L*(R+) and £ (f) = X is the terminal value of the (martingale) solution
of the stochastic differential equation

dXt :f(t)XtdBt, re ]R,+. (5)
By iteration, the solution of (5) can be written as the series

§(f) =

1+ / f(®X,dB,
0

o0 Iy

:1+g 0/ / /(rl) f(,)dB,, --dB,
=1+Z—I(f®")

of multiple stochastic integrals

o0 Iy

L(F® = n / / / F(t) 1), --dB,. = 1.
We can then rewrite (4) as

BIFE()] = BIF] + Y - BIFL (") ©
n=1

=E|F|w@)+ [ f(s)ds
/

o0 an p
= E[F] +Zni! S| F o0 +e / £(s)ds
n=1 0

e=0

By successive differentiations this yields the iterated integration by parts formula

E[FI,(f®")] = E[V}F], ()
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where V is the gradient operator defined by
1 |
ViF 1= 111‘[(1) - Flo()+ S/f(s)ds — F(w()

On the other hand, on the Wiener space the above Girsanov shift acts on the paths
(@(t))ser.. of the underlying Brownian motion (B;);er.. as

() — () + ¢ / F(s)ds.
0
which yields
E[VIF] = E / F51) -+ F(5)Ds, -+ Dy, Fds, ---ds, | ®)
0 0

where D;F is the Malliavin gradient which satisfies

(o]

ViF = /Dst(s)ds,

0

hence by (7) and (8) we obtain the iterated integration by parts identity

E[1,¢®YF] = E / /f(n)---f(sk)m---D‘Ydesl---dsk k=1
0 0

€))

arelation that can be the basis for the computation of moments. On the Wiener space
the operator D also satisfies the identity

D1,(g®") = ng(OL,—1(g®" V),  teRy, (10)

which can be used to recover (9) as the Stroock’s formula [32], cf. Corollary 1 below
for the Poisson case.

However, when carrying over this approach to the probability space of a Poisson
random measure it turns out that there is no differential operator V; that can satisfy
both relations (8) and (10) above. In the sequel we will develop the above approach
on the Poisson space via the use of finite difference operators.
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2 Combinatorics

In this section we provide the necessary combinatorial background for the derivation
of cumulant-type moment identities. We refer the reader to [21] and references
therein, cf. also [22], for additional background on combinatorial probability and
for the relationships between the moments and cumulants of random variables.

2.1 Faa di Bruno Formula and Bell Polynomials
2.1.1 Faa di Bruno formula

The Faa di Bruno formula plays a fundamental role in the combinatorics of
moments, cumulants, and factorial moments. Namely, instead of the multinomial
identity

n k d
(;xz) =k > E”'dinl’ (11)

di+-+dn=k
d)>0.,....dn >0

we will use the combinatorial identity

oo k oo
(Zx) => D xayexg (12)
n=1

n=k di+-+dg=n
di=1..dg=1

or

(le,n) (Zxk,n) = Z Z X1dy ** Xkdy - (13)
n=1 n=1

n=k di+-+dg=n
di=1...dg=1

The above identity (12) is equivalent to the Faa di Bruno formula, i.e., given g(x)
and f(y) two functions given by the series expansions

[e9)
x"
g(-x): E bnm
n=1 ’

with g(0) = 0 and

oo yk
=Y
k=0 '
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the series expansion of f(g(x)) is given by

ay
f(g(x))=zﬁ(2b )
o
DI DI DRI o <
- - dl... dk_..._
prr i ) A - d! 4!
dy=1...dg=1
[S°] n
:Z Z_ R (14)
n=0 k=0 k! di 4+ Adp=n dl' dk'
di=1,.dg=1

In the sequel we will often rewrite (12) using sums over partitions P{, ..., P} of
{1,...,n} into subsets with cardinals |PY|,...,|P{|, as

n! bd] bdk
— E — e = = E b|PH‘“.b‘Pn|'
k! di!  dy! ! k
dy+~+dy=n PIIIU"'UP;‘:{I ..... n}
d1=1,...dg =1

2.1.2 Bell Polynomials

The Faa di Bruno formula (14) can be rewritten as

) = Z Zaank(bls--- n—k+1)5 (15)

O

where B, (b1, . .., by—k+1) is the Bell polynomial of order (n, k) defined by

1 n!
Bnk(bla---abn—k+l) = E —bdl "'bdk
’ ! 1...d,!
k! dy+-dg=n dit---dy!
di=1,..dp=1

= > bipr -+ bipr

PIU-UPI={1,...n}

- THEE)

ri+2m 4t o—k+Dry— gy =n =1
ritr ety g1 =k
r 2().....r”_k+1 >0

_n > K bi\" bugt1 |
k! il ! U (n—k+1)! ’

r 24tk Dy g1 =n
" +/‘2+'“+an1<+1 =k
=0, ry—f-1 =0
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cf., e.g., Definition 2.4.1 of [21], with B, o(b1,...,b,) = 0,n > 1,and Bop = 1. In
particular when f(y) = ¢’ we have ax = 1, k > 0, and (15) rewrites as

eXp Z; = Z;An(bl,,bn), (16)
n=1 n=0

where

An(br, .- b2) =) Builbi, .. buir) (17)
k=0

n

k=0 PIU-~UP}={1,....n}

n 1 b; n
=n! T\
n 2. [1 (n!(n)) 4o
k=0 ri+2r+-Ao—k+Dn_jp1=n [=1

ritr et =k
r1=0,..., Tn—k41 >0

=nt Y H (% (%))

ri+2r 4t =n |=1

r1=0....5p =0

is the (complete) Bell polynomial of degree n. Relation (16) is a common formula-
tion of the Faa di Bruno formula and it will be used in the proof of Proposition 5
below on the U-transform on the Poisson space.

2.2 Stirling Inversion

The Stirling numbers will be used for the construction of multiple stochastic
integrals, as well as to establish their relations to the Charlier polynomials in

Sect.3.2. Let
12" (K.,
S ) = {Z} N ! i=0(_1)k (i)l

1 n!
“ 2. dil--dy) (19)
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denote the Stirling number of the second kind with S(n,0) = 0,n > 1,and S(0,0) =
1, cf. page 824 of [1], i.e., S(n, k) is the number of partitions of a set of n objects
into k nonempty subsets, cf. also Relation (3) page 59 of [3], with

Bui(x,...,x) :)«,J‘S(n,k), 0<k<n.

Let also

n 1 : i k BN/
s(n.k) = [,J = 22 U w—=i)
T i=0

denote the (signed) Stirling number of the first kind, cf., e.g., page 824 of [1], i.e.,
(=1)""Ks(n, k) is the number of permutations of n elements which contain exactly k
permutation cycles.

The following Lemma 1, cf., e.g., Relation (3) page 59 of [3], also relies on the
Faa di Bruno formula applied to

*
f@ = E and a, = 1{n=l<}
and
g(t) =log(14+1) and by =1y—p.

Lemma 1 Assume that the function f(t) has the series expansion

(o]

"
f@0) = ZO . 1E€R.
Then we have
o [k
' _
f(e —1)—Zk—!ck, teRR,
k=0

with

cp = 2”: aS(n, k),

k=0

and the inversion formula

a, = chs(n,k), n e N.
k=0
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Proof Applying the Faa di Bruno identity (14) to g(f) = ¢’ — 1 and using (19) we
have

fle=1 =Y a e__l) Z Z—S(nk)

k=0
o0 n o0
" r
Z— kS(n,k) =Y —cn tER,
il = n

with

= Z apS(n, k).
k=0

Conversely we have

FO =3 Elog1 +0) =Y @Y s k)
k=0 k! k=0 n=k n:
= Z chs(n k) = Z te R,

n= 0

with

a, = chs(n,k).
k=0

O
As a consequence of Lemma 1, the Stirling transform
a, = chs(n,k), nelN,
k=0
can be inverted as
= ZakS(n,k), nelN,
k=0
i.e., we have the inversion formula
> Smksk) =1ymy.  nleNN, (20)

k=l
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for Stirling numbers, cf., e.g., page 825 of [1]. As particular cases of the Stirling
transform of Lemma 1 we find that

1 A" 1 o A" n!

—( — l)k ( E ) — E -

k! = n! k! —in ! P/ di!---dg!
dy=1,..dp=>1

_Z—Bnk(l 1):ZA—S(nk) k>1. (1)

n=k

We also have

1 (& =\
1 (loz(1 + 1)k = (k!) (Z( n) t”)

n=1
00 —
P 1 1 (_l)n k+1
= ()Y —Bu-lz =2 ——
=D ;n! ’k( 23 n—k+1
(-DF & " n!
- (-1
k! ; n! d1+;ik:n dl dk
di=1....di=1

o0
"
=Y —stk. k=1,
n!
n=k
which shows the relation

! —1yk
s(n,k):% 3 Sl 22)

1 di-d
dyttdg=n ! k

In particular, taking ¢, = x* and letting a,, = x(,) be defined by the falling factorial

Xy =x(x—=1)---(x—n+1), k,n>0,

ie.,
o0
*
' _ N
fle = =e"=3 b
k=0
and by Lemma 1 we get
o 1"
FO =0 +0"= 3 —x. (23)

n=0
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which will be used in Lemma 2 below on the Charlier polynomials.
By Stirling inversion we also find the expansion of the falling factorial

n

Xy =x(x—=1)---(x—n+1) = Zs(n,k))/‘

k=0

and

=) Smk)xx—1)-(x—k+ 1),

k=0

cf., e.g., [9] or page 72 of [8].

2.3 Charlier and Touchard Polynomials

2.3.1 Charlier Polynomials

47

(24)

The Charlier polynomials C,(x,A) of order n € IN with parameter A > 0 are
essential in the construction of multiple Poisson stochastic integrals in Sect. 3.2.

They can be defined through their generating function

[e.]

An
Yann =) G =e M1+ A, xreRy,

n=0 """

A e (—1,1),cf,e.g., §4.3.3 of [30].

Lemma 2 We have

Gy =3 Y ('Z) (—A)"s( k),  xAeR.
k=0 =0

Proof We check that defining C,(x, 7) by (26) yields

o0

TACTED prarenty)
n=0
= W DD (’l’) (=151, k)
n= Y k=0 1=k
[e’e] an n n [
=>=3 (1) (=" " s(lk)
n=0 " =0 k=0

(25)

(26)
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e 1
. A

=M1+ 1),

A,t > 0,x € IN, where we applied (23) and (24). O

As a consequence of Lemma 2 and (24), the Charlier polynomial C,(x, A) can be
rewritten in terms of the falling factorial x,) as

n

HEEDY ( )( A ZZx s(L,k) = Z (’Z) ()", xA€R.

=0 =0

(27)
Lemma 3 We have the orthogonality relation
ety k—!Cn(k, A)Cnlk, X) = nIA gy (28)
k=0

Proof We have

e Aab _ —/l(l+a+b) Z (1 + a) (1 + b)k

oo A,k
= ; 7 Valk- ¥ (k. 1)

Ak

o0 o0 o0
—l
Z . 2;2)——c Wk, M) Con (K, A),
which shows that

o] o] Ak
ZAP(%V *ZHZZ——C (k, A)C(k, 1)
p=0

© n=0 m=0

—)k Z (ab)n i A,k (C (k A))2

(n!)2 k!
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with
o0 Ak
> Gk MC(k, 2) =0
k=0
for n # m, and
A - Ak 2
A" =Ty (Gl )2,
k=0
forn = m. O

2.3.2 Touchard Polynomials
The Touchard polynomials can be used to express the moments of a Poisson random

variable as a function of its intensity parameter. They can be defined by their
generating function

gy
Ale'—=1) _
e = § :;Tn(k), teR,

n=0 """

and from (16) or (21) they satisfy

T,(0) = AyA.....0) = Bux(h.....A)
k=0

= Z Z 2K = Xn:AkS(n,k), (29)

k=1 PIU~UPI={1....n} k=0

cf., e.g., Proposition 2 of [4] or §3.1 of [20]. Relation (29) above will be used in the
proof of the combinatorial Lemma 7 below.

2.4 Moments and Cumulants of Random Variables

Given the identity (1) defining the moment generating function of X, we can write

Ele®] = 1 + B[X] + gE[XZ] + o(%),
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which allows us to rewrite the cumulant generating function (2) as
2
log(E[e]) = log (1 + B[X] + EE[XZ] + o(tz))

? 1 2 ?

= (E[X] + EIE[XZ] -3 (tE[X] + E]E[xz]) +o(f)
SR )

= MBX] + SEX’] — 2 (E[X])® + o)
2

= E[X] + %Var[X] + o(£%),

hence kf = E[X] and k¥ = Var[X]. More generally, as a consequence of (16),
the moment generating function of X expands using the complete Bell polynomials
A,(by,...,by) of (17) as

exp(log(E[e™]))

[ele)
I
exp ( KX—')
n=1 n

oo

ZtnA (/cl,...,/cff,

n=0

]E[erX]

which shows by comparison with (1) that

E[X"] = A,,(/cf,/c?, . ..,Kf)

n X X

DREIND BRI

N k! ! !

k=0 """ dy+-tdg=n di di
dy=1,..dp=1

=YY ey (30)

k=0 PIU-~UP}={1,....n}

and allows us to recover (3).
The identity (30) can also be recovered from the Thiele [33] recursion formula

S (-1 f 1)! -
E[X]=Zman[X Zmz EX"] €)Y

=0
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between moments and cumulants of random variables, cf., e.g., §1.3.2 of [22].
Indeed, assuming at the order n > 1 that

n

X X
Xn] — n‘ Kll e KZ” e KX e KX
Z 2 T > P K-

a! L!
a=0 ++lg=n 1 a=0 PlU-UPI={1,...n}

P S

and using (31), we have, at the order n + 1,

n+1
n _
Bt =Y KFE[X" T
k—1
k=1
n+1 n+1—k X X
= Ky
— ! !
(k 1) per SN L L
h=1.0qg=1
nt1 " n+1—k
- Y > i
« _ K _
) k—1]* LA B A
k= a=0 prti=ky.upt I = (1, a1k}
n n+l—a n
: > }
_ P e K _
k_l X ‘Pn-‘rl kl |PZ+1 kl
a=0 k=1 PR upt R = 1=k}
n
X X
_ e 32
Z |P;ix+1| ‘Pn-‘rl‘ ( )
a=0 prtiy .UPZI}_{l ..... n+1}
n+1

X X
= K’ .. .K
Z Z 1Pt AN

a=l prily.uptl=(1,..n4+1}

zf(”“)' 3 KK
! AR

4t lg=n+1

N=llg>1

where in (32) the set P+ g ! of cardinal |P2ﬂ | = k is built by combining {n + 1} with

k — 1 elements of {1,...,n}.
The cumulant formula (30) can also be inverted to compute the cumulant X from

the moments X of X by the inversion formula

=D (@=DIDT YT sy, nz 1 (33)

a=1 prtiy-UPr={1,...n}
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where the sum runs over the partitions P}, ..., P: of {1,...,n} with cardinal |P}|
by the Faa di Bruno formula, cf. Theorem 1 of [16], and also [15] or §2.4 and
Relation (2.4.3) page 27 of [17].

2.4.1 Example: Gaussian Cumulants

When X is centered we have k' = 0 and k5 = E[X?] = Var[X], and X becomes
Gaussian if and only if kX = 0,n > 3,i.e., kX = 1(,=py0%,n > 1, 0r

(Kf,/{f,/{?,/{f, L) = (0,02,0,0, o).

When X is centered Gaussian we have Kff = 0,n # 2, and (30) can be read as
Wick’s theorem for the computation of Gaussian moments of X ~ N(0,0?) by
counting the pair partitions of {1, ...,n}, cf. [10], as

o"(n— 1!, neven,

EXT=0") " X0 KKy = (34)

k=1 PlU-UP}={l..n} 0, n odd,
IP{1=2,...|P}|=2

where the double factorial

n!
(n—HN = 2k —1) =272
151;[9 (n/2)!
counts the number of pair-partitions of {1, ...,n} when n is even.

2.4.2 Example: Poisson Cumulants

In the particular case of a Poisson random variable Z >~ P (1) with intensity A > 0
we have

[eS) ) [eS) ()Le’)” N )

tZ1 nt _ - _ e'—1

E[e]—g "P(Z=n)=e E 0 =e , te Ry,
n=0 n=0

hence k2 = A, n> 1, or

n =

(KIZ,KZZ,Kf,Kf,...) = A, A0,1,...),
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and by (30) we have

Ea[2'] = Au(A.....0) = ) Bux(A..... 1)
k=0

n

= Z Yo A=) MSnk)

k=1 PIU-UPI={1,...n} k=0

= Tn(k)a

i.e., the n-th Poisson moment with intensity parameter A > 0 is given by 7,,(1),
where T, is the Touchard polynomial of degree n.

In the case of centered Poisson random variables, we note that Z and Z — E[Z]
have same cumulants of order k > 2, hence in case Z — IE[Z] is a centered Poisson
random variable with intensity A > 0 we have

n

E[Z-Ez])"] =) A=A k). n=0,
a k=0

=1 PlU-UPj={1...n}
IP{1=2....|P41 =2

where S;(n, k) is the number of ways to partition a set of n objects into k nonempty
subsets of size at least 2, cf. [25].
2.4.3 Example: Compound Poisson Cumulants
Consider the compound Poisson random variable

,BlZoc; +oeet ,BpZocp (35)
with Lévy measure

aibp, + -+ 0,
where B1,...,8, € R are constant parameters and Z,,, . .. s Za, is a sequence of
independent Poisson random variables with respective parameters oy, ..., o, € Ry
The moment generating function of (35) is given by

E[e! 12+ +PrZey)] = o1 (@P1=D)+ta, (Fr—1)

which shows that the cumulant of order k > 1 of (35) is given by

B+ + By
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As a consequence of the identity (30), the moment of order n of (35) is given by

P n
E [(Z ,B,-Zml.) } (36)
i=1

=i Yoo @B BB

m=0 PIU-UPL={1,...n}
n
B P, .. gl
- l8 B aim ’

m=0 PIU-~UPL={1,....n} il cccim=1

where the above sum runs over all partitions P}, ..., P of {1,..., n}.

2.4.4 Example: Infinitely Divisible Cumulants

In the case where X is the infinitely divisible Poisson stochastic integral

(o]

= / h(r)dN,

0

with respect to a standard Poisson process (N;);er . With intensity A > 0 and & €
ﬂsil L’ (R+), the logarithmic generating function

o0 o0 00 1 o0
loglE | exp /h(t)dNt =2 /(eh(’) —Ddr =2 Z —'/hn(f)dt
n!
0 0 n=l""%

n

o
t
Dk
= K —
n ’
n!
n=1

shows that the cumulants of fooo h(t)dN; are given by

oo

KX =2 / K (t)dt, n>1, 37)

0
and (30) becomes the moment identity

oo n 0o

E / hndn, | | = ixk > / WPl @yde - - / nPil (1)dt,

o k=1 PiU-UPI={1....n} {) 0
(38)
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where the sum runs over all partitions PY, ..., P} of {1,...,n}, cf. [2] for the non-
compensated case and [28], Proposition 3.2 for the compensated case.

3 Analysis of Poisson Random Measures

In this section we introduce the basic definitions and notations relative to Poisson
random measures, and we derive the functional transform identities that will be
useful for the computation of moments in Sect. 4.

3.1 Poisson Point Processes

From now on we consider a proper Poisson point process n on the space
Ny (X) of all o-finite counting measures on a measure space (X, .Z") equipped
with a o-finite intensity measure p(dx), see [12, 13] for further details and
additional notation. The random measure 7 in N,(X) will be represented
as

1n(X)

n= j{: ana
n=1

where (xn)Z(=X1) is a (random) sequence in X, §, denotes the Dirac measure at x € X,

and 7(X) € IN U {oo} denote the cardinality of 1 identified with the sequence
(%)

Recall that the probability law P, of 7 is that of a Poisson probability measure
with intensity p(dx) on X: it is the only probability measure on N, (X) satisfying

(1) For any measurable subset A € 2" of X such that u(A) < oo, the number
n(A) of configuration points contained in A is a Poisson random variable with
intensity p(A), i.e.,

n € IN.

P,({n € Ns(X) : n(A) =n}) = oA (H(nf}))"7

(2) In addition, if Aj,...,A, are disjoint subsets of X with p(Ay) < oo, k =
1,...,n, the N"-valued random vector

n— (A, ....nA)), 1 eN:(X),

is made of independent random variables for all n > 1.



56 N. Privault

When (X)) < oo the expectation under the Poisson measure IP,, can be written as
|
EIF@] =Y = [f . mn) - pin) (39)
=0 'X

for a random variable F of the form

o0
F() =Y 1g=mfu(x. ... ) (40)
n=0
where for each n > 1, f, is a symmetric integrable function of n = {xi,...,x,}

when n(X) = n, cf,, e.g., §6.1 of [24].
The next lemma is well known.

Lemma 4 Given u and v two intensity measures on X, the Poisson random

measure 1,+, with intensity 1 + v decomposes into the sum

77;L+v ~ 77# @ 77\)7 (41)

of a Poisson random measure 1,, with intensity i (dx) and an independent Poisson
random measure 1, with intensity v(dx).

Proof Taking F a random variable of the form (40) we have

EIF(0] = 00700 3 [ o [T + v
. k=1

n=0 xn

2
S~
Re—

Fllsts o) [ TGe@se) + v(dse))
k=1

-y - (1) [ttt sy s @i -+ v(ds,)
Py,

n=0 =

n

- 1
=23 o [ A s i) ) )

n=0[=0

xn
() 1 ool
:ZﬁZﬁ /ﬁ+m({v1, SSls e s Sibm))
m=0 1=0 'Xl+m

u(dsp) - (ds)v(dsigr) -+ v (dsign)
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_e,u_(X)Z / e P | vdsi) -+ v(dsn) (42)

e Xln
= OTORFG, & 7).

where € " is the addition operator defined on any random variable F : Ny (X) — R
by

eEXFM =Fm+38; ++8,)., neN(X), s1,....5m€X, (43)
and

S = (s1,...,8m) € X", m>1.

In the course of the proof of Lemma 4 we have shown in (42) that

wwwn—aﬂ“Zj = [ Bl o] v@s) - vids) = ElF G, @ 1))

- xXm

where e is defined in (43).

In partlcular, by applying Lemma 4 above to wu(dx) and v(dx) = f(x)u(dx)
with f(x) > 0 p(dx)-a.e. we find that the Poisson random measure 1 with intensity
(1 + f)du decomposes into the sum

N(+f)dp = Ndp D Nedpes

of a Poisson random measure 7q,, with intensity ;+(dx) and an independent Poisson
random measure 74, with intensity f(x)(dx).

In addition we have, using the shorthand notation IE, to denote the Poisson
probability measure with intensity u,

EMWW—NWZ [ B0 - p sy s

Xlﬂ
(44)

The above identity extends to f € L?(X) with f > —1, and when f(x) € (—1,0),
Relation (44) can be interpreted as a thinning of 7(141)dy.
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3.1.1 Mecke Identity

The following version of Mecke’s identity [19], cf. also Relation (1.7) in [12], allows
us to compute the first moment of the first order stochastic integral of a random
integrand. In the sequel we use the expression “measurable process” to denote a
real-valued measurable function from X x N, (X) into R.

Proposition 1 For u : X x No(X) —> R a measurable process we have

E, /M(x, mn(dy) | = E, L[M(x,n + 8ou(dy) |, (45)

X

provided

[ uten+ 8luc@o | < ox.
Proof The proof is done when p(X) < oco. We take u(x, ) written as

o0
u(x,n) = Z Loy =mfu (X5 X1, .0, X)),

n=0

where (xi,...,x,) —> fu(x;x1,...,x,) is a symmetric integrable function of n =
{x1,...,x,} when n(X) = n, for each n > 1. We have

E, / (e, ) (dx)

X

21
_ e—M(X)Z;;/ﬁl(xi;xl,...,xn)lL(dxl)“‘M(dxn)
X

n=0 n

e HX)

:Z Y /fn(x XLy oo s Xim 15 X, Xy« ooy Xp—1) 0 (dx) e (dxy) - - - p(dx—1)

—M(X)Z //f,H_l(xxxl, »Xn)p(dx) pe(doer) - - - pu ()

h= 0 X" X

— B, | [ uten+8ou@)
X
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3.2  Multiple Stochastic Integrals

In this section we define the multiple Poisson stochastic integral (also called
multiple Wiener—It6 integrals) using Charlier polynomials. We denote by “o” the
symmetric tensor product of functions in L?(X), i.e., given fi,...,f; € L*(X) and
ki,... kg > 1,

ok okg
fi o...ofd

denotes the symmetrization in n = k; + - -+ + k; variables of
ki ®Rkq
TR ® fd ,

cf. Relation (1.27) in [12].

Definition 1 Consider Aj,...,A; mutually disjoint subsets of X with finite -
measure and n = ky+- - -+ky, where ky, ..., k; > 1. The multiple Poisson stochastic
integral of the function

1310013k
is defined by
d
LAY @ - @15 (n) == [ [ C(n(A). n(A)). (46)

i=1

Note that by (27), Relation (46) actually coincides with Relation (1.26) in [12] and
this recovers the fact that

(A = #({ (... i) €41 .on@Y t i FE i, 1< T#Em < k)

defined in Relation (9) of [12] coincides with the falling factorial (17(A))y) for A €
Z such that u(A) < oo.

See also [7, 31] for a more general framework for the expression of multiple
stochastic integrals with respect to Lévy processes based on the combinatorics of
the Mobius inversion formula.

From (28) and Definition 1 it can be shown that the multiple Poisson stochastic
integral satisfies the isometry formula

]E[In(fn)lm(gm)] = 1{n=m}(fnv gm)Lz(X”)s 47)

cf. Lemma4 in [12], which allows one to extend the definition of /, to any symmetric
function f, € L>(X"), cf. also (52) below.
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The generating series

o0 n

A
> T Cn(n(A). n(4)) = DA+ 1) = Y, (n(A), 1(A)),

n=0
cf. (25), admits a multivariate extension using multiple stochastic integrals.
Proposition 2 For f € L*>(X) N L' (X) we have
o0

60 = Y ™) = e | = [ropan | [Ja s @
X

n!
k=0 X€N

Proof From (47) and an approximation argument it suffices to consider simple
functions of the form

f= ady,
k=1

by the multinomial identity (11) we have

1 n!
* d] d, ®d1 ®dm
—E — E —ai' a L (1,7 001 )
n! di'--d, ! " n< Al Am

I
K
S|

' m
St T] Can@. na)
: : i=1

= €xp (‘ Xm: ai,u(Ai)) ﬁ(l + ai)U(Ai)

i=1 i=1

= exp (Z ai(n(A;) — M(Ai))) l_[((l + a;)"4D gmain4y O

i=1 i=1
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The relation between £ (f) in (48) and the exponential functional in Lemma 5 of
[12] is given by

exp / @9~ D) | € — 1) = exp /f(x)n(dx) ,
X X

provided ¢ — 1 € L1(X) N L2(X).

3.3 S-Transform

Given f € L'(X, ) N L*(X, ) with f(x) > —1 u(dx)-a.e., we define the measure
Q by its Girsanov density

d
B =t =ew |- [rwr@ | [T+, 49)
n X xeX

where IP;, is the Poisson probability measure with intensity (dx). From (39), for F
a bounded random variable we have the relation

B[P0 = B, | Fexp | - [ e | []a+r0)
X

X€n

= exp| - / (1 + FO)p(dy)
X

o0 1 n
XZQ;/F({SI”Sn})I!—[I(l +f(sk))/“t(dsl)/¢£(dsn)
n= xn =

= E[F(a-+a)]s

which shows the following proposition.

Proposition 3 Under the probability Qs defined by (49), the random measure 1 is
Poisson with intensity (1 + f)du, i.e.,

EL[FEP)] = Eq+paulF]

for all sufficiently integrable random variables F.
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The S-transform (or Segal-Bargmann transform, see [14] for references) on the
Poisson space is defined on bounded random variables F by

J = 8F(f) = By [F] = EL[FE()]

= E, | Fexp —/f(x),u(dx) l—[(l +f(x) |,
X

X€n

for f bounded and vanishing outside a set of finite o-measure in 2"; Lemma 4 and
Proposition 3 show that

SF(f) = E[F(nay @ ngau)] (50)

= [fdn
=e X [E,[F]

— [ S 1
be XN [0 [P @) - waso.
k=1 "
where 774, is a Poisson random measure with intensity fdu, independent of 74, by
Lemma 4. In the next proposition we use the finite difference operator
D,:=¢f —1, xeX,
ie.,

and apply a binomial transformation to get rid of the exponential term in (50). In the
next proposition we let

k
DSk:DJI"'Dsk, Sty..., 85k € X,

and

CR
=+
+

Slyeees Sk EX,
as in (43), where

5k:(S1,...,Sk)€Xk, k>1.
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Proposition 4 For any bounded random variable F and f bounded and vanishing
outside a set of finite i-measure in Z', we have

21
SF(N) = EFEN] = Y 51 [ F60)-f 0, [DhFa@sn) - (o
=0""7,

(51

Proof We apply a binomial transformation to the expansion (50). We have

SF(f)
- [r

I
o

3 [0 B [ s s
k=0

1)"

||M8

Xk
([ 3 :
d“ E /f(ﬁ)"-f(sk)E,L [e5 F] i(dsy) -+ p(dsy)
X =0 "k

m 1™ k 1
= Em )k)' (/ fd ) K / Flo1) -+ f 0By [ F] p(dsy) -+ pe(dsi)
Xk

pqu

0

>¢..

3
I

m

— (7:) (=nm* /f(sl)---f(sm)]E,L [eF] je(dsi) - - - p(ds)
Xm

M

m:
k=0

Il
S

m

I
WK
S|~

fGs0) - fsm)Ey [Dy, Flpu(dst) -+« 1a(dsw).

0 Xm

3
I

|

By identification of terms in the expansions (48) and (51) we obtain the following
result, which is equivalent (by (47) and duality) to the Stroock [32] formula, cf. also
Theorem 2 in [12].

Corollary 1 Given a bounded random variable F, for alln > 1 and all f bounded
and vanishing outside a set of finite (i-measure in & we have

By [1.(f*")F] = / fls0) -+ f () By [Dg, F] p(ds) - -+ (). (52)
XV!
Proof We note that (48) yields

SF(f) = BpuulF] = BulFE()] = Y B, lF1,%"),
n=0
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and by Proposition 4 we have
= 1
SF(N) = BaulF] = 3 [ 760+ 60)E [P, F sy i),
n=0""xn

and identify the respective terms of orders n > 1 in order to show (52). O

When k& = 1, we have the integration by parts formula
E.[L(NF] =E, / f(s)DyF u(ds)
X

Note that with the pathwise extension I;((Ff)®*) = F*I,(f®) of the multiple
stochastic integral, (52) can be rewritten as the identity

MWWWW=M'ﬂm%ﬂmmmuﬂmmmWMM),

cf. also Proposition 4.1 of [26].

3.4 U-Transform

The Laplace transform on the Poisson space (also called U-transform, cf., e.g., §2
of [11]), is defined using the exponential functional of Lemma 5 of [12] by

S fdn S —Ddu
fr—UF(f) :=E, [Fex } = ¢k E, [FE( - 1)),

for f bounded and vanishing outside a set of finite p-measure in 2", and will be
useful for the derivation of general moment identities in Sect. 4.

Proposition 5 Let F be a bounded random variable. We have

UF(f) = Z DD [ #7160

n=0 " k=0 P{U-UPj={l,...n}xx

E, [eX F] u(dsi)--- u(dsi). (53)

fel’ (X, p.
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Proof Using the Faa di Bruno identity (13) or (16) we have

21 ' /. J@=1)
> o | 7 [ran) | =g [ = re - )
=0 X

[ ~Ddu
= & (54)

xZ / (&) 1) (0 = DB, [D5 F] pdsy) -+ (ds)

nl ( )/(efm) () —DE, [D’;kF],u(dsl)...M(dsn)

n=

1
k— / (@) = 1) () — D), [ F] pu(dsy) - p(dsy)

Z%/ (xf (m) (E L8 b e o
n=1 ’

1% 1% d dy
=2 l' > x /! d(lsll) L dis!k) By [ F] pds) - puldse)

g

!
dy! n..dk! /fdl (51) S * () By [€ F] pu(dsy) -~ p(dsi),
Xk

dy,...dg=1

where we applied the Faa di Bruno identity (13). O

In particular, by (54) we have
S fdn
L (gm)eX (55)

=— /(ef(“) < (¢ — DB, [DY Li(gn)] 1(ds1) -+ - pu(dsin)
XIV[

- / (€60 — 1) (@ — 1) gu(ste. ... sm)p(ds) -+ pw(dsn).

cf. Proposition 3.2 of [11].
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4 Moment Identities and Invariance

The following cumulant-type moment identities have been extended to the Poisson
stochastic integrals of random integrands in [28] through the use of the Skorohod
integral on the Poisson space, cf. [23, 27]. These identities and their consequences
on invariance have been recently extended to point processes with Papangelou
intensities in [6], via simpler proofs based on an induction argument.

4.1 Moment Identities for Random Integrands

The moments of Poisson stochastic integrals of deterministic integrands have been
derived in [2] by direct iterated differentiation of the Lévy—Khintchine formula or
moment generating function

B, | exp [f(x)n(dx) — exp / @9~ () |,
X X

for f bounded and vanishing outside a set of finite y-measure in 2. We also note
that

E, |exp / Fen | | = exp / (@~ Du(dy)
X X

n

Zni [ @~ Du

X

() = 1) () = Dypa(dn) -+ p(d,)

I
3¢
3|,_.

3
Il
=)

A

n

() = 1) () = Dypa(dn) -+ p(d,)

I
3¢
3|,_.

3
Il
=)

A

n

Zi/( (fl)) (Zf(x"))u(dxl)---u(dm
X

n=0
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> > i (x dn (x,
=YY > [

Sl NG k! y
= ZEZ; Z m/f Yoen) e S (o) p(dx) - - - e (d),
XV!

where we applied the Faa di Bruno identity (13), showing that

n

B | [romen ] | = 3 [FHovuas- [ F 6
Pl Pixa X4
(56)
which recovers in particular (38).
The next Lemma 5 is a moment formula for deterministic Poisson stochastic
integrals, and applies in particular in the framework of a change of measure given
by a density F.

Lemmas5 Letn > 1, f € ﬂ;:l L’ (X, u), and consider F a bounded random
variable. We have

n

E, |F /fdr)
X

= Z Z /flP?I(sl)...flPﬁl(sk)E [G:E;:F] w(dsy) -+ u(dsy).

k=0 PlU--UP={1...., n}xk

Proof We apply Proposition 5 on the U-transform, which reads

n

O

Lemma 5 with F' = 1 recovers the identity (38), and (by means of the complete Bell
polynomials A, (by, ..., b,) as in (30)) it can be used to compute the moments of
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stochastic integrals of deterministic integrands with respect to Lévy processes, cf.
[18] for the case of subordinators.
Relation (55) yields

E[FZ"] = ZS(n k)/ e Flu(dsy) - pu(dsy),  neN, (57)

and when f is a deterministic function, Relation (54) shows that

n

= > [ennas- / P s (dsa),

P

1,....nga

/ FOIn(dx)
X

which recovers (56).
Based on the following version of (57)

B, [Fn)] = Y S0L0E | [ €f e FLuG1) -+ LaGn(@s) -+ lds)

(58)

and an induction argument we obtain the following Lemma 6, which can be seen as
an elementary joint moment identity obtained by iteration of Lemma 58.

Lemma 6 ForA,,...,A, mutually disjoint bounded measurable subsets of X and
F1, ..., F, bounded random variables we have

E, [(Fin(A))" -+ (Fon(4,))"]

— Z Z S(nl,k1)~~~S(np,kp)

k=0 k=0

+.. R IR 24 ...
XEM|: / €x 6Xk1+ +hp (Fy' - Fp (]lAlfl ®-® ]lA,k,”)
kit thp

(V1 s Xk, ) () - -+ M(ka1+~~~+k,,)}-

Lemma 6 allows us to recover the following moment identity, which can also be used
for the computation of moments under a probability with density F' with respect to
P,.

n
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Theorem 1 Given F a random variable and u : X x Ng(X) —> R a measurable
process we have

n

E,|F /u(x,n)n(dx) (59

/ S Fupy g (dsy) - pdse) |

PIU- UP”—{l .....

provided all terms in the above summations are P, ® w®-integrable,k = 1,...,n

Proof We use the argument of Proposition 4.2 in [5] in order to extend Lemma 6
to (59). We start with u : X x N;(X) — R a simple measurable process of the
form u(x, n) = >_7_, Fi(n)14,(x) with disjoint sets Ay, ..., A,. Using Lemma 6 we
have

n

P n
B (3 / 1, (@) 7(dv) =EM[(ZM(A,~)”
i=1

i=1

n! \
Z T ,Eu[(FIU(Al))”l -~ (Fpn(Ap)" ]

np+-+tnp=n I P

> n.Z 3 S k) --S ky)

ny+-+tnp=n k1= kp=0
nyep =0

+ + ny p
E#|: / RS 6X/<1+»-»+k,, (F1 e Fll7 ﬂAfl R ® ﬂArkIP (xp,... 7xkl+"'+k]7)>
Xkttt

p(dxy)--- ﬂ(dxk1+---+kp):|

np.
m=0 nj4-tnp=n 1 Ky Atk =m
1 ntp 20 1<kj <nj...|<kp=<np

+ + (Fm 1t
E;}. /6_ crr€ (F1 - Fp ]IA'II®"'®]]-A”;P(xlv---7xm))/*l'(dxl)"'ﬂ(dxm)
X”l

=YY T stndnh St ) P

m=0 ny+-+np=n : NUUlp={1,+ m}
npsetip 20 [n1=ny...llpl<np
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JENL JE€

E, { / e et (F —F T ml(xj)---]‘[m,,(xj)) u(dxl)-'-uwxm)}
Xm

n p
"% T m] fae e )
1

m=0 P{U--UPL={1,..n} il.....im= xm

p(dxy) - M(dxm)i|,

where in (60) we made changes of variables in the integral and, in (60),
we used the combinatorial identity of Lemma 7 below with «;; = 14,(x)),
1 <i <p 1 <j<mand B; = F;. The proof is concluded by using the
disjointness of the A;’s in (60), as follows

p n
E, (Z F / 14, () n(dx))

i=1 X

B, | [efeel (i (A 0n) >0 (F!”'*’"'IA,.(xm))) i) - p(d,)
i=1

i=1

= > (60)

» I
E, /é;rf;: (ZFilA,-(xl)) (
i=1

Xm

1Py

m

p
FilA,' (xm))
1

i=

The general case is obtained by approximating u(x, ) with simple processes.
O

The next lemma has been used above in the proof of Theorem 1, cf. Lemma 4.3 of
[5], and its proof is given for completeness.
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Lemma 7 Letm,n,p € N, (i j)i<i<pi<j<m and Bi, ..., B, € R. We have

n!
Z nyle-ny Z S(n i) -+ - S(np. 1))
Peeomy!

ny+-tnp=n Ul ={1,..m}
Y elip =0 I1=ny,.., \l,,\<np
|]1||...|] ||
: Pl gm ... ,
M g (o) - (T
: j€h J€l,

= 3 Z Bl - pe, 61)

PIUUPL={1,..n} il seensim=1

Proof Observe that (19) ensures

sodp ([Tes) = > TT(p™)

Jel Uses Pa={1....n} j€I

forall o, j €I, B € R, n € N. We have

n!
Y Y Seudnhe Sl

il
ny+-+np=n nU-Ulp={1,...m}
1y seestip =0 [ =ny,.lipl<np

|11|| Halzl)""g;p(l_[ap‘i)

J€N J€I,

_ Z n! Z L |1 !
ny+-tnp=n P UVl ={1,.m}

] seenstip =0 [ 1<nenlipl <np
3 1P, \ P |
. p
l_[ 0‘111:31 § : l—[ (O‘p-Jp:Bp )
Uden PL={1,..m}j1€h Uaappg:{l ..... np}ip€dp
n!

- +§+: T ,UUZ, o L PZI e sz
npTeTTap=n 1Y =1l...., mj ={1,..., ={1....
AL "ﬂIZO |11|Sn1{)-..,|1p|5n17 ach " U“E’P a={1,...mp}

|11I' III' |P,,\
[T (b
I=1j€l;
n!

o Z nil-eony! Z ‘ Z 2:

ny+-tnp=n 1 U-Ulp={1....m} UaeqP,l;:{l ..... ni} UaapPg={l """ np}

naesp=0 Inl=ny...lIpl<np



72 N. Privault
0 o T T o TTTT 67
Pt iplt ’ B
!
= Z '" 1 Z Z

np: ny:
nyttnp=n 1 P ky e thkp=m Iy =1

A senes n,,zo 1<ky=njy...., lfkpfnp

3 3 ﬁ( Wﬁ\P - +|P’m\)

1 ) G- j=
P{U~UP} ={1,...n1} PZ1+~-~+kp—1+1U UPL gy ={Lmp}

P
P P
XX BB

PiU-UP,={1,..n} i1,....i;=1

by a reindexing of the summations and the fact that the reunions of the partitions

P’i, e ,P’W, 1 < j < p, of disjoint p subsets of {1,...,m} run the partition of
7

{1,...,m} when we take into account the choice of the p subsets and the possible

length k;, 1 < j < p, of the partitions. O

As noted in [5], the combinatorial identity of Lemma 7 also admits a probabilistic
proof. Namely given Z)g,, ..., Z),, independent Poisson random variables with
parameters A, . .., Ao, we have

n . n! n k
YA Y e Y Stk Sty kel By

ny+-+np=n L p* ky e thkp=m
A e rszO kp<np,.., kpfrzp
p
— k k, pni
= E N E S("l kl)(kal) bees E S(n[hk[))(/’\'ap) pﬂl
ny ety =n | ! k1 =0 k,=0
A senes np>0
Z n! "
- nl...nlE[Zlal ' /10‘1]’3
nyttnp=n 1 r*
A senes np>0
P n

Il
=
g
=
N
R

— Xn:km Z Z ,Blp ‘ X ,Blp |O{lm’ (62)
m=0

PiU-UPE={1....n} i1 ,....im=

since the moment of order n; of Z,,, is given by (29) as

E[z] = Y S0

k=0
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The above relation (62) being true for all A, this implies (61). Next we specialize the
above results to processes of the form u = 14 where A(n) is a random set.

Proposition 6 For any bounded variable F and random set A(n) we have

E, [F(n(A))]

= ZS(n,k)EM /6;—"'éj,:(FlA(n)(sl)"'lA(n)(sk))M(dsl)"'N(dsk)
k=0 i

Proof We have

n

E. [F(1(A)"] = B, | F / L (n(dx)
X

=X B[ el L0 L () - plds)

PIU-UP{={1,...n} k

= ZS(",/C)E;L L/ e e (Flagy(s1) - - Lagp (s0) a(dsy) - - pu(dsi)
k=0 ;

We also have

I, [F (n(4))"]

=) Sk Y Eﬂ[ fD@(FlA(,,)(sl)---1A<,7>(sk)m(ds1)---u(dsk)}
k=0

OCH1....k} <

n k k
=) Smb) ( l) EM[ / Dyy-++ Dy (Flagy(s1) - Lay (s:)) e (dsy) - u(dsk)} :
k=0 =0

Xk

When 11(A(7)) is deterministic this yields

E, [(04)] = E, ( / 1A<n><x>n(dx)) }

X

= ZS(n,k)IE}H /GST"‘6‘;1_(1A(n)(51)“‘1A(n)(sk))ﬂ(dsl)“'N(dsk):|

k=0

Lk
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= ZS('L k) Lf Do (Lagy(s1) -+ - Lagp) (sx))u(dsy) - - M(dsk):|

k=0 @cu .....
n k k
= ZS(H, k) Z (I)E” /Dsl <o Dy (agy (s1) -+ - Lagy) (s6)) ja(dsy) - - - pu(ds)
k=0 =0 ;
= S(n.k)
k=0
“(k
X Z (l) E, |:(M(A))k_I/Ds1 ‘“Ds,(lA(n)(Sl)‘“1A(n)(Sz))M(dS1)‘“M(dsz):| .
=0 5

4.2 Joint Moment Identities

In this section we derive a joint moment identity for Poisson stochastic integrals with
random integrands, which has been applied to mixing of interacting transformations
in [29].

Proposition 7 Let u : X x Ny (X) —> R be a measurable process and let n =
ny+---+n, p > 1. We have

ni np

E, / e mn@o | - / up (e, )7 () 63)

X X

:Z Z I, L/ €. HHM”(XN?) pldxy) -+ pldxy) |
k n}

X j=1i=1

where the sum runs over all partitions P, ... P} of {1,...,n} and the power L is
the cardinal

l;‘J:z|P;‘ﬂ(n1+---+ni_1,n1+---+ni]|, i=1,...,k, j=1,...,p,

for any n > 1 such that all terms in the right-hand side of (63) are integrable.
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Proof We will show the modified identity
ni np

E, |F / u e () |- / up e, )7 () 64)

X X

n k P .
=2 > B / € (Fl_[l_[u?"‘(xj,n)) fu(dxy) -+ p(dx) |

j=li=1

for F a sufficiently integrable random variable, where n = ny +---+n,. Forp = 1
the identity is Theorem 1. Next we assume that the identity holds at the rank p > 1.
Replacing F with F ( [y up+1(x, n)n(dx))"”*" in (64) we get

ni p+1

B, |F / ey | - / Uy (5, )7 ()

X X

=y > /u(dxl)---u(dxk)

np+1

k p
I
E, 6;;'1_ ,,,,, Xk F / Up+1(x, M)n(dx) l—[ l_[ u;” (xj, m)
% j=1i=1
n p+1
= Z /E;L|: /6;1— ,,,,, xkup-l-l(-x n)n(dx) + Z Exl ..... xku[’+1(x“ n)
k=1 Pj,.. PZX" X i=1

Fl_[ l_[u (x5, 1) :|,u(dx1) <o p(dg)

j=1i=1

m
f‘-‘r
—

ap

= > > aor:pH' / ..... w1 ()1 (dx)

k=1 P}.. P} aot-+ak=n,4,

p n
Fl_[ ( ;f+1(xjv’7)l_[ui”(xjs?7)) ]M(dxl)"',u(dxk)

i=1

=

m
E4
é

e

ap
y oy
Cl()! o 'Clk!

k=1 P{,..P} a0t tak=n,y Jj=1 stk

I
=
=
=
1
Q
m
Ep
5
+
3
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[9)
I‘Hi]ll(xtﬂ 77) l_[ ( P-H(xl’ 77) l_[ u; J(xlv 77)) :|M(d~xl) e N(dxk+ao)
q= k+l Jj=1 i=1
+
+
Z ]EM|:/6x1,...,xk
=L gt Xk
k 17+1 n+np+1
(Fl_[ [ u’ (. n)) p(dxr) - --M(dxk)}
=1 i=1
where the summation over the partitions PVIH_”” o ,Pz+n” 1 oof {1,...,n+

np+1}, is obtained by combining the partitions of {1
ov, ... ,Q;"’ of {1,...,a0} and ay, ..
counted according to n,1!/(ao! -

.,n} with the partitions
.,ax elements of {1,...,n,41} which are

--ak!),with
L =tda, 1<j<k  D0H =2 410%, k+1<j<k+a.

|

Note that when n = 1, (63) coincides with the classical Mecke [19] identity of
Proposition 1.

Whenn; =--- =

n, = 1, the result of Proposition 7 reads

E, / s (e, () -+ / up (e, ()

X X

_Z Z / ..... ]_[]_[ wi(xj,m) | p(dxr) - - pu(dxy)

Pllz ..... Pn " ] 1 leRn
where the sum runs over all partitions P, ..., P} of {1, ..., n}, which coincides with
the Poisson version of Theorem 3.1 of [6].
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4.3 Invariance and Cyclic Condition

Using the relation 6X+ = D, + I, the result

n

E, / (e, )7(dx)

X
n |P"| ‘P”‘
= Z Z E, /631—6;: s, e utg ) pu(dsy) -+ - p(dsi)
k=1 P{U--UP}={1...n} k

of Theorem 1 can be rewritten as

E, Q u(x, n)n(dx)

k

Z Z (I;)EM /Dsl ...D‘w(u“f‘ll "‘M‘lvfg‘):u“(dsl) <+ pu(dsi)

PIU-UPY={1,...n} =0
> [
)

PIU-UPI={1,....n} 1=0

Pll P” P}’I Pll
XEM|: /Dsl"'Dsz ”Llll"'ul‘z[‘/ul‘z-il-lnu*(dsHl)"'/”ka‘ﬂ(dsk)

X/ X X

p(dsy) -+ M(dsz):|-

Next is an immediate corollary of Theorem 1.
Corollary 2 Suppose that
(a) We have

Dy, -+ Dy (us, -+~ ttg) = 0, s,...,.€X, k=1,...,n. (65)
(b) fx ukp(ds) is deterministic forallk = 1,...,n.

Then, /u(x, mn(dx) has (deterministic) cumulants /uk(x, nu(dx), £ =
X X

1,...,n
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Proof We have

n

E, / (e, ) (dx)

X

k—1
= > (I;) / e Dy e a(dsy) - (dse)

PIU-UP!={1,....n} 1=0

1y ) )
(l)EM[ /DSI."DSI u‘lylfl‘---u“qfﬁl‘/ 1Pil w(ds)

PIU-UP!={l,...n} 1=0 =1 %

Il
M

wu(dsy)--- M(dsk—l):|,

hence by a decreasing induction on k we can show that

E, | | [ utemn@ -y ¥ [ s utaso

X k=0 P{U-UP={1...n}xx
Z > [l [l s,
U-UP{={L,...n} x X

Hence, by a decreasing induction we can show that the needed formula holds for the
moment of order n, and for the moments of lower orders k =1, ..,n— 1. O

Note that from the relation

Do(u(xi.n)---u(xe.m) = > Deyu(x1.n) - Dol n), (66)
O1U~UB=0
where the above sum runs over all (possibly empty) subsets Oy, ..., & of ®, in
particular when ® = {1, ..., k} we get

Dy, -+ Dy (u(x1, 1) - -~ u(xx, 1)) = Do (u(x1, n) - - u(xe, n))

= > De,u(xi,n) -+ - De,u(xe, n),
O1UUO={1...k}

where the sum runs over the (possibly empty) subsets @1, ..., O, of {1,..., k}. This
shows that we can replace (65) with the condition

Dg,u(xy,n) -+ Deyu(xg, n) = 0, (67)
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for all x,...,x; € X and all (nonempty) subsets @1,..., O, C {x1,...,x,}, such
that ®; U---U O, = {1,...,n}, k = 1,2,...,n. See Proposition 3.3 of [5] for
examples of random mappings that satisfy Condition (67).
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Variational Analysis of Poisson Processes

Ilya Molchanov and Sergei Zuyev

Abstract The expected value of a functional F(n) of a Poisson process n can be
considered as a function of its intensity measure p. The paper surveys several results
concerning differentiability properties of this functional on the space of signed
measures with finite total variation. Then, necessary conditions for u being a local
minima of the considered functional are elaborated taking into account possible
constraints on p, most importantly the case of u with given total mass a. These
necessary conditions can be phrased by requiring that the gradient of the functional
(being the expected first difference F(n + ;) — F(n)) is constant on the support
of w. In many important cases, the gradient depends only on the local structure of
M in a neighbourhood of x and so it is possible to work out the asymptotics of the
minimising measure with the total mass a growing to infinity. Examples include the
optimal approximation of convex functions, clustering problem and optimal search.
In non-asymptotic cases, it is in general possible to find the optimal measure using
steepest descent algorithms which are based on the obtained explicit form of the
gradient.

1 Preliminaries

The importance of Poisson point processes for modelling various phenomena is
impossible to overestimate. Perhaps, this comes from the fact that, despite being
among the simplest mathematically tractable models, Poisson point processes enjoy
a great degree of flexibility: indeed, the parameter characterising their distribution
is a generic “intensity” measure, which roughly describes the density of the process
points. It is amazing how many intriguing and deep properties such a seemingly
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simple model enjoys, and how new ones are constantly being discovered, as this
monograph readily shows. Because the distribution of a Poisson point process is
determined by its intensity measure, altering the measure changes the distribution
which, in many cases, is a result of performing a certain transformation of the
phase space or of the point configurations. Such approach is taken, for instance,
in perturbation analysis of point process driven systems (see, e.g., [10] and the
references therein) or in differential geometry of configuration spaces, see, e.g., [1]
or [29].

Rather than considering a change of the parameter measure induced by trans-
formations of the phase space, we take a more general approach by changing the
parameter measure directly. A control over this change is made possible by a linear
structure of the set of measures itself as we describe in detail below.

The main subject of our study is a Poisson point process on a phase space X.
Although it can be defined on a very general measurable phase space, for some
results below we shall need a certain topological structure, so we assume from now
on that X is a Polish space with its Borel o-algebra 2 . The distribution of a point
process is a probability measure on (N, .4"), where N is the set of locally finite
counting measures on .2 called configurations and ./ is the minimal o-algebra
that makes all the mappings ¢ — ¢(B) measurable for any B € 2. Any ¢ € N can
be represented as a sum of Dirac measures: ¢ = ¥ ;8,,, where §,(B) = 1p(x) for
every B € 2 and not necessarily all x;’s are distinct.

Let u be a o-finite measure on (X, 2"). A point process 7 is Poisson with
intensity measure p, if for any sequence of disjoint sets By,...,B, € 2, n >
1, the counts n(By), ..., n(B,) are independent Poisson Po(i(B1)), ..., Po(u(B,))
distributed random variables. The distribution of the Poisson point process with
intensity measure p will be denoted by IP,, with the corresponding expectation IE,,.
The term intensity measure is explained by the fact that, due to the definition, one
has En(B) = u(B) for any B € 2 . Notice that the Poisson process is finite, i.e. all
its configurations with probability 1 contain only a finite number of points, if and
only if its intensity measure is finite, that is ©(X) < oo.

In what follows, we study the changes in the distributional characteristics of
functionals of a configuration, under perturbations of the intensity measure which
we first assume finite. Recall that a signed measure v can be represented as the
difference v = v — v~ of two non-negative measures with disjoint supports
(the Lebesgue decomposition) and that the total variation of v is defined as ||v| =
vH(X) + v=(X). Consider the set M of all signed measures on 2~ with a finite
total variation, and define operations of addition and multiplication by setting
(u +v)(B) = u(B) + v(B) and (tu)(B) = tu(B) for any B € 2. Endowed
with the total variation norm, 1\7[f becomes a Banach space and the set My of
finite non-negative measures is a pointed cone, i.e. a set closed under addition and
multiplication by non-negative numbers, see, e.g., [6, II1.7.4].

Given a function F : N — R of a configuration, its expectation IE,F(n) with
respect to the distribution IP, of a finite Poisson process 1 can be regarded as a
function of the intensity measure p and hence as a function on M. Therefore, there
is a reason to consider functions on My and their analytical properties in general.
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2 Variational Analysis on Measures

Recall that a function f on a Banach space B is called strongly or Fréchet
differentiable at x € B if

fx+y) =f@) + L&y + o(lylD.

where L(x)[-] : B — B is a bounded linear functional called a differential. A
function f is called weakly or Gateaux differentiable at x € B if for every y € B
there exists a limit

dyf (x) = hmt o+ 1) —fW)]

which can be called the directional derivative of f along the vector y. Strong
differentiability implies that all weak derivatives also exist and that 9,f(x)
L(x)[y]. The converse is not true even for B = RR. The same definitions apply to
functions of a signed measure with finite total variation, since M is a Banach space.
A very wide class of differentiable functions of a measure possess a differential
which has a form of an integral so that

FOutv) = F(w) + / g () + o[ ]). v € Mg

X

for some function g(-; u) called a gradient function. This name comes from the
fact that when X = {1, ..., d} is a finite set, M is isomorphic to R¢ and g(-; u) =
(g1(p),...,ga(pn))isa usual gradient, since

S +v) =f() + (-1 w).v) +o(lv]]). p.v e R

In line with this, we shall use from now on the notation (f, v) for the integral | f dv.
Not all differentiable functions of measures possess a gradient function (unless X
is finite), but all practically important functions usually do. Notably, the expectation
IE,F(n) as a function of u € M does possess a gradient function, as we will see
in the next section. So, it is not a severe restriction to assume that a differentiable
function of a measure possesses a gradient function, as we often do below.

The differentiability provides a useful tool for optimisation of functions. Neces-
sary conditions for a local optimum are based on the notion of a tangent cone.

Definition 1 The tangent cone to a set A C Mf at point v € A is the set of all
signed measures that appear as limits of n, € Mf where v + 1,1, € A for all n and
t, 4 0.

A first order necessary condition for an optimum in a constrained optimisation
now takes the following form.
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Theorem 1 Assume A C Mf is closed and convex in the total variation norm and
that f is continuous on A and strongly differentiable at v* € A. If v* provides a
local minimum in the constrained optimisation problem

f(v) = inf  subjecttov € A,
then
L(v*)[0] >0 forall 6 € Ta(v*). (1)

The proof of this general fact can be found, e.g., in [3] for the case of a constraint
set with non-empty interior. For the purpose of optimisation with respect to the
intensity measure, the main constraint set is the cone Mt of non-negative measures.
However, My does not have interior points unless X is finite. The non-emptiness
assumption on the interior was first dropped in [4, Theorem 4.1.(i)]. The next result
proved in [19] characterises the tangent cone to M.

Theorem 2 The tangent cone to the set Mg at & € M is the set of signed
measures for which the negative part of their Lebesgue decomposition is absolutely
continuous with respect to [L:

Tv () = {0 €Mt : 07 < ).

Assume now that f possesses a gradient function and p* provides a local
minimum on the constrain set A = M;. Applying necessary condition (1) with
6 = §, we immediately get that

L(u*)[6] = glx; u*) >0 forall x € X.
Now letting 6 be —u* restricted onto an arbitrary Borel B € 2 leads to

L(™)[8] = (g(-; u™)Lp. n*) < 0.

Combining both inequalities proves the following result.

Theorem 3 Assume that u* € Mg provides a local minimum to f on Mg and that
f possesses a gradient function g(-; u*) at u*. Then g(-;u*) = 0 u*-almost
everywhere on X and g(x; u*) > 0 for all x € X.

By considering an appropriate Lagrange function, one can generalise this
statement to the case of optimisation over My with additional constraints. Before
we formulate the result, we need a notion of regularity.
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Deﬁnitiqn 2 LetYbea Bzinach space and A € M, C C Y be closed convex sets.
Letf: Mf+— Rand H : Mg — Y be strongly differentiable. A measure v € M is
called regular for the optimisation problem

f(v) — inf subjecttov € A, H(v) € C,

if 0 € core (H W) +Lg(W)[A—v]— C) , where Ly is the differential of H and core(B)
for B C Yistheset{b € B: Vy € Y 31 suchthatb + ty € B Vt € [0,1]}. For
Y = RY, core(B) is just the interior of the set B C R¢.

Consider the most common case of a finite number of equality and inequality
constraints. In this case ¥ = R¥ and C = {0} x RX™ m < k, so that we have the
following optimisation problem:

f(u) — inf  subject to

€ Mg
Hi(p) =0,i=1,....m 2)
Hi(u) <0, j=m+1,...k

for some function H : Mg +— R*. The following result and its generalisations can
be found in [19].

Theorem 4 Let 1* be a regular (in the sense of Definition 2) local minimum for the
problem (2) for a function f which is continuous on My and strongly differentiable
at p* with a gradient function g(x; u*). Let H = (Hy, ..., Hy) also be strongly
differentiable at ©* with a gradient function h(x; ) = (hy(x; ), ..., g(x; ©)).
Then there exist Langrange multipliers u = (uy,...,ux) with u; < 0 for those
je{m+1,... k} for which H(n*) = 0 and u; = 0 if H(u*) < 0, such that

gl u*) = Zf'(:l wih; (o w*) u*—ae xeX,
gl u*) > Zle w;h;(x; 1) for all x € X.

When the functions f and H possess gradient functions, as in Theorem 4 above,
the regularity condition becomes the so-called Mangasarian—Fromowitz constraint
qualification, that is, a linear independence of the gradients i, (-5 ™), ..., (- ; ™)
and the existence of a signed measure { € M such that

g(h,-,é)zo foralli=1,...,m; 3

(hj, ) <0 forallj e {m+1,...,k} for which H;j(u*) = 0.

Without inequality constraints, (3) holds trivially for { being the zero-measure
and we come to the following important corollary giving, the first-order necessary
condition for optimisation with a fixed total mass.
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Theorem 5 Let f be continuous on Mg and strongly differentiable at ©* € Mg
with a gradient function g(x; u*). If ©* is a local minimum in the constrained
optimisation problem

f(u) — inf  subject to

eM
12 f )
U(X)=a>0,
then there exists a real u such that
g =u w*—ae. xeX, )
g )y >u forall x € X.

3 Analyticity of the Expectation

The linear structure on the set of measures described in the previous section makes
it possible to put analysis of variations of the intensity measure in the general
framework of differential calculus on a Banach space. In this section we fix a
functional F : N — IR on the configuration space and regard its expectation IE, F (1)
as a function of a measure u. To explain the idea, we first consider a bounded
functional F and the Banach space Mt of finite measures and then discuss extensions
to a wider class of functionals and to infinite measures.

It is a well-known fact that for a Poisson process 1 with a finite intensity measure
W, the conditional distribution of its points given their total number n(X) = n
corresponds to 7 points independently drawn from the distribution (1(X)) ™! . This
observation, after applying the total probability formula, gives rise to the following
expression for the expectation:

o0
_ 1
EP—F(n) = F(ﬂ) +e X Z ; / F(8x1 +oeet Sx”) M(dxl) s M(dxn)s (6)
n=1 'X”

where @ stands for the null measure. ~

Substituting p < (1 + v) for a signed measure v € Mg such that © + v € My
into (6),

By F(n) = ¢ (1= v(X) + o([v])))

< [F@ + 30 [ FE 80 G v@n) vy
2 ) M



Variational Analysis of Poisson Processes 87

= B F 4 ety % /F(i1 8,) pldxy) . .. pu(dx,_)v(dx,)

n=1 xn
—v0e S L 1 [ PG s @) + ovD.
)

Thus
E, +vF(n) — EuF(n)

1 n
=m0y / F(E 8,4+ 80 p(dn) .. p(ds)v(d)

.Xn+l

1 n
—e_“(X)Za / F(x 8) p(d) ... p(d)v(dn) +o(llvI)

X"+1

~E, / [F(1 + ) — F)] v(dv) + o(v ).

X

Denoting by D, the difference operator DyF(n) = F(n + ;) — F(n), we see that
Ey+F — E F = (E,D.F,v) + o(|[v]).

Since F is bounded, so is I5, D.F, hence IE, F is strongly differentiable on My with
the gradient function IE; D, F.

Using the infinite series Taylor expansion in v(X), one can extend the above
argument to show not only differentiability, but also analyticity of I8, F as a function
of . Introduce iterations of the operator D, by setting D°F = F, D)qu = D, F,
D} F=D,(D:! F)sothat

..... X1 peeesXny

DL JF = Y CDEG+ xs),
J

..... JC{1.2....n}

as it can be easily checked.

Theorem 6 Assume that there exists a constant b > 0 such that |F ( Y 5x;)| <
foralln > 0and (x1,...,x,) € X". Then IE,F(n) is analytic on My and

By F = Z / BuDS,  F(n+ £ 8,)vdn)...v(d,), @)

where the term corresponding to n = 0 is, by convention, IE, F ().
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The proof can be found in [20]. Notice that the integral above is an n-linear form
of the n-th product measure (the n-th differential) and that

E.D) L F) =) (=)™ (:1) E,F(n +j'_£1 8)
m=0 -

because of the symmetry with respect to permutations of xi, . . ., X,.

3.1 Margulis—Russo Type Formula for Poisson Process

An important case of perturbations of the intensity measure is when the increment
is proportional to the measure itself. So fix a u € My and consider v = fu for a
small € (—1, 1). Substituting this into (7) gives a power series in #:

By F = Z / BuDl, L P+ £ 80) p(dn) ().

In particular,

d
S F () = / Ey,DoF () j(dx) = / By [F(n + 8.) — F(n)] (dv).
X X

Let F(n) = 1z(n) be an indicator of some event Z. The integration in the last
expression can be restricted to the (random) set 7' () = {x € X : 1gz(n + §,) #
1z(n)} leading to

d
CPy(E) = By, / L2 (14 8917y (@) p(dx) — e / L2 Ly () 1),

X X

The last term is obviously Iy, 1z () (Y (17)). For the first one, we apply the Refined
Campbell theorem together with the Mecke formula

E, / Flemn(do = E, / Foon + 8u(dy)
X X

valid for any measurable f : Xx 2" + R which characterises the Poisson process,
see, e.g., Propositions 13.1.IV and 13.1.VIIin [5] and [12, Sect. 1.1]. Using (3.1),

1
E, / 1207+ 8Ty () pu(dy) = / Lo L 100t oy () (0.
X X
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Combining all together,

d 1
a]Pm(E) = ;Em]la(fl)NE(V/) — B 1z(mV=(). (8)

Here Vz(n) = puix € X : 1z(n + ;) # 1z(n)} is the u-content of the set
where adding a new point to configuration 7 would change the occurrence of &, so
the elements of this set are called pivotal locations for event & in configuration 7.
While Ng () = [ L{x € n: 15(n) # 15(n—=4:)}n(dx), in the case of non-atomic
M, is equal to the number of points in configuration n whose removal would affect
the occurrence of Z. Such configuration points are called pivotal points for event
& in configuration 7. This geometric interpretation is a key to usefulness of this
formula which is a counterpart of the Margulis—Russo formula for Bernoulli fields
proved in [13] and independently in [31]. Identity (8) was shown in [34] in more
restrictive settings.
Let us mention two useful implications of (8):

d . 1 . _
glong(d) = ;E‘W[NE(U) | F] _ES;L[VE(U) | =]

obtained by dividing both parts by Py, (&), and consequently,

52

Poy(E) = Pu(®) exp [ BNz - V=) | 1)

S1

providing a way to control the change in the probability of an event in terms of
the control over the number of pivotal points versus the p-content of the pivotal
locations.

3.2 Infinite Measures

To extend the formula (7), or at least its first k-th term expansion, to infinite mass
measures one must put additional assumptions on the functional F, as there are
examples of a bounded functional whose expectation is, however, not differentiable.
A notable example is the indicator that the origin belongs to an infinite cluster in a
Boolean model of spheres in R, d > 2. Its expectation is the density of the infinite
cluster, which is not differentiable at the percolation threshold.

One possible approach for a locally compact phase space is to consider a growing
sequence of compact sets {X,} such that U,X,, = X, and the corresponding
restrictions 1, of the Poisson process n onto X, are finite point processes. If
F(n,) converges to F(n) (such functionals are called continuous at infinity), then
by controlling this convergence it is possible to ensure that the corresponding
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derivatives also converge. This approach was adopted in [20] where, in particular,
it was shown that if F is bounded and continuous at infinity, then (7) holds for a o-
finite 1 and a finite v such that u 4 v is a positive measure, see [20, Theorem 2.2].
Note that the indicator function that the origin is in an infinite cluster is not
continuous at infinity.

A more subtle method is based on the Fock space representation (see the survey
by Last [12], in this volume) and it makes it possible to extend the expansion formula
to square-integrable functionals. Consider two o-finite non-negative measures [
and another measure p dominating their sum A = u + v. Denote by A, and h, the
corresponding Radon—Nikodym densities. The following result is proved in [11].

Theorem 7 Assume that
(1 =h)2 p) + (1 —ha)?. p) < oc.

Let F be such that IE/,F(n)2 < oo. Then (7) holds, all the integrals there exist and
the series converges absolutely.

Perhaps, the most important case is when the increment measure v is absolutely
continuous with respect to n with the corresponding density 4,. Then the above
theorem implies that for F such that E,4,F?(n) < oo, condition (h,(1 +
h,)~', ;) < oo is sufficient for (7) to hold.

Note an interesting fact on the validity of the expansion formula. Each general
increment measure v can be represented as v = v; + v,, where v; is absolutely
continuous with respect to i and v, is orthogonal to it. In order for (7) to hold for
all bounded F, it is necessary that v,(X) < oo! This and other results on the infinite
measure case can be found in [11].

4 Asymptotics in the High-Intensity Setting

Consider the minimisation problem
f(u) =E,F(n) — inf subjectto u € Mt and u(X) = a, )

where F is a functional satisfying the conditions of Theorem 6. For simplicity, we
consider only the case of a fixed total mass and refer to [20] for more general cases.

It is rarely possible to find analytic solution to (9), but Theorem 5 opens a
possibility to use gradient descent type methods in order to numerically solve it
as described later in Sect. 5. However, when the total mass a is large, in many cases
it is possible to come up with asymptotic properties of the optimal measure that
solves the optimisation problem (9) for a that grows to the infinity.

The key idea is to rescale the optimal measure around some point x, so it looks
like proportional to the Lebesgue measure. In the case of a stationary point process,
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it is then easier to calculate the first difference in order to equate it to a constant, so
to satisfy the necessary condition (5) for the minimum.

Assume that X is a compact subset of R that coincides with the closure of its
interior and let y*(y) = x+a'/?(y—x) denote the rescaling around the point x € R,
so that the image configuration y, 7 consists of points y’_,x; for n = {x;}. Consider
a solution to (9) which we represent in the form ap, for some probability measure
Mg In particular,

Eou F(m) = EpF(y,n),

where 15 (-) = api, (y;-1-)- Assume that , is absolutely continuous with density p,
with respect to the Lebesgue measure £,. Then 1% (-) has density pa(y,—1y) on v, X.
The key idea is that in some situations the expected first difference

By, Dx(n) = Epe Do(yzm) o< g(@)Epye, I (i 1)

for a function I" (x; n) that depends on 7 locally in a possibly random neighbourhood
of x, a normalising function g and a function p that corresponds to a limit of p, in a
certain sense. Then, the gradient function used in Theorem 5 can be calculated for a
stationary Poisson process with intensity p(x) which is generally easier.

To make precise the local structure of I"(x; ), we need the concept of a stopping
set, that is a multidimensional analogue of a stopping time, see [35]. Let 27z be
the o-algebra generated by random variables {n(C)} for Borel C C B. A random
compact set S is called a stopping set if {S C K} € @/ for any compact set K in R,
The stopping o-algebra is the collection of events A € .o/ such that A N {S C K} €
i for all compact K.

The following result is proved in [20].

Theorem 8 Let ap, be a measure solving (4) for the fixed total mass a. Assume
that for an interior point x of X the following condition holds.

(M)  For all sufficiently large a, [, is absolutely continuous with respect to £, with
densities p,, and there exists a finite double limit

lim  p,(y) =px) >0. (10)

y—=>x, a—>00

Furthermore, assume that for the same x, the first difference D,F satisfies the
following conditions.

(D)  For some positive function g(a), the random variable

I, = Fa(X; 77) = Dx(Vj’l)/g(a)

converges to I' = I'(x;n) as a — oo for almost all realisations of the
stationary Poisson process n with unit intensity, and

0< E[’(X)ZdF(X; 77) < 0o0.
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(L) There exist a family of stopping sets S, = S,(x; n) and a stopping set S(x; n)
such that I,(x;n) is <, -measurable for all sufficiently large a; I'(x;n) is
os-measurable; and for every compact set W containing x in its interior

Ts,csmew = Lsepew  asa — 00

for almost all realisations of a stationary unit intensity Poisson process 1.
(UI)  There exists a compact set W containing x in its interior such that

lim | Fa (s m) [ Ls,cw = 0

a—>00, n—>

and there exists a constant M = M(W, b) such that |I,(x;n)| < M for all
sufficiently large a and 1 such that S,(x; 1) C y;iW.

Then

Jim (I (i) = By, ()| =0

and

. EauanF
lim ————— =1.
a—>00 Eap(x)ZdeF

The uniform integrability condition (UI) can be efficiently verified for stopping
sets S, and S that satisfy the condition £4(B) > af,(S,) for some fixed o and almost
all x, see [20, Theorem 5.4]. We now show how this theorem applies to various
problems of a practical interest.

4.1 Approximation of Functions

Consider a strictly convex function f(x), x € [a,b] C R, and its linear spline
approximation s(x; 7) built on the grid of points a < x; < x, < -+ < xy < b,
where {x,...,xy} form a Poisson point process 7 on [a, b]. Since the end-points
are included as the spline knots, the spline approximation is well defined even if 7
is empty. The quality of approximation is measured in the L!-distance as

b

Fy) = / (sCx: ) — F(0)dx.

a

If, instead of a Poisson process 7, one takes a set of deterministic points, the problem
of determining the best locations of those points has been considered in [14] (in
relation to approximation of convex sets), see also [32]. It is well known that the
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empirical probability measure generated by the best deterministic points converges
weakly to the measure with density proportional to f”(x)!/3.

If n is a Poisson process of total intensity a, then the optimisation problem aims
to determine the asymptotic behaviour of the measure p, such that the intensity
measure [t = aji, minimises I8, F(n). The key observation is that the first difference
D,F(n) equals the area of the triangle with vertices at (x,f(x)), (x~,f(x7)) and
(x*.f(xT)), where x~ and x™ are left and right neighbours to x from 7. Denoting
r, = x—x" and r} = xT —x, we arrive at the expected first difference (the gradient

function) given by

g ) = ByD.F = —f(0)[E,r; +Erf [+ B, Ef e+ rH) +Eurf Buf (e+r7)

If  is an optimal measure, then the strict convexity and continuity properties imply
that (5) holds for all x € [a, b]. It is easy to write down the distributions of 7 and
rF in terms of u. Then the requirement g(x; 4) = const turns into a system of four
differential equations. However, one is interested in the asymptotic solution when a
is large, so the high intensity framework is very much relevant in this setting. Notice
that here

P@n) =~ 0 )

depends only on the stopping set [x~, x™] that shrinks to {x} as the total mass a of
the measure ;& = aj, grows. If w is proportional to the Lebesgue measure £, then
it is easy to calculate the first difference explicitly as

Epe, I (x5 ) o< —f" (x)p(x) ..

By Theorem 8, if (10) holds, then it is possible to equate the right-hand side
to a constant, so that the density of the optimal measure p, is asymptotically
proportional to £ (x)'/3, exactly as it is in the deterministic case. The same argument
applies to a strictly convex function f(x), for x taken from a convex compact subset
of R?, and leads to the asymptotically optimal measure with density proportional
to K(x)"/?*+9  where K(x) is the Gaussian curvature of f at point x, see [18].
The multidimensional optimal approximation results for deterministic sets of points
(including also the Bezier approximation) are also studied in [16].

4.2 Clustering

Consider the data set {y;, ..., y,} in R?. One of the objectives in the cluster analysis
consists in determining cluster centres n = {x;,...,x;} C R for some given k.
Each cluster centre x; is associated with the data points (also referred to as daughter
points) which are nearest to it, i.e. lie within the corresponding Voronoi cell Cy,(n)
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(see, e.g., [26] for the definition and properties of the Voronoi tessellations). The
cluster centres can be determined using the Ward-type criterion by minimising

Foy=Y > =yl

X;€n }f/’ecxi (n)

which is also the trace of the pooled within groups sum of squares matrix. In view of
this criterion function, the optimal set of k cluster centres is also called the k-means
of the data, see [25] for further references on this topic. In most applications, the
number k is predetermined and then a steepest descent algorithm is employed to
find the cluster centres. It should be noted that the functional F(5) is not convex and
so the descent algorithms might well end up in a local rather than a global minimum.

Alternatively, if the cluster centres are regarded as points of a Poisson point
process with intensity measure @ and the mean of F(n) is taken as an objective
function, then

B ) =B, [ Y > =yl | =Y BupGym)?,

Xi €1 y;€Cy,; (1) Jj=1

where p(y, ) is the Euclidean distance from y to the nearest point of 7. Since 7 can
be empty, we have to assign a certain (typically large) value u to p(y, @). Since 1 is
a Poisson process, it is easy to compute the latter expectation in order to arrive at

2
m u

EF) =Y [ expl-n® sohar. (1)

Jj=1 0

which is a convex functional of p. Since taking the expectation in the Poissonised
variant of the clustering problem yields a convex objective function, the steepest
descent algorithm applied in this situation would always converge to the global
minimum. The optimal measure @ can be termed as the solution of the P-means
problem.

In the asymptotic setting, it is assumed that the total mass a of the optimal
measure aj, is growing to infinity and the data points are sampled from a
probability distribution with density p,, so that the empty configurations 1 are no
longer relevant and the objective function becomes

E,F(n) = / E, [o(v. 1)lp, ()dy
Rd

Adding an extra cluster point x affects only the data points within the so-called
Voronoi flower of x, see [26]. The Voronoi flower is a stopping set that satisfies the
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conditions of Theorem 8. Since Iy, D,F is proportional to p,(x)a~'=2/4, the high
intensity solution has the density proportional to p,,(y)¥/@+2),

A similar problem appears in the telecommunication setting, where the data
points y; represent the customers and xp, . .., x are the locations of server stations.
If the connection cost of a customer to the server is proportional to the S-power of
the Euclidean distance between them (so that § = 2 in the clustering application),
then the density of the high intensity solution is proportional to p,(y)?/@+#) see
[18, 20]. This problem is also known in computational geometry under the name of
the mailbox problem, see, e.g., [26, Sect.9.2.1]. Another similar application is the
optimal stratification in Monte Carlo integration, see, e.g., [30, Sect. 5.5].

4.3 Optimal Quantisation

The optimal server placement problem from the previous section can be thought of
as a representation of a measure v on R? (that describes the probability distribution
of customers) by another (discrete) measure with k atoms. This is a well-known
optimal quantisation problem, see [7, 8]. Apart from finding the optimal quantiser,
it is important to know the asymptotic behaviour of the quantisation error, which
is the infimum of the objective function. The classical quantisation theory concerns
the case when the quantiser is deterministic. We follow a variant of this problem for
quantising points that form a Poisson point process of total intensity a studied in
[17].

Let p(y), y € R? be a Riemann integrable function with bounded support K that
is proportional to the density of the probability measure to be approximated by a
discrete one. The objective functional for the optimal Poisson quantisation problem
is then

E(pip) = / E,.p(y. 1) p()dy .
]Rd

Denote

Ep)=nP" inf  E(p;p).
HEM, u(RY)=a

Theorem 9 The limit of E,(p) as n — 00 exists and

1+8/d

lim £,0) = plararm =7 | [ o0y
R4
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for a certain constant J that depends only on B and dimension d. If aj, is supported
by K and minimises E(p; ) over all measures with the total mass a, then [,

weakly converges as a — oo to the probability measure with density proportional
to p(y)d/@+P),

The proof from [17] does not rely on Theorem 8. Theorem 9 is proved first for
the uniform distribution p(y) = const and then extended to a non-uniform case.
The main idea is the firewall construction from [7] that ensures the additivity of
the objective functional for indicators of disjoint sets. The main new feature in the
Poisson case is that the firewalls constructed by adding extra cluster points in the
stochastic case correspond to the changes in the intensity and so may be empty.
Bounds on the coverage probabilities from [9] are used in order to ensure that the
firewalls are established with a high probability. The constant J is the limit of the
quantisation error for the uniform distribution on the unit cube.

Note that laws of large numbers for functionals of point processes have been
considered in [27]. They make it possible to obtain the limit of a functional
of a Poisson process with intensity measure au for any given w as a — oo.
However, [27] does not contain any results about convergence of minimal values
and minimisers. By examining the proof of [27, Lemma 3.1] it is possible to justify
the uniform convergence of the rescaled functional of au, for a measure u, with
density p, (and so arrive at the convergence results for minimal values) if

¢ / 1Pa() —pa@)ldy = 0 asa — oo (12)
ly—+ll<a=1/4

for all x € R%. If p,(x) — p(x) as a — oo, (12) implies the validity of the double
limit condition (10).

4.4 Optimal Search

Let Y be a random closed subset of R? that is independent of the Poisson process
n. The aim is to determine the intensity measure p that maximises the coverage
probability P{n(Y) > 0} meaning that at least one point of 7 hits Y. Equivalently, it
is possible to minimise the avoidance probability

E, 1,y)=0 = Eue_M(Y) .
The expected first difference is given by

g ) = EyDoF = —E, [e "M ey] .
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If Y is a subset of a countable space, it is possible to determine p explicitly, see [18,
Sect. 5.5]. Otherwise, the high intensity approach applies. For instance, if Y = B (§)
is a random ball of radius ¢ centred at an independent £ with probability densities
p¢ and pg, then

Epoe, I (3 m)

pyO)d+ DI +1/d)  pyO)d+ 2T (1 +2/d)
08 —deg(x) e |,

(ap(x)kq)'H1/4 (ap(x)Kq)'+2/

where i is the volume of a unit ball in R?. Thus, the density of the asymptotically
optimal measure is proportional to (pg)¥@*V if p,(0) # 0, and to (pg)¥ @2 if
Py(0) = 0 and p(0) # 0, etc.

5 Steepest Descent Algorithms

Algorithms of the steepest descent type are widely used in the optimisation literature
see, e.g., [28]. The basic steepest descent algorithm consists in moving from a
measure (L, (approximate solution at step n) to (41 = i, +V,, where v, minimises
the directional derivative, which in our context becomes L(u)[v] = (g(-:u),v)
with g(x; ) = E,D.F(1).

The general description of the steepest descent direction from [22, Theorem 4.1]
in the case of optimisation over intensity measures with a fixed total mass yields the
following result.

Theorem 10 The minimum of L(w)[v] over all v € Mg with ||v|| < ¢ is achieved
on a signed measure v such that vT is the positive measure with total mass /2
concentrated on the points of the global minima of g(x; u) and v~ = plue) +
Sl mso)\ M), Where

M(p) = x € X: g(x; ) = p},

and

te =inf{p: p(M(p)) <e/2},
se =sup{p: n(M(p)) = ¢/2}.

The factor § is chosen in such a way that W(M(t;)) + 8u(s:)) = &/2.

This result means that the mass of p is eliminated at high gradient locations,
while p acquires extra atoms at locations where the gradient is the smallest.

In a numeric implementation, the space X is discretised and the discrete variant
of w is considered. The corresponding steepest descent algorithms are used in
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R-libraries mefista (for optimisation with a fixed mass) and medea (for optimisation
with many linear equality constraints) available from the authors’ web pages. The
increment step size in these algorithms is chosen by either the Armijo method
described in [28, Sect. 1.3.2] or by taking into account the difference between the
supremum and the infimum of g(x; u,,) over the support of 1,,.

Numeric computations of an optimal measure relies on effective evaluation of
the gradient function which is possible to obtain in many cases as the next sections
demonstrate.

5.1 Design of Experiments

The basic problem in the theory of linear optimal design of experiments [2] aims to
find positions of design (observation) points x; in order to minimise the determinant
of the covariance matrix of estimators of coefficients f; in the linear regression
model

k
vi= Y Biri(x) + i
=1

where r = (r{,...,r) " is a column vector of linearly independent functions and
¢; are i.i.d. centred errors. If the design points are produced from a probability
distribution p(dx) reflecting the frequency of taking x as an observation point, the
objective function can be expressed as

f(p) = —logdetM(u),

where the covariance matrix M is given by

M(p) = / )T

For the optimisation purpose, it is possible to discard the logarithm, so that the
gradient function in this model becomes

gl ) = —rM ' @)r' (),

see [21, 23]. It is also possible to consider the Poissonised variant of the optimal
design problem. It should be noted however that adding an extra design point has a
non-local effect and so the high-intensity approach from Sect. 4 does not apply in
these problems.
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5.2 Mixtures

Let { px(-)} be a family of probability densities indexed by x € X. For a probability
measure i on X define the mixture

Puy) = / ().
X

The estimation of the mixing distribution w is a well-studied topic in statistics. The
steepest descent algorithm in the space of measures yields a pure non-parametric
approach to the estimation of i based on maximising the log-likelihood

f(@) = logp,(y:)
i=1

based on a sample yy, ..., y,. The gradient function is

. x(yt
gl p) = Z @)

5.3 P-Means

Recall that measure p that minimises the functional (11) is called the solution
of the P-means problem. A direct computation shows that the gradient of the
functional (11) is given by

glsp) =—Y / exp{—/(B /() }dr.

.
T =yl

5.4 Maximisation of the Covered Volume

Let 1 be a Poisson process in X C R? with intensity measure j. If B,(x) is a ball of
radius r centred at x, then

E = UBr(xi)

X €N
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is called a Boolean model, see [15, 33]. The ball of radius r is referred to as the
typical grain, which can be also a rather general random compact set. Then

Pix ¢ &} = exp{—u(B,(x))} .

Fubini’s theorem yields that the expected uncovered volume is given by

ﬂmzjﬁu¢mw=/wmﬂwﬂmw.
X

X

A minimiser of f(u) yields the intensity of a Poisson process with the largest
coverage. The gradient is directly computed as

gwmz—/wam@m@

By(x)

Further related problems are discussed in [24] in relation to design of materials
with given properties. This problem does not admit the high-intensity solution, since
adding an extra ball affects the configuration within distance r which does not go to
zero as the intensity of the Poisson process grows.
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Malliavin Calculus for Stochastic Processes
and Random Measures with Independent
Increments

Josep Lluis Solé and Frederic Utzet

Abstract Malliavin calculus for Poisson processes based on the difference operator
or add-one-cost operator is extended to stochastic processes and random measures
with independent increments. Our approach is to use a Wiener—It6 chaos expansion,
valid for both stochastic processes and random measures with independent incre-
ments, to construct a Malliavin derivative and a Skorohod integral. Useful derivation
rules for smooth functionals given by Geiss and Laukkarinen (Probab Math Stat
31:1-15, 2011) are proved. In addition, characterizations for processes or random
measures with independent increments based on the duality between the Malliavin
derivative and the Skorohod integral following an interesting point of view from
Murr (Stoch Process Appl 123:1729-1749,2013) are studied.

1 Introduction

This chapter is divided into two parts: the first is devoted to processes with
independent increments and the second to random measures with independent
increments. Of course, both parts are strongly related to each other and we had
doubts about the best order in which to present them in order to avoid repetition. We
decided to start with stochastic processes where previous results are better known,
and this part is mainly based on Solé et al. [24] where a Malliavin Calculus for
Lévy processes is developed. Our approach relies on a chaotic expansion of square
integrable functionals of the process, stated by Itd [5], in terms of a vector random
measure on the plane; that expansion gives rise to a Fock space structure and enables
us to define a Malliavin derivative and a Shorohod integral as an annihilation and
creation operator respectively. Later, using an ad hoc canonical space, the Malliavin
derivative restricted to the jumps part of the process can be conveniently interpreted
as an increment quotient operator, extending the idea of the difference operator or
add-one-cost operator of the Poisson processes, see Nualart and Vives [18, 19],
Last and Penrose [12], and Last [11] in this volume. We also extend the interesting
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formulas of Geiss and Laukkarinen [4] for computing the derivatives of smooth
functionals, which widen considerably the practical applications of the calculus.
Finally, following Murr [15], we prove that the duality coupling between Malliavin
derivative and Skorohod integral characterizes the underlying process and, in this
way, extends to stochastic processes some characterizations of Stein’s method type.
We should point out that in the first part (and also in the second, as we comment
below) we use the very general and deep results of Last and Penrose [12] and Last
[11] to improve some results and simplify the proofs of Solé et al. [24].

It is worth remarking that there is another approach to a chaos-based Malliavin
calculus for jump processes using a different chaos expansion, that we comment in
Sect. 2.2. For that development and many applications see Di Nunno et al. [3] and
the references therein.

In the second part we extend Malliavin calculus to a random measure with
independent increments. We start by recalling a representation theorem of such a
random measure in terms of an integral with respect to a Poisson random measure
in a product space; a weak version (in law) of that representation was obtained by
Kingman [8] (see also Kingman [9]). That representation gives rise to the possibility
of building a Malliavin calculus due to the fact that Itd’s [5] chaotic representation
property also holds here. In this context, the results of Last and Penrose [12] and
Last [11] play a central role since, thanks to them, it is not necessary to construct
a canonical space, and we can simply interpret the Malliavin derivative as an add-
one-cost operator. As in the first part, we introduce the smooth functionals of Geiss
and Laukkarinen [4], and the characterization of random measures with independent
increments by duality formulas of Murr [15].

2 Part 1: Malliavin Calculus for Processes with Independent
Increments

2.1 Processes with Independent Increments and Its Lévy-Ito
Decomposition

This section contains the notations and properties of processes with independent
increments that we use; we mainly follow the excellent book of Sato [22]. In
particular, we present the so-called Lévy—It6 decomposition of a process with
independent increments as a sum of a continuous function, a continuous Gaussian
process with independent increments, and two integrals. One of these integrals is
considered with respect to a Poisson random measure whereas the other with respect
to a compensated Poisson random measure. These integrals are, respectively, the
sum of the big jumps of the process and the compensated sum of small jumps. That
decomposition is a masterpiece of stochastic processes theory, and there exist proofs
of such a fact that are based on very different tools: see, for example, Sato [22] and
Kallenberg [7].
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Fix a probability space (£2, .o/, P). Let X = {X;, t > 0} be a real process with
independent increments, that is, for everyn > l and 0 < #; < -+ < t,, the random
variables X;, —X;,, ..., X;, —X;,_, are independent. We assume that X, = 0, a.s., and
that X is continuous in probability and cadlag. A process with all these properties is
also called an additive process. We assume that the o-field <7 is generated by X.

The hypothesis that the process is cadlag is not restrictive: every process with
independent increments and continuous in probability has a cadlag modification
(Sato [22, Theorem 11.5]). The conditions of continuity in probability and cadlag
prevent the existence of fixed discontinuities, that is to say, there are no points ¢ > 0
such that P{X, # X,_} > 0.

The system of generating triplets of X is denoted by {(m, pr,v;), t > 0}.
Thus, m : Ry — R, where Ry = [0, 00), is a continuous function that gives
a deterministic tendency of the process (see representation (2)); p, > 0 is the
variance of the Gaussian part of X,, and v, is the Lévy measure of the jumps
part. More specifically, v, is a measure on Ry, where Ry = R\{0}, such that
fRO(l A x*)v(dx) < oo, where a A b = min(a, b). Observe that for all t > 0
and e > 0, v,((—s, e)") < 00, and hence v; is finite on compact sets of Ry, and then
o-finite. Denote by v the (unique) measure on A((0, 00) x Ry) defined by

v((0,1] x B) = v(B), B € B(Ro). (1)

It is also o-finite, and moreover, v({t} X ]Ro) = 0 for every ¢t > 0 (Sato [22, p. 53]);
thus it is non-atomic. The measure v controls the jumps of the process: for B €
AB(Ry), v((0, 7] x B) is the expectation of the number of jumps of the process in the
interval (0, 7] with size in B. We remark that in a finite time interval the process can
have an infinity of jumps of small size, and there are Lévy measures such that, for
example, v((0, 7] x (0,x9)) = oo, for some xp > 0.

Write

N(C) =#{t: (1, AX,) € C}, C € B((0,0) x Ry),

the jumps measure of the process, where AX, = X; — X;_. It is a Poisson random
measure on (0, o0) x Ry with intensity measure v (Sato [6, Theorem 19.2]). Let

A

N=N-v

represent the compensated jumps measure.

Theorem 1 (Lévy-Ito Decomposition)

X, =m + G, + / xN(d(s, x)) + / xN(d(s, x)). 2)

0,7]x{|x|>1} (0,7]x{0<|x|<1}
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where {G;, t > 0} is a centered continuous Gaussian process with independent
increments and variance E[G?| = p?, independent of N.

Sato [22, Theorem 19.2] gives a more precise statement, and instead of the

second integral in (2) he writes

lim / xN(d(s, x)).

&0
(0.]x{e<|x|=1}

where the convergence is a.s., uniform in ¢ on every bounded interval.

Remark 1

1.

The function ¢ +— p, is continuous and increasing, and py = 0 (Sato [22,
Theorem 9.8]), and hence it defines a o-finite and non-atomic measure on R,
denoted by p. The Gaussian process {G;, t > 0} introduced above defines
through

G((s.]) =G, —G,, 0 <s <1,

a centered Gaussian random measure G on {B € Z(Ry), p(B) < oo} with
control measure p (see Peccati and Taqqu [20, p. 63] for this definition). In the
Gaussian Malliavin calculus terminology this is called a white noise measure
(Nualart [17, p. 8]). This will be important when we define Malliavin derivatives
with respect to X.

. Remember that a Lévy process is an additive process with stationary increments.

In this case, m; = m°t, for some m° € R, p, = p°t, for some p° > 0, and the
Gaussian process {G,, t > 0} can be written as G, = /p° W,, where {W,, t > 0}
is a standard Brownian motion. Also, v, = fv° for some Lévy measure v°, and
the measure v is simply the product measure of the Lebesgue measure on (0, co)
and v°: v(d(z, x)) = dtv°(dx).

. The notations are slightly different from Sato [22] and Sol€ et al. [24], where v

denotes the Lévy measure of a Lévy process, that in the previous point we write
v°. Also, our measure v on (0, c0) x Ry defined in (1) is denoted by Sato [22]
by v.

2.2 Wiener-Ité Chaos Expansion

The well-known Wiener—It6 chaos expansion of square integrable functionals of a
Brownian motion can be extended to the square integrable functionals of a process
with independent increments. This was another major contribution made by It6 [5];
indeed, It6 proved that result for Lévy processes, however his proof is written in very
general terms and also covers the case of processes with independent increments.
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That chaos expansion determines a Fock space structure on L?(IP), which is the basis
of our Malliavin calculus development.
With the preceding notations, define a measure i on (IR+ xR, BR+ x IR)) by

1(d(1, %)) = p(dr) 8o(dx) + 21 (0,00)xro V(d(7,)). 3)

It is non-atomic since v and p are non-atomic. Moreover, for a bounded set B €
#AR),

1([0.1 % B) = pido(B) + / 2 vy(d),

BNRo

and the last integral on the right-hand side is equal to

*2 v,(dx) + / * vy (dx)

BN{0<[x|<1} BN{ |x[>1}

< / X v(dx) + C,({x: |x| > 1} < o0,
{0<lx[=1}
where C is a constant. Hence, the measure p is locally finite, and, in particular,
o-finite.

Extending It6 [5] to this context, we can define a random measure (in the sense of
vector measures, see Appendix 2) M on (]R+ xR, B(R+ x R)) with control measure
u: for C € (R4 x R), such that u(C) < oo, write C(0) = {t>0: (¢,0) € C}
and C* = C N ((0, 00) x Ry), and note that

/ Lex (s, x)x% v(d(s, x)) < o0,

(0,00)XRg

that is, T« (¢, x)x € L*(v). So there exists the L*(IP) integral of that function with
respect to N (see Appendix 1), and we can define

M(C) = G(C(0)) + / xN@d(1, x)).

Cc*

We prove that M is a completely random measure; see Appendix 2 where these
definitions are recalled.

Proposition 1 M is a completely random measure with control measure [L.
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Proof In this proof, all sets C € Z(R4+ x R) are assumed to have finite pu-
measure. It is clear that IE[M(C)] = 0, and by the independence between G and
N it follows that

E[M(C)M(Cy)] = n(Ci N Cy).
From (45) in the appendix it is deduced that the characteristic function of M(C) is

]E[exp (iuM(C))] = exp —u—;p(C(O)) + / (ei“x —-1- iux) ac(dx) |,
Ro

where o is the measure on R defined for A € Z(Ry) by

ac(A) = v(C N ((0. 00) % A)).

By a standard approximation argument it is proved that if f : Ry — Ry is
measurable, then

/ 00 e (dx) = / F00 v(d(t. ).
Ro

CN((0,00)xRyp))

Thus

/ R ae(dr) = / 2v(d(1x)) < 4(C) < 0.
Ro CN((0,00)xRp))

Therefore, a¢ is a Lévy measure with finite second order moment. Then M(C)
has an infinitely divisible law with finite variance and Lévy measure given by (.
Furthermore, if C;,C, € Z(R+ x R) are disjoint, oc,uc, = ¢, + ac,, and it
follows that if Cy,...,C, € Z(R+ x R), all with finite p-measure, are disjoint,
then M(C,), ..., M(C,) are independent. O

Hence, we can define multiple Wiener—It6 integrals with respect to M, see
Appendix 2. Let L2(u") be the subset of symmetric functions of L?(u®"), and for
f € L2(u") denote by I,(f) the multiple integral of f with respect to M.

The chaotic representation Theorem of square integrable functionals of a Lévy
process of 1t6 [5, Theorem 2] is extended to this case with the same proof. So we
have the chaotic decomposition property:

L(P) = P LL2w).
n=0
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and the (unique) representation of a functional F € L*(£2),

F=Y L(f), feLiu.

From this point, we can apply all the machinery of the annihilation operators
(Malliavin derivatives) and creation operators (Skorohod integrals) on Fock spaces,
as exposed in Nualart and Vives [18, 19].

Remark 2 For a process without Gaussian part, we can consider the chaos expan-
sion of a square integrable functional in terms of the multiple integrals with respect
to the Poisson random measure N rather than M, and then define a Malliavin
derivative and a Skorohod integral; see Di Nunno et al. [3] and the references
therein. Indeed, in the second part of this paper, dealing with random measures with
independent increments, we combine that approach with the multiple integral with
respect to M.

2.3 Derivative Operators

Let F € L*(IP) with a finite chaos expansion

N
F =Y "L(f).
n=0

where N < oo. The Malliavin derivative of F is defined as the element of L?(1 ® IP)
given by

nlﬁ(z, ,z€ Ry x R.

||M2

This operator is unbounded. However, the set of elements of L?(IP) with finite chaos
expansion is dense in L?(IP), and the operator D is closable; the domain of D,
denoted by dom D, coincides with the set of F € L?(IP) with chaotic decomposition

F=Y"L(f).
n=0
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such that
o0
Yol full gz < oe. 4)
n=1

The Malliavin derivative of such an F is given by
o0
D.F =Y nlp(f(), z€ Ry xR,
n=1

where the convergence of the series is in L?(i1 ® IP).
The domain dom D is a Hilbert space with the scalar product

(F,G) = BIFG] + E / D.FD.Gp(d) | . 5)
R+ xR
For all these properties we refer to Nualart and Vives [18].

Given the form of the measure u, for f : (R+ x R)" — R measurable, positive
or 1®" integrable, we have

fdﬂ®n
(R4 xR)"
= / F((t0), 21, ... 2i=1)) p(d) u®" D (dz1, ..., dz,—1)
R4 x(R4 XR)"—!
+ / f(z1.22, ... 20) n®"(dz1, . .., dzp).

(0,00)XRo X (R4 XR)"—!
As a consequence, when p # 0 and v # 0, it is natural to consider two more spaces:

Let dom D° (if p # 0) be the setof F € L?(IP) with decomposition F = Y oo L(f,)
such that

[e'9)
Sount [P0z ) p(A) ) <
n=1

R4 x (R xR)n—!

For F € dom D° we can define the square integrable stochastic process

Dy oF = i nl,i (ﬁ((t, 0), -)),

n=1
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where the convergence is in L?(p ® IP). Analogously, if v # 0, let dom D’ be the
set of F € L*(IP) such that

(o]

Znn! / f2du®" < oo,

n=1 (0.00) X RoX (R4 XR)"—!

and for F € dom D’, define

i:: . 1(fn zZ, ),

where the convergence is in L? ((O, 00) X Rg x £2,x* v(d(t,x)) ® ]P).
It is clear that when both p # 0 and v # 0, then dom D = dom D° N dom D’ .

2.4 The Skorohod Integral

Following the scheme of Nualart and Vives [18], we can define a creation operator
(Skorohod—or Kabanov—Skorohod—integral) in the following way: let g € L? (p, ®
P), which has a chaotic decomposition

8 =Y L(f(z."), 6)

n=0

where f, € L>(u®"*D) is symmetric in the n last variables. Denote by £, the
symmetrization in all n 4 1 variables. If

o0
Yt DU falfa g < 00, 7)

n=0

define the Skorohod integral of f by
o0
8(g) = Zln+l(fn)a
n=0

where the convergence is in L?(IP). Denote by dom § the set of g that satisfy (7). The
operator § is the dual of the operator D, that is, a process g € L?>(ju x IP) belongs to
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dom § if and only if there is a constant C such that for all F € dom D,
21\ /2
}E / ¢() D FM(dz)} < C (B[FY)
R4+ xR

If ¢ € dom§, then 8(g) is the element of L?(IP) characterized by the duality (or
integration by parts) formula

E[3() F] = E / ¢() D.F p(d2), ®)
]R+X]R

for any F € domD.

For more properties of the operator § in the Lévy processes case, including its
relationship with the stochastic integral with respect to the measure M, and a Clark—
Ocone-Haussman formula, we refer to Solé et al. [24, 25].

2.5 Derivation of Smooth Functionals

Following an interesting approach of Geiss and Laukkarinen [4] (in the Lévy
processes context) we will prove the following formulas of the derivative of smooth
functionals: denote by % °(R") the set of infinitely continuous differentiable
functions such that the function and all partial derivatives are bounded. Let f €
¢° (R") and consider

F=f(Xy.....X,) ©)

We will prove that F € dom D and
D, oF = Z f (X X)L, (D), (10)

and for x # 0,

F(X + L), ... Xy 4+ XL, () — (X, - ... X))
X

DT,XF =

1D
Note the following relationship between both derivatives of a smooth functional:

D,oF = lim D, ,F, a.s.
x—0
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Geiss and Laukkarinen [4] (in the Lévy processes case) give a direct proof of (10)
and (11) by using Fourier inversion and a Clark—Ocone—Haussman type formula.
They also show that the random variables of form (9) are dense in L*(IP) with
respect to the norm induced by (5), and hence it is possible to define the Malliavin
derivatives starting with (10) and (11). In order to prove these formulas in our
context we will follow an alternative procedure: we will first prove these formulas
in a canonical space associated with the process with independent increments and
later we will transfer them to the general case.

2.5.1 Malliavin Derivatives in the Canonical Space

Since the Gaussian part and the jumps part of X are independent, we can construct a
version of X in a canonical probability space of the form (.QG X 2N, DR Dy, Pc®
P N) where

e (¢, 9;,Pg) is the canonical space associated with the Gaussian continuous
process G; specifically, 2 = % (R+) is the space of continuous functions
on Ry , 9/ the Borel o-algebra generated by the topology of the uniform
convergence on compact sets, and P the probability that makes the projections

G;k ZQG — R
f=f0
a process with the same law of {G;, r > 0}.

e (2, Yy, Py) is a canonical space associated with the Poisson random measure
N. Essentially, 2y is formed by infinite sequences w = ((t1,x1), (f2,x2),...) €

((0, 00) X RO)]N (see Appendix 3 for that construction), where ¢; are the instants
of jump of the process, and x; the size of the corresponding jump. In this space,
under Py, the mapping defined by

N*(@) =) 8. if o = ((t1.x1). (2.x2).....)

is a Poisson random measure with intensity measure v.
Define

I = / *N*(d(s,x)) + / xN*(d(s,x)),

0,4]x{|x|>1} (0,7]x{0<|x|<1}

where N* = N* — v. Then J* = {JF, t > 0} is a process with independent
increments with generating triplets (0, vy, 0).
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* Finally, in the product space £2¢ x 2y we write
X =m + G/ +J,

and call it the canonical version of the process X.

2.5.2 Derivative D,
In order to compute the derivative D, oF for F € L*(2¢ x $2y), from the isometry
L(26 x 2y) = L*(26; L*(2v)),

we can consider F as an element of L?>(25:L*(£2y)) and apply the theory of
Malliavin derivatives of random variables with values in a separable Hilbert space
following Nualart [17, p. 31]. This derivative coincides with D, . This is proved
from the fact that, by definition, a L?(£2y)-valued smooth random variable has the
form

F= XH:F,-H,-,
i=1

where F; are standard smooth variables (see Nualart [17, p. 25]) and H; € L2(2y).
Define the Malliavin derivative of F as

DfF = D/F; ® H;. (12)
i=1
This definition is extended to a subspace dom D* by a density argument.
Proposition 2 dom D* C dom D°, and for F € dom D*,
DfF = D,(F. (13)
Proof First consider the functionals of the form
F = N*(Cy)---N*(C,)G*(By) ---G*(By),

where Cy, ..., C, € Z((0, 00) x Ry) are bounded, pairwise disjoints, and at strictly
positive distance of the r-axis, and By,...,B; € %(R4+) are pairwise disjoints,
with finite p measure. It [5] shows that the family of that functionals constitutes a

fundamental set in L? (P ® Py). Moreover, Itd shows that such an F can be written
as a sum of multiple integrals:

F = I()(f()) +-- -+ Im+k(fm+k)s
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and then the derivatives are easy to compute, proving equality (13), which is
extended to dom D* by density. See Solé et al. [24]. O

From the above proposition and the properties of the Malliavin derivatives in the
Gaussian white noise case, it follows that the first rule of differentiation (10) in the
canonical space holds:

Proposition3 Let F = f(X;,....X}) where f € ¢°(R"). Then F € domD, o and

n a
DoF =) aL){ (X X)Ly ().
=1

2.5.3 Derivative D;,, x # 0

Consider » = (0% ") € 26 x 2y, " = ((t1.x1), (12, x2),...) € ((0,00) x

N . . . .
Ro) . Given z = (t,x) € (0,00) x Ry, we add to wy a jump of size x at instant
t, and call the new element Y = ((t1,x1), (f2,x2). ..., (£.x),...), and write w, =
(a)G, a)?’ ). For a random variable F, we define the quotient operator

F(w.x) — F(w)
—

v, F(w) =

See Solé et al. [24] for the measurability properties of this function. By iteration, we
define

— ~1
v L JFi=w i F

Since this function only depends on the part ", we can assume that X does not
have a Gaussian part.

In the following lemma we will consider a set A of the form (m,m + 1] x {x :
n<|x]<n+1}or(mm+1]x{x: 1/(n+ 1) < |x| < 1/n}, for some m > 0
and n > 1. Then v(A) < oo and for every k > 1, [, [x[* v(d(t,x)) < oo. The
Poisson random measure N* restricted to A has finite intensity measure (from now
on, in this section, we suppress the * to simplify the notations). The ordinary n-fold
product measure is denoted by N®”, and by N the measure

N(n) (D) — N®n(D¢),

where D € Z(A") and D is the set of elements of (z1,...,2,) € D such that
zi # zjif i # j. The measure defined by E[N"(D)] is called the n-factorial moment
measure of the Poisson random measure N (see Last [11, formula (1.9)] or Schneider
and Weil [23, p. 55]). For F € L*(2y), forevery D € %(A"), the following integrals
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are finite and

E[FN® (D)] = / E[F (o, )] v(dz) - v(dz0). (14)
D

To deduce that equality, note that we can write F' = f(N), for some f defined on

the set of integer valued (including co) locally finite measures (see Part 2). For w =

(zi,22,...), N(w) = >, 8, and hence N(w,) = Y, 8, + 6. Then, equality (14) is

just a reformulation of a generalized Mecke formula (see Last [11, formula (1.10)]).
As a consequence, we have

Lemmal Let Fi,F € Lz(IPN) such that limy F;, = F in LZ(IPN). Then for every
D € B(A")

Proof The proof is very similar to the proof of Lemma 2 of Last [11]. It suffices to
show that foreverym = 1,...,n,

llmE/)Fk(a)Zl ..... ) — Flog...2)

X1 X

v(dz;)---v(dz,) =0,

where z; = (#;,x;). Since A is bounded and far from 0, the xi,...,x, in the
denominator can be suppressed. By (14),

< (E[(Fk ~FPJEN o))

which goes to 0 as k — oco. O

Proposition 4 Let F € L*(P; ® Py) such that

E[ / (lIIZF)ZpL(dz)]<oo. (15)

R4 xRo
Then F € dom D’ and

D.F(w) =V .,F(w), un®P —ae.(z,w) € (0,00) x Ry x £2.
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Proof To simplify the notations we write 1(d(x, )) rather than x* v(d(x, £)). First it
is proved that for f € L2(u"),

DIL,(f) =¥1.(f), n® P —ae. (16)

To prove this, first, instead of f we considerfllf’". Thus, as before, the multiple
integrals (with respect to M) can be computed pathwise, and the above equality is
easily checked, and then extended to f. Moreover, it is proved that the operator ¥
is closed, again working first with the restriction on A. Hence, if F € dom D’, then
DF = YF. For the details see Sol€ et al. [24].

Note that as a consequence of (16),

1
Fazis i) = — E[q’;,___.znln(ﬁl)], u® —ae.
n! '

This property is extended to a general F = Y oo I,(f,) € L*(P) to get a Stroock
type formula

fo= %E[III"F] u®" —ae. (17)

This is proved considering F; = Zﬁ:o L,(f,). We have that for k > n, f, =
% IE[lII”Fk]. By Lemma 1, for every D € #(A")

li/?l/ ‘E[l[/an] —E[lpnF“ dv® — / ‘n!fn _E[lpnF:” A =0,
b D

Then

= l IE[lI/”F] v®" _ae.on A,
n!

and also u®"-a.e. And hence the equality holds on (0, 00) x Rg because it is a
countable union of sets of type A.
Now assume that condition (15) holds. Then

lI/zF = Z In(gn(zv ))s

n=0

with

o0
Zn!/gﬁdm(”” < o0. (18)

n=0
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However, thanks to (17), the kernel g, is related to the kernel f,,+; due to

1 1
&z 21y vz) = o E[W”lnlI/F] = E[llf”l"'lnF] = m+Dfpr1(z 21, ..., 20),
and by (18),
o0 (o]
Z:nn'/fn2 du®" = Zn!/gi dpu®th < o,
n=1 n=0
which is the condition for F € dom D’ . O

We can deduce the second rule of differentiation (11):
Proposition 5 Let F = (X}, ... . X;") where f € €°(R"). Then F € domD’ and
forx # 0,

SO+ xL001(0), .. X+ xLi00(0) —F (X ... X))

X

DT,XF -

Proof To shorten the notations we suppress the star in X;*. We consider the case
F=f (XS); the general case is similar. We have

F(Xs + xLpq(0) — f(X;)

lI/t’xF =
X

By Proposition 4 it suffices to prove that the following integral is finite:

E / (W.F) u(dz) | = / (¥, F)’ ¥v(d(t,x))

(0,00) xRy (0,00) xRy

el [ ( B + xlioa(®) =7 (Xf))zxzu(d(t,x))

X

_(0,00)X]R()

_E / (PG +2) —£(x)) v(a(e. )
_(O,s]x]Ro

-F /(f(Xs+x) _f(Xv))zvx(dx)

LRRo
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To this end, by the mean value Theorem, there is a random point Y such that

f(Xs + x) _f(Xs) = Xf/(Y).

Since f” is bounded, say by C, using that v, is a Lévy measure, for every w,

/ (F(Xs + x) —f(}g))2 vs(dx) < C? / x¥*v5(dx) = C' < o0,

{lxl=1} {lxl=1}

where C’ is a constant independent of w. Similarly,

/ (f(Xé‘ +x) _f(Xs))z ve(dx) < C"vedx: x| > 1} = C" < o0,
{IxI>13

where C” and C" are constants independent of w. O

2.5.4 Transfer of the Derivative Rules from the Canonical Space
to an Arbitrary Space

Recall that we write a star to denote random variables, measures, processes,
or operators in the canonical space. We consider a process with independent
increments X on (§2, <7, IP) with Poisson measure N and independent Gaussian part
G, with the same law as N* and G* respectively, related to the additive process X*
constructed in the canonical space (.QG X 2y, Y6 Q@ Dy, Pc ® ]PN). Note that the
generating triplets of X and X* coincide, and hence the measures p and p* (see (3))
are the same. Moreover, the Fock space structure of L?(IP) allows us to transfer
some properties of the derivatives and Skorohod integrals in the canonical space to
the space (§2, <7, IP). This can be done thanks to the fact that to a square integrable
random variable F € L?(P) with

F=Y L), feLiu",
=0

we can associate F* € L?>(IPg x Py) given by

F* =3 Ii(f)-
n=0
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That is, the kernels of F' and F* are the same. In a similar way, since, given that
gel? (]R+ xR x 2, R4+ xR) ® o7/, u ® P) has a chaotic decomposition

8@ =Y L(fuz."), (19)

n=0
fn € Lﬁ 41 is symmetric in the n last variables, we can transfer from g to g*, and if
g € dom, then g* € dom 6*. More specifically,
Lemma 2 With the previous notations, for every ti,....t, € Ry and F € L*(P),

we have that

(Xos - X, F) Z (X5, X5 F*), (20)

o s g

% o
where = means equality in law.
Proof We undertake the proof in several steps:

Step1 LetF =Y o2 I,(f,) € L*(IP). We first prove that F and F* have the same
law:

PN ATAIEI I NTAY 1)
n=0 n=0

In fact, if the sum has a finite number of terms, and the f, are simple
(see the appendix) then the equality in law is clear. Equality (21) for finite
sums with arbitrary kernels follows by L?(IP)-convergence. The infinite
sum case is proved in a similar fashion.

Step2 For F, G € L*(IP) we prove that

(F,G) Z (F*,G").

We use Cramer—Wold device. Let F = Z;’;O L(f) and G =
> roIn(gn). Fora,b € R,

o0 o0
aF +bG = Y I(afy + bg)) £ Y I*(afy + bg,) = aF* + bG™.
n=0 n=0

Step 3  To prove (20) we consider n = 1; the general case is similar. First assume
that the process X is square integrable, then fRo x?v;(dx) < oo, and thus

f(o, IxRo x?v(d(s, x)) < oco. This implies that the representation (2) admits
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the form:

X, =m + G, + / xv(d(s,x)) + / xﬁ(d(s,x))

(0,1x{[x|>1} (0,1xRo

=m + / xv(d(s,x)) + I (L gxfoy + Lo.gxRo )

(0,4]x{|x|>1}

and the property follows from step 2. In the general case, define

X" =m + G, + / xN(d(s,x)) + / *N(d(s, )

O)x{1<lx|<n} Ox{0<|x|=<1}
(22)

=m; + / xv(d(s, %) + I (Lo gxop + Lo.nxfo<lsl<n})-

(0.0x{1<|x[<n}

(23)

By expression (23) and Step 2, (X,("),F) Z (X,(")*, F*). Since v((0,1] x
{|x|] > 1}) < 00, we can apply Proposition 10 in the appendix to the
first integral in the expression (22), and we deduce that when n — oo,

X,(") — X, in probability, and the lemma follows. O

To transfer the derivative rules we will use the duality coupling (8). By
construction, F € L?(IP) belongs to dom D if and only if there is a constant C such
that for all g € dom 6,

1/2

‘]E[FS(g)]‘fC E /gzd,u . (24)
R+XR

If F € dom D, then DF is the element of L?(u ® IP) characterized by
EB@F=E [ ¢@D.Fdu), @5)
R+ xR

for every g € dom . That is, we use (8) to prove a property of the derivative from
the Skorohod integral.
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Proposition 6 Let F = f(X,,....X,,) withf € €°(R"). Then F € domD and

n alf
D, oF = ;@f(x"’ e X ) Lo (0), (26)
and for x # 0,
X, +x1 1,....X, +x1 ) —f1X,,....X
Dt,xF — wt,xF — f( 3| X [Ostl]() th X [O,t,,]( )) f( n tn) .

X

27)

Proof We are going to prove that F € dom D. For this objective, let g € dom§ and
consider g* to have the same kernels as g, and then g* € domé* and satisfies
inequality (24). Then, since we have proved that f (X;’l‘, cn Xy ) € domD, by
Lemma 2,

}E[f(x,l,...,x,,l)a(g)]} - }E*[f(x;;, o ,X;:)S*(g*)]‘
1/2 1/2

<C|E* /(g*)zdp, =C|E / g du < 00,

R+ xR IR+ xR

where IE* is the expectation in £2¢ X £2y. Now in an identical way, we can show that

n 3
Yt,x = aLff‘(th, PP ath)]l[O,l‘j](t)]l{O}(-x)
=1 %
X, +x1 D,.... X, +xLp,0) —f( Xy, ... X,
+f( n +xLpq)(2) tn xx [O,t]()) f( 1 t)]l{x7é0}(x)
satisfies formula (25). ]

2.6 Characterization of Processes with Independent
Increments by Duality Formulas

Following Murr [15] we prove that the duality formula (8) characterizes the law
of a process with independent increments. We restrict ourselves to real processes,
while Murr [15] studies the vector case. Like Murr [15] we assume that the
process is integrable. The fact that the process is integrable is equivalent to
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f (=1} |x] dv;(x) < oo. Then, as in the proof of Lemma 2, we can write the following
representation:

X, = b, + G, + / *N(@d(s,x)) + / xN(d(s, x)),

0,7]x{|x|>1} (0,]x{0<|x|<1}

where b, = m; + f(o,t]x{|x\>1} xv(d(s, x)), the first integral belongs to L (IP) and the
second to L?(IP) (see Theorem 7 in the appendix).

Consider the system of generating triplets of X (with respect to the cutoff function
x(x) = x) {(by,ps,v;), t > 0}. As we commented in Sect.2.1 (see Sato [22,
Theorem 9.8]):

1. by = 0 and the function t — b, is continuous.

2. po = 0, p; > 0 and the function ¢ — p; is increasing and continuous.

3. For every t > 0, v, is a Lévy measure, and lim,_,, v;(B) = v,(B) for every
B € #A(R) such that B C {x: |x| > ¢} for some ¢ > 0.

4. Forevery t > 0, I{IX\>1} x| dv;(x) < oo.

Denote by § the set of random variables of the form F = f(X,,.....X;,) with f €

% °(R"), and by & the set of real step functions g = Z]k: 1 @il (5;.54,), With 0 <

§] < +++ < Sg+1. In the next theorem we add conditions regarding the regularity of
the trajectories to agree with our definitions.

Theorem 2 (Murr) Let X be an integrable process, cadlag and continuous in
probability, and {(b;, p;,v;), t > 0} be such that (1)—(4) above are satisfied.
Then X is a process with independent increments with system of generating triplets
{(b;s, pr, V1), t = 0} if and only if for every F € 3, and every step function g € &,

E|F / e dX,—by) | = E / DyoF g(0) p(di)

Ry Ry

+ E / ¥, Fg(nx* v(d(t,x)) |, (28)
(O,I]X]R()
where v is defined in (1).

Proof Assume that X is a process with independent increments. To prove (28), by
linearity, it suffices to consider g = 1o}, So we will check

E[F(X,—b)]=E / D, oF p(dt) | +E [ U FXPvdtx)|. (29)

[O,Ll] (0,14] X ]R()
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Note that for a deterministic function 7 € L*(R x R, ut) the duality formula (8)
gives

E|F / hdM | = E / D.oF h(t,0) p(di)

R4 xR R4

+E / W, F h(t, x)x*> v(d(1, x))

(0,00)XRg

Set

hn(ts X) = ]l[O,u]X{O} +x ]l[O,u]X{l<\x|§n} ([, X) + X]l[O,u]X{0<|x\§l}(tv -x)
that belongs to L2 (i), then
hydM = G, + / xN(d(s, x)) + / xN(d(s, x)).
R4+ xR (0,u]x{1<|x|<n} (0,7]x{0<|x|<1}

In relation to the first integral in the right-hand side, note that x1 (o ,jx{1<|x|<n}
belongs to L' (v) N L2(v), and

lim / xN(d(s,x)) = / xdN(d(s, x))

n
(O.u]x{1<|x|<n} (O.u]x{|x|>1}

in L' (IP), and hence f]R+ «R 'm M convergesin L' (IP) to X,—b,. Since F is bounded,
it follows (29).

To prove the reciprocal implication, Murr [15] fixes g = Z;‘:l a;jl (554 ], With
0 <s1 <-:-+ <skt1,and foru € R, defines

o)=L exp{iu/ng}
Ry
Since

¢'(u) = iE exp%iu/ng} /ng ,

R4+ R4+
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applying the duality formula (28) with FF = exp {iu fR+ ng} it is deduced a

differential equation, which for u = 1 determines the characteristic function of
(X‘Yl Xy = Xy oo Xy — X, ), which determines the law of the process, and the
theorem follows. O

Remark 3 Murr [15] defines ¥, . F as
U F = (X, + xLj0)(0), ... X, + XL () = f(Xsy. - ... X0),

whereas in our definition of ¥ given in (27) we divide by x. However in the second
term in the right-hand side of formula (28) Murr puts x rather than x2. Of course,
both formulations are equivalent.

3 Part 2: Random Measures

The context of this part is one of the random measures a.s. locally finites on a locally
compact second countable Hausdorff space; the main references here are Kallenberg
[6] and Schneider and Weyl [23]. In this part we use standard notations of random
measures.

3.1 Random Measures

Let X be a locally compact second countable Hausdorff space; it can be proved that
this space is Polish (complete separable metrizable space). Denote by X its Borel
o-field. A measure y on (X, X) is locally finite if y(K) < oo for every compact set
K; note that such a measure is o-finite.

Denote by M (or M(X) if we want to stress the underlying space) the set
of locally finite measures on (X, X) and endow this space with the o-field .#
generated by the evaluation maps. We also denote by N the subset of locally finite
measures taking values in {0, 1, ... } U {oo}. This notation is consistent with the one
adopted in the survey [14] in this volume.

Given a random measure £ on (X, X) with intensity A, remember that it is said
that s € X is a fixed atom of £ if P{£{s} > 0} > 0. Note that if £ has no fixed atoms,
then for every s € X, A{s} = E[E {s}] = 0, so the intensity measure is non-atomic.



126 J.L. Solé and F. Utzet

3.2 Infinitely Divisible Random Measures and Random
Measures with Independent Increments

It is said that the random measure ¢ has independent increments if for any family
of pairwise disjoint sets Ay, ...,A; € X, the random variables £(A)), ..., E(Ay) are
independent. Matthes et al. [13, p. 16] call these random measures free from after-
effects, and Kingman [8, 9] completely random measures.

A random measure £ is said to be infinitely divisible if for every n > 1 there
are random measures &1, ..., &, such that they are independent, and & has the same
law as & + -+ + §,. Indeed, every random measure with independent increments
without fixed atoms is infinitely divisible (Kallenberg [6, Chap. 7]). The nice Lévy—
1td6 decomposition of processes with independent increments in terms of a Poisson
random measures (Theorem 1) is transferred to random measures with independent
increments; general infinitely divisible random measures have a representation in
law (Kallenberg [6, Theorem 8.1]).

Before the representation theorem it is convenient to comment that since the
number of fixed atoms of a random measure is at most countable (Kallenberg, [6,
p- 56]), if £ is a random measure with independent increments it can be written as

N
E=) E({s)) 8, +&,

n=1

with N < oo, where {s,, n > 1} is the set of fixed atoms of &, and &’ is a random
measure without fixed atoms with independent increments. So, as Kingman [9]
graphically says, fixed atoms can be removed by simple surgery.

Theorem 3 Let & be a random measure with independent increments with intensity
measure A, without fixed atoms. Then it can be represented uniquely in the form

E(4) = B(A) + / *n(d(s.2)). (30)

AX%(0,00)

for A € X, where B € M(X) is non-atomic, and 1 is a Poisson random measure on
X x (0, 00) which intensity measure v € M(X x (0, 00)) non-atomic. Moreover, for
A € X, we have £(A) < oo, a.s. if and only if B(A) < oo and

(1 Ax)v(d(s, x)) < oo.
Ax(0,00)

For a proof see Kallenberg [7, Corollary 12.11] in the context of Borel spaces or
Daley and Vere—Jones [2, Theorem 10.1.IIT] for Polish spaces.
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Remark 4 We comment some key points used in the proof that we need later:

1. The measure v on X X (0, 00) comes from
V(A x B) = vs(B),

where A € X with A(A) < oo, and B € #((0, 00)), and v, is a Lévy measure
on (0, co). That Lévy measure is associated with the positive infinitely divisible
random variable with finite expectation £ (A), and then it integrates the function
f(x) = x. So, for A € X with A(A) < oo, we have

/ xv(d(s,x)) < o0,

Ax(0,00)

and

E[£(4)] = A(A) = B(A) + / xv(d(s. ). 31)

Ax(0,00)

2. The Poisson random measure 7 is given by

n= Susish-

seX

Since it is measurable (see Kallenberg [7], proof of Corollary 12.11) it follows
that the o-fields generated by ¢ and 7 coincide. We will assume that <7 is that
o-field.

3. The Laplace functional of £ at & : X — R4 is

B exp% —/hdé} :exp% —/hd,B— / (1 — e u(d(s,x))q .

X X Xx(0,00)
(32)

Example: Subordinators A subordinator X = {X;, + > 0} is a Lévy process
such that the trajectories are increasing a.s. Then it defines a random measure
on X = R.. Representation (3) corresponds to the Lévy—It6 decomposition of
X (Theorem 1) which, with the notations of Part 1, is reduced to (see Sato [22,
Theorem 21.5])

X, = y°t+ / xN(d(s, x)),

(0,1]%(0,00)
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where y° > 0 and N is a Poisson random measure on (0, co) x (0, oo) with intensity
v(d(z,x)) = dtv°(dx), where v° is the Lévy measure of X (see Remark 1.3), and the
Gaussian part is 0. For every ¢ > 0, f(o, 1% (0.00) (1 Ax)v°(dx) < oo, and the intensity
measure of the random measure is given by

A([0.7]) = yor + ¢ / xv°(dx),

(0,00)

which, in general, can be infinite.

3.3 Mecke Formula for Random Measures with Independent
Increments

We prove Mecke formula for random measures with independent increments which
is inspired in Murr [15]. We first recall classical Mecke formula for Poisson
processes (Last [11, formula (1.7)], Privault [21, formula (2.44)]); see Schneider
and Weil [23, Theorem 3.2.5] for the following version of the formula, which we
use later.

Theorem 4 (Mecke Formula for Poisson Random Measures) Let y be a point
process with non-atomic intensity measure A € M(X). Then vy is a Poisson random
measure if and only if for every measurable function h : N(X) x X — R4 we have

E / h(y.s) y(ds) | = / E [h(y + 8..5)] A(ds). (33)

X X

Theorem 5 (Mecke Formula for Random Measures with Independent Incre-
ments) Let & be a random measure without fixed atoms and let B € M(X) be
non-atomic and v € M(X x (0, 00)) be non-atomic. Then £ is a random measure
with independent increments with associated measures 8 and v if and only if for
every measurable function h : M(X) x X — R4 we have

E /h(g,s)é(ds) = /E[h(g,s)]ﬂ(ds)-i— / ]E[h(§+x8s,s)]xv(d(s,x)).
X X Xx(0,00)
(34)
Proof
1. Let £ be a random measure with independent increments with associated

measures B and v. First note that since § is a deterministic measure, changing &
by & — B, and changing the function 4 conveniently, we can assume that 8 = 0.
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We will reduce the proof to an easy case, and later we prove formula (34) in that
case.

By standard arguments, it suffices to prove formula (34) for i(x, s) = f(x)g(s)
where f : M(X) — R+ isboundedand g = 1 ¢ forsome C € X with A(C) < oo.
Now, given that .Z (X) is generated by the projections 4, for A € X, there is a
countable family {A,, n > 1} C X and a measurable function F : R® — Ry
such that

f:F(JTAl,JtAZ,...).

(See Chow and Teicher [1, p. 17].) Hence,

FE) = F(EA) EAa), ...

Denote by 27, the o-field generated by £(Ay), ..., E(A,), and define

Fy = E[f(§) |,].
By the convergence of martingales theorem we have that

limF, =f, as.
n

and since f is bounded, the convergence is also in L?, for all p > 1. Hence, there
is enough to consider the case

&) =fE@AD,....EA).

With a monotone class argument, we can restrict to

F&) =fiE@AD) - ful5(A0),

with bounded fi, ...,f, > 0, and Ay, ..., A, pairwise disjoint. Using that £ has
independent increments, in formula (34) with such an f(§) and ¢ = 1, it is
clear that we need only to consider two cases: when C is disjoint with all A,
Jj=1,...,n,0or when C coincides with one of the A;. In the first case equality (34)
is reduced to check that if A N C = @, then

E[f(£(4))£(C)] = / E[/(£(4) + 38,(A))] xv(d(s. ),
Cx(0,00)

that is evident since, thanks to (31) and the independence between £ (A) and £ (C),
both sides are equal to E[f(£(A))] A(C).
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In the second case (remember that here 8 = 0), equality (34) simplifies as
EfE@ew] = [ Bl +s@]an@sy.  69)
Ax(0,00)

Changing £(A) by its expression in representation Theorem 3, in the left-hand
side of (35) we have

E f( / xn(d(s,x))) / *n(d(s.0) | . (36)

A%(0,00) Ax(0,00)

where 7 is a Poisson random measure on X x (0, co) with intensity measure v.
By Mecke formula for Poisson random measures (33),

(36) = / E|f / x1(d(s, x)) 4+ x8(5.0 (A % (0,00)) | | xv(d(s,x)),

A%(0,00) x(0,00)

that is exactly the right-hand side of (35).
2. We prove the reciprocal implication. This proof is also inspired in Murr [15].
Note that applying formula (34) to the function i(u, s) = f(s) we have

!fcu:E !fdé =!fdﬁ+ [ wevec.

Xx(0,00)

Fix g : X — R4 measurable with fx gdA < oo. and define, for u > 0,

G = E | expi-u [ ga)

X

Since ]E[ f g dg] < 00, by differentiation we get
X

G'(w) = —E | expi—u / ¢ e} / g d
X

X



Malliavin Calculus for Independent Increment Processes 131

Now in formula (34) take

h(i. ) = expl{—u / g du} g(s).
X

and then,

G'(uw) = — / Gu)g(s) B(ds) — / G(u) expt—uxg(s)} g (s)x v(d(s. ).
X Xx(0,00)

or

G'(u) _
Gu)

- / ¢(5) B(ds) — / exp{—1xg($)}g()x v(d(s. 1)).

X Xx(0,00)

The function on the right-hand side is continuous in u, and given that G(0) = 1
we have the

u

6w =exp - [ ( [ewpan+ [ exp{—ug(s)}g(s)xv(d(s,x»)dz

0 X Xx(0,00)

u

— exp 4 / o(5) Bds) — / ( [ exp{—zxg(s)}dz)g@)xv(d(s,x))
X

Xx(0,00) 0

In particular, for u = 1 we get

1

/ exp{ - ng(S)} dz = 11{X:g<s)>0}(S)xgl(s) (1 _ e—xg(y))’

0

and then the Laplace functional of £ is

G(1) = exp | — / ¢(5) dB(s) — / (1— %) p(d(s.2)) }.

X Xx(0,00)

which corresponds to the claimed random measure (see (32)) O
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3.4 Malliavin Calculus

From now on, we consider the random measure with independent increments
given by

E(4) = B(A) + / (A, ). 37
AX%(0,00)

where 7 is a Poisson random measure with intensity v.
As in Part 1, we construct a completely random measure on X x (0, 0o). With
that purpose, define a new measure 1 on X x (0, o0) by

w(d(s, x)) = x> v(d(s, x)).

For C € X x (0, 00) such that (C) < oo, the function 1o(s, x)x is in L*(v);
hence the following random variable is well defined (as a limit in L?(IP)):

M(C) := / 1c(s, x)x7(d(s, x)) = /xﬁ(d(s,x)),

X%(0,00) C

where ) = n — v. It is a completely random measure. As before, consider the set of
symmetric functions

(") = Lf((x x (0,00))", M®").

The multiple It6 integral of order n with respect to M of a function f € L2(u") is
denoted by I,(f). Itd chaotic representation property is also true in this context, and
we have that F € L?(IP) admits a representation of the form

F=Y L(f), feLiu. (38)
n=0

So we can define as in Part 1 a Malliavin derivative D with domain dom D and its
dual, the Skorohod integral § in dom§.

3.4.1 Malliavin Derivatives with Respect to the Underlying Poisson
Random Measure

In the present context of random measures, the absence of the Gaussian part and
the fact that the integral in the representation (37) is pathwise make things easier,
and we do not need to introduce a canonical space. As we commented in the
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Introduction, we rely on the very general construction of Last and Penrose [12] and

Last [11] (see also Privault [21] for multiple Poisson integrals). Denote by I,/ ( f)
the multiple integral of order n with respect to 7 of a function f € Lf(v”). For
f: (X x(0,00))" — R write

PG x0)s oo (s X)) = X1+ xaf ((s1, 1), - (S0, X))

Obviously we have that f € L2(u") if and only if f* € L2(v"). In this case,

L(f) = ().

This is proved by standard techniques by considering first the case of elementary
functions and by using a density argument.

Hence, for F € L*(IP) with an expansion (38) (remember that the o-field
generated by £ and 7 coincide) we have also the expansion

F=3 1)
n=0

Last and Penrose [12] (see Last [11, Theorem 3]) introduce two derivative
operators, the first one as an add-one-cost operator, that we comment in next
subsection, and a Malliavin derivative D" (Last denotes it by D’) as an annihilation
operator on the chaos expansion. The relation between our derivative D and D" is
the following:

Proposition 7 We have dom D = dom D", and for F € dom D,

1
DeoF = S DI F. n®P—ae.
~Df,

Proof The proof is direct from the chaos expansion of F. O

3.4.2 Derivation of Smooth Functionals

We first prove a property for the Poisson process case: following Last and Penrose
[12] and Last [11], consider a square integrable random variable F € L2(IP); since
it is measurable with respect to the o-field generated by 7, there is a measurable
function f : N(X x (0, 00)) — R such that F = f(n) and E[f?()] < co. Define

DIf(n) =f(n + &) —f(n).
By iteration, let

]Dg;n Zlf(n) = ]Dgl ]Dgl,n_lzlrf‘(n)‘
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Now define Tof = IE[f(n)], and forn > 1,

Tf(ziy.. vzn) = E[]D;llsz(n)]

This operator verifies that T,,f € L2(v"), and in the (Poisson) chaotic decomposition
of F'=f(n)

F =) 1)
n=0

the kernels are

1
Jo = _'Tnf
n!
See Last [11, Theorem 2].

Proposition 8 Let F € L*>(P). Then F € dom D" if and only if D'F € L*(2 x X x
(0,0),P ® v).

Proof If F € domD" then the property follows from the coincidence between
D" and D" (Last [11, equality (1.48)]). The proof of the reciprocal implication is
analogous to the proof of the second part of Proposition 4. O

Now we return to Malliavin derivatives with respect to the random measure £.

Proposition9 Let Ay,....A, € X, with finite A measure. Let F =
fEQAD), ... . EA)), withf € €°(R"). Then F € domD and

DyF = )—lc(f(sml) X8 (A1), E(A) +38,(40) — f(E@D). .. £(A))).

The idea of the proof is the same of that of Proposition 5.

3.4.3 Characterization of Random Measures by Duality Formulas

Following Murr [15] we present another version of the Mecke formula to charac-
terize random measures with independent increments by duality formulas. Indeed,
Murr [15] gives a characterization of infinitely random measures so it is more
general than our result. The interest of our characterization is that the proof is
based on Malliavin calculus for random measures with independent increments,
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specifically, the duality coupling between D and §: For F € dom D and g € dom 6,

E[FS(g)] = / D.Fg(z) u(dz) | . (39)

X%(0,00)

Denote by % the ring of relatively compact sets of X. Every locally finite
measure is finite on the sets of %7. Let $ be the set of functions f : M(X) — R
of the form f (i) = h(i(Ay), ..., u(A,)) with h € €°(R") and Ay, ..., A, € U;
also let & be the set of simple functions g = Z/]'(=1 ajl Ajs with ay,...,a, > 0 and
Al,..., A, € .

Theorem 6 (Murr) Let B € M(X) be non-atomic and v € M(X x (0, 00)) be
non-atomic and such that for A € % , fo(O,oo) xv(d(x,s)) < oo. A random measure
& has independent increments with characteristics B and v if and only if for allf € S
and g € &,

E|f®) / ¢(5) E(ds) | = E[f(®)] / ¢(s) B(ds)
X

X

+ / E[f(é + xS‘Y)]g(s)x v(d(s, x)). (40)

X x(0,00)

Proof Assume that £ is a random measure with independent increments. For-
mula (40) is the particular case of formula (34) for h(u,s) = f(u)g(s). However,
as we commented, we will see that (40) is also consequence of the duality
coupling (39).

To prove (40), by linearity, it suffices to consider the case g = 14 forA € % . By
construction (see Remark 4) |, ax(0.00) % v(d(s,x)) < oo. Assume first that also

/ X v(d(s, x)) < 00.
Ax(0.00)
Then xTax(0,00) € L' (v) N L*(v), and by the representation (30),
sw= [ siasn= [ w@em- [ e
Ax(0.00) Ax(0.00) Ax(0.00)

- / 5(5) E(ds) — / ¢(5) dB(s) — / x0(d(s,2)).

X X AX%(0,00)
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Further, the right-hand side of formula of duality (39) for F = f(§) and g = 14 is

B [ 06+ @) waso |

AX%(0,00)

and formula (40) follows. When fAX(Om)xZ v(d(s,x)) = oo, then the result is

obtaining approximating .[AX(O,oo) xn(d(s, x)) by fAX{0<x<n} xn(d(s,x)) as in the
proof of Theorem 2.
The reciprocal implication is also proved as in Theorem 2. O

Remark 5 For an infinitely divisible random measure Murr [15] writes formula (40)
as

E|f(e) / 5(5) £(ds)
X

—E[©] [ e b+ | [ s€+0( [ e 0@) ran|.
X Mo (X) X
@)

where My (X) = M(X)\{0}, here 0 is the zero measure, and I is a o-finite measure
on My (X). Kallenberg [6, Lemma 7.3] proves that £ has independent increments if
and only if I" is concentrated on the set of degenerate measures in My (X), that are
the measures of the form y = x §;, for some x > 0 and s € X. In this case, consider
the (measurable) mapping

Mj(X) - X x (0, 00)
x 85 > (5,%)

and then v is the image measure of I" by this mapping. Thus, by the image measure
Theorem,

/ FE+ ) / 5(s) x(ds) | Iy = / F(E + x8.)x9(5) v(d(s,)),

Mo(X) X X x(0,00)

so formula (41) and (40) are the same in case of a random measure with independent
increments.
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Appendix 1: Pathwise and L?(P) Integrals with Respect to
Poisson Random Measures

For reader convenience we review the definition and properties of the integrals
with respect to Poisson random measures. For these properties there is no need of
topological conditions on the state space.

Pathwise Integrals with Respect to a Poisson Random Measure

Let (X, X, v) be a o-finite measure space and 7 a Poisson random measure with
intensity v. For a measurable mapping f : X — R we can consider the integral
Jxf @) n(w, dx) assuming that f is positive or [y [f(x)| n(w,dx) < oo, and if this
happens for all ® € £2 a.s., the mapping @ > fxf(x) n(w, dx) defines a random
variable. The following theorem summarizes the main properties of that integral.
See also Privault [21, Sect. 2.4.1] for additional properties.

Theorem 7 (Kyprianou [10, Theorem 2.7]) Let f : X — R be a measurable
mapping. Then

1. The integral [y f(x) n(w,dx) is absolutely convergent for every w € $2 a.s. if
and only if

/ (1 N [f(x)|) v(dx) < oo. (42)

X

In this case, the characteristic function offxf dnis

E|expqiu /fdn = exp / (e“‘f(x) — 1) v(dx)
X

X

2. Iff € L'(v), then [ fdn € L'(P) and

E X/fdn :!fdv.



138 J.L. Solé and F. Utzet

3. Iff € L'(v) N L*(v), then Jxfdne L*(P) and

2 2
E /fdn = /fzdv—i— /fdv . (43)
X X X

Note that f € L'(v) implies (42) because 1 A |f| < |f].
We need the following property.

Proposition 10 Assume that v(X) < oo. Let {f,, n > 1} and f be measurable
functions on X such that lim, f,, = f. Then lim, fon dn = fo dn in probability.

Proof Observe that since v(X) < oo all the integrals are well defined. Set g, =
| fn — f1. The characteristic function of [ g, dn is

out) = exp { [ (e~ 1) vian

X

that converges to 1 by dominated convergence. Hence [y g, dn converges to 0 in
law, and thus in probability. O

L?(P)-Integral with Respect to the Compensed Poisson
Random Measure

Again with the preceding notations, consider the ring Xy = {C € X : v(C) < oo}.
The compensated Poisson measure is defined on Xy by #(C) = n(C) — v(C), C €
Xo. Recall that the simple functions of the form

f= Zcillci, with Ci, ..., C, € Xo,

i=1
are dense in L”(v) (p > 1). Denote by Z the set of such functions. For f € 2 define

n

[ rair= Y atne) - vc).
X

i=1
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It is clear that [y fdf) € L?(PP) is centered, and for f, g € 2,

E /fdﬁ/gdﬁ =/fgdv. (44)
X X X

Now, for a general f € L?>(v) the definition of fx f di follows by the standard
procedure, and equality (44) is true for f,g € L?>(v). The characteristic function

of [ fdijis

E | exp{iu / fdi} | = exp / (e — 1 —iuf(x)) v(dx) ¢ . (45)
X

X

Relation Between Pathwise and L*(P) Integrals, and Definition
of the L'(P) Integral

If f € L'(v) N L*(v), both integrals of f with respect to 1 and 7 are defined and we

have
/fdﬁZ/fdn—/fdv, a.s.
X X X

This is proved in a standard way.

Even if we only have f € L'(v), both integrals on the right-hand side above are
well defined, and then, abusing of the language, we also write fx fd7 to denote
that difference of integrals. As a consequence of Theorem 7, that integral belongs
to L' (P).

Appendix 2: Completely Random Measures

We recall the notion of completely random measures (in the sense of vector mea-
sures) and multiple integrals following Peccati and Taqqu [20]; for the properties
presented here there are no topological conditions on the phase space. We restrict
ourselves to the L?(IP)-valued completely random measures.

Let (X, X, A) be a measure space where A is o-finite and non-atomic. As before,
set Xg = {C € X : A(C) < oo}. A centered completely random measure in L?(IP),
for short a completely random measure, with control measure A is a mapping
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¢ : Xo X £2 — R such that

1. Fixed C € Xy, ¢(-, C) : 2 — R is a centered square integrable random variable.
We denote this random variable by ¢(C).

2. 1f Cy,...,C, € Xy are disjoint, the random variables ¢(C}),...,¢(C,) are
independent.

3. For every C;, C; € Xy,

E[p(C1)e(Cr)] = A(C1 N Cy).

As pointed out by Peccati and Taqqu [20, p. 52], ¢ is additive and o-additive on X
in the sense of vector measures on L?(IP), that means, for every finite sequence of
disjoint sets Cy, ..., C, € X,

n

<P(U Ci) = anﬁl’(ci), a.s.
i=1

i=1
and the same is true for an infinite sequence of pairwise disjoints sets {C,, n >
1} C Xy such that U:ozl C, € Xy. However, we stress that in general, fixed w € §2,
¢(w, -) is not o-additive, that means, in general a completely random measure is not
arandom measure in the sense used in Part 2 of this paper.

Multiple Integrals with Respect to a Completely
Random Measure

Itd construction of multiple integrals [5] can be extended to the case that the
integrator is a general completely random measure; see Peccati and Taqqu [20,
Chap. 5], and note the comment on page 83 when ¢ is an L?(IP) completely random
measure.

The multiple stochastic integral of order n with respect to ¢, I,(f), is defined
through the same steps as in the Wiener case: For

f = ]lCl XX Cp s

where Cy, ..., C, € X, pairwise disjoints, set

L(f) = ¢(C1) -+ 9(Cy).
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Therefore, I, is extended to L? (/X@") by linearity and continuity. This integral has
the usual properties:

1. L(f) = I,(f), where f is the symmetrization of f:

~ 1
FGueois) = — 3 Flsnys - Sxm):

" nes,

where &, is the set of permutations of {1, 2, ..., n}.

2. In(af + bg) = aln(f) + b1n~(g)-
3. E[L,()L.(g)] = §ymn! fxnfg’d/\m, where 6,,,, = 1, if n = m, and 0 otherwise.

Appendix 3: Canonical Space of the Jumps Part of a Process
with Independent Increments

As in the Lévy processes case, we use a nice construction by Neveu [16] to build a
Poisson random measure on (0, 00) x R with intensity measure v defined in (1). It
is worth remarking that this measure is locally finite on (0, co) x Ry. We separate
the construction in two steps:

Stepl Form > 0Oandk > 1, set

Api = mm+1]x{xeR: 1< x|},
App = (mom+1]x{xeR: 1/k<x<1/(k=D[}, k> 2.

Since for every t > 0, v, is a Lévy measure, we have that U(Am,k) <
oo. Denote by v, the restriction of v to A,,x. We consider the space of
the finite sequences of elements of A, 4, including the empty sequence;
specifically, let

Qm,k = U (Am,k)na

n>0

where (Am,k)o = {a}, o being a distinguished element that represents the
empty sequence. Let

~Q{m,k = {B C Qm,k :B= UBm Bn € %(Amk)n}

n>0

Since v, 1 (Anx) < oo, there is a probability Q,,x on A, such that
Vmk = Cmi Qmi, for some constant ¢, > 0. Now define a prob-
ability P« on (82,4, k) in the following way: for B = |, By,
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B, € %(Am,k)” set
00 o
_ _—Cm. mk ~\®n
IPm,k(B) =e ¢ ZO 7 Qm,k(B”)’
where Qﬁg = §,. Then, Neveu [16, Proposition 1.6] proves that under
P, «, the mapping given by
Ny @) =Y 8. if 0 = (01,21, (far 30)).
=1

and N, , () = 0, is a Poisson random measure with intensity v,,,x.

Step 2  Now superpose the Poisson random measures N;, ,: Let

(2, . Py) = Q) (Lot T P

m>1,k>1

For w = (wyx,m > 1,k > 1), define
Ny (@) = Ny, i (@)

and finally

N*(@) =) Nii(o),
m.k

which is a Poisson random measure with intensity measure v.
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Introduction to Stochastic Geometry

Daniel Hug and Matthias Reitzner

Abstract This chapter introduces some of the fundamental notions from stochastic
geometry. Background information from convex geometry is provided as far as this
is required for the applications to stochastic geometry.

First, the necessary definitions and concepts related to geometric point processes
and from convex geometry are provided. These include Grassmann spaces and
invariant measures, Hausdorff distance, parallel sets and intrinsic volumes, mixed
volumes, area measures, geometric inequalities and their stability improvements.
All these notions and related results will be used repeatedly in the present and in the
subsequent chapters of the book.

Second, a variety of important models and problems from stochastic geometry
will be reviewed. Among these are the Boolean model, random geometric graphs,
intersection processes of (Poisson) processes of affine subspaces, random mosaics,
and random polytopes. We state the most natural problems and point out important
new results and directions of current research.

1 Introduction

Stochastic geometry is a branch of probability theory which deals with set-valued
random elements. It describes the behavior of random configurations such as
random graphs, random networks, random cluster processes, random unions of
convex sets, random mosaics, and many other random geometric structures. Due to
its strong connections to the classical field of stereology, to communication theory,
and to spatial statistics it has a large number of important applications.

The connection between probability theory and geometry can be traced back
at least to the middle of the eighteenth century when Buffon’s needle problem
(1733), and subsequently questions related to Sylvester’s four point problem (1864)
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and Bertrand’s paradox (1889) started to challenge prominent mathematicians and
helped to advance probabilistic modeling. Typically, in these early contributions a
fixed number of random objects of a fixed shape was considered and their interaction
was studied when some of the objects were moved randomly. For a short historical
outline of these early days of Geometric Probability see [104, Chap. 8] and [105,
Chap. 1].

Since the 1950s, the framework broadened substantially. In particular, the
focus mainly switched to models involving a random number of randomly chosen
geometric objects. As a consequence, the notion of a point process started to play a
prominent role in this field, which since then was called Stochastic Geometry.

In this chapter we describe some of the classical problems of stochastic geometry,
together with their recent developments and some interesting open questions. For a
more thorough treatment we refer to the seminal book on “Stochastic and Integral
Geometry” by Schneider and Weil [104].

2 Geometric Point Processes

A point process 7 is a measurable map from some probability space (§2, <7, P) to
the locally finite subsets of a Polish space X (endowed with a suitable o-algebra),
which is the state space. The intensity measure of 7, evaluated at a measurable set
A C X, is defined by ;t(A) = En(A) and equals the mean number of elements of n
lying in A. 32

In many examples considered in this chapter, X is either RY, the space of
compact (convex) subsets of R4, or the space of flats (affine subspaces) of a certain
dimension in R?. More generally, X could be the family F(IR¢) of all closed subsets
of R¢ endowed with the hit-and-miss topology (which yields a compact Hausdorff
space with countable basis).

In this section, we start with processes of flats. In the next section, we discuss
particle processes in connection with Boolean models.

2.1 Grassmannians and Invariant Measures

Let X be the space of linear or affine subspaces (flats) of a certain dimension in R,
More specifically, for i € {0,...,d} we consider the linear Grassmannian

G(d, i) = {L linear subspace of R? : dim L = i}
and the affine Grassmannian

A(d, i) = {E affine subspace of R? : dim E = i}.
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These spaces can be endowed with a canonical topology and with a metric inducing
this topology. In both cases, we work with the corresponding Borel o-algebra. Other
examples of spaces X are the space of compact subsets or the space of compact
convex subsets of R?. All these spaces are subspaces of F(IR¢) and are endowed
with the subspace topology.

In each of these examples, translations and rotations act in a natural way on the
elements of X as well as on subsets (point configurations) of X. It is well known and
an often used fact that there is—up to normalization—only one translation invariant
and locally finite measure on R?, the Lebesgue measure £,4(-). It is also rotation
invariant and normalized in such a way that the unit cube C? = [0, 1]¢ satisfies
£,(CY = 1.

Analogously, there is only one rotation invariant probability measure on G(d, i),
which we denote by v¢ and which by definition satisfies v¥(G(d, i)) = 1. Observe
that vj_ , coincides (up to normalization) with (spherical) Lebesgue measure o¢
on the unit sphere 7!, by identifying a unit vector u € S9! with its orthogonal
complement u™ = L € G(d,d—1). A corresponding remark applies to v¥onG(d, 1)
where a unit vector is identified with the one-dimensional linear subspace it spans.

In a similar way, there is—up to normalization—only one rotation and translation
invariant measure on A(d, i), the Haar measure ufl, which is normalized in such a
way that u¢({E € A(d, i) : ENB? # @}) = k4—;, where B is the unit ball in R and
k4 denotes its volume. Since the space A(d, i) is not compact, its total ufl-measure
is infinite.

It is often convenient to describe the Haar measure ,ul‘.’ on A(d, i) in terms of the
Haar measure vid on G(d, i). The relation is

p(A) = / / LA(L + ) ai(dx) v9(dL), )

G(d.i) L+

for measurable sets A C A(d, i). This is based on the obvious fact that each i-flat
E € A(d,i) can be uniquely written in the form £ = L 4+ x with L € G(d, i) and
x € L, the orthogonal complement of L. If a locally finite measure 1 on A(d, i) is
only translation invariant, then it can still be decomposed into a probability measure
o on G(d, i) and, given a direction space L € G(d, i), a translation invariant measure
on the orthogonal complement of L, which then coincides up to a constant with
Lebesgue measure on LL. In fact, a more careful argument shows the existence of a
constant # > 0 such that

A =1 / / L(L + ) £as(d0) o(dL),

G(d,i) L

for all measurable sets A C A(d, i). In this situation, 0 = vid if and only if u is also
rotation invariant and therefore u = ufl, at least up to a constant factor.
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The Haar measures £, vid, and ufl are the basis of the most natural constructions
of point processes on X = R4, G(d, i) and A(d, i), if some kind of invariance is
involved.

2.2 Stationary Point Processes

Next we describe point processes on these spaces in a slightly more formal way than
at the beginning of this section and refer to [71] for a general detailed introduction.
A point process (resp. simple point process) n on X is a measurable map from the
underlying probability space (§2, .o, IP) to the set of locally finite (resp. locally finite
and simple) counting measures N(X) (resp., Ny(X)) on X, which is endowed with
the smallest o-algebra, so that the evaluation maps w +— n(w)(A) are measurable,
for all Borel sets A C X. For z € X, let §, denote the unit point measure at z. It can
be shown that a point process can be written in form

n= ZSG’

i=1

where 7 is a random variable taking values in INy U {oo} and &;,&s,... is a
sequence of random points in X. In the following, we will only consider simple
point processes, where {; # ¢ for i # j. If n is simple and identifying a
simple measure with its support, we can think of 7 as a locally finite random set
n=A{¢:i=1,...,t}

Taking the expectation of 1 yields the intensity measure

wn(A) = En(A)

of n. As indicated above, the most convenient point processes from a geometric
point of view are those where the intensity measure equals the Haar measure, or
at least a translation invariant measure, times a constant ¢+ > 0, the intensity of
the point process. If we refer to this setting, we write 1, and u, to emphasize the
dependence on the intensity ¢. In the following, we make this precise under the
general assumption that the intensity measure is locally finite. As usual we say that
a point process 7 is stationary if any translate of 1 by a fixed vector has the same
distribution as the process 7.

Let us discuss the consequences of the assumptions of stationarity or some
additional distributional invariance in some particular cases. If 7 is a stationary point
process on X = RY, then p;(A) = t£;(A) for all Borel sets A C R?. Clearly, this
measure is also rotation invariant.

Furthermore, if 7 is a stationary flat process on X = A(d,i) and A C R¢ is a
Borel set, we set [A] = {E € A(d,i) : EN A # 0}. Then the number of i-flats of the
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process meeting A is given by 1([A]) and its expectation can be written as

((A] = 1 / / L (L + ) Li(d0) o (dD),

Gd.i) L

where o is a probability measure on G(d,i) and ¢+ > O is the intensity. This
follows from what we said in the previous subsection, since the intensity measure
is translation invariant by the assumption of stationarity of 5. Here, the indicator
function 14;(L + x) equals 1 if and only if x is in the orthogonal projection A|Lt of
Ato L. Thus

w(A]) = 1 / ta—iAILY) o (dL).

G(d.i)

A special situation arises if 7 is also isotropic (its distribution is rotation invariant).
In this case and for a convex set A, the preceding formula can be expressed as an
intrinsic volume, which will be introduced in the next section.

2.3 Tools from Convex Geometry

We work in the d-dimensional Euclidean space R¢ with Euclidean norm |jx|| =
V/(x, x), unit ball BY and unit sphere S¢~!. The set of all convex bodies, i.e., compact
convex sets in RY, is denoted by K¢. The Hausdorff distance between two sets
A,B is defined as dy(A,B) = inf{fe > 0: A C B+ eB’andB C A + eB%}
where “+4” denotes the usual vector or Minkowski addition. When equipped with
the Hausdorff distance, K¢ is a metric space. The elements of the convex ring R?
are the polyconvex sets, which are defined as finite unions of convex bodies.

If Lebesgue measure is applied to elements of K¢, we usually write V, instead of
£4. Using the Minkowski addition on K9, we can define the surface area of a convex
body by

- Va(K + eB?) — Va(K)
lim .
e—>0+ &
Classical results in convex geometry imply that the limit exists. The mean width of

a convex body K is the mean length of the projection K|L of the set onto a uniform
random line L through the origin,

/ Vi(K|L) v{(dL).

G(d.1)
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These two quantities, which describe natural geometric properties of convex bodies,
are just two examples of a sequence of characteristics associated with convex bodies.

2.3.1 Intrinsic Volumes

More generally, we now introduce intrinsic volumes V; of convex bodies, i =
1,...,d. These can be defined through the Steiner formula which states that, for
any convex body K € X9, the volume of K + &B is a polynomialin & > 0 of degree
d. The intrinsic volumes are the suitably normalized coefficients of this polynomial,
namely,

d
Va(K +eBY) = > kiVai(K)e', &0,
i=0

where k; is the volume of the i-dimensional unit ball. Clearly, the functional 2V,_; is
the surface area, V) is a multiple of the mean width functional, and V|, corresponds
to the Euler characteristic.

The intrinsic volumes V; are translation and rotation invariant, homogeneous of
degree i, monotone with respect to set inclusion, and continuous with respect to
the Hausdorff distance. The intrinsic volumes are additive functionals, also called
valuations, which means that

Vi(KUL)+ V(K NL) =Vi(K) + Vi(L)

whenever K, L, K U L € K“. Moreover, it is a convenient feature of the intrinsic
volumes that for K ¢ RY C RY the value V;(K) is independent of the ambient
space, R4 or RY, in which it is calculated. In particular, for L € G(d, 1) the intrinsic
volume V| (K|L) is just the length of K|L.

A famous theorem due to Hadwiger (see [104, Sect. 14.4]) states that the intrinsic
volumes can be characterized by these properties. If 1 is a translation and rotation
invariant, continuous valuation on K¢, then

with some constants cg,...,cs € R depending only on p. If in addition p is
homogeneous of degree i, then © = ¢;V;. To give a simple example for an
application of Hadwiger’s theorem, observe that the mean projection volume

/ Caci(KILY) vi(dL)

G(d.i)



Introduction to Stochastic Geometry 151

of a convex body K to a uniform random (d — i)-dimensional subspace defines
a translation invariant, rotation invariant, monotone and continuous valuation of
degree d — i. Hence, up to a constant factor (independent of K), it must be equal
to V4—;(K). This yields Kubota’s formula

Vai(K) = cas / Caci(KILS) vi(dL),
G(d,i)

with certain constants c¢;; which can be determined by comparing both sides for
K = B?. This formula explains why the intrinsic volumes are often encountered in
stereological or tomographic investigations and are also called “Quermassintegrals”,
which is the German name for an integral average of sections or projections of a
body.

Applications to stochastic geometry require an extension of intrinsic volumes
to the larger class of polyconvex sets. Requiring such an extension to be additive
on R? suggests to define the intrinsic volumes of polyconvex sets by an inclusion—
exclusion formula. The fact that this is indeed possible can be seen from a result due
to Groemer [38], [104, Theorem 14.4.2], which says that any continuous valuation
on X4 has an additive extension to R¢. Volume and surface area essentially preserve
their interpretation for the extended functionals and also Kubota’s formula remains
valid for all intrinsic volumes. On the other hand, continuity with respect to the
Hausdorff metric is in general not available on R

2.3.2 Mixed Volumes and Area Measures

The Steiner formula can be extended in different directions. Instead of considering
the volume of the Minkowski sum of a convex body and a ball, more generally, the
volume of a Minkowski combination of finitely many convex bodies Ki, ..., K} €
%9 can be taken. In this case, V(A1 K1 + ...+ A K}) is a homogeneous polynomial
inAy,...,Ar > 0of degree d, whose coefficients are nonnegative functionals of the
convex bodies involved (see [101, Chap. 5.1]), which are called mixed volumes. We
mention only the special case k = 2,

d
VahiKi + 22Ko) = Y (d)kiks“"vaq (1. Kald — i));

i
i=0

the bracket notation K[i] means that K enters with multiplicity i. In particular, for
K.L € X% we thus get

V(K + ¢L) — Vy(K)
. ,

d-V(Kld—1L) = lim
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which provides an interpretation of the special mixed volume V(K[d — 1],L) as a
relative surface area of K with respect to L. In particular, d - V(K[d — 1], BY) is the
surface area of K. The importance of these mixed functionals is partly due to sharp
geometric inequalities satisfied by them. For instance, Minkowski’s inequality (see
[101, Chap. 7.2]) states that

V(K[d — 1], L)* > V4(K)*™'Vy(L). 2)

If K, L are d-dimensional, then (2) holds with equality if and only if K and L are
homothetic. Note that the very special case L = B¢ of this inequality is the classical
isoperimetric inequality for convex sets.

Although Minkowski’s inequality is sharp, it can be strengthened by taking into
account that the left side is strictly larger than the right side if K and L are not
homothetic. Quantitative improvements of (2) which introduce an additional factor
(1 + f(d(K, L)) on the right-hand side, with a nonnegative function f and a suitable
distance d(K, L), are extremely useful and are known as geometric stability results.

A second extension is obtained by localizing the parallel sets involved in the
Steiner formula. For a given convex body K, this leads to a sequence of Borel
measures Sj(K,-),j=0,...,d—1,0n §9=1the area measures of the convex body
K. The top order area measure Sy—1 (K, -) can be characterized via the identity

d-V(K[d—1],L) = / h(L, u) Sq—1 (K, du),

gd—1
which holds for all convex bodies K, L € K¢, and where
h(L,u) := max{{x,u) : x € L}, uelR?,
defines the support function of L. Moreover, for any Borel set  C S?~! we have
Sy—1(K, @) = H ({x € 0K : (x,u) = h(K,u) for some u € w}),

where =" denotes the (d — 1)-dimensional Hausdorff measure. Further extensions
and background information are provided in [101] and summarized in [104].

3 Basic Models in Stochastic Geometry

3.1 The Boolean Model

The Boolean model, which is also called Poisson grain model [41], is a basic
benchmark model in spatial stochastics. Let & = Y o 8, denote a stationary
Poisson point process in R¢ with intensity ¢ > 0. By IKg we denote the set of all
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convex bodies K € K¢ for which the origin is the center of the circumball. Let Q
denote a probability distribution on K4, and let Z,, Z,, ... be an i.i.d. sequence of
random convex bodies (particles) which are also independent of &;. If we assume that

/W@MMRw 3)

X

forj=1,...,d, then

z=JZ+x)

i=1

is a stationary random closed set, the Boolean model with grain (or shape)
distribution Q and intensity ¢ > 0. Alternatively, one can start from a stationary
point process (particle process) 7, on K¢. Then the intensity measure p, = I, of
1, is a translation invariant measure on X which can be decomposed in the form

() = t//ﬂ{K+xe 3 £4(dx) Q(dK).

d Rd
:K()]R

The Poisson particle process 7, is locally finite if and only if its intensity measure
Wy is locally finite, which is equivalent to (3). We obtain again the Boolean model
by taking the union of the particles of 7, that is,

z=zm) = Jk.

Ken,

In order to explore a Boolean model Z, which is observed in a window W € K,
it is common to consider the values of suitable functionals of the intersection
Z N W as the information which is available. Due to the convenient properties
and the immediate interpretation of the intrinsic volumes V;, i € {0,...,d}, for
convex bodies, it is particularly natural to study the random variables V;(Z N W),
i € {0,...,d}, or to investigate random vectors composed of these random
elements. From a practical viewpoint, one aims at retrieving information about the
underlying particle process, that is, its intensity and its shape distribution, from such
observations.

3.1.1 Mean Values

Let Zy be a random convex body having the same distribution as Z;, i € N, which is
called the typical grain. Formulas relating the mean values IEV;(Z N W) to the mean
values of the typical grain v; = EV;(Z), j € {0,...,d}, have been studied for a
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long time. Particular examples of such relations are

]EVd(Z n W) = Vd(W) (1 _ e—l‘vd) ,
EVi (ZNW) = Va(W)tvg—1e ™ + Vo (W) (1 — ™).

If (W) denotes the radius of the inball of W, we deduce from these relations that

EVd(Z n W) —w
im ———~=1-— d
rW)y—oo  Vy(W)
EV,(ZNnW
a—1( ) — roy_jet,

lim
HW)—>00 V(W)

where the first limit is redundant and equal top = P(0 € Z) = EV/(ZNW)/V (W),
the volume fraction of the stationary random closed set Z. For the other intrinsic
volumes V;, i € {0,...,d — 2}, the mean values IEV;(Z N W) of the Boolean model
Z can still be expressed in terms of the intensity and mean values of the typical grain,
but the relations are more complicated and in general they involve mixed functionals
of translative integral geometry. The formulas simplify again if Z is additionally
assumed to be isotropic (if Zy is isotropic). For a stationary and isotropic Boolean
model, all mean values IEV;(ZN W) can be expressed in terms of the volume fraction
p and a polynomial function of tv;, ..., tvy. Moreover, the limits

EVi(ZNn W)
;= lim —=
rW)y—oo  Vy(W)
exist and are called the densities of the intrinsic volumes for the Boolean model.
The system of equations which relates these densities to the (intensity weighted)
mean values vy, ..., tvy can be used to express the latter in terms of the densities
8o, . . . , 64 of the Boolean model.

3.1.2 Covariances

While such first order results (involving mean values) have been studied for quite
some time (see [104] for a detailed description), variances and covariances of
arbitrary intrinsic volumes (or of more general functionals) of Boolean models have
been out of reach until recently. In [58], second order information for functionals
of the Boolean model is derived systematically under optimal moment assumptions.
To indicate some of these results, we define for i,j € {0, ...,d}

. Cov(Vi(Zn W), V,(ZNW))
Oij = lim

4
F(W)—00 V(W) )
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as the asymptotic covariances of the stationary Boolean model Z, provided the limit
exists. The following results are proved in [58] and ensure the existence of the limit
under minimal assumptions. Note that condition (3) is equivalent to EV;(Zy) < oo
fori=1,...,d.

Theorem 1 Assume that EVi(Zy)> < oo fori e {1,...,d}.

(1) Then oy is finite and independent of W for all i,j € {0, ...,d}. Moreover, o
can be expressed as an infinite series involving the intensity t and integrations
with respect to the grain distribution Q and the intensity measure | of 1;.

(2) The asymptotic covariance matrix is positive definite if Zy has nonempty interior
with positive probability.

(3) Ifeven EVi(Zy)® < oo fori € {0,...,d}, then the rate of convergence in (4) is
of the (optimal) order 1/r(W).

A more general result is obtained in [58], which applies to arbitrary translation
invariant, additive functionals which are locally bounded and measurable (geometric
functionals). Further examples of such functionals are mixed volumes and certain
integrals of area measures. The basic ingredients in the proof are the Fock space
representation of Poisson functionals as developed in [73] (see also the contribution
by Giinter Last in this volume) and new integral geometric bounds for geometric
functionals.

For an isotropic Boolean model, the infinite series representation for o;; can be
reduced to an integration with respect to finitely many curvature based moment
measures of the typical grain Zy. As a basic example, which does not require Z to
be isotropic, we mention (assuming a full-dimensional typical grain Z) that

0414 = —€ 104 / (€™ — 1) La(d)
+ E_del‘/etcd(x_y) Md_l,d(d(x, y),

where Cy(x) = E[V,(Zy N (Zy + x))], for x € R?, defines the mean covariogram of
the typical grain and

M1a) = 5E / [ L{(r.y) € -} 3 (dx) La(dy)

Zy 07

is a mixed moment measure of the typical grain. A formula for the asymptotic
covariance 04— 4—; 1S already contained in [42]. For a stationary and isotropic
Boolean model in the plane R?, explicit formulas are provided in [58] for all
covariances involving the Euler characteristic o9, 091, 002. Moreover, again in
general dimensions and for a stationary Boolean model whose typical grain is a
deterministic ball, some of these formulas can be specified even further and used to
plot the covariances as a function of the intensity. It is an interesting task to interpret
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these plots and to determine rigorously the analytic properties (e.g., zeros, extremal
values) or the asymptotic behavior of the covariances and correlation functions for
increasing intensity.

In addition, in [58] univariate and multivariate central limit theorems, including
rates of convergence, are derived from general new results on the normal approx-
imation of Poisson functionals via the Malliavin—Stein method [81, 82]. For these
we refer to the survey [17], in this volume. Again these results are established for
quite general geometric functionals, employing also tools from integral geometry.
Some of these results do not require stationarity of the Boolean model or translation
invariance of the functionals.

3.2 Random Geometric Graphs

Random graphs play an important role in graph theory since Renyi introduced his
famous random graph model. Since then several models of random graphs have been
investigated. The use of random graphs as a natural model for telecommunication
networks (see, e.g., Zuyev’s survey in [115]) gave rise to additional investigations.
Here we concentrate on random graphs with a geometric construction rule.

The most natural and best investigated graph is the so-called Gilbert graph. Let
1, be a Poisson point process on R¢ with an intensity measure of the form j,(-) =
tly(-N W), where W C R? is a compact convex set with £4(W) = 1. Let (§, : t > 0)
be a sequence of positive real numbers such that 6, — 0 as + — oo. The Gilbert
graph, or random geometric graph, is obtained by taking the points of 7, as vertices
and by connecting two distinct points x, y € 1, by an edge if and only if ||x—y| < §;.
There is a vast literature on the Gilbert graph and one should have a look at the
seminal book [83] by Penrose or check the recent paper by Reitzner et al. [93] for
further references. For natural generalizations one replaces the role of the norm
by a suitable symmetric function G : R? — [0, 1], where two points of 5, are
connected with probability G(y — x). An important particular case is when G is the
indicator function of a symmetric set. Recent developments in this direction are due
to Bourguin and Peccati [16], and Lachi¢ze-Rey and Peccati [66, 67].

Denote by § = (V, €) the resulting graph where V = 7, are the vertices and
& C ni 4 are the occurring edges. Objects of interest are clearly the number of
edges N, and, more general, functions of the edge lengths

> gy —xID-

(xy)€€

In particular, one is interested in the edge length powers

o 1 «
L§>:§ Z L{llx —yll <63 lx—yl”.

(ey)en,
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Clearly L§°’ = N,. Itis well known that for any o > —d

EL® = ﬂﬁ(s“dvd(wm +0(5)).
2@ +d)

This especially shows that the number of edges of the Gilbert graph is of order *8¢,
whereas its total edge length is of order 2§?*!. The asymptotic variance is given by

2,2
d° Kk

(o) dkq 2 oda+d
VarL,) = | —————¢*§ —
e ( © T aray

3 e2u+2d
2 2a +d) £, ) Va(W)(1 + 0(8))),

and the asymptotic covariance matrix is computed in [93].

Many investigations benefit from the fact that these functions are Poisson
U-statistics of order 2, and thus are perfectly suited to apply the Wiener—Itd chaos
expansion, Malliavin calculus and Stein’s method. We refer to [91] and [69] (in
this volume) for more details. There limit theorems are stated and more recent
developments are pointed out.

Questions of interest not mentioned in the current notes concern for instance
percolation problems. For recent developments in this context, we refer, e.g., to the
recent book by Haenggi [40].

3.2.1 Random Simplicial Complexes

A very recent line of research is based on the use of random geometric graphs for
constructing random simplicial complexes. For instance, given the Gilbert graph of
a Poisson point process 7;, we construct the Vietoris—Rips complex R(8;) by calling
F = {xi,..., %} a k-face of R(6,) if all pairs of points in F are connected by
an edge in the Gilbert graph. This results in a random simplicial complex, and it is
particularly interesting to investigate its combinatorial and topological structure.

For example, counting the number N,(k) of k-faces is equivalent to a particular
subgraph counting. By definition this is a U-statistic given by

1
(k) (k) 2 : ..
Nt :Nl‘ (W,(St) = m ﬂ{||xl_xj|| 581‘, V1 fl,]fk"' 1}.

k41
(Xls---,XkJrl)E’I,;

Using the Slivnyak—Mecke theorem (see [ 104, Sect. 3.2]), the expectation of N,(k)
can be computed. Central limit theorems and a concentration inequality follow from
results for local U-statistics. A particularly tempting problem is the asymptotic
behavior of the Betti-numbers of this random simplicial complex. We refer to
[29, 60, 62, 69] and to the recent survey article by Kahle [61] for further information.
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3.3 Poisson Processes on Grassmannians

Let 1, be a Poisson process on the space A(d, i) of affine i-flats with a o-finite
intensity measure u;, = tui, t > 0. Assume in particular that u, is absolutely
continuous with respect to the Haar measure p,fl on A(d, i). This implies that two
subspaces Li,L, € ni 4 are almost surely in general position. If 2i < d the
intersection L; N L, is almost surely empty and of interest is the linear hull of the
subspace parallel to L; and L,, which is of dimension 2i with probability one. If
2i > d, then the dimension of the linear hull of the subspace parallel to L; and L, is
d and of interest is the intersection L; N L,, which is an affine subspace of dimension
2i — d with probability one.

Crucial in all the following results mentioned for both cases is the fact that
the functionals of interest are Poisson U-statistics and thus admit a finite chaos
expansion. This makes it particularly tempting to use methods from the Malliavin
calculus for proving distributional results.

3.3.1 Intersection Processes of Poisson Flat Processes

Starting from a stationary process 7, of i-flats in R4 with d /2 <i<d—1,weobtain
for given k < d/(d —i) a stationary process ngk) of [ki — (k — 1)d]-flats by taking the
intersection of any k flats from 7, whose intersection is of the correct dimension. If
1, is Poisson, then the intensity #*) and the directional distribution o® of this k-fold
intersection process nﬁk) of n, can be related to the intensity ¢ and the directional
distribution o of 7, by

*
Pe® () = a / L N...NL € ML, ..., L]o(dL)...o(dL)),
AW A
where the subspace determinant [L,, ..., L;] is defined as the k(d — i)-dimensional
volume of the parallelepiped spanned by orthonormal bases of Lll, e, Lkl. Natural

questions which arise at this point are the following:

+ For which choice of o will #¥) be maximal if # is fixed?

* Are t and o uniquely determined by the intersectional data t*) and o ®?

* If uniqueness holds, is there a stability result as well? That is, are to and 76 close
to each other (in a quantitative sense) if tPo® and 10&® are close?

For further information on this topic, see Sect. 4.4 in [104].
Since in applications the intersection process can only be observed in a convex
window W, one is in particular interested in the sum of their j-th intrinsic volumes
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given by

1
B=— > ViLin..NLNW)

forj =0,...,d — k(d — i). The fact that the summands in the definition of &, are
bounded and have a bounded support ensures that the sum exists.

The expectation of @; can be calculated using the Slivnyak—Mecke theorem,
which yields

E@tz%tk/.../vj-(lqﬂ...ﬂLkﬂW)le(dLl)...ptl(de).

If w, is also translation invariant this leads to the question to determine certain chord
power integrals of the observation window W or more general integrals involving
powers of the intrinsic volumes of intersections LN W where L is an affine subspace.

Recent contributions deal with variances and covariances, multivariate central
limit theorems [74] (see also [69]), and the distribution of the m-smallest intersection
[108]. For further detailed investigations we refer to the recent contribution by Hug
et al. [59].

3.3.2 Proximity of Poisson Flat Processes

A different situation arises if we consider a stationary process of i-flats in R¢ with
1 < i < d/2. In this case, generically we expect that any two different i-flats
Li,L, € n, are disjoint. A natural way to investigate the geometric situation in
this setting is to study the distances between disjoint pairs of i-dimensional flats, or
more generally to consider the proximity functional.

We associate with such a pair (L1, L) € ni £ (in general position) a unique pair
of points x; € Ly and x, € L, such that ||x; — x3|| equals the distance between L;
and L,. This gives rise to a process of triples (m(Ly, L,),d(L;, L), L(L,, Ly)), where
m(Ly, Ly) := (x1 4+ y2)/2 is the midpoint, d(L;, Ly) := ||x; — x2| is the distance,
and L(L;, L) € G(d, 1) is the subspace spanned by the vector x; — x;.

The stationary process of midpoints and its intensity have been studied in [97] for
a Poisson process (see also Sect. 4.4 in [104]), and more recently in [109]. Assume
that 7, is a Poisson process on the space A(d,i), i < %, with intensity measure
Wy = tpy. The midpoints m(Ly, Ly) = %(xl + x,) form a point process of infinite
intensity, hence we restrict it to the point process

{m(L1, L) : d(Li,Ls) <8, Li,Ls € ; 4}
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and are interested in the number of midpoints in W, that is,

1
Mo=MW.8 =2 > WdliL) <8 mLi,L) € W}

(LiLo)en;

The Slivnyak-Mecke formula shows that IET, is of order 28472/, Schulte and
Théle [109] proved convergence of the suitably normalized random variable I7,
to a normally distributed variable with error term of order 7 Moreover, they
showed that after suitable rescaling the ordered distances asymptotically form an
inhomogeneous Poisson point process on the positive real axis. In [69], the authors
add to this a concentration inequality around the median m;, of I1, which shows that

the tails of the distribution are bounded by

1 u
exp| ————
P 4 . Ju+ m;

for u‘;_m’ > ¢? supy eqwy e ({L = d(Lo, L) < &}).

For the process of triples (m(Ly, Ly),d(Ly, L), L(L;, L)) a more detailed anal-
ysis has been carried out in [59], which also emphasizes the duality of concepts
and results as compared to the intersection process (of order k = 2) described
before. While the proximity process provides a “dual counterpart” to the intersection
process of order two, no satisfactory analogue for intersection processes of higher

order is known so far.

3.4 Random Mosaics

Another widely used model of stochastic geometry is that of a random mosaic
(tessellation). A deterministic mosaic of Euclidean space R¢ is a family of countably
many d-dimensional convex bodies C; C R¢Y i € N, with mutually disjoint
interiors, whose union is the whole space and with the property that each compact
set intersects only finitely many of the sets. The individual sets of the family, which
necessarily are polytopes, are called the cells of the tessellation. It is clear that
this concept can be extended in various directions, for instance by dropping the
convexity assumption on the cells or by allowing local accumulations of cells, which
leads to a more general partitioning of space.

Formally, a random mosaic (tessellation) X in R¢ is defined as a simple particle
process such that for each realization the collection of all particles constitutes a
mosaic. In addition to the cells of the mosaic, the collection of k-dimensional faces
of the cells, for each k € {0,...,d}, provides an interesting geometric object
which combines features of a particle process, a random closed set (considering for
instance the union set), or a random geometric graph. For example, coloring the cells
of the tessellation black or white, independently of each other and independently
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of X, one can ask for the probability of an infinite black connected component or
study the asymptotic behavior of mean values and variances of functionals of the
intersection sets Zg N W, where Zg denotes the union of the black cells and W is
an increasing observation window. For an introduction to such percolation models
we refer the reader to [12, 13, 72, 77]. A first systematic investigation of central
limit theorems in more general continuous percolation models related to stationary
random tessellations is carried out in [78].

3.4.1 Typical Cells and Faces

In the following, we always consider stationary random tessellations X in R¢. By
stationarity, the intensity measure [EX of X, which we always assume to be locally
finite and nonzero, is translation invariant. Let ¢ : K¢ — R¢ denote a center
function. By this we mean a measurable function which is translation covariant,
that is, c(K +x) = c¢(K) +x forall K € X? and x € R¢. W.Lo.g. we take c(K) to be
the center of the circumball, and define K¢ := {K € X? : ¢(K) = o} as in Sect. 2.3.
Then

EX = t//ll{C+xe 3 £4(dx) Q(dO),

d Rd
j<j()]R

where t > 0 and @ is a probability measure on ng which is concentrated on convex
polytopes. A random polytope Z with distribution Q is called a typical cell of X. This
terminology can be justified by Palm theory or in a “statistical sense.” In addition to
such a “mean cell” we also consider the cell containing a fixed point in its interior.
Because of stationarity, we may choose the origin and hence the zero cell Z; of a
given stationary tessellation. Applying the same kind of reasoning to the stationary
process X of k-faces of X, we are led to the intensity #¥) and the distribution Q®
of the typical k-face Z(®) of X which are determined by

WQPO =E| Y Le(F) € BIL{F —c(F) €} |
Fex®)
where B C R? is a Borel set with £4(B) = 1 and

W =E| Y 1{c(F) € B}

Fex®
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Let M, denote a random measure concentrated on the union of the k-faces of X
which is given by

M) =} HCNF).

Fex®

Then the distribution of the k-volume weighted typical k-face Z(()k) is defined by

1
EM(B)

IE/ L{F(X® —x) € -} Mi(dx),
B

where again B C R? is a Borel set with £4(B) = 1 and F;(X%' — x) is the P-a.s.
unique k-face of X®¥ — x containing o if x is in the support of M;. Then, for any
nonnegative, measurable function 4 on convex polytopes, we obtain

E[r(Z®PVi(ZzW)]

EV:Z®)] )

Eh (Z(()k) - c(z(()"))) -

which also explains why Z(()k) is called the volume weighted typical k-face of X.
This relation between the two types of typical faces is implied by Neveu’s exchange
formula. In the particular case k = d we have Z(()d) = Zy. Here we followed the
presentation in [7, 8, 98, 99].

For general stationary random mosaics it is apparently difficult to establish
distributional results. More is known about various mean values and intensities. For
instance,

d

Y (=D =0 (6)

i=0

is an Euler type relation for the intensities, which points to an underlying general
geometric fact (Gram’s relation). If Z; denotes the union of the k-faces of X (its
k-skeleton), then the specific Euler characteristic

1
ix = lim —Eyx(Z N0, 1]9)
r—o0 pd

exists and satisfies

k

=) (=i,

i=0

Mean value relations for the mean number of j-faces contained in (or containing)
a typical k-faces if j < k (respectively, j > k) or relations for the mean intrinsic
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volumes of the typical k-faces tVEV;(Z®) are also known (see [104, Sect. 10.1] for
this and related results). More generally, asymptotic mean values and second order
properties for functionals of certain colored random mosaics have been investigated
in [78].

A different setting is considered in [43]. The starting point is a general stationary
ergodic random tessellation in R¢. With each cell a random inner structure is
associated (for instance, a point pattern, fiber system, or random tessellation)
independently of the given mosaic and of each other. Formally, this inner structure is
generated by a stationary random vector measure J. In this framework, with respect
to an expanding observation window strong laws of large numbers, asymptotic
covariances and multivariate central limit theorems are obtained for a normalized
functional, which provides an unbiased estimator for the intensity vector of Jj.
Applications to communication networks are then discussed in dimension two
under more specific model assumptions involving Poisson—Voronoi and Poisson line
tessellations as the frame tessellation as well as the tessellations used for the nesting
sequence.

3.4.2 Poisson Hyperplane Mosaics

A hyperplane process 7, in R with intensity # > 0 naturally divides R into
convex polytopes, and the resulting mosaic is called hyperplane mosaic. In the
following, we assume that all required intensities are finite (and positive). Let X
be the stationary hyperplane mosaic induced by 7,. Let

"
t(_k) = /VJ(K) QP dK) = Evj(z(k))

denote the mean j-th intrinsic volume of the typical k-face Z*) of the mosaic X,
where 1) is again the intensity of the process of k-faces. We call d;k) the specific

Jj-th intrinsic volume of the k-face process X® | If ny j»for 0 <j < k < d, denotes
the mean number of j-faces of the typical k-face, then the relations

d—j . d [k
d(k) = d(j), t(k) == t(O), Npj = 2k_j .
J d—k k ! J

complement the Euler relation (6) valid for any random tessellation (see [104,
Theorem 10.3.1]). In the derivation of these facts the property is used that each j-face
of X lies in precisely (j:i) flats of the (d — k)-fold intersection process 74— and
therefore in 2~ (j:]’() faces of dimension k of X. Further results can be obtained, for
instance, if the underlying stationary hyperplane process 7, is Poisson. To prepare
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this, we observe that the intensity measure of 7, is of the form

t//ll{uJ‘+xu€-}€1(dx)o(du), (7

si—1 R

where t > 0 and o is an even probability measure on the unit sphere. Since for
u € R? the left-hand side of

3 [ oo = e
§d—1

is a positively homogeneous convex function (of degree 1), it is the support function
of a uniquely defined convex body ITy € K¢, which is called the associated zonoid
of X. This zonoid can be used to express basic quantities of the mosaic X. For
instance, we have

k d—j d
d;) = (d—k Va—j(Ix), W = L Va(Ix)

(see [104, Theorem 10.3.3]). If X (or n,) is isotropic, then ITx is a ball and these
relations are directly expressed in terms of constants and the intensity ?.

In [102], Schneider found an explicit formula for the covariances of the total face
contents of the typical k-face of a stationary Poisson hyperplane mosaic. Let L;(P)
be the total i-face contents of a polytope P C R, that is,

L(P)= ) H(F).

FEF;(P)

The main result is a general new formula for the second moments E(L,Ly)(Z®),
which is obtained by an application of the Slivnyak—Mecke formula and clever
geometric dissection arguments (refining ideas of R. Miles) in combination with
the mean values

20()

EL.(Z") = —2V,_.(ITy),

1(;)

which follow from [100]. As a consequence of these formulas and deep geometric
inequalities, namely the Blaschke—Santalo inequality and the Mahler inequality for
zonoids, he deduced that the variance Var(fy(Z®)) is maximal if and only if X
is isotropic and minimal if and only if X is a parallel process (involving d fixed
directions only). A similar result is obtained for the variance of the volume of the
typical cell. In the isotropic case, explicit formulas for these variances and, more
generally, for the covariances of the face contents are obtained.
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In addition to the typical cell Z = Z@ of a stationary hyperplane tessellation,
we consider the almost surely unique cell Zy = Z(()d) containing the origin (the zero
cell). One relation between these two random polytopes is given in (5). Another
one describes the distribution of the typical cell (where here the highest vertex in a
certain admissible direction is chosen as the center function) as the intersection of Z
with a random cone T'(H1, . .., H;) generated by d independent random hyperplanes
sampled according to a distribution determined by the direction distribution o of 7,.
From this description, one can deduce that up to a random translation, Z is contained
in Zy (see Theorem 10.4.7 and Corollary 10.4.1 in [104]).

For the zero cell, mean values of some functionals are explicitly known. For
instance,

EL,(Zy) = 27V (ITx) Va(ITy),

where [Ty is the polar body of the associated zonoid of X. Choosing r = 0, we get
the mean number of vertices, and the choice » = d gives the mean volume of Z;. It
follows, for instance, that

27 < Efy(Zo) < d27%3

with equality on the left side if X is a parallel process, and with equality on the right
side if X is isotropic. A related stability result has been established in [14].

3.4.3 Distributional Results

One of the very few distributional results which are known for hyperplane processes
is the following. It involves the inradius r(K) of a convex body K, which is
defined as the maximal radius of a ball contained in K. We call a hyperplane
process nondegenerate if its directional distribution is not concentrated on any great
subsphere.

Theorem 2 Let Z be the typical cell of a stationary mosaic generated by a
(nondegenerate) stationary Poisson hyperplane process 1; with intensity t > 0. Then

P(r(Z) <a) =1—exp(—2ta), a>0.

Clearly r(Z) > a if and only if a ball of radius « is contained in Z. An extension
covering more general inclusion probabilities (for homothetic copies of an arbitrary
convex body) and typical k-faces has been established in [54, Sect. 4, (9)].

In order to study distributional properties of lower-dimensional typical faces,
Schneider [98] showed that for k € {1,...,d — 1} the distribution of the volume-
weighted typical k-face can be described as the intersection of the zero cell with a
random k-dimensional linear subspace. To state this result, let n; denote a stationary
Poisson hyperplane process in R with intensity measure as given in (7). Further, let
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=% denote the intensity and o “~® the directional distribution (a measure on the
Borel sets of G(d, k)) of the intersection process 74—k of order d — k of 1,. Both
quantities are determined by the relation

—0) (d— 7 L L
d=h) 5@ k)(.) = @0 / Wuy N...Nu, €}
(sd—1yd—k
[, ... ug—] oA (u, . . . ug—)),
where [u1, ..., us—] denotes the (d — k)-volume of the parallelepiped spanned by

Uly oo, Ug—k.
The next theorem summarizes results from [98, Theorem 1] and from [54,
Theorem 1].

Theorem 3 Let X denote the stationary hyperplane mosaic generated by a station-
ary Poisson hyperplane process 1,. Then the distribution of the volume-weighted
typical k-face of X is given by

Pzl e = / P(Zy NL€-)a“PdL).
G(d k)
The distribution of the typical k-face equals
P@ZW e.) = / P(Z(X N L) € -)Re(dL),
G(d k)

hence it is described in terms of the typical cells of the induced mosaics X N L in
k-dimensional subspaces sampled according to the directional distribution

R = D gy ey o any
(k) Vd(nX)
G(d k)
of the typical k-face of X.

These results turned out to be crucial for extending various results for typical
(volume-weighted) faces, which had been obtained before for the typical cell (the
zero cell).

3.4.4 Large Cells: Kendall’s Problem

Next we turn to Kendall’s problem on the asymptotic shape of the large cells
of a stationary but not necessarily isotropic Poisson hyperplane tessellation. The
original problem (Kendall’s conjecture) concerned a stationary isotropic Poisson
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line tessellation in the plane and suggested that the conditional law for the shape of
the zero cell Zy, given its area V,(Zy) — oo, converges weakly to the degenerate law
concentrated at the circular shape. Miles [75] provided some heuristic ideas for the
proof of such a result and suggested also various modifications. The conjecture was
strongly supported by Goldman [34], a first solution came from Kovalenko [64, 65].
Still the approaches of these papers were essentially restricted to the Euclidean plane
and made essential use of the isotropy assumption.

The contribution [56] marks the starting point for a sequence of investigations
which provide a resolution of Kendall’s problem in a substantially generalized form.
To describe the result in some more detail, let , be a (nondegenerate) stationary
Poisson hyperplane process in R¢ with intensity ¢ > 0 and directional distribution
o. In order to find a potential asymptotic shape for the zero cell Z; of the induced
Poisson hyperplane tessellation, we first have to exhibit a candidate for such a shape
(if it exists), then we have to clarify what we mean by saying that two shapes are
close and finally it remains to determine a quantity which should be used instead of
the “area” of Z, to measure the size of the zero cell.

Clearly, a natural candidate for a size functional is the volume V,. The answer
to the first question is less obvious, but is based on a strategy that has repeatedly
been used in the literature with great success (see [104, Sect.4.6] for various
examples and references). The main idea is to describe the direction distribution
o in geometric terms. This allows one to apply geometric inequalities such as
Minkowski’s inequality (2) and its stability improvement, which then can be
reinterpreted again in probabilistic terms. Instead of the associated zonoid, for the
present problem the Blaschke body associated with 5, alternatively the direction
body B of 7, turns out to be the right tool. This auxiliary body B is characterized as
the unique centered (that is, B = —B) d-dimensional convex body B € X¢ such that
the area measure of B satisfies Sy—;(B, ) = o. The existence and uniqueness of B,
for given o, is a deep result from convex geometry which in its original form is also
due to Minkowski (see [101]). Finally, we say that the shape of K € X is close to
the shape of B if

rp(K) = inf{s/r—1:rB+zCKCsB+zzeR%rs>0}

is small. In particular, r5(K) = 0 if and only if K and B are homothetic. Let iK‘(io)
denote the set of all K € K¢ with o € K. For any such K we introduce the constant

© = min{r"'En,([K]) : K € K{,. Va(K) = 1}
of isoperimetric type, which can also be expressed in the form
e " = max{P(K C Z) : K € X{,, Va(K) = 1}.

The following theorem summarizes Theorems 1 and 2 in [56] and a special case
of Theorem 2 in [51]. The latter provides a far reaching generalization of a result
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in [34] on the asymptotic distribution of the area of the zero cell of an isotropic
stationary Poisson line tessellation in the plane.

Theorem 4 Under the preceding assumptions, there is a positive constant co,
depending only on B, such that for every € € (0, 1) and for every interval I = [a, b)
with a4 > 1,

P(rs(Zo) > € | Va(Zo) € 1) < cexp (—coe’Ta"/"r)
where c is a constant depending on B and €. Moreover,
lim a4 InP(Vy(Z) > a) = —1t.
a—>o0

The same result holds for the typical cell Z.

If the size of Z, is measured by some other intrinsic volume V;(Z), for i €
{2,...,d — 1}, a similar result is true if 7, is also isotropic (see [57, Theorem 2]).
No such result can be expected for the mean width functional V. In fact, no limit
shape may exist if size is measured by the mean width, which is proved in [51,
Theorem 4] for directional distributions with finite support. Most likely a limit shape
does not exist if size is measured by the mean width, but for arbitrary o or in case
of the typical cell this is still an open question. Crucial ingredients in the proofs of
the results described so far are geometric stability results, which refine geometric
inequalities and the discussion of the equality cases for these inequalities.

3.4.5 A General Framework

The results described so far suggest the general question which size functionals
indeed lead to asymptotic or limit shapes and how these asymptotic or limit shapes
are determined. A general axiomatic framework for analyzing these questions is
developed in [51]. The main object of investigation is a Poisson hyperplane process
n, in R¢ (and its induced tessellation) with intensity measure of the form

En =1t L{H (u,x) € -}x"" £, (dx) o (du), (8)
Sd[1 !

where t > 0, r > 1, and o is an even nondegenerate (that is, not concentrated on
any great subsphere) probability measure on the Borel sets of the unit sphere. The
case r = 1 corresponds to the stationary case. We refer to ¢ as the intensity, r as the
distance exponent, and ¢ as the directional distribution of n,. Let

@(K) := t ' En,([K]) =% / h(K,u)" o(du), KeX(,.
Sd*l
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which is called the hitting or parameter functional of 7,, since t@(K) is the mean
number of hyperplanes of 7, hitting K. Moreover, we have

) =m = 2 exp o). nem,
by the Poisson assumption on ;.

In Theorem 4 we used the volume functional to bound the size of the zero cell.
Many other functionals are conceivable such as the (centered) inradius, the diameter,
the width in a given direction, or the largest distance to a vertex of Zy. It was
realized in [51] that in fact any functional X' on ino which satisfies some natural
axioms (continuity, homogeneity of a fixed degree k > 0 and monotonicity under set
inclusion) qualifies as a size functional. From this it already follows that a general
sharp inequality of isoperimetric type is satisfied, that is,

@ (K) > 12 (K)"¥, KeX{, 9)

with a positive constant ¢ > 0. The convex bodies K for which equality is attained
are called extremal. Among the bodies of size X' (K) = 1 these are precisely the
bodies for which

P(K C Zy) < e

holds with equality (thus maximizing the inclusion probability). The final ingredient
required in this general setting, if @, X' are given, is a deviation functional ¢ on
{K € iK‘(io) : Y¥(K) > 0}, which should be continuous, nonnegative, homogeneous
of degree zero, and satisfy ¢ (K) = 0 for some K with ¥ (K) > 0 if and only if K is
extremal. Then exponential bounds of the form

P(9(Z) = € | Z(Zo) € [a.b]) < cexp(—cof (e)a’"1) (10)

with a function f : R+ — R4 which is positive on (0, co), with f(0) = 0, and
which satisfies

P(K) = (1 +f()rZ(K)* if9(K) = e,

are established in [51]. Thus if we know that K has positive distance ¢ (K) from an
extremal body, we can again use this information to obtain an improved version
of a very general inequality of isoperimetric type. As mentioned before, results
of this form are known as stability results. Note that for the choice ¥ = @, the
inequality (9) becomes a tautological identity and all K € IK?O) with K # {o} are
extremal. Hence, in this case ¢ is identically zero and (10) holds trivially.
Moreover, for the asymptotic distributions of size functionals it is shown that

lim a /*InP(2(Z) > a) = —t,
a—>00
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thus providing a far reaching extension of the result for the volume functional [51].
The paper [51] contains also a detailed discussion of various specific choices of
parameters and functionals which naturally occur in this context and which exhibit
a rich variety of phenomena. In the next subsection we point out how this setting
extends to Poisson—Voronoi tessellations. In the case of stationary and isotropic
Poisson hyperplane tessellations, a similar general investigation is carried out in
[52]. Extensions to lower-dimensional faces in Poisson hyperplane mosaics, which
are based on the above-mentioned distributional results for k-faces, are considered
in [53, 54].

Much less is known about the shape of small cells, although this has also been
asked for by Miles [75]. For parallel mosaics in the plane, some work has been done
in [10]. Recently, limit theorems for extremes of stationary random tessellations
have been explored in [22, 27], but the topic has not been exhaustively investigated
so far. In the survey [21], Calka discusses some generalizations of distributional
results for the largest centered inball (centered inradius) Ry, the smallest centered
circumball (centered circumradius) and their joint distribution, for an isotropic
Poisson hyperplane process with distance exponent » > 1. These radii are related
to covering probabilities of the unit sphere by random caps. The two-dimensional
situation had already been considered in [20]. In particular, Calka points out that
after a geometric inversion at the unit sphere and by results available for convex hulls
of Poisson point processes in the unit ball (see [23, 24]), the asymptotic behavior of
P(Ry >t + 1 | R,, = 1) can be determined for a suitable choice of § as t — oo. In
addition, Ll-convergence, a central limit theorem, and a moderate deviation result
are available for the number of facets and the volume of Z;.

3.4.6 Random Polyhedra

The techniques developed for the solution of Kendall’s problem turned out to be
useful also for the investigation of approximation properties of random polyhedra
derived from a stationary Poisson hyperplane process 1, with intensity + > 0 and
directional distribution o. Here the basic idea is to replace the zero cell by the
K-cell ZX defined as the intersection of all half-spaces H~ bounded by hyperplanes
H € n, for which K C H™. Let dy denote the Hausdorff distance of compact sets in
R?, and let K* be the convex hull of K and {y}. If the support of the area measure
Ss—1(K, ) is contained in the support of o, then

P(du(K,Z5) > €) < ci(e) exp (—catu(K, 0, €)) ,

where ¢ (¢), ¢, are constants and

w(K,0,€) = min / [M(K”,u) — h(K,u)]o(du) > 0;
y€I(K+eB?)
sd—1
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see [55, Theorem1]. Using this bound as a starting point, under various assumptions
on the relation between the body K to be approximated and the directional
distribution o of the approximating hyperplane process, almost sure convergence
dy(K,ZK) — 0is shown as the intensity # — oo, including bounds for the speed of
convergence. It would be interesting to consider the rescaled sequence

2

t d+1
— dy(K,ZX
(10gt) (K. Z7)

and to obtain further geometric information about the limit, for instance, if o is
bounded from above and from below by a multiple of spherical Lebesgue measure.

3.4.7 Poisson—Voronoi and Delaunay Mosaics

Perhaps the most common and best known tessellation in Euclidean space is the
Voronoi tessellation. A Voronoi tessellation arises from a locally finite set , C R?
(deterministic or random) of points by associating with each point x € 7, the cell

vy () ;= {z e R ||z —x|| < |lz—y| forally € n,}

with nucleus (center) x. One reason for the omnipresence of Voronoi tessellations is
that they are related to a natural growth process starting simultaneously at all nuclei
at the same time. If 7, is a stationary Poisson process with intensity ¢ > 0, then the
collection of all cells vy, (x), x € n;, is a random tessellation X of R¢ which is called
Poisson—Voronoi tessellation. The distribution of the typical cell of X is naturally
defined by

Q0= 1E / 1wy, () —x € -} (), (an

B

where B C R is an arbitrary Borel set with volume 1. A random polytope Z with
distribution Q is called typical cell of X. An application of the Slivnyak—Mecke
theorem shows that the typical cell Z is equal in distribution to v,,4s,(0), hence Z
is stochastically equivalent to the zero cell of a Poisson hyperplane tessellation with
generating Poisson hyperplane process given by ¥ = erm O (x), where H(x) is the
mid-hyperplane of o and x. It is easy to check that Y is isotropic but nonstationary
with intensity measure

EY(-) = 2% / /]l{H(u,x)e~}xd_1€1(dx).’}6d_l(du), (12)

sd—1 0
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where H(u,x) := u’ + xu is the hyperplane normal to u and passing through
xu. Hence, Y perfectly fits into the framework of the parametric class of Poisson
hyperplane processes discussed before. This also leads to the following analogue
(see [57]) of Theorem 4. To state it, let ¥ (K), for a convex body K containing the
origin in its interior, be defined by %(K) = (R, — r,)/(R, + r,), where R, is
the radius of the smallest ball with center o containing K and r, is the radius of the
largest ball contained in K and center o.

Theorem 5 Let X be a Poisson—Voronoi tessellation as described above with
typical cell Z. Let k € {1,...,d}. There is a constant cy4, depending only on the
dimension, such that the following is true. If ¢ € (0,1) and I = [a,b) (b = o0
permitted) with a?’*t > 1, then

P(3(2) 2 ¢ | Vi(2) € 1) < cqe exp (—cas“ T %aM)

where cq . is a constant depending on d and ¢.

It should be noted that conditioning on the mean width V; is not excluded here.
Moreover, asymptotic distributions of the intrinsic volumes of the typical cell can
be determined as well. Although in retrospect this follows from the general results
in [51], specific geometric stability results have to be established.

The shape of large typical k-faces in Poisson—Voronoi tessellations, with respect
to the generalized nucleus as center function, has been explored in [53]. Here
large typical faces are assumed to have a large centered inradius. A corresponding
analysis for large k-volume seems to be difficult. In this context, the joint distribution
of the typical k-face and the typical k-co-radius is described explicitly and related
to a Poisson process of k-dimensional halfspaces with explicitly given intensity
measure.

The distributional results obtained in [53] complement fairly general distri-
butional properties of stationary Poisson—Voronoi tessellations that have been
established by Baumstark and Last [7]. In particular, they describe the joint
distribution of the d —k 4 1 neighbors of the k-dimensional face containing a typical
point (i.e., a point chosen uniformly) on the k-faces of the tessellation. Thus they
generalize in particular the classical result about the distribution of the typical cell
of the Poisson—-Delaunay tessellation, which is dual to the given Poisson—Voronoi
tessellation. The combinatorial nature of this duality and its consequences are nicely
described in [104, Sect. 10.2]. Kendall’s problem for the typical cell in Poisson—
Delaunay tessellations is explored in [50] (see also [48]).

3.4.8 High-Dimensional Mosaics and Polytopes
Despite significant progress, precise and explicit information about mean values or

even variances and higher moments in stochastic geometry is rather rare. This is one
reason why often asymptotic regimes are considered, where the number of points,
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the intensity of a point process, or the size of an observation window is growing to
infinity. On the other hand, high-dimensional spaces are a central and challenging
topic which has been explored for quite some time, motivated by intrinsic interest
and applications.

Let X be a Poisson—Voronoi tessellation generated by a stationary Poisson
point process with intensity ¢ in RY. As before, let Z denote its typical cell. By
definition (11), Z contains the origin in its interior. It is not hard to show that 7+ <
E[V4(Z)X] < k!t7%, in particular, E[V,;(Z)] = 1/t. These bounds are independent
of the dimension d. Using a much finer analysis, Alishahi and Sharifitabar [1]
showed that

L(i)d<vﬂ(v(z))<i(i)d
pva\3v3) = T S eda\33)

where ¢, C > 0 are absolute constants. In a sense, this suggests that V;(Z) gets
increasingly deterministic. On the other hand, if B¢ (u) is a ball of volume u centered
at the origin, then

VaZN B ) > (1—e™), d — oo,

in L? and in distribution. The paper [1] was the starting point for a more general
high-dimensional investigation of the volume of the zero cell Zj in a parametric
class of isotropic but not necessarily stationary Poisson hyperplane tessellations.
This parametric class is characterized by the intensity measure of the underlying
Poisson hyperplane process which is of the form (8) but with o being the normalized
spherical Lebesgue measure. That the case of the typical cell of a Poisson—Voronoi
tessellation is included in this model can be seen from (12) by choosing the distance
exponent r = d and by adjusting the intensities. Depending on the intensity f,
the distance parameter r, and the dimension d, explicit formulas for the second
moment IE(V,(Zy)?) and the variance Var(V,(Z)) as well as sharp bounds for these
characteristics were derived in [45]. Depending on the tuning of these parameters,
the asymptotic behavior of V;(Zy) can differ dramatically.

To describe an interesting consequence of such variance bounds, we define
by Z := V4(Z)7"/Z the volume normalized typical cell of a Poisson—Voronoi
tessellation with intensity ¢ (as above). Let L C R¢ be a co-dimension one linear
subspace. Then there is an absolute constant ¢ > 0 such that

_ 1 [ 4\
nn(vd_l(sz)zﬁ/z)z1_c.ﬁ(m) .

This is a very special case of Theorem 3.17 in [46]. It can be paraphrased by saying
that with overwhelming probability the hyperplane conjecture, a major problem in
the asymptotic theory of Banach spaces, is true for this class of random polytopes,
see Milman and Pajor [76].
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In [46] also the high-dimensional limits of the mean number of faces and an
isoperimetric ratio of a mean volume and a mean surface area are studied for the
zero cell of a parametric class of random tessellations (as an example of a random
polytope). As a particular instance of such a result, we mention that

Jim d="? {Bfy(Zo) = N 2mb,
—>00

where r = bd (with b fixed) increases proportional to the dimension d and ¢ is
fixed. It is remarkable that this limit is independent of £. At the basis of this and
other results are identities connecting the f-vector of Z; to certain dual intrinsic
volumes of projections of Zj to a deterministic subspace.

3.4.9 Poisson—Voronoi Approximation

Let A be a Borel set in R? and let 5, be a Poisson point process in R?. Assume that
we observe 7, and the only information about A at our disposal is which points of
n, lie in A, i.e., we have the partition of the process 7, into 7, N A and 7, \ A. We
try to reconstruct the set A just by the information contained in these two point sets.
For that aim we approximate A by the set A, of all points in R4 which are closer to
n; N A than to n, \ A.

Applications of the Poisson—Voronoi approximation include nonparametric
statistics (see Einmahl and Khmaladze [32, Sect. 3]), image analysis (reconstructing
an image from its intersection with a Poisson point process, see [63]), quantization
problems (see, e.g., Chap. 9 in the book of Graf and Luschgy [35]), and numerical
integration (approximation of the volume of a set A using its intersection with a
point process 1, N A).

More formally, let n, be a homogeneous Poisson point process of intensity ¢ > 0,
and denote by vy, (x) the Voronoi cell generated by 7, with center x € 7,. Then the
set A;, is just the union of the Poisson—Voronoi cells with center lying in A, i.e.,

Ay = v

x€nNA

We call this set the Poisson—Voronoi approximation of the set A. It was first
introduced by Khmaladze and Toronjadze in [63]. They proposed A, to be an
estimator for A when ¢ is large. In particular, they conjectured that for arbitrary
bounded Borel sets A € R4, d > 1,

Va(A,,) = Va(A), t— oo,

Vi(AAA,) >0, t— oo, (13)
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almost surely, where A is the operation of the symmetric difference of sets. In full
generality this was proved by Penrose [84].
It can be easily shown that for any Borel set A C R? we have

EVa(Ay,) = Va(A),

since 7, is a stationary point process. Thus V;(A,,) is an unbiased estimator for the
volume of A. Relation (13) suggests that

EV4(AAA,) — 0, t— oo, (14)

although this is not a direct corollary. The more interesting problems are to find
exact asymptotic of EV,(AAA,,), VarV,(A,,), and VarV,(AAA,,).

Very general results in this direction are provided by Reitzner et al. [92].
Their results for Borel sets with finite volume V;(A) depend on the perimeter
Per(A) of the set A in the sense of variational calculus. If A is a compact set
with Lipschitz boundary (e.g., a convex body), then Per(A) equals the (d — 1)-
dimensional Hausdorff measure 3¢~!(dA) of the boundary dA of A. In the general
case Per(A) < H¢"'(dA) holds.

If A C R? is a Borel set with V;(A) < oo and Per(A) < oo, then

EVi(AAA,,) = cq-Per(A) - 7/9(1 + o(1)), t—> oo, (15)

where ¢; = Zd_ZF(l/d)Kd_llcd_l_l/d.

The asymptotic order of the variances of A, and AAA; ast — oo was first
studied in [44] for convex sets and then extended in [92] to arbitrary Borel sets,
where also sharp upper bounds in terms of the perimeter are given. A very general
result in this direction is due to Yukich [114]. IfA C R is a Borel set with Vu(A) <
oo and finite (d — 1)-dimensional Hausdorff measure H¢~!(dA) of the boundary of
A, then

VarVy(A,,) = C1(A) 741 4 o(1)),
and
VarV (AAA,,) = Co(A) Y91 4+ 0(1)), t— oo,

with explicitly given constants C;(A).

A breakthrough was achieved by Schulte [107] for convex sets A and, more
generally, by Yukich [114] for sets with a boundary of finite (d — 1)-dimensional
Hausdorff measure. They proved central limit theorems for V;(A,,) and V,(AAA,,).

Recently, Lachie¢ze-Rey and Peccati [68] proved bounds for the variance, higher
moments, and central limit theorems for a huge class of sets, including fractals.
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Another interesting open problem is to measure the quality of approximation
of a convex set K by K, in terms of the Hausdorff distance between both sets.
First estimates for the Hausdorff distance are due to Calka and Chenavier [22],
very recently Lachieze-Rey and Vega [70] proved precise results on the Hausdorff
distance even for irregular sets.

Since A;, — A in the sense described above, it is of interest to compare the
boundary 0A to the boundary of the Poisson—Voronoi approximation dA,,. This has
been explored recently by Yukich [114] who showed that H?~!(dA,,)—scaled by
a suitable factor independent of A—is an unbiased estimator for H¢~'(dA), and he
also obtained variance asymptotics. We also mention a very recent deep contribution
due to Thile and Yukich [111] who investigate a large number of functionals of A,,.

3.5 Random Polytopes

The investigation of random polytopes started 150 years ago when Sylvester
stated in 1864 his four-point-problem in the Educational Times. Choose n points
independently according to some probability measure in R¢. Denote the convex hull
of these points by conv{X, ..., X,}. Sylvester asked for the distribution function of
the number of vertices of conv{Xy, ..., X4} in the case d = 2.

Random polytopes are linked to other fields and have important applications.
We mention the connection to functional analysis: Milman and Pajor [76] showed
that the expected volume of a random simplex is closely connected to the so-called
isotropic constant of a convex set which is a fundamental quantity in the local theory
of Banach spaces.

In this section we will concentrate on recent contributions and refer to the surveys
by Hug [49], Reitzner [90], and Schneider [103] for additional information. Let 7,
be a Poisson point process with intensity measure of the form u, = tu;, ¢t > 0,
where /1] is an absolutely continuous probability measure on R?. Then the Poisson
polytope is defined as 1, = conv(7,).

There are only few results for given ¢ and general probability measures . In
analogy to Efron [31], it immediately follows from the Slivnyak—Mecke theorem
that Ify(I1;) = t — Eu,(I1;)), connecting the probability content IEu,(I1;) and the
expected number of vertices IEfy (I1;). Identities for higher moments have been given
by Beermann and Reitzner [9] who extended this further to an identity between the
generating function g, of the number of non-vertices or inner points /(/1;) =
|7/ — fo({1;) and the moment generating function /7, of the ,-measure of IT,.
Both functions are entire functions on C and satisfy

gy (@ + 1) = hy,y (2), z€C,

thus relating the distributions of the number of vertices and the j,-measure of I7,.
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3.5.1 General Inequalities

Assume that K C R is a compact convex set and set y,(-) = tV4(K N -). We denote
by I1¥ = conv([n,] the Poisson polytope in K.

In this section we describe some inequalities for Poisson polytopes. Based on the
work of Blaschke [11], Dalla and Larman [28], Giannopoulos [33], and Groemer
[36, 37] showed that

EV,(I1F) < EV,(ITf) < EV,(I17) (16)

where HZA, resp. I12 denotes the Poisson polytope where the underlying convex
set is a simplex, resp. a ball of the same volume as K. The left inequality is true
in arbitrary dimensions, whereas the right inequality is just known in dimension
d = 2 and open in higher dimensions. To prove this extremal property of the simplex
in arbitrary dimensions seems to be very difficult and is still a challenging open
problem. A positive solution to this problem would immediately imply a solution to
the hyperplane conjecture, see Milman and Pajor [76].

There are some elementary questions concerning the monotonicity of functionals
of I'IZK. First, it is immediate that forall K € K¢ andi = 1,...,d,

EV,(IT¥) < EV,(IT¥)

for t < s. Second, an analogous inequality for the number of vertices is still widely
open. It is only known, see [30], that for 7 < s

Efo(ITX) < Ef,(1F)

for d = 2 (and also for smooth convex sets K C R? if ¢ is sufficiently large). Thirdly,
the very natural implication

KcCL = EV,(ITF | n(K) = n) < EV,(IT" | (L) = n)

was asked by Meckes and disproved by Rademacher [85]. He showed that for
dimension d > 4 there are convex sets K C L such that for ¢ sufficiently small
EV,(ITX | n(K) = n) > EV4(ITF | n,(L) = n). In addition, Rademacher showed
that in the planar case this natural implication is true. The case d = 3 is still open.

3.5.2 Asymptotic Behavior of the Expectations
Starting with two famous articles by Rényi and Sulanke [94, 95], the investigations

focused on the asymptotic behavior of the expected values as ¢ tends to infinity.
Due to work of Wieacker [113], Schneider and Wieacker [106], Bardny [2], and



178 D. Hug and M. Reitzner
Reitzner [87], fori=1,...,d,
Vi(K) — EVi(ITX) = c,(K)r 71 + o (r—#) (17)

if K is sufficiently smooth. Investigations by Schiitt [110] and more recently by
Boroczky et al. [15] succeeded in weakening the smoothness assumption. Clearly,
Efron’s identity yields a similar result for the number of vertices.

The corresponding results for polytopes are known only fori = 1 andi = d. In
a long and intricate proof, Bardny and Buchta [3] showed that

Va(K) — EV,(ITF) = ca(K)t ' "'t + O (' In"? ¢1In7).
For i = 1, Buchta [18] and Schneider [96] proved that
Vi(K) —EV,(IT) = c(K)t ™0 + o(t™1).

Somehow surprisingly, the cases 2 < i < d — 1 are still open.

Due to Efron’s identity, the results concerning EV,(ITX) can be used to
determine the expected number of vertices of I7X. In [89], Reitzner generalized
these results for IEfy (ITX) to arbitrary face numbers IEf; (ITX), £ € {0, ...,d — 1}.

3.5.3 Variances

In the last years several estimates have been obtained from which the order of the
variances can be deduced, see Reitzner [86, 88, 89], Vu [112], Bardny and Reitzner
[5], and Bérany et al. [6]. The results can be summarized by saying that there are
constants ¢(K), c(K) > 0 such that

c(K) T EVI(ITS) < VarVi(ITF) < e(K)r EVi(IT)
and

c(K) " Bf(ITF) < Vatf(ITF) < e(K)r~ Ef (1)
if K is smooth or a polytope. It is conjectured that these inequalities hold for general
convex bodies. That the lower bound holds in general has been proved in Bardny
and Reitzner [5], but the general upper bounds are missing.

A breakthrough are recent results by Calka et al. [26] and Calka and Yukich [25]
who succeeded in giving the precise asymptotics of these variances,

VarV,(ITK) = cgi(K) 71 + o(~ )
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fori =1,d, and
K — d—1 d—1
Varfy(I1;") = cqe(K) 151 + o(14FT)

if K is a smooth convex body. The dependence of ¢, ¢(K) on K is known explicitly.

3.5.4 Limit Theorems

First CLTs have been proved by Groeneboom [39], Cabo and Groeneboom [19], and
Hsing [47] but only in the planar case. In recent years, methods have been developed
to prove CLTs for the random variables V,;(I1X) and f; (ITX) in arbitrary dimensions.
The main ingredients are Stein’s method and some kind of localization arguments.
For smooth convex sets this was achieved in Reitzner [88], and for polytopes in a
paper by Bardny and Reitzner [4]. The results state that there is a constant ¢(K) and
a function &(¢), tending to zero as t — oo, such that

V/ VarV,(ITK) -

P (Vd(an) — BV (ITF) < x) —Px)| <c(K)e()

and

p (A1)~ EATE)
Nl (IR~

A surprising recent result is due to Pardon [79, 80] who proved in the Euclidean
plane a CLT for the volume of ITX for all convex bodies K without any restriction
on the boundary structure of K. A similar general result in higher dimensions seems
to be out of reach at the moment.

x) —d(x)| <c(K)e().
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The Malliavin—Stein Method
on the Poisson Space

Solesne Bourguin and Giovanni Peccati

Abstract This chapter provides a detailed and unified discussion of a collection
of recently introduced techniques, allowing one to establish limit theorems with
explicit rates of convergence, by combining the Stein’s and Chen—Stein methods
with Malliavin calculus. Some results concerning multiple integrals are discussed
in detail.

1 Introduction

The aim of this chapter is to show that the tools of stochastic analysis developed in
the previous parts of the book (see [19, 30]) may be combined very naturally with
two powerful probabilistic techniques, namely the Stein’s and Chen—Stein methods
for probabilistic approximations. Several remarkable applications of the content of
the present chapter in a geometric context are presented in [18, 32].

2 The Stein’s and Chen-Stein Methods

The Stein’s and Chen—Stein methods can be roughly described as collections of
techniques, allowing one to use differential operators in order to explicitly assess
the distance between probability distributions. In general, these techniques are
applied whenever one wants to compare a known “target” distribution (Gaussian,
Poisson, Gamma, Binomial distributions among others) with an unknown one—that
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is typically not amenable to direct analysis. As it is to be expected, the nature of the
method changes mostly according to the structure of the target distribution.

In this section, Stein’s original method along with two of its variants are
presented, namely the (original) one-dimensional Stein’s method for normal approx-
imations, the one-dimensional Chen—Stein method for Poisson approximations, and
finally, a multidimensional version of Stein’s method for normal approximations. In
what follows, we shall assume that every random element is defined on an adequate
probability space (£2, <7, IP).

2.1 Distances Between Distributions

A crucial notion that will be needed throughout this chapter is that of a distance
between two probability distributions. Recall that a class .77 of real-valued functions
on R¥ is said to be separating if the following implication holds: if F, G are two R¢-
valued random elements such that 4(G), h(F) € L'(£2) and E[h(G)] = E[h(F)] for
every h € J¢, then F and G have the same distribution. Also, we shall say (as
usual!) that a sequence of R%-valued random variables {F, : n > 1} converges in
distribution (or in law) to F if, for every 4 : R¢ — R bounded and continuous,

E[h(F,)] — E[h(F)], as n— oc.

Definition 1 (Distance Between Probability Distributions) Given a separating
class of real-valued functions .7 on R, the distance d_»(F, G) between the laws of
two R?-valued random elements F and G—verifying h(F), h(G) € L'(£2) for every
h € 7 —is defined as

dn(F,G) = sup{|E[h(F)] = E[h(G)]|:h € A} (1)

It is easily checked that the mapping d-(:,-) verifies the usual axioms of a
distance (or metric) on the class of all probability distributions 7z on R such that
fRd |a(x)|dm(x) < oo for every h € 7. We will now present several specific
distances that will be used throughout the chapter. The reader is referred, e.g., to
[11, Chap. 11] or [21, Appendix C] (and the references therein) for any unexplained
definition or result concerning the topological properties of the class of probability
distributions on a metric space.

Definition 2 Fix d > 1, and write Z(R%) to indicate the corresponding Borel
o-field.

1. The total variation distance between the laws of two R?-valued random variables
F and G, denoted by dry(F, G), is obtained from (1) by taking # to be the set
of all functions h: R?Y — R of the type h(x) = 13(x), where B € Z(R¢). This
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class of functions will be denoted by ##7y in the sequel, in such a way that

drv(F.G) = dysy(F.G) = sup |P(FeB)—P(GeB)|.
Be B(RY)

2. The Kolmogorov distance between the laws of two random variables F and G,
denoted by dx (F, G), is obtained from (1) by taking 57 to be the class of all func-
tions h: RY — R of the type h (xi,...,x;) = 1 (00,213 x(=00,24] (K15 -+« Xa)s
where z1,...,zs € R. This class of functions will be denoted by #% in the
sequel. In particular,

dx(F.G) = d.(F.G)

= sup |P(Fe€ (—o0,z1] X+ X (—00,24])
215,24 €ER

—IP (G € (—00,z1] X -+ X (=00, z4])| -

3. Let F, G be two R¢-valued random elements such that E[||F||g«], E[[|G|lre] <
00. The Wasserstein distance between the laws of F and G, denoted by dy (F, G),
is obtained from (1) by taking ./ to be the set of all functions 4: R¢ — R such
that ||A||Lip < 1, where

_ |h(x) —h ()|
Illip = sup  —————.
x.y€R:x#y ”x - y”]Rd

This class of functions will be denoted by .7y in the sequel.

4. Let F, G be two R?valued random elements such that E[||F||ga], B[||G||ge] <
oo. The distance d»(F, G) between the laws of F and G is obtained from (1) by
taking . to be the set of all functions h: R — R, such that h € €1, ||hl|Lip < 1
and

<.

Vh(x) —Vh
o e sy 1VHE = O I
x,yeR4:xs#y ”x - y”]Rd

This class of functions is denoted by .7%. Note that, if 1 € €2, then My (h) =
sup,epe ||Hess i(x)|lop, where Hessh(x) stands for the Hessian matrix of A
evaluated at x, and the operator norm of a d x d matrix A is defined as [|A|op =
sup {|Ax||ge:x € RY, [|x|lge = 1}.

5. Let F, G be two R%valued random elements such that ]E[||F||%Rd] ]E[||G||%Rd] <
oo. The distance d3(F, G) between the laws of F and G is obtained from (1) by
taking . to be the set of all functions 4: R? — R, such that & is three times
differentiable and all partial derivatives of order 2 and 3 are bounded by 1. This
class of functions is denoted by 743.

Observe that, in the notation introduced above, there is no explicit dependence on
the dimension d: indeed, it will always be the case that the exact value of d is clear
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from the context. As discussed below, the distances d, and ds are used mainly in a
multidimensional setting. We observe the following basic facts:

— The five classes J#vy, %, 7y, 76, 56 are all separating, and the topologies
induced by the corresponding distances are all strictly stronger than the one
induced by the convergence in distribution. In particular, if d(F,, F) — 0 (where
d stands for any of the distances drv,dk,dw,d, or ds), then F, converges in
distribution to F (observe that the converse implication might fail).

— One has that dyy > dk and dy > d,. Moreover, ifd = 1, N ~ A47(0, 1) and F is
any random variable in L' (£2), then dx(F,N) < 2/dw(F,N).

— If d = 1 and the mapping z — P(F < z) is continuous for every z € R, then, as
n — oo, F, converges in distribution to F if and only if dgx(F,, F) — 0.

— The total variation distance also has the following useful equivalent representa-
tion:

1
dry(F.G) = 5 sup {{E[(F)] — E[A(G)]|: [Alleo = 1}

2.2 The One-Dimensional Stein’s Method for Normal
Approximations

We will say that a random variable N has the standard Gaussian .4 (0, 1) distribution
(in symbols: N ~ 47(0, 1)) if the law of N is given by the measure dy(x) =
(27)~1/2¢7/2dx. More generally, we shall use the symbol .4 (m, 0%) to indicate
the one-dimensional Gaussian distribution with mean m and variance o2, that is,
Y ~ A (m,c?) if and only if Y has the same distribution as m 4+ 0N, where N ~
A7(0, 1). The starting point of Stein’s method is the following result, universally
known as “Stein’s Lemma,” which provides a useful characterization of the measure
y.

Lemma 1 (Stein’s Lemma) Let N be a real-valued random variable. Then, N ~
(0, 1) if and only if, for every differentiable function f>R — R such that f' €
L'(y), the expectations I [Nf(N)] and I [f'(N)] are finite and

ENf(N] =E[f'(V].

A proof of this elementary statement can be found, e.g., in [21, Proof of
Lemma 3.1.2]. Now assume that F is some random variable such that the quantity

E [Ff(F) —f'(F)]

is close to zero for a large class of smooth functions f: is it possible to conclude that
the law of F is close to the .4#7(0, 1) distribution in some meaningful probabilistic
sense? Somehow surprisingly, such a question admits a positive and rigorous
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answer, that one can formulate by means of the crucial concept of the Stein’s
equation associated with a given test function A.

Definition 3 (Stein’s Equations) Let N ~ .4#7(0, 1) and let #: R — R be a Borel
function such that I |#(N)| < oo. The Stein’s equation associated with & is the
ordinary differential equation

') —xf(x) = h(x) —E[AN)], xe€R. 2)

A solution to the equation (2) is a function f that is absolutely continuous
(on compact intervals) and such that there exists a version of the derivative f”
verifying (2) for every x € R.

Elementary considerations show that every solution to (2) necessarily has the
form

f(x) = e/ 4 &2 / (h(t) — E[h(N)]}e™"/2dt 3)

—00

= ce"/? — /2 / {h(t) — E[A(N)]Je " /2dt,

where ¢ € R. In what follows, we shall denote by f;, the function obtained from (3)
by setting ¢ = 0, that is, we write

fi(x) 1= /2 / (h(t) — E[h(N)]te™"/2d1, x e R, 4)

in such a way that f;, is the only solution to the Stein’s equation (2) verifying the
asymptotic relation limy— 400 e/ 2f,(x) = 0. One should note that, in general, the
function f}, defined in (4) might be only almost everywhere differentiable: from now
on, we stipulate that the symbol f; indicates the version of the derivative of f; given
by

fi®) = xfu(x) + h(x) —E[R(N)].  x€R. ®)

Stein’s equations provide the perfect tool for bridging the gap between the
differential characterization of the Gaussian distribution given in Lemma 1, and the
notion of distance introduced in Definition 1. Consider indeed a generic random
variable F, as well as N ~ _47(0,1). Select a function i:IR. — R such that
E|h(N)| < oo and E |h(F)| < oo, and let the function f;, be defined as in (4).
Taking expectations (with respect to the law of F) on both sides of (2) yields

E [h(F)] — E[h(N)] = E [ f;(F) — Ffi(F)].
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In particular, if 7 is a separating class of functions such that IE |#(N)| < oo and
E|h(F)| < oo for every h € 7, one infers that

dw(F.N) = sup \E[£(F) = Ffu(F)]|.- ©6)

Note that the right-hand side of the previous identity does not involve the target
random variable N: indeed, the Gaussian distribution plays a role in such an
expression only via the characterizing differential operator f(x) +— f'(x) — xf(x)
(see Lemma 1). The key point is now that if one chooses a separating class .77
whose components verify a uniform bound of some sort (as it happens for the
sets 74y, % and J4y introduced in Definition 2), then the elements of the class
{fn : h € 2} will also satisfy some uniform estimates, that one can put into use
for assessing the right-hand side of (6). We will see that, in general, the mapping
fn associated with a given test function /& possesses some additional degree of
smoothness that makes the supremum in (6) quite amenable to analysis. Depending
on the class .7 specifying the distance de, the properties of the functions f;
significantly change, and the bounds that can be derived from (6) differ accordingly.

In the next three sections, we will discuss in some detail the (one-dimensional)
bounds that one can deduce when working with J# = %y, % and 4. Note
that the bounds in the total variation distance are difficult to exploit in a Poisson
context (mainly because one is naturally led to deal with discrete random variables,
whose total variation distance from the normal distribution is equal by definition
to the maximal value of 1); however, we decided to present them for the sake of
completeness.

2.2.1 Stein’s Bounds for the One-Dimensional Total Variation Distance

The following statement provides some classical bounds on the total variation
distance. A proof can be found, e.g., in [21, Proof of Theorem 3.3.1].

Theorem 1 Let N ~ A4(0,1) and let h: R — [0, 1] be a Borel function. Then, the
solution fj, to the Stein’s equation (2) is such that

llo =3 and 1o =2 ™

In particular, for any real-valued random variable F € L' (§2) one has the following
bound

drv(F.N) < sup |E[f'(F)]-E[Ff(F)]|, (8)

fEFTV

Fry 1= { £ flloo < \/g T z} . ©)

where
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Equations (8) and (9) must be formally interpreted in the following sense:
(a) the class Zrv is composed of all absolutely continuous functions f that are
bounded by /7/2 and such that there exists a version of f’ that is bounded by
2, and (b) the supremum on the right-hand side of (8) stands for the quantity
sup |E [u(F)] — E [Ff(F)]|, where the supremum is taken over all pairs (f, u) such
that f € %1y and u is a version of f/ bounded by 2.

2.2.2 Stein’s Bounds for the One-Dimensional Kolmogorov Distance

For every z € R, we let f; denote the function f;,, as defined in (4), solving the
Stein’s equation (2) associated with the indicator function 4 = 1(_s ;. In this case,
the integral in (4) can be explicitly computed, yielding that, for every real x,

2re” 2 P(x)[1 — D(2)] ifx <z

[ = V27 PoR)[1 — ()] ifx >z,

(10)

where @(a) := P(N < a). Note that, according to (10), the functionf; is everywhere
differentiable, except for the point x = z. According to our convention (5), we shall
therefore write f] to indicate the version of the derivative of f; satisfying (2) for every
real x, that is: f7 (x) = xf.(x) + L(—00(x) — @(x), x € R.

Theorem 2 Letz € R and N ~ A4(0, 1). The function f; is such that

2
[folloo < g, 1/ lloo < 1. n
Moreover, for all u,v,w € R,
2
W+ w)f:(w+u) — (w+v)f(w+v)| < (IWI + g) (Jul + [v]) (12)

and the following local estimate holds for every x,h € R:

|£.(x + h) — £.(x) — b ()| (13)
h? 2

=5 (lxl + g) + h (L (2) = Liegnn (2))

h? 2

5 <|x| + Q) + 2] (Lt (2) 4+ Lpegnn (2)) -

In particular, for any integrable random variable F,

dg(F,N) < sup |E[f(F)]-E[Ff(F)]. (14)
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where

Vi
F = £ floo = 0 1f Nl < 1 - (15)

A proof of the estimates (11) and (12) can be found in [9, Proof of Lemma 2.3]
(see also [21, Exercise 3.4.4]). The local bound (13) (for which a complete proof
is provided below) can be found in [12, Proof of Theorem 3.1] (where it is used
in a different form) and [17, Proposition 3.1]. One should also notice that (13)
refines previous findings from [31]. Equations (14) and (15) must be interpreted
as follows: (a) the class .Zk is composed of all absolutely continuous functions f
that are bounded by /27 /4, that are differentiable everywhere except for at most
a finite number of points, and such that there exists a version of f that is bounded
by 1, and (b) the supremum on the right-hand side of (14) stands for the quantity
sup |E [u(F)] — E[Ff(F)]|, where the supremum is taken over all pairs (f, u) such
that f € Fx and u is a version of f” bounded by 2.

Proof (Theorem 2, Estimate (13)) Fix z € R. Observe that for every x,h € R, we
can write

h

G B — () — () = / (F' &+ 1) —f ()

0

As f; is a solution to the Stein’s equation (2), it satisfies, for all y € R,

F0) =y0) + 1y<y — (),

which yields, for all x, h € R,

[+ h) —fo(6) — b (%)

h

h
= / (x+Df(x+1) —xf(x)dr + / (]l{x+r§z} - ]l{xﬁz}) dt:=0L+1D
0

0

and hence, by the triangle inequality,

[fo(x + ) — £.(x) = hfl ()| < 11| + |Io]. (16)

Using (12), we have

h 2
1| < / <|x| + @) |t|dt = % <|x| + @) . (17)

4
0
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Furthermore, observe that

h h
|| = Loy / (Lpprzsy — Liesy) di| + Loy / (Legregy — Lipeyy) dr
0 0

0 h
= Ty |— / Ti<z<ndt| + Loy |— / T<zaxtndt
h 0

0 h
= N0y / Ti<zendt + g0 / T<oanindt.
0

h

Bounding ¢ by # in both integrals provides the following upper bound:

L] < Loy (M) L jxtnn (2) + Loyl atn) (2)
< h (]l[x,x+h) (Z) - ]l[x+h,x) (Z)) = |h| (]l[x,x-l—h) (Z) + ]1[x+h,x) (Z)) . (18)

Using estimates (17) and (either side of the equality in) (18) in (16) concludes the
proof. O

2.2.3 Stein’s Bounds for the Wasserstein Distance

Normal approximations in the Wasserstein distance are dealt with using the
following result:

Theorem 3 Let h: R — R be such that ||h||lip < 1, and let N ~ A4(0,1).

Then, the function f;, defined in (4) (solving the Stein’s equation (2)) is everywhere
continuously differentiable and such that || f}||cc < /2/7. Also, the derivative f;, is
almost everywhere differentiable, and there exists a version ]’ of the derivative of
1y such that || f'||eo < 2. In particular, for every square-integrable random variable
F, one has the bound

dw(F,N) < Sup |E[f'(F)] - EFf(F)]|, (19)
where
Fw = {fiR—>Re | flo = V2/m If e <2f. 20)

where C! indicates the collection of all continuously differentiable functions on R.

A proof of the bound || f;||ec < /2/7 can be found in [21, Sect. 3.5], whereas
the bound on ,2/ follows, e.g., from [7, Lemma 4.3]. The definition (20) formally
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indicates that the class .%y is composed of all f € C! that are bounded by /2/7,
and whose derivative is a Lipschitz function with Lipschitz constant < 2. Note that
the supremum on the right-hand side of (19) is unambiguously defined, since the
derivative f’ exists everywhere for every f € Fy.

2.3 Multidimensional Stein’s Bounds for Normal
Approximations

This subsection provides some extensions of the results of Sect.2.2, allowing
one to deal with the normal approximation of d-dimensional random vectors, for
d > 2. As a general rule, one has that the multidimensional Stein’s method
requires test functions that are smoother than those one can consider in the one-
dimensional case. This is due to the fact that the differential operators appearing in
the multidimensional Stein’s method are second order operators (see [21, Chap. 4]
for a full discussion of this point). As a consequence, we will only be able to derive
bounds in the Wasserstein distance (that are presented for the sake of completeness,
but cannot be directly applied in a Poisson context) and in the distance d,. The
distance d3 will appear in Sect. 6.2, in connection with interpolation techniques.

Some further (standard) notation is needed. Fix an integer d > 2, and write
M, (R) to indicate the collection of all real d x d matrices. The Hilbert—Schmidt
inner product and the Hilbert—-Schmidt norm on M, (R), denoted respectively by
(.)ys and || - ||a.s, are defined as follows: for every pair of matrices A and B,
(A,B)y s = Tr(AB") and ||A||g.s = /(A,A) g, with Tr (-) the usual trace operator
and - the usual transposition operator.

The next statement is the exact multidimensional counterpart of Lemma 1.
Given m € R¢ and a d x d covariance matrix X, we shall denote .4 (m, X) the
d-dimensional Gaussian distribution with mean m and covariance X.

Lemma 2 (Multidimensional Stein’s Lemma) Ler ¥ = {X(i,j):i,j=1,...,d}
be a nonnegative definite d xd symmetric matrix. Let N = (N1, . ..,Ny) be a random
vector with values in R?Y. Then, N ~ A (0, X) if and only if

E[N. V/(N))ga] = E[(Z, Hess f(N)) 5] .

for every C? function f: R¢ — R having bounded first and second derivatives. Here,
Hess f denotes the Hessian matrix of f.

There are several ways of proving this result: one of the most instructive can be
found in [21, Proof of Lemma 4.1.3], as it is based on the same interpolation
technique we shall explore in Sect. 6.2. As in the previous subsection, the next step
is to define (and solve) an appropriate Stein’s equation linking the multidimensional
Gaussian characterization stemming from Stein’s Lemma and an appropriate notion
of distance.
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Definition 4 (Multidimensional Stein’s Equations) Let N = (Ny,...,N,) be a
centered Gaussian random vector with positive definite covariance matrix X, and
let 2: R? — R be such that IE |#(N)| < oo. The Stein’s equation associated with &
and N is the partial differential equation

(X, Hess f(x) .5 — (x. V(X)) ga = h(x) = E[h(N)]. 2

A solution to the equation (21) is a €2 function f;, verifying (21) for every x € R.
It is not difficult to check that, whenever 4 is Lipschitz, a solution to (21) is given

by

1
filx) = / %E[h(N) — h(Jix+ /1 —iN]dt, xeRY, (22)

0

see, e.g., [21, Proposition 4.3.2].

2.3.1 Stein’s Bounds for the Wasserstein Distance

The following statement allows to deal with normal approximations in the Wasser-
stein distance. It represents a quantitative version of Lemma 2.

Theorem 4 Fixd > 2. Let h: RY — R be a Lipschitz function with constant K > 0.
Then, the solution f;, to the Stein’s equation (21), as defined in (22), is of class ¢?
and such that

sup | Hess fi,(0)lm.s < K[ 2 [lopl 2115} (23)

0]
xeR4

In particular, for N a centered d-dimensional Gaussian vector with covariance
matrix X, where X is a positive definite matrix, and for any square-integrable R¢-
valued random vector F,

dw(F,N) < sup [E[(X, Hessf(x))ys] — E[(x, Vf(x))gall, (24)
feFL(D)

where

T4 ()= f:R! > R € C% sup || Hess f(@)[lr.s < [ 27 [lop | Z115/2

op
x€R4

Details on how to prove (23) can be found in [21, Sect.4.3]. The bound on the
Wasserstein distance is immediately obtained by taking expectations on both sides
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of (21) (with respect to the law of F) in the case where & is a 1-Lipschitz function
and f = fj, and then by applying the definition of dy.

2.3.2 Stein’s Bounds for the d, Distance
Bounds analogous to those in the previous subsection can be deduced in the case of
the d, distance. A proof can be found in [26, Proof of Lemma 2.17].

Theorem 5 Fixd > 2. Let h € 94 (see Definition 2-2). Then, the solution fj, to the
Stein’s equation (21), as defined in (22), is of class €? and such that

supdll Hess fi(9) s < |27 lopll Z 11857 (25)
xeR
and
[Hess fi,(x) — Hess fi(x)[lop _ 27
Mi(fy) = P < 1= 13220 2 lop-
x,€RI x#y ”x - y”]Rd 4

(26)

As a consequence, for N ~ A (0, X)), where X is a positive definite matrix, and for
any square-integrable R?-valued random vector F,

d(F,N) < sup |E[(X, Hessf(x))ys] — E[{x, VF(x))gall, 27
feF4 ()

where

FH(E) = { feCsup| Hessf()ms < |12 lopll Z 1212

op °
x€R4

v 3/2

2 _
M(f) < 1T I E g

As anticipated, the next section deals with some “discrete” variant of Stein’s
method.

2.4 The One-Dimensional Chen-Stein Method for Poisson
Approximations

The Chen-Stein method is an analogue of Stein’s method in the framework of
Poisson approximations. Similar to Stein’s original method for normal approxima-
tions (see Sect. 2.2), the goal of the Chen—Stein method is to provide quantitative
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bounds on the distance (in a certain strong sense) between the law of a random
variable with values in Z4 = {0, 1, 2, ...} and the Poisson distribution with a given
parameter A > 0, denoted by Po(1). As usual, we shall say that a random variable
X has the Poisson distribution with parameter A > 0 (in symbols, X ~ Po(1)), if

Xk
P(X =k) = e—AF, keZy.
Classic references for Poisson approximations are [4, 13]; see also [8, 28].
Our first elementary remark is that if F and X are two random variables with
values in Z., then the total variation distance between the laws of F and X (as
introduced in Definition 2) can be rewritten as

drv(F.X) = sup |P(F e B)—P(X € B)|

BEB(R)

= sup |[P(FeBNZs)—PXeBNZy)|
BEB(R)

= sup |P(FeA)—-PXeA).
ACZ

The following statement is the Poisson equivalent of Stein’s Lemma for the
Gaussian distribution.

Lemma 3 (Chen-Stein Lemma) A random variable W with values in Z.+ has the
Po(A) distribution if and only if, for every bounded f: 7.+ — R,
E[Wf(W) —Af(W+1)] =0.

A proof of this lemma can be found e.g. in [13, Proof of Theorem 2.2] or [24, Proof
of Lemma 3.3.3]. As in the case of normal approximations, the Chen—Stein Lemma
suggests the following question: assume that W is a random variable with values in
Z.+ and such that the quantity

E[Wf(W) = Af(W + 1)]

is close to zero for a large family of functions f; can we conclude that the distribution
of W is close to Po(A)? In order to give a rigorous answer to this question, one has
to introduce the concept of a Chen—Stein (difference) equation.

Definition 5 (Chen-Stein’s Equations) Let Z ~ Po(A), and let 7: Z+ — R be
such that It [k(Z)] < oo. The Chen—Stein’s equation associated with & is given by

Mk + 1) —kf(k) = h(k) — E[h(Z)], ke Z4. (28)
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Any solution f to (28) necessarily verifies

k—1)! Al
( xk) Z(h(f)-]E[h(Z)])i—', k=12,..., (29)
i=0 ’

fk) =

while the value of £(0) can be chosen arbitrarily. In what follows, we shall denote
by f;, the unique solution to (29) verifying f,(0) = 0, where the symbol A indicates
the forward difference operator Af (k) := f(k + 1) —f(k), k = 0,1,2, ..., and, for
J =2, Af i= AN,

The explicit representation (29) is derived, e.g., in [13, Theorem 2.1]. The next
statement provides useful bounds on f;,, Af;, and A%f,,. Given a function g: Z4 — R,

we write [[g]loo = sup; [g()].

Proposition 1 Let the above notation prevail, and consider a bounded function
h:Z.+ — R. Then, the function f, verifies the following estimates:

Ifilloo < (1 A \/Z) [SUP h(i) — inf h(i)} ; (30)
el i€Zy i€Z

-
1Afilloo < (1 ; )[suph(i)—,inf h(z‘)}, 31)
i€Z4 €2+
Ry
1A% oo < (i) [sup h(i) — inf h(i)] (32)
A i€Z4 €24

The estimates (30) and (31) are standard, see, e.g., [13, Theorem 2.3],
whereas (32) is a consequence of the triangle inequality. We also mention a
remarkable estimate by Daly [10, Theorem 1.3], according to which any function f
verifying (29) also satisfies the relation

sup |Af (k)| < = sup | AT (k)]
k>1 A k0

holding for any integer j > 2. Such higher order estimates are not needed in our
analysis.

2.4.1 Chen-Stein Bounds for the Total Variation Distance
Given A C Z., we denote by f4 the function f, (as defined in (29), and satisfying
the boundary condition f;,(0) = 0) associated with the test function a(k) = 14(k),

k € Z . As explained above, one has that f4 solves the Chen—Stein’s equation

Mk+1) —kf(k)=14k) —P(Z e A), keZy, (33)



The Malliavin—Stein Method on the Poisson Space 199

where Z ~ Po(A). Now let W be any random variable with values in Z. Taking
expectations with respect to the law of W on both sides of (33) yields therefore that

div(W,Z) = sup [E[Wfy(W) — Afx(W + D]|. (34
ACZy

Since, by virtue of (30)—(32),

2 1—e? 2—2¢*
[fallo < TA /= 4fallee < o A )l < T\
el A A

we immediately deduce the following statement, allowing one to deal with Poisson
approximations in the total variation distance:

Theorem 6 Let Z ~ Po(X), A > 0, and let W be a random variable with values in
Z.y. Then,

drv(W,Z) < sup |E[Wf(W)—Af(W+ 1], (35)
fev¥ry
where
Yry
2 l—e™* 2 -2t
=1 2+ - Ri|floo 1A B [ Aflloo < ) ”AfHOOST

The power of the bound (35) will be demonstrated in Sect. 7 below and, in much
more detail, in the survey [32].

3 Relevant Elements of Malliavin Calculus on the Poisson
Space

For the rest of the chapter, we shall demonstrate how the previous bounds based on
the Stein’s and Chen—Stein methods can be combined with the Malliavin operators
discussed in [19]. For the convenience of the reader, we shall briefly recall the
relevant definitions and results.

We work within the general framework outlined in [19], namely: (X, 2", )
is a o-finite measure space, and 7 is a Poisson random measure on (X, Z") with
intensity measure w. To simplify the discussion, for the rest of this survey we assume
that the space (X, Z") is such that 5 is proper, in the sense formally explained in
[19, Sect. 1.1] (see in particular formula (1.6) therein). For p > 1, we denote by L’,’]
the class of those random variables F such that E|F|? < oo and F = f(n), P-as.,
where f is a representative of F. Recall that f is a measurable function on N, (the
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class of all o-finite measures on (X, 2") taking values in Z U {4o0})—see [19,
Sect. 1.2] for more details.
The following objects will appear in the subsequent analysis:

— For every n > 1 and every function g € L?(u"), the symbol I,(g) denotes the
multiple Wiener-Ito integral of order n, of g with respect to ; = n — . We also
adopt the usual notational convention: L2(1°) = R, and Iy(c) = c, for every
c € R. See [19, Sect. 1.3]. Recall that every F € sz admits a unique chaotic
expansion of the type

F=E[F]+ ) 5L(g). (36)

n=1

where g, € L2("). See [19, Sect. 1.4].

— The Malliavin derivative operator, denoted by D, transforms random variables
into random functions. Formally, the domain of D, written dom D, is the set of
those random variables F' € L% admitting a chaotic decomposition (36) such that

oo

> nnllgall7a g < 00 (37)

n=1

If F € dom D, then the random function z — D,F is defined as

D.F =Y nl(gz.7). z€X. (38)

n=1

By exploiting the isometric properties of multiple integrals, and thanks to (37),
one sees that DF € L?> (P ® ), for every F € domD. Fix z € X. Given a
random variable G € Lf] with representative v, we define G, = v(n + §;) to
be the random variable obtained by adding the Dirac mass &, to the argument of
v. Since the representative v is IP-a.s. uniquely defined, the definition of G, is
P ® p-a.e. independent of the choice of v. The following result is proved in [19,
Theorem 3].

Lemma 4 Forevery F € Lf], one has that F € dom D if and only if the mapping
(w,z) = (F,— F)(w) is an element ofL2 (IP ® w). In this case, one has also that,

P-a.s,
D, F =F,—F, ae.—pu(dz).

A consequence of this representation of D is that, if F, G € dom D are such that
FG € dom D, then D(FG) = FDG + GDF + DGDF.
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— Due to the chaotic representation property (36), every random function u €
L? (P ® 1) admits a (unique up to negligible sets) representation of the type

=Y L(g(z)., zeX, (39)

n=0

where, for every z, the kernel g,(z,-) is an element of L? (1"). The domain of
the divergence operator, denoted by domé, is defined as the collection of those
u € L? (P ® 1) such that the chaotic expansion (39) verifies the condition

o0

D+ DUigalFo iy < 00

n=0

If u € dom §, then the random variable §(u) is defined as

5(”) = Zln+l (gn) s
n=0

where g, stands for the canonical symmetrization of g, (as a function in n + 1
variables). The following classic result, proved in [19, Theorem 4], provides a
characterization of § as the adjoint of the derivative operator D.

Lemma 5 (Integration by Parts Formula) For every G € domD and every
u € domé, one has that

E[G8(w)] = BI(DG, u) ). (40)

where

(DG, u)2(,) = /DZG x u(z) p(dz).
X

— The domain of the Ornstein—Uhlenbeck generator (see [22, Chap. 1]), written
dom L, is given by those F € L% such that their chaotic expansion (36) verifies

o0
2 2
> o wnllgalza g < 0o

n=1

If F € dom L, then the random variable LF is given by

oo
LF == "l (g).
n=1
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Note that I& [LF] = 0, by definition. The following result is a direct consequence
of the definitions of D, §, and L—see also [19, Proposition 3]

Lemma 6 Consider F € L%. Then, F € domL if and only if F € domD and
DF € dom$. In this case,

8DF = —LF. 41)

— The domain of the pseudo-inverse L™' of L is the whole space L%. IfF e L% and
F =" 1,(gx), then

oo

1
—1 _ -
L'F= § nln(gn). (42)

n=1

Observe that LF = L(F — E[F]) and L™'F = L™'(F — E[F]); also, F — E[F] =
LL™'F. The following elementary result is one of the staples of the analysis to
follow:

Lemma?7 Let G € domD and F € L%. Then,
E[FG] = E[FIE[G] + E[(DG, —DL™'F) ;2 (- (43)

Proof Using (41), one deduces that F = E[F] 4+ LL™'F = E[F] + §(—L'F). It
follows that

E[FG] = E[F]E[G] + E[G§(—DL™'F)].
The conclusion is achieved by applying (40) in the case u = —DL™'F. O
We also recall the following representation: for F € Lfl as in (36),

1
L7'F=— / sT'PF ds, (44)
0

where

PF =E[F]+ ) s'Ii(g.). s€[0.1].

n=1

See [19, Theorem 7].
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4 One-Dimensional Malliavin—Stein Bounds in the Normal
Approximation on the Poisson Space

As in Sect.3, we work within the general framework of a Poisson measure 7
defined on the measurable space (X, 2"). We denote by p the o-finite intensity
measure of 7. We shall now show how one can combine the one-dimensional
Stein’s method with the operators of Malliavin calculus presented above, in order
to study the normal approximation of random variables of the type F' € domD. As
already recalled, the seed of the ideas developed below originated in the paper [27],
which was the first one to combine Stein’s method and Malliavin operators in the
framework of point measures.

4.1 Bounds on the Wasserstein Distance

The following result provides a useful bound on one-dimensional normal approxi-
mations in the Wasserstein distance. It corresponds to the main finding of Peccati et
al. [27], with the difference that here we work without any topological assumptions
on the measure space (X, Z") and only assume that u is o-finite (Whereas the results
of [27] are stated for i o-finite and non-atomic).

Theorem 7 Let F € dom D be such that I [F] = 0, and let N ~ A (0, 1). Then,

dw(F,N) (45)

< \/g]E[’l —(pF. DL ] +/]E[|DZF|2 D[] i

X

< \/%E[(l — (DF, —DL—IF)Lz(M))Z] + / IE[IDZFlz |DZL—1F|]u(dz).
X

Proof Let f be an element of the class of functions %y, as defined in (20). Observe
that, for every a, b € R, one has that

2
(@) /B < \/; la bl (46)
and also, since there exists a version of /” that is bounded by 2,

f(@ —f(b) —f (@b —a)| < (b—a), (47)
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which is a consequence of the elementary relation

b
F) = f(@) + @b —a) + / (F' ) —f (@)dy.

Relation (46) implies that

/E[(f(F)z —f(F)Iu(dz) = | E[(f(F:) — f(F)*]pe(dz)

X

=

0 A~

/ E[(D.F)*]u(dz) < oo,
X

and therefore, according to Lemma 4, f(F) € dom D. Since F is centered, one can
now apply (43) in the case G = f(F) to deduce that

E[Ff(F)] = B |(Df(F). -DL™'F) 5., |

—E / (F(F2) — f(F) (DL F)u(d:).
X

Applying (47) in the case a = F and b = F yields
[E[Ff(P) - E[ £ (F) (DF. ~DL™'F),o,,, || = B[{IDFP%. IDL™'FY)].

where (|[DF|?, |DL™'F|) is shorthand for

/ \D.FPID.L™F| (d2).
X

Since f € Fy, and consequently f” is bounded by /2/7, we deduce that

|E [Fr(F) —f'(P)]|
< Ze[lor D1 Al 1)+ [ B[ 7t
X

and the first inequality in the statement is immediately deduced from the bound (19).
The second inequality follows from a standard application of the Cauchy—Schwarz
inequality. O
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Remark 1 Note that, in general, the bounds in Theorem 7 can be infinite. We now
exhibit a first (elementary) example of a random variable in dom D such that these
bounds are finite.

Example 1 Consider a centered Poisson measure /) on X = R4, with intensity
measure equal to the Lebesgue measure £. Then, for every integer k > 1, the random
variable Fy = k=24 ([0,k]) € domD and DF, = —DL™'F; = k™"/*1{y. One
immediately deduces from Theorem 7 that

1
dw(F,N) < PR

which proves the asymptotic normality of the random variables F} as k — oo and
is consistent with the usual Berry—Esseen estimates in the Central Limit Theorem.

4.2 Bounds on the Kolmogorov Distance

When dealing with the Kolmogorov distance in the framework of Poisson func-
tionals, it is usually very difficult to apply the uniform bound (14), since such
a bound does not exploit the fine second order behavior of the Stein solution f;.
Refining an idea first developed by Schulte in [31], Eichelsbacher and Thile [12]
have obtained the following powerful estimate, whose proof uses the collection of
local inequalities (13). As in the proof of Theorem 7, given two (possibly random)
functions g.h on X, we write (h,g) to indicate the integral [y h(z)g(z)u(dz),
whenever it is well defined. As before, whenever both % and g are in L?>(1), we
shall adopt the more precise notation (h, g);2(,,)-

Theorem 8 Let F be a centered element of dom D, and let N ~ A4 (0, 1). Then,

V2
"k

de(F,N) < T Hl — (DF. —DL_IF)LZ(M)H + ~E[(|DF DL F)]

+%IE [(IDF|?, |F x DL™'F|)] (48)

tsupE [((DF)D]I{F > 2}, IDL™'F))

]
z€R By

where D,I{F > z} = 1{F, >z} — 1{F > z}, a € X.

Remark 2 In view of Lemma 4, IP-a.s. one has that
(D,F)DAF > 2y = (F, —F)(L{F, > 2} —1{F > z}) > 0

for p-almost every a in X.
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Remark 3 Let Fy, = k='/27([0,k]), k > 1, be the collection of random variables
studied in Example 1. Then, it is an easy exercise to show that relation (48) yields
that, for some finite constant C > 0,

C
diot (Fi, N) < P

which is once again consistent with the usual Berry—Esseen estimates.

Proof (Theorem 8) Fix z € R. By using the explicit form of f; (see (10)) together
with Lemma 4, one proves immediately that f,(F) € domD, and therefore, by
integrating by parts,

E[Ff.(F)] = E / (F(Fa) — f-(F))(=DuL™ F)p(da). 49)
X

Using (13) in the case x = F and h = D,F, one sees that, for every a € X,

lfz(Fa) _fZ(F) _DaFfZ/(F)i

D.F)? V2
5(2)0ﬂ+—g>+DJMMF>A

Plugging this estimate into (49) and taking the supremum over all z € R yields the
desired conclusion. O

If DF|IDL™'F| € dom§ and 1{F > z} € dom D, for every z € R, then integration
by parts yields

0 < B[((DHDLF > 3, IDL7Fl)a , |

- ) [(D]l{F > Z},DFIDL_IFDLZ(;L)]

= E[1{F > z}6(DF|DL™'F|)] < E[§(DF|DL™'F|)}]"/2.
As observed in [12, 31] the latter expectation can be controlled by applying standard
moment estimates for Skorohod integrals, as stated in the forthcoming Proposition 2.

See [20, Proposition 2.3] for a proof. See [25] for similar computations in the context
of Gamma approximations.

Proposition 2 Let u € dom 4. Then,

E[s(uw)] < E / u(02 () + E / / (D)) () ().

X X X
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The bounds appearing in this section involve the inverse L™! of the Ornstein—
Uhlenbeck operator, which is for the moment a quite abstract object one may find
difficult to deal with. In the next section, we will discuss some results allowing to
explicitly assess expectations involving such a mapping.

5 How Can One Deal with L~1?

The aim of this section is to briefly describe and illustrate some strategies that
one can implement, in order to explicitly compute the bounds appearing in the
previous section. As anticipated, one of the main technical difficulties in order to
deal with such bounds as (45) or (48) is the presence of the operator L™', which is
consequently the main focus of the forthcoming discussion.

5.1 Using Chaotic Expansions

Our first elementary remark is that, in view of formulae (38) and (42), for every
F e L% having a chaotic decomposition of the type (36), the random variable L™'F
is an element of dom D, and one has that

DL'F =) L(g(z")., zeX. (50)

n=1

It follows that expectations involving L' can be explicitly studied, whenever one
has access to some detailed information about the kernels g, appearing in the
chaotic decomposition of F: typically, such a study starts with an application of
the fundamental formula g, = (n!)~'T,f, where f is a representative of F and the
operators 7T, are defined in [19, formula (1.16)] (see [19, Theorem 2]). This strategy
is illustrated in [18, 32] (and the references discussed therein) in the important case
where F is a so-called U-statistic based on 7, so that, in particular, F lives in a finite
sum of Wiener chaoses. For an application of this strategy in the case of random
variables having an infinite chaotic expansion, see, e.g., [14].

As an important illustration, in this section we discuss how the bound on the
Wassertein distance (45) can be used in the special case where F = 1,(g), where
g > 1 and g € L?(u9) (bounds in the Kolmogorov distance can be dealt with in
a similar way). Our starting point is the following statement, whose proof follows
immediately from (45) and (50).

Lemma 8 For g > 1, let F be an element of the qth Wiener chaos of 0, that is:
F = I,(g), for some g € L*(u?). Then, if N ~ .4 (0, 1),

dw(F,N) < \/7 '1 — = IDF |2 | +

/ EID.FP ud).  5D)
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Combining (51) with the multiplication formula proved in [19, formula (1.67)],
in [27] the following upper bound was obtained. The proof is standard but very
long and quite technical, and consequently falls outside the scope of the present
survey. As shown in [27], the assumption on the support and boundedness of g
can be considerably weakened, at the cost of some additional technical assumption.
Malliavin-Stein bounds!one-dimensional normal approximation!multiple integrals

Theorem 9 (See Theorem 4.2 in [27]) Let F verify the assumptions of Lemma 8
for some g > 2, and assume in addition that the kernel g is bounded and has support
contained in a set of the form A X --- x A, where A is a measurable set such that
W(A) < oo. Then, g € L¥(u9) and, for every pair of integers (r,l) such that 1 <
r<gqand1 <1<rA(q—1), the kernel g x. g (as defined in [19, Sect. 1.6]) are
well defined and square-integrable. Moreover, there exists a universal constant C,
uniquely depending on q, such that

dW(Fv N) = v - CI'”g”iZ(Mq) + C max {”g *i g”Lz(;LZq_’_[)s ”g”i“(;ﬂ)} , (52)

where the maximum runs over all pairs (r,l) such that 1 < r < gand1 <1 <
rA(g—1).

The estimate (52) should be compared with analogous bounds for multiple
integrals with respect to a Gaussian measure, as discussed, e.g., in [21, Sect. 5.2.2]
and the references therein. An explicit application of (52) is developed in the
subsequent section.

5.2 CLTs for Multiple Integrals: Necessary and Sufficient
Conditions

As a nontrivial application of (52), we now establish two fourth moment theorems
for Poisson multiple integrals of order 2 and 3. The case of order 2 has been dealt
with in [23], where the authors assume different hypotheses than those appearing
in the upcoming statement. The case of order 3 is new. Notice that the question of
whether similar results can be proved for sequences of multiple Poisson integrals of
order > 4 stays open. Other fourth moment theorems for sums of multiple integrals
whose kernels have a constant sign can be found in [15, 16]. As already observed for
Theorem 9, the findings of the present section should be compared with analogous
results on a Gaussian space—where fourth moment theorems hold for multiple
integrals of arbitrary orders and are at the core of countless applications—see, e.g.,
[21, Theorem 5.2.7] and the discussion therein.

Theorem 10 (Fourth Moment Theorem for Double Integrals) Ler {f, }nzl be a
sequence in L? (,uz) such that, for each n, the kernel f,, verifies the same assumptions
as the kernel g in Theorem 9 (for g = 2 and for some measurable set A, such that
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(A, < 00), and also

lim 2[[ £ ]2 0y = 1

n—oo MII2(p2) ’

Furthermore, assume that lim ||f,|* = 0. Then, it holds that, for N ~
n—00 LA(MZ)
A0, 1),

| (f)'] = 3 =E[N]= du(l(f).N) — 0.
n—>oo n—oo
Moreover; if the sequence {12 (ﬁ1)4} is uniformly integrable, then
n>1

Bk (h)'] = 3= E[N'] <= dw(l2(h) . N) — 0.

Proof First notice that if I, (f;) — converges in distribution to N and the
n—>oo

sequence {Iz ( fn)4} is uniformly integrable, then necessarily [E [12 ( fn)4] —
n>1 n

> —>00
E [N 4] = 3. Conversely, using the product formula for Poisson multiple integrals
[19, formula (1.67)], we have

B O = 20l ey + s (5 © 1) + 415 (T 1)

+21, (2ﬁ1 *}fn + £ *gﬁl> + 41, <ﬁ1 *%ﬁl) ,

which yields, using the orthogonality of multiple integrals of different orders,

E{L (2)*] = 41 illfa ) + 2400 ® FullZa o + 961 +0 Sl )

1/—\_/
o *gﬁ:“iz(ﬂz)-

+16||fn *éfn”izw) + 32||fn ®1fn + E

YA — 4 142 ;
AS 2405 ® Sl ) = 81fillys ) + 161fs %1 full} ) by Formula 11,630 in
[24], we finally get

B[ (5)*] = 3 (416l ) ) + 16160 %1 FallZs oy + 9615 23 fallZa )

161 #5FalPac + 320 e 5 fo 4 oy 1Sl
n *2Jn Lz(u) nX1Jn 211 2Jn LZ(MZ)‘
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The fact that & [12 ( fn)4] —> 3 along with the condition 2|| f,,||i2 (:2) — 1
n—00 n—00
implies that all the contractions appearing in the above expression go to zero as

n goes to infinity. Furthermore, as || f;, *} f, [ ’) < |Ifu * ﬁl”iZ(MZ)’ we get that

L2 ([l.

/—T/ 2 . . . . 0 2 .
£ *1f,,||L2(M2) = 0, which in turn implies that || f;, *Zf””LZ(MZ) = 0. Using
the bound provided in (52) concludes the proof. O

The next statement contains the announced result for triple integrals.

Theorem 11 (Fourth Moment Theorem for Triple Integrals) Let {f,},-, be a
sequence in L>(u3) N L¥(®) such that, for each n, the kernel f, verifies the same
assumptions as the kernel g in Theorem 9 (for g = 3 and for some measurable set
A, such that (t(A,) < 00), and also nl_i>n0106||f,,||§2(u3) = 1. Furthermore, assume

that l_i)m LA = 0. Then, it holds that, for N ~ 4/ (0, 1),
n—>0oo

4
L4 (1)

1D [13 (fn)4] —23=E [N*] = dw(l3 (f,) .N) — 0.

Moreover; if the sequence {13 (ﬁ1)4} is uniformly integrable, then
n>1

E [13 (fn)4] 2 3=E [N*] <= dw(5 (f,) . N) — 0.

Proof As before, if I (f,) converges in distribution to N and the sequence
{13 (f,,)4} 1 is uniformly integrable, then necessarily E[I3 (f,,)4] — 3.
n>

n—>o00
Conversely, using the multiplication formula [19, formula (1.67)] and the

combinatorial relation [24, formula (11.6.30)] as in the proof of Theorem 10,
we get

B[ (1)*] = 3 (3611 ) + 12961Lfu 1 fallZa e + 1296151 3l

+972001fy #1 full72 ) + 328000 43 FullTagy + 1944120 %2 o+ %3l

H1944 fu w1 o 2 2 Sl 0y + O48ISa 43 S S w3l 2 (53)

(note that the above relation can be deduced—as an interesting exercise!—by a
careful use of the multiplication formula). The condition 6|| f, ||§2 (2) —> 1 ensures
n—>oo

that 3 (36|| f ||i2 ( ) —> 3, hence implying that all the norms appearing in the

/LS) n—00
expression of the fourth moment converge to zero as n goes to infinity. Furthermore,
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it can be seen that

1o @1 FullFa ey + Mo %1 S 2 3l ey =2 0= W %3l iy =52, O

as ”f;’l ]f;1||Lz( ) f ”f;l *}f;l”iz( 4)‘

The same argument yields ||fn *) ﬁ1||L2( e % 0. Observe that f,, *3 f, = f?

and hence

”f" 3f"”L2(,ﬁ) ”f”yt(ﬂ — 0.

3) n—>co

Combining this with ||2ﬁ1 * o+ fo *3f””L2( S — 0 yields

T2
Il *2ﬁ1||Lz(M3) puve 0

Using the bound (52) along with the conclusion that all the norms of the contractions
norms in the fourth moment expression converge to zero as n goes to infinity
concludes the proof. O

5.3 Mehler’s Formula and Second Order Inequalities

For many random variables F € Lfy having a chaotic decomposition as in (36)
(especially in the context of stochastic geometry), the task of explicitly computing
the kernels g, = T,f turns out to be technically very challenging. As a consequence,
it might be preferable to work directly with the integral representation (44),
combined with the Mehler’s formula [19, formula (1.71)], providing an explicit
probabilistic representation of the operators {P,}. This line of research has been
successfully pursued in [20], where Berry—Esseen bounds (in the Kolmogorov
distance) not displaying L~ have been deduced from (48) via Mehler’s formula.
These estimates are expressed in terms of the following quantities y;, i = 1,...,6:

a 1/2
P(d(xl,xz,xa»] ,

yi ::2[/ [E(D FA(D,F)?] P [EDY  FA(D  F)?]
1/2
Y2 1= |:/ E( X1 xsF) ( x2x3F)2 /\3(d(X1,X2,X3))i| ’

Yy = / E|D,F| A(dv)
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1
ya = S [EF] / [E(D.F)*] A(dv),
1/2
TECERTI
172

1/2
i | [ SlBOL ) [0, P 4 3B 2w )|

Vst

The next bound can be seen as an extension, to the Poisson setting, of the second
order Poincaré inequalities on the Gaussian space—see, e.g., [21, Theorem 5.3.3].

Theorem 12 (See [20]) Let F € dom D be such that E[F] = 0 and Var[F] = 1,
and let N be a standard Gaussian random variable. Then,

dg(F,N) <y1+y2+vs+ys+ys+ ve.

As explained in [20], the content of Theorem 12 has striking connections with
the theory of stabilization, as initiated in the seminal paper [29]. See again [20]
for several applications to nearest neighbor graph statistics, as well as to intrinsic
volumes of k-faces arising in Voronoi tessellations and to nonlinear functionals of
shot-noise processes.

5.4 A Connection with Logarithmic Sobolev Inequalities

We conclude this section by showing how Mehler’s formula [19, formula (1.71)]
can be used to provide a direct, intrinsic proof, of an important modified logarithmic
Sobolev inequality proved by Wu in [33]. Recall that the entropy of a given random
variable F such that F > 0, a.s.-IP, and EF' < oo is defined as

Ent(F) := E(FlogF) — E(F) logIE(F).

Theorem 13 (Modified Logarithmic Sobolev Inequality—See [33]) Let F €
domD be such that F > 0 with probability one. Then, writing ®(x) := xlogx,
x>0,

Ent(F) = E[®(F)] — ®(E(F)) < E / (D.@(F) — ®'(F)D.F) ju(dz). (54)
X

Proof By a standard approximation argument we can assume that there exist finite
constants €,n such that 0 < ¢ < F < 7 with probability one. In this way, all
computations appearing below—involving in particular exchanging derivations and
expectations—are formally justified by classical measure-theoretical results. We
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shall use the relation d/dtP,F = —t~'LP,F, as well as the fact that the mapping

(x.y) > (@' (x +y) —

P'(x))

is convex (see also [6] for a broader analysis of this property). We have

E[®(F)] — ¢(E(F)) = E(P(P1F) —

1
d
/IE (EQ(P,F)) dr =
0

1

@(PoF))

1
d
/ E (@’(PtF)d—tP,F) dr
0

1

/ E (@'(P,F)LP,F) ¢ 'dr = / IE (@'(P,F)SDP,F)t"dt

0

ZX/E

Using convexity and Mehler’s formula, together with the relation DP,F =

we deduce that, for all z,

1
E / (D,®’(P,F) x D.P,F)t"'dt
0

Since

1
/ ®'(F + tD.F)dt =
0

we deduce the desired conclusion.

0

/ (D.®'(P,F) x D.P,F)tdr | u(dz).

tP,DF,

1

/(qb’(F +tD,F) — ®'(F))dt x D,F
L0
B 1
/qb/(F + tD,F)dt — ®'(F) | xD.F
0

— &(F)).

|

Several applications of (54) in the context of concentration estimates for Poisson

functionals can be found in [2, 3].
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6 Multidimensional Malliavin—-Stein Bounds in the Normal
Approximation on the Poisson Space

As in the previous sections, we continue working within a general Poisson measure
n, on the measurable space (X, Z"), with o-finite intensity measure given by L.
We will now discuss some multidimensional extension of the bounds presented in
Sect. 3.

6.1 Bounds Using Stein’s Method

The following bound, that is based on the estimates of Theorem 5, allows one to
deal with normal approximations, in the sense of the distance d,, where the target
Gaussian distribution has a non-singular covariance matrix.

Theorem 14 Fixd > 2 andlet ¥ = {o(i,j) : i,j = 1,...,d} be a d x d positive
definite matrix. Suppose that N ~ A4 (0, X) and that F = (F\,...,F,) is a R%-
valued random vector such that E[F;] = 0 and F; € domD, i = 1,...,d. Then,

d
d(F.N) < [ 27 oI Z 137 | D BUZ(.j) — (DF. —DL™'Fy)12(,)?] (55)
ij=1

o d 2 /4
+—— 1= 020 2 lop / E (ZlDzF,w) (Z |DZL—‘F,-|) p(dz). (56)
i=1 =1

X

Proof 1If either one of the expectations in (55) and (56) is infinite, there is nothing to
prove. We shall therefore work under the assumption that both expressions (55)—(56)
are finite. By the definition of the distance d,, and by using a standard approximation
argument, one sees that it is sufficient to show the following estimate:

[E[RX)] — E[r(F)]|

d
<AIZ ol ZN3> | Y EI(ZG.j) — (DFi. =DL™'Fj) 2] (57)

ij=1

2
2]T B d d ~
+ X B R [ ] (S oA (L 0L A1) [ nwo.
X i=1 i=1
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for any i € € with first and second bounded derivatives, such that |||, < A
and M, (h) < B. To prove (57), we use Theorem 5 to infer that

[E[(X)] — E[r(F)]]
= |E[(X, Hess fi(F))n.s. — (F. Vfi(F))gal|

d
=[B| X ZGig
ij=1

fh(F) ZFk—fh(F)

d B 2 d r 9
=Y E| 2 Ew fh() +ZE S(DL_IFk)a—kah(F):|
ij=1 L k=1 L
d T 7 a4 [ p
=|>_E|ZG N3s fh() —ZE <D (a—fh(F)),—DL_le>
i=1 L k=1 | Tk 1)

0
We write a—fh(F) = @(F1, ..., Fq) = ¢ (F). By using Lemma 4, we deduce that,
X,

P-a.s. and for every z € X (except at most for a set of i measure 0),

d

d
D.pi(F1, ..., Fq) = Z aﬁok(F)(DzFi) + Ry,
i=1 !

d
with Ry = ) R;;x(D.F;, D Fj), and
ij=1

2

ad
Ao Pk ()| x

I 8 [y1y2l.

1
[Rijx(y1,y2)| < = sup
ZXE]Rd

It follows that

[E[A(X)] — E[R(F)]]

ZE{E(: J) fh(F)} ZE[ (fu(F)(DF:.~DL” nmm}

ij=1 k=1

d

+ Z E[(Ru,k(DFi,DFj),—DL_IFk)H(H)]
ijk=1

d

VElHess (Pl 5] x J > B[(2G.)) — (DF;, ~DL1F) 12,)’ ] + IR,

ij=1

IA
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where

d
Ry = Y E[(Rijx(DF;, DF;). —DL™" Fi)12(,)]-

ijk=1

Theorem 5 yields that ||Hessfy(F)llms. < [[Z " op ||E||(l)l/)2||h||up. Using the

elementary fact that all partial derivatives of order 3 of & are bounded by M3(h),
we have

3

0
o/ 10))

X
0x; 0x; 0xg vyl

1
[Rijx(y1,y2)| < = sup
2x€R‘1

V2 _
= = MMIZTZ I llop < [y12]
V21 _
< TBIIE 21 Z lop X [y1yal.
from which we deduce the desired conclusion. O

In the next subsection, we shall show how one can deal with singular covariance
matrices.

6.2 Bounds Obtained by Interpolation

The proof of the next result uses an interpolation technique, sometimes called “smart
path method” that represents a valid alternative to Stein’s method, and allows in
particular to deal with covariance matrices that are degenerate. The price to pay is
the fact that one has to deal with smoother test functions.

Theorem 15 Fixd > landlet ¥ = {¥(i,j) :i,j = 1,...,d} be adxd covariance
matrix (not necessarily positive definite). Suppose that N = (Ni,...,Ng) ~
A(0,%) and that F = (Fy,...,Fy) is a R¥-valued random vector such that
E[F] =0and F; e domD,i=1,...,d. Then,

d d
dy(F.X) < 5 | 3 BI(Z(.j) = (DFi, =DL7F))12,)?) (58)

ij=1

2
1 d d B
+7 / E (Z;IDZFA) (zm lF,-|) n(dz). (59
X 1= 1=



The Malliavin—Stein Method on the Poisson Space 217

Proof We will work under the assumption that both expectations in (58) and (59)
are finite. By the definition of the distance d3, we need only to show the following
estimate:

1 d
Elp@)] - Elp(M]l = 5 Y B[ X)) = (DFi, —=DL™'F}) 2]

ij=1
1 d 2 /4

+7 / E (szm) (DDZL—‘FA) pu(dz)
X i=1 i=1

for any ¢ € % with second and third derivatives bounded by 1. Without loss of
generality, we may assume that F and N are independent. For 7 € [0, 1], we set

W (1) = Blp(V1—1(F1,...,Fq) + VIN)].
We have immediately

|¥(1) =¥ (0)] < sup [¥'(1)].
t€(0,1)

Indeed, due to the assumptions on ¢, the function ¢ +— W(f) is differentiable on
(0, 1), and one has also

) 4 P 1 1
() = ;E[W<VI—I(F1,...,Fd)+ﬁN) (2\/;’\7,'—2 — 1):|

1 1
=—A———B
2.4/t 231 —1t

On the one hand, we have (by integration by parts)

A

-
Y E %(p(«/l—t(Fl,...,Fd)—}-\/fN)Ni]
i=1 !

E|E |:%<p(\/l —ta + \/;N)Ni:|

Il
AM&

—_

i la=(F1,....Fq)

d B 82
=Vi) Z(HE|E o(V1 —ta + /IN)
Bxinj la=(F Fa)

L a=(Fy,...Fq

ij=1

d B 82
= Vi) Z()E

Bxiaxj

(W1 —t(F\,...,Fy) + JEN)] )

ij=1



218 S. Bourguin and G. Peccati

On the other hand,

5=k

%go(x/l —t(Fi,....Fy) + JEN)Fi]

d
=Z]E E[%(p(«/l—t(Fl,...,Fd)+«/Eb)F{|
i=1 !

lb=N

We now write (pl.r’b () to indicate the function on R¢ defined by

d
P (Fy,... Fg) = gw(«/l —1(F\,....Fyg) + </1b).
Integrating by parts

Elp/"(F1,...,Fa)F)]

d
d .
= ZBTQD'b(Fl,...,Fd)(DFi,—DL_lF,-)Lz(,L) + E[(R,,—-DL™'F})],
=1

where R! is a residue verifying

|E[(R}, —DL™'F})]| (60)
2

d
< » [ max sup () /]E > IDFi| | IDLTF | p(d2)
2 Kkl cRrd 3xk8 1 — < ¢ ' '

X J=1

Thus,
d 82
:«/I—IZE E[axax 1—1¢ ...,Fd)+\/;b)(DF,',—DL_le)L2(M):|
ij=1 |b=Xx

d
ool
i=1

9
=V1-1 Z [—¢(¢1— (Fl,...,Fd)-l-«/;N)(DFi,—DL_llfj)Lz(M):|
ij=1
d

+3E [E [(RZ, —DL_lFi)]lsz] .
i=1
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Putting the estimates on A and B together, we infer

w'(1)

le

ZE[ P VT 1L P+ JEX)(E(LJ)—<DFI-,—DL“E>L2<M)}

1< }
_ﬁz E [IE [(RZ, _DL_IFi)LQ(p,)]H,:X] :

i=1

We notice that

1—t(F1.....Fq) + V1b)| < 1,
E)xiaxj
and also
2 b a
¢ (Fioe JFo)| = (1= 1) X | o (V1 = 1(Fy, ... Fy) + V/1h)
0x10x; 0x;0x;,0x;
<1 —9.

To conclude, we can apply inequality (60) and deduce the estimates

[Elp(N)] — Elp(F)]]

< sup |¥'(1)]
1€(0.1)

1 d
EZ E[| 2 (i.j) — (DF;.—DL™'F) 12, []

2
1—1 d d
+ o" / E D,F; D.L7'F; dz
T e ;| il ; L7F ) | (da)

d d
= | D E(Z(i.j) — (DF;.—DL7'F}) 2]

ij=1

| d 2 /4
+7 / E (Z|DZF,~|) (Z|DZL—1F,-|) p(da),
X i=1 i=1

thus concluding the proof. O

S
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7 Poisson Approximation on the Poisson Space

As before, the framework of this section is the one of a general Poisson measure 7
on the measurable space (X, Z"), with o-finite intensity measure given by p. The
aim of this section is to discuss the combination of the Chen—Stein method (see
Sect. 2.4) and the Malliavin calculus of variations (see Sect.3 and [19]) in order to
study Poisson approximations for functionals of 1, both in the one-dimensional case
(Sect.7.1) and the multidimensional case (Sect.7.2).

The main achievement in the one-dimensional case is a general inequality on the
Poisson space (see Theorem 16) assessing the distance in total variation between
the law of a Poisson random variable and the law of a (sufficiently regular) integer-
valued Poisson functional. The multidimensional case is treated as part of a wider
result allowing one to assess the distance (in a certain sense) between the law of
vector of functionals of 7 and the law of a vector composed by Poisson and Gaussian
elements. A strong motivation for this set of results comes from applications in
stochastic geometry (as illustrated by Lachi¢ze-Rey and Reitzner [18] and Schulte
and Thile [32]).

7.1 One-Dimensional Chen—Stein—Malliavin Method

Based on the Chen—Stein bounds discussed in Sect.2.4.1, the following result
provides a general inequality (in terms of Malliavin operators) assessing the distance
(in total variation) between the law of a Poisson random variable and the law of an
integer-valued functional of 7.

Theorem 16 Let Z ~ Po()), A > 0 and assume that F € L*(P) is an element of
dom D such that IE(F) = A and F takes values in Z+. Then,

1— —A
dry(F,Z) < ——B|A — (DF,—DL™'F) ;2|
1—e? —1
- E /|DZF(DZF—1)DZL F| u(dz) (61)
LX
1 —e? r 4 2
<— E_(A—(DF,—DL F)Lz(m)]
l—e* —1
+— E |D.F (D.F —1)D.L™"F| ju(dz) | . (62)
LX
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IfF = n(A), where j1(A) = A, then one has that D.,F = —D.L™'F = 1,(z), and

A —(DF,—DL™'F)2(,, = / |D.F (D.,F — 1) D.L™'F| p(dz) = 0.
X

Proof Let the notation of Sect.2.4.1 prevail. Using the Chen—Stein bound (35) of
Theorem 6 and recalling the relation D = —L, one infers that for all f € Wpy, it
holds that

E[Ff(F) — Af(F + 1)] = E[(F — M)f (F) — AAf(F)]
= E[8(—~DL'F)f(F) — AAf(F)].

Integrating by parts yields
E[5(~DL™'F)f(F)] = E[(Df(F). =DL™'F) (],

where, by virtue of Lemma 4, D f(F) = f(F + D_F) —f(F). Observe that Lemma 4
implies that, since F takes values in Zy, then one can always choose a version
of D.F with values in Z, in such a way that F 4+ D,F = F, takes values in Z.
Furthermore, observe that for every f : Z+ — R and every k,a € Z such that
k > a, one has that

k—1

f) = fa) + Af @ (k—a) + > Af(j)(k— 1 —j):

Jj=a
on the other hand, when k, a € Z. are such that k < a,
a—1
F®) = f(@) + A @k —a) + Y AF(GYG+ 1 - ).
=k

These two relations yield that, for every k,a € Z,

A? o0
170~ f@) — A@— ) < 2 6 ayp—a 1.

Taking a = F and k = F, one therefore deduces that
D f(F) = Af(F)D.F + R,
where R, is a residual random function verifying

1A% lloo
2

IR;| < |D.F(D.F—1)|, zeZ
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As a consequence,
E[(Df (F), —=DL™'F) 12(,y — AAf(F)]

= E[Af(F)((DF,—DL™'F)2(,) — )] — E /(Rz x D.L7'F) u(dz),
X

and the desired conclusion follows by taking absolute values on both sides, as well
as by applying the estimates available on ||Aflloo and ||A?f||eo. Inequality (62)
follows from the Cauchy—Schwarz inequality. O

The following statement is a consequence of Theorem 16.

Proposition 3 Let Z ~ Po(X), A > 0 and let {F, : n > 1} C dom D be a sequence
of random variables with values in Z.4 such that E[F,] — A, as n — o0o. Assume
that, as n — oo,

1. E|A — (DF,, —=DL™'F,)12(,)| = 0, and

Then, dry(F,,Z) — 0and F, converges in distribution to Z.
n—>o0

Note that in Proposition 3 we do not assume that IE[F,] = A, for every n. In order
to apply Theorem 16, one has therefore to use the triangle inequality to write

drv(Fn,Z) < div(Fn,Zy) + drv(Z,, Z)

where Z, has a Poisson distribution with mean A, := IE[F,], and then use the
classical fact that dry(Z,,Z) < |A — A,|. The effectiveness of Proposition 3
compared to more classical existing methods to prove convergence in law towards
a Poisson distribution lies in the fact that it only involves two sequences of
mathematical expectations. The so-called method of moments (as the Poisson
distribution is determined by its moments, it follows that, in order to prove that
a given sequence {F,} converges in distribution to Po(A), it is sufficient to prove
that E[F¥] converges to IE[Po(A)], for every integer k > 1) is extremely demanding
(and very little used) in the framework of Poisson measures. This is mainly due to
the fact that the combinatorial structures involved in the so-called diagram formulae
(that are mnemonic devices used to compute moments by means of combinatorial
enumerations—see [24, Chap. 4]) become quickly too complex to be effectively put
into use. When compared to the method of moments, the simplicity of Proposition 3
provides a powerful alternative to computing the moments of all orders of the
sequence under consideration.



The Malliavin—Stein Method on the Poisson Space 223
7.2 Portmanteau Inequalities on the Poisson Space

This section is aimed at presenting recent portmanteau inequalities on the Poisson
space proved in [5, Theorem 2.1], involving vectors of random variables that
are functionals of 7 (the term Portmanteau is used to indicate the encompassing
of several results of different nature into one statement). This estimate—which
is formally stated in formula (67) below—is expressed in terms of Malliavin
operators, and basically allows one to measure the distance between the laws of
a general random element and of a random vector whose components are in part
Gaussian and in part Poisson random variables. The inequality (67) is a genuine
“portmanteau statement”—in the sense that it can be used to directly deduce a
number of disparate results about the convergence of random variables defined on a
Poisson space (such as a multi-dimensional version of Theorem 16 but also assess
convergence to Poisson—Gaussian limits), as well as to recover known ones (such as
Theorems 7, 14-16). These results span a wide spectrum of asymptotic behaviors
that are dealt with in a completely unified way in these Portmanteau inequalities.
Apart from Malliavin calculus, one of the main technical tools in the proof of these
inequalities is an interpolation technique used in [1] for proving multidimensional
Poisson results.

Before giving a statement of the Portmanteau inequalities, it is necessary to
introduce some additional notation. Fix two integers d, m. Observe that, in the
discussion to follow, one can take either d or m to be zero, and in this case every
expression involving such an index is set equal to zero by convention. The main
objects appearing in the upcoming statement of the Portmanteau inequalities are:

— A metric d(l) between the laws of two Z‘_‘;_ x R-valued random vectors X and Y
such that IE||X||21X]R, E”Y”Z‘ﬂrx]R < 00, is given by

d)(X.Y) = sup |E(h(X)) — E(h(Y))|,
hed)

where f]-f(l) indicates the collection of all functions

V28 xR R (s esjasx) B WGty sjas X)
such that ¥ is bounded by 1 and, for all jj,...,j;, the mapping x +—
V(1. ..,ja:x) is in Lip(1).

— A metric dg between the laws of two Zfl|r x R"™—valued random vectors X and Y
such that E||X||21XRI"’ E||Y||Zﬂ_x]R’" < 00, is given by

d3(X.Y) = sup |E(h(X)) — E(h(Y))|,
hedy
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where f]-fg indicates the collection of all functions

Y ZY X R R (e Jas Xt oo Xn) B W e s Jd3 XL ey Xn)

such that || is bounded by 1 and for all ji, ..., js, the mapping (xi, ..., X,) —

Y (j1,---sJd;X1,.-.,%n) is bounded and admits continuous bounded partial
derivatives up to the order three with ||g|lLip < 1, [|§"]lcc < 1 and [|g"]|cc < 1.
— Avector A = (41, ..., Ay) of strictly positive real numbers, as well as a random

vector Z = (Zy,...,Z4) ~ Pog(Ay,...,As), that is, the elements of Z are
independent and such that Z; has a Poisson distribution with parameter A;, for
everyi=1,...,d.

— A m X m covariance matrix ¥ = {¥(i,j):i,j = 1,...,m}, and a vector
N = (Ny,...,Ny) ~ A(0,X), that is, N is a m-dimensional centered Gaussian
vector with covariance matrix X'.

— A vector H defined as the (d 4+ m)-dimensional random element H = (Z, N). It
is assumed that Z is independent of N and that H is independent of 7.

— Avector F = (Fy, ..., F,) of random variables with values in Z4 such that, for
everyi=1,...,d,F; € domD and E [F;] = A,.
— Avector G = (Gy, ..., Gy,) of centered elements of dom D.

— A vector V defined as the (d + m)-dimensional random element V = (F, G).
Note that, by definition, V is o ()-measurable.

Note that the two metrics d(l) and dg induce a topology, on the class of probability
distributions, respectively, on Z‘i x R and Zfl|r x RR™, that is stronger than the
topology of weak convergence. The following quantities used in the statement of
the Portmanteau inequalities are defined in terms of Malliavin operators and play a
specific role in the quantification of the distance separating the laws of the vector
V and H. After the definition of each quantity of interest, an interpretation of what
they measure is provided

Ai—(DF;,—DL™'F;

d
@ F) =Y B o)
i=1

d
+ Z]E/ |D.F; (D-F; — 1) D.L™"F;| u(dz). (63)
=1 ¥
The quantity «;(Ay, F) has the form Z?:l a; where each a; measures the distance
between the laws of F; and Z;. Note that each g; is the term appearing in the general
bound of Theorem 16, applied to F;.

wF) = Y E ‘(DFL», —DL'F; (64)
I<i#j<d

>L2(M) ‘
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+ Y /\DF (D.F; — 1) D.L™'F;| 1(dz)
I<i#j<d x

d
+ > > E / |D.F;D,FD,L™"F| j1(dz).

Ijh=d i=1

The quantity «»(F) measures the independence between the elements of F. This
quantity is clearly specific to the multidimensional case and does not have any one-
dimensional equivalent. Note that it vanishes if one takes d to be one.

y(£.6):= Y E ‘E(j, k) — (DG;. —DL™'Gy)
kj=1

LZ(M)‘

2
m m

+E / YOGl | | D] pL7'G| | (da). (65)

X J=1 J=1

The quantity y (X, G) measures the distance between the laws of G and N, and plays
the same role as the bounds appearing in Theorems 14 and 15.

d m
B(F.G) =3 Y B(IDLT'G)|. IDFil)z,, (66)

i=1 j=1

The quantity B(F, G) provides an estimate of how independent F and G are by
quantifying the degree of independence between their elements. This quantity is
clearly specific to the multidimensional case and does not have any one-dimensional
equivalent. Note that it vanishes if one takesd = I,m = Oord = O,m = 1. A
further connection between the quantity S(F, G) and the “degree of independence”
of F and G (the same can be said about o, (F) and the degree of dependence of the
elements of F) can be obtained by combining the integration by parts formula of
Lemma 5 with the standard relation L = —§D, yielding that, foreveryj = 1,...,m
andi=1,....,d,

E|(DG;. ~DL™'F)s(,y | = B|(~DL7'Gy. DF)) | = Cov(G. Fo.

The fact that the dependence structure of the elements of the vector V can be
assessed by means of a small number of parameters is a remarkable consequence
of the use of the Stein and Chen-Stein methods, as well as of the integration by
parts formulae of Malliavin calculus. In general, characterizing independence on
the Poisson space is a very delicate (and mostly open) issue.

The following theorem states the Portmanteau inequalities.
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Theorem 17 Let the above assumptions and notation prevail. Then, for every d,m
there exists an adequate distance d, (-, -), as well as a universal constant K (solely
depending on A and X'), such that

where d, = dY ifd > Oom = 1,d, = dYifd > O,m > 2 and d, = drv if
d > 1,m = 0. Furthermore, the distances d(l) and d(z) provide a stronger topology
than the one of convergence in distribution on R+,

The remarkable fact pointed out in the statement of this theorem is that the above
introduced coefficients can be linearly combined in order to measure the overall
proximity of the laws of H and V.

Proof Due to its high technicality and length, we only give the key ideas of the proof
of Theorem 17. For the complete details of the proof, see [5, Proof of Theorem 3.1].
Even though the statement is multidimensional, an interpolation technique is used
in order to deal with each component of the vector V one-dimensionally. Let iy be
a function belonging to the class of functions associated with the three distances
appearing in the statement. The main goal is to bound a quantity of the type
|E (¥ (F,G)) —E (¥ (Z,N))| with the bound (67). We can assess such a quantity
in the following way:

IE W (F.G) —EW (Z.N)| < [E®W (F.G)) —E( (F.N)) |
+E W (F.N) —E (¥ (Z.N)) |.

The first step will be to deal with IE (v (F, N)) — E (¥ (Z, N)) and the second step
will be to assess E (¥ (F, G)) — E (¢ (F,N)).

We give the general method used to deal with those two steps. For Step 1, the term
E (¥ (F,N)) — E (¥ (Z,N)) can be decomposed further in the following way:

d
E[y (F,N)—v (Z,N)] = ZE [V (Zax=1). Fka)N) = ¥ (Za k). Fa+1.0). N) ] -
k=1

Each term appearing in the sum can be assessed independently by using the
one-dimensional Chen—Stein method, providing a recursive way of using a one-
dimensional method to prove a multidimensional result.

Step 2 is slightly more delicate, as one has to take into account the dependence
between F and G. The case m = 1 is quite direct using Taylor expansions and the
case m = 2 relies on an interpolation technique inspired by Arratia et al. [1]. O
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U-Statistics in Stochastic Geometry

Raphaél Lachieze-Rey and Matthias Reitzner

Abstract A U-statistic of order k with kernel f : X¥ — R over a Poisson process
n is defined as

where the summation is over k-tuples of distinct points of 1, under appropriate
integrability assumptions on f. U-statistics play an important role in stochastic
geometry since many interesting functionals can be written as U-statistics, like
intrinsic volumes of intersection processes, characteristics of random geometric
graphs, volumes of random simplices, and many others. It turns out that the Wiener—
Ito chaos expansion of a U-statistic is finite and thus Malliavin calculus is a
particularly suitable method. Variance estimates, approximation of the covariance
structure, and limit theorems which have been out of reach for many years can
be derived. In this chapter we state the fundamental properties of U-statistics and
investigate moment formulae. The main object of the chapter is to introduce the
available limit theorems.

1 U-Statistics and Decompositions

1.1 Definition

Let (X, X) be a Polish space, k > 1,and f : X* — R be a measurable function. The
U-statistic of order k with kernel f over a point set £ € N(X) is 0 if £ has strictly
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less than & points and the formal sum

U(f.6)= Yy fx)

XkGE;

otherwise, where E’; is the class of k-tuples x; = (x1, ..., x) of distinct points from
&; we recall that N(X) stands for the class of all locally finite counting measures on
(X, X). Remark that, since the sum is over all such k-tuples, f can be assumed to be
symmetric without loss of generality.

An abundant literature deals with the asymptotic study of the random variable
U(f,7p) as p — oo when 7j, is a binomial process of intensity p, i.e., a set of p iid
variables over X. Here we are concerned with a Poisson process n over X which
intensity measure is a non-atomic locally finite measure 1 on X. If f € L (u) =
LI (XF; ), the expectation EU(| f], n) is finite a.s, whence the definition of U(f, )
makes sense. We want to point out that f depends on 7 only via the k-tuples n’;é but
may depend on parameters like the dimension of the space, the intensity measure p
of n, etc.

The Poisson point process can equivalently be introduced as the random measure
n = ern dy, since p is assumed to have no atoms. Below we rather adopt the
vision of point processes as random point sets, as it eases certain formulations and
highlights the geometric point of view in the applications.

1.2 Chaotic Decomposition and Multiple Wiener-Ito Integrals

Recall that ,(-) is the n-th order multiple Wiener-Itd integral over 1 defined in
[20, Sect. 1.3], and that, by virtue of [20, Theorem 2], every Lz(]Pn) functional
of n admits a Wiener—Itd decomposition, i.e., a representation as an infinite series
of orthogonal multiple Wiener-Itd6 integrals. The decomposition of a Poisson
U-statistic is finite and has been computed in [27, Lemma 3.3].

Theorem 1 Let f € L' (u*) such that U(f,n) € L*(P,) . We have the L*(IP,)-
decomposition

k
U(fm) =Y In(ha), (1)
n=0
where

hn(X,) = (Z) / F Xy X)L (AXpr): X € X, )
Xﬂ
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Furthermore, h, is a function ofLi (N Lf(,u”).

Remark 1 Somewhat counterintuitively, f € L!(u*) N L2(u*) does not imply that
EU(f,n)*> < oo (see [27]), but in most examples f is bounded and has a bounded
support, which makes the latter condition automatically satisfied.

As is apparent from Theorem 1, each U-statistic of order k is a finite sum of
multiple Wiener—Itd integrals of order n < k, and it is not difficult to prove that
conversely any multiple Wiener—It6 integral of order n > 1 can be written as a finite
sum of U-statistics whose orders are smaller or equal to n. From a formal point of
view, it is therefore equivalent to study the asymptotics of finite sums of U-statistics
or of finite sums of multiple Wiener—It6 integrals. U-statistics are more likely to
appear in applications, but the homogeneity of multiple Wiener—Itd integrals makes
them easier to deal with, and some of the Malliavin operators take a particularly
intuitive form. Consider for instance the case where F' = I(f) is a multiple Wiener—
Itd integral of order k > 1, and f € L?(u*). The Malliavin derivative in x € X,
Ornstein—Uhlenbeck operator, and inverse Ornstein—Uhlenbeck operator, defined in
[20, Sect. 1.5], are well defined for p-a.e. x and take the following elementary form

DiF = kIt (f(x.).x € X, LF = —kI,(f). L7'F=—k""I(f). 3)

For a U-statistic F, one can still derive D, F,LF,L~'F using the linearity of these
operators and the decomposition (1).

The object of this section is the study of sums of multiple Wiener—It6 integrals
whose orders are bounded by some k > 1. The chaotic decomposition also yields
that any L?(IP,)) variable can be approximated by such a sum, allowing us in some
cases to pass on limit theorems stated here to infinite sums. The following result
gives the first two moments of U-statistics.

Proposition 1 Let f € L!(uX). Then E|U(f, n)| < oo and

EU(f.n) = / Fx) 1t (dx). 4
Xk

If furthermore U(f,n) € L*(P,),

k
Var(U(f.m) = Y_ nl||h | )
n=1
where h,, is given in Theorem 1 and || - || denotes the usual L* (")-norm.

Proof The first statement is a direct consequence of the multivariate Mecke
equation, while the second stems from the orthogonality between multiple Wiener—
1t6 integrals 1,,(h,),0 < n < k, see [20, Lemma 4]. O
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1.3 Hoeffding Decomposition

Assume that u is a probability distribution. Let p > 1,7, = {Xi,...,X,} be a
family of i.i.d. variables with common distribution ;¢ on X. Given a measurable
kernel h over X*, k > 1, the traditional Hoeffding decomposition (see, e.g., Vitale
[33]) is written

 (k
U(h,ﬁ,>=k!<”)a"(h)=k!(” ) ( )of,;(Hm),
! k] k k m;) m

1
ob(Hy) = 5= Y HuXi.....X,). 0<m<k

(m) I<ii<ip<-+<ip=<p

where

and each kernel H,, is symmetric and completely degenerate, i.e.,

EHm(xla ce axln—th) = /Hm(xla v ,Xm—lvy)li(d)’) =0
X

for ™ Y-ae. x1,...,x,-1. This property implies in particular the orthogonality
of the 6 (H,), 1 < n < k. If u is a probability measure, the H,, are uniquely
determined and can be expressed explicitly via an inclusion—exclusion formula

—1
“ k
H,(x1, ..., %,) = Z(—l)m_" Z (n) R (Xiys o0 X)), (6)
n=0

1<iy <<ip<m

where A, is defined in (2). As is clear in this last formula, this decomposition is
different from (1) because in the latter, the integration is performed with respect to
the compensated measure n — w, while in 0%, (H,,) the compensation occurs in the
kernel H,,.

The Hoeffding rank m; is defined as the smallest index m such that ||H,| # 0,

and we can see through (6) that it is equal to the smallest index n such that || 4, || # 0.

We furthermore have H,,, = (WI;)_lhml. As proved in [8] for binomial processes or

[19] for Poisson processes, the stochastic integral of order m; dominates the sum in
certain asymptotic regimes, and limit theorems for geometric U-statistics can then
be derived by studying this term, see Sect. 2.1.2.
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1.4 Contraction Operators

Let f € L2(u9),g € L2(un*). Let 0 < I < r < min(qg, k). The contraction kernel
of f and g of index (r,[), denoted f *lr g is a function of k + g — r — [ arguments,
decomposed in (X,—;, y4—r, Zt—r), Where X,_; € Xr_l,yq_, e X977, and z;_, €
XK= Tt is properly defined p*T7""-a.e. by

frl et Yymrs Taey) = / Xt X1, Yg—r) 8 (X1, X1, Zg—y) 11 (dX)).

Contraction operators are used below to assess the distance between a multiple
Wiener-Itd integral and the normal law. For conditions ensuring that the contraction
functions are well defined everywhere and twice integrable, see for instance [22].

2 Rates of Convergence

Let F € L*(P,) be a random variable of the form

k
F=Y"I,(hy) (7)
n=0

with kernels &, € Lf(,u”), n > 1. This model encompasses U-statistics, as outlined
by Theorem 1, as well as finite sums of U-statistics and multiple Wiener—Itd
integrals.

In applied situations, the set-up consists of a fixed integer £ > 1, a family of
measures (i, > 0 on X, and a family of kernels 4, € L?(,u;’), 1<n<kt>0.
We study the random variables

k
Fri=Y L.t >0, (8)

n=0

where the stochastic integration is performed with respect to p7. Our limit theorems
are about the existence of families (a;)r~0, (b;)r~0, and of a random variable V
such that
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ast — oo in the weak topology. If not stated otherwise, we consider a;, = EF;, b, =
Var(F;). In the applications we consider in this chapter, y, is either of the form

* u, = tu for some reference measure (1 on the space X, or
e u; = Ix,u where X; C X depends on ¢.

The following two settings occur in the most important applications.

If n = 7, is a Poisson point process on X = R¢, the measure p will often be the
Lebesgue measure £, or, for X = RYx M, a product measure © = £, ® v with
a probability measure v on a topological marks space (M, #). See Sect.2.1.1 for
more on marked U-statistics.

If n = n, is a Poisson ‘flat’ process on the Grassmannian X = A(d, i) of affine
i-dimensional subspaces (flats) of R¢, the intensity measure 4 (-) will be a translation
invariant measure on A(d, i). The Poisson flat process is only observed in a compact
convex window W C R¢ with interior points. Thus, we can view 7, as a Poisson
process on the set [W] defined by

W] ={heA(d,i): hnW # @}.

2.1 Central Limit Theorems

Let F be of the form (7) satisfying EFF = hy = 0. Let N ~ 4(0,1), ot =
Var(F). The next result gives bounds on the distance between F and N in terms of
the contractions between the kernels of F'. The result in the Wasserstein distance has
been established in [18], and the one in Kolmogorov distance in [9].

Theorem 2 Put

— ! 2
() = max (max [y =l max 1
B'(F) = max(|1 — o®|. B(F). B(F)*'?)

where max; isover 1 <1 <r <n <m < kwithl # m. There exists a constant
Cr > 0 not depending on the kernels of F such that

dw(F.N) < o~ 'CB(F) )]
dg(F,N) < CyB'(F). (10

We reproduce here the important steps of the proof for the Wasserstein bound.
The main result, due to Peccati et al. [22], is a general inequality on the Wasserstein
distance between a Poisson functional F with expectation IEFF = 0 and variance
0% > 0 and the normal law. The fact that F has a finite chaos expansion and that its
kernels are twice integrable yields that the operators D,F, LF, L' F are well defined
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for p-a.e. x. We have

dy(F,N) =~ \[BI0? ~ (D, ~D\L1F) ) (an

4o [ EOPDL P,
o
X

See the surveys [20] and [4] (in this volume) for a proof and more insights on
this result. To translate these inequalities into bounds on the contraction norms,
we use the multiplication formula from [22], see also [20], which yields that the
multiplication of multiple Wiener—It6 integrals is a linear combination again of
multiple Wiener-Itd integrals. For k, g > 1,f € L2(u?), g € L2(%),

qVk k r )
l(N(g) =) ! (q) () > (j)zw_r_l(f*ig), (12)
r=0

=0

where the symmetrized contraction kernels f ;lrg are the average of kernels f ! g
over all possible permutations of the arguments.

If for instance F' = I;(f) is a multiple Wiener—Ito integral of order k > 1, (3)
gives the value of the Malliavin operators, and a computation then yields the
bound (9) with f; = f;f; = 0 for i # k, see [24, Proposition 5.5]. If F is a general
functional with a finite decomposition, such as a U-statistic (see (1)), Malliavin
operators are computed using linearity and yield the bound (9), see the proof of
Theorem 3.5 in [18].

Concerning Kolmogorov distance, Schulte [31] has derived a Stein’s bound
similar to (11), but with more terms on the right-hand side (Theorem 1.1), reflecting
the effect that test functions are indicator functions, more irregular than the Lipschitz
functions involved in Wasserstein distance. This bound was later improved by
Eichelsbacher and Thile [9, Theorem 3.1], reducing the number of additional terms.
With similar computations as in the Wasserstein case, one can then prove [9,
Theorem 4.1] that these additional terms only add contraction norms || f; */ £;]|*/2
up to a constant, yielding the bound B’ (F).

Remark 2 The terms in B'(F) bounding the Kolmogorov distance are smaller than
the original terms present in B(F) if the bound goes to 0, and don’t change the bound
magnitude or its eventual convergence to 0.

Remark 3 The constant Cy explodes as k — oo. In other papers [21, 27] similar
bounds are derived in more specific cases, with a different method. The constants
are more tractable and allow for instance to approximate accurately the distance
from a Gaussian to an infinite series of multiple Wiener—Ito integrals by that of its
truncation at some order (see for instance [30]).
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Theorem 3 (Fourth Moment Theorem) Assume that F is of the form (7) and that
the kernels h, are nonnegative. Then for some C; > 0

B(F) < C,VEF* — 30*.

e In view of (9), the convergence of the fourth moment to that of a Gaussian
therefore implies central limit, with a bound for Wasserstein distance. In this case,
as noted in [9], using (10) yields a similar bound for Kolmogorov distance. The
positiveness of the kernels is adapted to U-statistics with a nonnegative kernel.

It is remarkable that, in case of an infinite collection (F;),~¢, the convergence of
the fourth moment to that of the Gaussian variable as t — oo is sufficient for
such variables to converge to the normal law. The only technical requirement is
that the variables F f ,t > 0, are uniformly integrable.

Example 1 (De Jong’s Theorem) Assume that p is a probability distribution. Let f5
be a nonzero degenerate symmetric kernel of Li (1?), i.e., such that

/fz(x, y)u(dx) = 0 for p-ae.y € X.
X

This degeneracy property implies that U(f>, 1) = I(f2), we also assume that f, €
L}(1?). De Jong [6] derived a fourth moment central limit theorem for binomial
U-statistics of the form U( f>, 7j,), where p € IN goes to infinity and 7}, is a sequence
of p iid variables with law p. In the Poisson framework, (10) yields Berry—Esseen
bounds between F = U(f>,1) = L(f2) and N:

~ 1
dw(F,N) < Czwb(fz)

1

17 max(b(f>), b(f2)*/?)

dx(F,N) < G

where

b(f) = max (I %3 ol 112 %1 ol 12 %2 21 -
See Eichelsbacher and Théle [9, Theorem 4.5] for details. In [23], Peccati and Thile

derive bounds on the Wasserstein distance between such a U-statistic and a target
Gamma variable, also in terms of contraction operators.

2.1.1 Local U-Statistics with Marks

For many applications, it is useful to assume that the state space is of the form S x M
where S is a subset of R¢ containing the points ¢; of 1, and (M, .#) is a marks space,
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i.e. a locally compact space endowed with some probability measure v. The space
M contains marks m; that will be randomly assigned to each point of the process.
DefineX =RIxM,u =L@ v.

For ¢ > 0, introduce X; = [/, #'/4] x M, j1, = 1x,u, and let 1, be a Poisson
measure with intensity ;. Let f be a real function on X locally integrable, i.e., such
that for every compact S C R¢, fSX wlf |duk < co. Assume also that f is a spatially
stationary function of X, i.e., such that for *-almost all (t;, m;) € X*,z € RY,

St +z,my) = f(t, my), (13)

where t; + z is the result of the addition of z to each member of t;. We consider the
U-statistic F;, = U(f, n,), well defined for each . The tail behavior of the function
f is fundamental regarding the asymptotic behavior of F; as t — oo.

Definition 1 Letf : (RYxM)* — R locally integrable. Thenf is rapidly decreasing
if it is stationary and satisfies the following integrability condition: There exists a
non-vanishing probability density ¥ on (R¢)*~! such that for p = 2, 4,

M= [ RO my ) e dmg) < .
(]Rd)k—lka
The slight abuse of notation f(0,t;—;,m;_;) means that t;, = (0,t;—)) =
(O, h,..., tk—l), andmy = (ml, ey mk).

We have in this case the following result, which is a consequence of Theorem 6.2
and Example 2.12-(ii) in [19]:

Theorem 4 Let F;, = U(f,n;) where f is a rapidly decreasing locally integrable
function. Then we have for some Cy, C2, C3 > 0 not depending on t,
Cit < Var(F;) < Cyt
dw(F,.Ny) < Gt/
Remark 4 Reitzner and Schulte [27] first established this result in the case where

f is the indicator function of a ball of R¢ (any non-vanishing continuous density
can be chosen in this case because f(0, -) has a compact support).

Remark 5 A similar result holds if F is simply assumed to be a finite sum of
multiple Wiener—Itd integrals whose kernels are rapidly decreasing functions, the
U-statistics being a particular case.

2.1.2 Geometric U-Statistics

Coming back to the general framework, let i, = 1, and 1, a Poisson process with
intensity measure i, on X. Let F, = U(f, n,) where f € L!(u*) is fixed and is such
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that F has a finite variance. Then F;, — IEF; admits the decomposition (8) with the
kernels h, = h,,,n = 1,...,k, defined by

hn,t(xn) = tk_n <k> / f(an Xk—n)uk_n(dxk—n)v X, € X"
n

Xk—n

An important feature is the Hoeffding rank of the U-statistic
ny = inf{n : ||| # 0},

which does not depend on . The variance expression (4) yields that I, (h,, ;) is the
predominant term in (8), in the sense that F; — I, (h,, ;) = o(F;) for the L*(IP,)
norm as t — oo. It yields the following result (Theorem 7.3 in [19]).

Theorem 5 Let F, = Var(F,)"'/2(F, — EF,). For some Ci,C>,Cs > 0 not
depending on t,

A" < Var(Fy) < G,

(i) Ifny = 1, U(f, n,) follows a central limit theorem and

dw(F,,N) < C31~'/2,
dg(F1,N) < G312,
(ii) Ifny > 1, U(f, n,) does not follow a CLT and F, converges to a Gaussian chaos
of order ny (see [19, Theorem 7.3-2]).
This result is also a particular case of Theorem 6.
Remark 6 Point (i) first appears in [27].
Remark 7 Point (ii) crucially uses the results of Dynkin and Mandelbaum [8].

Remark 8 The speed of convergence to the Gaussian chaos in (ii) is studied by
Peccati and Thile [23] in case the limit is a Gamma distributed random variable.

2.1.3 Regimes Classification

The crucial difference in Theorems 4 and 5 is the area of influence of a given point
x € n,. In the case of a local U-statistic, for any ¢ > 0, a typical point x € n,
interacts with other points of 7, via the contributions f(x, xi, ..., x;—;) for points
x; of n;. Given that f satisfies (13), f(x, x1, ..., xx—1) is likely to be small if one of
the x; is far from x, independently of ¢. Therefore, the points of n which interaction
with x via the kernel f gives a significant contribution for ¢ large will be near x. The
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situation is different for a geometric U-statistic, where a point of 7, interacts with
any other point via f, regardless of their distance. Both these regimes can be seen as
two particular cases of a continuum.

Let f : X* — R be a rapidly decreasing function. Let o; > 0, defined to be
the scaling factor, X, = [/, 1'/9)4 x M, ju; = 1x,4q ® v. Let f; be the kernel
obtained by rescaling with the stationary function f,

fi(x) = flaxp), xi € XE, (14)

and F; = U(/f;, n;), where 7, is the Poisson measure with intensity pu,.
Say that f has non-degenerate projections if none of the functions

Fix) = / F s Xen) A 3, € X,

X:«C_”

well defined in virtue of (13) is p-a.e. equal to 0. It is trivially the case if for instance
Ifll # 0 and f > 0 p-a.e. Concerning notation, every spatial transformation of a
point x = (t,m) € R x M, such as translation, rotation, or multiplication by a
scalar, is only applied to the spatial component ¢.

Subsequently, any spatial transformation applied to a k-tuple of points x; =
(x1,...,x) is applied to the spatial components of the x;’s. The quantity v, = o ¢
is relevant because it gives the magnitude of the number of points interacting with a
typical point x. The case v; = o, = 1 is that of local U-statistic. If v, = t is roughly
the volume of X, it corresponds to geometric U-statistics. In the latter case it is
useless to assume that f is rapidly decreasing, as only the behavior of f over X is
relevant.

Theorem 6 Assume that f; is of the form (14), where f is a rapidly decreas-
ing function with nondegenerate projections. With the notation above, there are
Ci,Cy, C3 > 0 such that

Var(F})

max(1, v,

< <G,
22 )

and

dw(F;,N) < C3t " max(1, v, ¥t1)1/2

dK(I*:t,N) < C3t_1/2 max(1, vt_kH)l/z.

Concerning the bound for Kolmogorov distance, it is not formally proved in the
literature. It relies on the fact that in Theorem 2, B'(F) < CB(F) for some C > 0 in
the case where 0 — 1 and B(F) — 0. Then one can simply reproduce the proof of
[19], entirely based on an upper bound for B(F).
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Remark 9 Theorems 4 and 5-(i) can be retrieved from this theorem by setting,
respectively, v, = 1 or v, = t.

Remark 10 If some projections do vanish, the convergence might be modified, and
the limit might not even be Gaussian, as it is the case for the degenerate geometric
U-statistics of Theorem 5-(ii).

Remark 11 Depending on the asymptotic behavior of v,, we can identify four
different regimes:

1. Long interactions: v, — oo, CLT at speed ~Y/2 the first chaos I (h 1)
dominates (geometric U-statistics).

2. Constant size interactions: v, = 1, CLT at speed ¢
same order of magnitude (local U-statistics).

3. Small interactions: v, — 0,1, %! — oo, CLT at speed (tv,**!)~1/2, higher
order chaoses dominate. In the case of random graphs (k = 2), the corresponding
bound in (tv;)~'/? has been obtained in [18].

4. Rare interactions: rv,**! — ¢ < oo, the bound does not converge to 0. In the
case k = 2, it has been shown in [18] that there is no CLT but a Poisson limit in

the case ¢ > 0 (see [4, Chap. 6] in this book for more on Poisson limits).

—1/2_all chaoses have the

2.2 Other Limit Laws and Multi-Dimensional Convergence

Besides the Gaussian chaoses appearing in Theorem 5-(ii), some characterizations
of non-central limits have also been derived for Poisson U-statistics.

2.2.1 Multidimensional Convergence

We consider in this section the conjoint behavior of random variables F;, =
(Fis ..., Fry) where, fort > 0,1 <m < k,q, > 1, and F,,,;, = 1, (hy,) for
some h,, € L2(pudm).

Any candidate for the limit of F; which is in LZ(IP,,) should have covariance
matrix

Cnn = lim EF, F,;,, 1<m,n<=<k,
1—00

if the limit exists. In this case there is indeed asymptotic normality if all contraction
norms

i % B

gotoOast — oo, for0 <[ <r < q, < gy withl # g,,r # 0, see [24,
Theorem 5.8]. Explicit bounds on the speed of convergence with a specific distance
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related to thrice differentiable functions on (R%)¥ are contained in [4, Chap. 6] in
this book, and the convergence is stable, in the sense of Bourguin and Peccati [3].

Ifnow F; = (Fiy, ..., Fi,) where each F,,, is a U-statistic, one can consider the
random vector G; constituted by all multiple Wiener—It6 integrals with respect to
kernels from the decompositions of the F,;, as defined in (2). One can then infer
conditions for asymptotic normality of F; by applying the previous considerations
to G;.

As noted in Remark 11, some U-statistics behave asymptotically like Poisson
variables. Asymptotic joint laws of U-statistics can also converge to random vectors
with marginal Poisson laws, and it can also happen that they converge to an hybrid
random vector which has both Gaussian and Poisson marginals, here again the
reader is referred to the survey [4], in this volume.

2.2.2 Gamma

Similar results to those of Sect. 2.1 with Gamma limits have been derived by Peccati
and Thaile [23] for Poisson chaoses of even order. The distance used there is

d3(U,V) = sup |E[r(U) — h(V)]|
hed3

for two random variables U, V, where H° is the class of functions of class G with
the first three derivatives uniformly bounded by 1. We again denote by f ilrg the
symmetrized contraction kernels .

For v > 0, let F(v/2) be a Gamma distribution with mean and variance both
equal to v/2. We introduce the centered unit variance variable G(v) := 2F(v/2)—v.

Theorem 7 Let F = I;(hy) for some even integer k > 2. We have

d3(Ix(hi), G(v)) < Dy max{k!|| ]l — 2v; || he #4) hill; || 7 L ||V ”hk;zghk — crhill}
where the maximum is taken over allp = 1,...,k — 1 such that p # k/2 and all
(r,0) such thatr # landl = 0,0rr € {1,...,k} andl € {1,... , min(r,k — 1)}.
Also

. S
(@/2'(%)"

Ck
Remark 12 1In the case of double Wiener—Itd integrals (k = 2), the authors of [23]
provide a fourth moment theorem, in the sense that under some technical conditions,
a sequence of double Wiener—Itd integrals converges to a Gamma variable if their
first moments converge to that of a Gamma variable.
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Remark 13 This result enables to give an upper bound on the speed of convergence
to the second Gaussian chaos in Theorem 5 in the case n; = 2, if this limit is indeed
a Gamma variable.

Remark 14 The case g = 4 has also been settled in a recent paper by Fissler and
Thile [10].

3 Large Deviations

There are only few investigations concerning concentration inequalities for Poisson
U-statistics. Most results require a nice bound on sup, enx), zex D-F (1) < 0o. For
U-statistics of order > 2 this condition is usually not satisfied, even if the kernel
f is bounded. For U-statistics of order 1, this holds if || f|lcc < c0. Therefore we
split our investigations into a section on U-statistics of order one and another one
on higher order local U-statistics. We start with a general result. Throughout this
section we assume that f > 0 and f # 0.

3.1 A General LDI

In this section we sketch an approach developed in [28] leading to a general
concentration inequality. Here it is necessary to view n as a random counting
measure y_ 8y (and continue writing x € 7 if x is in the support of 7). For two
counting measures 7 and v we define the difference n\v by

n\v =Y (({x}) — v(x})+ s . (15)

x€X

For x € nandf € L!(1u¥), we recall that

U(f.m) =) Fl.n) with Fap= > fExe).

x€n xe—1€m\ixpi!

Assume that in addition to 7 a second point set { € N;(X) is chosen. The non-
negativity of f yields

U(f.n

IA

U(f:0) + kY Feplx ¢ )

X€N

U(f:0) + & / e d(n\) -
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The convex distance of a finite point set 7 € N3(X) to some A C N;(X) was
introduced in [26], and is given by

ﬂmM=ﬂ%Xg§/uﬂm9,

where for given 7 the maximum is taken with respect to all nonnegative measurable
functions u : X — R satisfying ||u||§n = [u*dn < 1. To link the convex distance

to the U-statistic, we insert for u the normalized function | F(x, n)||2_}]F (x,n) and
rewrite U(f, n) in terms of the convex distance as follows:

) 1
d(n,A) > rgnelz?/ mF(K md(n\¢)

zﬁﬁﬂﬂ;$§@ﬁm—vmo)

If we assume F(x, n) < B for some B € R, then ||F(x, n) ||§J] <B ern F(x,n) =
BU(f, n), which implies

L UG- UG
kv/B tea  JU(fin)

In [26], a LDI for the convex distance was proved. For 1 a Poisson point process
on some lescH! space X with finite intensity measure, and for A C N(X), we have

d(n,A) =

1(Vxen: F(x,n) <B). (16)

PA)P (d(n,A) = s) < exp (—%) ,5=20.

Precisely as in [28], this concentration inequality combined with the estimate (16)
yields the following theorem.

Theorem 8 Assume that ¢(-) and B € R satisfy P(3x € n: F(x,n) > B) < &(B).
Let m be the median of U(f, n). Then for u > 0

2

P(U(f.n) —m| > u) < 4exp (—m

) +3¢(B). (17)

In the next sections we apply this to U-statistics of order one and to local
U-statistics. In the applications, the crucial ingredient is a good estimate for &(B).

"Locally compact second countable Hausdorff space.
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3.2 LDI for First Order U-Statistics

There are several concentration inequalities for integrals of functions f € L'(u)
over Poisson point processes, i.e., U-statistics of order one,

vt = Yrw = [sans o,

x€n

in which case D, U = f(z), z € X. Assuming that || f|jcc = B < 00, we have a.s.
[D:Ulleo = B.

A result by Houdre and Privault [12] shows that for any o-compact metric space X

P(U—||flli = u) < exp (— ||”J{|||L:g(||;||1 )) (18)

where g(#) = (1 + u)In(1 + ) — u, u > 0 and because f > 0 the 1-norm equals
the expectation EU(f, n7). A similar result is due to Ane and Ledoux [1]. Reynaud-
Bouret [29] proves an estimate involving the 2-norm || f||, instead of the 1-norm.
A slightly more general estimate is given by Breton et al. [5].

We could also make use of Theorem 8 and choose B = | f||oo- This yields

2
P(U(f.n) —m| = u) < dexp (—m) , (19)

which is a slightly weaker estimate than (18).

3.3 LDI for Local U-Statistics

In this paragraph we assume that X is equipped with a norm || - || and B(x, r) denotes
the ball of radius r around x € X. We call U(f, n) a local U-statistic of radius r if
fxi, ..., x) = 0for max;; ||lx; — x;|| > r. We have

Fx,n) < [ flloon(B(x, )"
and

P@Ex: F(x.n) > B) <EY 1(F(x.n) > B)

XEN

_ / P(F(x.n) > B)dy.

X
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And it remains to estimate

5\
’ ("(B("’ > (712) ) |

We use the Chernoff bound for the Poisson distribution, namely

P((B"(x.1)) > r) < inf 707, (20)
5=

since n(B(x, r)) is a Poisson distributed random variable with mean
En(B(x,r)) = w(B*(x,r)) < sup u(B(x,r)) = E. 1)
x€X

Because inf;>¢ E(e* — 1) — sr = r(1 —In(r/E)) — E we estimate the right-hand side
of (20) by exp (—%r) for Ee* < r. This leads to

P@Ex: F(r,y) > B) < u(X)exp (—% (ﬁ)k_l) = &(B)

k—1

1
for B > E*"1e>* V|| f|loo. We set B = ||f||éo(ﬁ)7 and combine this with the
general Theorem 8.

Theorem 9 Set E := sup, . n(B(x, r)). Then for (uf‘:m) > E*e? || 1l oos
1l u? N\t
PAU(f ) —m| = u) < 4uX)exp | =51 fllos (u +m) :

Clearly, in particular situations more careful choices of &(B) and B lead to more
precise bounds.

4 Applications

In this section we investigate some applications of the previous theorems in
stochastic geometry. In all these cases X is either a subset of R or a subset of the
affine Grassmannian A(d, i), the space of all i-dimensional spaces in R4, endowed
with the usual hit-and-miss topology and Borel o-algebra.

We state some normal approximation and concentration results which follow
from the previous theorems. In many cases multi-dimensional convergence and
convergence to other limit distributions can be proved in various regimes. We
restrict our presentation to certain ‘simple’ cases without making any attempt for
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completeness. Our aim is just to indicate recent trends, we refer to further results
and investigations in the literature.

4.1 Intersection Process

Let 1, be a Poisson process on the space A(d, i) with an intensity measure of the form
w(-) = t9(-) with t € R™ and a o-finite non-atomic measure 6. The Poisson flat
process is only observed in a compact convex window W C R? with interior points.
Thus, we can also view 7, as a Poisson process on the set X = [W] defined by

W] = {LeA(d,i): LONW # @} .

Given the i-flat process 7,, we investigate the (d — k(d — i))-flats in W which
occur as the intersection of k flats of 7,. Hence we assume k < d/(d —i). They form
the intersection process ngk), see [13, Sect. 3.3.1]. In particular, we are interested in
the sum of the j-th intrinsic volumes given by

1
@ = O (Wi k.j) = Yo ViLin...NLNW)

forj=0,....,d—k(d—1i),i=0,....d—1landk = 1,...,|d/(d —i)]. Here one
has to restrict the sum to those k-tuples of i-flats that are in general position. This is
necessary in case of a discrete directional distribution, for example.

For the definition of the j-th intrinsic volume V;(-) we refer to [13]. We remark
that V(K) is the Euler characteristic of the set K, and that V,,(K) of an n-dimensional
convex set K is the Lebesgue measure £,,(K). Thus @,(W, i, 1,0) is the number of
flats in W and &,(W, i, k, d—k(d—1i)) is the (d—k(d—i))-volume of their intersection
process.

To ensure that the expectations of these random variables are neither 0 nor
infinite, we assume that 0 < 6([W]) < oo, and that 2 < k < |d/(d — i)]
independent random i-flats on [W] with probability measure 6(-)/0([W]) intersect
in a (d — k(d — i))-flat almost surely and their intersection flat hits the interior of
W with positive probability. For example, these conditions are satisfied if the flat
process is stationary and isotropic.

The fact that the summands in the definition of &, are bounded and have a
bounded support makes sure that all moment conditions are satisfied and we can
apply Theorem 5. Denote by @, the normalized version of &;.
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Theorem 10 Let N be a standard Gaussian random variable. Then constants ¢ =
c(W, i, k,j) exist such that

dW(qStsN) =< Cl_l/zy
dK(qStsN) =< Cl_l/zy

fort> 1.

Furthermore, it can be shown [27] that the asymptotic variances satisfies Var®, =
Cot™ (1 + o(1)) as t — oo with a constant Cp = Cq(W, i, k,j). The order of
magnitude already follows from the first part of Theorem 5.

For more information we refer to [11, 21]. In the second paper the Wiener-Ito
chaos expansion is used to derive even multivariate central limit theorems in an
increasing window for much more general functionals &;.

4.2 Flat Processes

Fori < 5_21 two i-dimensional planes in general position will not intersect. Thus the
intersection process described in the previous section will be empty with probability
one. A natural way to investigate the geometric situation in this setting is to ask
for the distances between these i-dimensional flats, or more general for the so-
called proximity functional already introduced in [13]. The central limit theorems
described in the following fits precisely into the setting of this contribution, we refer
to [32] for further results.

Let 1, be a Poisson process on the space A(d, i) with an intensity measure of
the form p,(-) = t0(-) with t € RT and a o-finite non-atomic measure 6. The
Poisson flat process is observed in a compact convex window W C RY. For two
i-dimensional planes in general position there is a unique segment [x;, x,] with

d(L,Ly) = ||x; —xi|| = min |lz—y].
YEL| ZELy

The midpoints m(L, Ly) = %(xl + x;) form a point process of infinite intensity,
hence we restrict this to the point process

{m(Li, L) : d(Li,Ly) < 8,L1, Ly €}
and are interested in the number of midpoints in W
1

M=TW.8) =5 3 1dlL) < 8,m(liLo) € W).
LiLyen
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It is not difficult to show that IEIT, is of order 2892 . The U-statistic IT, is local on
the space A(d, i). Thus the following theorem due to Schulte and Thile [32] is in
spirit similar to Theorem 4. Denote by I1; the normalized version of I1;.

Theorem 11 Let N be a standard Gaussian random variable. Then constants
c(W, i) exist such that

de(IT,,N) < (W, )T,

fort>1.

Moreover, Schulte and Théle proved that the ordered distances form after suitable
rescaling asymptotically an inhomogeneous Poisson point process on the positive
real axis. There is a generalization of Theorem 11 including powers and directional
constrains in a recent paper of Hug et al. [14].

We add to this a concentration inequality which follows immediately from
Theorem 9. Observe that u,(X) = t9([W]), and denote by B(h,8) a ball with
center in /4 and radius §.

Theorem 12 Denote by m, the median of I1;. Then

1 u
P11, — m| > u) < 4t0([W]) exp (—Eﬁ)

for «/uiim, >t SUPyew] 0(B(h, 8)).

4.3 Gilbert Graph

Let n; be a Poisson point process on R¢ with an intensity-measure of the form
wi(-) = tly(- N W), where £, is Lebesgue measure and W C R a compact convex
set with £,(W) = 1. Let (1, : t > 0) be a sequence of positive real numbers such
that r, — 0, as  — oo. The random geometric graph is defined by taking the points
of 1, as vertices and by connecting two distinct points x,y € 1, by an edge if and
only if ||x — y|| < r;. The resulting graph is called Gilbert graph.

There is a vast literature on the Gilbert graph and one should have a look at
Penrose’s seminal book [25]. More recent developments are due to Bourguin and
Peccati [3], Lachieze-Rey and Peccati [18, 19], and Reitzner et al. [28].

In a first step one is interested in the number of edges

1
Ne=NW.r) == 3 (llx=yl =)
(x,y)eni;é
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of this random geometric graph. It is natural to consider instead of the norm
functions 1(f(y —x) < r;) and instead of counting more general functions g(y — x):

o A —x0) <) gl —x).

yen .

For simplicity we restrict our investigations in this survey to the number of edges N,
in the thermodynamic setting where # tends to a constant as ¢ — oo. Further
results for other regimes, multivariate limit theorems, and sharper concentration
inequalities can be found in Penrose’s book and the papers mentioned above.

Because of the local definition of the Gilbert graph, N, is a local U-statistic.
Theorem 6 with v, = #7 can be applied.

Theorem 13 Let N be a standard Gaussian random variable. Then constants ¢(W)
exist such that

dw(N;,N) < c(W)r /2,
dg(N;,N) < c(W)r™'/2,

fort> 1.

A concentration inequality follows immediately from Theorem 9. Observe that
i (X) = tlg(W).

Theorem 14 Denote by m, the median of N;. Then there is a constant c, such that

1 u
P(IN; — my| > u) < 4tly(W) exp (_E\/ﬁ)
t

u
>
for e 2 Cd-

In [28] a concentration inequality for all # > 0 is given using a similar but more
detailed approach.

4.4 Random Simplicial Complexes

Given the Gilbert graph of a Poisson point process 7, we construct the Vietoris—Rips
complex R(r;) by calling F' = {x;,,...,x; ., } a k-face of R(r,) if all pairs of points
in F are connected by an edge in the Gilbert graph. Observe that, e.g., counting the
number N,(k) of k-faces is equivalent to a particular subgraph counting. By definition
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this is a local U-statistics given by

1
k k ..
N,():N,()(W,r,):—(k+l)! > Axi—xll < VI<ij<k+1).

Central limit theorems and a concentration inequality follow immediately from the
results for local U-statistics. We restrict our statements again to the thermodynamic
case where tr‘,’ tends to a constant as  — o0o. Results for other regimes can be found,

e.g., in Penrose’s book. Because of the local definition of the Gilbert graph, N,(k) is
a local U-statistic. Theorem 6 with v, = #7¢ can be applied.

Theorem 15 Let N be a standard Gaussian random variable. Then constants c(W)
exist such that

dw(NP,N) < c(Wyr/2,
dx(NP Ny < c(Wyr V2,

fort>1.

A concentration inequality follows immediately from Theorem 9. Observe that
e (X) = 16([W]).

Theorem 16 Denote by m, the median of N,(k) . Then

2
ux

Ak D2 (4 4 m,)i)

PONY —my| = u) < 4t64(W) exp (

Mz >
for or = Cak

Much deeper results concerning the topology of random simplicial complexes are
contained in [7, 15, 17]. We refer the interested reader to the recent survey article
by Kahle [16]

4.5 Sylvester’s Constant

Again we assume that the Poisson point process n has an intensity-measure of the
form ju,(-) = tly(- N W), where £, is Lebesgue measure and W C R¢ a compact
convex set with £,(W) = 1.

As a last example of a U-statistic we consider the following functional related
to Sylvester’s problem. Originally raised with k¥ = 4 in 1864, Sylvester’s original
problem asks for the distribution of the number of vertices of the convex hull of four
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random points. Put

N, = N,(W,k) = Z T(xy,...,x; are vertices of conv(xy, ..., X)),

which counts the number of k-tuples of the process such that every point is a vertex
of the convex hull, i.e., the number of k-tuples in convex position.
The expected value of U is then given by

EN, = tk]P(Xl, ..., Xy are vertices of conv(X1, ..., Xy)),

where X1, ..., X are independent random points chosen according to the uniform
distribution on W.

The question to determine the probability that k random points in a convex set W
are in convex position has a long history, see, e.g., the more recent development by
Barény [2]. In our setting, the function £ 7%N; is an estimator for this probability and
we are interested in its distributional properties.

The asymptotic behavior of Var(N;) is of order /!, Together with Theorem 5,
we immediately get the following result showing that the estimator H is asymptoti-
cally Gaussian. Again, by N, we denote the normalized version of N,.

Theorem 17 Let N be a standard Gaussian random variable. Then there exists a
constant c(W, k) such that

dw (N, N) < c(W, k) 2.

For much more information on random polytopes we refer the reader to [13],
Sect. 3.5, in this survey.
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Poisson Point Process Convergence and Extreme
Values in Stochastic Geometry

Matthias Schulte and Christoph Thiéile

Abstract Let 7, be a Poisson point process with intensity measure tu, t > 0,
over a Borel space X, where p is a fixed measure. Another point process & on
the real line is constructed by applying a symmetric function f to every k-tuple
of distinct points of 7. It is shown that & behaves after appropriate rescaling like
a Poisson point process, as t — oo, under suitable conditions on 7, and f. This
also implies Weibull limit theorems for related extreme values. The result is then
applied to investigate problems arising in stochastic geometry, including small cells
in Voronoi tessellations, random simplices generated by non-stationary hyperplane
processes, triangular counts with angular constraints, and non-intersecting k-flats.
Similar results are derived if the underlying Poisson point process is replaced by a
binomial point process.

1 Introduction

This chapter deals with the application of the Malliavin—-Chen—Stein method for
Poisson approximation to problems arising in stochastic geometry. More precisely,
we will develop a general framework which yields Poisson point process conver-
gence and Weibull limit theorems for the order-statistic of a class of functionals
driven by an underlying Poisson or binomial point process on an abstract state space.

To motivate our general theory, let us describe a particular situation to which our
results can be applied (see Remark 4 and also Example 4 in [29] for more details).
Let K be a convex body in R4, d > 2, (that is a compact convex set with interior
points) whose volume is denoted by £,(K). For ¢ > 0 let 7, be the restriction to K of
a translation-invariant Poisson point process in R with intensity ¢ and let (6,),-¢ be
a sequence of real numbers satisfying 1>/, — oo, as t — oo. Taking 7, as vertex
set of a random graph, we connect two different points of 7, by an edge if and only if
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their Euclidean distance does not exceed 6,. The so-constructed random geometric
graph, or Gilbert graph, is among the most prominent random graph models (see
[25] for some recent developments and [22] for an exhaustive reference). We now
consider the order statistic & = {M,(m) : m € N} defined by the edge-lengths of
the random geometric graph, that is, M,(I) is the length of the shortest edge, M,(Z) is
the length of the second-shortest edge etc. Now, our general theory implies that the
rescaled point process 1>/¢£; converges towards a Poisson point process on R with
intensity measure given by B — fd |, B u?= du for Borel sets B C R4, where B =
kq4€q4(K)/2 and Kk, stands for the volume of the d-dimensional unit ball. Moreover,
it implies that there is a constant C > 0 only depending on K such that

< € max{ydt!, y2) 274

m—1 dni
2/d p (m) ) =By (By)
P (t M >y e ; i

foranym € N,y € (0,7*/96,) and ¢ > 1. In particular, the distribution of the rescaled
length 72/ dM,(l) of the shortest edge of the random graph converges, as t — 0o, to a
Weibull distribution with survival function y > ¢, y > 0, at rate 2/,

Our purpose here is to establish a general framework that can be applied to a
broad class of examples. We also allow the underlying point process to be a Poisson
or abinomial point process. Our main result for the Poisson case refines those in [29]
or [30] and improves the rate of convergence. Its proof follows the ideas of Peccati
[21] and Schulte and Thile [29], but uses the special structure of the functional
under consideration as well as recent techniques from [20] around Mehler’s formula
on the Poisson space. This saves some technical computations related to the product
formula for multiple stochastic integrals (cf. [ 18], in this volume, as well as [19, 32]).
In case of an underlying binomial point process we use a bound for the Poisson
approximation of (classical) U-statistics from [1]. As application of our main results,
we present a couple of examples, which continue and complement those studied in
[29, 30]. These are

1. Cells with small (nucleus-centered) inradius in a Voronoi tessellation.

2. Simplices generated by a class of rotation-invariant hyperplane processes.

3. Almost collinearities and flat triangles in a planar Poisson or binomial process.
4. Arbitrary length-power-proximity functionals of non-intersecting k-flats.

The rest of this chapter is organized as follows. Our main results and their
framework are presented in Sect. 2. The application to problems arising in stochastic
geometry is the content of Sect. 3. The proofs of the main results are postponed to
the final Sect. 4.
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2 Results

Let n, (t+ > 0) be a Poisson point process on a measurable space (X, Z") with
intensity measure i, := tu, where u is a fixed o-finite measure on X. To avoid
technical complications, we shall assume in this chapter that (X, .2") is a standard
Borel space. This ensures, for example, that any point process on X can almost
surely be represented as a sum of Dirac measures. Let further k € Nand f : X¥ — R
be a measurable symmetric function. Our aim here is to investigate the point process
& on R which is induced by 7, and f as follows:

1
& = X! Z 8f (et - M

[CIR TS

Here nf £ stands for the set of all k-tuples of distinct points of 1, and &, is the unit
Dirac measure concentrated at the point x € R. We shall assume that

wi(F ' ([=s.5])) <oo  forall s>0,

to ensure that & is a locally finite counting measure on R.

For m € N we denote by M,(m) the distance from the origin to the m-th point of &,
on the positive half-line Ry := (0, 00), and by M,(_m) the distance from the origin to
the m-th point on the negative half-line R_ := (—o0, 0]. If & has less than m points
on the positive or negative half-line, we put M,(m) = oo or M,(_m) = 00, respectively.

Fix y € R and for y;, y, € R define

1 _ _
@ (1.y2) ::E/]l{t < f e ox) < 2 )
Xk

We remark that, as a consequence of the multivariate Mecke formula for Poisson
point processes (see [18, formula (1.11)]), o;(y1, y2) can be interpreted as

1
o, (yi,y2) = EE Z W7y <flxr,...,x) <t 7y},

which is the expected number of points of & in (7 Vy;,t 7 y,] if y; < y, and zero if
y1 > y». Moreover, let, for k > 2,

2
n(y) = max / ( / 11{|f(x1,...,xk>|sr—Yy}u’;—%d(xm,...,xk»)

x¢ Xk—t
1y (dxr, . xe))

fory>Oandputr, =0ifk = 1.
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Theorem 1 Let v be a o-finite non-atomic Borel measure on R. Then, there is a
constant C > 1 only depending on k such that

m—1 i
‘P(ﬂMﬁ’"’ > ) =@ 3 MO 0,3 0301+ )

i=0

and

m—1 i
o = ) - 0 S MO < (0 - a0+ )
i=0 :

forallm € N andy > 0. Moreover, if

tl_l)rgo a(v1,y2) = v((1,y2]) for all y1,y2 € Rwith y; <y, (2)
and
lim r,(y) =0 for all y>0, 3)
—>00

the rescaled point processes (' &;)~o converge in distribution to a Poisson point
process on R with intensity measure v.

Remark 1 Let us comment on the particular case k = 1. Here, the point process
&, is itself a Poisson point process on R with intensity measure derived from «;, as
a consequence of the famous mapping theorem, for which we refer to Sect. 2.3 in
[16]. This is confirmed by our Theorem 1.

Remark 2 Theorem 1 generalizes earlier versions in [29, 30], which have a similar
structure, but where the quantity

)= sup (G, ) € XU
(&1, x)ext
1<l<k—1
[fGr, .. XXt )| S 7Y

for y > 0 is considered instead of ,(y). It is easy to see that r;(y) and 7(y) are
related by

r(y) < ing(xt(—y —e&,y)r(y) forall y=>0.
£>

In particular, this means that the rate of convergence of the order statistics in
Theorem 1 improves that in [29, 30] by removing a superfluous square root from
7:(y). Moreover and in contrast to [29, 30], the constant C only depends on the
parameter k.
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In our applications presented in Sect. 3, the function f is always strictly positive
so that & is concentrated on R.. Moreover, the measure v will be of a special form.
The following corollary deals with this situation. To state it, we use the convention
that o, (y) := «,(0,y) fory > 0.

Corollary 1 Let 8, t > 0. Then there is a constant C > 0 only depending on k such
that

m—1 T)i
oM > -t 3 P g o1+ criy
i=0 ’

forallm € Nandy > 0. If, additionally,
lim o;(y) = By° and lim r,(y) =0 for all y>0, 4)
—>00 —>00

the rescaled point processes (' &)~o converge in distribution to a Poisson point
process on R with the intensity measure

v(B) = Bt / ul'du, B C Ry Borel. %)
B

Remark 3 The limiting Poisson point process appearing in the context of Corol-
lary 1 is usually called a Weibull process on R, the reason for this being that the
distance from the origin to the next point follows a Weibull distribution.

If u is a finite measure, i.e., if ©(X) < oo, one can replace the underlying
Poisson point process 7, by a binomial point process £, having a fixed number of n
points which are independent and identically distributed according to the probability
measure p(-)/un(X). Without loss of generality we assume that £(X) = 1 in what
follows. In this situation, we consider instead of &, defined at (1) the derived point
process .f;, on R given by

A 1
&n = E Z Sf(xl ~~~~~ Xk) o

(1) ELE L

where ¢ 5 £ stands for the collection of all k-tuples of distinct points of {,. Form € N

let M and MS™ be defined similarly as M and M\™ above with £, replaced by
&,. For n, k € N we denote by (n), the descending factorial n- (n—1)-...-(n—k+1).
Using the notation

() = O / L7y < fGctse o) <m0} 1E@Cer - ox0))

Xk
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RO = max () z/( /11{|f(x1,...,xk)|sn—Yy}

1<{<k—
x¢ Xk—L

2
e ,m)) W@ x0)

for y1,y2,y € R, we can now present the binomial counterpart of Theorem 1.

Theorem 2 Let u be a probability measure on X and v be a o-finite non-atomic
Borel measure on R. Then, there is a constant C > 1 only depending on k such that

m—1 i
i .y o 0
1
i=0

< [v((0,y]) — @, (0,y)| + C(”n(}’) + (2 y))

and

‘P(nyl\?(_’"’ > y) — e V(30D Z V(( y’ 0]’ ‘

< (=, 0]) — (=, 0)| + C(rn(y) " M)
n

forallm € N andy > 0. Moreover, if
n11>nolo O{n(yl,yz) = U((yl,yz]) for all y1,y2 € Rwithy; <y,
and

lim r,(y) =0 for all y>0,
n—>oo

the rescaled point processes (n'§,),>1 converge in distribution to a Poisson point
process on R with intensity measure v.

As in the Poisson case, Theorem 2 allows a reformulation as in Corollary 1 for
the special situation in which f is nonnegative and v has a power-law density. As
above, we use the convention that «,(y) := «,(0, y) fory > 0.

Corollary 2 Let 8, t > 0. Then there is a constant C > 0 only depending on k such
that

m—1 T\i
Pty > ) - 3 BV < gy o) 4 C(n + 22)
i=0 ’



Poisson Point Process Convergence 261

forallm € Nandy > 0. If, additionally,

lim o,(y) = fy* and lim r,(y) =0 for all y>0,
n—>o00 n—>o00

the rescaled point processes (n'§,),>1 converge in distribution to a Poisson point
process on Ry with intensity measure given by (5).

3 Examples

In this section we apply the results presented above to problems arising in stochastic
geometry, see [11]. The minimal nucleus-centered inradius of the cells of a Voronoi
tessellation is considered in Sect. 3.1. This example is inspired by the work [5] and
was not previously considered in [29], although it is closely related to the minimal
edge length of the random geometric graph discussed in the introduction. Our
next example generalizes Example 6 of [29] from the translation-invariant case to
arbitrary distance parameters r > 1. In dimension two it also sheds some new light
onto the area of small cells in line tessellations. Our third example is inspired by
aresult in [31] and deals with approximate collinearities and flat triangles induced
by a planar Poisson or binomial point process. Our last example deals with non-
intersecting k-flats. The result generalizes Example 1 in [29] and one of the results
in [30] to arbitrary distance powers a > 0.

3.1 Voronoi Tessellations

For a finite set y # @ of points in R?, d > 2, the Voronoi cell v,(x) with nucleus
x € yx is the (possibly unbounded) set

v () ={zeR: lx—z|| < [¥ —z| forallx’ € y \ {x}}
of all points in R? having x as their nearest neighbor in y. The family
Vy={v,(x) 1 x €y}

subdivides R? into a finite number of random polyhedra, which form the so-called
Voronoi tessellation associated with y, see [27, Chap. 10.2]. For y = @ we put Vg =
{R?}. One characteristic measuring the size of a Voronoi cell v 4 (x) is its nucleus-
centered inradius R(x, y). It is defined as the radius of the largest ball included in
v, (x) and having x as its midpoint. Note that R(x, ) takes the value co if y = {x}.



262 M. Schulte and C. Thile

Define
R(V,) == min{R(x, x) : x € x}

for nonempty x and R(Vp) := oo.

In [5] the asymptotic behavior of R(V,) has been investigated in the case that
x is a Poisson point process in a convex body K of intensity ¢+ > 0, as t — oo.
Using Corollary 1 we can get back one of the main results of [5] and add a rate
of convergence to the limit theorem (compare with [5, Eq.(2b)] in particular).
Moreover, we provide a similar result for an underlying binomial point process.

Corollary 3 Let n, be a Poisson point process with intensity measure t{;|g, where
Lalk stands for the restriction of the Lebesgue measure to a convex body K and
t > 0. Then, there exists a constant C > 0 depending on K such that

‘P(tZ/d R(V,) > y) _ o2 kata(K)y < Cr¥4 max{y+! 2

forally > 0 and t > 1. In addition, if {, is a binomial point process with n > 2
independent points distributed according to £y(K)™" L4\, then

‘P("z/ TR(Vy,) > y) — ™2 Hald®| < € =2 maxfy?, )

fory > 0 and with a constant C > 0 depending on K.

Proof To apply Corollary 1 we first have to investigate o, (y) for fixed y > 0. For this
we abbreviate V,, by V; and observe that—by definition of a Voronoi cell—R(V,) is
half of the minimal interpoint distance of points from 7,, i.e.

| O
R(V)) = 3 rn1n{||x1 — x| : (x1,x2) € niyé}.

Consequently, we have

2 _
w® =5 [ [t -l =200 an
K K

7 7
=3 / La(K OV B, (x1)) dx; — ) / La(K OV By~ (x1)) dx1
R RIK
where BY(x) is the d-dimensional ball of radius » > 0 around x € R?. From

Theorem 5.2.1 in [27] (see Eq. (14) in particular) it follows that

2 2 _ _ _
) / Va(K N BS,—, (x1)) dx; = Eﬁd(K) ka(2yt ) =297 (K)kay' P77

R4
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Moreover, Steiner’s formula [27, Eq. (14.5)] yields

t2
5 [ knB,we

RI\K

IA

%" £yt ({z eRIN\K: inf ||lz 7| < ny_y})
€K

d—1
K _ _ s
?dtz(zyf Y aVi(K) @yt )
=0

where V((K), ..., V4—1(K) are the so-called intrinsic volumes of K, see [11] or [27].
Choosing y = 2/d, this implies that ¢, (y) is dominated by its first integral term and
that

o () = 27 eala(K)Y?| < €1 672/ max{y™™*!, y*)

for r > 1 with a constant ¢; only depending on K.
Finally, we have to deal with r;(y). Here, we have

2
n() = r3/ (/11{||x—y|| < 2yfy}dy) dx
K K

< LK) (171a2%7)? = La(K) 443y

In the binomial case, one can derive analogous bounds for «,(y) and r,(y), y > 0.
Since min(2/d, 1) = 2/d forall d > 2, application of Corollaries 1 and 2 completes
the proof. O

Remark 4 We have used in the proof that R(V,,) is half of the minimal inter-point
distance between points of 7, in K. Thus, Corollary 3 also makes a statement about
this minimal inter-point distance. Consequently, 2R(V,,) is also the same as the
shortest edge length of a random geometric graph based on 7, as discussed in the
introduction (cf. [25] and [22] for an exhaustive reference on random geometric
graphs) or as the shortest edge length of a Delaunay graph (see [11] or [6, 27]
for background material on Delaunay graphs or tessellations). A similar comment
applies if 7, is replaced by a binomial point process ,.

3.2 Hyperplane Tessellations

Let 3 be the space of hyperplanes in R?, fix a distance parameter » > 1 and a
convex body K C R4, and define as in [12, Sect. 3.4.5] a (finite) measure uonH
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by the relation

/ o(H) p(dH) = / / gt + puy LG + pu) N K # 0} " dpdur,
FH

sd—1 0

where ¢ > 0 is a measurable function on I, ut is the linear subspace of all
vectors that are orthogonal to u, and du stands for the infinitesimal element of the
normalized Lebesgue measure on the (d—1)-dimensional unit sphere S*~!. By 5, we
mean in this section a Poisson point process on J{ with intensity measure p, := tu,
t > 0. Let us further write for n € N with n > d + 1, ¢, for a binomial process on
H consisting of n € N hyperplanes distributed according to the probability measure
w(FH ™" .

If K = R4 in the Poisson case, one obtains a tessellation of the whole R? into
bounded cells. In this context one is interested in the so-called zero cell Z,, which
is the almost surely uniquely determined cell containing the origin. If r = 1, Z,
has the same distribution as the zero-cell of a rotation- and translation-invariant
Poisson hyperplane tessellation. If » = d, Zj is equal in distribution to the so-called
typical cell of a Poisson—Voronoi tessellation as considered in the previous section,
see [27]. Thus, the tessellation induced by 7, interpolates in some sense between
the translation-invariant Poisson hyperplane and the Poisson—Voronoi tessellation,
which explains the recent interest in this model [8, 9, 12]. For more background
material about random tessellations (and in particular Poisson hyperplane and
Poisson—Voronoi tessellations) we refer to Chap. 10 in [27] and Chap. 9 in [6] and
alsoto [11].

We are interested here in the simplices generated by the hyperplanes of 7,
or ¢,, which are contained in the prescribed convex set K. For a (d + 1)-tuple
(Hy,...,Hyy) of distinct hyperplanes of 7, or ¢, let us write [Hy, ..., Hyy] for

the simplex generated by Hy, ..., H;+| and define the point processes
1
§ = m Z Sea(iH ... Hd+1])]l{[Hls---st+l] - K}

d—+1
(H],...,H(H,I)EI’]L;

and

~ 1
& = m Z 54(1([H1 ----- Hd+1])]l{[H1"“’Hd+l] CK}'
(HyooHa ) €50E!

By M,(m) and ﬁ,(lm) we mean the mth order statistics associated with & and én,
respectively. In particular M,(l) and M." are the smallest volume of a simplex
included in K. Moreover, for fixed hyperplanes Hy, ..., H; in general position let
z(Hy,...,Hy) == H; N...N H, be the intersection point of Hy,...,H,. By Hs,
we denote the hyperplane with unit normal vector u € S¢~! and distance § > 0 to
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the origin. The following result generalizes [29, Theorem 2.6] from the translation-
invariant case r = 1 to arbitrary distance parameter r > 1.

Corollary 4 Define

1
ﬁ:m/ / ]l{Hlﬂ...ﬂHdﬂK?é@}IMTZ(Hl,...,Hd)V_I
'g.cdsdfl

x Lg([Hy, ... Hy,z(Hy, ..., Hy) + Hy )"V du p?(d(Hy, . . ., Hy)) .

Then 1“1tV and n@+VE, converge, ast — oo or n — oo, in distribution to a
Poisson point process on R4 with intensity measure given by

B+ E/u(l_d)/ddu
d
B

for Borel sets B C R.. In particular, for each m € N, td(dH)M,(m) and nd(d“)ﬁﬁm)
converge towards a random variable with survival function

m—1 1/dvi
yHeXP(—ﬁy‘/")Z(ﬁyi—,), y>0.

i=0

Proof Fory > 0 we have

1A+1
a(y) = ——— 1{[H,....H CcCK
0= [ e € K
:}fd+l
X Wy([Hy, ..., Hor]) <y ™ d(H L Hen))
For fixed hyperplanes H, . . . , H; in general position we parametrize H;4 by a pair

(8,u) € [0, 00) x S, where § is the distance of H; to the origin. Then ;(y) can
be rewritten as

1 o
a’(y)_z(d+1)!// /t 1{[H,...,Hs,Hs,] C K}

Fd §d—1 —00

x 1{€q([Hy. ... Hg, Hs,]) <yt 738" d8 du ! (d(Hy, ..., Hy)) .
(6)

Since the hyperplane Hj, has the distance |u’z(H;, ..., H;) — 8| to z(H. ..., Hy),
we have that

Ed([Hly e 7Hd7H8,u])
= |u"z(H, ... . Hg) = 8| Ca([H, ... . Hay2(H, . Ha) + Hiu)) -
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Lety = d(d + 1) and M := max{||z||""" : z € K}. For fixed H,, ..., H; € H? such
that Hy N ...NH;NK # @ and u € S*~! we can estimate the inner integral in (6)
from above by

o0
M/ A 2 (H .. Hy) — 8¢
—00
Kd([Hl, ..., Hy,z(Hy,...,Hy) + Hl,u]) < yt‘V}dé’
<2MUy([Hy, ... . Hy 2(Hy, ... Hy) + Hy)) "4y,

The hyperplanes H, — z(Hy,...,Hy),...,H; — z(Hy,...,Hy) partition the unit
sphere S into 24 spherical caps Si,...,8. Foreachu € §; (1 < j < 24y,
transformation into spherical coordinates shows that

La([Hy, ... Hg,2(Hy, ... Hy) + Hiu)) > cala(S)),

where ¢; > 0 is a dimension dependent constant and £,—(S;) is the spherical
Lebesgue measure of S;. Consequently, we have

M
Jd

x i/ (L)W du p?(d(H,, . . ., Hy))
ity \c Ca1(5))

= M/H{Hlﬂ...ﬂHdﬂK;é@}
Hcd
z y 1/d
| —— d
x;&i_l(&) (Cdﬁd_l(Sj)) pd(d(H, ... Hy)).

Since the last expression is finite, we can apply the dominated convergence theorem
in (6). By the same arguments we used to obtain an upper bound for the inner
integral in (6), we see that, for Hy,...,H; € H¢ and u € S !,

lim /ff“]l{[Hl,...,Hd,hn;,u]cK}]l{ed([Hl,...,Hd,Hgs,u])Syt‘y}ISI"l dé
—>00

—00
=20 {H\N...0HyN K # @} Lg([Hy.... . Hy.2(H. ... Hg) + Hy )7/
x [ul'z(Hy, ..., Hy)|""'yVe
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Altogether, we obtain that

lim o, (y) = By'/“.

—>00
By the same estimates as above, we have that, forany £ € {1,...,d},

r‘f/(f’“—‘ / W[H, .. Hass] C H Va(lHy, .. Har]) <y}
g.cl g.chrlfé

2
pati=t (d(H1£+1, o ,Hd+1))) ut (d(Hl, .. ,Hz))

Et‘Z/(Mr‘Z / /]]_{Hlm“'ﬂHde?éﬂ}yl/d

It gd—t §d—1
—1/d 2
Ca([Hys ... Ha z(Hyy oo Hy) + Hi )™ du N (d(Hesr,s - ,Hd)))

p(d(H,, ... Hy)) .

Hence, r;(y) — 0 as t — oo so that application of Corollary 1 completes the proof
of the Poisson case. The result for an underlying binomial point process follows
from similar estimates and Corollary 2. O

Remark 5 Although Corollary 1 or Corollary 2 deliver a rate of convergence, we
cannot provide such rate for this particular example. This is due to the fact that
the exact asymptotic behavior of o, (y) or «,(y) depends in a delicate way on the
smoothness behavior of the boundary of K.

Corollary 4 admits a nice interpretation in the planar case d = 2. Namely, the
smallest triangle contained in K coincides with the smallest triangular cell included
in K of the line tessellation induced by 5, or ¢, (note that this argument fails in
higher dimensions). This way, Corollary 4 also makes a statement about the area of
small triangular cells, which generalizes Corollary 2.7 in [29] from the translation-
invariant case r = 1 to arbitrary distance parameters r > 1:

Corollary 5 Denote by A, or A, the area of the smallest triangular cell in K of a
line tessellation generated by a Poisson line process 1, or a binomial line process
¢n with distance parameter r > 1, respectively. Then °A, and n°A, both converge
in distribution, as t — 00 or n — 00, to a Weibull random variable with survival
function'y — exp(—B y'/?), y > 0, where B is as in Corollary 4.
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3.3 Flat Triangles

So-called ley lines are expected alignments of a set of locations that are of
geographical and/or historical interest, such as ancient monuments, megaliths and
natural ridge-tops [4]. For this reason, there is some interest in archaeology, for
example, to test a point pattern on spatial randomness against an alternative favoring
collinearities. We carry out this program in case of a planar Poisson or binomial
point process and follow [31, Sect. 5], where the asymptotic behavior of the number
of so-called flat triangles in a binomial point process has been investigated.

Let K be a convex body in the plane and let u be a probability measure on
K which has a continuous density ¢ with respect to the Lebesgue measure £»|x
restricted to K. By 1, we denote a Poisson point process with intensity measure
W 1= ti, t > 0, and by ¢, a binomial process of n > 1 points which are independent
and identically distributed according to w. For a triple (x1, x2, x3) of distinct points
of 1, or ¢, we let O(x1, x2, x3) be the largest angle of the triangle formed by xp, x;
and x3. We can now build the point processes

1
&= g Z Sn—b(x112.15)

(CECES

and

,\ 1
& = s Z Sn—b(x112.15)

(1x.x3)€ss

on the positive real half-line. The interpretation is as follows: if for a triple
(x1,x2,x3) in 77 o or é‘ 3 the value 7w —6(x1, X2, x3) is small, then the triangle formed
by these points is flat i in the sense that its height on the longest side is small.

Corollary 6 Define

1
= / / / s(1—5) p(sx1 + (1 — ) [l — x> ds () e (dea).
K 0

Further assume that the density ¢ is Lipschitz continuous. Then the rescaled point
processes 3§, and n3§n both converge in distribution to a homogeneous Poisson
point process on Ry with intensity B, ast — 00 or n — 00, respectively. In
addition, there is a constant Cy > 0 depending on K, ¢ and y such that

m—l i
30 ,(m) By (By) -1
P(EM;™ >y)—e E o <Cyt
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and

m—1 i
]P’(n3M,(1’”) >y)—e P Z (,31_)'1) <G n!
i=0

forallt > 1,n>3andm € N.

Proof To apply Corollary 1 we have to consider the limit behavior of ¢, (y) and r;(y)
for fixed y > 0, as t — oo. For x1,x; € K and ¢ > 0 define A(xy, x2, ) as the set of
all x3 € K such that w — 0(x1, x2, x3) < &. Then we have

3
) = / / / L € A, 50y} 9(e) 9 (62) 0 (xs) ds dry di

K K K

Without loss of generality we can assume that x3 is the vertex adjacent to the largest
angle. We indicate this by writing x3 = LA(x, x»,x3). We parametrize x3 by its
distance 4 to the line through x; and x; and the projection of x3 onto that line, which
can be represented as sx; + (1 — s)x, for some s € [0, 1]. Writing x3 = x3(s, h), we
obtain that

1 oo
3
wt) =5 / / / / Lixa(s.h) € AGrxa,yi").xs = LA(x1. %2 x3)}

K K 0 —o©

X @(x1)@(x2)@(x3(s, ) [|lx1 — x2|| dhds dx; dx; .
The sum of the angles at x; and x; is given by

arctan(|h|/(sllx; — x2[1)) + arctan(|A|/((1 = s)[lx1 — x2[))) .

Using, for x > 0, the elementary inequality x — X% < arctanx < x, we deduce that

| n2
s(1=s)lxr —xa2f|  s2(1 = 5)?[lxy — x2|?
< arctan(|h|/(s[lx1 — x2|])) + arctan(|A[/((1 — s)||x; — x2]))
|h]

< —.
s(1 = s)[lx1 — x2|
Consequently, 7w — 0 (xy, x2, x3(s, h)) < yt~7 is satisfied if

Al < s(1 = s)|lxr —xa|lyr™”



270 M. Schulte and C. Thile

and cannot hold if
k] = s(1 = 9) [P — x| (7 + 2y°7%)
and ¢ is sufficiently large. Let A, ; be the set of all x;,x, € K such that
Bian—ry /21—l 1)+ Blanry 2y - (02) € K-
Now the previous considerations yield that, for  sufficiently large and (x1, x2) € Ay,

oo

1

A

E/ / 1{x3(s, h) € A(x1,x2, ¥ "), x3(s, h) = LA(x1, x2,x3)}
0

X |lx1 = xal| @(x1)@(x2)@(x3(s, h)) dh ds

1
=7 / (s(1 = 5)llvs — x2llyr ™ + Rt 52 9)) 1 —
0

X @(x)@(x2)@(sxy + (1 — s)xz) ds

1 oo
& _
+ E/ / 1{x3(s, h) € A(x1,x2, ¥ 7)), x3(s, h) = LA(xy, x2, x3) } |21 — x2]|
0 —oo

X p(x1)p(x2) (p(x3(s. 1) — @(sx1 + (1 = 5)x2)) dh ds

with R(x1, X2, s) satisfying the estimate |R(x1, X2, 5)| < 2s(1 —s)|Jx; —x2|[y*t~2. For
(x1,x2) & A, the right hand-side is an upper bound. The choice y = 3 leads to

lot: () — Byl

1
< / / s(1 =) = Py (e (e)p(sx1 + (1 —s)xa) dsd(xr. x2)

Kz\Ay.t 0

1
#2070 [ 5= =l pleptaen + (1 - 9x) dsdar.x)
K2 0

1 oo

/ / / Lin(s. ) € At x0 30 )1 — 6]l o))

K2 0 —oo

X @(x3(s, b)) — @(sx1 + (1 — $)x2)| dhds d(x1, x2) .

s

3
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Note that 6% (K \ Ay,) is of order 173 so that the first integral on the right-hand side
is of the same order. By the Lipschitz continuity of the density ¢ there is a constant
C, > 0 such that

lo(x3(s. h)) — @(sx1 + (1 = 9)x2)| < Cph.

This implies that the third integral is of order #~3. Combined with the fact that also
the second integral above is of order 173, we see that there is a constant Cy1 >0
such that

() = Byl = Cyar™

fort > 1.
For given x1, x, € K, we have that

/ll{x3 € A(xy,x2, ¥ V) }(x3) dxs < M/ 1{x; € A(xy,x2, ¥ V) }dxs
K K

with M = sup,cx ¢(z). By the same arguments as above, we see that the integral
over all x3 such that the largest angle is adjacent to x3 is bounded by

1
M / 51— 9)llxt —xallyr™ + 25(1 — )]l — xally2rOds
0

< 2Mdiam(K) (yr > + 2y%17%),

where diam(K) stands for the diameter of K. The maximal angle is at x; or x; if
x3 is contained in the union of two cones with opening angle 23y and apices at
x1 and x,, respectively. The integral over these x5 is bounded by 2Mdiam(K)?¢3y.
Altogether, we obtain that

/ 1{x3 € A(xy, x2, 9177 ) }o(x3) dx3
K

< 2Mdiam(K) (yr > + 2y*r %) + 2Mdiam(K)?*yr 3.

This estimate implies that, for any £ € {1,2},

2
¢ / (tH / Lixs € Aoy ) 1 (dKes . ,Ks)))u‘f(d(Kl, LKD)

K¢ K3—¢

< 7L MLy (K))~ (2Mdiam(K) (v~ + 2y%%) + 2Mdiam(K)?yi ) .
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Since the upper bound behaves like = for # > 1, there is a constant Cy» > 0 such
that

rt(y) = Cy,2t_1

for + > 1. Now an application of Corollary 1 concludes the proof in case of an
underlying Poisson point process. The binomial case can be handled similarly using
Corollary 2. O

Remark 6 We have assumed that the density ¢ is Lipschitz continuous. If this is not
the case, one can still show that the rescaled point processes 3£, and n3§n converge
in distribution to a homogeneous Poisson point process on Ry with intensity .
However, we are then no more able to provide a rate of convergence for the
associated order statistics M,(m) .

Remark 7 In [31, Sect. 5] the asymptotic behavior of the number of flat triangles
in a binomial point process has been investigated, while our focus here was on
the angle statistic of such triangles. However, these two random variables are
asymptotically equivalent so that Corollary 6 also delivers an alternative approach
to the results in [31]. In addition, it allows to deal with an underlying Poisson point
process, where it provides rates of convergence in the case of a Lipschitz density.

3.4 Non-Intersecting k-Flats

Fix a space dimension d > 3 and let ¥k > 1 be such that 2k < d. By G(d, k) let
us denote the space of k-dimensional linear subspaces of R?, which is equipped
with a probability measure ¢. In what follows we shall assume that ¢ is absolutely
continuous with respect to the Haar probability measure on G(d, k). The space of k-
dimensional affine subspaces of R is denoted by A(d, k) and for ¢ > 0 a translation-
invariant measure i, on A(d, k) is defined by the relation

/ ¢(E) j(dE) = 1 / / oL+ x) Luy () c(dL) ™
A(d k) G(d.k) L

where g > 0 is a measurable function on A(d, k). We will use E and F to indicate
elements of A(d, k), while L and M will stand for linear subspaces in G(d, k), see [11,
formula (1)] in this book. We also put . = ;. For two fixed k-flats E, F' € A(d, k)
we denote by d(E,F) = inf{||x; — x2|| : x1 € E, x € F} the distance of E and
F. For almost all £ and F it is realized by two uniquely determined points xp € E
and xr € F,ie. d(E,F) = |xg — xr||, and we let m(E, F) := (xg + xr)/2 be the
midpoint of the line segment joining xg with xp.

Let K C RY be a convex body and let n, be a Poisson point process on A(d, k)
with intensity measure u, as defined in (7). We will speak about 1, as a Poisson k-flat
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process and denote, more generally, the elements of A(d, k) or G(d, k) as k-flats. We
will not treat the binomial case in what follows since the measures w, are not finite.
We notice that in view of [27, Theorem 4.4.5 (c)] any two k-flats of n; are almost
surely in general position, a fact which from now on will be used without further
comment.

Point processes of k-dimensional flats in R have a long tradition in stochastic
geometry and we refer to [6] or [27] as well as to [11] for general background
material. Moreover, we mention the works [10, 26], which deal with distance
measurements and the so-called proximity of Poisson k-flat processes and are close
to what we consider here. While in these papers only mean values are considered,
we are interested in the point process & on R4 defined by

1
f1= 3 > Sugrye L{m(E.F) € K}
(EF)en; ,

for a fixed parameter a > 0. A particular case arises when ¢ = 1. Then M,(I),
for example, is the smallest distance between two k-flats from 7, that have their
midpoint in K.

Corollary 7 Define

14
=t / / (L. M](dL)s (M)
G(d.k) G(d.k)

where [L,M] is the 2k-dimensional volume of a parallelepiped spanned by two
orthonormal bases in L and M. Then, as t — oo, ?¥@=20E converges in
distribution to a Poisson point process on R4 with intensity measure

B+ (d— 2k)é / uld=2=ala gy, BCR, Borel.
a
B

Moreover; there is a constant C > 0 depending on K, ¢ and a such that

m—1 (,3 (d—zk)/a)i
P (2 (@20 Mr(m) > y) —exp (_ 'By(d—Zk)/a) Z Y

i!
i=1

<cC (yZ(d—2k)/a 4 yd—k+2(d—2k)/a) 1

foranyt>1,y>0andm € N.



274 M. Schulte and C. Thile

Proof Fory > 0 and ¢t > 0 we have that

t2
w) =5 / / L{d(E. F) < Y/, m(E. F) € K} w(dE)u(dF) .
A(dK) A(dK)

We abbreviate § := y'/?7/% and evaluate the integral

J:.= / / 1{d(E,F) <6, m(E,F) € K} u(dE)u(dF) .
A(d k) A(d k)
For this, we define V := E+ Fand U := VX and writt Eand Fas E = L + X1
and F = M + x, with LM € G(d.k) and x; € L+, x, € M*. Applying now

the definition (7) of the measure pu and arguing along the lines of the proof of
Theorem 4.4.10 in [27], we arrive at the expression

] ] frome (- (22)

G(dk) Gdk) U U

X L{|lxr — x2|| < 8} La—ox(dx1)la—2k(dx2) s (dL)s (dM) .

Substituting u = x; — x2, v = (x; + x2)/2 (a transformation having Jacobian equal
to 1), we find that

j:/ ///[L’W%(Kﬂ(V+v>)11{||u||55}
G(d k) G(dk) U U ®

La—x(du)ly—x(dv)s(dL)s(dM) .
Since U has dimension d — 2k, transformation into spherical coordinates in U gives

8

/ 10l < 8) du = (d — K)ican / P G = e 81
U 0

Moreover,

[ a0 v+ o) o) = tatky
U
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since V = U+, Combining these facts with (8) we find that
1= ks [ [ LMsans@m
G(d.k) G(d.k)
and that
1
) = 5 Lal®)aay 2002 [ [ pcanygam .
G(d.k) G(d.k)

Consequently, choosing y = 2a/(d — 2k) we have that

o (y) = By

For the remainder term r,(y) we write

2
r(y) =1t / (r / L{d(E,F)* <y, m(E,F)eK},u(dF)) (L(dE) .
A(dK) AWk

This can be estimated along the lines of the proof of Theorem 3 in [30]. Namely,
using that [-, -] < 1 and writing diam(K) for the diameter of K, we find that

r(y) < tiq_(diam(K) + 277 y)d* / (t / / T{x]|* <y}

Gb) Gk (L4
2
ey (diam(K) /2)* ed_Zk(dx)g(dM)) o(dL)

< tig—i(diam(K) + 2677 y) " (ticgox (v ) 420 e (diam(K) /2)*)

= kgt (diam(K) 4 2724/ @=20yyd=ke 2 2 (diam(K) /2)% y? @0 a1
where we have used that y = 2a/(d — 2k). This puts us in the position to apply
Corollary 1, which completes the proof. O

Remark 8 A particularly interesting case arises when the distribution ¢ coincides
with the Haar probability measure on G(d, k). Then the double integral in the
definition of 8 in Corollary 7 can be evaluated explicitly, namely we have

(d;k)Kc%—k

L M) c(dL)c(dM) =
[[ (@S = gt St

G(d k) G(d.k)

according to [13, Lemma 4.4].
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Remark 9 Corollary 7 generalizes Theorem 4 in [30] (where the case a = 1 has
been investigated) to general length-powers a > 0. However, it should be noticed
that the set-up in [30] slightly differs from the one here. In [30] the intensity
parameter ¢ was kept fixed, whereas the set K was increased by dilations. But
because of the scaling properties of a Poisson k-flat process and the a-homogeneity
of d(E, F)%, one can translate one result into the other. Moreover, we refer to [14]
for closely related results including directional constraints.

Remark 10 In [29] a similar problem has been addressed in the case where ¢
coincides with the Haar probability measure on G(d, k). For a pair (E, F) € ni £
satisfying ENK # @ and FNK # @, the distance between E and F was measured by

dg(E,F) = inf{|x; —x;|| : x1 e ENK, x, € FN K},

and it has been shown in Theorem 2.1 ibidem that the associated point process

1
£ = 3 Z Saper ENK # 0, FNK # 0}
(EF)en?

converges, after rescaling with 2/(¢=2X  towards the same Poisson point process as
in Corollary 7 when ¢ is the Haar probability measure on G(d, k) and a = 1.

4 Proofs of the Main Results

4.1 Moment Formulas for Poisson U-Statistics

We call a Poisson functional S of the form

S = Z f(xl,...,xk)

(X1 XK €Ny 2

with k € Ny := NU{0} and f : X* — R a U-statistic of order k of 7, or a Poisson U-
statistic for short (see [17]). For k = 0 we use the convention that f is a constant and
S = f. In the following, we always assume that f is integrable. Moreover, without
loss of generality we assume that f is symmetric since we sum over all permutations
of a fixed k-tuple of points in the definition of S.

In order to compute mixed moments of Poisson U-statistics, we use the following
notation. For £ € N and ny,...,n; € Ny we define Ny = O, N; = Z}:l nj, i €
{1,...,4£}, and

N,'_ 1,...,Ni s Ni_ <Ni .
gz Wit boNersNe g
a, Ni—1 =N;
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Let [1(ny,...,ng) be the set of all partitions o of {1,...,N¢} such that for any
i € {l,...,£} all elements of J; are in different blocks of o. By |o| we denote
the number of blocks of o. We say that two blocks B; and B, of a partition o €
I (ny,...,ng) intersect if there is an i € {1,...,£} such that By N J; # 0 and
B, N J; # §. A partition o € I1(ny,...,ny) with blocks By,...,B|y belongs to
I:I(nl, ..., ny) if there are no nonempty sets My, M, C {1,...,|o|} withM; "M, =
@ and My UM, = {1,...,|o|} such that for any i € M, and j € M, the blocks B;
and B; do not intersect. Moreover, we define

MNy(ny,....,ng) =10 €(ny,...,ng) :|o| > min{ny, ..., net}.

If there are i,j € {1,..., £} withn; # n;, wehave [T (ny,...,ng) = I1(ny,...,ng).

Foro € I1(ny,...,ng) andf : XM — R we define f, : XI°! — R as the function
which arises by replacing in the arguments of f all variables belonging to the same
block of o by a new common variable. Since we are only interested in the integral
of this new function in the sequel, the order of the new variables does not matter.
For f@ : X" — R,ie{l,...,}, let ®_ @ : XM — R be given by

L

(&1 M) @ oxw) = [ [F 20w 410w -

i=1

The following lemma allows us to compute moments of Poisson U-statistics (see
also [23]. Here and in what follows we mean by a Poisson functional ¥ = F(1,)
a random variable only depending on the Poisson point process 7, for some fixed
t>0.

Lemmal Forf e N andf(i) € Li (uy)y with k; € No, i = 1,..., 4, such that

/ (&L, /) lduf! <oo  forall o€ Mk,... k),

xlol

let

Il
—_
~

S; = Z f(i)(xl,...,xki), i

and let F be a bounded Poisson functional. Then

E[F.ljs"]: > /(®f=1f“’)a(%--~xwl)

o €I1(ky,....k¢)

xlol

lo|

<E[F[n+> 8 || w@Gr.....x00).

i=1
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Proof We can rewrite the product as

L
Fo [T D2 rPe.....x)

i=1 i

= Z Z (®i=1 f?), (x1,....xieDF (1)

o€l (ky,..., k¢) (x1

since points occurring in different sums on the left-hand side can be either equal or
distinct. Now an application of the multivariate Mecke formula (see [18, formula
(1.11)]) completes the proof of the lemma. ]

4.2 Poisson Approximation of Poisson U-Statistics

The key argument of the proof of Theorem 1 is a quantitative bound for the Poisson
approximation of Poisson U-statistics which is established in this subsection. From
now on we consider the Poisson U-statistic

Sa=— > L{f(x.....x) €A},

where f is as in Sect.2 and A C R is measurable and bounded. We assume that
k > 2 since S, follows a Poisson distribution for k = 1 (see Sect.2.3 in [16], for
example). In the sequel, we use the abbreviation

1
h(xl,...,xk) = E]l{f(xl,...,xk) EA}, Xiy..., X, € X

It follows from the multivariate Mecke formula (see [18, formula (1.11)]) that
sp = E[S,] = / h(xr, .. .ox0) idx, .. ) .
Xk

In order to compare the distributions of two integer-valued random variables Y and
Z, we use the so-called total variation distance dry defined by

drv(Y,Z) = sup |P(Y € B)—P(Z € B)|.
BCZ
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Proposition 1 Let Sy be as above, let Y be a Poisson distributed random variable
with mean s > 0 and define

2
0A ‘= max /( /h(xl,...,xk),ul,‘_[(d(xgﬂ,...,xk))) ,uf(d(xl,...,xz)).

1<{<k—1
x¢ Xk—t

Then there is a constant C > 1 only depending on k such that

1
dTv(SA,Y) < ISA—S| + len{l,s—} 0A - ©))
A
Remark 11 The inequality (9) still holds if Y is almost surely zero (such a ¥ can be
interpreted as a Poisson distributed random variable with mean s = 0). In this case,
we obtain by Markov’s inequality that

dTv(SA, Y) = P(SA > 1) < [ES; = s4.

Our proof of Proposition 1 is a modification of the proof of Theorem 3.1 in [21].
It makes use of the special structure of S4 and improves of the bound in [21] in case
of Poisson U-statistics. To prepare for what follows, we need to introduce some
facts around the Chen—Stein method for Poisson approximation (compare with [3]).
For a function f : Ny — R let us define Af(k) := f(k + 1) — f(k), k € Ny, and
A%f(k) := f(k +2) —2f(k + 1) + f(k), k € Ny. For B C Ny let f3 be the solution
of the Chen—Stein equation

1{k e B —P(Y € B) = sf(k + 1) —kf(k), keNp. (10)

It is known (see Lemma 1.1.1 in [2]) that f3 satisfies

) 1
il <1 and 4o < min 1,04 =1 an

where | - ||oo is the usual supremum norm.

Besides the Chen—Stein method we need some facts concerning the Malliavin
calculus of variations on the Poisson space (see [18]). First, the so-called integration
by parts formula implies that

Ef5(S0)(Ss — E[SA)] = E / D fo(Sa) (=DaL ™ S4) ja(dv) (12)
X

where D stands for the difference operator and L™ is the inverse of the Ornstein—
Uhlenbeck generator (this step requires that £ fx(DxSA)z 1(dx) < oo, which is a
consequence of the calculations in the proof of Proposition 1). The following lemma
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(see Lemma 3.3 in [24]) implies that the difference operator applied to a Poisson U-
statistic leads again to a Poisson U-statistic.

Lemma2 Letk €N, f € LI (¥) and

S = Z f(xl,...,xk).

Then

DS =k Z foxy, .0, 0—1), xeX.

&1t €N

Proof It follows from the definition of the difference operator and the assumption
that f is a symmetric function that

DS = Z flxr, .o, x0) — Z fOxr, e, xk)

= Z (f(x,xl,...,xk_l)+~-~+f(x1,...,xk_1,x))

1o Xk—1) €N

=k Z f(x’xl,...,xk_l)
G1im) €N
for x € X. This completes the proof. D

In order to derive an explicit formula for the combination of the difference
operator and the inverse of the Ornstein—Uhlenbeck generator of S4, we define
he : Xt >R, Lef{l,... k},by

he(x, ... x0) := /h(xl,...,xg,fcl,...,)Ack_g)uf_{(d(fcl,...,fck_g)).

Xk—t

We shall see now that the operator —DL™! applied to S, can be expressed as a sum
of Poisson U-statistics (see also Lemma 5.1 in [28]).

Lemma 3 Forx e X,

k
—DXL_ISA = Z Z he(x,x1,...,x¢—1) .

=1 exe—nen )
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Proof By Mehler’s formula (see Theorem 3.2 in [20] and also [18, Sect. 1.7]) we
have

1
_ 1
L 1SA://;E Z h(xl,...,xk)—sA‘n, P(l_s)m(d)()ds
0

(X1, Xk) E(1f )+X)k

where n, , 5 € [0,1], is an s-thinning of 7, and P_y),, is the distribution of a

Poisson point process with intensity measure (1—s)u,. Note in particular that 77, )+ X
is a Poisson point process with intensity measure sy, + (1 — s)u, = p,. The last
expression can be rewritten as

1

1 A A
—L_ISAZ//;E[ > hGr.. 80 = sa|n] P, (dy) ds

0 [Cp. xk)e)(;é

() [ =

=1 (X1.....x0) E(y

Z h(xl, . ,xl,)ACl, . ,&k_g)|7’),] ]P)(l—s)u,(d)() ds.

(}1 ..... }k_()exl;é_l

(?))é

By the multivariate Mecke formula (see [18, formula (1.11)]), we obtain for the first
term that

/ / R, ... %) = sa|me | Pa—gp, (dy)ds
’Ck)eX;e
N
~ ~ —S8) —
/ / ( h(Xy, ..., %) — SA) P—g, (dy)ds = / — ds s4 .
(X1 rk)e)(# 0
To evaluate the second term further, we notice that for an £-tuple (x1,...,x¢) € nf £

the probability of surviving the s-thinning procedure is s*. Thus

E Z Z h(xl,...,X(,)’El,...,fck_()’ﬂr

[T xg)e(nﬁ”)‘ [ETT . z)EX¢

= Z Z Xy, ooy Xg, X1y e vy Xp—t)

(X)) € Gt €25
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for £ € {1,...,k}. This leads to

1
1—s)k—1
= [
N
0

1
k

k B I A~
+Z(@)//34 IZ Z R(X1, e, X0, X1y ey X—t)
(=1 0 (Xls---sz)Enf# (T Qkf/g)e)(’;‘f

Pa—yu (d)) ds.

Finally, we may interpret y as (1—s)-thinning of an independent copy of 7,, in which
each point has survival probability (1 — s). Then the multivariate Mecke formula
([18, formula (1.11)]) implies that

1
1—s)k—1
—L_ISA :/ﬁdSSA

N

0
ko (k !
+ Z (ﬁ) /s[_l(l s)k_[ ds Z he(x1,..., %)
=1 0 (X yeens XZ)EW,¢
Together with
1 € — 1)k —0)!
/Sz_l(l s = (‘)k# Cefl,.. k,

0

we see that

1
_ 1—s)k—1 f1
—L ISA:sA/%ds—}—ZZ Z he(xy, ..., xp).
0

Applying now the difference operator to the last equation, we see that the first term
does not contribute, whereas the second term can be handled by using Lemma 2.
O

Now we are prepared for the proof of Proposition 1.

Proof (of Proposition 1) Let Y4 be a Poisson distributed random variable with mean
s4 > 0. The triangle inequality for the total variation distance implies that

drv(Sa, Y) < drv(Y,Ya) + drv(Ya, Sa) .
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A standard calculation shows that
drv(Y,Ya) < |s—s4]
so that it remains to bound

dTv(YA, SA) = Sup IP(SA S B) — P(YA (S B)I .
BCNj

For a fixed B C Ny it follows from (10) and (12) that

P(Sy € B) —P(Y4 € B) = E [saAfp(Sa) — (Sa — sa)fp(Sa)]

=E [ s4Afp(Sa) _/DxfB(SA)(_DxL_ISA) s (dx)

X
(13)

Now a straightforward computation using a discrete Taylor-type expansion as in
[21] shows that

D, fp(Sa) = f8(Sa + DxSa) — fp(Sa)

DSy
= > " (fs(Sa + ) —f3(Sa+k—1))
k=1
DSy
=D AfsSat+k=1)
k=1
D,Sp
= Afs(S)D:Sa + Y (Afs(Sa + k—1) = Afs(S)).
k=2
Together with (11), we obtain that
D,Sa
> (Afa(Sa + k= 1) = Afa(S)) | < 2] Aflloo max{0, DSy — 1}
k=2

<2¢&14 max{O, D.Ss — 1}

with

1
€14 := min {1, —} .
SA
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Hence, we have

D, f5(Sa) = Afp(Sa)DxSa + R,,

where the remainder term satisfies |R,| < 2g; 4 max{0, D, Sy—1}. Together with (13)
and —D,L~'S, > 0, which follows from Lemma 3, we obtain that

IP(Ss € B) — P(Y, € B)|

< E | sa Af(S0) — Afa(S) / DiSa(=DiL™' 1) ju(dv) "
X

+2e14 / E[max{0, DSy — 1}(—DL™'S4)] pt,(dx) .
X

It follows from Lemmas 2 and 3 that

E | Afs(S1) / DuSa(=DL™'$3) ju (dv)
X

=E AfB(SA(n,))/ ko > h(x..xe)
X

(X ey kal)Enf_;l

k
X Z Z he(x,x1, ..., x¢—1) | Me(dx)
(=1

(X ey xg_l)enﬁ;l

Consequently, we can deduce from Lemma 1 that

E | Afs(Sy) / D Sa(—DxL™'S4) 11,(dx)
X

lo|

k
—ky > [ Elan(s|ne 2

(=1 0€Mk=14=1) 7|4, i=1

(h(x. ) ® he(x.2))y (X1 -2 Xo) 17T (X1 X))
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For the particular choice £ = k and || = k — 1 we have

lol
/ E |:Af3 (SA (77; + ZSX,)):| (h(x,) ® he(x, .))U(x1 ..... Xiol)
lol+1 =l

Mlol-l-l d(x,xy, ..., Xio]))

k—1
=% E[Afs (sA (n,+zaxi))} h(xr, o) (A )
’ i=1

Xk
k—1
=k1! E[Afg (sA (n,+st,.))—AfB<sA(n,))] h(xr, ) pf (A, )
Xk i=1
+ 2 [ BLARE ] A x) @G 0)
J
1 k—1
=4 E[Afg (sA (n,+28xi))—AfB(sA(n,))] h(xr, ) g (A )
Xk i=1

1
+ HE[A]CB(SA)]SA .

Since there are (k — 1)! partitions o € I1(k — 1,k — 1) with |o| = k— 1, we obtain
that

E |:SAAfB(SA) — Afp(Sa) / D Sa(—=D:L7'Sy) Mt(dx):| '
X

Ll

(h(x, ) ® he(x, )y (1o X)) TG X1 X))

k—1
+ / E |:Af3 (SA (m + 25)) - AfB(SA(m))]
i=1

h(xi,..., x) o d(xys X))

Ské >

0 €M (k—1,6—1)

Xlol+1
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Now (11) and the definition of o4 imply that, for £ € {1, ..., k},

lo|

> / E| Afs | Sa|n+) 6

€M (k=1.6=1) 10 1 i=1

(76, ) ® he(x, ), (er. o) (@G x1 - 20)))
<epalHe(k—1,£—1)|0a.

Hence, the first summand above is bounded by

k
keva Y |Me(k—1.£—1)oa.
(=1

By (11) we see that

k=1
E |:Af3 (SA (ﬂt + Z 5x,-)) - AfB(SA('?t))]’
i=1

k-1
< 2e14E |:SA (ﬂr + Z&g) - SA(’?t):| :

i=1

and the multivariate Mecke formula for Poisson point processes (see [18, formula
(1.11)]) leads to

E [(SA(U, + 28)) - SA(’]r):|

k!
- Z N |1|)' > X, Y1, - Vi)

P#IC{l,..., Ol i m)e,]t#m

k!
= G e

PAICAL.....
where for a subset I = {i1,...,ij;} C {1,...,k— 1} we use the shorthand notation
xy for (x;,, ... ,x,}). Hence,

h(.x1, s ,-xk) Hl;(d(-xls ce ,.Xk))

/

Xk

k—1
E [AfB (SA (n, +> SX,.)) - AfB(SA(nt)):|
i=1
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<2614 / > ) = |I|)'h(x1,.. ) ks x)

sk BAICL. k—1}

<2614k — 1)oa .

This implies that

E SAAfB(SA) —_ AfB(SA)/DxSA(—DxL_ISA) p,,(dx)
(15)

k
< 51,A(kz [Ma(k—1,€ = D) +2k12" - 1)) 04 =:Cré1404-
=1

For the second term in (14) we have

2 / E[ max{0, D.Sx — 1}(—D:L™"Sx)] ftr(dx)

?T'Il\)

/ E[ max{0, D,Sx — 1}DxSa] p.(dx)
X

+2 | E[ max{0, DSy — 1} |D<L™"Sa + D, Sa/k|] pi(dx)

%\

??‘IN

<2 [ @51 - D083 e
X

+2

%\

E ,/DXSA(DXSA 1) DL Sy + DS /k|] 11:(dx)

<3 / E[(D:Sa — 1)DxSa ] pue(d) + / E[IDL™'Sa + DiSa/k?] i (d) .
X X

It follows from Lemmas 2 and 1 that

/ E[(D,Ss — 1)DyS4] 1 (dx)

X

— e > [t @, aud @ -k [ not

X o€M(—1k=D), <k
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Since there are (k — 1)! partitions with |o| = k — 1 and for each of them

1
(h(x,?) @ h(x,-))o (X1, ..., X|5) = Eh(x, Xty os X)) s

this leads to

/ E[(D.Ss — 1)D,S4] 1 (dx)

X

—2 Y[ [oe ®ne,an @)

CEML(k—1k=1 iy

< K|Mg(k—1,k=1)|oa.

Lemmas 2 and 3 imply that

D.L7'Sy + DySa/k = —Z Z he(e,xi, o xe-1)
=1 (x,..., xz—l)enf.;l

so that Lemma 1 yields

/ E[|D.L™"Ss + DuSa/k?] (@)
X

/Z > /(h (x2) @ Iy, ))o dus”! ()
ij=loel(i—1,j— l)xln\
k—1

<> G 1.j-1lea.

ij=1

From the previous estimates, we can deduce that

261 [ E[max{0. D53~ -DL™'50)] ()

X
k1

< 51(3k2|17¢(k— Lk—1)]+ Z [I1(i—1,j— 1)|)QA =: 281404 -
ij=1

(16)
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Combining (14) with (15) and (16) shows that

drv(Sa. Y) < |sa —s| + (C1 + C2)er 404

which concludes the proof. O

Remark 12 As already discussed in the introduction, the proof of Proposition 1—
the main tool for the proof of Theorem 1—is different from that given in [29].
One of the differences is Lemma 3, which provides an explicit representation for
—D,L™'S, based on Mehler’s formula. We took considerable advantage of this in the
proof of Proposition 1 and remark that the proof of the corresponding result in [29]
uses the chaotic decomposition of U-statistics and the product formula for multiple
stochastic integrals (see [18]). Another difference is that our proof here does not
make use of the estimates established by the Malliavin—Chen—Stein method in [21].
Instead, we directly manipulate the Chen—Stein equation for Poisson approximation
and this way improve the rate of convergence compared to [29] . A different method
to show Theorems 1 and 2 is the content of the recent paper [7].

4.3 Poisson Approximation of Classical U-Statistics

In this section we consider U-statistics based on a binomial point process ¢,
defined as

SA=l Yo L{f(n.....x) €A},

where f is as in Sect.2 and A C R is bounded and measurable. Recall that in the
context of a binomial point process £, we assume that ©(X) = 1. Denote as in the
previous section by s4 := E[S4] the expectation of S4. Notice that

54 = () / B o) @) (17)
Xk
with A(x ..., x) = (K) 7' L{f(x1, ..., x0) € A}

Proposition 2 Let Sy be as above and let Y be a Poisson distributed random
variable with mean s > 0 and define

1<{<k—1

2
04 1= max (n)Zk_zf( / h(xl,...,xk),uk_[(d(xul,.--,xk)))

x¢ Xk—t

pi(dxr, ... xe) -
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Then there is a constant C > 1 only depending on k such that

drv(Sa,Y) < |sA—s|+Cm1n{1 l}(g?/4+ 32)

Proof By the same arguments as at the beginning of the proof of Proposition 1 it
is sufficient to assume that s = s4 in what follows. To simplify the presentation we
put N :={I C {l1,...,n}:|I| =k} and rewrite S4 as

Sa= ) Lf(X) €A},

IEN

where X1, ..., X, are i.i.d. random elements in X with distribution x and where X;
is shorthand for (X;,,...,X;) if I = {ij,..., ix}. In this situation it follows from
Theorem 2 in [1] that

k—1
arv(s.7) <min {1, ST PG00 €42+ X X BUM) € ARG € 4)

IEN r=1 |IFJ\§\N=r
+mm{1 —} ZZ > P(f(X)) € Af(X)) € A).
IEN r=1 JeN
[INJ|=r

Since s4 = E[Ss] = (")" T P(f(X1,...,X;) € A), we have that

k—1
D IPUE) €A+ D P(f(X) € AP(f(X)) € A)
IEN r=1 JEN
[INJ|=r
e [ (K
S () 2 2 ()

[INJ|=r

“u (5 0)6)

(k; SA Zk(n— 1)k 1

- Zkk!sA

n
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For the second term we find that

k—1
D30 P(f(X) € Af(X)) € A)

IEN r=1 JeN
[1nJl=r

e A (k\ (n—k
=WZ , k—r ]P)(f(Xl,...,Xk)GA,f(Xl,...,Xr,Xk+1,...,X2k_r)EA)

r=1
_ Sk (n—k\ (k)2
= 2o

Putting C := 2¥k! proves the claim. O

4.4 Proofs of Theorems 1 and 2 and Corollaries 1 and 2

Proof (of Theorem 1) We define the set classes
I={I=(a,b]:a,beR,a<b}

and

V={v=|Jl:neNLeLi=1...n}

i=1

From [15, Theorem 16.29] it follows that (#'&;),~¢ converges in distribution to a
Poisson point process ¢ with intensity measure v if

lim P(§(77V) = 0) = P(§(V) = 0) = exp(-v(V)), VeV, (18)
and
,ETOP(E’(F”) >1)=PEJ) > 1) =1-(1+v{))exp(—v{)), IT€l. (19

Note that I C V and that every set V € V can be represented in the form

V=|J@.b] with aj<by <--<a,<b, and neN.

i=1



292 M. Schulte and C. Thile

For V € V we define the Poisson U-statistic

Sya=— Y WfG....x)erV},

which has expectation

E[Sv,] = %E Z 1{f(x1,...,xx) €7V}

[ETR xk)eﬂf;e
n 1 — -
=Y B X MfGnm) € bl = Y alanb).
i=1 (X ey Xk)Enf# -

Since £(V) is Poisson distributed with mean v(V) = >_I_, v((a;, b;]), it follows
from Proposition 1 that

n

Y aainb) =Y v((a; bi])' + Cri(Vmax)
i=1

i=1

drv(Sv., E(V)) <

with ymax := max{|a,|, |b,|} and C > 1. Now, assumptions (2) and (3) yield that
lim dTV(SV,t, ég'(V)) = 0
—>00

Consequently, the conditions (18) and (19) are satisfied so that (#'&;),~( converges
in distribution to £. Choosing V = (0,y] and using the fact that tVM,(m) > yis
equivalent to S, < m lead to the first inequality in Theorem 1. The second one
follows analogously from V = (—y, 0] and by using the equivalence of tVM,(_m) >y

and S(—yq, < m. |
Proof (of Corollary 1) Theorem 1 with v defined as in (5) yields the assertions of
Corollary 1. O
Proof (of Theorem 2 and Corollary 2) Since the proofs are similar to those of
Theorem 1 and Corollary 1, we skip the details. O
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U-Statistics on the Spherical Poisson Space

Solesne Bourguin, Claudio Durastanti, Domenico Marinucci,
and Giovanni Peccati

Abstract We review a recent stream of research on normal approximations for
linear functionals and more general U-statistics of wavelets/needlets coefficients
evaluated on a homogeneous spherical Poisson field. We show how, by exploiting
results from Peccati and Zheng (Electron J Probab 15(48):1487-1527, 2010)
based on Malliavin calculus and Stein’s method, it is possible to assess the rate
of convergence to Gaussianity for a triangular array of statistics with growing
dimensions. These results can be exploited in a number of statistical applications,
such as spherical density estimations, searching for point sources, estimation of
variance, and the spherical two-sample problem.

1 Introduction

1.1 Overview

The purpose of this chapter is to review some recent developments concerning com-
putations of Berry—Esseen bounds in two classical statistical frameworks, that is:
linear functionals and U-statistics associated with wavelets coefficients evaluated on
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spherical Poisson fields. These statistics are motivated by some standard problems
in statistical inference, such as: (1) testing for the functional form of an unknown
density function f(-); (2) estimation of the variance; (3) comparison between two
unknown density functions f(-) and g(-) (the so-called two sample problem). While
the former are indeed among the most common (and basic) problems in statistical
inference, we shall investigate their solution under circumstances which are not
standard, for a number of reasons. Firstly, we shall consider the case of directional
data, e.g., we shall assume that the domain of the density functions f(-) and g(-) is a
compact manifold, which we shall take for definiteness (and for practical relevance)
to be the unit sphere S C R3. Note that all the arguments we review can easily
be extended to S¢, d > 2 (or, with more work, to other compact manifolds), but
we shall not pursue these generalizations here for brevity and simplicity. Secondly,
as opposed to most of the existing statistical procedures, we shall focus on “local”
tests, e.g., we shall allow for the possibility that not all the manifold (the sphere)
is observable, but possibly only strict subsets. Finally, and most importantly, we
shall consider classes of “high-frequency” tests, where the number of procedures
to be implemented is itself a function of the number of observations available, in
a manner to be made rigorous later. For all these objectives, but especially for the
latter, the Malliavin—Stein techniques that we shall adopt and describe turn out to
be of the greatest practical importance, as they allow, for instance, to determine
how many joint procedures can be run while maintaining an acceptable Gaussian
approximation for the resulting statistics.

Malliavin—Stein techniques for Poisson processes are discussed in detail in [4]
of this volume. Our specific purpose, in view of the previous considerations, is
to apply and extend the now well-known results of [23, 24] (see also [21]) in
order to deduce bounds that are well adapted to the applications we mentioned,
e.g., those where the dimension of a given statistic increases with the number
of observations. Our principal motivation originates from the implementation of
wavelet systems on the sphere in the framework of statistical analysis for cosmic
rays data. As noted in [7], in these circumstances, when more and more data become
available, a higher number of wavelet coefficients is evaluated, as it is customarily
the case when considering, for instance, thresholding nonparametric estimators. We
shall hence be concerned with sequences of Poisson fields, whose intensity grows
monotonically; it is then possible to exploit local normal approximations, where the
rate of convergence to the asymptotic Gaussian distribution is related to the scale
parameter of the corresponding wavelet transform in a natural and intuitive way.
Moreover, in a multivariate setting the wavelets localization properties are exploited
to establish bounds that grow linearly with the number of functionals considered;
it is then possible to provide explicit recipes, for instance, for the number of joint
testing procedures that can be simultaneously entertained ensuring that the Gaussian
approximation may still be shown to hold, in a suitable sense. These arguments are
presented for both linear and U-statistics; proof for the latter (which are provided
in [5]) are considerably more complicated from the technical point of view, but
remarkably the main qualitative conclusions go through unaltered.
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In Sect.2 we review some background material and notation on Poisson pro-
cesses, Malliavin—Stein approximations, and spherical wavelets/needlets. In Sect. 3
we review results on linear functionals, while in Sect.4 we focus on nonlinear
U-statistics. Throughout the chapter, we discuss motivating applications and high-
light avenues for further research; for the proofs, at most main ideas and quick
sketches are provided, but we provide full references to the existing literature
whenever needed.

2 Background

2.1 Poisson Random Measures and Malliavin—Stein Bounds

Throughout this chapter, we take for granted that we are working on a suitable
probability space (£2, A, P). We work within the general framework outlined in [15],
namely: (X, 27, n) is a o-finite measure space, and 7 is a proper Poisson random
measure on (X, 27) with intensity measure . For p > 1, we denote by L the class
of those random variables F such that E|F|” < oo and F = f(5), P-a.s., where f
is a representative of F. Recall that f is a measurable function from N, (the class
of all measures on (X, Z) taking values in Z U {4o0})—see [15, Sect. 1.2] for
more details. We will, however, specialize this general framework for the purpose
of the present chapter: we take X = R x S?, with 2~ = B(X), the class of Borel
subsets of X. The control measure p of 1 is taken to have the form u = p x v,
where p is some measure on R and v is a probability measure on S? of the form
v(dx) = f(x)dx, where f is a density on the sphere. We shall assume that p({0}) = 0
and that the mapping p — p([0, 7]) is strictly increasing and diverging to infinity as
t — 0o. We also adopt the notation

R; = p([ov t])s t>0,

that is, ¢ +— R, is the distribution function of p. We shall also assume f(x) to be
bounded and bounded away from zero, e.g.,

& <f(x) <&, somely, ¢ >0, forallxeS? €))

To simplify the discussion, we shall take p(ds) = R - £(ds), where { is the Lebesgue
measure and R > 0, in such a way that R, = R - 1.

We now state two Stein bounds for random variables living in the first chaos
associated with the Poisson measure 1. These statements are specializations of the
general results presented in [4]. In what follows, we shall use the symbols 7 (f) and
(), respectively, to denote the Wiener—Ito integrals of f with respect to 1 and with
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respect to the compensated Poisson measure
1(A) = n(4) — u(A), AeB(X),

where we use the convention 7(A) — w(A) = oo whenever ((A) = oo (recall that
W is o-finite). We shall consider Wiener—It6 integrals of functions f having the form
f = liq x h, where t > 0 and h € L*(S?,v) N L'(S?, v). For a function f of this
type we simply write

n(f) = n(lpg xh) :=mn(h), and 7(f) = 7(lpg x h) := 7(h).

Observe that, for fixed ¢, the mapping A > 7;(1,4) defines a Poisson measure on
(S?, B(S?)), with control R, - v := v,.
Theorem 1 Let the notation and assumptions of this section prevail.
1. Let h € L*(S%,v) := L?>(v), let N ~ N(0, 1) and fix t > 0. Then, the following
bound holds:

dw (i (h),N) < |1 = ||l

+ / () Pui(da).

S2

(82,1

where dy denotes the Wasserstein distance as defined in [4, Sect. 6.2.1].
2. For a fixed integer d > 1, let N ~ Ny (0,%), with X a positive definite
covariance matrix and let

F; = (Ft,ls e sFt,d) = (ﬁr (hr,l) PO ﬁr (hr,d))

be a collection of d-dimensional random vectors such that h, , € L*(v). If we call
I the covariance matrix of F,, then:

d (FN) < | 7| IZ 18 15 = Dl

2 3 !
S 1y 3 [ s ] s O 09,

ijk=1 &

< [ 57, IZ13 15 = Tl

PVIT s d
+— Z =2 1Sl /|ht,i<x)|3w(dx>,
=1

where ||-|\op and ||- || i.s. stand, respectively, for the operator and Hilbert—Schmidt
norms and where the distance d, is the one defined in [4, Sect. 6.2.1].
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Remark 1 As pointed out earlier, Theorem 1 is a specialized restatement of [4,
Theorems 7 and 14].

It should be noted that the convergence in law implied by Theorem 1 is in fact stable,
as defined, e.g., in the classic reference [10, Chap. 4].

2.2 Needlets

In this subsection, we review very quickly some simple and basic facts on the
construction of spherical wavelets. Recall first that the set of spherical harmonics

Y 1=0m=—1,....0}

provides an orthonormal basis for the space of square-integrable functions on the
unit sphere L* (S?, dx) := L? (S?), where dx stands for the Lebesgue measure on
S? (see for instance [1, 11, 17, 32]). Spherical harmonics are eigenfunctions of the
spherical Laplacian Ag corresponding to eigenvalues —/ (I + 1), e.g. Age V), =
—I(l+ 1)Y},,. For every [ > 0, we define as usual X as the linear space given by the
restriction to the sphere of the polynomials with degree at most /, e.g.,

1

X, :@span{YkW,:m:—k,...,k},
k=0

where the direct sum is in the sense of L? (S?). It is well known that for every
integer [ = 1, 2, ..., there exists a finite set of cubature points Q; C S?, as well as a
collection of weights {A,}, indexed by the elements of Q;, such that

vresi [ fodr= 3" A,
s? neQ
Now fix B > 1, and write [x] to indicate the integer part of a given real x. In what
follows, we shall denote by X; = {&} and {A;}, respectively, the set Qpp+1) and
the associated class of weights. We also write K; = card{X;}. As proved in [19, 20]
(see also e.g. [3, 25, 26] and [17, Chap. 10]), cubature points and weights can be
chosen to satisfy

—2j 2j
A]k%B ],I{j%B],

where by a & b, we mean that there exists ¢, c; > 0 such that cja < b < c;a.

Fix B > 1 as before, as well as a real-valued mapping b on (0, 00). We assume
that b verifies the following properties: (1) the function b (-) has compact support
in [B~',B] (in such a way that the mapping ! + b () has compact support
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inl € [B’ ! B"H]) (2) for every £ > 1, Z 2oV (EB™) = 1 (partition of unit
property), and (3) b(-) € C* (0, 00). The collect1on of spherical needlets {yj},
associated with B and b(-), are then defined as a weighted convolution of the
projection operator L;({x, y)) = Z Yim (x) Yy (), that is

m=—1

Y @) = \JAx e ( ) x. &) @)

The properties of b entail the following quasi-exponential localization property
(see [19] or [17, Sect. 13.3]): forany 7 = 1, 2, .. ., there exists k; > 0 such that for
any x € S,

kB

V()| < (1 4 Biarccos ({x, &))"

Note that d(x,y) := arccos ({x,y)) is indeed the spherical distance. From local-
ization, the following bound can be established on the L* (Sz) norms: for all
1 < p < 400, there exist two positive constants g, and ql’, such that

') < il oy = (). ®

In the sequel, we shall write

Bix == (f. lﬁjk)Lz(Sz) = /f () Yjx (x) dx
s2

for the so-called needlet coefficient of index j, k. Our aim in this chapter is to
review asymptotic results for linear and nonlinear functionals of needlet coefficients
given by

N;
ﬁ,»FZW(Xi), j=12,..., k=1,...,K, 4)
i=1
where the function v is defined according to (2), and where {Xi, ..., Xy, } represent

the points in the support of some random Poisson measure.

2.3 Needlet Coefficients as Wiener-Ito Integrals

The first step to be able to exploit the existing results on Malliavin—Stein approxi-
mations is to express our needlet coefficients as Wiener—Ito integrals with respect to
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a Poisson random measure. For every j > 1 and every k = 1,...,N;, consider
the function ¥ defined in (2), and observe that V¥ is trivially an element of
L3(S?,v) N L2(S%,v) N LY(S?, v). We write

2 / Y2 @fe)dr. by = / Vi (0 ().
2 2

Observe that, if f(x) = % (that is, the uniform density on the sphere), then by, = 0
for every j > 1. On the other hand, under (3),

é.l H wjk Hiz(sz) =< O']i =< §2 ” ij ”iz(sz) .

Note that (see (3)) the L>-norm of {wjk} is uniformly bounded above and below,

and therefore the same is true for {a k} For every t > 0 and every j, k, introduce
the kernel

(Rz)( ) = wjk () . xe SZ’
VR
and write
B =i ()= 0 Wi = ¥ i@ & [ 500w,
2 x€supp(n;) )

&)

The random variable ,gj(f Y can always be represented in the form

s?
k) (Zm( D (X) — Rrbjk)
re R Rtajk ’
where {X; : i > 1} is a sequence of i.i.d. random variables with common distribution

v, and independent of the Poisson random variable 7};(S?). Moreover, the following
relations are immediately checked:

w0 ()]

This representation will provide the main working tool for deducing Malliavin—
Stein bounds for linear and U-statistics on spherical Poisson fields. We start first
with the linear case, which is discussed in [7].
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3 Linear Statistics

The joint distribution of the coefficients {,éjk} (as defined in (4)) is required in
statistical procedures devised for the research of so-called point sources, again for
instance in an astrophysical context (see, e.g., [31]). The astrophysical motivation
can be summarized as follows: we assume that under the null hypothesis, we are
observing a background of cosmic rays governed by a Poisson random measure on
the sphere S?, with the form of the measure 7,(-) defined earlier. In particular, 7, is
built from a measure 7 verifying the stated regularity conditions, and the intensity
of u;(dx) = E[n,(dx)] is given by the absolutely continuous measure R, - f(x)dx,
where R, > 0 and f is a density on the sphere. This situation corresponds, for
instance, to the presence of a diffuse background of cosmological emissions. Under
the alternative hypothesis, the background of cosmic rays is generated by a Poisson
random measure of the type:

P
@) = n)+ Yo [ 5, max.
p=1 A

where {£|,...,£p} C S?, each mapping ¢ > n,(p) is an independent Poisson point
process over [0, co) with intensity A,, and

/ Se,()dx =17 <= {§, € A} .
A
In this case, one has that ) is a Poisson measure with atomic intensity

P
i) = Bl @] = R, [ foar+ Y a0 [ 5 e,
A A

p=1

In this context, the informal expression “searching for point sources” can then be
translated into “testing for P = 0” or “jointly testing for A, > Oatp = 1,...,P.”
The number P and the locations {£i, ... &p} can be in general known or unknown.
We refer for instance to [9, 30] for astrophysical applications of these ideas.

3.1 Bounds in Dimension One

The following result is proved in [7], and it is established applying the content
of Theorem 1, Part 1, to the random variables ,3;,5’) introduced in the previous
subsection. In the next statement, we write N ~ N(0,1) to denote a centered
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Gaussian random variable with unit variance. Recall that {, = sup,es |f (*)],
p > 1, and that the constants g, ql/, have been defined in (3).

Proposition 1 (See [7]) For every j, k and every t > 0, one has that

) (43)°¢B
i)« 52

It follows that for any sequence (j(n), k(n), t(n)), ,3]((1:;(,:()3 )
to N, as n — oo, provided B¥" = 0(Ry) (remember that the family {0y} is
bounded from above and below) .

The Gaussian approximation that we reported can be given the following heuristic
interpretation. It is natural to view the factor B~ as the “effective scale” of the
wavelet, i.e., the radius of the region centered at §; where the wavelet function
concentrates its energy. Because needlets are isotropic, this “effective area” is of
order B~%. For governing measures with bounded densities which are bounded away
from zero, the expected number of observations on a spherical cap of radius B~

around & is hence given by

converges in distribution

card {Xi 2d(Xi, &) < B_j} ~ R, / f(Ep)dx,

d(x.gjx)<B~

where

LB UR <, / FlEdx < GER,
d(x)<B

Because the Central Limit Theorem can only hold when the effective number of
observations grows to infinity, the condition B~%¥R, — oo is consequently rather
natural.

3.2 Multidimensional Bounds

A natural further step is to exploit Part 2 of Theorem 1 for the computation of
multidimensional Berry—Esseen bounds involving vectors of needlet coefficients of
the type (5). We stress that it is possible here to allow for a growing number of
coefficients to be evaluated simultaneously, and investigate the bounds that can be
obtained under these circumstances. More precisely, it is possible to focus on

3R ._ (BR) g(R:)
- ( J@Oky? 'BJ'(f)kdz)’
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where d; — 00, as t — oo. Throughout the sequel, we shall assume that the points
at which these coefficients are evaluated satisfy the condition:

1

in d (Ej([)kl ’ Ei(f)kZ) ~ ©

klyék2=l ..... d,

§

where the symbol = indicates in general that the ratio of two positive numerical
sequences is bounded from above and below. Condition (6) is rather minimal; in
fact, the cubature points for a standard needlet/wavelet construction can be taken to
form a (d,)_l/ 2 net [2, 8, 19, 25], so that the following, stronger condition holds:

: 1
inf (o Gow) ~ sup d (o> Eow) > N

The following result is the main achievement in [7].

Theorem 2 Let the previous assumptions and notation prevail. Then for all T =
2,3..., there exist positive constants ¢ and c’, (depending on t, {1, > but not from
t,j(t),d(t)) such that we have

- cd,
dy (ﬁgR’),N) < — -
s (1+ B infy,2,=1....q,d ok §ior))

N2 cd,B®

8 2 2 2
\/ Ri050, %o %ok

Under tighter conditions on the rate of growth of d;, B") with respect to R;, it is
possible to obtain a much more explicit bound, as follows:

Corollary 1 Let the previous assumptions and notation prevail, and assume more-
over that there exist o,  such that, as t — 00

B~ R, O<a<l1, d~R, 0<pB<2a

Then, there exists a constant k (depending on {\, (>, but not on j, d;, B) such that

5 d,B/®
(R) t
dy ( Jj@.’ Z) =k \/E ’ %

for all vectors ( N;,fl’), cees ,5;,5’1)), such that (6) holds.

To make the previous results more explicit, assume that d; scales as B¥";
loosely speaking, this corresponds to the cardinality of cubature points at scale j,
so in a sense we would be focussing on the “whole” set of coefficients needed for
exact reconstruction of a bandlimited function at that scale. In these circumstances,
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however, the “covariance” term A(f), i.e., the first element on the right-hand side
of (7), is no longer asymptotically negligible and the approximation with Gaussian
independent variables cannot be expected to hold (the approximation may however
be implemented in terms of a Gaussian vector with dependent components).

On the other hand, for the second term, convergence to zero when dj;,) ~ B
requires B¥" = o(4/R;). In terms of astrophysical applications, for R, ~ 10'2
this implies that one can focus on scales until 180°/B/ ~ 180°/10? ~ 2°; this is
close to the resolution level considered for ground-based cosmic rays experiments
such as ARGO-YBJ (see [9]). Of course, this value is much lower than the factor
B = o(+/R;) = 0(10°) required for the Gaussian approximation to hold in the
one-dimensional case (e.g., on a univariate sequence of coefficients, for instance
corresponding to a single location on the sphere).

As mentioned earlier, in this chapter we presented the specific framework of
spherical Poisson fields, which we believe is of interest from the theoretical and the
applied point of view. It is readily verified, however, how these results continue to
hold with trivial modifications in a much greater span of circumstances, indeed in
some cases with simpler proofs. For instance, assume that one observes a sample of
i.i.d. random variables {X;}, with probability density function f(-) which is bounded
and has support in [a, b] C R. Consider the kernel estimates

. 1 < X, — Xk
nXnk) = ; K{———— ), 8
Jao) nB_,; ( = ) ()
where K(-) denotes a compactly supported and bounded kernel satisfying standard
regularity conditions, and for each j the evaluation points (x,0. . .. , X,) form a B7-
net; for instance
b—a

. k=0,1,....B.

a=X0 <Xy <--<Xp=>b, xyu=a+k 5

Conditionally on 7,([a, b]) = n, (8) has the same distribution as

b

oty 1= —s [ K (“55%) e

a

where 7, is a Poisson measure governed by R; x [, f(x)dx for all A C [a,b].
Considering that 1% — 1 a.s., a bound analogous to (7) can be established with little
efforts for the vector f,, (x,) = {fn(x,,l), e, fn(an,-)}. Rather than discussing these

developments, though, we move to more general nonlinear transforms of wavelets
coefficients, as considered by Bourguin et al. [5].



306 S. Bourguin et al.
4 Nonlinear Transforms and U-Statistics

In the sequel, it is convenient to rewrite the needlet transforms in the following,
equivalent version:

08 = fie X () 1) o= 251,281

leA;
We shall repeatedly use the following bounds on their L7-norms
CPB/(‘D_Z) < || 4 Hp,(sz) < Cij(”_z). 9)

We shall now review some results on U-statistics of order 2 (see [14]) on the sphere,
so we have as before X = [0, 7] x S?, 2" being the corresponding Borel o-field and
w = u;(x) ;== p([0,7]) x v (x), x € S* such that v is absolutely continuous with
respect to the Lebesgue measure over the sphere, allowing f to be its corresponding
density function such that

v (dx) = f (x) dx.

Writing as before 7,(dx) = n,(dx) — u,(dx) to be the compensated Poisson random
measure, we obtain

Ug ()= > he(xy): (10)

(xy)Enk
we shall focus in particular on the kernel
hie (e, y) = (Y56 §) — Y0 6))°. (1D

It is readily seen that statistics such as (10) provide a natural estimator of

Mg, == E[Ug (0] = / hie (x, )7 (dx. dy) = 2R} (G<2> - G?n) :
S2xS?

where

Gieln) = By [y 6)] = / Y @ () dx (12)
SZ

and

Gie(2) — G&(1) = By [V (. 6)] — By [¥;(. H)] 1= 0} (€)
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is the conditional variance of ¥;(X;; &), e.g., the variance of ¥;(X; &) for X a single
random variable with density f(-). As such, it can be used as a goodness-of-fit testing
procedure, or to check uniformity (f(-) = (4)™").

Applying [14, Theorem 1], we get

Us () = Bl () + 11 | 2 / e e ) a(dy) | + / e (e, y)v2(d. dy)
S2 S2xS2

— ilhete) + 1 (1 @)+ [ htevianay).
$2xS§?

where

h,(-é”) = / hjg (x, y) pe (dy) -
S?

As for the linear case, we shall then introduce a normalized process

where

Mes = B[U 0] = [ hetuyydandy) = 2 (Go ~ G )

S2xS§?

and
Vi := Var[Ug ()] = Var | D~ hig(x,)
(xy)er,

Here and in the sequel, we write for brevity G, rather than Gj(n) when no
confusion is possible. It can be shown that (see [5] for details)

Vie, = R} i + 0 (R)),

where

Ty = [4 ((0,5(4) — Gfg(Z)) +4 (ng(z) - Gfg(l))z)} :
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We can hence focus on the (Hoeffding) decomposition

Uew =1 (B 09) + B (. 9)). (13)
where
7 hje (x,y)
hjf (xv y) = R A
VR? Zie
and

h/('sl’t) ) foo hie e, y) e (dy) .

VBT VR Zje

It is then possible to establish the following result

) =

Theorem 3 As R, — oo, for any j > 0 and § belonging to set of cubature points
Q9 C S? ,

— s

t

~ cp
dw (Ujer, N) =

where N denotes a standard Gaussian variable.

For details of the proof, we refer to [5]. The main ideas can be sketched as follows;
for any j, £, in the decomposition (13), it is possible to show that

E[ (L (x. )] = 0 (1%) ’

so that I; (izjg’t) (x) ) is the dominant term as R, — oo . Therefore we apply again
Theorem 1, Part 1, with the help of the following technical result.

Lemma 1 Let I = {ki,... ko - S ki = Kok # k; Vi 1,

D
Ly (1. X0, 0 Xp) = Y gk | | W5 ()

{kl ..... kD}EF i=1
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and Cy, as defined in (9). Hence

/ LK(xl,xz,...,xD)v®D(dx1...de)
Sz)®D

D

i(Kk—2D+2Y"2 50
< Z ot l—[Cki B]( 2y, k,-)’

{kl ..... kD}EF i=

where SSi is the Kronecker delta function.

Indeed, the previous Lemma yields the following useful bound:

/ Lk (xl,xz, . ,)CD) p&P (dxl c. dXD) < MBj(K_2D+2N()).

52)®”
From this bound, it is for instance easy to see that
m,B" P < Gie(n) < M,B"?,
where Gj¢ (n) is defined in (12); it follows also that
myB¥ < X < MyBY.

As for the linear case, (3) can be extended to growing arrays of statistics, and then
applied, for instance, to high-frequency local estimates of variances/dispersion or to
the classical two-sample problem. Details and further discussion are provided in [5].
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Determinantal Point Processes

Laurent Decreusefond, Ian Flint, Nicolas Privault, and Giovanni Luca Torrisi

Abstract In this survey we review two topics concerning determinantal (or
fermion) point processes. First, we provide the construction of diffusion processes
on the space of configurations whose invariant measure is the law of a determinantal
point process. Second, we present some algorithms to sample from the law of a
determinantal point process on a finite window. Related open problems are listed.

1 Introduction

Determinantal (or fermion) point processes have been introduced in [27] to represent
configurations of fermions. Determinantal point processes play a fundamental role
in the theory of random matrices as the eigenvalues of many ensembles of random
matrices form a determinantal point process, see, e.g., [18]. The full existence
theorem for these processes was proved in [34], in which many examples occurring
in mathematics and physics were discussed. The construction of [34] has been
extended in [32] with the introduction of the family of a-determinantal point
processes.

Determinantal point processes have notable mathematical properties, e.g., their
Laplace transforms, Janossy densities, and Papangelou conditional intensities admit
closed form expressions. Due to their repulsive nature, determinantal point pro-
cesses have been recently proposed as models for nodes’ locations in wireless
communication, see [28, 37].
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This paper is structured as follows. In Sect. 2 we give some preliminaries on point
processes, including the definition of determinantal point processes, the expression
of their Laplace transform (Theorem 1), Janossy densities (Proposition 3), and
Papangelou intensity (Theorems 2 and 3), cf. [9, 10, 15, 15, 18, 23, 29, 32]. We
also refer to [7, 13, 33] for the required background on functional analysis.

In Sect.3 we review the integration by parts formula for determinantal point
processes and its extension by closability, cf. [8, 11].

In Sect. 4 we report a result in [11] on the construction of a diffusion on the space
of configurations which has the law of a determinantal point process as invariant
measure. To this aim we use arguments based on the theory of Dirichlet forms, cf.
[14, 25] and the appendix. It has to be noticed that the construction of the diffusion
provided in [11] differs from that one given in [36], where alternative techniques are
used.

Section 5 deals with the simulation of determinantal point processes. We provide
two different simulation algorithms to sample from the law of a determinantal point
processes on a compact. In particular, we describe the (standard) sampling algorithm
given in [17] (see Algorithm 1 below) and an alternative simulation algorithm
obtained by specializing the well-known routine to sample from the law of a finite
point process with bounded Papangelou conditional intensity (see, e.g., [19, 20, 23]
and Algorithm 2 below). We show that the number of steps in the latter algorithm
grows logarithmically with the size of the initial dominating point process, which
gives a rough idea of the simulation time required by this algorithm. Finally, we
propose a new approximate simulation algorithm for the Ginibre point process,
which presents advantages in terms of complexity and CPU time.

Finally, some open problems are listed in Sect. 6.

2 Preliminaries

2.1 Locally Finite Point Processes, Correlation Functions,
Janossy Density, and Papangelou Intensity

Let X be a locally compact second countable Hausdorff space, and 2~ be the
Borel o-algebra on X. For any subset A € X, let |A| denote the cardinality of
A, setting |A| = oo if A is not finite. We denote by N; the set of locally finite point
configurations on X:

Ny:={CX : |ENA| <oo forall relatively compact sets A C X}.

In fact, N can be identified with the set of all simple nonnegative integer-valued
Radon measures on X (an integer-valued Radon measure v is said to be simple
if for all x € X, v({x}) € {0, 1}). Hence, it is naturally topologized by the vague
topology, which is the weakest topology such that for any continuous and compactly
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supported function f on X, the mapping

£ (f.E) =) f0)

yeé

is continuous. We denote by .#; the corresponding Borel o-field. For £ € N;, we
write £ U yo = & U {yo} for the addition of a particle at yy and & \ yo = & \ {yo} for
the removal of a particle at y;. We define the set of finite point configurations on X
by

N/:={§ € X: |§] < oo},

which is equipped with the trace o-algebra A/ = JK'N{' For any relatively
compact subset A C X, let Nyj(A) be the space of finite configurations on A,
and #;(A) the associated (trace-) o-algebra. As in [15], we define for any Radon
measure i on X the (i4-)sample measure L* on (N/, 4 by

/ fle) ) = Y - / F(E 5 () - udn), M

n>0
Nr

for any measurable f : N/ — R . Similarly, we define its restriction to the relatively
compact set A € X by

[ ron@ =3 / 1) () - p(d),

N, (4) n>0

for any measurable f : Nyj(A) — R4. A simple and locally finite point process 7 is
defined as a random element on a probability space (§2, A) with values in N;. We
denote its distribution by IP. It is characterized by its Laplace transform £,, which
is defined, for any measurable nonnegative function f on X, by

£ = [ 09 P,
N;

We denote the expectation of an integrable random variable F defined on
(NSa f/K’ P) by

E[F()] := / F(E) P(d).

NS
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For ease of notation, we define by
Eri=ENA,

the restriction of £ € N, to a set A C X. The restriction of P to .#;(A) is denoted
by P4 and the number of points of &4, i.e., £(A) := |§ N A, is denoted by £(A). A
point process 7 is said to have a correlation function p : N{ — [0, co) with respect
to (w.r.t.) a Radon measure p on (X, Z") if p is measurable and

S fe) Pdg) = / £(@) pl@) L (de),

aCé, aENf

for all measurable nonnegative functions f on N/. When such a measure p exists, it
is known as the intensity measure of . For @ = {xi, ..., x}, where k > 1, we will
sometimes write p(a) = pi(x1,...,x) and call p; the k-th correlation function.
Here py is a symmetric function on X*. Similarly, the correlation functions of 7,
w.r.t. a Radon measure p on X, are (if they exist) measurable symmetric functions
o : X¥ — [0, 00) such that

k
E[]_[n(B,-)}= [ ot @) - i
i=1

B X+-XBy
for any family of mutually disjoint bounded subsets By, ..., By of X, k > 1. The
previous formula can be generalized as follows:

Proposition 1 Let By, ..., B, be disjoint bounded Borel subsets of X. Letky, . .. , k,
be integers such that ZLI ki = N. Then,

|
[H(n(B()B)k)']Z / p{xr, - d) pldxr) - - e (dy).

K
Bl X XBy"

We require in addition that p,(x1,...,x,) = 0 wheneverx; = x; for some 1 < i #
Jj < n. Heuristically, p; is the particle density with respect to w, and

pn(xls ce sxn) M(dxl) e M(dxn)

is the probability of finding a particle in the vicinity of each x;, i = 1, ..., n. For any
relatively compact subset A C X, the Janossy densities of n, w.r.t. a Radon measure
w on X, are (if they exist) measurable functions j : A" — [0, co) satisfying for all
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measurable functions f : Ny(A) — [0, 00),

n>0

1
E[fma)]l =) ] /f({xh e X)) Sy (e X)) p(dxn) - (dx). 2
AV!

Using the simplified notation js () := j’ (x1,...,xs), for @ = {x1,...,x,}, where
n > 1, by (2) it follows that j, is the density of P, with respect to L. when
Pk L’j. Now we list some properties of the Janossy densities.

e Symmetry:

jr/l\ (-xo’(l)v LI | -x(T(Vl)) :j}}] (-xls s00y -xn)v

for every permutation o of {1, ..., n}.
* Normalization constraint: for each relatively compact subset A C X,

o 1
S [ ) p@) ) = 1
n=0 'A”

For n > 1, the Janossy density j/, (x1, ..., X,) is in fact the joint density (multiplied
by a constant) of the n points given that the point process has exactly n points. For
n =0, j%(9) is the probability that there are no points in A. We also recall that the
Janossy densities can be recovered from the correlation functions via the relation

” (_1)m
JaGxa, o xn) = Z T Prntm X1, o X, Y1, e Ym) p(dyr) - e (dyn),

m=>0 Am

and vice versa using the equality

1 M-Tn
pn(xlv"'v-xn) = Z%\/}A‘F (-xls---s-xnvyls---sym)M(dyl)"'H(dym)v

m>0 Am

see [9, Theorem 5.4.11].

Following [15], we now recall the definition of the so-called reduced and reduced
compound Campbell measures. The reduced Campbell measure of a point process
n is the measure C,, on the product space (X x Ny, Z° ® .4;) defined by

G xB) = [ Y 1L \ ) Plae).

Ns x€&
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The reduced compound Campbell measure of a point process 7 is the measure CA‘,,
on the product space (N/ x Ny, A/ ® ;) defined by

C)(AxB) = / Y Li@LaE \ o) P(d).

N; aC§, aeN{

The integral versions of the equations above can be written respectively as

[ 1o s = [ hen\ 0P )

x€&

for all nonnegative measurable functions 2 : X x Ny — R4, and

[Haoéaxa=[ ¥ has\ore.

aCé, aEN{

for all nonnegative measurable functions 4 : N/ x N; — R.. Comparing (3) with
the well-known Mecke formula (see (7) in [21]) leads us to introduce the following
condition:

(X)) CGKu®P.
The Radon—Nikodym derivative ¢ of C;, w.r.t. u ® IP is called (a version of) the

Papangelou intensity of 7. Assumption (X') implies that ¢ n < L*®P and we denote

the Radon—Nikodym derivative of én w.r.t. [* ® P by ¢, and call ¢ the compound
Papangelou intensity of . One then has for any § € N;, ¢(0,§) = 1, as well
as for all x € X, ¢(x,&) = c(x, £). The Papangelou intensity ¢ has the following
interpretation:

c(x, §) p(dx)

is the probability of finding a particle in the vicinity of x € X conditional on the
configuration £.
The compound Papangelou intensity verifies the following commutation relation:

cv,nuUé)c(n.§) =cvuUn,é), “)

for all n,v € N/ and £ € N;. The recursive application of the previous relation also
yields

n

c{xr, .. ) 6) = l_[c(xk,g Uxg U---Uxp—y),

k=1

forall xi,...,x, € X and £ € N;, where we have used the convention xy := @.
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The assumption (X'), along with the definition of the reduced Campbell measure,
allows us to write the following identity, known as the Georgii-Nguyen—Zessin
identity:

[ S uee\ P = [ [ 6 e narae, )
53 N, X

for all measurable nonnegative functions # : X x Ny — R. We also have a similar
identity for the compound Papangelou intensity:

[ ¥ wenorw- [ [uepieora@re.  ©

N, aCé aeN/ No N/

for all measurable functions u : N/ x Ny — Ry.

Note that Egs. (5) and (6) are generalizations of Egs. (1.7) and (1.8) of [21]. Indeed,
in the case of the Poisson point process, ¢(z,&) = 1 and ¢(«, §) = 1.

Combining relation (5) and the definition of the correlation functions, we find

Elc(x, m] = p1(x),

for p-a.e. x € X. More generally, using (6), we also have

E[é(a, n)] = p(e). (N

for P-a.e. o € N/.

2.2 Kernels and Integral Operators

As usual, we denote by X a locally compact second countable Hausdorff space and
by 4 a Radon measure on X. For any compact set A C X, we denote by L>(A, 1)
the Hilbert space of complex-valued square integrable functions w.rt. the restriction
of the Radon measure p on A, equipped with the inner product

o8 = / FOF@ ). fog e (A ).
A

where 7 denotes the complex conjugate of z € C. By definition, an integral operator
X : L2(X,u) — L*(X,p) with kernel K : X?> — C is a bounded operator



318 L. Decreusefond et al.

defined by

Xf(x) = /K(x, W) pn(dy), for u-almostall x € X.
X

We denote by P4 the projection operator from L2(X, 1) to L?>(A, i) and define the
operator X4 = P,K P,. We note that the kernel of K4 is given by K4 (x,y) :=
TA(X)K(x,y)LA(y), for x,y € X. It can be shown that K 4 is a compact operator.
The operator X is said to be Hermitian or self-adjoint if its kernel verifies

K(x,y) = K(y,x), for n®?-almost all (x, y) € X>. ®)

Equivalently, this means that the integral operators K, are self-adjoint for any
compact set A C X. If K, is self-adjoint, by the spectral theorem for self-
adjoint and compact operators we have that L?>(A, t) has an orthonormal basis
{(ij}jzl of eigenfunctions of X 4. The corresponding eigenvalues {p,jA}jzl have
finite multiplicity (except possibly the zero eigenvalue) and the only possible
accumulation point of the eigenvalues is the zero eigenvalue. In that case, the kernel
K 4 of X 4 can be written as

Ka(x,y) =Y utot (00A0), ©)

n>1

for x,y € A. We say that an operator KX is positive (respectively nonnegative) if its
spectrum is included in (0, +00) (respectively [0, +00)). For two operators K and
J, we say that K > J (respectively K > J) in the operator ordering if X — J is a
positive operator (respectively nonnegative operator).

We say that a self-adjoint integral operator X 4 is of trace class if

PITAREN

n>1

and define the trace of X4 as TrK,4 = Y-, u2. If K, is of trace class for every
compact subset A C X, then we say that K is locally of trace class. It is easily seen
that if a Hermitian integral operator X : L*(X, u) — L*(X, ) is of trace class,
then X" is also of trace class for all n > 2. Indeed, Tr(X") < ||fK||Z;1Tr(iK), where
|X||op is the operator norm of X.

Let Id denote the identity operator on L?(X, 1) and let X be a trace class operator
on L2(X, ut). We define the Fredholm determinant of Id + X as

_1\n—1
) Tr(X")i | . (10)

n

Det(Id + X) = exp Z

n>1
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It turns out that

Det(ld + X) = Y % / det(K (x;, X;)) 1<ij<n 1(dx1) . . . p(dac,), (11)
n>0 xn
where K is the kernel of X and det(K(x;, xj))1<ij<n is the determinant of the n x n
matrix (K (xi, Xj))1<ij<n- Equation (11) was obtained in Theorem 2.4 of [32], see
also [7] for more details on the Fredholm determinant.
We end this section by recalling the following result from [15, Lemma A .4]:

Proposition 2 Let X be a nonnegative and locally of trace class integral operator
on L*(X, w). Then one can choose its kernel K (defined everywhere) such that the
following properties hold:

(i) K is nonnegative, in the sense that for any ci,...,c, € C and p-a.e.
X1s..., X%, € X, we have Z?\Fl ¢iK(xi, xj)c; > 0.
(ii) K is a Carleman kernel, i.e., K, = K(-,x) € L>(X, u) for p-a.e. x € X.
(iii) For any compact subset A C X, TrK, = fA K(x, x) u(dx) and

Tr (PAXKEP L) = /(Kx,ﬂck—sz)Lz(Am w(dx),
A
fork > 2.

Henceforth, the kernel of a nonnegative and locally of trace class integral operator
X will be chosen according to the previous proposition.

2.3 Determinantal Point Processes

A locally finite and simple point process n on X is called determinantal point
process if its correlation functions w.r.z. the Radon measure y on (X, 2") exist and
are of the form

Pr(xr, ..., xx) = det(K(xi, X)) 1<ij<t

for any ¥ > 1 and xi,...,x; € X, where K(-,-) is a measurable function.
Throughout this paper we shall consider the following hypothesis:

(H1):  The operator X is locally of trace class, satisfies (8), and its spectrum is
contained in [0, 1), i.e., 0 < K < 1d in the operator ordering. We denote by K
the kernel of X.

By the results in [27, 34] (see also Lemma 4.2.6 and Theorem 4.5.5 in [18]), it
follows that under (H1), there exists a unique (in law) determinantal point process
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with integral operator K. In this survey, we shall only consider determinantal
point processes with Hermitian kernel. However, we mention that many important
examples of determinantal point processes exhibit a non-Hermitian kernel, see [2—
6, 24, 35].

Let us now recall the following result from, e.g., [32] (see Theorem 3.6 therein)
that gives the Laplace transform of 7.

Theorem 1 Let K be an operator satisfying (H1) and n the determinantal point
process with kernel K. Then 1 has Laplace transform

L,(f) = Det (Id — K,) .

for each nonnegative f on X with compact support, where ¢ = 1 — e~ and X, is
the trace class integral operator with kernel

K,(x,y) = VoK y)vVe@), xyeX.

Let X be an operator satisfying assumption (H1). We define the operators on
LA(X, p):

J:=0d—%K)"'K, (12)
and
J[A] := (1d — K 4) ™Ky, (13)

where A is a compact subset of X. The operator J is called global interaction
operator, and the operator J[A] is called local interaction operator. We emphasize
that, unlike X 4, J[A] is not a projection operator, i.e., in general J[A] # Pd Pa.
In any case, J[A] has some notable properties, as proved in [15]. First, it is easily
seen that J[A] exists as a bounded operator and its spectrum is included in [0, 400).
Second, J[A] is also an integral operator, and we denote by J[A] its kernel (in fact,
one can even show that J[A] is a Carleman operator, cfr. the beginning of Sect. 3 in
[15]). Third, J[A] is a trace class operator. Finally, by (9) we have

A
JAwy) = ’_‘"MA 0 (el 0),

n>1

forx,y € A.
For o = {x1,...,x} € Ny(A), we denote by det J[A](«) the determinant

det (J[A](xi 7)) 1<ij<k-
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Note that for all kK € IN*, the function
(x1s ...y xp) > detJ[A]($xt, .o X))

is u®k-a.e. nonnegative (thanks to Proposition 2) and symmetric in xi,...,x;
(see, e.g., the Appendix of [15]), and we simply write detJ[A]({x1,...,x}) =
detJ[A](x1, ..., xt). The relevance of the local interaction operator becomes clear
when computing the Janossy densities of the determinantal point process. More
precisely, the following proposition holds.

Proposition 3 (Lemma 3.3 of [32]) Let K be an operator satisfying (H1) and n
the determinantal point process with kernel K. Then, for a compact subset A € X
and n € N*, the determinantal process n admits Janossy densities

j'A(xl, R ,xn) = Det(Id —XK4) detJ[A](xl, e XK, (14)

forxy,...,x; € A. The void probability is equal to j% (9) = Det(Id — K »).

We emphasize that (14) still makes sense if || K|, = 1; indeed the zeros
of Det(Id — K ,4) are of the same order of the poles of detJ[A](xi,...,xt), see
Lemma 3.4 of [32] for a more formal proof.

We now give some properties linking the rank of X, Rank(X), and the number of
points of the determinantal point process with integral operator X.

Proposition 4 (Theorem 4 in [34], See also [18]) Let K be an operator satisfying
(H1) and n the determinantal point process with kernel K. We have:

(a) The probability of the event that the number of points is finite is either 0 or
1, depending on whether Tr(X) is finite or infinite. The number of points in a
compact subset A C X is finite since Tr(X 4) < oo.

(b) The number of points is less than or equal to n € N* with probability 1 if and
only if X is a finite rank operator satisfying Rank(X) < n.

(c) The number of points is n € N* with probability 1 if and only if X is an
orthogonal projection satisfying Rank(X) = n.

We now give the Papangelou intensity of determinantal point processes.

Theorem 2 (Theorem 3.1 of [15]) Let K be an operator satisfying (H1) and n
the determinantal point process with kernel K. Then, for each compact set A C
X, na satisfies condition (X) (with w4 in place of ). A version of its compound
Papangelou intensity ¢ 4 is given by

det J[A](c U £)

f
deae ¢ 2N el

cala.§) =
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where the ratio is defined to be zero whenever the denominator vanishes. This
version also satisfies the inequalities

ea(@, &) > cala, &), and 0 <ca(a, &) <detJ[A](a) < HJ[A](x,x),

15)

whenever £ C &' € Ny(A) and o € Ny(A) \ w.

Let X be an operator satisfying (H1) and let  be the determinantal point process
with kernel K. Let J be the operator defined in (12). As proved in [15], J satisfies
the following properties: it is locally of trace class and its kernel (x,y) +— J(x,y)
can be chosen to satisfy Proposition 2. Moreover, 7 is stochastically dominated by a
Poisson point process with mean measure J(x, x) i (dx) i.e., denoting by P the law

of the Poisson process,
/ fdP < / fdp,

for all increasing measurable f. Here, we say that f is increasing if f(§) < f(&')
whenever £ C &' € N,.
We finally report the following theorem.

Theorem 3 (Theorem 3.6 in [15]) Let X be an operator satisfying (H1) and n the
determinantal point process with kernel K. Then n satisfies condition (X)), and its
compound Papangelou intensity is given by

¢(a, &) = lim ¢p (o, €p,), for L* ® P — almost every(c, £), (16)
n—>oo

where (A,)nen is an increasing sequence of compact sets in X converging to X.

In general (16) does not give a closed form for the compound Papangelou intensity.
In order to write ¢ in closed form, additional hypotheses have to be assumed, see
Proposition 3.9 in [15].

3 Integration by Parts

Hereafter we assume that X is a subset of R¢, equipped with the Euclidean distance,
w is a Radon measure on X and A € X is a fixed compact set. We denote by x)
the ith component of x € R?.
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3.1 Differential Calculus

We denote by GSO(A,]R") the set of all C®-vector fields v : A — R? (with
compact support) and by C(AX) the set of all C*®-functions on A* whose
derivatives are bounded.

Definition 1 A function F : Nyj(A) — R is said to be in ., if

F(¢4) = folgay=0y + Z L ny=nfi(€a), (17
k=1
for some integer n > 1, where for k = 1,...,n, fi € CX(A%) is a symmetric

function and fy € R is a constant.

The gradient of F € .4 of the form (17) is defined by

VNF(£a) = Zﬂ{g(/x):k} Z L=y Vifi(€a), xeA, (18)

k=1 S

where V, denotes the usual gradient on R? with respect to the variable x € A.
For v € C® (A, RY), we also let

VNF(E) =Y VNF(ED) - v0) =D Lga=n Y VWfilEa)-v0).  (19)
k=1

y€€A v€EA

where - denotes the inner product on R,

Next, we recall some notation from [1, 11]. Let Diffy(X) be the set of all diffeo-
morphisms from X into itself with compact support, i.e., for any ¢ € Diff(X),
there exists a compact set outside of which ¢ is the identity map. In particular, note
that Diffy(A) is the set of diffeomorphisms from A into itself. In the following, i,
denotes the image measure of u by ¢.

Henceforth, we assume the following technical condition.

(H2) :  The Radon measure | is absolutely continuous w.r.t. the Lebesgue mea-
sure £ on X, with Radon—Nikodym derivative p = i—’z which is strictly positive
and continuously differentiable on A.

Then for any ¢ € Diffy(A), p, is absolutely continuous with respect to u with
density given by

dpy() _ plp~' ()

= ), 20
e o0 Jac(p™ ) (x) (20)

pp(x) =
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where Jac(¢~")(x) is the Jacobian of ¢! at point x € X. We are now in a position

to give the quasi-invariance result, see [8, 11, 35].

Proposition 5 Assume (H1) and (H2) and let n) be the determinantal point process
with kernel K. Then, for any measurable nonnegative f on A and any ¢ € Diffy(A),

) oy detJ?[A](n)
(fop.m | — YTV
B [eor | —E[e " et } .

We point out that the right-hand side of (21) is well defined since det/[A] > O,
Pj-ae.

3.2 Integration by Parts

Here we give an integration by parts formula on the set of test functionals .#4 and
an extension to closed gradients and divergence operators.
We start by introducing a further condition.

(H3) :  Foranyn > 1, the function
(X1, ..., %) —> detJ[A](x1,...,x,)

is continuously differentiable on A”.

Assuming (H1) and (H3), we define the potential energy U : Ny(A) — R
UlAl(@) := —logdet J[A](x)
and its directional derivative along v € €2 (A, R9)

v, A
VY U[A](£a) = Z]l{ém) “Z d::;[J/[X](]E(j?) ve)

= Z]l{sm) —i Y Uypk(€a) - v(). (22)

yeéa
The term U, in the previous definition is given by

__ VydetJ[A](54) _
Uyi(§a) == —cyletJ[A](gA) on {£(A) = kj.
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Under Condition (H2) we define

iy . YPX)
B* () : ER

and
Bi(Ea) == ) (B () - v() +divv(y), v eCX(ARY),
v€EA

where div denotes the adjoint of the gradient V on A, i.e., div verifies

/ ¢(0) divV(x) dx = / VW) Ve dr, f.g€C®(A).
A

A
The following integration by parts formula holds, see [11].

Lemma 1 Assume (H1), (H2) and (H3), and let n be the determinantal point
process with kernel K. Then, for any compact subset A C X, any F,G € 4
and vector field v € C°(A,RY), we have

E[G(na)VYF(na)] = E[F(na)div)G(na)], (23)
where
diviiG(na) := =VY"G(na) + G(na) (=B (na) + VY U[AI(n4)) -

Next, we extend the integration by parts formula by closability to a larger class of
functionals. We refer to the appendix for the notion of closability. Let

Ly = L*(Ny(A), P 4)

be the space of square-integrable functions with respect to IP 4. It may be checked
that .4 is dense in 2.

For v € C®(A,RY), we consider the linear operators Vs : .4 —> L% and
div)e : #4 —> L2 defined, respectively, by F > VNF and F + div)*F. The
following theorem is proved in [11].

Theorem 4 Assume (H1), (H2), (H3) and

/

AN

3xg/l)detJ[A](x1, . ,xn)f)x(_k) detJ[A](x1, ..., X,)
i J
det J[A](x1, ..., X,)

L get Al ) >03 #(dxy) -+ - pu(dx,) < 00 (24)

foranyn>1,1<i,j<nand1 < h,k <d. Then
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(i) For any vector field v € CX(A,RY), the linear operators Vs and divl,j‘ are
well defined and closable. In particular, we have

VN Ly and  divY(Sa) C L.

(i) Denoting by \ (respectively divyf ) the minimal closed extension of V)
(respectively divljs ), for any vector field v € C® (A, R?), we have

E[Gn VY F10) | = E[Fra)divy GG |

forall F € dom (VY), G € dom (div+).
v

Note that under the assumptions (H1), (H2) and (H3), condition (24) is satisfied if,
for any n > 1, the function

1, ..., x) —> detJ[A](x1, ..., X,),

is strictly positive on the compact A”.

4 Stochastic Dynamics

4.1 Dirichlet Forms

Assume (H1), and let n be the determinantal point process with kernel K. We
consider the bilinear map € defined on .4 x .4 by

E(F.G) :=E [Z VIEF(n4) - V;.“G(m)} : (25)
YENA
For F € ., of the form (17), i.e.,
F(¢4) = folgay=0y + Z L ny=nfi(€a),
k=1

we also define the Laplacian 3 by
HFEEA) = Z]l{sm)=k}
k=1

Y (B0 - VifilEa) = AfiEa) + Usa(6a) - Vifi(€a)) «

Y€EA

where A = —divV denotes the Laplacian operator on R<.
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In the following, we consider the subspace Sy of S consisting of functions F' €
4 of the form

F(¢a) =f{p1.64). - (o, 64) Ligay<kys

for some integers M, K > 1, ¢y, ...,ou € C®(A),f € GEO(IRM). Note that zSZA is
dense in L%l (see, e.g., [25, p. 54]).

Theorem 5 below is proved in [11]. We refer the reader to the appendix for the
required notions of Dirichlet forms theory.

Theorem 5 Under the assumptions of Theorem 4, we have

(i) The linear operator H : Sy —> L%l is symmetric, nonnegative definite, and
well defined, i.e., .’H(&ZA) C Lﬁ. In particular the operator square root 3H'/?
of H exists.

(i) The bilinear form € LEZA x.%s —> R is symmetric, nonnegative definite, and
well defined, i.e., E(.Ss x .%4) C R.

(iii) H'/? and & are closable and the following relation holds:

E(F.G) = E[H'2F(na) K'/2G(na)]. ¥ F.G € dom(H'/2). (26)

(iv) The bilinear form (€, dom(9H1/2)) is a symmetric Dirichlet form.

4.2 Associated Diffusion Processes

We start recalling some notions, see Chaps. IV and V in [25]. We call N the space
of N-valued Radon measures on X, as opposed to N; the space of simple N-valued
Radon measures on X. We denote by N(A) the space of N-valued Radon measures
supported on a compact A € X. We equip N with the vague topology and denote
by .4 the corresponding Borel o-algebra and by .4"(A) the corresponding trace-o-
algebra. Given 7 in the set P(N(A)) of the probability measures on (N(A), 4 (A)),
we call a wr-stochastic process with state space N(A) the collection

My, = (£, A, (A)i=0, M;)=0, Pe)zencay, Pr),
where A = \/TZO A, is a o-algebra on the set 2, (A,);>o is the P,-completed

filtration generated by the process M, : 2 — N(A), P is a probability measure
on (£2,A) forall ¢ € N(A), and P, is the probability measure on (£2, A) defined by

P, (A) = / P.(A) n(df), A€ A
N(A)
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A collection (M4 1, (6;):>0) is called a 7-time homogeneous Markov process with
state space N(A) if 6, : 2 —> 2 is a shift operator, i.e., My 0 6, = M4, 5,1 > 0,
the map & > P;(A) is measurable for all A € A, and the time homogeneous Markov
property

P:(M, € Al Ay) =Py,(M,—5 € A), Pe-as., Ac A, 0<s=<1 &N,

holds. Recall that a 7-time homogeneous Markov process (M4 , (6;):>0) with state
space N(A) is said to be w-tight on N(A) if (M;),>o is right-continuous with left
limits P -almost surely; Ps (Mo = §) = 1 V& € N(A); the filtration (A,)/>¢ is right
continuous; the following strong Markov property holds:

P, (M1 € A|A;) =Py, (M, € A)

P,/-almost surely for all A,-stopping time 7, 7’ € P(N(A)), A € A and ¢t > 0,
cfr. Theorem IV.1.15 in [25]. In addition, a 7-tight process on N(A) is said to be a
s-special standard process on N(A) if for any 7’ € P(N(A)) which is equivalent to
7 and all A,-stopping times t, (t,),>1 such that 7, 1 v we have that M, converges
to M, P,/-almost surely.

The following theorem is proved in [11]. Therein E¢ denotes the expectation under
P:, £ € N(A). Here again, we refer the reader to the appendix for the required
notions of Dirichlet forms theory.

Theorem 6 Assume the hypotheses of Theorem 4, let P be the law of a determi-
nantal point process 1 with kernel K, and € be the Dirichlet form constructed in
Theorem 5. Then there exists a P p-tight special standard process (M p,,, (6:)>0)
on N(A) such that:

1. My p, is a diffusion, in the sense that:

P:({w : t+— M;(w) is continuous on [0, +00)}) =1, E-ae. &£ € N(A).
(27)

2. The transition semigroup of M4 p, is given by

piF(§) ;= E¢[FM,)], & e€N(A), F:N(A)— R square integrable,

and it is properly associated with the Dirichlet form (€, dom(H1/2)), i.e., p;F is
an &-a.c., P s-version ofexp(—tﬂien)F, for all square integrable F : N(A) —
R andt > 0 (where f]-Cien is the generator of €).

3. M p, is unique up to P s-equivalence (we refer the reader to Definition 6.3
page 140 in [26] for the meaning of this notion).

4. My p, is P p-symmetric, i.e.,

E[G(na) pF ()] = E[F(n4) p.G(na)].

for square integrable functions F and G on N(A).
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5. My p, has P4 as invariant measure.

In dimension d > 2, the diffusion constructed in the previous theorem is non-
colliding. Indeed, the following theorem holds.

Theorem 7 Assume d > 2, and the hypotheses of Theorem 4. Then

P:({w € 2 : M,(w) € Ny(A), for any ¢ € [0,00)}) =1, E-ae. £ € Ny(A).

4.3 An Illustrative Example

Let A := B(0,R) C R? be the closed ball centered at the origin with radius R €
(0,1), let {<P;£R)}15k53, denote the orthonormal subset of L?>(B(0, R), £) defined by

k+1 /x® (2)
+ (x_+lx_) , x:(x(l),x(z))EB(O,R), k=1,2,3,

1
® .1
o W= R 'R

T

where ;= £ is the Lebesgue measure on R? and i := +/—1 denotes the complex
unit. We consider the truncated Bergman kernel (see [18]) restricted to A

Kpe(x.y) = ZRW” Pwe®y),  xyeBOR),
k=1

and denote by K, the associated integral operator.

We now discuss the conditions of Theorem 6. First, Kg. is readily seen to
be Hermitian and locally of trace class with nonzero eigenvalues x; := R>*+D,
k = 1,2,3. As a consequence, the spectrum of Kp. is contained in [0, 1) and
the triplet (Kpe, Kge, £) satisfies assumption (H1). In addition, Condition (H2) is
trivially satisfied since y = £ is the Lebesgue measure.

Denoting by 1, the determinantal point process with kernel Kg., the Janossy
densities of 4 are given by

JV 1, .. x) = Det (Id — Kpe)det J[A](x1 . . ., %),
fork=1,2,3, (x1,...,x) € A*, and where the kernel J[A] of J[A] is given by
3 R2(+1)

A& =Y e e ),
h=1
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Moreover, n4 has at most 3 points according to Proposition 4, which means that
j’jl = 0, for k > 4. To prove condition (H3) it suffices to remark that the function

(1, ..o x0) = det(J[A](xp, Xg))1<p.g<k
is continuously differentiable on A*, for k < 3. Condition (24) is trivially satisfied
for k > 3 since as already observed in this case j’j1 = 0. Next, we check that
Condition (24) is verified for k = 3. To that end, note that
J[A)(x1, %2, x3) = A(x1, X2, X3)A(x1, X2, X3)",

where the matrix A := (Apn)1<pn<3 is given by

Rit1 ®)
= =g

and A(x;, x2, x3)* denotes the transpose conjugate of A(x, x, x3). Hence,
det J[A](x1, x2,x3) = |detA(xy, x2, x3)|2,
and since the previous determinant is a Vandermonde determinant, we have

3

3
I+p :
detA(xy, x2,x3) = | | A —RT) l‘[(xl()l) +lx[(72))
p=1 p=1

[T @) —xD) +iG? —22)).
1<p<q=3

So, Condition (24) with k = 3 reduces to

8x@ |detA(xy, x2, X3)|23X(k) |detA(xy, x2, X3)|2
IBE ’ (o) () (dxs) < o,

. |detA(X1,X2,X3)|2
B(0,R)3

forall 1 <i,j <3and1 < h,k <2, and for this it suffices to check

/

B(0.R)?

8xm |det A (x1, X2, x3) |
1

|detA(x1, x2, x3) |2 £(dx1)€(dx2)€(dxs) < oo.
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This latter integral can be written as

/ 2V i A =
s +2 £(dn)E(dxr)L(dxs),
R G e O e e

B(0.R)?

which is indeed finite. Condition (24) may be verified also for k < 3 by taking
into account some properties of generalized Vandermonde determinants, we refer
the reader to [11] for the details. Consequently, by Theorem 6 we have the existence
of a diffusion process properly associated with the determinantal point process with
the Bergman-type kernel Kge.

5 Simulation

5.1 Standard Simulation of Determinantal Point Processes

In this section, we describe the standard algorithm to sample from the law of a
determinantal point process. The main results of this section can be found in the
seminal work of Hough et al. [17], along with the improvements found in [12, 18,
22]. We recall the algorithm introduced there in order to insist on its advantages
and disadvantages compared to directly simulating according to the densities. The
standard algorithm first yields a way to simulate the number of points n € IN of
a determinantal point process on a given compact A € X. Second, it provides a
sample from the Janossy density j% . Let us now discuss in detail these two steps.

Theorem 8 Let K be a trace class integral operator satisfying (H1) (we often
take K, which is indeed of trace class), {¢n}n>1 an orthonormal basis of
L*(X, w) formed by eigenfunctions of X and {{t,},>1 the corresponding sequence
of eigenvalues. We write

K(xy) =) tapa@en(), xyeX. (28)

n>1

Let {B,}n>1 be a sequence of independent Bernoulli random variables of mean
E[B,] = pu. The Bernoulli random variables are defined on a distinct probability
space, say (2, F). Then, define the (random) kernel

KB(xs y) = Zann(x)mv X,y € X.

n>1

Finally, define the point process n on (Nyx 2, N;®F) as the point process obtained
by first drawing the Bernoulli random variables, and then the point process with
kernel Kg. We have that 1 is a determinantal point process on X with kernel K.
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For the remainder of this paragraph, we consider a general kernel K of the form (28)
and wish to generate a sample of the determinantal point process with kernel XK.

According to Theorem 8, the number of points on X is distributed as the sum of
independent Bernoulli random variables. More precisely,

ECOI ~ Y B,

n>1

where B, ~ Be(u,), n € IN. Define T := sup{n > 1 / B, = 1}. Since Y .| tn =
> s1 P(B, = 1) < oo, by a direct application of the Borel-Cantelli lemma, we
have that T < oo almost surely. Hence the method is to simulate first a realization
of T, say t, and then t — 1 independent Bernoulli random variables By, ..., B;_i,
each B, with mean p,,n = 1,...,¢t— 1 Finally, set B, = 1.

The simulation of the random variable T can be obtained by the inversion method,
as we know its cumulative distribution function explicitly. Indeed, for n € IN,

P(T=n)=p, []0-mp),

i=n+1
hence
o0
Fr)y=P(T <r) = Z“" 1_[ (1—pw;)), VYrelN. (29)
n=<r i=n+1

To generate a random variable with law F requires the numerical computation of
the generalized inverse F~'(u) := inf{t € IN / F(¢f) > u}. In many practical cases,
as in the case of the Ginibre point process, the numerical calculations may augment
the complexity of the algorithm and the CPU. This is the main reason for which we
shall propose an approximate simulation of the Ginibre point process.

Assume we have simulated the number of points of the determinantal point
process on a compact A. For the clarity, we suppose T = nand By = 1,B, =
1,...,B, = 1. This assumption is equivalent to a simple reordering of the
eigenvectors (¢,),en. Then we have reduced the problem to that of simulating the
vector (X1, ..., X,) of joint density

1 .
pxt, ..., x,) = l det (K(xi’xj))lsiJSn ,

where K(x,y) = Z;l=1 %‘(X)W, for x,y € A, where here (¥;)jew is the
reordering of (¢;)jew. The determinantal point process of kernel K has n points
almost surely by Proposition 4, which means that it remains to simulate the
unordered vector (Xi,...,X,) of points of the point process. The idea of the
algorithm is to start by simulating X, then X,|X;, until X,|X, ..., X,—;. The key
here is that in the determinantal case, the density of these conditional probabilities
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takes a computable form. Let us start by observing that

det (K (x,x))) 1<ijen; = 9E(W(01) 1 <t 1<, det (Kﬁz(xk)) ,

1<k,<n

so the density of X; on A is

muozjiu/puh“anuwgmum%)

== Z Sgn(f)SgH(U)%(l)(Xl)%(l)(xl)H/Wr(k)(xk)wa(k)(xk) p(dxi)

! T,0€S,

=;ZWMMW

" o€ES,
1 n
= - Y [P,
"=

where S, is the n-th symmetric group and sgn(o) is the sign of the permutation
o € S,. By a similar computation, we may compute the distribution of X,|X;, whose
density with respect to u is given by

P2(X1,x2) _ 1
p1(X1) (n=D!Y|yi(X)?

Y (e XDP Yo ) = Vo) XD Vo (XD Vo) (2) Vo) (x2))

OES,

Pxox; (2) =

2 w](Xl) - 2
ZMZN|Z zmaw“w

The previous formula can be generalized recursively and has the advantage of
giving a natural interpretation of the conditional densities. Indeed, we may write
the conditional densities at each step in a way that makes the orthogonalization
procedure appear. This is presented in the final algorithm, which was explicitly
obtained in [22] (see also [17] for the proof). We define the vector v(x)

(Y1(x), ..., ¥a(x))', where ¢ stands for the transpose operator, denote by |v(x)||
its Euclidean norm, and given x € C", we set x* := X
It is then known that Algorithm 1 yields a sample {X,, ..., X,} of a determinantal

point process with kernel K (x, y) = Z Vi) Yi(y), x,y € A.
Jj=1
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Algorithm 1 Simulation of the determinantal projection point process

sample X, from the distribution with density p,(x) = |[v(x)||>/n, x € A
€ < V(Xn)/”V(Xn)”
forj=n—1— 1do

sample X; from the distribution with density

pix) = [|v<x>||2 Z|ekv<x>|}

w; < v(X) — Y12 (e vX)) er.  eu—jr1 < wi/lIwll
end for
return (Xi,..., X,)

5.2  Simulation Using Markov Chains

Exploiting the bound (15), an alternative algorithm to sample from the law of a
determinantal point process on a finite window is readily obtained by specializing
the general theory developed in [19, 20, 23], which allow to sample from the law
of finite point processes with bounded Papangelou intensity. Let us give a brief
description.

In the remainder of this paragraph, we fix a compact set A € X, and turn our
attention to the simulation of a determinantal point process with kernel K. The
following bound holds for the Papangelou conditional intensity c4:

Vxe A, VE e Ny, calx, &) < J[A](x,x) = J(x,x), 30)

where we have specialized the bound (15) and have noticed that J[A](x, x) = J(x, x)
for x € A. We first simulate a Glauber process associated with the measure

J(x, x)dp(x):

* Draw an initial configuration Dy according to the distribution of a Poisson point
process over A with mean measure J(x, x)du (x).

* Define a Poisson process on R of intensity M = [, J(x, x)du(x) and denote by
(T,,,n > 1) its arrival times.

* At each time T,, a particle appears at a position randomly located according to
the probability distribution M~ J(x, x)d (x) independently from any other event.

e To each particle, we assign an exponentially distributed lifetime of mean 1,
independently from any other event, i.e., each particle dies after an exponential
distributed time.

e The Glauber process D is formed by the random variables D, denoting the
number of particles alive at time 7.

Once this process is constructed, we can use the coupling from the past to simulate
the determinantal point process:
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* Simulate a (dominating) Glauber process D corresponding to the mean measure
J(x, x)du(x) over A on a time horizon T, with initial configuration Dy . Record
all birth dates and locations along the sample-path.

* Define two configuration-valued Markov chains, L and U. L stands for lower and
U for upper since we will guarantee L; C U; C D; atany timet > 0, Ly = @ and
Uy = Dy.

* Read the time-line of the process D.

1. When there is a death in the sample-path of D, then the corresponding particle
dies (in both U and L) provided it exists.

2. When there is a birth at x in D at time ¢, draw a uniform sample S on [0, 1],
independently from everything else. If S < ¢(x, U;~) then x is added to L, =
L~ Ux. If S < c(x,L~), then U, = U~ U {x}.

3. If attime T, Ur = Ly then Uy is a sample of the determinantal point process
of Papangelou intensity c. If not, expand the sample-path of D to [T, 27T] and
replay the same algorithm.

A crucial question is then how to choose T to avoid both a too long simulation if
T is large and the need to extend several times the sample-path of D if T is too
small. A very crude bound on the coalescence time, i.e., the time at which U and L
coincide, is the hitting time of the null configuration by D. Indeed, since for any time
t,L, C U, C D,,if Dy = @ then Ur = @ and Ly = @. It turns out that the number of
points of D follow the dynamics of an M/M/oco queue. If the initial population of Dy
is large then Proposition 6.8 of [30] entails that Ty is of the order of log(|Dy|). This

means that the coalescence time of our algorithm is an O ( log [ J(x,x) du(x) | , but
A

in practice, we are well below this upper bound (Fig. 1).

Finally, we present some samples of the coalescence time in a practical example
known as the Gaussian model (see [22]). More precisely, Fig. 2 shows the distribu-
tions of the coalescence time of L, and U, and the stopping time of the algorithm for
500 samples of the Gaussian model DPP with p = 50.

(a) (b) ©)

05— — 05 - v 05 - -
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v v * g v * *
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0 v v v v Y o] vy V 0 v v
vV Wyv vV Wgv * VYyvV Ve
- v . v . v ¥
v v v v v % v v
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v
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o5l Y ¥ Vo' 9| sl e v v v 7 LAd 05l —= v v W
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Fig. 1 CFTP simulations for Gaussian model DPP with p = 50 and @ = 0.04, respectively at time
T;, the i-th jump time from time t = —n. Notations: " := D,, “V” := U, and “A”(red) := L,.
(a) at time Ty; (b) at time 7,5 (¢) at time T5
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Fig. 2 Histogram of the
coalescence time of L, and U,
and the stopping time on 500
samples of a Gaussian model
with p = 50 and @ = 0.04

The two simulation methods presented are conceptually quite different and are
therefore difficult to compare. To be more precise, in the standard algorithm, there
are two time-consuming steps: the simulation of the Bernoulli random variables and
the simulation under the density p; for which we are a priori required to proceed
by rejection sampling. This requires an evaluation of the supremum of p; on a
grid which can be unboundedly big. In the algorithm based on Markov chains,
we avoid the previous problem by only evaluating elaborate functionals (in our
case, the Papangelou conditional intensity c) on a specific configuration, and not
on the whole grid. Additionally, the standard algorithm relies on the knowledge
of the eigenfunctions and the eigenvalues of the kernel K, whereas the algorithm
based on Markov chains works well with any expression of J[A]. However, the
time necessary to reach equilibrium can be quite long, which is the main drawback
of this algorithm. Thus, quantifying the execution time of the MCMC algorithm
is of practical interest. We roughly discussed this question in this section, but
a comparison with the standard algorithm is in general quantitatively difficult
since the better performing algorithm depends on the kernel K4 of the underlying
determinantal point process.

5.3 Approximate Simulation of the Ginibre Point Process

In this paragraph, we introduce a specific determinantal point process which is fast
to simulate in practice, well suited for applications, and converges weakly to the
Ginibre point process.
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The Ginibre point process, see [16], is the determinantal point process on C with
kernel

o0
Kain(z1.22) i= Y @u(@)@u(z2). 21,22 € C, 31)
n=0

where ¢, () := %e_% 121 for each n > 0. Further details concerning the Ginibre

n!
point process maynbe found in [18, 31].

We introduce a new kernel, by setting

N—1 -
K@) =Y oY eV @), .z € BO.VN), (32)
n=0

where we define (,0;/]V = e_%‘z‘zznll{zeB(oﬂ/N)}, for0 <n <N —1. Here,

1

Neary)
y(z,a) = f(f e 'f~1dt,a > 0,z € Cis the lower incomplete Gamma function. This
kernel defines a determinantal point process named truncated Ginibre point process
conditioned on having N points, see [12] for details. Clearly, this determinantal point
process can be simulated as described by Algorithm 1. Fixing the number N of
points in the ball B(0, \/IV ) ensures a fast execution time.
As already noticed, Algorithm 1 yields a sample of the truncated Ginibre point
process conditioned on having N points on the ball B(0, +/N). In order to simulate
the process on B(0,a), a > 0, we need to apply a homothetic transformation to
the N points, which translates to a homothety on the eigenfunctions. To summarize,
the simulation algorithm for the truncated Ginibre process conditioned on having N
points on the ball B(0, a) is done according to Algorithm 2.

Algorithm 2 Simulation of the truncated Ginibre point process

define ¢ (z) = me—#""z(%)'z for z € B(0, /N) and 0 < k < N — 1.
define v(z) := (¢o(2). ....on—1(2)). for z € B0, +/N).
sample Xy from the distribution with density py(z) = ||v(2)[|12/N, z € B(0, ~/N)
set e; = v(Xy)/[[v(Xy)ll
fori=N—-—1—1do

sample X; from the distribution with density

1 N—i
P = < (V@I = Y IV P |
j=1

set w; = v(X;) — Y=, (er(X,-)) e, ex—it1=w;/[lwl

end for
return (Xi,..., XN)
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The next theorem from [12] and the subsequent comment guarantee that the
above algorithm can be interpreted as an approximate simulation algorithm for the
Ginibre point process.

Theorem 9 The kernel Kgin converges to Kgin, as N tends to infinity, uniformly on
compacts.

As a consequence of Theorem 9 and Proposition 3.10 in [32], the truncated Ginibre
point process conditioned on having N points converges weakly to the Ginibre point
process.

6 Open Questions

We mention here a few open questions.

* Let IP be the law of a determinantal point process 7 on X, and ¢ a diffeomorphism
of the whole space. Is the image of IP by ¢ absolutely continuous with respect
to P? If yes, is it possible to compute the corresponding Radon—Nikodym
derivative?

* Is the diffusion constructed in Theorem 6 ergodic?

* Consider a sequence of diffusions defined by Theorem 6 and indexed by
compacts A, increasing to R¢. Does M4, p 4, converge weakly to some limiting
diffusion as n — 00? If yes, may we compute the properly associated Dirichlet
form?

» Is it possible to approximate in distribution the diffusion constructed in Theo-
rem 6 by a continuous-time Markov process (such as a Glauber dynamics)?

e What is the error committed by the approximate simulation algorithm to sample
from the target law, i.e., the law of the Ginibre point process?

e Let n be a determinantal point process with integral operator K. Can one
generalize the results presented in this chapter to include the case where 1 is
an eigenvalue of X?

Acknowledgements The authors wish to thank Low Kah Choon who produced the graphs of
Sect. 5 and who contributed to some heuristics in the section.

Appendix

First, we recall some results and properties on the closability of linear operators.
Given (X, || - |lx) and (Y, || - ||y) two Banach spaces, and A : dom(A) —> Y a linear
operator defined on a subspace dom(A) of X, the domain of A, the operator A is said
to be closed if, for any sequence (x,),>1 C dom(A), such that x,, converges to x in X
and Ax, converges to y in ¥ we have x € dom(A) and y = Ax, i.e., dom(A) is closed
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(or equivalently complete) w.r.t. the graph norm || - || := || - |lx + ||A - ||y- A linear
operator A : dom(A) —> Y is said closable if, for any sequence (x,),>1 C dom(A)
such that x, converges to 0 in X and Ax, converges to y in Y it holds y = 0. In
other words, A is closable if, for any sequence (x,),>1 C dom(A) such that x,
converges to 0 in X and (x,),>1 is Cauchy w.r.t. the graph norm || - || it holds Ax,
converges to 0 in Y. The minimal closed extension of the closable operator A is the
closed operator A whose domain dom(A) is the completion of dom(A) w.rz. || - g,
ie.,

dom(A) := {x € X : I(x)n>1 C dom(A) : x, — xin X

and (Ax,),>1 convergesin Y}
and we define

Ax := lim Ax,, X € dom(Z),

n—>o00

where the limit is in ¥ and (x,),>1 is some sequence in dom(A) such that x,
converges to x in X and (Ax,),>1 convergesin Y.

Next, we recall some notions of Dirichlet forms theory. We begin with some
definitions related to bilinear forms (see [25] for details). Let H be a Hilbert space
with inner product (-, -) and A : dom(A) x dom(A) —> R a bilinear form defined
on a dense subspace dom(A) of H, the domain of A. The form A is said to be
symmetric if A(F, G) = A(G, F), forany F, G € dom(A), and nonnegative definite
if A(F, F) > 0, for any F' € dom(A). Let A be symmetric and nonnegative definite,
A is said closed if dom(A) equipped with the norm

|Flla:= VA(F,F)+ (F,F), F €dom(A),

is a Hilbert space. A symmetric and nonnegative definite bilinear form A is said
closable if, for any sequence (F,),>1 C dom(A) such that F, goes to 0 in H and
(Fp)n>1 is Cauchy w.r.t. || - ||.4 it holds that A(F,, F,,) converges to 0 in R as n goes
to infinity. Let A be closable and denote by dom(A) the completion of dom(A) w.r1.
the norm || - || 4. It turns out that A is uniquely extended to dom(A) by the closed,
symmetric, and nonnegative definite bilinear form

A(F,G) = lim A(F,,G,), (F,G) e dom(A) x dom(A),
n—>o00

where {(F,, G,)}n>1 is any sequence in dom(A) x dom(A) such that (F,, G,)
converges to (F, G) € dom(A) x dom(A) w.r.t. the norm || - lz + |l - ll7. Suppose
H = L*(B,B,pB) where (B, B, ) is a measure space. A symmetric, nonnegative
definite, and closed form A is said to be a symmetric Dirichlet form if

A(FT ALLFY A1) < A(F.F), F € dom(A),
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where FT denotes the positive part of F. Suppose that B is a Hausdorff topological
space and let A be a symmetric Dirichlet form. An A-nest is an increasing sequence
(Cyp)n>1 of closed subsets of B such that

U{F € dom(A): F =0 B-ae.onB\ C,}

n>1

is dense in dom(A) w.r.t. the norm || - || 4. We say that a subset B C B is A-
exceptional if there exists an A-nest (Cy),>1 with B* C B\ |J,~; C,. Throughout
this paper we say that a property holds A-almost everywhere (A-a.e.) if it holds
up to an A-exceptional set. Moreover, a function f : B — R is called A-almost
continuous (A-a.c.) if there exists an A-nest (Cy,),>1 such that the restriction fjc, of
f to C, is continuous for each n > 1.

Let B be again a Hausdorff topological space. A symmetric Dirichlet form A on
the Hilbert space L>(B, . (B), f) is called quasi-regular if

(1) There exists an A-nest (C,),>1 consisting of compact sets.

(2) There exists a || - ||.4-dense subset of dom(A) whose elements have A-a.c. §-
versions.

(3) There exist F;, € dom(A), k > 1, having A-a.c. B-versions ﬁk, k > 1, such
that (Fj )1 is a separating set for B\ N (i.e., for any x,y € B\ N, x # ,
there exists Fj+ such that Fix (x) # Fi=(y)), where N is a subset of B which is
A-exceptional.
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