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Preface

This book is a collection of original surveys focussing on two very active branches
of modern (theoretical and applied) probability, namely the Malliavin calculus of
variations and stochastic geometry. Our aim is to provide (for the first time!) a
lively, authoritative and rigorous presentation of the many topics connecting the two
fields, in a way that is appealing to researchers from both communities. Each survey
has been compiled by leading researchers in the corresponding area. Notation,
assumptions and definitions have been harmonized as closely as possible between
chapters.

Roughly speaking, stochastic geometry is the branch of mathematics that studies
geometric structures associated with random configurations, such as random graphs
and networks, random cluster processes, random unions of convex sets, random
tilings and mosaics, etc. Due to its strong connections to stereology and spatial
statistics, results in this area possess a large number of important applications, e.g.
to modelling and statistical analysis of telecommunication networks, geostatistics,
image analysis, material science, and many more.

On the other hand, the Malliavin calculus of variations is a collection of
probabilistic techniques based on the properties of infinite-dimensional operators,
acting on smooth functionals of general point processes and Gaussian fields. The
operators of Malliavin calculus typically generalize to an infinite-dimensional set-
ting familiar objects from classical analysis, like, for instance, gradients, difference
and divergence operators. When dealing with Malliavin calculus in the context of
point processes (as is the case in the present book), one has typically to deal with
a number of technical difficulties—related in particular to the intrinsic discrete
structure of the underlying objects. As explained in the sections to follow, a
crucial tool in partially overcoming these difficulties is given by Wiener–Itô chaotic
decompositions, which play a role analogous to that of orthogonal expansions into
series of polynomials for square-integrable functions of a real variable.

A fundamental point (which constitutes a strong motivation for the present book)
is that, for many prominent models in stochastic geometry, Wiener–Itô chaotic
decompositions and associated operators from Malliavin calculus are particularly
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viii Preface

accessible and amenable to analysis because the involved concepts and expressions
have an intrinsic and very natural geometric interpretation.

Of particular interest to us is the application of these techniques to the study
of probabilistic approximations in a geometric context, that is, of mathematical
statements allowing one to assess the distance between the distribution of a given
random geometric object and the law of some target random variable. Probabilistic
approximations are naturally associated with variance and covariance estimates, as
well as with limit theorems, such as Central Limit Theorems and Laws of Large
Numbers, and are one of the leading threads of the whole theory of probability.

The interaction between stochastic geometry and Malliavin calculus is a young
and active domain of research that has witnessed an explosion in interest during
the past 5 years. By its very nature, such an interaction is a topic that stands at the
frontier of many different areas of current research. Investigations gained particular
momentum during an Oberwolfach conference in 2013, where many prominent
researchers from both fields met for discussions. Since then, an increasing number
of collaborations have been initiated or strengthened. Also, although several remark-
able results have already been achieved in the field, for instance in the asymptotic
study of the Boolean model, random graphs, random polytopes and random k-flats,
many questions and problems (e.g. the derivation and use of effective concentration
inequalities) remain almost completely open for future investigation.

It is the aim of this book to survey these developments at the boundary between
stochastic analysis and stochastic geometry, to present the state of the art in both
fields and to point out open questions and unsolved problems with the intention of
initiating new research in and between the two areas.

The readership we have in mind includes researchers and graduate students who
have a basic knowledge of concepts of probability theory and functional analysis.
Most of the fundamental notions that are needed for reading the book are introduced
and developed from scratch.

Last but not least, as editors, we would like to thank the numerous colleagues
and friends who have been involved in this project: this book would not have
been possible without their excellent contributions, as well as their enthusiasm and
support.

Luxembourg, Luxembourg Giovanni Peccati
Osnabrück, Germany Matthias Reitzner
December 2015



Introduction

This book is composed of ten chapters, each of which contains a detailed state-of-
the-art survey of a topic lying at the boundary of stochastic analysis and stochastic
geometry.

The first four surveys can be seen as a “crash course” in stochastic analysis on
the Poisson space. Starting from the careful construction of Malliavin operators
on abstract Poisson spaces via Fock space representations (G. Last), the elegant
combinatorial properties of (multiple) Poisson stochastic integrals are explored (N.
Privault) and an introduction provided to variational formulae, allowing the reader to
deal with the analytical study of expectations of Poisson functionals (I. Molchanov
and S. Zuyev). Finally, J.-L. Solé and F. Utzet show how these tools can be extended
to the more general framework of random measures with independent increments
(sometimes called completely random measures) and Lévy processes.

The subsequent survey by D. Hug and M. Reitzner provides a careful introduc-
tion to the main objects of interest in modern stochastic geometry. As anticipated,
this is a crucial step in our text, since the chapters to follow are all motivated by
geometric considerations.

The reader will then enter the realm of the Stein and Chen-Stein methods
for probabilistic approximations and be shown how to combine these techniques
with Malliavin calculus operators (S. Bourguin and G. Peccati): this powerful
interaction represents the very heart of the so-called Malliavin–Stein method. The
survey by M. Reitzner and R. Lachièze-Rey discusses how one can use Malliavin–
Stein techniques in order to deal with the asymptotic study of U-statistics. Further
deep results involving U-statistics and extreme values in stochastic geometry are
presented in the survey by M. Schulte and Ch. Thäle, while the chapter by S.
Bourguin, C. Durastanti, D. Marinucci and G. Peccati focusses on some recent
applications of the Malliavin–Stein approach in the context of Poisson processes
defined on the sphere.

The book closes with an introduction (by L. Decreusefond, I. Flint, N. Privault
and G.L. Torrisi) to recently developed Malliavin calculus techniques—in particular,
integration by parts formulae—in the context of determinantal point processes.
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x Introduction

We now present a more detailed description of the individual contributions
composing the book.

Chapter 1: Stochastic Analysis for Poisson Processes (G. Last). The starting
point of this survey is the definition of a Poisson point process on a general �-finite
measure space, and the consequent explanation of the fundamental multivariate
Mecke equation. The next topic is the Fock space representation of square-integrable
functions of a Poisson process in terms of iterated difference operators. The survey
continues with the definition and properties of multiple stochastic Wiener–Itô
integrals, from which one can deduce the chaotic representation property of Poisson
random measures. This naturally leads to the definition of the fundamental Malliavin
operators, which represent one of the backbones of the entire book. The final
part presents the Poincaré inequality and related variance inequalities, as well as
covariance identities based on the use of Glauber dynamics and Mehler’s formula (in
a spirit close to [16]). The content of this chapter represents a substantial expansion
and refinement of the seminal reference [14] and provides a self-contained account
of several fundamental analytical results on the Poisson space (see e.g. [10, 20]). A
further connection with the classical logarithmic Sobolev estimates proved in [32]
is discussed in the subsequent survey by Bourguin and Peccati.

Chapter 2: Combinatorics of Poisson Stochastic Integrals with Random Inte-
grands (N. Privault). This survey provides a unique self-contained account of
recent results on moment identities for Poisson stochastic integrals with random
integrands, based on the use of functional transforms on the Poisson space. This
presentation relies on elementary combinatorics based on the Fàa di Bruno formula,
partitions and polynomials, which are used together with multiple stochastic
integrals, finite difference operators and integration by parts. Important references
that are discussed in this chapter include [3, 6, 26, 27]. The combinatorial content of
many formulae can be regarded as a far-reaching generalization of classical product
and diagram formulae on the Poisson space—as presented, for example, in the
monograph [22].

Chapter 3: Variational Analysis of Poisson Processes (I. Molchanov and S.
Zuyev). The framework of this chapter is that of a family of finite Poisson point
process distributions on a general phase space. Given a functional F of point
configurations, the expectation E.F/ is regarded as a function of the intensity
measure of the corresponding Poisson processes. Thus, the domain of F is the set
of finite measures—which is a cone in the Banach space of all signed measures
with a finite total variation norm. By explicitly developing the expectation E.F/,
one can show that under rather mild assumptions the function E.F/ is analytic.
As a byproduct, one establishes Margulis–Russo type formulae for the Poisson
process and the Gamma-type result, which have proved extremely useful, for
example in percolation theory and in stochastic geometry. The variation formulae
obtained are then applied to constrained optimization where first order optimality
conditions are established for functionals of a measure. The final part of the survey
contains a discussion of applications of the above-described variational calculus, in
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particular, to numerical integration, statistical experiment design, and quantization
of distributions. This chapter expands and refines the content of the seminal paper
[17].

Chapter 4: Malliavin Calculus for Stochastic Processes and Random Measures
with Independent Increments (J. L. Solé and F. Utzet). The purpose of this survey
is twofold: first, to review the extension of Malliavin calculus for Poisson processes
based on the difference operator or add one cost operator to Lévy processes; second,
to extend that construction to some classes of random measures, mainly completely
random measures. For Lévy processes, the approach is based, on the one hand,
on the Itô–Lévy representation (Itô [11]) and on the chaotic expansion property,
which provides a direct definition of the Malliavin operators, and, on the other hand,
a construction of the canonical space for Lévy processes that allows a pathwise
definition of the Malliavin derivative as a quotient operator (Solé et al. [31]). Recent
results of Murr [18] concerning extensions of Mecke’s formula to that setup will
also be discussed.

Chapter 5: Introduction to Stochastic Geometry (D. Hug and M. Reitzner).
This chapter introduces some fundamental notions from stochastic geometry and
from convex geometry (see e.g. [12, 25, 29] for some comprehensive references
on the subject). First, the necessary definitions from convex geometry are given,
including Hausdorff distance, Minkowski addition, parallel sets, intrinsic volumes
and their local extensions, which are used in the subsequent chapters of the book.
Second, some important models of stochastic geometry are introduced: the Boolean
model, random geometric graphs, intersection processes of Poisson flat processes
and random mosaics. A selection of open problems from stochastic geometry is
also presented, together with a description of important new results and directions
of research.

Chapter 6: The Malliavin–Stein Method on the Poisson Space (S. Bourguin
and G. Peccati). This chapter provides a detailed and unified discussion of a
collection of recently introduced techniques (see e.g. [16, 21, 23, 24]), allowing
one to establish limit theorems for sequences of Poisson functionals with explicit
rates of convergence, by combining Stein’s method (see e.g. [5, 19]) and Malliavin
calculus. The Gaussian and Poisson asymptotic regimes are discussed in detail. It is
also shown how the main estimates of the theory may be applied in order to deduce
information about the asymptotic independence of geometric objects (see [1]).

Chapter 7: U-Statistics in Stochastic Geometry (R. Lachièze-Rey and M.
Reitzner). A U-statistic of order k with kernel f W Xk ! R over a Poisson process is
defined in [28] as

X

x1;:::;xk2�k
¤

f .x1; : : : ; xk/
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under appropriate integrability assumptions on f . U-statistics play an important
role in stochastic geometry since many interesting functionals can be written as
U-statistics, such as intrinsic volumes of intersection processes, characteristics of
random geometric graphs, volumes of random simplices, and many others (see
for instance [7, 13, 15, 28]). It turns out that the Wiener–Itô chaos expansion of
a U-statistic is finite and thus Malliavin calculus is a particularly suitable method.
Variance estimates, the approximation of the covariance structure and limit theorems
which have been out of reach for many years can be derived. In this chapter the
reader will find the fundamental properties of U-statistics as well as an investigation
of associated moment formulae. The main object of the chapter is to discuss the
available univariate and multivariate limit theorems.

Chapter 8: Poisson Point Process Convergence and Extreme Values in Stochas-
tic Geometry (M. Schulte and Ch. Thäle). Let �t be a Poisson point process of
intensity t > 0 over a measurable space X. One then constructs a point process
�t on the real line by applying a measurable function f to every k-tuple of distinct
points of �t. It is shown that �t behaves after appropriate rescaling locally like a
Poisson point process as t ! 1 under suitable conditions on �t and f . Via a de-
Poissonization argument a similar result is derived for an underlying binomial point
process. This method is applied to investigate several problems arising in stochastic
geometry, including the Gilbert graph, the Voronoi tessellation, triangular counts
with angular constraints, and line tessellations. The core of the survey rests on
techniques originally introduced in reference [30].

Chapter 9: U-Statistics on the Spherical Poisson Space (S. Bourguin, C.
Durastanti, D. Marinucci and G. Peccati). This survey reviews a recent stream
of research on normal approximations for linear functionals and more general
U-statistics of wavelet and needlet coefficients evaluated on a homogeneous
spherical Poisson field (see [2, 9]). It is shown how, by exploiting results from
[23] based on Malliavin calculus and Stein’s method, it is possible to assess the
rate of convergence to Gaussianity for a triangular array of statistics with growing
dimensions. These results can be applied in a number of statistical applications,
such as spherical density estimations, searching for point sources, estimation of
variance and the spherical two-sample problem.

Chapter 10: Determinantal Point Processes (L. Decreusefond, I. Flint, N.
Privault and G.L. Torrisi). Determinantal and permanental point processes were
introduced in the 1970s in order to incorporate repulsion and attraction properties
in particle models. They have recently regained interest due to their close links with
random matrix theory. In this paper we survey the main properties of such processes
from the point of view of stochastic analysis and Malliavin calculus, including
quasi-invariance, integration by parts, Dirichlet forms and the associated Markov
diffusion processes (see [4, 8]).
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Stochastic Analysis for Poisson Processes

Günter Last

Abstract This chapter develops some basic theory for the stochastic analysis of
Poisson process on a general �-finite measure space. After giving some fundamental
definitions and properties (as the multivariate Mecke equation) the chapter presents
the Fock space representation of square-integrable functions of a Poisson process
in terms of iterated difference operators. This is followed by the introduction
of multivariate stochastic Wiener–Itô integrals and the discussion of their basic
properties. The chapter then proceeds with proving the chaos expansion of square-
integrable Poisson functionals, and defining and discussing Malliavin operators.
Further topics are products of Wiener–Itô integrals and Mehler’s formula for the
inverse of the Ornstein–Uhlenbeck generator based on a dynamic thinning proce-
dure. The chapter concludes with covariance identities, the Poincaré inequality, and
the FKG-inequality.

1 Basic Properties of a Poisson Process

Let .X;X / be a measurable space. The idea of a point process with state space
X is that of a random countable subset of X, defined over a fixed probability
space .˝;A ;P/. It is both convenient and mathematically fruitful to define a point
process as a random element � in the space N� .X/ � N� of all �-finite measures �
on X such that �.B/ 2 ZC [ f1g for all B 2 X . To do so, we equip N� with the
smallest �-field N� .X/ � N� of subsets of N� such that � 7! �.B/ is measurable
for all B 2X . Then � W ˝ ! N� is a point process if and only if

f�.B/ D kg � f! 2 ˝ W �.!;B/ D kg 2 A

for all B 2 X and all k 2 ZC. Here we write �.!;B/ instead of the more clumsy
�.!/.B/. We wish to stress that the results of this chapter do not require special
(topological) assumptions on the state space.

G. Last (�)
Karlsruhe Institute of Technology, Institute of Stochastics, 76128 Karlsruhe, Germany
e-mail: guenter.last@kit.edu

© Springer International Publishing Switzerland 2016
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2 G. Last

The Dirac measure ıx at the point x 2 X is the measure on X defined by ıx.B/ D
1B.x/, where 1B is the indicator function of B 2 X . If X is a random element of
X, then ıX is a point process on X. Suppose, more generally, that X1; : : : ;Xm are
independent random elements in X with distribution Q. Then

� WD ıX1 C � � � C ıXm (1)

is a point process on X. Because

P.�.B/ D k/ D
 

m

k

!
Q.B/k.1 �Q.B//m�k; k D 0; : : : ;m;

� is referred to as binomial process with sample size m and sampling distribution
Q. Taking an infinite sequence X1;X2; : : : of independent random variables with
distribution Q and replacing in (1) the deterministic sample size m by an indepen-
dent ZC-valued random variable � (and interpreting an empty sum as null measure)
yields a mixed binomial process. Of particular interest is the case where � has a
Poisson distribution with parameter � � 0, see also (5) below. It is then easy to
check that

E exp

�
�
Z

u.x/�.dx/

�
D exp

�
�
Z
.1 � e�u.x//�.dx/

�
; (2)

for any measurable function u W X ! Œ0;1/, where � WD �Q. It is convenient to
write this as

E expŒ��.u/	 D exp
� � �.1 � e�u/

�
; (3)

where 
.u/ denotes the integral of a measurable function u with respect to a measure

. Clearly,

�.B/ D E�.B/; B 2X ; (4)

so that � is the intensity measure of �. The identity (3) or elementary probabilistic
arguments show that � has independent increments, that is, the random variables
�.B1/; : : : ; �.Bm/ are stochastically independent whenever B1; : : : ;Bm 2 X are
pairwise disjoint. Moreover, �.B/ has a Poisson distribution with parameter �.B/,
that is

P.�.B/ D k/ D �.B/k

kŠ
expŒ��.B/	; k 2 ZC: (5)

Let � be a �-finite measure on X. A Poisson process with intensity measure �
is a point process � on X with independent increments such that (5) holds, where
an expression of the form1e�1 is interpreted as 0. It is easy to see that these two
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requirements determine the distribution P� WD P.� 2 �/ of a Poisson process �. We
have seen above that a Poisson process exists for a finite measure �. In the general
case, it can be constructed as a countable sum of independent Poisson processes,
see [12, 15, 18] for more details. Equation (3) remains valid. Another consequence
of this construction is that � has the same distribution as

� D
�.X/X

nD1
ıXn ; (6)

where X1;X2; : : : are random elements in X. A point process that can be (almost
surely) represented in this form will be called proper. Any locally finite point
process on a Borel subset of a complete separable metric space is proper. However,
there are examples of Poisson processes which are not proper.

Let � be a Poisson process with intensity measure �. A classical and extremely
useful formula by Mecke [18] says that

E

Z
h.�; x/�.dx/ D E

Z
h.�C ıx; x/�.dx/ (7)

for all measurable h W N� � X ! Œ0;1	. One can use the mixed binomial
representation to prove this result for finite Poisson processes. An equivalent
formulation for a proper Poisson process is

E

Z
h.�� ıx; x/�.dx/ D E

Z
h.�; x/�.dx/ (8)

for all measurable h W N� � X ! Œ0;1	. Although � � ıx is in general a signed
measure, we can use (6) to see that

Z
h.�� ıx; x/�.dx/ D

X

i

h

�X

j¤i

ıXj ;Xi

�

is almost surely well defined. Both (7) and (8) characterize the distribution of a
Poisson process with given intensity measure �.

Equation (7) admits a useful generalization involving multiple integration. To
formulate this version we consider, for m 2 N, the m-th power .Xm;X m/ of
.X;X /. Let � be a proper point process given by (6). We define another point
process �.m/ on Xm by

�.m/.C/ D
X¤

i1;:::;im��.X/
1C.Xi1 ; : : : ;Xim/; C 2X m; (9)

where the superscript¤ indicates summation over m-tuples with pairwise different
entries. (In the case �.X/ D 1 this involves only integer-valued indices.) In the



4 G. Last

case C D Bm for some B 2X we have that

�.m/.Bm/ D �.B/.�.B/� 1/ � � � .�.B/� mC 1/:

Therefore �.m/ is called m-th factorial measure of �. It can be readily checked that,
for any m 2 N,

�.mC1/ D
Z � Z

1f.x1; : : : ; xmC1/ 2 �g�.dxmC1/ (10)

�
mX

jD1
1f.x1; : : : ; xm; xj/ 2 �g

�
�.m/.d.x1; : : : ; xm//;

where �.1/ WD �. This suggests a recursive definition of the factorial measures of a
general point process, without using a representation as a sum of Dirac measures.
The next proposition confirms this idea.

Proposition 1 Let � be a point process on X. Then there is a uniquely determined
sequence �.m/, m 2 N, of symmetric point processes on Xm satisfying �.1/ WD � and
the recursion (10).

The proof of Proposition 1 is given in the appendix and can be skipped without
too much loss. It is enough to remember that �.m/ can be defined by (9), whenever �
is given by (6) and that any Poisson process has a proper version.

The multivariate version of (7) (see e.g. [15]) says that

E

Z
h.�; x1; : : : ; xm/�

.m/.d.x1; : : : ; xm//

D E

Z
h.�C ıx1 C � � � C ıxm ; x1; : : : ; xm/�

m.d.x1; : : : ; xm//; (11)

for all measurable h W N� � Xm ! Œ0;1	. In particular the factorial moment
measures of � are given by

E�.m/ D �m; m 2 N: (12)

Of course (11) remains true for a measurable h W N� �Xm ! R provided that the
right-hand side is finite when replacing h with jhj.

2 Fock Space Representation

In the remainder of this chapter we consider a Poisson process � on X with �-finite
intensity measure � and distribution P�.
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In this and later chapters the following difference operators (sometimes called
add-one cost operators) will play a crucial role. For any f 2 F.N� / (the set of all
measurable functions from N� to R) and x 2 X the function Dx f 2 F.N�/ is defined
by

Dx f .�/ WD f .�C ıx/� f .�/; � 2 N� : (13)

Iterating this definition, for n � 2 and .x1; : : : ; xn/ 2 Xn we define a function
Dn

x1;:::;xn
f 2 F.N�/ inductively by

Dn
x1;:::;xn

f WD D1
x1

Dn�1
x2;:::;xn

f ; (14)

where D1 WD D and D0f D f . Note that

Dn
x1;:::;xn

f .�/ D
X

J�f1;2;:::;ng
.�1/n�jJjf

�
�C

X

j2J

ıxj

	
; (15)

where jJj denotes the number of elements of J. This shows that Dn
x1;:::;xn

f is
symmetric in x1; : : : ; xn and that .x1; : : : ; xn; �/ 7! Dn

x1;:::;xn
f .�/ is measurable. We

define symmetric and measurable functions Tn f on Xn by

Tnf .x1; : : : ; xn/ WD EDn
x1;:::;xn

f .�/; (16)

and we set T0f WD Ef .�/, whenever these expectations are defined. By h�; �in we
denote the scalar product in L2.�n/ and by k � kn the associated norm. Let L2s .�

n/

denote the symmetric functions in L2.�n/. Our aim is to prove that the linear
mapping f 7! .Tn. f //n�0 is an isometry from L2.P�/ into the Fock space given
by the direct sum of the spaces L2s .�

n/, n � 0 (with L2 norms scaled by nŠ�1=2) and
with L2s .�

0/ interpreted as R. In Sect. 4 we will see that this mapping is surjective.
The result (and its proof) is from [13] and can be seen as a crucial first step in the
stochastic analysis on Poisson spaces.

Theorem 1 Let f ; g 2 L2.P�/. Then

Ef .�/g.�/ D Ef .�/Eg.�/C
1X

nD1

1

nŠ
hTn f ;Tngin; (17)

where the series converges absolutely.

We will prepare the proof with some lemmas. Let X0 be the system of all
measurable B 2 X with �.B/ < 1. Let F0 be the space of all bounded and
measurable functions v W X ! Œ0;1/ vanishing outside some B 2 X0. Let G
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denote the space of all (bounded and measurable) functions g W N� ! R of the
form

g.�/ D a1e
��.v1/ C � � � C ane��.vn/; (18)

where n 2 N, a1; : : : ; an 2 R and v1; : : : ; vn 2 F0.

Lemma 1 Relation (17) holds for f ; g 2 G.

Proof By linearity it suffices to consider functions f and g of the form

f .�/ D expŒ��.v/	; g.�/ D expŒ��.w/	

for v;w 2 F0. Then we have for n � 1 that

Dnf .�/ D expŒ��.v/	.e�v � 1/˝n;

where .e�v � 1/˝n.x1; : : : ; xn/ WD Qn
iD1.e�v.xi/ � 1/. From (3) we obtain that

Tn f D expŒ��.1 � e�v/	.e�v � 1/˝n: (19)

Since v 2 F0 it follows that Tn f 2 L2s .�
n/, n � 0. Using (3) again, we obtain that

Ef .�/g.�/ D expŒ��.1 � e�.vCw//	: (20)

On the other hand we have from (19) (putting �0.1/ WD 1) that

1X

nD0

1

nŠ
hTn f ;Tngin

D expŒ��.1 � e�v/	 expŒ��.1 � e�w/	

1X

nD0

1

nŠ
�n...e�v � 1/.e�w � 1//˝n/

D expŒ��.2 � e�v � e�w/	 expŒ�..e�v � 1/.e�w � 1//	:

This equals the right-hand side of (20). ut
To extend (17) to general f ; g 2 L2.P�/ we need two further lemmas.

Lemma 2 The set G is dense in L2.P�/.

Proof Let W be the space of all bounded measurable g W N� ! R that can be
approximated in L2.P�/ by functions in G. This space is closed under monotone and
uniformly bounded convergence and also under uniform convergence. Moreover, it
contains the constant functions. The space G is stable under multiplication and we
denote by N 0 the smallest �-field on N� such that � 7! h.�/ is measurable for all
h 2 G. A functional version of the monotone class theorem (see e.g. Theorem I.21
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in [1]) implies that W contains any bounded N 0-measurable g. On the other hand
we have that

�.C/ D lim
t!0C t�1.1 � e�t�.C//; � 2 N� ;

for any C 2X . Hence � 7! �.C/ is N 0-measurable whenever C 2X0. Since � is
�-finite, for any C 2X there is a monotone sequence Ck 2X0, k 2 N, with union
C, so that � 7! �.C/ is N0-measurable. Hence N 0 D N� and it follows that W
contains all bounded measurable functions. But then W is clearly dense in L2.P�/
and the proof of the lemma is complete. ut
Lemma 3 Suppose that f ; f 1; f 2; : : : 2 L2.P�/ satisfy f k ! f in L2.P�/ as k!1,
and that h W N� ! Œ0; 1	 is measurable. Let n 2 N, let C 2 X0 and set B WD Cn.
Then

lim
k!1E

Z

B

jDn
x1;:::;xn

f .�/ � Dn
x1;:::;xn

f k.�/jh.�/�n.d.x1; : : : ; xn// D 0: (21)

Proof By (15), the relation (21) is implied by the convergence

lim
k!1E

Z

B

ˇ̌
ˇ f
�
�C

mX

iD1
ıxi

	
� f k

�
�C

mX

iD1
ıxi

	ˇ̌
ˇh.�/�n.d.x1; : : : ; xn// D 0 (22)

for all m 2 f0; : : : ; ng. For m D 0 this is obvious. Assume m 2 f1; : : : ; ng. Then the
integral in (22) equals

�.C/n�mE

Z

Cm

ˇ̌
ˇ f
�
�C

mX

iD1
ıxi

	
� f k

�
�C

mX

iD1
ıxi

	ˇ̌
ˇh.�/�m.d.x1; : : : ; xm//

D �.C/n�mE

Z

Cm

j f .�/ � f k.�/jh
�
��

nX

iD1
ıxi

	
�.m/.d.x1; : : : ; xm//

� �.C/n�mEj f .�/ � f k.�/j�.m/.Cm/;

where we have used (11) to get the equality. By the Cauchy–Schwarz inequality the
last expression is bounded above by

�.C/n�m.E. f .�/ � f k.�//2/1=2.E.�.m/.Cm//2/1=2:

Since the Poisson distribution has moments of all orders, we obtain (22) and hence
the lemma. ut
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Proof of Theorem 1 By linearity and the polarization identity

4hu; vin D huC v; uC vin � hu � v; u � vin
it suffices to prove (17) for f D g 2 L2.P�/. By Lemma 2 there are f k 2 G,
k 2 N, satisfying f k ! f in L2.P�/ as k ! 1. By Lemma 1, Tf k, k 2 N, is a
Cauchy sequence in H WD R˚˚1nD1L2s .�n/. The direct sum of the scalar products
.nŠ/�1h�; �in makes H a Hilbert space. Let Qf D .Qfn/ 2 H be the limit, that is

lim
k!1

1X

nD0

1

nŠ
kTn f k � Qfnk2n D 0: (23)

Taking the limit in the identity Ef k.�/2 D hTf k;Tf kiH yields Ef .�/2 D hQf ; Qf iH.
Equation (23) implies that Qf0 D Ef .�/ D T0f . It remains to show that for any n � 1,

Qfn D Tn f ; �n-a.e. (24)

Let C 2 X0 and B WD Cn. Let �n
B denote the restriction of the measure �n to

B. By (23) Tn f k converges in L2.�n
B/ (and hence in L1.�n

B/) to Qfn, while by the
definition (16) of Tn, and the case h � 1 of (22), Tn f k converges in L1.�n

B/ to Tn f .
Hence these L1.P/ limits must be the same almost everywhere, so that Qfn D Tn f �n-
a.e. on B. Since � is assumed �-finite, this implies (24) and hence the theorem. ut

3 Multiple Wiener–Itô Integrals

For n � 1 and g 2 L1.�n/ we define (see [6, 7, 28, 29])

In.g/ WD
X

J�Œn	
.�1/n�jJj

“
g.x1; : : : ; xn/�

.jJj/.dxJ/�
n�jJj.dxJc/; (25)

where Œn	 WD f1; : : : ; ng, Jc WD Œn	 n J and xJ WD .xj/j2J . If J D ;, then the inner
integral on the right-hand side has to be interpreted as �n.g/. (This is to say that
�.0/.1/ WD 1.) The multivariate Mecke equation (11) implies that all integrals in (25)
are finite and that EIn.g/ D 0.

Given functions gi W X ! R for i D 1; : : : ; n, the tensor product ˝n
iD1gi is

the function from Xn to R which maps each .x1; : : : ; xn/ to
Qn

iD1 gi.xi/. When the
functions g1; : : : ; gn are all the same function h, we write h˝n for this tensor product
function. In this case the definition (25) simplifies to

In.h
˝n/ D

nX

kD0

 
n

k

!
.�1/n�k�.k/.h˝k/.�.h//n�k: (26)
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Let ˙n denote the set of all permutations of Œn	, and for g 2 Xn ! R define the
symmetrization Qg of g by

Qg.x1; : : : ; xn/ WD 1

nŠ

X

�2˙n

g.x�.1/; : : : ; x�.n//: (27)

The following isometry properties of the operators In are crucial. The proof is
similar to the one of [16, Theorem 3.1] and is based on the product form (12)
of the factorial moment measures and some combinatorial arguments. For more
information on the intimate relationships between moments of Poisson integrals and
the combinatorial properties of partitions we refer to [16, 21, 25, 28].

Lemma 4 Let g 2 L2.�m/ and h 2 L2.�n/ for m; n � 1 and assume that fg ¤
0g � Bm and fh ¤ 0g � Bn for some B 2X0. Then

EIm.g/In.h/ D 1fm D ngmŠhQg; Qhim: (28)

Proof We start with a combinatorial identity. Let n 2 N. A subpartition of
Œn	 is a (possibly empty) family � of nonempty pairwise disjoint subsets of Œn	.
The cardinality of [J2�J is denoted by k�k. For u 2 F.Xn/ we define u� W
Xj� jCn�k�k ! R by identifying the arguments belonging to the same J 2 � . (The
arguments x1; : : : ; xj� jCn�k�k have to be inserted in the order of occurrence.) Now
we take r; s 2 ZC such that r C s � 1 and define ˙r;s as the set of all partitions of
f1; : : : ; rC sg such that jJ \ f1; : : : ; rgj � 1 and jJ \ frC 1; : : : ; rC sgj � 1 for all
J 2 � . Let u 2 F.XrCs/. It is easy to see that

“
u.x1; : : : ; xrCs/�

.r/.d.x1; : : : ; xr//�
.s/.d.xrC1; : : : ; xrCs//

D
X

�2˙r;s

Z
u� d�.j� j/; (29)

provided that �.fu ¤ 0g/ <1. (In the case r D 0 the inner integral on the left-hand
side is interpreted as 1.)

We next note that g 2 L1.�m/ and h 2 L1.�n/ and abbreviate f WD g ˝ h. Let
k WD m C n, J1 WD Œm	 and J2 WD fm C 1; : : : ;m C ng. The definition (25) and
Fubini’s theorem imply that

Im.g/In.h/ D
X

I�Œk	
.�1/n�jIj

•
f .x1; : : : ; xk/

�.jI\J1j/.dxI\J1/�
.jI\J2j/.dxI\J2 /�

n�jIj.dxIc/;

(30)

where Ic WD Œk	 n I and xJ WD .xj/j2J for any J � Œk	. We now take the expectation
of (30) and use Fubini’s theorem (justified by our integrability assumptions on g
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and h). Thanks to (29) and (12) we can compute the expectation of the inner two
integrals to obtain that

EIm.g/In.h/ D
X

�2˙�
m;n

.�1/k�k�k
Z

f� d�k�k�kCj� j; (31)

where˙�m;n is the set of all subpartitions � of Œk	 such that jJ\J1j � 1 and jJ\J2j �
1 for all J 2 � . Let ˙�;2m;n � ˙�m;n be the set of all subpartitions of Œk	 such that
jJj D 2 for all J 2 � . For any � 2 ˙�;2m;n we let ˙�m;n.�/ denote the set of all
� 2 ˙�m;n satisfying � � � . Note that � 2 ˙�m;n.�/ and that for any � 2 ˙�m;n there
is a unique � 2 ˙�;2m;n such that � 2 ˙�m;n.�/. In this case

Z
f�d�k�k�kCj� j D

Z
f�d�k�k�k;

so that (31) implies

EIm.g/In.h/ D
X

�2˙�;2
m;n

Z
f�d�k�k�k X

�2˙�
m;n.�/

.�1/k�k�k: (32)

The inner sum comes to zero, except in the case where k�k D k. Hence (32)
vanishes unless m D n. In the latter case we have

øEIm.g/In.h/ D
X

�2˙�;2
m;mWj�jDm

Z
f� d�m D mŠhQg; Qhim;

as asserted. ut
Any g 2 L2.�m/ is the L2-limit of a sequence gk 2 L2.�m/ satisfying the

assumptions of Lemma 4. For instance we may take gk WD 1.Bk/mg, where
�.Bk/ < 1 and Bk " X as k ! 1. Therefore the isometry (28) allows
us to extend the linear operator Im in a unique way to L2.�m/. It follows
from the isometry that Im.g/ D Im.Qg/ for all g 2 L2.�m/. Moreover, (28)
remains true for arbitrary g 2 L2.�m/ and h 2 L2.�n/. It is convenient
to set I0.c/ WD c for c 2 R. When m � 1, the random variable Im.g/
is the (m-th order) Wiener–Itô integral of g 2 L2.�m/ with respect to the
compensated Poisson process O� WD � � �. The reference to O� comes from
the explicit definition (25). We note that O�.B/ is only defined for B 2 X0.
In fact, f O�.B/ W B 2 X0g is an independent random measure in the sense of
[7].
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4 The Wiener–Itô Chaos Expansion

A fundamental result of Itô [7] and Wiener [29] says that every square integrable
function of the Poisson process � can be written as an infinite series of orthogonal
stochastic integrals. Our aim is to prove the following explicit version of this
Wiener–Itô chaos expansion. Recall definition (16).

Theorem 2 Let f 2 L2.P�/. Then Tn f 2 L2s .�
n/, n 2 N, and

f .�/ D
1X

nD0

1

nŠ
In.Tn f /; (33)

where the series converges in L2.P/. Moreover, if gn 2 L2s .�
n/ for n 2 ZC satisfy

f .�/ DP1
nD0 1

nŠ In.gn/ with convergence in L2.P/, then g0 D Ef .�/ and gn D Tn f ,
�n-a.e. on Xn, for all n 2 N.

For a homogeneous Poisson process on the real line, the explicit chaos expan-
sion (33) was proved in [8]. The general case was formulated and proved in [13].
Stroock [27] has proved the counterpart of (33) for Brownian motion. Stroock’s
formula involves iterated Malliavin derivatives and requires stronger integrability
assumptions on f .�/.

Theorem 2 and the isometry properties (28) of stochastic integrals show that the
isometry f 7! .Tn. f //n�0 is in fact a bijection from L2.P�/ onto the Fock space.
The following lemma is the key for the proof.

Lemma 5 Let f .�/ WD e��.v/, � 2 N� .X/, where v W X! Œ0;1/ is a measurable
function vanishing outside a set B 2 X with �.B/ < 1. Then (33) holds P-a.s.
and in L2.P/.

Proof By (3) and (19) the right-hand side of (33) equals the formal sum

I WD expŒ��.1 � e�v/	C expŒ��.1 � e�v/	
1X

nD1

1

nŠ
In..e

�v � 1/˝n/: (34)

Using the pathwise definition (25) we obtain that almost surely

I D expŒ��.1 � e�v/	
1X

nD0

1

nŠ

nX

kD0

 
n

k

!
�.k/..e�v � 1/˝k/.�.1 � e�v//n�k

D expŒ��.1 � e�v/	
1X

kD0

1

kŠ
�.k/..e�v � 1/˝k/

1X

nDk

1

.n � k/Š
.�.1 � e�v//n�k

D
NX

kD0

1

kŠ
�.k/..e�v � 1/˝k/; (35)



12 G. Last

where N WD �.B/. Assume for the moment that � is proper and write ıX1C� � �C ıXN

for the restriction of � to B. Then we have almost surely that

I D
X

J�f1;:::;Ng

Y

i2J

.e�v.Xi/ � 1/ D
NY

iD1
e�v.Xi/ D e��.v/;

and hence (33) holds with almost sure convergence of the series. To demonstrate
that convergence also holds in L2.P/, let the partial sum I.m/ be given by the right-
hand side of (34) with the series terminated at n D m. Then since �.1 � e�v/ is
nonnegative and j1 � e�v.y/j � 1 for all y, a similar argument to (35) yields

jI.m/j �
min.N;m/X

kD0

1

kŠ
j�.k/..e�v � 1/˝k/j

�
NX

kD0

N.N � 1/ � � � .N � kC 1/
kŠ

D 2N :

Since 2N has finite moments of all orders, by dominated convergence the series (34)
(and hence (33)) converges in L2.P/.

Since the convergence of the right-hand side of (34) as well as the almost sure
identity I D e��.v/ remain true for any point process with the same distribution as �
(that is, for any Poisson process with intensity measure �), it was no restriction of
generality to assume that � is proper. ut
Proof of Theorem 2 Let f 2 L2.P�/ and define Tnf for n 2 ZC by (16). By (28) and
Theorem 1,

1X

nD0
E
� 1

nŠ
In.Tn f /

	2 D
1X

nD0

1

nŠ
kTn fk2n D Ef .�/2 <1:

Hence the infinite series of orthogonal terms

S WD
1X

nD0

1

nŠ
In.Tn f /

converges in L2.P/. Let h 2 G, where G was defined at (18). By Lemma 5 and
linearity of In.�/ the sum

P1
nD0 1

nŠ In.Tnh/ converges in L2.P/ to h.�/. Using (28)
followed by Theorem 1 yields

E.h.�/ � S/2 D
1X

nD0

1

nŠ
kTnh � Tnfkn D E. f .�/ � h.�//2:
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Hence if E. f .�/�h.�//2 is small, then so is E. f .�/�S/2. Since G dense in L2.P�/
by Lemma 2, it follows that f .�/ D S almost surely.

To prove the uniqueness, suppose that also gn 2 L2s .�
n/ for n 2 ZC are such thatP1

nD0 1
nŠ In.gn/ converges in L2.P/ to f .�/. By taking expectations we must have

g0 D Ef .�/ D T0f . For n � 1 and h 2 L2s .�
n/, by (28) and (33) we have

Ef .�/In.h/ D EIn.Tnf /In.h/ D nŠhTnf ; hin
and similarly with Tnf replaced by gn, so that hTn f � gn; hin D 0. Putting h D
Tn f � gn gives kTn f � gnkn D 0 for each n, completing the proof of the theorem.

ut

5 Malliavin Operators

For any p � 0 we denote by Lp
� the space of all random variables F 2 Lp.P/ such

that F D f .�/ P-almost surely, for some f 2 F.N� /. Note that the space Lp
� is a

subset of Lp.P/ while Lp.P�/ is the space of all measurable functions f 2 F.N� /

satisfying
R j f jp dP� D Ej f .�/jp <1. The representative f of F 2 Lp.P/ is is P�-

a.e. uniquely defined element of Lp.P�/. For x 2 X we can then define the random
variable DxF WD Dxf .�/. More generally, we define Dn

x1;:::;xn
F WD Dn

x1;:::;xn
f .�/ for

any n 2 N and x1; : : : ; xn 2 X. The mapping .!; x1; : : : ; xn/ 7! Dn
x1;:::;xn

F.!/ is
denoted by DnF (or by DF in the case n D 1). The multivariate Mecke equation (11)
easily implies that these definitions are P˝ �-a.e. independent of the choice of the
representative.

By (33) any F 2 L2� can be written as

F D EF C
1X

nD1
In. fn/; (36)

where fn WD 1
nŠEDnF. In particular we obtain from (28) (or directly from Theorem 1)

that

EF2 D .EF/2 C
1X

nD1
nŠk fnk2n: (37)

We denote by dom D the set of all F 2 L2� satisfying

1X

nD1
nnŠk fnk2n <1: (38)
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The following result is taken from [13] and generalizes Theorem 6.5 in [8] (see
also Theorem 6.2 in [20]). It shows that under the assumption (38) the pathwise
defined difference operator DF coincides with the Malliavin derivative of F. The
space dom D is the domain of this operator.

Theorem 3 Let F 2 L2� be given by (36). Then DF 2 L2.P˝ �/ iff F 2 dom D. In
this case we have P-a.s. and for �-a.e. x 2 X that

DxF D
1X

nD1
nIn�1. fn.x; �//: (39)

The proof of Theorem 3 requires some preparations. Since

Z � 1X

nD1
nnŠk fn.x; �/k2n�1

	
�.dx/ D

1X

nD1
nnŠ

Z
k fnk2n;

(28) implies that the infinite series

D0xF WD
1X

nD1
nIn�1fn.x; �/ (40)

converges in L2.P/ for �-a.e. x 2 X provided that F 2 dom D. By construction of
the stochastic integrals we can assume that .!; x/ 7! .In�1fn.x; �//.!/ is measurable
for all n � 1. Therefore we can also assume that the mapping D0F given by .!; x/ 7!
D0xF.!/ is measurable. We have just seen that

E

Z
.D0xF/2�.dx/ D

1X

nD1
nnŠ

Z
k fnk2n; F 2 dom D: (41)

Next we introduce an operator acting on random functions that will turn out to
be the adjoint of the difference operator D, see Theorem 4. For p � 0 let Lp

�.P˝�/
denote the set of all H 2 Lp.P˝�/ satisfying H.!; x/ D h.�.!/; x/ for P˝�-a.e.
.!; x/ for some representative h 2 F.N� �X/. For such a H we have for �-a.e. x
that H.x/ WD H.�; x/ 2 L2.P/ and (by Theorem 2)

H.x/ D
1X

nD0
In.hn.x; �//; P-a.s.; (42)

where h0.x/ WD EH.x/ and hn.x; x1; : : : ; xn/ WD 1
nŠEDn

x1;:::;xn
H.x/. We can then

define the Kabanov–Skorohod integral [3, 10, 11, 26] of H, denoted ı.H/, by

ı.H/ WD
1X

nD0
InC1.hn/; (43)
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which converges in L2.P/ provided that

1X

nD0
.nC 1/Š

Z
Qh2nd�nC1 <1: (44)

Here

Qhn.x1; : : : ; xnC1/ WD 1

.nC 1/Š
nC1X

iD1
EDn

x1;:::;xi�1;xiC1;:::;xnC1
H.xi/ (45)

is the symmetrization of hn. The set of all H 2 L2�.P ˝ �/ satisfying the latter
assumption is the domain dom ı of the operator ı.

We continue with a preliminary version of Theorem 4.

Proposition 2 Let F 2 dom D. Let H 2 L2�.P ˝ �/ be given by (42) and assume
that

1X

nD0
.nC 1/Š

Z
h2nd�nC1 <1: (46)

Then

E

Z
.D0xF/H.x/�.dx/ D EFı.H/: (47)

Proof Minkowski inequality implies (44) and hence H 2 dom ı. Using (40)
and (42) together with (28), we obtain that

E

Z
.D0xF/H.x/�.dx/ D

Z � 1X

nD1
nŠhfn.x; �/; hn�1.x; �/in�1

�
�.dx/;

where the use of Fubini’s theorem is justified by (41), the assumption on H and the
Cauchy–Schwarz inequality. Swapping the order of summation and integration (to
be justified soon) we see that the last integral equals

1X

nD1
nŠhfn; hn�1in D

1X

nD1
nŠhfn; Qhn�1in;

where we have used the fact that fn is a symmetric function. By definition (43)
and (28), the last series coincides with EFı.H/. The above change of order is
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permitted since

1X

nD1
nŠ
Z
jhfn.x; �/; hn�1.x; �/in�1j�.dx/

�
1X

nD1
nŠ
Z
k fn.x; �/kn�1khn�1.x; �/kn�1�.dx/

and the latter series is finite in view of the Cauchy–Schwarz inequality, the finiteness
of (36) and assumption (46). ut
Proof of Theorem 3 We need to show that

DF D D0F; P˝ �-a.e. (48)

First consider the case with f .�/ D e��.v/ with a measurable v W X ! Œ0;1/
vanishing outside a set with finite �-measure. Then nŠfn D Tn f is given by (19).
Given n 2 N,

n � nŠ
Z

f 2n d�n D 1

.n � 1/Š expŒ2�.e�v � 1/	.�..e�v � 1/2//n

which is summable in n, so (38) holds in this case. Also, in this case, Dx f .�/ D
.ev.x/ � 1/f .�/ by (13), while fn.�; x/ D .e�v.x/ � 1/n�1fn�1 so that by (40),

D0xf .�/ D
1X

nD1
.e�v.x/ � 1/In�1. fn�1/ D .e�v.x/ � 1/f .�/

where the last inequality is from Lemma 5 again. Thus (48) holds for f of this form.
By linearity this extends to all elements of G.

Let us now consider the general case. Choose gk 2 G, k 2 N, such that Gk WD
gk.�/ ! F in L2.P/ as k ! 1, see Lemma 2. Let H 2 L2�.P� ˝ �/ have the
representative h.�; x/ WD h0.�/1B.x/, where h0 is as in Lemma 5 and B 2X0. From
Lemma 5 it is easy to see that (46) holds. Therefore we obtain from Proposition 2
and the linearity of the operator D0 that

E

Z
.D0xF � D0xGk/H.x/�.dx/ D E. f � Gk/ı.H/! 0 as k!1: (49)

On the other hand,

E

Z
.DxF � DxGk/H.x/�.dx/ D E

Z

B

.Dx f .�/ � Dxgk.�//h
0.�/�.dx/;
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and by the case n D 1 of Lemma 3, this tends to zero as k!1. Since D0xgk D Dxgk

a.s. for �-a.e. x we obtain from (49) that

E

Z
.D0x f /h.�; x/�.dx/ D E

Z
.Dx f .�//h.�; x/�.dx/: (50)

By Lemma 2, the linear combinations of the functions h considered above are dense
in L2.P� ˝ �/, and by linearity (50) carries through to h in this dense class of
functions too, so we may conclude that the assertion (48) holds.

It follows from (41) and (48) that F 2 dom D implies DF 2 L2�.P ˝ �/. The
other implication was noticed in [22, Lemma 3.1]. To prove it, we assume DF 2
L2�.P ˝ �/ and apply the Fock space representation (17) to E.DxF/2 for �-a.e. x.
This gives

Z
E.DxF/2�.dx/ D

1X

nD0

1

nŠ

“
.EDnC1

x1;:::;xn;x/
2�n.d.x1; : : : ; xn//�.dx/

D
1X

nD0
.nC 1/.nC 1/Šk fnC1k2nC1

and hence F 2 dom D. ut
The following duality relation (also referred to as partial integration, or inte-

gration by parts formula) shows that the operator ı is the adjoint of the difference
operator D. It is a special case of Proposition 4.2 in [20] applying to general Fock
spaces.

Theorem 4 Let F 2 dom D and H 2 dom ı. Then,

E

Z
.DxF/H.x/�.dx/ D EFı.H/: (51)

Proof We fix F 2 dom D. Theorem 3 and Proposition 2 imply that (51) holds if
H 2 L2�.P˝ �/ satisfies the stronger assumption (46). For any m 2 N we define

H.m/.x/ WD
mX

nD0
In.hn.x; �//; x 2 X: (52)

Since H.m/ satisfies (46) we obtain that

E

Z
.DxF/H.m/.x/�.dx/ D EFı.H.m//: (53)
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From (28) we have

Z
E.H.x/ �H.m/.x//2�.dx/ D

Z � 1X

nDmC1
nŠkhn.x; �/k2n

�
�.dx/

D
1X

nDmC1
nŠkhnk2nC1:

As m!1 this tends to zero, since

E

Z
H.x/2�.dx/ D

Z
E.H.x//2�.dx/ D

1X

nD0
nŠkhnk2nC1

is finite. It follows that the left-hand side of (53) tends to the left-hand side of (51).
To treat the right-hand side of (53) we note that

Eı.H � H.m//2 D
1X

nDmC1
E.InC1.hn//

2 D
1X

nDmC1
.nC 1/ŠkQhnk2nC1: (54)

Since H 2 dom ı this tends to 0 as m ! 1. Therefore E.ı.H/ � ı.H.m///2 ! 0

and the right-hand side of (53) tends to the right-hand side of (51). ut
We continue with a basic isometry property of the Kabanov–Skorohod integral.

In the present generality the result is in [17]. A less general version is [24,
Proposition 6.5.4].

Theorem 5 Let H 2 L2�.P˝ �/ be such that

E

“
.DyH.x//

2�.dx/�.dy/ <1: (55)

Then, H 2 dom ı and moreover

Eı.H/2 D E

Z
H.x/2�.dx/C E

“
DyH.x/DxH.y/�.dx/�.dy/: (56)

Proof Suppose that H is given as in (42). Assumption (55) implies that H.x/ 2
dom D for �-a.e. x 2 X. We therefore deduce from Theorem 3 that

g.x; y/ WD DyH.x/ D
1X

nD1
nIn�1.hn.x; y; �//
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P-a.s. and for�2-a.e. .x; y/ 2 X2. Using assumption (55) together with the isometry
properties (28), we infer that

1X

nD1
nnŠkQhnk2nC1 �

1X

nD1
nnŠkhnk2nC1 D E

“
.DyH.x//2�.dx/�.dy/ <1;

yielding that H 2 dom ı.
Now we define H.m/ 2 dom ı, m 2 N, by (52) and note that

Eı.H.m//2 D
mX

nD0
EInC1.Qhn/

2 D
mX

nD0
.nC 1/ŠkQhnk2nC1:

Using the symmetry properties of the functions hn it is easy to see that the latter sum
equals

mX

nD0
nŠ
Z

h2nd�nC1 C
mX

nD1
nnŠ

“
hn.x; y; z/hn.y; x; z/�

2.d.x; y//�n�1.dz/: (57)

On the other hand, we have from Theorem 3 that

DyH.m/.x/ D
mX

nD1
nIn�1.hn.x; y; �//;

so that

E

Z
H.m/.x/2�.dx/C E

“
DyH.m/.x/DxH.m/.y/�.dx/�.dy/

coincides with (57). Hence

Eı.H.m//2 D E

Z
H.m/.x/2�.dx/C E

“
DyH.m/.x/DxH.m/.y/�.dx/�.dy/:

(58)

These computations imply that gm.x; y/ WD DyH.m/.x/ converges in L2.P ˝ �2/

towards g. Similarly, g0m.x; y/ WD DxH.m/.y/ converges towards g0.x; y/ WD Dxg.y/.
Since we have seen in the proof of Theorem 4 that H.m/ ! H in L2.P ˝ �/ as
m ! 1, we can now conclude that the right-hand side of (58) tends to the right-
hand side of the asserted identity (56). On the other hand we know by (54) that
Eı.H.m//2 ! Eı.H/2 as m!1. This concludes the proof. ut

To explain the connection of (55) with classical stochastic analysis we assume for
a moment that X is equipped with a transitive binary relation < such that f.x; y/ W
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x < yg is a measurable subset of X2 and such that x < x fails for all x 2 X. We also
assume that < totally orders the points of X �-a.e., that is

�.Œx	/ D 0; x 2 X; (59)

where Œx	 WD X n fy 2 X W y < x or x < yg. For any � 2 N� let �x denote the
restriction of � to fy 2 X W y < xg. Our final assumption on < is that .�; y/ 7! �y is
measurable. A measurable function h W N� �X! R is called predictable if

h.�; x/ D h.�x; x/; .�; x/ 2 N� �X: (60)

A process H 2 L0�.P˝�/ is predictable if it has a predictable representative. In this
case we have P˝ �-a.e. that DxH.y/ D 0 for y < x and DyH.x/ D 0 for x < y. In
view of (59) we obtain from (56) the classical Itô isometry

Eı.H/2 D E

Z
H.x/2�.dx/: (61)

In fact, a combinatorial argument shows that any predictable H 2 L2�.P˝ �/ is in
the domain of ı. We refer to [14] for more detail and references to the literature.

We return to the general setting and derive a pathwise interpretation of the
Kabanov–Skorohod integral. For H 2 L1�.P˝ �/ with representative h we define

ı0.H/ WD
Z

h.�� ıx; x/�.dx/�
Z

h.�; x/�.dx/: (62)

The Mecke equation (7) implies that this definition does P-a.s. not depend on the
choice of the representative. The next result (see [13]) shows that the Kabanov–
Skorohod integral and the operator ı0 coincide on the intersection of their domains.
In the case of a diffuse intensity measure � (and requiring some topological
assumptions on .X;X /) the result is implicit in [23].

Theorem 6 Let H 2 L1�.P˝ �/ \ dom ı. Then ı.H/ D ı0.H/ P-a.s.

Proof Let H have representative h. The Mecke equation (7) shows the integrability
E
R jh.�� ıx; x/j�.dx/ <1 as well as

E

Z
Dx f .�/h.�; x/�.dx/ D Ef .�/ı0.H/; (63)

whenever f W N� ! R is measurable and bounded. Therefore we obtain from (51)
that EFı0.H/ D EFı.H/ provided that F WD f .�/ 2 dom D. By Lemma 2 the space
of such bounded random variables is dense in L2�.P/, so we may conclude that the
assertion holds. ut
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Finally in this section we discuss the Ornstein–Uhlenbeck generator L whose
domain dom L is given by the class of all F 2 L2� satisfying

1X

nD1
n2nŠk fnk2n <1:

In this case one defines

LF WD �
1X

nD1
nIn. fn/:

The (pseudo) inverse L�1 of L is given by

L�1F WD �
1X

nD1

1

n
In. fn/: (64)

The random variable L�1F is well defined for any F 2 L2�. Moreover, (37) implies
that L�1F 2 domL. The identity LL�1F D F, however, holds only if EF D 0.

The three Malliavin operators D; ı, and L are connected by a simple formula:

Proposition 3 Let F 2 dom L. Then F 2 dom D, DF 2 dom ı and ı.DF/ D �LF.

Proof The relationship F 2 dom D is a direct consequence of (37). Let H WD DF.
By Theorem 3 we can apply (43) with hn WD .nC 1/fnC1. We have

1X

nD0
.nC 1/Škhnk2nC1 D

1X

nD0
.nC 1/Š.nC 1/2k fnC1k2nC1

showing that H 2 dom ı. Moreover, since InC1.Qhn/ D InC1.hn/ it follows that

ı.DF/ D
1X

nD0
InC1.hn/ D

1X

nD0
.nC 1/InC1. fnC1/ D �LF;

finishing the proof. ut
The following pathwise representation shows that the Ornstein–Uhlenbeck

generator can be interpreted as the generator of a free birth and death process on X.

Proposition 4 Let F 2 dom L with representative f and assume DF 2 L1�.P˝ �/.
Then

LF D
Z
. f .� � ıx/ � f .�//�.dx/C

Z
. f .�C ıx/ � f .�//�.dx/: (65)
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Proof We use Proposition 3. Since DF 2 L1�.P˝ �/ we can apply Theorem 6 and
the result follows by a straightforward calculation. ut

6 Products of Wiener–Itô Integrals

In this section we study the chaos expansion of Ip. f /Iq.g/, where f 2 L2s .�
p/ and

g 2 L2s .�
q/ for p; q 2 N. We define for any r 2 f0; : : : ; p ^ qg (where p ^ q WD

minfp; qg) and l 2 Œr	 the contraction f ?l
r g W XpCq�r�l ! R by

f ?l
r g.x1; : : : ; xpCq�r�l/ (66)

WD
Z

f .y1; : : : ; yl; x1; : : : ; xp�l/

� g.y1; : : : ; yl; x1; : : : ; xr�l; xp�lC1; : : : ; xpCq�r�l/�
l.d.y1; : : : ; yl//;

whenever these integrals are well defined. In particular f ?00 g D f ˝ g.
In the case q D 1 the next result was proved in [10]. The general case is treated

in [28], though under less explicit integrability assumptions and for diffuse intensity
measure. Our proof is quite different.

Proposition 5 Let f 2 L2s .�
p/ and f 2 L2s .�

q/ and assume f ?l
r g 2 L2.�pCq�r�l/

for all r 2 f0; : : : ; p ^ qg and l 2 f0; : : : ; r � 1g. Then

Ip. f /Iq.g/ D
p^qX

rD0
rŠ

 
p

r

! 
q

r

!
rX

lD0

 
r

l

!
IpCq�r�l. f ?l

r g/; P-a.s. (67)

Proof First note that the Cauchy–Schwarz inequality implies f ?r
r g 2 L2.�pCq�2r/

for all r 2 f0; : : : ; p ^ qg.
We prove (67) by induction on pC q. For p ^ q D 0 the assertion is trivial. For

the induction step we assume that p ^ q � 1. If F;G 2 L0�, then an easy calculation
shows that

Dx. fG/ D .DxF/GC F.DxG/C .DxF/.DxG/ (68)

holds P-a.s. and for �-a.e. x 2 X. Using this together with Theorem 3 we obtain
that

Dx.Ip. f /Iq.g// D pIp�1. fx/Iq.g/C qIp. f /Iq�1.gx/C pqIp�1. fx/Iq�1.gx/;
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where fx WD f .x; �/ and gx WD g.x; �/. We aim at applying the induction hypothesis to
each of the summands on the above right-hand side. To do so, we note that

.fx ?
l
r g/.x1; : : : ; xp�1Cq�r�l/ D f ?l

r g.x1; : : : ; xp�1�l; x; xp�1�lC1 : : : ; xp�1Cq�r�l/

for all r 2 f0; : : : ; .p � 1/ ^ qg and l 2 f0; : : : ; rg and

. fx ?
l
r gx/.x1; : : : ; xp�1Cq�1�r�l/ D f ?l

rC1 g.x; x1; : : : ; xp�1Cq�1�r�l/

for all r 2 f0; : : : ; .p � 1/ ^ .q � 1/g and l 2 f0; : : : ; rg. Therefore the pairs . fx; g/,
. f ; gx/ and . fx; gx/ satisfy for �-a.e. x 2 X the assumptions of the proposition. The
induction hypothesis implies that

Dx.Ip. f /Iq.g// D
.p�1/^qX

rD0
rŠp

 
p � 1

r

! 
q

r

!
rX

lD0

 
r

l

!
IpCq�1�r�l. fx ?

l
r g/

C
p^.q�1/X

rD0
rŠq

 
p

r

! 
q � 1

r

!
rX

lD0

 
r

l

!
IpCq�1�r�l. f ?l

r gx/

C
.p�1/^.q�1/X

rD0
rŠpq

 
p � 1

r

! 
q � 1

r

!
rX

lD0

 
r

l

!
IpCq�2�r�l. fx ?

l
r gx/:

A straightforward but tedious calculation (left to the reader) implies that the above
right-hand side equals

p^qX

rD0
rŠ

 
p

r

! 
q

r

!
rX

lD0

 
r

l

!
.pC q � r � l/IpCq�r�l�1..Af ?l

r g/x/;

where the summand for pC q � r � l D 0 has to be interpreted as 0. It follows that

Dx.Ip. f /Iq.g// D DxG; P-a.s.; �-a.e. x 2 X;

where G denotes the right-hand side of (67). On the other hand, the isometry
properties (28) show that EIp. f /Iq.g/ D EG. Since Ip. f /Iq.g/ 2 L1�.P/ we can
use the Poincaré inequality of Corollary 1 in Sect. 8 to conclude that

E.Ip. f /Iq.g/�G/2 D 0:

This finishes the induction and the result is proved. ut
If ff ¤ 0g � Bp and fg ¤ 0g � Bq for some B 2 X0 (as in Lemma 4), then (67)

can be established by a direct computation, starting from (30). The argument is
similar to the proof of Theorem 3.1 in [16]. The required integrability follows from
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the Cauchy–Schwarz inequality; see [16, Remark 3.1]. In the case q � 2 we do not
see, however, how to get from this special to the general case via approximation.

Equation (67) can be further generalized so as to cover the case of a finite product
of Wiener–Itô integrals. We again refer the reader to [28] as well as to [16, 21].

7 Mehler’s Formula

In this section we assume that � is a proper Poisson process. We shall derive a
pathwise representation of the inverse (64) of the Ornstein–Uhlenbeck generator.

To give the idea we define for F 2 L2� with representation (36)

TsF WD EF C
1X

nD1
e�nsIn. fn/; s � 0: (69)

The family fTs W s � 0g is the Ornstein–Uhlenbeck semigroup, see e.g. [24] and also
[19] for the Gaussian case. If F 2 domL then it is easy to see that

lim
s!0

TsF � F

s
D L

in L2.P/, see [19, Proposition 1.4.2] for the Gaussian case. Hence L can indeed be
interpreted as the generator of the semigroup. But in the theory of Markov processes
it is well known (see, e.g., the resolvent identities in [12, Theorem 19.4]) that

L�1F D �
1Z

0

TsFds; (70)

at least under certain assumptions. What we therefore need is a pathwise represen-
tation of the operators Ts. Our guiding star is the birth and death representation in
Proposition 4.

For F 2 L1� with representative f we define,

PsF WD
Z

EŒf .�.s/ C �/ j �	˘.1�s/�.d�/; s 2 Œ0; 1	; (71)

where �.s/ is a s-thinning of � and where ˘�0 denotes the distribution of a Poisson
process with intensity measure �0. The thinning �.s/ can be defined by removing the
points in (6) independently of each other with probability 1 � s; see [12, p. 226].
Since

˘� D E

� Z
1f�.s/ C � 2 �g˘.1�s/�.d�/

�
; (72)
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this definition does almost surely not depend on the representative of F. Equa-
tion (72) implies in particular that

EPsF D EF; F 2 L1�; (73)

while Jensen’s inequality implies for any p � 1 the contractivity property

E.PsF/
p � EjFjp; s 2 Œ0; 1	; F 2 L2�: (74)

We prepare the main result of this section with the following crucial lemma from
[17].

Lemma 6 Let F 2 L2�. Then, for all n 2 N and s 2 Œ0; 1	,

Dn
x1;:::;xn

.PsF/ D snPsD
n
x1;:::;xn

F; �n-a.e. .x1; : : : ; xn/ 2 Xn; P-a.s. (75)

In particular

EDn
x1;:::;xn

PsF D snEDn
x1;:::;xn

F; �n-a.e..x1; : : : ; xn/ 2 Xn: (76)

Proof To begin with, we assume that the representative of F is given by f .�/ D
e��.v/ for some v W X! Œ0;1/ such that �.fv > 0g/ <1. By the definition of a
s-thinning,

E
�
e��.s/.v/ j �� D exp

� Z
log



.1 � s/C se�v.y/

�
�.dy/

�
; (77)

and it follows from Lemma 12.2 in [12] that

Z
exp.��.v//˘.1�s/�.d�/ D exp

�
� .1 � s/

Z
.1 � e�v/d�

�
:

Hence, the definition (71) of the operator Ps implies that the following function fs is
a representative of PsF:

fs.�/ WD exp

�
� .1 � s/

Z 

1 � e�v

�
d�

�
exp

� Z
log



.1 � s/C se�v.y/

�
�.dy/

�
:

Therefore we obtain for any x 2 X that

DxPsF D fs.�C ıx/� fs.�/ D s


e�v.x/ � 1�fs.�/ D s



e�v.x/ � 1�PsF:

This identity can be iterated to yield for all n 2 N and all .x1; : : : ; xn/ 2 Xn that

Dn
x1;:::;xn

PsF D sn
nY

iD1



e�v.xi/ � 1�PsF:
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On the other hand we have P-a.s. that

PsD
n
x1;:::;xn

F D Ps

nY

iD1



e�v.xi/ � 1�F D

nY

iD1



e�v.xi/ � 1�PsF;

so that (75) holds for Poisson functionals of the given form.
By linearity, (75) extends to all F with a representative in the set G of all linear

combinations of functions f as above. There are fk 2 G, k 2 N, satisfying Fk WD
fk.�/ ! F D f .�/ in L2.P/ as k ! 1, where f is a representative of F (see [13,
Lemma 2.1]). Therefore we obtain from the contractivity property (74) that

EŒ.PsFk � PsF/
2	 D EŒ.Ps. fk � F//2	 � EŒ. fk � F/2	! 0;

as k ! 1. Taking B 2 X with �.B/ < 1, it therefore follows from [13,
Lemma 2.3] that

E

Z

Bn

jDn
x1;:::;xn

PsFk � Dn
x1;:::;xn

PsFj�.d.x1; : : : ; xn//! 0;

as k ! 1. On the other hand we obtain from the Fock space representation (17)
that EjDn

x1;:::;xn
Fj <1 for �n-a.e. .x1; : : : ; xn/ 2 Xn, so that linearity of Ps and (74)

imply

E

Z

Bn

jPsD
n
x1;:::;xn

Fk � PsD
n
x1;:::;xn

Fj�.d.x1; : : : ; xn//

�
Z

Bn

EjDn
x1;:::;xn

. fk � F/j�.d.x1; : : : ; xn//:

Again, this latter integral tends to 0 as k ! 1. Since (75) holds for any Fk we
obtain that (75) holds P˝ .�B/

n-a.e., and hence also P˝ �n-a.e.
Taking the expectation in (75) and using (73) proves (76). ut
The following theorem from [17] achieves the desired pathwise representation of

the inverse Ornstein–Uhlenbeck operator.

Theorem 7 Let F 2 L2�. If EF D 0 then we have P-a.s. that

L�1F D �
1Z

0

s�1PsFds: (78)
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Proof Assume that F is given as in (36). Applying (36) to PsF and using (76) yields

PsF D EF C
1X

nD1
snIn. fn/; P-a.s.; s 2 Œ0; 1	: (79)

Furthermore,

�
mX

nD1

1

n
In. fn/ D �

1Z

0

s�1
mX

nD1
snIn. fn/ds; m � 1:

Assume now that EF D 0. In view of (64) we need to show that the above right-
hand side converges in L2.P/, as m ! 1, to the right-hand side of (78). Taking
into account (79) we hence have to show that

Rm WD
1Z

0

s�1
�

PsF �
mX

nD1
snIn. fn/

�
ds D

1Z

0

s�1
� 1X

nDmC1
snIn. fn/

�
ds

converges in L2.P/ to zero. Using that EIn. fn/Im. fm/ D 1fm D ngnŠk fnk2n we
obtain

ER2m �
1Z

0

s�2E
� 1X

nDmC1
snIn. fn/

�2
ds D

1X

nDmC1
nŠk fnk2n

1Z

0

s2n�2ds

which tends to zero as m!1. ut
Equation (79) implies Mehler’s formula

Pe�s F D EF C
1X

nD1
e�nsIn. fn/; P-a.s.; s � 0; (80)

which was proved in [24] for the special case of a finite Poisson process with a
diffuse intensity measure. Originally this formula was first established in a Gaussian
setting, see, e.g., [19]. The family fPe�s W s � 0g of operators describes a special
example of Glauber dynamics. Using (80) in (78) gives the identity (69).

8 Covariance Identities

The fundamental Fock space isometry (17) can be rewritten in several other
disguises. We give here two examples, starting with a covariance identity from [5]
involving the operators Ps.
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Theorem 8 Assume that � is a proper Poisson process. Then, for any F;G 2
dom D,

EFG D EF EGC E

Z 1Z

0

.DxF/.PtDxG/dt�.dx/: (81)

Proof The Cauchy–Schwarz inequality and the contractivity property (74) imply
that

�
E

Z 1Z

0

jDxFjjPsDxGjds�.dx/

�2
� E

Z
.DxF/2�.dx/E

Z
.DxG/2�.dx/

which is finite due to Theorem 3. Therefore we can use Fubini’s theorem and (75)
to obtain that the right-hand side of (81) equals

EF EGC
Z 1Z

0

s�1E.DxF/.DxPsG/ds�.dx/: (82)

For s 2 Œ0; 1	 and �-a.e. x 2 X we can apply the Fock space isometry Theorem 1 to
DxF and DxPsG. Taking into account Lemma 6, (73) and applying Fubini again (to
be justified below) yields that the second summand in (82) equals

Z 1Z

0

s�1EDxF EDxPsG ds�.dx/

C
1X

nD1

1

nŠ

“ 1Z

0

s�1EDnC1
x1;:::;xn;xF EDnC1

x1;:::;xn;xPsG ds�n.d.x1; : : : ; xn//�.dx/

D
Z

EDxF EDxG�.dx/

C
1X

nD1

1

nŠ

“ 1Z

0

snEDnC1
x1;:::;xn;xF EDnC1

x1;:::;xn;xG ds�n.d.x1; : : : ; xn//�.dx/

D
1X

mD1

1

mŠ

Z
EDm

x1;:::;xm
F EDm

x1;:::;xm
G�m.d.x1; : : : ; xm//:

Inserting this into (82) and applying Theorem 1 yield the asserted formula (81).
The use of Fubini’s theorem is justified by Theorem 1 for f D g and the Cauchy–
Schwarz inequality. ut
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The integrability assumptions of Theorem 8 can be reduced to mere square
integrability when using a symmetric formulation. Under the assumptions of
Theorem 8 the following result was proved in [4, 5]. An even more general version
is [13, Theorem 1.5].

Theorem 9 Assume that � is a proper Poisson process. Then, for any F 2 L2�,

E

Z 1Z

0

.EŒDxF j �.t/	/2dt�.dx/ <1; (83)

and for any F;G 2 L2�,

EFG D EF EGC E

Z 1Z

0

EŒDxF j �.t/	EŒDxG j �.t/	dt�.dx/: (84)

Proof It is well known (and not hard to prove) that �.t/ and �� �.t/ are independent
Poisson processes with intensity measures t� and .1 � t/�, respectively. Therefore
we have for F 2 L2� with representative f that

EŒDxFj�t	 D
Z

Dxf .�.t/ C �/˘.1�t/�.d�/ (85)

holds almost surely. It is easy to see that the right-hand side of (85) is a measurable
function of (the suppressed) ! 2 ˝ , x 2 X, and t 2 Œ0; 1	.

Now we take F;G 2 L2� with representatives f and g. Let us first assume that
DF;DG 2 L2.P ˝ �/. Then (83) follows from the (conditional) Jensen inequality
while (85) implies for all t 2 Œ0; 1	 and x 2 X, that

E.DxF/.PtDxG/ D EDxF
Z

Dxg.�.t/ C �/˘.1�t/�.d�/

D EEŒDxF EŒDxG j �.t/		 D EEŒDxF j �.t/	EŒDxG j �.t/	:

Therefore (84) is just another version of (81).
In this second step of the proof we consider general F;G 2 L2�. Let Fk 2 L2�,

k 2 N, be a sequence such that DFk 2 L2.P˝ �/ and E. f � Fk/
2 ! 0 as k!1.

We have just proved that

VarŒFk � Fl	 D E

Z
.EŒDxFk j �.t/	� EŒDxFl j �.t/	/2��.d.x; t//; k; l 2 N;
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where �� is the product of � and Lebesgue measure on Œ0; 1	. Since L2.P˝ ��/ is
complete, there is an h 2 L2.P˝ ��/ satisfying

lim
k!1E

Z
.h.x; t/ �EŒDxFk j �.t/	/2��.d.x; t// D 0: (86)

On the other hand it follows from Lemma 3 that for any C 2 X0

Z

C�Œ0;1	
E
ˇ̌
EŒDxFk j �.t/	 � EŒDxF j �.t/	ˇ̌��.d.x; t//

�
Z

C�Œ0;1	
EjDxFk � DxFj��.d.x; t//! 0

as k ! 1. Comparing this with (86) shows that h.!; x; t/ D EŒDxF j �.t/	.!/ for
P ˝ ��-a.e. .!; x; t/ 2 ˝ � C � Œ0; 1	 and hence also for P ˝ ��-a.e. .!; x; t/ 2
˝ �X � Œ0; 1	. Therefore the fact that h 2 L2.P˝ ��/ implies (84). Now let Gk,
k 2 N, be a sequence approximating G. Then Eq. (84) holds with . fk;Gk/ instead
of . f ;G/. But the second summand is just a scalar product in L2.P˝ ��/. Taking
the limit as k ! 1 and using the L2-convergence proved above yield the general
result. ut

A quick consequence of the previous theorem is the Poincaré inequality for
Poisson processes. The following general version is taken from [30]. A more direct
approach can be based on the Fock space representation in Theorem 1, see [13].

Theorem 10 For any F 2 L2�,

Var F � E

Z
.DxF/2�.dx/: (87)

Proof It is no restriction of generality to assume that � is proper. Take F D G in (84)
and apply Jensen’s inequality. ut

The following extension of (87) (taken from [17]) has been used in the proof of
Proposition 5.

Corollary 1 For F 2 L1�,

EF2 � .EF/2 C E

Z
.DxF/2�.dx/: (88)

Proof For s > 0 we define

Fs D 1fF > sgsC 1f�s � F � sgF � 1fF < �sgs:
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By definition of Fs we have Fs 2 L2� and jDxFsj � jDxFj for �-a.e. x 2 X. Together
with the Poincaré inequality (87) we obtain that

EF2s � .EFs/
2 C E

Z
.DxFs/

2�.dx/ � .EFs/
2 C E

Z
.DxF/2�.dx/:

By the monotone convergence theorem and the dominated convergence theorem,
respectively, we have that EF2s ! EF2 and EFs ! EF as s ! 1. Hence letting
s!1 in the previous inequality yields the assertion. ut

As a second application of Theorem 9 we obtain the Harris-FKG inequality for
Poisson processes, derived in [9]. Given B 2 X , a function f 2 F.N�/ is increasing
on B if f .�C ıx/ � f .�/ for all � 2 N� and all x 2 B. It is decreasing on B if .�f /
is increasing on B.

Theorem 11 Suppose B 2 X . Let f ; g 2 L2.P�/ be increasing on B and
decreasing on X n B. Then

Ef .�/g.�/ � Ef .�/Eg.�/: (89)

It was noticed in [30] that the correlation inequality (89) (also referred to as
association) is a direct consequence of a covariance identity.

Acknowledgements The proof of Proposition 5 is joint work with Matthias Schulte.

Appendix

In this appendix we prove Proposition 1. If � 2 N is given by

� D
kX

jD1
ıxj (90)

for some k 2 N0 [ f1g and some points x1; x2; : : : 2 X (which are not assumed to
be distinct) we define, for m 2 N, the factorial measure �.m/ 2 N.Xm/ by

�.m/.C/ D
X¤

i1;:::;im�k

1f.xi1 ; : : : ; xim/ 2 Cg; C 2 X m: (91)
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These measures satisfy the recursion

�.mC1/ D
Z � Z

1f.x1; : : : ; xmC1/ 2 �g�.dxmC1/ (92)

�
mX

jD1
1f.x1; : : : ; xm; xj/ 2 �g

�
�.m/.d.x1; : : : ; xm//:

Let N<1 denote the set of all � 2 N with �.X/ < 1. For � 2 N<1 the
recursion (92) is solved by

�.m/ D
Z
� � �
Z

1f.x1; : : : ; xm/ 2 �g
�
� �

m�1X

jD1
ıxj

�
.dxm/ � � ��.dx1/; (93)

where the integrations are with respect to finite signed measures. Note that �.m/ is
a signed measure such that �.m/.C/ 2 Z for all C 2 X m. At this stage it might
not be obvious that �.m/.C/ � 0. If, however, � is given by (90) with k 2 N,
then (93) coincides with (91). Hence �.m/ is a measure in this case. For any � 2
N<1 we denote by �.m/ the signed measure (93). This is in accordance with the
recursion (92). The next lemma shows that �.m/ is a measure.

Lemma 7 Let � 2 N<1 and m 2 N. Then �.m/.C/ � 0 for all C 2X m.

Proof Let B1; : : : ;Bm 2 X and let ˘m denote the set of partitions of Œm	. The
definition (93) implies that

�.m/.B1 � � � � � Bm/ D
X

�2˘m

c�
Y

J2�
�.\i2JBi/; (94)

where the coefficients c� 2 R do not depend on B1; : : : ;Bm and �. For instance

�.3/.B1 � B2 � B3/ D �.B1/�.B2/�.B3/� �.B1/�.B2 \ B3/

� �.B2/�.B1 \ B3/� �.B3/�.B1 \ B2/C 2�.B1 \ B2 \ B3/:

It follows that the left-hand side of (94) is determined by the values of � on the
algebra generated by B1; : : : ;Bm. The atoms of this algebra are all nonempty sets of
the form

B D Bi1
1 \ � � � \ Bim

m ;

where i1; : : : ; im 2 f0; 1g and, for B � X, B1 WD B and B0 WD X n B. Let A denote
the set of all these atoms. For B 2 A we take x 2 B and let �B WD �.B/ıx. Then the



Stochastic Analysis for Poisson Processes 33

measure

�0 WD
X

B2A
�B

is a finite sum of Dirac measures and (94) implies that

.�0/.m/.B1 � � � � � Bm/ D �.m/.B1 � � � � � Bm/:

Therefore it follows from (91) (applied to �0) that �.m/.B1 � � � � � Bm/ � 0.
Let Am be the system of all finite and disjoint unions of sets B1 � � � � � Bm.

This is an algebra; see Proposition 3.2.3 in [2]. From the first step of the proof and
additivity of �.m/ we obtain that �.m/.A/ � 0 holds for all A 2 Am. The system M

of all sets A 2 X m with the property �.m/.A/ � 0 is monotone. Hence a monotone
class theorem (see e.g. Theorem 4.4.2 in [2]) implies that M D X m. Therefore �.m/

is nonnegative. ut
Lemma 8 Let �; 
 2 N<1 and assume that � � 
. Let m 2 N. Then �.m/ � 
.m/.
Proof By a monotone class argument it suffices to show that

�.m/.B1 � � � � � Bm/ � 
.m/.B1 � � � � � Bm/ (95)

for all B1; : : : ;Bm 2 X . Fixing the latter sets we define the system A of atoms of
the generated algebra as in the proof of Lemma 7. For B 2 A we choose x 2 B and
define �B WD �.B/ıx and 
B WD 
.B/ıx. Then

�0 WD
X

B2A
�B; 
0 WD

X

B2A

B

are finite sums of Dirac measures satisfying �0 � 
0. By (94) we have

�.m/.B1 � � � � � Bm/ D .�0/.m/.B1 � � � � � Bm/:

A similar identity holds for 
.m/ and .
0/.m/. Therefore (91) (applied to �0 and 
0)
implies the asserted inequality (95). ut

We can now prove a slightly more detailed version of Proposition 1.

Proposition 6 For any � 2 N� there is a unique sequence �.m/, m 2 N, of sym-
metric �-finite measures on .Xm;X m/ satisfying �.1/ WD � and the recursion (92).
Moreover, the mapping � 7! �.m/ is measurable. Finally, �.m/.Bm/ � �.B/m for all
m 2 N and B 2X .

Proof For � 2 N<1 the functionals defined by (93) satisfy the recursion (92) and
are measures by Lemma 7.



34 G. Last

For a general � 2 N� we proceed by induction. For m D 1 we have �.1/ D
� and there is nothing to prove. Assume now that m � 1 and that the measures
�.1/; : : : ; �.m/ satisfy the first m � 1 recursions and have the properties stated in the
proposition. Then (92) enforces the definition

�.mC1/.C/ WD
Z

K.x1; : : : ; xm; �;C/ �
.m/.d.x1; : : : ; xm// (96)

for C 2X mC1, where

K.x1; : : : ; xm; �;C/

WD
Z

1f.x1; : : : ; xmC1/ 2 Cg�.dxmC1/ �
mX

jD1
1f.x1; : : : ; xm; xj/ 2 Cg:

The function KWXm � N� �X m ! .�1;1	 is a signed kernel in the following
sense. The mapping .x1; : : : ; xm; �/ 7! K.x1; : : : ; xm; �;C/ is measurable for all
C 2X mC1, while K.x1; : : : ; xm; �; �/ is �-additive for all .x1; : : : ; xm; �/ 2 Xm�N� .
Hence it follows from (96) and the measurability properties of �.m/ (which are part
of the induction hypothesis) that �.mC1/.C/ is a measurable function of �.

Next we show that

K.x1; : : : ; xm; �;C/ � 0 �.m/-a.e. .x1; : : : ; xm/ 2 Xm (97)

holds for all � 2 N� and all C 2 X mC1. Since �.m/ is a measure (by induction
hypothesis) (96), (97) and monotone convergence then imply that �.mC1/ is a
measure. Fix � 2 N� and choose a sequence .�n/ of finite measures in N� such
that �n " �. Lemma 7 (applied to �n and mC 1) implies that

K.x1; : : : ; xm; �n;C/ � 0 .�n/
.m/-a.e. .x1; : : : ; xm/ 2 Xm; n 2 N:

Indeed, we have for all B 2X m that

Z

B

K.x1; : : : ; xm; �n;C/ .�n/
.m/.d.x1; : : : ; xm// D .�n/

.mC1/..B �X/ \ C/ � 0:

Since K.x1; : : : ; xm; �;C/ is increasing, this implies

K.x1; : : : ; xm; �;C/ � 0 .�n/
.m/-a.e. .x1; : : : ; xm/ 2 Xm; n 2 N:

By induction hypothesis we have that .�n/
.m/ " �.m/ so that (97) follows.

Finally we note that �.m/.Bm/ � �.B/m follows by induction. In particular, �.m/

is �-finite. To prove the symmetry of �.m/ it is then sufficient to show that the
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restriction of �.m/ to Bm is symmetric, for any B 2 X with �.B/ < 1. This fact
follows from (94). ut

For any � 2 N, B 2X with �.B/ <1, and m 2 N it follows by induction that

�.m/.Bm/ D �.B/.�.B/ � 1/ � � � .�.B/ �mC 1/:

Since � and �.m/ are �-finite, this extends to any B 2 X . In particular �.m/ is the
zero measure whenever �.X/ < m.
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Combinatorics of Poisson Stochastic Integrals
with Random Integrands

Nicolas Privault

Abstract We present a self-contained account of recent results on moment iden-
tities for Poisson stochastic integrals with random integrands, based on the use of
functional transforms on the Poisson space. This presentation relies on elementary
combinatorics based on the Faà di Bruno formula, partitions and polynomials, which
are used together with multiple stochastic integrals, finite difference operators and
integration by parts.

1 Introduction

The cumulants .�X
n /n�1 of a random variable X have been defined in [33] and were

originally called the “semi-invariants” of X, due to the property �XCY
n D �X

n C �Y
n ,

n � 1, when X and Y are independent random variables. Precisely, given the moment
generating function

EŒetX 	 D
1X

nD0

tn

nŠ
EŒXn	; (1)

of a random variable X, where t is in a neighborhood of 0, the cumulants of X
are defined to be the coefficients .�X

n /n�1 appearing in the series expansion of the
logarithmic moment generating function of X, i.e., we have

log.EŒetX 	/ D
1X

nD1
�X

n

tn

nŠ
; (2)
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where t is in a neighborhood of 0. In relation with the Faà di Bruno formula, (1)
and (2) yield the classical identity

EŒXn	 D
nX

aD0

X

P1[���[PaDf1;:::;ng
�X
jP1j � � � �X

jPaj; n 2 N; (3)

which links the moments .EŒXn	/n�1 of a random variable X with its cumulants
.�X

n /n�1, cf., e.g., Theorem 1 of [16], and also [15] or §2.4 and Relation (2.4.4) page
27 of [17].

The summation in (3) runs over the partitions P1; : : : ;Pa of the set f1; : : : ; ng,
i.e., each sequence P1; : : : ;Pa is a family of nonempty and nonoverlapping subsets
of f1; : : : ; ng whose union is f1; : : : ; ng, and jPij denotes the cardinal of Pi, cf. §2.2
of [21] for a complete review of the notion of set partition. For example, when X is
centered Gaussian we have �X

n D 0, n 6D 2, and (3) reads as Wick’s theorem for the
computation of Gaussian moments of X counting the pair partitions of f1; : : : ; ng,
cf. [10].

In this survey we derive moment identities for Poisson stochastic integrals with
random integrands, cf. Theorem 1 below, with application to invariance of Poisson
random measures. Our method relies on the tools from combinatorics appearing
in [3], i.e., the Faà di Bruno formula and related Stirling numbers, partitions and
polynomials, in relation with Poisson random measures, integration by parts on
Poisson probability spaces and multiple stochastic integrals. Such moment identities
have been recently extended to point processes with Papangelou intensities (see [6]
and [5], respectively, for the moments and for the factorial moments of such point
processes).

The outline of this survey is as follows. Section 2 starts with preliminaries on
combinatorics and the Faà di Bruno formula, providing the needed combinatorial
background to rederive the classical identity (3). Then, in Sect. 3 we introduce the
Poisson random measures and integration by parts on Poisson probability spaces,
along with the tools of S and U transforms in view of applications to moment
identities. Single and joint moment identities themselves are then detailed in Sect. 4,
in relation with set-indexed adaptedness and invariance of Poisson measures.

Our computation of Poisson moments will proceed from the Bismut–Girsanov
approach to the stochastic calculus of variations (Malliavin calculus), via the use
of functional S and U-transforms, cf. Sects. 3.3 and 3.4. As an illustration, we start
with some informal remarks on that approach in the framework of the Malliavin
calculus on the Wiener space. Given .Bt/t2RC

a standard Brownian motion and F.!/
a random functional of the Brownian path Bt.!/ D !.t/, t 2 RC, we start from the
Girsanov identity

E ŒF�.f /	 D E

2

4F

0

@!.�/C
:Z

0

f .s/ds

1

A

3

5 ; (4)
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where f 2 L2.RC/ and �. f / D X1 is the terminal value of the (martingale) solution
of the stochastic differential equation

dXt D f .t/XtdBt; t 2 RC: (5)

By iteration, the solution of (5) can be written as the series

�. f / D X1

D 1C
1Z

0

f .t/XtdBt

D 1C
1X

nD1

1Z

0

tnZ

0

� � �
t2Z

0

f .t1/ � � � f .tn/dBt1 � � � dBtn

D 1C
1X

nD1

1

nŠ
In. f˝n/;

of multiple stochastic integrals

In. f˝n/ D nŠ

1Z

0

tnZ

0

� � �
t2Z

0

f .t1/ � � � f .tn/dBt1 � � � dBtn ; n � 1:

We can then rewrite (4) as

E ŒF�.f /	 D EŒF	C
1X

nD1

1

nŠ
EŒFIn. f˝n/	 (6)

D E

2

4F

0

@!.�/C
:Z

0

f .s/ds

1

A

3

5

D EŒF	C
1X

nD1

1

nŠ

@n

@"n
E

2

4F

0

@!.�/C "
:Z

0

f .s/ds

1

A

3

5

"D0
:

By successive differentiations this yields the iterated integration by parts formula

EŒFIn. f˝n/	 D EŒrn
f F	; (7)



40 N. Privault

where rf is the gradient operator defined by

rf F WD lim
"!0

1

"

0

@F

0

@!.�/C "
:Z

0

f .s/ds

1

A � F.!.�//
1

A :

On the other hand, on the Wiener space the above Girsanov shift acts on the paths
.!.t//t2RC

of the underlying Brownian motion .Bt/t2RC
as

!.�/ 7�! !.�/C "
:Z

0

f .s/ds;

which yields

EŒrn
f F	 D E

2

4
1Z

0

� � �
1Z

0

f .s1/ � � � f .sn/Ds1 � � �Dsn Fds1 � � � dsn

3

5 ; (8)

where DsF is the Malliavin gradient which satisfies

rf F D
1Z

0

DsFf .s/ds;

hence by (7) and (8) we obtain the iterated integration by parts identity

E
�
Ik.f
˝k/F

� D E

2

4
1Z

0

� � �
1Z

0

f .s1/ � � � f .sk/Ds1 � � �Dsk Fds1 � � � dsk

3

5 ; k � 1;

(9)

a relation that can be the basis for the computation of moments. On the Wiener space
the operator D also satisfies the identity

DtIn.g
˝n/ D ng.t/In�1.g˝.n�1//; t 2 RC; (10)

which can be used to recover (9) as the Stroock’s formula [32], cf. Corollary 1 below
for the Poisson case.
However, when carrying over this approach to the probability space of a Poisson
random measure it turns out that there is no differential operator rf that can satisfy
both relations (8) and (10) above. In the sequel we will develop the above approach
on the Poisson space via the use of finite difference operators.
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2 Combinatorics

In this section we provide the necessary combinatorial background for the derivation
of cumulant-type moment identities. We refer the reader to [21] and references
therein, cf. also [22], for additional background on combinatorial probability and
for the relationships between the moments and cumulants of random variables.

2.1 Faà di Bruno Formula and Bell Polynomials

2.1.1 Faà di Bruno formula

The Faà di Bruno formula plays a fundamental role in the combinatorics of
moments, cumulants, and factorial moments. Namely, instead of the multinomial
identity

 
nX

lD1
xl

!k

D kŠ
X

d1C���CdnDk
d1�0;:::;dn�0

xd1
1

d1Š
� � � x

dn
n

dnŠ
; (11)

we will use the combinatorial identity

 1X

nD1
xn

!k

D
1X

nDk

X

d1C���CdkDn
d1�1;:::;dk�1

xd1 � � � xdk ; (12)

or
 1X

nD1
x1;n

!
� � �
 1X

nD1
xk;n

!
D
1X

nDk

X

d1C���CdkDn
d1�1;:::;dk�1

x1;d1 � � � xk;dk : (13)

The above identity (12) is equivalent to the Faà di Bruno formula, i.e., given g.x/
and f .y/ two functions given by the series expansions

g.x/ D
1X

nD1
bn

xn

nŠ

with g.0/ D 0 and

f .y/ D
1X

kD0
ak

yk

kŠ
;
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the series expansion of f .g.x// is given by

f .g.x// D
1X

kD0

ak

kŠ

 1X

nD1
bn

xn

nŠ

!k

D
1X

kD0

ak

kŠ

1X

nDk

X

d1C���CdkDn
d1�1;:::;dk�1

bd1 � � � bdk

xd1

d1Š
� � � x

dk

dkŠ

D
1X

nD0
xn

nX

kD0

ak

kŠ

X

d1C���CdkDn
d1�1;:::;dk�1

bd1

d1Š
� � � bdk

dkŠ
: (14)

In the sequel we will often rewrite (12) using sums over partitions Pn
1; : : : ;P

n
k of

f1; : : : ; ng into subsets with cardinals jPn
1j; : : : ; jPn

k j, as

nŠ

kŠ

X

d1C���CdkDn
d1�1;:::;dk�1

bd1

d1Š
� � � bdk

dkŠ
D

X

Pn
1[���[Pn

kDf1;:::;ng
bjPn

1j � � � bjPn
k j:

2.1.2 Bell Polynomials

The Faà di Bruno formula (14) can be rewritten as

f .g.x// D
1X

nD0

xn

nŠ

nX

kD0
akBn;k.b1; : : : ; bn�kC1/; (15)

where Bn;k.b1; : : : ; bn�kC1/ is the Bell polynomial of order .n; k/ defined by

Bn;k.b1; : : : ; bn�kC1/ WD 1

kŠ

X

d1C���CdkDn
d1�1;:::;dk�1

nŠ

d1Š � � � dkŠ
bd1 � � � bdk

D
X

Pn
1[���[Pn

kDf1;:::;ng
bjPn

1j � � � bjPn
k j

D nŠ
X

r1C2r2C���C.n�kC1/rn�kC1Dn
r1Cr2C���Crn�kC1Dk

r1�0;:::;rn�kC1�0

n�kC1Y

lD1

�
1

rlŠ

�
bl

lŠ

�rl
�

D nŠ

kŠ

X

r1C2r2C���C.n�kC1/rn�kC1Dn
r1Cr2C���Crn�kC1Dk

r1�0;:::;rn�kC1�0

kŠ

r1Š � � � rn�kC1Š

�
b1
1Š

�r1

� � �
�

bn�kC1
.n � kC 1/Š

�rn�kC1

;
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cf., e.g., Definition 2.4.1 of [21], with Bn;0.b1; : : : ; bn/ D 0, n � 1, and B0;0 D 1. In
particular when f .y/ D ey we have ak D 1, k � 0, and (15) rewrites as

exp

 1X

nD1

bn

nŠ

!
D
1X

nD0

1

nŠ
An.b1; : : : ; bn/; (16)

where

An.b1; : : : ; bn/ D
nX

kD0
Bn;k.b1; : : : ; bn�kC1/ (17)

D
nX

kD0

X

Pn
1[���[Pn

kDf1;:::;ng
bjPn

1j � � � bjPn
k j

D nŠ
nX

kD0

X

r1C2r2C���C.n�kC1/rn�kC1Dn
r1Cr2C���Crn�kC1Dk

r1�0;:::;rn�kC1�0

n�kC1Y

lD1

�
1

rlŠ

�
bl

lŠ

�rl
�

(18)

D nŠ
X

r1C2r2C���CnrnDn
r1�0;:::;rn�0

nY

lD1

�
1

rlŠ

�
bl

lŠ

�rl
�

is the (complete) Bell polynomial of degree n. Relation (16) is a common formula-
tion of the Faà di Bruno formula and it will be used in the proof of Proposition 5
below on the U-transform on the Poisson space.

2.2 Stirling Inversion

The Stirling numbers will be used for the construction of multiple stochastic
integrals, as well as to establish their relations to the Charlier polynomials in
Sect. 3.2. Let

S.n; k/ D
�
n
k


D 1

kŠ

kX

iD0
.�1/k�i

 
k

i

!
in

D 1

kŠ

X

d1C���CdkDn
d1�1;:::;dk�1

nŠ

d1Š � � � dkŠ
(19)

D
X

Pn
1[���[Pn

kDf1;:::;ng
1;
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denote the Stirling number of the second kind with S.n; 0/ D 0, n � 1, and S.0; 0/ D
1, cf. page 824 of [1], i.e., S.n; k/ is the number of partitions of a set of n objects
into k nonempty subsets, cf. also Relation (3) page 59 of [3], with

Bn;k.x; : : : ; x/ D xkS.n; k/; 0 � k � n:

Let also

s.n; k/ D
�
n
k

�
D 1

kŠ

kX

iD0
.�1/i

 
k

i

!
.k � i/n

denote the (signed) Stirling number of the first kind, cf., e.g., page 824 of [1], i.e.,
.�1/n�ks.n; k/ is the number of permutations of n elements which contain exactly k
permutation cycles.

The following Lemma 1, cf., e.g., Relation (3) page 59 of [3], also relies on the
Faà di Bruno formula applied to

f .t/ D tk

kŠ
and an D 1fnDkg

and

g.t/ D log.1C t/ and bk D 1fnDkg:

Lemma 1 Assume that the function f .t/ has the series expansion

f .t/ D
1X

nD0

tn

nŠ
an; t 2 R:

Then we have

f .et � 1/ D
1X

kD0

tk

kŠ
ck; t 2 R;

with

cn D
nX

kD0
akS.n; k/;

and the inversion formula

an D
nX

kD0
cks.n; k/; n 2 N:
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Proof Applying the Faà di Bruno identity (14) to g.t/ D et � 1 and using (19) we
have

f .et � 1/ D
1X

kD0
ak
.et � 1/k

kŠ
D
1X

kD0
ak

1X

nDk

tn

nŠ
S.n; k/

D
1X

nD0

tn

nŠ

nX

kD0
akS.n; k/ D

1X

nD0

tn

nŠ
cn; t 2 R;

with

cn D
nX

kD0
akS.n; k/:

Conversely we have

f .t/ D
1X

kD0

ck

kŠ
.log.1C t//k D

1X

kD0
ck

1X

nDk

tn

nŠ
s.n; k/

D
1X

nD0

tn

nŠ

nX

kD0
cks.n; k/ D

1X

nD0

tn

nŠ
an; t 2 R;

with

an D
nX

kD0
cks.n; k/:

ut
As a consequence of Lemma 1, the Stirling transform

an D
nX

kD0
cks.n; k/; n 2 N;

can be inverted as

cn D
nX

kD0
akS.n; k/; n 2 N;

i.e., we have the inversion formula

nX

kDl

S.n; k/s.k; l/ D 1fnDlg; n; l 2 N; (20)
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for Stirling numbers, cf., e.g., page 825 of [1]. As particular cases of the Stirling
transform of Lemma 1 we find that

1

kŠ
.e� � 1/k D 1

kŠ

 1X

nD1

�n

nŠ

!k

D 1

kŠ

1X

nDk

�n

nŠ

X

d1C���CdkDn
d1�1;:::;dk�1

nŠ

d1Š � � � dkŠ

D
1X

nDk

�n

nŠ
Bn;k.1; : : : ; 1/ D

1X

nDk

�n

nŠ
S.n; k/; k � 1: (21)

We also have

1

kŠ
.log.1C t//k D .�1/k

kŠ

 1X

nD1

.�1/n
n

tn

!k

D .�1/k
1X

nDk

tn

nŠ
Bn;k

�
�1; 1

2
;�1
3
; : : : ;

.�1/n�kC1

n � kC 1
�

D .�1/k
kŠ

1X

nDk

.�1/n tn

nŠ

X

d1C���CdkDn
d1�1;:::;dk�1

nŠ

d1 � � � dk

D
1X

nDk

tn

nŠ
s.n; k/; k � 1;

which shows the relation

s.n; k/ D nŠ

kŠ

X

d1C���CdkDn

.�1/n�k

d1 � � � dk
: (22)

In particular, taking ck D xk and letting an D x.n/ be defined by the falling factorial

x.n/ WD x.x � 1/ � � � .x � nC 1/; k; n � 0;

i.e.,

f .et � 1/ D ext D
1X

kD0

tk

kŠ
xk;

and by Lemma 1 we get

f .t/ D .1C x/t D
1X

nD0

tn

nŠ
x.n/; (23)



Combinatorics of Poisson Stochastic Integrals with Random Integrands 47

which will be used in Lemma 2 below on the Charlier polynomials.
By Stirling inversion we also find the expansion of the falling factorial

x.n/ D x.x � 1/ � � � .x � nC 1/ D
nX

kD0
s.n; k/xk (24)

and

xn D
nX

kD0
S.n; k/ x.x � 1/ � � � .x � kC 1/;

cf., e.g., [9] or page 72 of [8].

2.3 Charlier and Touchard Polynomials

2.3.1 Charlier Polynomials

The Charlier polynomials Cn.x; �/ of order n 2 N with parameter � > 0 are
essential in the construction of multiple Poisson stochastic integrals in Sect. 3.2.
They can be defined through their generating function

 �.x; t/ WD
1X

nD0

�n

nŠ
Cn.x; t/ D e��t.1C �/x; x; t 2 RC; (25)

� 2 .�1; 1/, cf., e.g., §4.3.3 of [30].

Lemma 2 We have

Cn.x; �/ D
nX

kD0
xk

nX

lD0

 
n

l

!
.��/n�ls.l; k/; x; � 2 R: (26)

Proof We check that defining Cn.x; t/ by (26) yields

 �.x; t/ D
1X

nD0

�n

nŠ
Cn.x; t/

D
1X

nD0

�n

nŠ

nX

kD0
xk

nX

lDk

 
n

l

!
.�t/n�ls.l; k/

D
1X

nD0

�n

nŠ

nX

lD0

 
n

l

!
.�t/n�l

lX

kD0
xks.l; k/
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D
1X

lD0
x.l/

1X

nDl

�n

nŠ

nŠ

.n � l/ŠlŠ
.�t/n�l

D
1X

lD0
x.l/
�l

lŠ

1X

nD0

�n

nŠ
.�t/n

D e��t
1X

lD0
x.l/
�l

lŠ

D e��t.1C �/x;

�; t > 0, x 2 N, where we applied (23) and (24). ut
As a consequence of Lemma 2 and (24), the Charlier polynomial Cn.x; �/ can be
rewritten in terms of the falling factorial x.n/ as

Cn.x; �/ D
nX

lD0

 
n

l

!
.��/n�l

lX

kD0
xks.l; k/ D

nX

lD0

 
n

l

!
.��/n�lx.l/; x; � 2 R:

(27)

Lemma 3 We have the orthogonality relation

e��
1X

kD0

�k

kŠ
Cn.k; �/Cm.k; �/ D nŠ�n1fnDmg: (28)

Proof We have

e�ab D e��.1CaCb/
1X

kD0

�k

kŠ
.1C a/k.1C b/k

D e��
1X

kD0

�k

kŠ
 a.k; �/ b.k; �/

D e��
1X

kD0

�k

kŠ

1X

nD0

1X

mD0

an

nŠ

bm

mŠ
Cn.k; �/Cm.k; �/;

which shows that

1X

pD0
�p .ab/p

pŠ
D e��

1X

kD0

�k

kŠ

1X

nD0

1X

mD0

an

nŠ

bm

mŠ
Cn.k; �/Cm.k; �/

D e��
1X

nD0

.ab/n

.nŠ/2

1X

kD0

�k

kŠ
.Cn.k; �//

2;
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with

1X

kD0

�k

kŠ
Cn.k; �/Cm.k; �/ D 0

for n 6D m, and

nŠ�n D e��
1X

kD0

�k

kŠ
.Cn.k; �//

2;

for n D m. ut

2.3.2 Touchard Polynomials

The Touchard polynomials can be used to express the moments of a Poisson random
variable as a function of its intensity parameter. They can be defined by their
generating function

e�.e
t�1/ D

1X

nD0

tn

nŠ
Tn.�/; t 2 R;

and from (16) or (21) they satisfy

Tn.�/ W D An.�; : : : ; �/ D
nX

kD0
Bn;k.�; : : : ; �/

D
nX

kD1

X

Pn
1[���[Pn

kDf1;:::;ng
�k D

nX

kD0
�kS.n; k/; (29)

cf., e.g., Proposition 2 of [4] or §3.1 of [20]. Relation (29) above will be used in the
proof of the combinatorial Lemma 7 below.

2.4 Moments and Cumulants of Random Variables

Given the identity (1) defining the moment generating function of X, we can write

EŒetX	 D 1C tEŒX	C t2

2
EŒX2	C o.t2/;
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which allows us to rewrite the cumulant generating function (2) as

log.EŒetX 	/ D log

�
1C tEŒX	C t2

2
EŒX2	C o.t2/

�

D tEŒX	C t2

2
EŒX2	 � 1

2

�
tEŒX	C t2

2
EŒX2	

�2
C o.t2/

D tEŒX	C t2

2
EŒX2	 � t2

2
.EŒX	/2 C o.t2/

D tEŒX	C t2

2
VarŒX	C o.t2/;

hence �X
1 D EŒX	 and �X

2 D VarŒX	. More generally, as a consequence of (16),
the moment generating function of X expands using the complete Bell polynomials
An.b1; : : : ; bn/ of (17) as

EŒetX 	 D exp.log.EŒetX	//

D exp

 1X

nD1
�X

n

tn

nŠ

!

D
1X

nD0

tn

nŠ
An.�

X
1 ; : : : ; �

X
n /;

which shows by comparison with (1) that

EŒXn	 D An.�
X
1 ; �

X
2 ; : : : ; �

X
n /

D
nX

kD0

nŠ

kŠ

X

d1C���CdkDn
d1�1;:::;dk�1

�X
d1

d1Š
� � � �

X
dk

dkŠ

D
nX

kD0

X

Pn
1[���[Pn

kDf1;:::;ng
�X
jPn
1j � � � �

X
jPn

k j; (30)

and allows us to recover (3).
The identity (30) can also be recovered from the Thiele [33] recursion formula

EŒXn	 D
n�1X

lD0

.n � 1/Š
lŠ.n � l � 1/Š�

X
n�lEŒX

l	 D
nX

lD1

.n � 1/Š
.n � l/Š.l � 1/Š�

X
l EŒX

n�l	 (31)
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between moments and cumulants of random variables, cf., e.g., §1.3.2 of [22].
Indeed, assuming at the order n � 1 that

EŒXn	 D
nX

aD0

nŠ

aŠ

X

l1C���ClaDn
l1�1;:::;la�1

�X
l1

l1Š
� � � �

X
la

laŠ
D

nX

aD0

X

Pn
1[���[Pn

aDf1;:::;ng
�X
jPn
1j � � � �

X
jPn

aj;

and using (31), we have, at the order nC 1,

EŒXnC1	 D
nC1X

kD1

 
n

k � 1

!
�X

k EŒX
nC1�k	

D
nC1X

kD1

nŠ

.k � 1/Š�
X
k

nC1�kX

aD0

1

aŠ

X

l1C���ClaDnC1�k
l1�1;:::;la�1

�X
l1

l1Š
� � � �

X
la

laŠ

D
nC1X

kD1

 
n

k � 1

!
�X

k

nC1�kX

aD0

X

PnC1�k
1 [���[PnC1�k

a Df1;:::;nC1�kg
�X
jPnC1�k
1 j � � � �

X
jPnC1�k

a j

D
nX

aD0

nC1�aX

kD1

 
n

k � 1

!
�X

k

X

PnC1�k
1 [���[PnC1�k

a Df1;:::;nC1�kg
�X
jPnC1�k
1 j � � � �

X
jPnC1�k

a j

D
nX

aD0

X

PnC1
1 [���[PnC1

aC1
Df1;:::;nC1g

�X
jPnC1
1 j � � � �

X
jPnC1

aC1j
(32)

D
nC1X

aD1

X

PnC1
1 [���[PnC1

a Df1;:::;nC1g
�X
jPnC1
1 j � � � �

X
jPnC1

a j

D
nC1X

aD0

.nC 1/Š
aŠ

X

l1C���ClaDnC1
l1�1;:::;la�1

�X
l1

l1Š
� � � �

X
la

laŠ
;

where in (32) the set PnC1
aC1 of cardinal jPnC1

aC1j D k is built by combining fnC1gwith
k � 1 elements of f1; : : : ; ng.

The cumulant formula (30) can also be inverted to compute the cumulant �X
n from

the moments �X
n of X by the inversion formula

�X
n D

nX

aD1
.a � 1/Š.�1/a�1

X

PnC1[���[Pn
aDf1;:::;ng

�X
jPn
1j � � ��

X
jPn

aj; n � 1; (33)
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where the sum runs over the partitions Pn
1; : : : ;P

n
a of f1; : : : ; ng with cardinal jPn

i j
by the Faà di Bruno formula, cf. Theorem 1 of [16], and also [15] or §2.4 and
Relation (2.4.3) page 27 of [17].

2.4.1 Example: Gaussian Cumulants

When X is centered we have �X
1 D 0 and �X

2 D EŒX2	 D VarŒX	, and X becomes
Gaussian if and only if �X

n D 0, n � 3, i.e., �X
n D 1fnD2g�2, n � 1, or

.�X
1 ; �

X
2 ; �

X
3 ; �

X
4 ; : : :/ D .0; �2; 0; 0; : : :/:

When X is centered Gaussian we have �X
n D 0, n 6D 2, and (30) can be read as

Wick’s theorem for the computation of Gaussian moments of X ' N.0; �2/ by
counting the pair partitions of f1; : : : ; ng, cf. [10], as

EŒXn	 D �n
nX

kD1

X

Pn
1[���[Pn

kDf1;:::;ng

jPn
1jD2;:::;jPn

k jD2

�X
jPn
1j � � � �

X
jPn

aj D
8
<

:

�n.n � 1/ŠŠ; n even;

0; n odd;
(34)

where the double factorial

.n� 1/ŠŠ D
Y

1�2k�n

.2k � 1/ D 2�n=2 nŠ

.n=2/Š

counts the number of pair-partitions of f1; : : : ; ng when n is even.

2.4.2 Example: Poisson Cumulants

In the particular case of a Poisson random variable Z ' P.�/ with intensity � > 0

we have

EŒetZ 	 D
1X

nD0
entP.Z D n/ D e��

1X

nD0

.�et/n

nŠ
D e�.e

t�1/; t 2 RC;

hence �Z
n D �, n � 1, or

.�Z
1 ; �

Z
2 ; �

Z
3 ; �

Z
4 ; : : :/ D .�; �; �; �; : : :/;
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and by (30) we have

E�ŒZ
n	 D An.�; : : : ; �/ D

nX

kD0
Bn;k.�; : : : ; �/

D
nX

kD1

X

Pn
1[���[Pn

kDf1;:::;ng
�k D

nX

kD0
�kS.n; k/

D Tn.�/;

i.e., the n-th Poisson moment with intensity parameter � > 0 is given by Tn.�/,
where Tn is the Touchard polynomial of degree n.

In the case of centered Poisson random variables, we note that Z and Z � EŒZ	
have same cumulants of order k � 2, hence in case Z � EŒZ	 is a centered Poisson
random variable with intensity � > 0 we have

EŒ.Z �EŒZ	/n	 D
nX

aD1

X

Pn
1[���[Pn

aDf1;:::;ng

jPn
1j�2;:::;jPn

aj�2

�a D
nX

kD0
�kS2.n; k/; n � 0;

where S2.n; k/ is the number of ways to partition a set of n objects into k nonempty
subsets of size at least 2, cf. [25].

2.4.3 Example: Compound Poisson Cumulants

Consider the compound Poisson random variable

ˇ1Z˛i C � � � C ˇpZ˛p (35)

with Lévy measure

˛iıˇ1 C � � � C ˛pıˇp ;

where ˇ1; : : : ; ˇp 2 R are constant parameters and Z˛1 ; : : : ;Z˛p is a sequence of
independent Poisson random variables with respective parameters˛1; : : : ; ˛p 2 RC.
The moment generating function of (35) is given by

EŒet.ˇ1Z˛iC���CˇpZ˛p /	 D e˛1.e
tˇ1�1/C���C˛p.e

tˇp�1/;

which shows that the cumulant of order k � 1 of (35) is given by

˛1ˇ
k
1 C � � � C ˛pˇ

k
p:
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As a consequence of the identity (30), the moment of order n of (35) is given by

E

" 
pX

iD1
ˇiZ�˛i

!n#
(36)

D
nX

mD0

X

Pn
1[���[Pn

mDf1;:::;ng
.˛1ˇ

jPn
1j

1 C � � � C ˛pˇ
jPn
1j

p / � � � .˛1ˇjP
n
mj

1 C � � � C ˛pˇ
jPn

mj
p /

D
nX

mD0

X

Pn
1[���[Pn

mDf1;:::;ng

pX

i1;:::;imD1
ˇ
jPn
1j

i1
˛i1 � � �ˇjP

n
mj

im
˛im ;

where the above sum runs over all partitions Pn
1; : : : ;P

n
m of f1; : : : ; ng.

2.4.4 Example: Infinitely Divisible Cumulants

In the case where X is the infinitely divisible Poisson stochastic integral

X D
1Z

0

h.t/dNt

with respect to a standard Poisson process .Nt/t2RC
with intensity � > 0 and h 2T1

pD1 Lp.RC/, the logarithmic generating function

logE

2

4exp

0

@
1Z

0

h.t/dNt

1

A

3

5 D �
1Z

0

.eh.t/ � 1/dt D �
1X

nD1

1

nŠ

1Z

0

hn.t/dt

D
1X

nD1
�X

n

tn

nŠ
;

shows that the cumulants of
R1
0

h.t/dNt are given by

�X
n D �

1Z

0

hn.t/dt; n � 1; (37)

and (30) becomes the moment identity

E

2

4

0

@
1Z

0

h.t/dNt

1

A
n3

5 D
nX

kD1
�k

X

Pn
1[���[Pn

kDf1;:::;ng

1Z

0

hjP
n
1j.t/dt � � �

1Z

0

hjP
n
k j.t/dt;

(38)
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where the sum runs over all partitions Pn
1; : : : ;P

n
k of f1; : : : ; ng, cf. [2] for the non-

compensated case and [28], Proposition 3.2 for the compensated case.

3 Analysis of Poisson Random Measures

In this section we introduce the basic definitions and notations relative to Poisson
random measures, and we derive the functional transform identities that will be
useful for the computation of moments in Sect. 4.

3.1 Poisson Point Processes

From now on we consider a proper Poisson point process � on the space
N� .X/ of all �-finite counting measures on a measure space .X;X / equipped
with a �-finite intensity measure �.dx/, see [12, 13] for further details and
additional notation. The random measure � in N� .X/ will be represented
as

� D
�.X/X

nD1
ıxn ;

where .xn/
�.X/
nD1 is a (random) sequence in X, ıx denotes the Dirac measure at x 2 X,

and �.X/ 2 N [ f1g denote the cardinality of � identified with the sequence
.xn/n.

Recall that the probability law P� of � is that of a Poisson probability measure
with intensity �.dx/ on X: it is the only probability measure on N� .X/ satisfying

(1) For any measurable subset A 2 X of X such that �.A/ < 1, the number
�.A/ of configuration points contained in A is a Poisson random variable with
intensity �.A/, i.e.,

P�.f� 2 N� .X/ W �.A/ D ng/ D e��.A/
.�.A//n

nŠ
; n 2 N:

(2) In addition, if A1; : : : ;An are disjoint subsets of X with �.Ak/ < 1, k D
1; : : : ; n, the Nn-valued random vector

� 7�! .�.A1/; : : : ; �.An//; � 2 N� .X/;

is made of independent random variables for all n � 1.
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When �.X/ <1 the expectation under the Poisson measure P� can be written as

EŒF.�/	 D e��.X/
1X

nD0

1

nŠ

Z

Xn

fn.x1; : : : ; xn/�.dx1/ � � ��.dxn/ (39)

for a random variable F of the form

F.�/ D
1X

nD0
1f�.X/Dngfn.x1; : : : ; xn/ (40)

where for each n � 1, fn is a symmetric integrable function of � D fx1; : : : ; xng
when �.X/ D n, cf., e.g., §6.1 of [24].

The next lemma is well known.

Lemma 4 Given � and 
 two intensity measures on X, the Poisson random
measure ��C
 with intensity �C 
 decomposes into the sum

��C
 ' �� ˚ �
; (41)

of a Poisson random measure �� with intensity �.dx/ and an independent Poisson
random measure �
 with intensity 
.dx/.

Proof Taking F a random variable of the form (40) we have

EŒF.��C
/	 D e��.X/�
.X/
1X

nD0

1

nŠ

Z

Xn

fn.fx1; : : : ; xng/
nY

kD1
.�.dxk/C 
.dxk//;

and

1X

nD0

1

nŠ

Z

Xn

fn.fs1; : : : ; sng/
nY

kD1

.�.dsk/C 
.dsk//

D
1X

nD0

1

nŠ

nX

lD0

 
n

l

!Z

Xn

fn.fs1; : : : ; sng/�.ds1/ � � ��.dsk/
.dskC1/ � � � 
.dsn/

D
1X

nD0

nX

lD0

1

.n � l/ŠlŠ

Z

Xn

fn.fs1; : : : ; sl; : : : ; sng/�.ds1/ � � ��.dsl/
.dslC1/ � � � 
.dsn/

D
1X

mD0

1

mŠ

1X

lD0

1

lŠ

Z

XlCm

flCm.fs1; : : : ; sl; : : : ; slCmg/
�.ds1/ � � ��.dsl/
.dslC1/ � � � 
.dslCm/
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D e�.X/
1X

mD0

1

mŠ

Z

Xm

E
h
�C
sm

F.��/
i

.ds1/ � � � 
.dsm/ (42)

D e�.X/C
.X/EŒF.�� ˚ �
/	;

where �Csm
is the addition operator defined on any random variable F W N� .X/! R

by

�Csm
F.�/ D F.�C ıs1 C � � � C ısm/; � 2 N� .X/; s1; : : : ; sm 2 X; (43)

and

sm WD .s1; : : : ; sm/ 2 Xm; m � 1:

ut
In the course of the proof of Lemma 4 we have shown in (42) that

EŒF.��C
/	 D e��.X/
1X

mD0

1

mŠ

Z

Xm

E
�
�Csm

F.�
/
�

.ds1/ � � � 
.dsm/ D EŒF.�� ˚ �
/	;

where �Csk
is defined in (43).

In particular, by applying Lemma 4 above to �.dx/ and 
.dx/ D f .x/�.dx/
with f .x/ � 0 �.dx/-a.e. we find that the Poisson random measure � with intensity
.1C f /d� decomposes into the sum

�.1Cf /d� ' �d� ˚ �f d�;

of a Poisson random measure �d� with intensity �.dx/ and an independent Poisson
random measure �f d� with intensity f .x/�.dx/.

In addition we have, using the shorthand notation E� to denote the Poisson
probability measure with intensity �,

E.1Cf /d�ŒF	 D e��.X/
1X

mD0

1

mŠ

Z

Xm

E�
�
�Csm

F
�

f .s1/ � � � f .sn/�.ds1/ � � ��.dsm/:

(44)

The above identity extends to f 2 L2.X/ with f > �1, and when f .x/ 2 .�1; 0/,
Relation (44) can be interpreted as a thinning of �.1Cf /d�.
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3.1.1 Mecke Identity

The following version of Mecke’s identity [19], cf. also Relation (1.7) in [12], allows
us to compute the first moment of the first order stochastic integral of a random
integrand. In the sequel we use the expression “measurable process” to denote a
real-valued measurable function from X � N� .X/ into R.

Proposition 1 For u W X �N� .X/ �! R a measurable process we have

E�

2

4
Z

X

u.x; �/�.dx/

3

5 D E�

2

4
Z

X

u.x; �C ıx/�.dx/

3

5 ; (45)

provided

E�

2

4
Z

X

ju.x; �C ıx/j�.dx/

3

5 <1:

Proof The proof is done when �.X/ <1. We take u.x; �/ written as

u.x; �/ D
1X

nD0
1f�.X/Dngfn.xI x1; : : : ; xn/;

where .x1; : : : ; xn/ 7�! fn.xI x1; : : : ; xn/ is a symmetric integrable function of � D
fx1; : : : ; xng when �.X/ D n, for each n � 1. We have

E�

2

4
Z

X

u.x; �/�.dx/

3

5

D e��.X/
1X

nD0

1

nŠ

nX

kD1

Z

Xn

fn.xiI x1; : : : ; xn/�.dx1/ � � ��.dxn/

D
1X

nD1

e��.X/

.n � 1/Š
Z

Xn

fn.xI x1; : : : ; xi�1; x; xi; : : : ; xn�1/�.dx/�.dx1/ � � ��.dxn�1/

D e��.X/
1X

nD0

1

nŠ

Z

Xn

Z

X

fnC1.xI x; x1; : : : ; xn/�.dx/�.dx1/ � � ��.dxn/

D E�

2

4
Z

X

u.x; �C ıx/�.dx/

3

5 :

ut
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3.2 Multiple Stochastic Integrals

In this section we define the multiple Poisson stochastic integral (also called
multiple Wiener–Itô integrals) using Charlier polynomials. We denote by “ı” the
symmetric tensor product of functions in L2.X/, i.e., given f1; : : : ; fd 2 L2.X/ and
k1; : : : ; kd � 1,

f ık11 ı � � � ı f ıkd
d

denotes the symmetrization in n D k1 C � � � C kd variables of

f˝k1
1 ˝ � � � ˝ f˝kd

d ;

cf. Relation (1.27) in [12].

Definition 1 Consider A1; : : : ;Ad mutually disjoint subsets of X with finite �-
measure and n D k1C� � �Ckd, where k1; : : : ; kd � 1. The multiple Poisson stochastic
integral of the function

1ık1A1
ı � � � ı 1ıkd

Ad

is defined by

In.1
˝k1
A1
˝ � � � ˝ 1˝kd

Ad
/.�/ WD

dY

iD1
Cki.�.Ai/; �.Ai//: (46)

Note that by (27), Relation (46) actually coincides with Relation (1.26) in [12] and
this recovers the fact that

�.k/.A/ WD #.f.i1; : : : ; ik/ 2 f1; : : : ; �.A/gk W il 6D im; 1 � l 6D m � kg/

defined in Relation (9) of [12] coincides with the falling factorial .�.A//.k/ for A 2
X such that �.A/ <1.

See also [7, 31] for a more general framework for the expression of multiple
stochastic integrals with respect to Lévy processes based on the combinatorics of
the Möbius inversion formula.

From (28) and Definition 1 it can be shown that the multiple Poisson stochastic
integral satisfies the isometry formula

EŒIn.fn/Im.gm/	 D 1fnDmghfn; gmiL2.Xn/; (47)

cf. Lemma 4 in [12], which allows one to extend the definition of In to any symmetric
function fn 2 L2.Xn/, cf. also (52) below.
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The generating series

1X

nD0

�n

nŠ
Cn.�.A/; �.A// D e���.A/.1C �/�.A/ D  �.�.A/; �.A//;

cf. (25), admits a multivariate extension using multiple stochastic integrals.

Proposition 2 For f 2 L2.X/ \ L1.X/ we have

�. f / WD
1X

kD0

1

nŠ
In. f˝n/ D exp

0

@�
Z

X

f .x/�.dx/

1

A
Y

x2�
.1C f .x//: (48)

Proof From (47) and an approximation argument it suffices to consider simple
functions of the form

f D
mX

kD1
ak1Ak ;

by the multinomial identity (11) we have

1X

nD0

1

nŠ
In

0

@
 

mX

kD1
ak1Ak

!˝n
1

A

D
1X

nD0

1

nŠ

X

d1C���CdmDn

nŠ

d1Š � � � dmŠ
ad1
1 � � � adm

m In

�
1˝d1

A1
ı � � � ı 1˝dm

Am

	

D
1X

nD0

1

nŠ

X

d1C���CdmDn

nŠ

d1Š � � � dmŠ
ad1
1 � � � adm

m

mY

iD1
Cdi.�.Ai/; �.Ai//
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The relation between �. f / in (48) and the exponential functional in Lemma 5 of
[12] is given by
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f .x/�.dx/

1

A ;

provided ef � 1 2 L1.X/\ L2.X/.

3.3 S-Transform

Given f 2 L1.X; �/ \ L2.X; �/ with f .x/ > �1 �.dx/-a.e., we define the measure
Qf by its Girsanov density
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where P� is the Poisson probability measure with intensity �.dx/. From (39), for F
a bounded random variable we have the relation
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which shows the following proposition.

Proposition 3 Under the probability Qf defined by (49), the random measure � is
Poisson with intensity .1C f /d�, i.e.,

E�ŒF�.f /	 D E.1Cf /d�ŒF	

for all sufficiently integrable random variables F.
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The S-transform (or Segal–Bargmann transform, see [14] for references) on the
Poisson space is defined on bounded random variables F by

f 7�! SF. f / WD Ef d�ŒF	 D E�ŒF�.f /	

D E�
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4F exp
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X

f .x/�.dx/
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Y

x2�
.1C f .x//

3

5 ;

for f bounded and vanishing outside a set of finite �-measure in X ; Lemma 4 and
Proposition 3 show that

SF. f / D EŒF.�d� ˚ �f d�/	 (50)
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where �f d� is a Poisson random measure with intensity f d�, independent of �d�, by
Lemma 4. In the next proposition we use the finite difference operator

Dx WD �Cx � I; x 2 X;

i.e.,

DxF.�/ D F.�C ıx/� F.�/;

and apply a binomial transformation to get rid of the exponential term in (50). In the
next proposition we let

Dk
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and
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as in (43), where

sk D .s1; : : : ; sk/ 2 Xk; k � 1:



Combinatorics of Poisson Stochastic Integrals with Random Integrands 63

Proposition 4 For any bounded random variable F and f bounded and vanishing
outside a set of finite �-measure in X , we have
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(51)

Proof We apply a binomial transformation to the expansion (50). We have

SF. f /

D e
� R

X

fd�
1X

kD0

1

kŠ

Z

Xk

f .s1/ � � � f .sk/E�
�
�Csk

F
�
�.ds1/ � � ��.dsk/

D
1X

nD0

.�1/n
nŠ

 Z

X

fd�

!n 1X

kD0

1

kŠ

Z

Xk

f .s1/ � � � f .sk/E�
�
�Csk

F
�
�.ds1/ � � ��.dsk/

D
1X

mD0

mX

kD0

.�1/m�k

.m � k/Š

 Z

X

fd�

!m�k
1

kŠ

Z

Xk

f .s1/ � � � f .sk/E�
�
�Csk

F
�
�.ds1/ � � ��.dsk/

D
1X

mD0

1

mŠ

mX

kD0

 
m

k

!
.�1/m�k

Z

Xm

f .s1/ � � � f .sm/E�
�
�Csk

F
�
�.ds1/ � � ��.dsm/

D
1X

mD0

1

mŠ

Z

Xm

f .s1/ � � � f .sm/E�
�
Dm

sm
F
�
�.ds1/ � � ��.dsm/:

ut
By identification of terms in the expansions (48) and (51) we obtain the following
result, which is equivalent (by (47) and duality) to the Stroock [32] formula, cf. also
Theorem 2 in [12].

Corollary 1 Given a bounded random variable F, for all n � 1 and all f bounded
and vanishing outside a set of finite �-measure in X we have
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Proof We note that (48) yields

SF. f / D Ef d�ŒF	 D E�ŒF�.f /	 D
1X

nD0

1

nŠ
E�ŒFIn.f

˝n/	;
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and by Proposition 4 we have
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and identify the respective terms of orders n � 1 in order to show (52). ut
When k D 1, we have the integration by parts formula

E�ŒI1. f /F	 D E�

2

4
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X

f .s/DsF�.ds/

3

5 :

Note that with the pathwise extension Ik..Ff /˝k/ D FkIk.f˝k/ of the multiple
stochastic integral, (52) can be rewritten as the identity

E�ŒIk..Ff /˝k/	 D E�
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cf. also Proposition 4.1 of [26].

3.4 U-Transform

The Laplace transform on the Poisson space (also called U-transform, cf., e.g., §2
of [11]), is defined using the exponential functional of Lemma 5 of [12] by
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for f bounded and vanishing outside a set of finite �-measure in X , and will be
useful for the derivation of general moment identities in Sect. 4.

Proposition 5 Let F be a bounded random variable. We have
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f 2 L2.X; �/.
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Proof Using the Faà di Bruno identity (13) or (16) we have
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where we applied the Faà di Bruno identity (13). ut
In particular, by (54) we have
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cf. Proposition 3.2 of [11].
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4 Moment Identities and Invariance

The following cumulant-type moment identities have been extended to the Poisson
stochastic integrals of random integrands in [28] through the use of the Skorohod
integral on the Poisson space, cf. [23, 27]. These identities and their consequences
on invariance have been recently extended to point processes with Papangelou
intensities in [6], via simpler proofs based on an induction argument.

4.1 Moment Identities for Random Integrands

The moments of Poisson stochastic integrals of deterministic integrands have been
derived in [2] by direct iterated differentiation of the Lévy–Khintchine formula or
moment generating function
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for f bounded and vanishing outside a set of finite �-measure in X . We also note
that
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where we applied the Faà di Bruno identity (13), showing that
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(56)
which recovers in particular (38).
The next Lemma 5 is a moment formula for deterministic Poisson stochastic
integrals, and applies in particular in the framework of a change of measure given
by a density F.

Lemma 5 Let n � 1, f 2 Tn
pD1 Lp.X; �/, and consider F a bounded random

variable. We have
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Proof We apply Proposition 5 on the U-transform, which reads

E�

2

4F exp

0

@
Z

X

f d�

1

A

3

5 D
1X

nD0

1

nŠ
E�

2

4F

0

@
Z

X

f d�

1

A
n3

5

D
1X

nD0

1

nŠ

nX

kD0

1

kŠ

X

d1C���CdkDn
d1;:::;dk�1

nŠ

d1Š � � � dkŠ

Z

Xk

f d1 .s1/ � � � f dk .sk/

�E ��Cs1 � � � �Csk
F
�
�.ds1/ � � ��.dsk/:

ut
Lemma 5 with F D 1 recovers the identity (38), and (by means of the complete Bell
polynomials An.b1; : : : ; bn/ as in (30)) it can be used to compute the moments of
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stochastic integrals of deterministic integrands with respect to Lévy processes, cf.
[18] for the case of subordinators.

Relation (55) yields

EŒFZn	 D
nX

kD0
S.n; k/

Z

Ak

E
�
�Cs1 � � � �Csk

F
�
�.ds1/ � � ��.dsk/; n 2 N; (57)

and when f is a deterministic function, Relation (54) shows that
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which recovers (56).
Based on the following version of (57)
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(58)

and an induction argument we obtain the following Lemma 6, which can be seen as
an elementary joint moment identity obtained by iteration of Lemma 58.

Lemma 6 For A1; : : : ;Ap mutually disjoint bounded measurable subsets of X and
F1; : : : ;Fp bounded random variables we have
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Lemma 6 allows us to recover the following moment identity, which can also be used
for the computation of moments under a probability with density F with respect to
P�.
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Theorem 1 Given F a random variable and u W X � N� .X/ �! R a measurable
process we have
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provided all terms in the above summations are P�˝�˝k- integrable, k D 1; : : : ; n.

Proof We use the argument of Proposition 4.2 in [5] in order to extend Lemma 6
to (59). We start with u W X � N� .X/ �! R a simple measurable process of the
form u.x; �/ DPp

iD1 Fi.�/1Ai.x/ with disjoint sets A1; : : : ;Ap. Using Lemma 6 we
have
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where in (60) we made changes of variables in the integral and, in (60),
we used the combinatorial identity of Lemma 7 below with ˛i;j D 1Ai.xj/,
1 � i � p; 1 � j � m, and ˇi D Fi. The proof is concluded by using the
disjointness of the Ai’s in (60), as follows
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The general case is obtained by approximating u.x; �/ with simple processes.
ut

The next lemma has been used above in the proof of Theorem 1, cf. Lemma 4.3 of
[5], and its proof is given for completeness.
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Lemma 7 Let m; n; p 2 N, .˛i;j/1�i�p;1�j�m and ˇ1; : : : ; ˇp 2 R. We have

X

n1C���CnpDn
n1;:::;np�0

nŠ

n1Š � � � npŠ

X

I1[���[IpDf1;:::;mg
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n1
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pX
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ˇ
jPn
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n
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˛im ;m: (61)

Proof Observe that (19) ensures

S.n; jIj/ˇn
�Y

j2I

˛j

	
D

X
S

a2I PaDf1;:::;ng

Y

j2I



˛jˇ
jPj j�

for all ˛j, j 2 I, ˇ 2 R, n 2 N. We have
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jI1jŠ � � � jIpjŠ
mŠ

pY

lD1

Y

jl2Il
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j
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D
X

n1C���CnpDn
n1;:::;np�0

nŠ

n1Š � � � npŠ

X
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pX
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X
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� � �

X

P
p
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jPi1
j jC���CjPim
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�

D
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pX

i1;:::;imD1
ˇ
jP1j
i1
˛i1;1 � � �ˇjPmj

im
˛im ;m;

by a reindexing of the summations and the fact that the reunions of the partitions
Pj
1; : : : ;P

j
jIjj, 1 � j � p, of disjoint p subsets of f1; : : : ;mg run the partition of

f1; : : : ;mg when we take into account the choice of the p subsets and the possible
length kj, 1 � j � p, of the partitions. ut
As noted in [5], the combinatorial identity of Lemma 7 also admits a probabilistic
proof. Namely given Z�˛1 ; : : : ;Z�˛p independent Poisson random variables with
parameters �˛1; : : : ; �˛p we have

nX

mD0
�m

X

n1C���CnpDn
n1;:::;np�0

nŠ

n1Š � � � npŠ

X

k1C���CkpDm
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p
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EŒZn1

�˛1
� � �Znp

�˛p
	ˇ

n1
1 � � �ˇnp

p

D E

" 
pX

iD1
ˇiZ�˛i

!n#

D
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X
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pX
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ˇ
jPn
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n
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˛im ; (62)

since the moment of order ni of Z�˛i is given by (29) as

E
h
Zni
�˛i

i
D

niX

kD0
S.ni; k/.�˛i/

k:
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The above relation (62) being true for all �, this implies (61). Next we specialize the
above results to processes of the form u D 1A where A.�/ is a random set.

Proposition 6 For any bounded variable F and random set A.�/ we have

E� ŒF .�.A//
n	
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nX

kD0
S.n; k/E�
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Xk

�Cs1 � � � �Csk
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3

5 :

Proof We have
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3

5 :

ut
We also have
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3

5:

When �.A.�// is deterministic this yields
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3

5 :

4.2 Joint Moment Identities

In this section we derive a joint moment identity for Poisson stochastic integrals with
random integrands, which has been applied to mixing of interacting transformations
in [29].

Proposition 7 Let u W X � N� .X/ �! R be a measurable process and let n D
n1 C � � � C np, p � 1. We have
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A
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X
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A
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1

A�.dx1/ � � ��.dxk/

3

5 ;

where the sum runs over all partitions Pn
1; : : : ;P

n
k of f1; : : : ; ng and the power lni;j is

the cardinal

lni;j WD jPn
j \ .n1 C � � � C ni�1; n1 C � � � C ni	j; i D 1; : : : ; k; j D 1; : : : ; p;

for any n � 1 such that all terms in the right-hand side of (63) are integrable.
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Proof We will show the modified identity
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for F a sufficiently integrable random variable, where n D n1C � � � C np. For p D 1
the identity is Theorem 1. Next we assume that the identity holds at the rank p � 1.
Replacing F with F
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�npC1 in (64) we get
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where the summation over the partitions P
nCnpC1

1 ; : : : ;P
nCnpC1

k of f1; : : : ; n C
npC1g, is obtained by combining the partitions of f1; : : : ; ng with the partitions
Qa0

j ; : : : ;Q
a0
j of f1; : : : ; a0g and a1; : : : ; ak elements of f1; : : : ; npC1g which are

counted according to npC1Š=.a0Š � � � akŠ/, with

l
nCnpC1

pC1;j D lni;j C aj; 1 � j � k; l
nCnpC1

pC1;j D lni;j C jQa0
q j; kC 1 � j � kC a0:

ut
Note that when n D 1, (63) coincides with the classical Mecke [19] identity of
Proposition 1.

When n1 D � � � D np D 1, the result of Proposition 7 reads
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where the sum runs over all partitions Pn
1; : : : ;P

n
k of f1; : : : ; ng, which coincides with

the Poisson version of Theorem 3.1 of [6].
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4.3 Invariance and Cyclic Condition

Using the relation �Cx D Dx C I, the result
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of Theorem 1 can be rewritten as
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Next is an immediate corollary of Theorem 1.

Corollary 2 Suppose that

(a) We have

Ds1 � � �Dsk.us1 � � � usk/ D 0; s1; : : : ; sk 2 X; k D 1; : : : ; n: (65)

(b)
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X
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s�.ds/ is deterministic for all k D 1; : : : ; n.

Then,
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u.x; �/�.dx/ has (deterministic) cumulants
Z

X

uk.x; �/�.dx/, k D
1; : : : ; n.
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Proof We have

E�

2

4

0

@
Z

X

u.x; �/�.dx/

1

A
n3

5

D
X

Pn
1[���[Pn

kDf1;:::;ng

k�1X

lD0

 
k

l

!
E�

2

4
Z

Xk

Ds1 � � �Dsl.u
jPn
1j

s1 � � � ujP
n
k j

sk /�.ds1/ � � ��.dsk/

3

5

D
X

Pn
1[���[Pn

kDf1;:::;ng

k�1X

lD0

 
k

l

!
E�

" Z

Xk�1

Ds1 � � �Dsl

0

@u
jPn
1j

s1 � � � ujP
n
k�1j

sk�1

Z

X

u
jPn

k j
s �.ds/

1

A

�.ds1/ � � ��.dsk�1/
#
;

hence by a decreasing induction on k we can show that
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Hence, by a decreasing induction we can show that the needed formula holds for the
moment of order n, and for the moments of lower orders k D 1; ::; n � 1. ut
Note that from the relation

D.u.x1; �/ � � � u.xk; �// D
X

1[���[kD
D1u.x1; �/ � � �Dk u.xk; �/; (66)

where the above sum runs over all (possibly empty) subsets 1; : : : ; k of , in
particular when D f1; : : : ; kg we get

Ds1 � � �Dsk.u.x1; �/ � � � u.xk; �// D D.u.x1; �/ � � � u.xk; �//

D
X

1[���[kDf1;:::;kg
D1u.x1; �/ � � �Dk u.xk; �/;

where the sum runs over the (possibly empty) subsets1; : : : ; k of f1; : : : ; kg. This
shows that we can replace (65) with the condition

D1u.x1; �/ � � �Dk u.xk; �/ D 0; (67)
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for all x1; : : : ; xk 2 X and all (nonempty) subsets 1; : : : ; k � fx1; : : : ; xng, such
that 1 [ � � � [ n D f1; : : : ; ng, k D 1; 2; : : : ; n. See Proposition 3.3 of [5] for
examples of random mappings that satisfy Condition (67).
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Variational Analysis of Poisson Processes

Ilya Molchanov and Sergei Zuyev

Abstract The expected value of a functional F.�/ of a Poisson process � can be
considered as a function of its intensity measure�. The paper surveys several results
concerning differentiability properties of this functional on the space of signed
measures with finite total variation. Then, necessary conditions for � being a local
minima of the considered functional are elaborated taking into account possible
constraints on �, most importantly the case of � with given total mass a. These
necessary conditions can be phrased by requiring that the gradient of the functional
(being the expected first difference F.� C ıx/ � F.�/) is constant on the support
of �. In many important cases, the gradient depends only on the local structure of
� in a neighbourhood of x and so it is possible to work out the asymptotics of the
minimising measure with the total mass a growing to infinity. Examples include the
optimal approximation of convex functions, clustering problem and optimal search.
In non-asymptotic cases, it is in general possible to find the optimal measure using
steepest descent algorithms which are based on the obtained explicit form of the
gradient.

1 Preliminaries

The importance of Poisson point processes for modelling various phenomena is
impossible to overestimate. Perhaps, this comes from the fact that, despite being
among the simplest mathematically tractable models, Poisson point processes enjoy
a great degree of flexibility: indeed, the parameter characterising their distribution
is a generic “intensity” measure, which roughly describes the density of the process
points. It is amazing how many intriguing and deep properties such a seemingly
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simple model enjoys, and how new ones are constantly being discovered, as this
monograph readily shows. Because the distribution of a Poisson point process is
determined by its intensity measure, altering the measure changes the distribution
which, in many cases, is a result of performing a certain transformation of the
phase space or of the point configurations. Such approach is taken, for instance,
in perturbation analysis of point process driven systems (see, e.g., [10] and the
references therein) or in differential geometry of configuration spaces, see, e.g., [1]
or [29].

Rather than considering a change of the parameter measure induced by trans-
formations of the phase space, we take a more general approach by changing the
parameter measure directly. A control over this change is made possible by a linear
structure of the set of measures itself as we describe in detail below.

The main subject of our study is a Poisson point process on a phase space X.
Although it can be defined on a very general measurable phase space, for some
results below we shall need a certain topological structure, so we assume from now
on that X is a Polish space with its Borel �-algebra X . The distribution of a point
process is a probability measure on .N;N /, where N is the set of locally finite
counting measures on X called configurations and N is the minimal �-algebra
that makes all the mappings ' 7! '.B/ measurable for any B 2X . Any ' 2 N can
be represented as a sum of Dirac measures: ' D P

i ıxi , where ıx.B/ D 1B.x/ for
every B 2 X and not necessarily all xi’s are distinct.

Let � be a �-finite measure on .X;X /. A point process � is Poisson with
intensity measure �, if for any sequence of disjoint sets B1; : : : ;Bn 2 X ; n �
1, the counts �.B1/; : : : ; �.Bn/ are independent Poisson Po.�.B1//; : : : ;Po.�.Bn//

distributed random variables. The distribution of the Poisson point process with
intensity measure � will be denoted by P� with the corresponding expectation E�.
The term intensity measure is explained by the fact that, due to the definition, one
has E�.B/ D �.B/ for any B 2 X . Notice that the Poisson process is finite, i.e. all
its configurations with probability 1 contain only a finite number of points, if and
only if its intensity measure is finite, that is �.X/ <1.

In what follows, we study the changes in the distributional characteristics of
functionals of a configuration, under perturbations of the intensity measure which
we first assume finite. Recall that a signed measure 
 can be represented as the
difference 
 D 
C � 
� of two non-negative measures with disjoint supports
(the Lebesgue decomposition) and that the total variation of 
 is defined as k
k D

C.X/ C 
�.X/. Consider the set QMf of all signed measures on X with a finite
total variation, and define operations of addition and multiplication by setting
.� C 
/.B/ D �.B/ C 
.B/ and .t�/.B/ D t�.B/ for any B 2 X . Endowed
with the total variation norm, QMf becomes a Banach space and the set Mf of
finite non-negative measures is a pointed cone, i.e. a set closed under addition and
multiplication by non-negative numbers, see, e.g., [6, III.7.4].

Given a function F W N 7! R of a configuration, its expectation E�F.�/ with
respect to the distribution P� of a finite Poisson process � can be regarded as a
function of the intensity measure � and hence as a function on Mf. Therefore, there
is a reason to consider functions on QMf and their analytical properties in general.
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2 Variational Analysis on Measures

Recall that a function f on a Banach space B is called strongly or Fréchet
differentiable at x 2 B if

f .xC y/ D f .x/C L.x/Œ y	C o.kyk/;

where L.x/Œ � 	 W B 7! B is a bounded linear functional called a differential. A
function f is called weakly or Gateaux differentiable at x 2 B if for every y 2 B

there exists a limit

@yf .x/ D lim
t#0

t�1Œ f .xC ty/ � f .x/	

which can be called the directional derivative of f along the vector y. Strong
differentiability implies that all weak derivatives also exist and that @yf .x/ D
L.x/Œ y	. The converse is not true even for B D R. The same definitions apply to
functions of a signed measure with finite total variation, since QMf is a Banach space.
A very wide class of differentiable functions of a measure possess a differential
which has a form of an integral so that

f .�C 
/ D f .�/C
Z

X

g.xI�/
.dx/C o.k
k/; 
 2 QMf

for some function g. � I�/ called a gradient function. This name comes from the
fact that when X D f1; : : : ; dg is a finite set, QMf is isomorphic to Rd and g. � I�/ D
.g1.�/; : : : ; gd.�// is a usual gradient, since

f .�C 
/ D f .�/C hg. � I�/; 
i C o.k
k/; �; 
 2 Rd:

In line with this, we shall use from now on the notation h f ; 
i for the integral
R

f d
.
Not all differentiable functions of measures possess a gradient function (unless X
is finite), but all practically important functions usually do. Notably, the expectation
E�F.�/ as a function of � 2 Mf does possess a gradient function, as we will see
in the next section. So, it is not a severe restriction to assume that a differentiable
function of a measure possesses a gradient function, as we often do below.

The differentiability provides a useful tool for optimisation of functions. Neces-
sary conditions for a local optimum are based on the notion of a tangent cone.

Definition 1 The tangent cone to a set A � QMf at point 
 2 A is the set of all
signed measures that appear as limits of �n 2 QMf where 
 C tn�n 2 A for all n and
tn # 0.

A first order necessary condition for an optimum in a constrained optimisation
now takes the following form.
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Theorem 1 Assume A 	 QMf is closed and convex in the total variation norm and
that f is continuous on A and strongly differentiable at 
� 2 A. If 
� provides a
local minimum in the constrained optimisation problem

f .
/! inf subject to 
 2 A;

then

L.
�/Œ�	 � 0 for all � 2 TA.

�/: (1)

The proof of this general fact can be found, e.g., in [3] for the case of a constraint
set with non-empty interior. For the purpose of optimisation with respect to the
intensity measure, the main constraint set is the cone Mf of non-negative measures.
However, Mf does not have interior points unless X is finite. The non-emptiness
assumption on the interior was first dropped in [4, Theorem 4.1.(i)]. The next result
proved in [19] characterises the tangent cone to Mf.

Theorem 2 The tangent cone to the set Mf at � 2 Mf is the set of signed
measures for which the negative part of their Lebesgue decomposition is absolutely
continuous with respect to �:

TMf.�/ D f� 2 QMf W �� 
 �g:

Assume now that f possesses a gradient function and �� provides a local
minimum on the constrain set A D Mf. Applying necessary condition (1) with
� D ıx we immediately get that

L.��/Œıx	 D g.xI��/ � 0 for all x 2 X:

Now letting � be ��� restricted onto an arbitrary Borel B 2X leads to

L.��/Œıx	 D hg. � I��/1B; �
�i � 0 :

Combining both inequalities proves the following result.

Theorem 3 Assume that �� 2 Mf provides a local minimum to f on Mf and that
f possesses a gradient function g. � I��/ at ��. Then g. � I��/ D 0 ��-almost
everywhere on X and g.xI��/ � 0 for all x 2 X.

By considering an appropriate Lagrange function, one can generalise this
statement to the case of optimisation over Mf with additional constraints. Before
we formulate the result, we need a notion of regularity.
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Definition 2 Let Y be a Banach space and A 	 Mf, C 	 Y be closed convex sets.
Let f W QMf 7! R and H W QMf 7! Y be strongly differentiable. A measure 
 2 QMf is
called regular for the optimisation problem

f .
/! inf subject to 
 2 A; H.
/ 2 C;

if 0 2 core


H.
/CLH.
/ŒA�
	�C

�
, where LH is the differential of H and core.B/

for B 	 Y is the set fb 2 B W 8y 2 Y 9 t1 such that b C ty 2 B 8t 2 Œ0; t1	g. For
Y D Rd, core.B/ is just the interior of the set B 	 Rd.

Consider the most common case of a finite number of equality and inequality
constraints. In this case Y D Rk and C D f0gm �Rk�m� , m � k, so that we have the
following optimisation problem:

f .�/! inf subject to
8
ˆ̂<

ˆ̂:

� 2Mf

Hi.�/ D 0; i D 1; : : : ;m
Hj.�/ � 0; j D mC 1; : : : ; k

(2)

for some function H W Mf 7! Rk. The following result and its generalisations can
be found in [19].

Theorem 4 Let �� be a regular (in the sense of Definition 2) local minimum for the
problem (2) for a function f which is continuous on Mf and strongly differentiable
at �� with a gradient function g.xI��/. Let H D .H1; : : : ;Hk/ also be strongly
differentiable at �� with a gradient function h.xI�/ D .h1.xI�/; : : : ; hk.xI�//.
Then there exist Langrange multipliers u D .u1; : : : ; uk/ with uj � 0 for those
j 2 fmC 1; : : : ; kg for which Hj.�

�/ D 0 and uj D 0 if Hj.�
�/ < 0, such that

(
g.xI��/ DPk

iD1 uihi.xI��/ �� � a:e: x 2 X;

g.xI��/ �Pk
iD1 uihi.xI��/ for all x 2 X:

When the functions f and H possess gradient functions, as in Theorem 4 above,
the regularity condition becomes the so-called Mangasarian–Fromowitz constraint
qualification, that is, a linear independence of the gradients h1. � I��/; : : : ; hk. � I��/
and the existence of a signed measure � 2 QMf such that

(
hhi; �i D 0 for all i D 1; : : : ;mI
hhj; �i < 0 for all j 2 fmC 1; : : : ; kg for which Hj.�

�/ D 0: (3)

Without inequality constraints, (3) holds trivially for � being the zero-measure
and we come to the following important corollary giving, the first-order necessary
condition for optimisation with a fixed total mass.
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Theorem 5 Let f be continuous on Mf and strongly differentiable at �� 2 Mf

with a gradient function g.xI��/. If �� is a local minimum in the constrained
optimisation problem

f .�/! inf subject to
(

� 2Mf

�.X/ D a > 0;
(4)

then there exists a real u such that

(
g.xI��/ D u �� � a:e: x 2 X;

g.xI��/ � u for all x 2 X:
(5)

3 Analyticity of the Expectation

The linear structure on the set of measures described in the previous section makes
it possible to put analysis of variations of the intensity measure in the general
framework of differential calculus on a Banach space. In this section we fix a
functional F W N 7! R on the configuration space and regard its expectationE�F.�/
as a function of a measure �. To explain the idea, we first consider a bounded
functional F and the Banach space Mf of finite measures and then discuss extensions
to a wider class of functionals and to infinite measures.

It is a well-known fact that for a Poisson process � with a finite intensity measure
�, the conditional distribution of its points given their total number �.X/ D n
corresponds to n points independently drawn from the distribution .�.X//�1�. This
observation, after applying the total probability formula, gives rise to the following
expression for the expectation:

E�F.�/ D F.;/C e��.X/
1X

nD1

1

nŠ

Z

Xn

F.ıx1 C � � � C ıxn/ �.dx1/ : : : �.dxn/; (6)

where ; stands for the null measure.
Substituting �  .�C 
/ for a signed measure 
 2 QMf such that �C 
 2 Mf

into (6),

E�C
F.�/ D e��.X/.1 � 
.X/C o.k
k//

�
h
F.;/C

X

nD1

1

nŠ

Z

Xn

F.
nP

iD1
ıxi/ .�C 
/.dx1/ : : : .�C 
/.dxn/

i
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D E�F C e��.X/
X

nD1

n

nŠ

Z

Xn

F.
nP

iD1
ıxi/ �.dx1/ : : : �.dxn�1/
.dxn/

� 
.X/e��.X/
X

nD0

1

nŠ

Z

Xn

F.
nP

iD1
ıxi/ �.dx1/ : : : �.dxn/C o.k
k/:

Thus

E�C
F.�/ � E�F.�/

D e��.X/
X

nD0

1

nŠ

Z

XnC1

F.
nP

iD1
ıxi C ıx/ �.dx1/ : : : �.dxn/
.dx/

� e��.X/
X

nD0

1

nŠ

Z

XnC1

F.
nP

iD1
ıxi/ �.dx1/ : : : �.dxn/
.dx/ C o.k
k/

D E�

Z

X

ŒF.�C ıx/ � F.�/	 
.dx/C o.k
k/:

Denoting by Dx the difference operator DxF.�/ D F.�C ıx/� F.�/, we see that

E�C
F � E�F D hE�D�F; 
i C o.k
k/:

Since F is bounded, so is E�D�F, hence E�F is strongly differentiable on Mf with
the gradient function E�DxF.

Using the infinite series Taylor expansion in 
.X/, one can extend the above
argument to show not only differentiability, but also analyticity of E�F as a function
of �. Introduce iterations of the operator Dx by setting D0F D F, D1

x1
F D Dx1F,

Dn
x1;:::;xn

F D Dxn.D
n�1
x1;:::;xn�1

F/ so that

Dn
x1;:::;xn

F.�/ D
X

J	f1;2;:::;ng
.�1/n�jJjF
�C P

j2J
ıxj

�
;

as it can be easily checked.

Theorem 6 Assume that there exists a constant b > 0 such that jF
Pn
iD1 ıxi

�j � bn

for all n � 0 and .x1; : : : ; xn/ 2 Xn. Then E�F.�/ is analytic on Mf and

E�C
F D
1X

nD0

1

nŠ

Z

Xn

E�Dn
x1;:::;xn

F


�C nP

iD1
ıxi

�

.dx1/ : : : 
.dxn/; (7)

where the term corresponding to n D 0 is, by convention, E�F.�/.
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The proof can be found in [20]. Notice that the integral above is an n-linear form
of the n-th product measure (the n-th differential) and that

E�Dn
x1;:::;xn

F.�/ D
nX

mD0
.�1/n�m

 
n

m

!
E�F



�C mP

jD1
ıxj

�

because of the symmetry with respect to permutations of x1; : : : ; xn.

3.1 Margulis–Russo Type Formula for Poisson Process

An important case of perturbations of the intensity measure is when the increment
is proportional to the measure itself. So fix a � 2 Mf and consider 
 D t� for a
small t 2 .�1; 1/. Substituting this into (7) gives a power series in t:

E�Ct�F D
1X

nD0

tn

nŠ

Z

Xn

E�Dn
x1;:::;xn

F


�C nP

iD1
ıxi

�
�.dx1/ : : : �.dxn/:

In particular,

d

ds
Es�F.�/ D

Z

X

Es�DxF.�/ �.dx/ D
Z

X

Es�ŒF.�C ıx/� F.�/	 �.dx/:

Let F.�/ D 1�.�/ be an indicator of some event � . The integration in the last
expression can be restricted to the (random) set � .�/ D fx 2 X W 1�.� C ıx/ ¤
1�.�/g leading to

d

ds
Ps�.�/ D Es�

Z

X

1�.�Cıx/1� .�/.x/ �.dx/�Es�

Z

X

1�.�/1� .�/.x/ �.dx/:

The last term is obviouslyEs�1�.�/�.� .�//. For the first one, we apply the Refined
Campbell theorem together with the Mecke formula

E�

Z

X

f .x; �/�.dx/ D E�

Z

X

f .x; �C ıx/�.dx/

valid for any measurable f W X�X 7! RC which characterises the Poisson process,
see, e.g., Propositions 13.1.IV and 13.1.VII in [5] and [12, Sect. 1.1]. Using (3.1),

Es�

Z

X

1�.�C ıx/1� .�/.x/ �.dx/ D 1

s

Z

X

1�.�/1fxW 1� .�/¤1�.��ıx/g.x/ �.dx/:
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Combining all together,

d

ds
Ps�.�/ D 1

s
Es�1�.�/N�.�/ �Es�1�.�/V�.�/: (8)

Here V�.�/ D �fx 2 X W 1�.� C ıx/ ¤ 1�.�/g is the �-content of the set
where adding a new point to configuration � would change the occurrence of � , so
the elements of this set are called pivotal locations for event � in configuration �.
While N�.�/ D

R
X
1fx 2 � W 1�.�/ ¤ 1�.��ıx/g�.dx/, in the case of non-atomic

�, is equal to the number of points in configuration � whose removal would affect
the occurrence of � . Such configuration points are called pivotal points for event
� in configuration �. This geometric interpretation is a key to usefulness of this
formula which is a counterpart of the Margulis–Russo formula for Bernoulli fields
proved in [13] and independently in [31]. Identity (8) was shown in [34] in more
restrictive settings.

Let us mention two useful implications of (8):

d

ds
logPs�.�/ D 1

s
Es�ŒN�.�/ �	 � Es�ŒV�.�/ �	

obtained by dividing both parts by Ps�.�/, and consequently,

Ps2�.�/ D Ps1�.�/ exp
n s2Z

s1

Es�Œs
�1N�.�/ � V�.�/ �	 ds

o

providing a way to control the change in the probability of an event in terms of
the control over the number of pivotal points versus the �-content of the pivotal
locations.

3.2 Infinite Measures

To extend the formula (7), or at least its first k-th term expansion, to infinite mass
measures one must put additional assumptions on the functional F, as there are
examples of a bounded functional whose expectation is, however, not differentiable.
A notable example is the indicator that the origin belongs to an infinite cluster in a
Boolean model of spheres in Rd, d � 2. Its expectation is the density of the infinite
cluster, which is not differentiable at the percolation threshold.

One possible approach for a locally compact phase space is to consider a growing
sequence of compact sets fXng such that [nXn D X, and the corresponding
restrictions �n of the Poisson process � onto Xn are finite point processes. If
F.�n/ converges to F.�/ (such functionals are called continuous at infinity), then
by controlling this convergence it is possible to ensure that the corresponding
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derivatives also converge. This approach was adopted in [20] where, in particular,
it was shown that if F is bounded and continuous at infinity, then (7) holds for a �-
finite � and a finite 
 such that �C 
 is a positive measure, see [20, Theorem 2.2].
Note that the indicator function that the origin is in an infinite cluster is not
continuous at infinity.

A more subtle method is based on the Fock space representation (see the survey
by Last [12], in this volume) and it makes it possible to extend the expansion formula
to square-integrable functionals. Consider two �-finite non-negative measures �
and another measure � dominating their sum � D �C 
. Denote by h� and h
 the
corresponding Radon–Nikodym densities. The following result is proved in [11].

Theorem 7 Assume that

h.1 � h
/
2; �i C h.1� h�/

2; �i <1:

Let F be such that E�F.�/2 < 1. Then (7) holds, all the integrals there exist and
the series converges absolutely.

Perhaps, the most important case is when the increment measure 
 is absolutely
continuous with respect to � with the corresponding density h
 . Then the above
theorem implies that for F such that E�C
F2.�/ < 1, condition hh
.1 C
h
/�1; �i <1 is sufficient for (7) to hold.

Note an interesting fact on the validity of the expansion formula. Each general
increment measure 
 can be represented as 
 D 
1 C 
2, where 
1 is absolutely
continuous with respect to � and 
2 is orthogonal to it. In order for (7) to hold for
all bounded F, it is necessary that 
2.X/ <1! This and other results on the infinite
measure case can be found in [11].

4 Asymptotics in the High-Intensity Setting

Consider the minimisation problem

f .�/ D E�F.�/! inf subject to � 2 Mf and �.X/ D a ; (9)

where F is a functional satisfying the conditions of Theorem 6. For simplicity, we
consider only the case of a fixed total mass and refer to [20] for more general cases.

It is rarely possible to find analytic solution to (9), but Theorem 5 opens a
possibility to use gradient descent type methods in order to numerically solve it
as described later in Sect. 5. However, when the total mass a is large, in many cases
it is possible to come up with asymptotic properties of the optimal measure that
solves the optimisation problem (9) for a that grows to the infinity.

The key idea is to rescale the optimal measure around some point x, so it looks
like proportional to the Lebesgue measure. In the case of a stationary point process,
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it is then easier to calculate the first difference in order to equate it to a constant, so
to satisfy the necessary condition (5) for the minimum.

Assume that X is a compact subset of Rd that coincides with the closure of its
interior and let � x

a.y/ D xCa1=d.y�x/ denote the rescaling around the point x 2 Rd,
so that the image configuration � x

a� consists of points � x
a�1xi for � D fxig. Consider

a solution to (9) which we represent in the form a�a for some probability measure
�a. In particular,

Ea�a F.�/ D E O�x
a
F.� x

a�/ ;

where O�x
a.�/ D a�a.�

x
a�1 �/. Assume that �a is absolutely continuous with density pa

with respect to the Lebesgue measure `d. Then O�x
a.�/ has density pa.�

x
a�1y/ on � x

aX.
The key idea is that in some situations the expected first difference

Ea�a Dx.�/ D E O�x
a
Dx.�

x
a�/ / g.a/Ep.x/`d� .xI �/

for a function� .xI �/ that depends on � locally in a possibly random neighbourhood
of x, a normalising function g and a function p that corresponds to a limit of pa in a
certain sense. Then, the gradient function used in Theorem 5 can be calculated for a
stationary Poisson process with intensity p.x/ which is generally easier.

To make precise the local structure of � .xI �/, we need the concept of a stopping
set, that is a multidimensional analogue of a stopping time, see [35]. Let AB be
the �-algebra generated by random variables f�.C/g for Borel C � B. A random
compact set S is called a stopping set if fS 	 Kg 2 AK for any compact set K in Rd.
The stopping �-algebra is the collection of events A 2 A such that A \ fS 	 Kg 2
AK for all compact K.

The following result is proved in [20].

Theorem 8 Let a�a be a measure solving (4) for the fixed total mass a. Assume
that for an interior point x of X the following condition holds.

(M) For all sufficiently large a,�a is absolutely continuous with respect to `d with
densities pa, and there exists a finite double limit

lim
y!x; a!1 pa.y/ D p.x/ > 0 : (10)

Furthermore, assume that for the same x, the first difference DxF satisfies the
following conditions.

(D) For some positive function g.a/, the random variable

�a D �a.xI �/ D Dx.�
x
a�/=g.a/

converges to � D � .xI �/ as a ! 1 for almost all realisations of the
stationary Poisson process � with unit intensity, and

0 < Ep.x/`d� .xI �/ <1 :
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(L) There exist a family of stopping sets Sa D Sa.xI �/ and a stopping set S.xI �/
such that �a.xI �/ is ASa-measurable for all sufficiently large a; � .xI �/ is
AS-measurable; and for every compact set W containing x in its interior

1Sa.xI�/	W ! 1S.xI�/	W as a!1

for almost all realisations of a stationary unit intensity Poisson process �.
(UI) There exists a compact set W containing x in its interior such that

lim
a!1; n!1E O�x

z
j�a.xI �/j1Sa	W D 0

and there exists a constant M D M.W; b/ such that j�a.xI �/j � M for all
sufficiently large a and � such that Sa.xI �/ � � x

b W.

Then

lim
a!1 jE O�x

a
�a.xI �/ � Ep.x/`d� .xI �/j D 0

and

lim
a!1

Ea�a DxF

Eap.x/`d DxF
D 1 :

The uniform integrability condition (UI) can be efficiently verified for stopping
sets Sa and S that satisfy the condition `d.B/ � ˛`d.Sa/ for some fixed ˛ and almost
all x, see [20, Theorem 5.4]. We now show how this theorem applies to various
problems of a practical interest.

4.1 Approximation of Functions

Consider a strictly convex function f .x/, x 2 Œa; b	 � R, and its linear spline
approximation s.xI �/ built on the grid of points a � x1 � x2 � � � � � xN � b,
where fx1; : : : ; xNg form a Poisson point process � on Œa; b	. Since the end-points
are included as the spline knots, the spline approximation is well defined even if �
is empty. The quality of approximation is measured in the L1-distance as

F.�/ D
bZ

a

.s.xI �/ � f .x//dx :

If, instead of a Poisson process �, one takes a set of deterministic points, the problem
of determining the best locations of those points has been considered in [14] (in
relation to approximation of convex sets), see also [32]. It is well known that the
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empirical probability measure generated by the best deterministic points converges
weakly to the measure with density proportional to f 00.x/1=3.

If � is a Poisson process of total intensity a, then the optimisation problem aims
to determine the asymptotic behaviour of the measure �a such that the intensity
measure� D a�a minimises E�F.�/. The key observation is that the first difference
DxF.�/ equals the area of the triangle with vertices at .x; f .x//, .x�; f .x�// and
.xC; f .xC//, where x� and xC are left and right neighbours to x from �. Denoting
r�x D x�x� and rCx D xC�x, we arrive at the expected first difference (the gradient
function) given by

g.xI�/ D E�DxF D �f .x/ŒE�r�x CErCx 	CE�r�x E�f .xCrCx /CE�rCx E�f .xCr�x / :

If � is an optimal measure, then the strict convexity and continuity properties imply
that (5) holds for all x 2 Œa; b	. It is easy to write down the distributions of r�x and
rCx in terms of �. Then the requirement g.xI�/ D const turns into a system of four
differential equations. However, one is interested in the asymptotic solution when a
is large, so the high intensity framework is very much relevant in this setting. Notice
that here

� .xI �/ D �1
4

f 00.x/rCx r�x .rCx C r�x /

depends only on the stopping set Œx�; xC	 that shrinks to fxg as the total mass a of
the measure � D a�a grows. If � is proportional to the Lebesgue measure `1, then
it is easy to calculate the first difference explicitly as

Ep.x/`1� .xI �/ / �f 00.x/p.x/�3 :

By Theorem 8, if (10) holds, then it is possible to equate the right-hand side
to a constant, so that the density of the optimal measure �a is asymptotically
proportional to f 00.x/1=3, exactly as it is in the deterministic case. The same argument
applies to a strictly convex function f .x/, for x taken from a convex compact subset
of Rd, and leads to the asymptotically optimal measure with density proportional
to K.x/1=.2Cd/, where K.x/ is the Gaussian curvature of f at point x, see [18].
The multidimensional optimal approximation results for deterministic sets of points
(including also the Bezier approximation) are also studied in [16].

4.2 Clustering

Consider the data set fy1; : : : ; ymg in Rd. One of the objectives in the cluster analysis
consists in determining cluster centres � D fx1; : : : ; xkg � Rd for some given k.
Each cluster centre xi is associated with the data points (also referred to as daughter
points) which are nearest to it, i.e. lie within the corresponding Voronoi cell Cxi.�/
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(see, e.g., [26] for the definition and properties of the Voronoi tessellations). The
cluster centres can be determined using the Ward-type criterion by minimising

F.�/ D
X

xi2�

X

yj2Cxi .�/

kxi � yjk2 ;

which is also the trace of the pooled within groups sum of squares matrix. In view of
this criterion function, the optimal set of k cluster centres is also called the k-means
of the data, see [25] for further references on this topic. In most applications, the
number k is predetermined and then a steepest descent algorithm is employed to
find the cluster centres. It should be noted that the functional F.�/ is not convex and
so the descent algorithms might well end up in a local rather than a global minimum.

Alternatively, if the cluster centres are regarded as points of a Poisson point
process with intensity measure � and the mean of F.�/ is taken as an objective
function, then

E�F.�/ D E�

2

4
X

xi2�

X

yj2Cxi .�/

kxi � yjk2
3

5 D
mX

jD1
E��.yj; �/

2 ;

where �.y; �/ is the Euclidean distance from y to the nearest point of �. Since � can
be empty, we have to assign a certain (typically large) value u to �.y;;/. Since � is
a Poisson process, it is easy to compute the latter expectation in order to arrive at

E�F.�/ D
mX

jD1

u2Z

0

expf��.Bpt.yj/gdt ; (11)

which is a convex functional of �. Since taking the expectation in the Poissonised
variant of the clustering problem yields a convex objective function, the steepest
descent algorithm applied in this situation would always converge to the global
minimum. The optimal measure � can be termed as the solution of the P-means
problem.

In the asymptotic setting, it is assumed that the total mass a of the optimal
measure a�a is growing to infinity and the data points are sampled from a
probability distribution with density p
 , so that the empty configurations � are no
longer relevant and the objective function becomes

E�F.�/ D
Z

Rd

E�Œ�.y; �/
2	p
.y/dy :

Adding an extra cluster point x affects only the data points within the so-called
Voronoi flower of x, see [26]. The Voronoi flower is a stopping set that satisfies the
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conditions of Theorem 8. Since Ea`d DxF is proportional to p
.x/a�1�2=d, the high
intensity solution has the density proportional to p
.y/d=.dC2/.

A similar problem appears in the telecommunication setting, where the data
points yj represent the customers and x1; : : : ; xk are the locations of server stations.
If the connection cost of a customer to the server is proportional to the ˇ-power of
the Euclidean distance between them (so that ˇ D 2 in the clustering application),
then the density of the high intensity solution is proportional to p
.y/d=.dCˇ/, see
[18, 20]. This problem is also known in computational geometry under the name of
the mailbox problem, see, e.g., [26, Sect. 9.2.1]. Another similar application is the
optimal stratification in Monte Carlo integration, see, e.g., [30, Sect. 5.5].

4.3 Optimal Quantisation

The optimal server placement problem from the previous section can be thought of
as a representation of a measure 
 on Rd (that describes the probability distribution
of customers) by another (discrete) measure with k atoms. This is a well-known
optimal quantisation problem, see [7, 8]. Apart from finding the optimal quantiser,
it is important to know the asymptotic behaviour of the quantisation error, which
is the infimum of the objective function. The classical quantisation theory concerns
the case when the quantiser is deterministic. We follow a variant of this problem for
quantising points that form a Poisson point process of total intensity a studied in
[17].

Let p.y/, y 2 Rd be a Riemann integrable function with bounded support K that
is proportional to the density of the probability measure to be approximated by a
discrete one. The objective functional for the optimal Poisson quantisation problem
is then

E. pI�/ D
Z

Rd

E��.y; �/
ˇp.y/dy :

Denote

Ea. p/ D nˇ=d inf
�2Mf; �.Rd/Da

E. pI�/ :

Theorem 9 The limit of En.p/ as n!1 exists and

lim
n!1En.p/ D Ikpkd=.dCˇ/ D I

0

@
Z

Rd

p.y/d=.dCˇ/dy

1

A
1Cˇ=d
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for a certain constant I that depends only on ˇ and dimension d. If a�a is supported
by K and minimises E.pI�/ over all measures with the total mass a, then �a

weakly converges as a ! 1 to the probability measure with density proportional
to p.y/d=.dCˇ/.

The proof from [17] does not rely on Theorem 8. Theorem 9 is proved first for
the uniform distribution p.y/ � const and then extended to a non-uniform case.
The main idea is the firewall construction from [7] that ensures the additivity of
the objective functional for indicators of disjoint sets. The main new feature in the
Poisson case is that the firewalls constructed by adding extra cluster points in the
stochastic case correspond to the changes in the intensity and so may be empty.
Bounds on the coverage probabilities from [9] are used in order to ensure that the
firewalls are established with a high probability. The constant I is the limit of the
quantisation error for the uniform distribution on the unit cube.

Note that laws of large numbers for functionals of point processes have been
considered in [27]. They make it possible to obtain the limit of a functional
of a Poisson process with intensity measure a� for any given � as a ! 1.
However, [27] does not contain any results about convergence of minimal values
and minimisers. By examining the proof of [27, Lemma 3.1] it is possible to justify
the uniform convergence of the rescaled functional of a�a for a measure �a with
density pa (and so arrive at the convergence results for minimal values) if

a
Z

ky�xk�a�1=d

jpa.y/ � pa.x/jdy! 0 as a!1 (12)

for all x 2 Rd. If pa.x/ ! p.x/ as a ! 1, (12) implies the validity of the double
limit condition (10).

4.4 Optimal Search

Let Y be a random closed subset of Rd that is independent of the Poisson process
�. The aim is to determine the intensity measure � that maximises the coverage
probability Pf�.Y/ > 0g meaning that at least one point of � hits Y. Equivalently, it
is possible to minimise the avoidance probability

E�1�.Y/D0 D E�e��.Y/ :

The expected first difference is given by

g.xI�/ D E�DxF D �E�
�
e��.Y/1x2Y

�
:
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If Y is a subset of a countable space, it is possible to determine � explicitly, see [18,
Sect. 5.5]. Otherwise, the high intensity approach applies. For instance, if Y D B�.�/
is a random ball of radius � centred at an independent � with probability densities
p� and p� , then

Ep.x/`d� .xI �/

/ ��dp�.x/

"
p�.0/.dC 1/� .1C 1=d/

.ap.x/�d/1C1=d
C p0�.0/.dC 2/� .1C 2=d/

.ap.x/�d/1C2=d
C � � �

#
;

where �d is the volume of a unit ball in Rd. Thus, the density of the asymptotically
optimal measure is proportional to . p�/d=.dC1/ if p�.0/ ¤ 0, and to . p�/d=.dC2/ if
p�.0/ D 0 and p0�.0/ ¤ 0, etc.

5 Steepest Descent Algorithms

Algorithms of the steepest descent type are widely used in the optimisation literature
see, e.g., [28]. The basic steepest descent algorithm consists in moving from a
measure�n (approximate solution at step n) to �nC1 D �nC
n, where 
n minimises
the directional derivative, which in our context becomes L.�/Œ
	 D hg. � I�/; 
i
with g.xI�/ D E�DxF.�/.

The general description of the steepest descent direction from [22, Theorem 4.1]
in the case of optimisation over intensity measures with a fixed total mass yields the
following result.

Theorem 10 The minimum of L.�/Œ
	 over all 
 2 QMf with k
k � " is achieved
on a signed measure 
 such that 
C is the positive measure with total mass "=2
concentrated on the points of the global minima of g.xI�/ and 
� D �jM.t"/ C
ı�jM.s"/n M.t"/, where

M.p/ D fx 2 X W g.xI�/ � pg;

and

t" D inff p W �.M.p// < "=2g ;
s" D supf p W �.M.p// � "=2g :

The factor ı is chosen in such a way that �.M.t"//C ı�.s"// D "=2.

This result means that the mass of � is eliminated at high gradient locations,
while � acquires extra atoms at locations where the gradient is the smallest.

In a numeric implementation, the space X is discretised and the discrete variant
of � is considered. The corresponding steepest descent algorithms are used in



98 I. Molchanov and S. Zuyev

R-libraries mefista (for optimisation with a fixed mass) and medea (for optimisation
with many linear equality constraints) available from the authors’ web pages. The
increment step size in these algorithms is chosen by either the Armijo method
described in [28, Sect. 1.3.2] or by taking into account the difference between the
supremum and the infimum of g.xI�n/ over the support of �n.

Numeric computations of an optimal measure relies on effective evaluation of
the gradient function which is possible to obtain in many cases as the next sections
demonstrate.

5.1 Design of Experiments

The basic problem in the theory of linear optimal design of experiments [2] aims to
find positions of design (observation) points xi in order to minimise the determinant
of the covariance matrix of estimators of coefficients ˇj in the linear regression
model

yi D
kX

jD1
ˇjrj.xi/C "i ;

where r D .r1; : : : ; rk/
> is a column vector of linearly independent functions and

"i are i.i.d. centred errors. If the design points are produced from a probability
distribution �.dx/ reflecting the frequency of taking x as an observation point, the
objective function can be expressed as

f .�/ D � log det M.�/ ;

where the covariance matrix M is given by

M.�/ D
Z

r.x/>r.x/�.dx/ :

For the optimisation purpose, it is possible to discard the logarithm, so that the
gradient function in this model becomes

g.xI�/ D �r.x/M�1.x/r>.x/ ;

see [21, 23]. It is also possible to consider the Poissonised variant of the optimal
design problem. It should be noted however that adding an extra design point has a
non-local effect and so the high-intensity approach from Sect. 4 does not apply in
these problems.
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5.2 Mixtures

Let f px.�/g be a family of probability densities indexed by x 2 X. For a probability
measure � on X define the mixture

p�.y/ D
Z

X

px.y/�.dx/ :

The estimation of the mixing distribution � is a well-studied topic in statistics. The
steepest descent algorithm in the space of measures yields a pure non-parametric
approach to the estimation of � based on maximising the log-likelihood

f .�/ D
nX

iD1
log p�.yi/

based on a sample y1; : : : ; yn. The gradient function is

g.xI�/ D
nX

iD1

px.yi/R
px.y/�.dx/

:

5.3 P-Means

Recall that measure � that minimises the functional (11) is called the solution
of the P-means problem. A direct computation shows that the gradient of the
functional (11) is given by

g.xI�/ D �
X

yj

u2Z

kx�yjkˇ
expf��.Bpt.yj//gdt :

5.4 Maximisation of the Covered Volume

Let � be a Poisson process in X � Rd with intensity measure �. If Br.x/ is a ball of
radius r centred at x, then

� D
[

xi2�
Br.xi/
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is called a Boolean model, see [15, 33]. The ball of radius r is referred to as the
typical grain, which can be also a rather general random compact set. Then

Pfx … �g D expf��.Br.x//g :

Fubini’s theorem yields that the expected uncovered volume is given by

f .�/ D
Z

X

Pfx … �gdx D
Z

X

expf��.Br.x//gdx :

A minimiser of f .�/ yields the intensity of a Poisson process with the largest
coverage. The gradient is directly computed as

g.xI�/ D �
Z

Br.x/

expf��.Br.z//gdz :

Further related problems are discussed in [24] in relation to design of materials
with given properties. This problem does not admit the high-intensity solution, since
adding an extra ball affects the configuration within distance r which does not go to
zero as the intensity of the Poisson process grows.
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Malliavin Calculus for Stochastic Processes
and Random Measures with Independent
Increments

Josep Lluís Solé and Frederic Utzet

Abstract Malliavin calculus for Poisson processes based on the difference operator
or add-one-cost operator is extended to stochastic processes and random measures
with independent increments. Our approach is to use a Wiener–Itô chaos expansion,
valid for both stochastic processes and random measures with independent incre-
ments, to construct a Malliavin derivative and a Skorohod integral. Useful derivation
rules for smooth functionals given by Geiss and Laukkarinen (Probab Math Stat
31:1–15, 2011) are proved. In addition, characterizations for processes or random
measures with independent increments based on the duality between the Malliavin
derivative and the Skorohod integral following an interesting point of view from
Murr (Stoch Process Appl 123:1729–1749, 2013) are studied.

1 Introduction

This chapter is divided into two parts: the first is devoted to processes with
independent increments and the second to random measures with independent
increments. Of course, both parts are strongly related to each other and we had
doubts about the best order in which to present them in order to avoid repetition. We
decided to start with stochastic processes where previous results are better known,
and this part is mainly based on Solé et al. [24] where a Malliavin Calculus for
Lévy processes is developed. Our approach relies on a chaotic expansion of square
integrable functionals of the process, stated by Itô [5], in terms of a vector random
measure on the plane; that expansion gives rise to a Fock space structure and enables
us to define a Malliavin derivative and a Shorohod integral as an annihilation and
creation operator respectively. Later, using an ad hoc canonical space, the Malliavin
derivative restricted to the jumps part of the process can be conveniently interpreted
as an increment quotient operator, extending the idea of the difference operator or
add-one-cost operator of the Poisson processes, see Nualart and Vives [18, 19],
Last and Penrose [12], and Last [11] in this volume. We also extend the interesting
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formulas of Geiss and Laukkarinen [4] for computing the derivatives of smooth
functionals, which widen considerably the practical applications of the calculus.
Finally, following Murr [15], we prove that the duality coupling between Malliavin
derivative and Skorohod integral characterizes the underlying process and, in this
way, extends to stochastic processes some characterizations of Stein’s method type.
We should point out that in the first part (and also in the second, as we comment
below) we use the very general and deep results of Last and Penrose [12] and Last
[11] to improve some results and simplify the proofs of Solé et al. [24].

It is worth remarking that there is another approach to a chaos-based Malliavin
calculus for jump processes using a different chaos expansion, that we comment in
Sect. 2.2. For that development and many applications see Di Nunno et al. [3] and
the references therein.

In the second part we extend Malliavin calculus to a random measure with
independent increments. We start by recalling a representation theorem of such a
random measure in terms of an integral with respect to a Poisson random measure
in a product space; a weak version (in law) of that representation was obtained by
Kingman [8] (see also Kingman [9]). That representation gives rise to the possibility
of building a Malliavin calculus due to the fact that Itô’s [5] chaotic representation
property also holds here. In this context, the results of Last and Penrose [12] and
Last [11] play a central role since, thanks to them, it is not necessary to construct
a canonical space, and we can simply interpret the Malliavin derivative as an add-
one-cost operator. As in the first part, we introduce the smooth functionals of Geiss
and Laukkarinen [4], and the characterization of random measures with independent
increments by duality formulas of Murr [15].

2 Part 1: Malliavin Calculus for Processes with Independent
Increments

2.1 Processes with Independent Increments and Its Lévy–Itô
Decomposition

This section contains the notations and properties of processes with independent
increments that we use; we mainly follow the excellent book of Sato [22]. In
particular, we present the so-called Lévy–Itô decomposition of a process with
independent increments as a sum of a continuous function, a continuous Gaussian
process with independent increments, and two integrals. One of these integrals is
considered with respect to a Poisson random measure whereas the other with respect
to a compensated Poisson random measure. These integrals are, respectively, the
sum of the big jumps of the process and the compensated sum of small jumps. That
decomposition is a masterpiece of stochastic processes theory, and there exist proofs
of such a fact that are based on very different tools: see, for example, Sato [22] and
Kallenberg [7].
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Fix a probability space .˝;A ;P/. Let X D fXt; t � 0g be a real process with
independent increments, that is, for every n � 1 and 0 � t1 < � � � < tn, the random
variables Xt2�Xt1 ; : : : ;Xtn�Xtn�1 are independent. We assume that X0 D 0, a.s., and
that X is continuous in probability and cadlag. A process with all these properties is
also called an additive process. We assume that the �-field A is generated by X.

The hypothesis that the process is cadlag is not restrictive: every process with
independent increments and continuous in probability has a cadlag modification
(Sato [22, Theorem 11.5]). The conditions of continuity in probability and cadlag
prevent the existence of fixed discontinuities, that is to say, there are no points t � 0
such that PfXt ¤ Xt�g > 0:

The system of generating triplets of X is denoted by f.mt; �t; 
t/; t � 0g.
Thus, m W RC ! R, where RC D Œ0;1/, is a continuous function that gives
a deterministic tendency of the process (see representation (2)); �t � 0 is the
variance of the Gaussian part of Xt, and 
t is the Lévy measure of the jumps
part. More specifically, 
t is a measure on R0, where R0 D Rnf0g, such thatR
R0
.1 ^ x2/ 
t.dx/ < 1, where a ^ b D min.a; b/. Observe that for all t � 0

and " > 0, 
t


.�"; "/c� <1, and hence 
t is finite on compact sets of R0, and then

�-finite. Denote by 
 the (unique) measure on B..0;1/ �R0/ defined by





.0; t	 � B

� D 
t.B/; B 2 B.R0/: (1)

It is also �-finite, and moreover, 


ftg �R0

� D 0 for every t > 0 (Sato [22, p. 53]);
thus it is non-atomic. The measure 
 controls the jumps of the process: for B 2
B.R0/, 
..0; t	�B/ is the expectation of the number of jumps of the process in the
interval .0; t	 with size in B. We remark that in a finite time interval the process can
have an infinity of jumps of small size, and there are Lévy measures such that, for
example, 




.0; t	 � .0; x0/

� D 1, for some x0 > 0.
Write

N.C/ D #ft W .t; �Xt/ 2 Cg; C 2 B..0;1/ �R0/;

the jumps measure of the process, where �Xt D Xt � Xt�. It is a Poisson random
measure on .0;1/ �R0 with intensity measure 
 (Sato [6, Theorem 19.2]). Let

ON D N � 


represent the compensated jumps measure.

Theorem 1 (Lévy–Itô Decomposition)

Xt D mt C Gt C
Z

.0;t	�fjxj>1g
x N.d.s; x//C

Z

.0;t	�f0<jxj�1g
x bN.d.s; x//; (2)
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where fGt; t � 0g is a centered continuous Gaussian process with independent
increments and variance EŒG2

t 	 D �2t ; independent of N.

Sato [22, Theorem 19.2] gives a more precise statement, and instead of the
second integral in (2) he writes

lim
"#0

Z

.0;t	�f"<jxj�1g
x bN.d.s; x//;

where the convergence is a.s., uniform in t on every bounded interval.

Remark 1

1. The function t 7! �t is continuous and increasing, and �0 D 0 (Sato [22,
Theorem 9.8]), and hence it defines a �-finite and non-atomic measure on RC,
denoted by �. The Gaussian process fGt; t � 0g introduced above defines
through

G


.s; t	

� D Gt �Gs; 0 � s < t;

a centered Gaussian random measure G on fB 2 B.RC/; �.B/ < 1g with
control measure � (see Peccati and Taqqu [20, p. 63] for this definition). In the
Gaussian Malliavin calculus terminology this is called a white noise measure
(Nualart [17, p. 8]). This will be important when we define Malliavin derivatives
with respect to X.

2. Remember that a Lévy process is an additive process with stationary increments.
In this case, mt D mı t, for some mı 2 R, �t D �ı t, for some �ı � 0, and the
Gaussian process fGt; t � 0g can be written as Gt D p�ıWt, where fWt; t � 0g
is a standard Brownian motion. Also, 
t D t
ı for some Lévy measure 
ı, and
the measure 
 is simply the product measure of the Lebesgue measure on .0;1/
and 
ı: 
.d.t; x// D d t 
ı.dx/:

3. The notations are slightly different from Sato [22] and Solé et al. [24], where 

denotes the Lévy measure of a Lévy process, that in the previous point we write

ı. Also, our measure 
 on .0;1/ � R0 defined in (1) is denoted by Sato [22]
by Q
.

2.2 Wiener–Itô Chaos Expansion

The well-known Wiener–Itô chaos expansion of square integrable functionals of a
Brownian motion can be extended to the square integrable functionals of a process
with independent increments. This was another major contribution made by Itô [5];
indeed, Itô proved that result for Lévy processes, however his proof is written in very
general terms and also covers the case of processes with independent increments.
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That chaos expansion determines a Fock space structure on L2.P/, which is the basis
of our Malliavin calculus development.

With the preceding notations, define a measure � on


RC �R;B.RC �R/

�
by

�.d.t; x// D �.dt/ ı0.dx/C x21.0;1/�R0
.d.t; x//: (3)

It is non-atomic since 
 and � are non-atomic. Moreover, for a bounded set B 2
B.R/,

�.Œ0; t	 � B/ D �tı0.B/C
Z

B\R0

x2 
t.dx/;

and the last integral on the right-hand side is equal to

Z

B\f0<jxj�1g
x2 
t.dx/C

Z

B\f jxj>1g
x2 
t.dx/

�
Z

f0<jxj�1g
x2 
t.dx/C C 
t


fx W jxj > 1g <1;

where C is a constant. Hence, the measure � is locally finite, and, in particular,
�-finite.

Extending Itô [5] to this context, we can define a random measure (in the sense of
vector measures, see Appendix 2) M on



RC�R;B.RC�R/

�
with control measure

�: for C 2 B.RC �R/, such that �.C/ < 1; write C.0/ D ft � 0 W .t; 0/ 2 Cg
and C� D C \ 
.0;1/ �R0

�
, and note that

Z

.0;1/�R0

1C�.s; x/x2 
.d.s; x// <1;

that is, 1C�.t; x/x 2 L2.
/. So there exists the L2.P/ integral of that function with
respect to bN (see Appendix 1), and we can define

M.C/ D G


C.0/

�C
Z

C�

x bN.d.t; x//:

We prove that M is a completely random measure; see Appendix 2 where these
definitions are recalled.

Proposition 1 M is a completely random measure with control measure �.
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Proof In this proof, all sets C 2 B.RC � R/ are assumed to have finite �-
measure. It is clear that EŒM.C/	 D 0, and by the independence between G and
N it follows that

E
�
M.C1/M.C2/

� D �.C1 \ C2/:

From (45) in the appendix it is deduced that the characteristic function of M.C/ is

E
h

exp


iuM.C/

�i D exp

2

4�u2

2
�


C.0/

�C
Z

R0

�
eiux � 1 � iux

	
˛C.dx/

3

5 ;

where ˛C is the measure on R0 defined for A 2 B.R0/ by

˛C.A/ D 

�

C \ 
.0;1/ � A
�	
:

By a standard approximation argument it is proved that if f W R0 ! RC is
measurable, then

Z

R0

f .x/ ˛C.dx/ D
Z

C\..0;1/�R0//

f .x/ 
.d.t; x//:

Thus
Z

R0

x2 ˛C.dx/ D
Z

C\..0;1/�R0//

x2
.d.t; x// � �.C/ <1:

Therefore, ˛C is a Lévy measure with finite second order moment. Then M.C/
has an infinitely divisible law with finite variance and Lévy measure given by ˛C .
Furthermore, if C1;C2 2 B.RC � R/ are disjoint, ˛C1[C2 D ˛C1 C ˛C2 , and it
follows that if C1; : : : ;Cn 2 B.RC � R/, all with finite �-measure, are disjoint,
then M.C1/; : : : ;M.Cn/ are independent. ut

Hence, we can define multiple Wiener–Itô integrals with respect to M, see
Appendix 2. Let L2s .�

n/ be the subset of symmetric functions of L2.�˝n/; and for
f 2 L2s .�

n/ denote by In. f / the multiple integral of f with respect to M.
The chaotic representation Theorem of square integrable functionals of a Lévy

process of Itô [5, Theorem 2] is extended to this case with the same proof. So we
have the chaotic decomposition property:

L2.P/ D
1M

nD0
In


L2s .�

n/
�
;
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and the (unique) representation of a functional F 2 L2.˝/,

F D
1X

nD0
In. fn/; fn 2 L2s .�

n/:

From this point, we can apply all the machinery of the annihilation operators
(Malliavin derivatives) and creation operators (Skorohod integrals) on Fock spaces,
as exposed in Nualart and Vives [18, 19].

Remark 2 For a process without Gaussian part, we can consider the chaos expan-
sion of a square integrable functional in terms of the multiple integrals with respect
to the Poisson random measure N rather than M, and then define a Malliavin
derivative and a Skorohod integral; see Di Nunno et al. [3] and the references
therein. Indeed, in the second part of this paper, dealing with random measures with
independent increments, we combine that approach with the multiple integral with
respect to M.

2.3 Derivative Operators

Let F 2 L2.P/ with a finite chaos expansion

F D
NX

nD0
In. fn/;

where N <1. The Malliavin derivative of F is defined as the element of L2.�˝P/

given by

DzF D
NX

nD1
nIn�1



fn.z; �/

�
; z 2 RC �R:

This operator is unbounded. However, the set of elements of L2.P/ with finite chaos
expansion is dense in L2.P/, and the operator D is closable; the domain of D,
denoted by dom D, coincides with the set of F 2 L2.P/ with chaotic decomposition

F D
1X

nD0
In. fn/;
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such that

1X

nD1
n nŠk fnk2L2s .�n/

<1: (4)

The Malliavin derivative of such an F is given by

DzF D
1X

nD1
nIn�1

�
fn


z; ��

	
; z 2 RC �R;

where the convergence of the series is in L2.�˝P/.
The domain dom D is a Hilbert space with the scalar product

hF;Gi D EŒF G	C E

2
64

Z

RC�R
DzF DzG�.dz/

3
75 : (5)

For all these properties we refer to Nualart and Vives [18].
Given the form of the measure �, for f W .RC �R/n ! R measurable, positive

or �˝n integrable, we have

Z

.RC�R/n
f d�˝n

D
Z

RC�.RC�R/n�1

f


.t; 0/; z1; : : : zn�1/

�
�.dt/ �˝.n�1/.dz1; : : : ; dzn�1/

C
Z

.0;1/�R0�.RC�R/n�1

f .z1; z2; : : : zn/ �
˝n.dz1; : : : ; dzn/:

As a consequence, when � ¤ 0 and 
 ¤ 0, it is natural to consider two more spaces:
Let dom D0 (if � ¤ 0) be the set of F 2 L2.P/with decomposition F DP1nD0 In. fn/
such that

1X

nD1
n nŠ

Z

RC�.RC�R/n�1

f 2..t; 0/; z1; : : : ; zn�1/ �.dt/ �˝.n�1/.dz1; : : : ; dzn�1/ <1:

For F 2 dom D0 we can define the square integrable stochastic process

Dt;0F D
1X

nD1
n In�1

�
fn


.t; 0/; ��

	
;
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where the convergence is in L2.� ˝ P/. Analogously, if 
 ¤ 0, let dom DJ be the
set of F 2 L2.P/ such that

1X

nD1
n nŠ

Z

.0;1/�R0�.RC�R/n�1

f 2n d�˝n <1;

and for F 2 dom DJ , define

DzF D
1X

nD1
nIn�1

�
fn


z; ��

	
;

where the convergence is in L2


.0;1/ �R0 �˝; x2 
.d.t; x//˝ P

�
:

It is clear that when both � ¤ 0 and 
 ¤ 0, then dom D D dom D0 \ dom DJ .

2.4 The Skorohod Integral

Following the scheme of Nualart and Vives [18], we can define a creation operator
(Skorohod—or Kabanov–Skorohod—integral) in the following way: let g 2 L2



�˝

P/, which has a chaotic decomposition

g.z/ D
1X

nD0
In. fn.z; �//; (6)

where fn 2 L2


�˝.nC1/

�
is symmetric in the n last variables. Denote by Of n the

symmetrization in all nC 1 variables. If

1X

nD0
.nC 1/Š k Of nk2L2s .�nC1/

<1; (7)

define the Skorohod integral of f by

ı.g/ D
1X

nD0
InC1. Of n/;

where the convergence is in L2.P/. Denote by dom ı the set of g that satisfy (7). The
operator ı is the dual of the operator D, that is, a process g 2 L2.� � P/ belongs to
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dom ı if and only if there is a constant C such that for all F 2 dom D,

ˇ̌
ˇE

Z

RC�R
g.z/DzF�.dz/

ˇ̌
ˇ � C



EŒF2	

�1=2
:

If g 2 dom ı, then ı.g/ is the element of L2.P/ characterized by the duality (or
integration by parts) formula

EŒı.g/F	 D E

Z

RC�R
g.z/DzF �.dz/; (8)

for any F 2 dom D.
For more properties of the operator ı in the Lévy processes case, including its

relationship with the stochastic integral with respect to the measure M, and a Clark–
Ocone–Haussman formula, we refer to Solé et al. [24, 25].

2.5 Derivation of Smooth Functionals

Following an interesting approach of Geiss and Laukkarinen [4] (in the Lévy
processes context) we will prove the following formulas of the derivative of smooth
functionals: denote by C1b .Rn/ the set of infinitely continuous differentiable
functions such that the function and all partial derivatives are bounded. Let f 2
C1b .Rn/ and consider

F D f


Xt1 ; : : : ;Xtn

�
: (9)

We will prove that F 2 dom D and

Dt;0F D
nX

jD1

@jf

@xj
f


Xt1 ; : : : ;Xtn

�
1Œ0;tj 	.t/; (10)

and for x ¤ 0,

Dt;xF D f


Xt1 C x1Œ0;t1	.t/; : : : ;Xtn C x1Œ0;tn 	.t/

� � f


Xt1 ; : : : ;Xtn

�

x
: (11)

Note the following relationship between both derivatives of a smooth functional:

Dt;0F D lim
x!0Dt;xF; a.s.
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Geiss and Laukkarinen [4] (in the Lévy processes case) give a direct proof of (10)
and (11) by using Fourier inversion and a Clark–Ocone–Haussman type formula.
They also show that the random variables of form (9) are dense in L2.P/ with
respect to the norm induced by (5), and hence it is possible to define the Malliavin
derivatives starting with (10) and (11). In order to prove these formulas in our
context we will follow an alternative procedure: we will first prove these formulas
in a canonical space associated with the process with independent increments and
later we will transfer them to the general case.

2.5.1 Malliavin Derivatives in the Canonical Space

Since the Gaussian part and the jumps part of X are independent, we can construct a
version of X in a canonical probability space of the form



˝G�˝N ;AG˝AN ;PG˝

PN
�

where

• .˝G;AG;PG/ is the canonical space associated with the Gaussian continuous
process G; specifically, ˝G D C .RC/ is the space of continuous functions
on RC , AG the Borel �-algebra generated by the topology of the uniform
convergence on compact sets, and PG the probability that makes the projections

G�t W˝G ! R

f 7! f .t/

a process with the same law of fGt; t � 0g.
• .˝N ;AN ;PN/ is a canonical space associated with the Poisson random measure

N. Essentially, ˝N is formed by infinite sequences ! D 

.t1; x1/; .t2; x2/; : : :

� 2

.0;1/ �R0

�N
(see Appendix 3 for that construction), where ti are the instants

of jump of the process, and xi the size of the corresponding jump. In this space,
under PN , the mapping defined by

N�.!/ D
X

ı.tj;xj/; if ! D 
.t1; x1/; .t2; x2/; : : :
�

is a Poisson random measure with intensity measure 
.
Define

J�t D
Z

.0;t	�fjxj>1g
x N�.d.s; x//C

Z

.0;t	�f0<jxj�1g
x bN�.d.s; x//;

where bN� D N� � 
: Then J� D fJ�t ; t � 0g is a process with independent
increments with generating triplets .0; 
t; 0/.
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• Finally, in the product space ˝G �˝N we write

X�t D mt C G�t C J�t ;

and call it the canonical version of the process X.

2.5.2 Derivative Dt;0

In order to compute the derivative Dt;0F for F 2 L2.˝G �˝N/, from the isometry

L2.˝G �˝N/ ' L2.˝GIL2.˝N//;

we can consider F as an element of L2.˝GIL2.˝N// and apply the theory of
Malliavin derivatives of random variables with values in a separable Hilbert space
following Nualart [17, p. 31]. This derivative coincides with Dt;0. This is proved
from the fact that, by definition, a L2.˝N/-valued smooth random variable has the
form

F D
nX

iD1
Fi Hi;

where Fi are standard smooth variables (see Nualart [17, p. 25]) and Hi 2 L2.˝N/.
Define the Malliavin derivative of F as

D�t F D
nX

iD1
DtFi ˝Hi: (12)

This definition is extended to a subspace dom D� by a density argument.

Proposition 2 dom D� � dom D0, and for F 2 dom D�,

D�t F D Dt;0F: (13)

Proof First consider the functionals of the form

F D N�.C1/ � � �N�.Cm/G
�.B1/ � � �G�.Bk/;

where C1; : : : ;Cm 2 B..0;1/�R0/ are bounded, pairwise disjoints, and at strictly
positive distance of the t-axis, and B1; : : : ;Bk 2 B.RC/ are pairwise disjoints,
with finite � measure. Itô [5] shows that the family of that functionals constitutes a
fundamental set in L2.PG˝PN/. Moreover, Itô shows that such an F can be written
as a sum of multiple integrals:

F D I0. f0/C � � � C ImCk. fmCk/;
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and then the derivatives are easy to compute, proving equality (13), which is
extended to dom D� by density. See Solé et al. [24]. ut

From the above proposition and the properties of the Malliavin derivatives in the
Gaussian white noise case, it follows that the first rule of differentiation (10) in the
canonical space holds:

Proposition 3 Let F D f


X�t1 ; : : : ;X

�
tn

�
where f 2 C1b .Rn/. Then F 2 domDt;0 and

Dt;0F D
nX

jD1

@jf

@xj
f


X�t1 ; : : : ;X

�
tn

�
1Œ0;tj	.t/:

2.5.3 Derivative Dt;x; x ¤ 0

Consider ! D .!G; !N/ 2 ˝G � ˝N , !N D 

.t1; x1/; .t2; x2/; : : :

� 2 
.0;1/ �
R0

�N
. Given z D .t; x/ 2 .0;1/ � R0, we add to !N a jump of size x at instant

t, and call the new element !N
z D



.t1; x1/; .t2; x2/; : : : ; .t; x/; : : :

�
, and write !z D

.!G; !N
z /. For a random variable F, we define the quotient operator

� t;xF.!/ D F.!t;x/� F.!/

x
:

See Solé et al. [24] for the measurability properties of this function. By iteration, we
define

� n
z1;:::;zn

F WD �z1�
n�1
z2;:::;zn

F:

Since this function only depends on the part !N , we can assume that X does not
have a Gaussian part.

In the following lemma we will consider a set � of the form .m;m C 1	 � fx W
n < jxj � n C 1g or .m;m C 1	 � fx W 1=.nC 1/ < jxj � 1=ng, for some m � 0
and n � 1. Then 
.�/ < 1 and for every k � 1,

R
�
jxjk 
.d.t; x// < 1: The

Poisson random measure N� restricted to � has finite intensity measure (from now
on, in this section, we suppress the � to simplify the notations). The ordinary n-fold
product measure is denoted by N˝n, and by N.n/ the measure

N.n/.D/ D N˝n.D¤/;

where D 2 B.�n/ and D¤ is the set of elements of .z1; : : : ; zn/ 2 D such that
zi ¤ zj if i ¤ j. The measure defined by EŒN.n/.D/	 is called the n-factorial moment
measure of the Poisson random measure N (see Last [11, formula (1.9)] or Schneider
and Weil [23, p. 55]). For F 2 L2.˝N/, for every D 2 B.�n/, the following integrals
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are finite and

E
�
FN.n/.D/

� D
Z

D

E
�
F.!z1;:::;zn//

�

.dz1/ � � � 
.dzn/: (14)

To deduce that equality, note that we can write F D f .N/, for some f defined on
the set of integer valued (including1) locally finite measures (see Part 2). For ! D
.z1; z2; : : : /, N.!/ DP

i ızi , and hence N.!z/ DP
i ızi C ız. Then, equality (14) is

just a reformulation of a generalized Mecke formula (see Last [11, formula (1.10)]).
As a consequence, we have

Lemma 1 Let Fk;F 2 L2.PN/ such that limk Fk D F in L2.PN/. Then for every
D 2 B.�n/

lim
k
E

Z

D

ˇ̌
�z1;:::;zn Fk � �z1;:::;zn F

ˇ̌

.dz1/ � � � 
.dzn/ D 0:

Proof The proof is very similar to the proof of Lemma 2 of Last [11]. It suffices to
show that for every m D 1; : : : ; n;

lim
k
E

Z

D

ˇ̌
ˇ
Fk.!z1;:::;zm/� F.!z1;:::;zm/

x1 � � � xm

ˇ̌
ˇ 
.dz1/ � � � 
.dzn/ D 0;

where zi D .ti; xi/. Since � is bounded and far from 0, the x1; : : : ; xn in the
denominator can be suppressed. By (14),

E

Z

D

ˇ̌
Fk.!z1;:::;zm/� F.!z1;:::;zm/

ˇ̌

.dz1/ � � � 
.dzn/ D E

hˇ̌
Fk � F

ˇ̌
N.n/.D/

i

�
�
E
�
.Fk � F/2

�
E
�
N.n/.D/2

�	1=2
;

which goes to 0 as k!1. ut
Proposition 4 Let F 2 L2.PG ˝ PN/ such that

E
h Z

RC�R0



� zF/

2 �.dz/
i
<1: (15)

Then F 2 dom DJ and

DzF.!/ D � zF.!/; �˝ P� a:e: .z; !/ 2 .0;1/ �R0 �˝:
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Proof To simplify the notations we write �.d.x; t// rather than x2 
.d.x; t//. First it
is proved that for f 2 L2s .�

n/;

DIn. f / D � In. f /; �˝ P� a.e. (16)

To prove this, first, instead of f we consider f1˝n
� . Thus, as before, the multiple

integrals (with respect to M) can be computed pathwise, and the above equality is
easily checked, and then extended to f . Moreover, it is proved that the operator �
is closed, again working first with the restriction on �. Hence, if F 2 dom DJ, then
DF D �F. For the details see Solé et al. [24].

Note that as a consequence of (16),

fn.z1; : : : ; zn/ D 1

nŠ
E
h
� n

z1;:::;zn
In. fn/

i
; �˝n � a.e.

This property is extended to a general F D P1
nD0 In. fn/ 2 L2.P/ to get a Stroock

type formula

fn D 1

nŠ
E
�
� nF

�
�˝n � a.e. (17)

This is proved considering Fk D Pk
nD0 In. fn/. We have that for k � n, fn D

1
nŠ E

�
� nFk

�
. By Lemma 1, for every D 2 B.�n/

lim
k

Z

D

ˇ̌
E
�
� nFk

� � E
�
� nF

�ˇ̌
d
˝n D

Z

D

ˇ̌
nŠfn � E

�
� nF

�ˇ̌
d
˝n D 0:

Then

fn D 1

nŠ
E
�
� nF

�
; 
˝n � a.e. on �;

and also �˝n-a.e. And hence the equality holds on .0;1/ � R0 because it is a
countable union of sets of type �.

Now assume that condition (15) holds. Then

�zF D
1X

nD0
In.gn.z; �//;

with

1X

nD0
nŠ
Z

g2n d�˝.nC1/ <1: (18)



118 J.L. Solé and F. Utzet

However, thanks to (17), the kernel gn is related to the kernel fnC1 due to

gn.z; z1; : : : ; zn/ D 1

nŠ
E
h
� n

z1;:::;zn
�zF

i
D 1

nŠ
E
h
� nC1

z1;:::;zn ;zF
i
D .nC1/fnC1.z; z1; : : : ; zn/;

and by (18),

1X

nD1
nnŠ

Z
f 2n d�˝n D

1X

nD0
nŠ
Z

g2n d�˝.nC1/ <1;

which is the condition for F 2 dom DJ . ut
We can deduce the second rule of differentiation (11):

Proposition 5 Let F D f


X�t1 ; : : : ;X

�
tn

�
where f 2 C1b .Rn/. Then F 2 dom DJ and

for x ¤ 0,

Dt;xF D f


X�t1 C x1Œ0;t1	.t/; : : : ;X

�
tn C x1Œ0;tn 	.t/

� � f


X�t1 ; : : : ;X

�
tn

�

x
:

Proof To shorten the notations we suppress the star in X�t . We consider the case
F D f



Xs
�
; the general case is similar. We have

�t;xF D f


Xs C x1Œ0;s	.t/

� � f


Xs
�

x
:

By Proposition 4 it suffices to prove that the following integral is finite:

E

2

64
Z

.0;1/�R0



� zF

�2
�.dz/

3

75 D E

2

64
Z

.0;1/�R0



� t;xF

�2
x2
.d.t; x//

3

75

D E

2

64
Z

.0;1/�R0

�
f


Xs C x1Œ0;s	.t/

� � f


Xs
�

x

�2
x2
.d.t; x//

3

75

D E

2
64

Z

.0;s	�R0

�
f


Xs C x

� � f


Xs
�	2


.d.t; x//

3
75

D E

2

4
Z

R0

�
f


Xs C x

� � f


Xs
�	2


s.dx/

3

5 :
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To this end, by the mean value Theorem, there is a random point Y such that

f


Xs C x

� � f


Xs
� D xf 0.Y/:

Since f 0 is bounded, say by C, using that 
s is a Lévy measure, for every !,

Z

fjxj�1g

�
F


Xs C x

� � f


Xs
�	2


s.dx/ � C2

Z

fjxj�1g
x2
s.dx/ D C0 <1;

where C0 is a constant independent of !. Similarly,

Z

fjxj>1g

�
f


Xs C x

� � f


Xs
�	2


s.dx/ � C000
sfx W jxj > 1g D C000 <1;

where C00 and C000 are constants independent of !. ut

2.5.4 Transfer of the Derivative Rules from the Canonical Space
to an Arbitrary Space

Recall that we write a star to denote random variables, measures, processes,
or operators in the canonical space. We consider a process with independent
increments X on .˝;A ;P/ with Poisson measure N and independent Gaussian part
G, with the same law as N� and G� respectively, related to the additive process X�
constructed in the canonical space



˝G �˝N ;AG ˝AN ;PG ˝ PN

�
. Note that the

generating triplets of X and X� coincide, and hence the measures � and �� (see (3))
are the same. Moreover, the Fock space structure of L2.P/ allows us to transfer
some properties of the derivatives and Skorohod integrals in the canonical space to
the space .˝;A ;P/. This can be done thanks to the fact that to a square integrable
random variable F 2 L2.P/ with

F D
1X

nD0
In. fn/; fn 2 L2s .�

n/;

we can associate F� 2 L2.PG � PN/ given by

F� D
1X

nD0
I�n . fn/:
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That is, the kernels of F and F� are the same. In a similar way, since, given that
g 2 L2



RC �R �˝;B.RC �R/˝A ; �˝ P/ has a chaotic decomposition

g.z/ D
1X

nD0
In. fn.z; �//; (19)

fn 2 L2nC1 is symmetric in the n last variables, we can transfer from g to g�, and if
g 2 dom ı, then g� 2 dom ı�. More specifically,

Lemma 2 With the previous notations, for every t1; : : : ; tn 2 RC and F 2 L2.P/,
we have that



Xt1 ; : : : ;Xtn ;F

� LD 

X�t1 ; : : : ;X

�
tn ;F

��; (20)

where
LD means equality in law.

Proof We undertake the proof in several steps:

Step 1 Let F DP1nD0 In. fn/ 2 L2.P/. We first prove that F and F� have the same
law:

1X

nD0
In. fn/

LD
1X

nD0
I�n . fn/: (21)

In fact, if the sum has a finite number of terms, and the fn are simple
(see the appendix) then the equality in law is clear. Equality (21) for finite
sums with arbitrary kernels follows by L2.P/-convergence. The infinite
sum case is proved in a similar fashion.

Step 2 For F;G 2 L2.P/ we prove that

.F;G/
LD .F�;G�/:

We use Cramer–Wold device. Let F D P1
nD0 In. fn/ and G DP1

nD0 In.gn/. For a; b 2 R,

aF C bG D
1X

nD0
In


afn C bgn

� LD
1X

nD0
I�n


afn C bgn

� D aF� C bG�:

Step 3 To prove (20) we consider n D 1; the general case is similar. First assume
that the process X is square integrable, then

R
R0

x2 
t.dx/ < 1, and thusR
.0;t	�R0

x2 
.d.s; x// <1: This implies that the representation (2) admits
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the form:

Xt D mt C Gt C
Z

.0;t	�fjxj>1g
x 
.d.s; x//C

Z

.0;t	�R0

x bN.d.s; x//

D mt C
Z

.0;t	�fjxj>1g
x 
.d.s; x//C I1



1Œ0;t	�f0g C 1.0;t	�R0

�
;

and the property follows from step 2. In the general case, define

X.n/t D mt C Gt C
Z

.0;t	�f1<jxj�ng
x N.d.s; x//C

Z

.0;t	�f0<jxj�1g
x bN.d.s; x//

(22)

D mt C
Z

.0;t	�f1<jxj�ng
x 
.d.s; x//C I1



1Œ0;t	�f0g C 1.0;t/�f0<jxj�ng

�
:

(23)

By expression (23) and Step 2,


X.n/t ;F

� LD 

X.n/�t ;F�

�
. Since 




.0; t	 �

fjxj > 1g� < 1, we can apply Proposition 10 in the appendix to the
first integral in the expression (22), and we deduce that when n ! 1,
X.n/t ! Xt in probability, and the lemma follows. ut

To transfer the derivative rules we will use the duality coupling (8). By
construction, F 2 L2.P/ belongs to dom D if and only if there is a constant C such
that for all g 2 dom ı,

ˇ̌
ˇE
�
Fı.g/

�ˇ̌
ˇ � C

0
B@E

2
64

Z

RC�R
g2 d�

3
75

1
CA

1=2

: (24)

If F 2 dom D, then DF is the element of L2.�˝ P/ characterized by

EŒı.g/F	 D E

Z

RC�R
g.z/DzF d�.z/; (25)

for every g 2 dom ı. That is, we use (8) to prove a property of the derivative from
the Skorohod integral.
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Proposition 6 Let F D f


Xt1 ; : : : ;Xtn

�
with f 2 C1b .Rn/. Then F 2 dom D and

Dt;0F D
nX

jD1

@jf

@xj
f


Xt1 ; : : : ;Xtn

�
1Œ0;tj 	.t/; (26)

and for x ¤ 0,

Dt;xF D  t;xF D f


Xt1 C x1Œ0;t1	.t/; : : : ;Xtn C x1Œ0;tn	.t/

� � f


Xt1 ; : : : ;Xtn

�

x
:

(27)

Proof We are going to prove that F 2 dom D. For this objective, let g 2 dom ı and
consider g� to have the same kernels as g, and then g� 2 dom ı� and satisfies
inequality (24). Then, since we have proved that f



X�t1 ; : : : ;X

�
tn

� 2 dom D, by
Lemma 2,

ˇ̌
ˇE
�
f


Xt1 ; : : : ;Xtn

�
ı.g/

�ˇ̌
ˇ D

ˇ̌
ˇE�

�
f


X�t1 ; : : : ;X

�
tn

�
ı�.g�/

�ˇ̌
ˇ

� C

0

B@E�

2

64
Z

RC�R
.g�/2 d�

3

75

1

CA

1=2

D C

0

B@E

2

64
Z

RC�R
g2 d�

3

75

1

CA

1=2

<1;

where E� is the expectation in˝G�˝N : Now in an identical way, we can show that

Yt;x WD
nX

jD1

@jf

@xj
f


Xt1 ; : : : ;Xtn

�
1Œ0;tj	.t/1f0g.x/

C f


Xt1 C x1Œ0;t1	.t/; : : : ;Xtn C x1Œ0;tn 	.t/

� � f


Xt1 ; : : : ;Xtn

�

x
1fx¤0g.x/

satisfies formula (25). ut

2.6 Characterization of Processes with Independent
Increments by Duality Formulas

Following Murr [15] we prove that the duality formula (8) characterizes the law
of a process with independent increments. We restrict ourselves to real processes,
while Murr [15] studies the vector case. Like Murr [15] we assume that the
process is integrable. The fact that the process is integrable is equivalent to
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R
fjxj>1g jxj d
t.x/ <1. Then, as in the proof of Lemma 2, we can write the following

representation:

Xt D bt C Gt C
Z

.0;t	�fjxj>1g
x bN.d.s; x//C

Z

.0;t	�f0<jxj�1g
x bN.d.s; x//;

where bt D mt C
R
.0;t	�fjxj>1g x 
.d.s; x//, the first integral belongs to L1.P/ and the

second to L2.P/ (see Theorem 7 in the appendix).
Consider the system of generating triplets of X (with respect to the cutoff function

�.x/ D x) f.bt; �t; 
t/; t � 0g. As we commented in Sect. 2.1 (see Sato [22,
Theorem 9.8]):

1. b0 D 0 and the function t 7! bt is continuous.
2. �0 D 0, �t � 0 and the function t 7! �t is increasing and continuous.
3. For every t � 0, 
t is a Lévy measure, and lims!t 
s.B/ D 
t.B/ for every

B 2 B.R/ such that B � fx W jxj > "g for some " > 0.
4. For every t � 0,

R
fjxj>1g jxj d
t.x/ <1.

Denote by S the set of random variables of the form F D f


Xt1 ; : : : ;Xtn

�
with f 2

C1b .Rn/, and by E the set of real step functions g D Pk
jD1 aj1.sj;sjC1	, with 0 �

s1 < � � � < skC1. In the next theorem we add conditions regarding the regularity of
the trajectories to agree with our definitions.

Theorem 2 (Murr) Let X be an integrable process, cadlag and continuous in
probability, and f.bt; �t; 
t/; t � 0g be such that (1)–(4) above are satisfied.
Then X is a process with independent increments with system of generating triplets
f.bt; �t; 
t/; t � 0g if and only if for every F 2 S, and every step function g 2 E ;

E

2
64F

Z

RC

g.t/ d.Xt � bt/

3
75 D E

2
64
Z

RC

Dt;0F g.t/ �.dt/

3
75

C E

2

64
Z

.0;t	�R0

�t;xF g.t/x2 
.d.t; x//

3

75 ; (28)

where 
 is defined in (1).

Proof Assume that X is a process with independent increments. To prove (28), by
linearity, it suffices to consider g D 1Œ0;u	, So we will check

E
�
F


Xu � bu/

� D E

2

64
Z

Œ0;u	

Dt;0F �.dt/

3

75CE

2

64
Z

.0;u	�R0

�t;xF x2 
.d.t; x//

3

75 : (29)
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Note that for a deterministic function h 2 L2.R � RC; �/ the duality formula (8)
gives

E

2

64F
Z

RC�R
h dM

3

75 D E

2

64
Z

RC

Dt;0F h.t; 0/ �.dt/

3

75

C E

2
64

Z

.0;1/�R0

�t;xF h.t; x/x2 
.d.t; x//

3
75 :

Set

hn.t; x/ D 1Œ0;u	�f0g C x1Œ0;u	�f1<jxj�ng.t; x/C x1Œ0;u	�f0<jxj�1g.t; x/

that belongs to L2.�/, then

Z

RC�R
hn dM D Gu C

Z

.0;u	�f1<jxj�ng
x bN.d.s; x//C

Z

.0;t	�f0<jxj�1g
x bN.d.s; x//:

In relation to the first integral in the right-hand side, note that x1.0;u	�f1<jxj�ng
belongs to L1.
/\ L2.
/, and

lim
n

Z

.0;u	�f1<jxj�ng
x bN.d.s; x// D

Z

.0;u	�fjxj>1g
x dbN.d.s; x//

in L1.P/, and hence
R
RC�R hn dM converges in L1.P/ to Xu�bu. Since F is bounded,

it follows (29).
To prove the reciprocal implication, Murr [15] fixes g D Pk

jD1 aj1.sj;sjC1	, with
0 � s1 < � � � < skC1, and for u 2 R, defines

'.u/ D E

2

64exp

�
iu
Z

RC

g dX


3

75 :

Since

' 0.u/ D iE

2

64exp

�
iu
Z

RC

g dX

 Z

RC

g dX

3

75 ;



Malliavin Calculus for Independent Increment Processes 125

applying the duality formula (28) with F D exp
˚
iu
R
RC

g dX
�

it is deduced a
differential equation, which for u D 1 determines the characteristic function of

Xs1 ;Xs2 � Xs1 ; : : : ;XskC1

� Xsk/, which determines the law of the process, and the
theorem follows. ut
Remark 3 Murr [15] defines �t;xF as

�t;xF D f


Xt1 C x1Œ0;t1	.t/; : : : ;Xtn C x1Œ0;tn 	.t/

� � f


Xt1 ; : : : ;Xtn

�
;

whereas in our definition of � given in (27) we divide by x. However in the second
term in the right-hand side of formula (28) Murr puts x rather than x2. Of course,
both formulations are equivalent.

3 Part 2: Random Measures

The context of this part is one of the random measures a.s. locally finites on a locally
compact second countable Hausdorff space; the main references here are Kallenberg
[6] and Schneider and Weyl [23]. In this part we use standard notations of random
measures.

3.1 Random Measures

Let X be a locally compact second countable Hausdorff space; it can be proved that
this space is Polish (complete separable metrizable space). Denote by X its Borel
�-field. A measure � on .X;X/ is locally finite if �.K/ <1 for every compact set
K; note that such a measure is �-finite.

Denote by M (or M.X/ if we want to stress the underlying space) the set
of locally finite measures on .X;X/ and endow this space with the �-field M
generated by the evaluation maps. We also denote by N the subset of locally finite
measures taking values in f0; 1; : : : g[f1g. This notation is consistent with the one
adopted in the survey [14] in this volume.

Given a random measure � on .X;X/ with intensity �, remember that it is said
that s 2 X is a fixed atom of � if Pf�fsg > 0g > 0. Note that if � has no fixed atoms,
then for every s 2 X, �fsg D E

�
�fsg� D 0, so the intensity measure is non-atomic.
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3.2 Infinitely Divisible Random Measures and Random
Measures with Independent Increments

It is said that the random measure � has independent increments if for any family
of pairwise disjoint sets A1; : : : ;Ak 2 X, the random variables �.A1/; : : : ; �.Ak/ are
independent. Matthes et al. [13, p. 16] call these random measures free from after-
effects, and Kingman [8, 9] completely random measures.

A random measure � is said to be infinitely divisible if for every n � 1 there
are random measures �1; : : : ; �n such that they are independent, and � has the same
law as �1 C � � � C �n. Indeed, every random measure with independent increments
without fixed atoms is infinitely divisible (Kallenberg [6, Chap. 7]). The nice Lévy–
Itô decomposition of processes with independent increments in terms of a Poisson
random measures (Theorem 1) is transferred to random measures with independent
increments; general infinitely divisible random measures have a representation in
law (Kallenberg [6, Theorem 8.1]).

Before the representation theorem it is convenient to comment that since the
number of fixed atoms of a random measure is at most countable (Kallenberg, [6,
p. 56]), if � is a random measure with independent increments it can be written as

� D
NX

nD1
�.fsng/ ısn C � 0;

with N � 1, where fsn; n � 1g is the set of fixed atoms of �, and � 0 is a random
measure without fixed atoms with independent increments. So, as Kingman [9]
graphically says, fixed atoms can be removed by simple surgery.

Theorem 3 Let � be a random measure with independent increments with intensity
measure �, without fixed atoms. Then it can be represented uniquely in the form

�.A/ D ˇ.A/C
Z

A�.0;1/
x �.d.s; x//; (30)

for A 2 X, where ˇ 2 M.X/ is non-atomic, and � is a Poisson random measure on
X� .0;1/ which intensity measure 
 2M.X� .0;1// non-atomic. Moreover, for
A 2 X, we have �.A/ <1; a.s. if and only if ˇ.A/ <1 and

Z

A�.0;1/
.1 ^ x/ 
.d.s; x// <1:

For a proof see Kallenberg [7, Corollary 12.11] in the context of Borel spaces or
Daley and Vere–Jones [2, Theorem 10.1.III] for Polish spaces.
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Remark 4 We comment some key points used in the proof that we need later:

1. The measure 
 on X � .0;1/ comes from


.A � B/ D 
A.B/;

where A 2 X with �.A/ < 1, and B 2 B..0;1//, and 
A is a Lévy measure
on .0;1/. That Lévy measure is associated with the positive infinitely divisible
random variable with finite expectation �.A/, and then it integrates the function
f .x/ D x. So, for A 2 X with �.A/ <1, we have

Z

A�.0;1/
x 
.d.s; x// <1;

and

EŒ�.A/	 D �.A/ D ˇ.A/C
Z

A�.0;1/
x 
.d.s; x//: (31)

2. The Poisson random measure � is given by

� D
X

s2X
ı.s;�fsg/:

Since it is measurable (see Kallenberg [7], proof of Corollary 12.11) it follows
that the �-fields generated by � and � coincide. We will assume that A is that
�-field.

3. The Laplace functional of � at h W X! RC is

E

2

4exp

�
�
Z

X

h d�

3

5 D exp

�
�
Z

X

hdˇ �
Z

X�.0;1/



1 � e�xh.s/

�

.d.s; x//


:

(32)

Example: Subordinators A subordinator X D fXt; t � 0g is a Lévy process
such that the trajectories are increasing a.s. Then it defines a random measure
on X D RC. Representation (3) corresponds to the Lévy–Itô decomposition of
X (Theorem 1) which, with the notations of Part 1, is reduced to (see Sato [22,
Theorem 21.5])

Xt D �ıtC
Z

.0;t	�.0;1/
x N.d.s; x//;
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where �ı � 0 and N is a Poisson random measure on .0;1/� .0;1/with intensity

.d.t; x// D dt 
ı.dx/, where 
ı is the Lévy measure of X (see Remark 1.3), and the
Gaussian part is 0. For every t > 0,

R
.0;t	�.0;1/.1^ x/ 
ı.dx/ <1, and the intensity

measure of the random measure is given by

�


Œ0; t	

� D �0tC t
Z

.0;1/
x 
ı.dx/;

which, in general, can be infinite.

3.3 Mecke Formula for Random Measures with Independent
Increments

We prove Mecke formula for random measures with independent increments which
is inspired in Murr [15]. We first recall classical Mecke formula for Poisson
processes (Last [11, formula (1.7)], Privault [21, formula (2.44)]); see Schneider
and Weil [23, Theorem 3.2.5] for the following version of the formula, which we
use later.

Theorem 4 (Mecke Formula for Poisson Random Measures) Let � be a point
process with non-atomic intensity measure � 2M.X/. Then � is a Poisson random
measure if and only if for every measurable function h W N.X/�X! RC we have

E

2

4
Z

X

h.�; s/ �.ds/

3

5 D
Z

X

E Œh.� C ıs; s/	 �.ds/: (33)

Theorem 5 (Mecke Formula for Random Measures with Independent Incre-
ments) Let � be a random measure without fixed atoms and let ˇ 2 M.X/ be
non-atomic and 
 2 M.X � .0;1// be non-atomic. Then � is a random measure
with independent increments with associated measures ˇ and 
 if and only if for
every measurable function h WM.X/ �X! RC we have

E

2

4
Z

X

h.�; s/ �.ds/

3

5 D
Z

X

E
�
h.�; s/

�
ˇ.ds/C

Z

X�.0;1/
E
�
h.� C xıs; s/

�
x 
.d.s; x//:

(34)

Proof

1. Let � be a random measure with independent increments with associated
measures ˇ and 
. First note that since ˇ is a deterministic measure, changing �
by � � ˇ, and changing the function h conveniently, we can assume that ˇ D 0.
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We will reduce the proof to an easy case, and later we prove formula (34) in that
case.

By standard arguments, it suffices to prove formula (34) for h.x; s/ D f .x/g.s/
where f WM.X/! RC is bounded and g D 1C for some C 2 X with �.C/ <1.
Now, given that M .X/ is generated by the projections �A, for A 2 X, there is a
countable family fAn; n � 1g � X and a measurable function F W R1 ! RC
such that

f D F


�A1 ; �A2 ; : : :

�
:

(See Chow and Teicher [1, p. 17].) Hence,

f .�/ D F


�.A1/; �.A2/; : : : ;

�
:

Denote by An the �-field generated by �.A1/; : : : ; �.An/, and define

Fn D E
�
f .�/ jAn

�
:

By the convergence of martingales theorem we have that

lim
n

Fn D f ; a.s.

and since f is bounded, the convergence is also in Lp, for all p � 1. Hence, there
is enough to consider the case

f .�/ D f


�.A1/; : : : ; �.An/

�
:

With a monotone class argument, we can restrict to

f .�/ D f1


�.A1/

� � � � fn


�.An/

�
;

with bounded f1; : : : ; fn � 0, and A1; : : : ;An pairwise disjoint. Using that � has
independent increments, in formula (34) with such an f .�/ and g D 1C, it is
clear that we need only to consider two cases: when C is disjoint with all Aj,
j D 1; : : : ; n, or when C coincides with one of the Aj. In the first case equality (34)
is reduced to check that if A \ C D ;, then

E
�
f


�.A/

�
�.C/

� D
Z

C�.0;1/
E
�
f .�.A/C xıs.A//

�
x 
.d.s; x//;

that is evident since, thanks to (31) and the independence between �.A/ and �.C/,
both sides are equal to E

�
f


�.A/

��
�.C/:
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In the second case (remember that here ˇ D 0), equality (34) simplifies as

E
�
f


�.A/

�
�.A/

� D
Z

A�.0;1/
E
�
f .�.A/C xıs.A//

�
x 
.d.s; x//: (35)

Changing �.A/ by its expression in representation Theorem 3, in the left-hand
side of (35) we have

E

2

64f

� Z

A�.0;1/
x �.d.s; x//

� Z

A�.0;1/
x �.d.s; x//

3

75 ; (36)

where � is a Poisson random measure on X � .0;1/ with intensity measure 
.
By Mecke formula for Poisson random measures (33),

(36) D
Z

A�.0;1/
E

2

64f

0

B@
Z

A�.0;1/
x �.d.s; x//C xı.s;x/



A � .0;1/�

1

CA

3

75 x 
.d.s; x//;

that is exactly the right-hand side of (35).
2. We prove the reciprocal implication. This proof is also inspired in Murr [15].

Note that applying formula (34) to the function h.�; s/ D f .s/ we have

Z

X

f d� D E

2

4
Z

X

f d�

3

5 D
Z

X

f dˇ C
Z

X�.0;1/
xf .s/ 
.d.s; x//:

Fix g W X! RC measurable with
R
X

g d� <1. and define, for u > 0,

G.u/ D E

2

4expf�u
Z

X

g d�g
3

5 :

Since E
� R

X

g d�
�
<1, by differentiation we get

G0.u/ D �E
2

4expf�u
Z

X

g d�g
Z

X

g d�

3

5 :
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Now in formula (34) take

h.�; s/ D expf�u
Z

X

g d�g g.s/;

and then,

G0.u/ D �
Z

X

G.u/g.s/ ˇ.ds/�
Z

X�.0;1/
G.u/ expf�uxg.s/gg.s/x
.d.s; x//;

or

G0.u/
G.u/

D �
Z

X

g.s/ ˇ.ds/�
Z

X�.0;1/
expf�uxg.s/gg.s/x
.d.s; x//:

The function on the right-hand side is continuous in u, and given that G.0/ D 1

we have the

G.u/ D exp

8
<̂

:̂
�

uZ

0

�Z

X

g.s/ ˇ.ds/C
Z

X�.0;1/

expf�zxg.s/gg.s/x 
.d.s; x//
�

dz

9
>=

>;

D exp

8
<̂

:̂
�u

Z

X

g.s/ ˇ.ds/�
Z

X�.0;1/

� uZ

0

expf�zxg.s/g dz

�
g.s/x 
.d.s; x//

9
>=

>;
:

In particular, for u D 1 we get

1Z

0

exp
n
� zxg.s/

o
dz D 1fsW g.s/>0g.s/

1

xg.s/

�
1 � e�xg.s/

	
;

and then the Laplace functional of � is

G.1/ D exp

8
<̂

:̂
�
Z

X

g.s/ dˇ.s/�
Z

X�.0;1/



1 � e�xg.s/

�

.d.s; x//

9
>=

>;
;

which corresponds to the claimed random measure (see (32)) ut
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3.4 Malliavin Calculus

From now on, we consider the random measure with independent increments
given by

�.A/ D ˇ.A/C
Z

A�.0;1/
x �.d.s; x//; (37)

where � is a Poisson random measure with intensity 
.
As in Part 1, we construct a completely random measure on X � .0;1/. With

that purpose, define a new measure � on X � .0;1/ by

�.d.s; x// D x2 
.d.s; x//:

For C 2 X � B.0;1/ such that �.C/ < 1, the function 1C.s; x/x is in L2.
/;
hence the following random variable is well defined (as a limit in L2.P/):

M.C/ WD
Z

X�.0;1/
1C.s; x/x O�.d.s; x// D

Z

C

x O�.d.s; x//;

where O� D �� 
. It is a completely random measure. As before, consider the set of
symmetric functions

L2s .�
n/ D L2s

�

X � .0;1/�n

; �˝n
	
:

The multiple Itô integral of order n with respect to M of a function f 2 L2s .�
n/ is

denoted by In. f /. Itô chaotic representation property is also true in this context, and
we have that F 2 L2.P/ admits a representation of the form

F D
1X

nD0
In. fn/; fn 2 L2s .�

n/: (38)

So we can define as in Part 1 a Malliavin derivative D with domain dom D and its
dual, the Skorohod integral ı in dom ı.

3.4.1 Malliavin Derivatives with Respect to the Underlying Poisson
Random Measure

In the present context of random measures, the absence of the Gaussian part and
the fact that the integral in the representation (37) is pathwise make things easier,
and we do not need to introduce a canonical space. As we commented in the
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Introduction, we rely on the very general construction of Last and Penrose [12] and
Last [11] (see also Privault [21] for multiple Poisson integrals). Denote by I O�n . f /
the multiple integral of order n with respect to O� of a function f 2 L2s .


n/. For
f W 
X � .0;1/�n ! R write

f �


.s1; x1/; : : : ; .sn; xn// D x1 � � � xnf



.s1; x1/; : : : ; .sn; xn//:

Obviously we have that f 2 L2s .�
n/ if and only if f � 2 L2s .


n/. In this case,

In. f / D I O�n.f �/:

This is proved by standard techniques by considering first the case of elementary
functions and by using a density argument.

Hence, for F 2 L2.P/ with an expansion (38) (remember that the �-field
generated by � and � coincide) we have also the expansion

F D
1X

nD0
I O�n . f �n /:

Last and Penrose [12] (see Last [11, Theorem 3]) introduce two derivative
operators, the first one as an add-one-cost operator, that we comment in next
subsection, and a Malliavin derivative D� (Last denotes it by D0) as an annihilation
operator on the chaos expansion. The relation between our derivative D and D� is
the following:

Proposition 7 We have dom D D dom D�, and for F 2 dom D,

D.s;x/F D 1

x
D�

.s;x/F; �˝ P � a.e.

Proof The proof is direct from the chaos expansion of F. ut

3.4.2 Derivation of Smooth Functionals

We first prove a property for the Poisson process case: following Last and Penrose
[12] and Last [11], consider a square integrable random variable F 2 L2.P/; since
it is measurable with respect to the �-field generated by �, there is a measurable
function f W N.X � .0;1//! R such that F D f .�/ and EŒf 2.�/	 <1. Define

D�
z f .�/ D f .�C ız/ � f .�/:

By iteration, let

D�;n
z1;:::;zn

f .�/ D D�
z1
D�;n�1

z2;:::;zn
f .�/:
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Now define T0f D E
�
f .�/

�
, and for n � 1;

Tnf .z1; : : : ; zn/ D E
�
Dn

z1;:::;zn
f .�/

�
:

This operator verifies that Tnf 2 L2s .

n/, and in the (Poisson) chaotic decomposition

of F D f .�/

F D
1X

nD0
I O�n. fn/;

the kernels are

fn D 1

nŠ
Tnf :

See Last [11, Theorem 2].

Proposition 8 Let F 2 L2.P/: Then F 2 dom D� if and only if D�F 2 L2.˝ �X�
.0;1/;P˝ 
/.
Proof If F 2 dom D� then the property follows from the coincidence between
D� and D� (Last [11, equality (1.48)]). The proof of the reciprocal implication is
analogous to the proof of the second part of Proposition 4. ut

Now we return to Malliavin derivatives with respect to the random measure �.

Proposition 9 Let A1; : : : :An 2 X, with finite � measure. Let F D
f .�.A1/; : : : ; �.An//, with f 2 C1b .Rn/. Then F 2 domD and

Ds;xF D 1

x

�
f


�.A1/C xıs.A1/; : : : ; �.An/C xıs.An/

� � f


�.A1/; : : : �.An/

�	
:

The idea of the proof is the same of that of Proposition 5.

3.4.3 Characterization of Random Measures by Duality Formulas

Following Murr [15] we present another version of the Mecke formula to charac-
terize random measures with independent increments by duality formulas. Indeed,
Murr [15] gives a characterization of infinitely random measures so it is more
general than our result. The interest of our characterization is that the proof is
based on Malliavin calculus for random measures with independent increments,
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specifically, the duality coupling between D and ı: For F 2 dom D and g 2 dom ı,

E
�
Fı.g/

� D E

2

64
Z

X�.0;1/
DzFg.z/ �.dz/

3

75 : (39)

Denote by U the ring of relatively compact sets of X. Every locally finite
measure is finite on the sets of U . Let S be the set of functions f W M.X/ ! R

of the form f .�/ D h


�.A1/; : : : ; �.An/

�
with h 2 C1b .Rn/ and A1; : : : ;An 2 U ;

also let E be the set of simple functions g D Pk
jD1 aj1Aj , with a1; : : : ; an > 0 and

A1; : : : ;An 2 U .

Theorem 6 (Murr) Let ˇ 2 M.X/ be non-atomic and 
 2 M


X � .0;1/� be

non-atomic and such that for A 2 U ,
R

A�.0;1/ x 
.d.x; s// <1: A random measure
� has independent increments with characteristics ˇ and 
 if and only if for all f 2 S

and g 2 E ,

E

2

4f .�/
Z

X

g.s/ �.ds/

3

5 D E
�
f .�/

� Z

X

g.s/ ˇ.ds/

C
Z

X�.0;1/
E
�
f .� C xıs/

�
g.s/x 
.d.s; x//: (40)

Proof Assume that � is a random measure with independent increments. For-
mula (40) is the particular case of formula (34) for h.�; s/ D f .�/g.s/. However,
as we commented, we will see that (40) is also consequence of the duality
coupling (39).

To prove (40), by linearity, it suffices to consider the case g D 1A for A 2 U . By
construction (see Remark 4)

R
A�.0;1/ x 
.d.s; x// <1. Assume first that also

Z

A�.0;1/
x2 
.d.s; x// <1:

Then x1A�.0;1/ 2 L1




� \ L2





�
, and by the representation (30),

ı.g/ D
Z

A�.0;1/
x O�.d.s; x// D

Z

A�.0;1/
x �.d.s; x// �

Z

A�.0;1/
x 
.d.s; x//

D
Z

X

g.s/ �.ds/�
Z

X

g.s/ dˇ.s/�
Z

A�.0;1/
x 
.d.s; x//:
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Further, the right-hand side of formula of duality (39) for F D f .�/ and g D 1A is

E

2

64
Z

A�.0;1/



f .� C xıs/ � f .�/

�
x 
.d.s; x//

3

75 ;

and formula (40) follows. When
R

A�.0;1/ x2 
.d.s; x// D 1; then the result is

obtaining approximating
R

A�.0;1/ x �.d.s; x// by
R

A�f0<x<ng x �.d.s; x// as in the
proof of Theorem 2.

The reciprocal implication is also proved as in Theorem 2. ut
Remark 5 For an infinitely divisible random measure Murr [15] writes formula (40)
as

E

2

4f .�/
Z

X

g.s/ �.ds/

3

5

D E
�
f .�/

� Z

X

g.s/ ˇ.ds/C E

2

64
Z

M0.X/

f .� C �/
� Z

X

g.s/ �.ds/
	
� .d�/

3

75 ;

(41)

where M0.X/ D M.X/nf0g, here 0 is the zero measure, and � is a �-finite measure
on M0.X/. Kallenberg [6, Lemma 7.3] proves that � has independent increments if
and only if � is concentrated on the set of degenerate measures in M0.X/, that are
the measures of the form � D x ıs, for some x > 0 and s 2 X. In this case, consider
the (measurable) mapping

M0.X/! X � .0;1/
x ıs 7! .s; x/

and then 
 is the image measure of � by this mapping. Thus, by the image measure
Theorem,

Z

M0.X/

f .� C �/
0

@
Z

X

g.s/ �.ds/

1

A � .d�/ D
Z

X�.0;1/
f .� C xıs/xg.s/ 
.d.s; x//;

so formula (41) and (40) are the same in case of a random measure with independent
increments.



Malliavin Calculus for Independent Increment Processes 137

Acknowledgements The authors were partially supported by grants MINECO reference
MTM2012-33937 and UNAB10-4E-378 co-funded by FEDER “A way to build Europe,” and
Generalitat de Catalunya reference 2014-SGR422.

Appendix 1: Pathwise and L2.P/ Integrals with Respect to
Poisson Random Measures

For reader convenience we review the definition and properties of the integrals
with respect to Poisson random measures. For these properties there is no need of
topological conditions on the state space.

Pathwise Integrals with Respect to a Poisson Random Measure

Let .X;X; 
/ be a �-finite measure space and � a Poisson random measure with
intensity 
. For a measurable mapping f W X ! R we can consider the integralR
X

f .x/ �.!; dx/ assuming that f is positive or
R
X
jf .x/j �.!; dx/ < 1, and if this

happens for all ! 2 ˝ a.s., the mapping ! 7! R
X

f .x/ �.!; dx/ defines a random
variable. The following theorem summarizes the main properties of that integral.
See also Privault [21, Sect. 2.4.1] for additional properties.

Theorem 7 (Kyprianou [10, Theorem 2.7]) Let f W X ! R be a measurable
mapping. Then

1. The integral
R
X

f .x/ �.!; dx/ is absolutely convergent for every ! 2 ˝ a.s. if
and only if

Z

X



1 ^ jf .x/j� 
.dx/ <1: (42)

In this case, the characteristic function of
R
X

f d� is

E

2

4exp

8
<

:iu
Z

X

f d�

9
=

;

3

5 D exp

8
<

:

Z

X

�
eiu f .x/ � 1

	

.dx/

9
=

; :

2. If f 2 L1.
/, then
R
X

f d� 2 L1.P/ and

E

2

4
Z

X

f d�

3

5 D
Z

X

f d
:
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3. If f 2 L1.
/\ L2.
/, then
R
X

f d� 2 L2.P/ and

E

2
64

0

@
Z

X

f d�

1

A
2
3
75 D

Z

X

f 2 d
 C
0

@
Z

X

f d


1

A
2

: (43)

Note that f 2 L1.
/ implies (42) because 1 ^ jf j � jf j.
We need the following property.

Proposition 10 Assume that 
.X/ < 1. Let f fn; n � 1g and f be measurable
functions on X such that limn fn D f . Then limn

R
X

fn d� D R
X

f d� in probability.

Proof Observe that since 
.X/ < 1 all the integrals are well defined. Set gn D
j fn � f j. The characteristic function of

R
X

gn d� is

'n.u/ D exp

8
<

:

Z

X

�
eiu gn.x/ � 1

	

.dx/

9
=

; ;

that converges to 1 by dominated convergence. Hence
R
X

gn d� converges to 0 in
law, and thus in probability. ut

L2.P/-Integral with Respect to the Compensed Poisson
Random Measure

Again with the preceding notations, consider the ring X0 D fC 2 X W 
.C/ < 1g.
The compensated Poisson measure is defined on X0 by O�.C/ D �.C/ � 
.C/; C 2
X0. Recall that the simple functions of the form

f D
nX

iD1
ci1Ci ; with C1; : : : ;Cn 2 X0;

are dense in Lp.
/ (p � 1). Denote by D the set of such functions. For f 2 D define

Z

X

f d O� D
nX

iD1
ci


�.Ci/ � 
.Ci/

�
:
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It is clear that
R
X

f d O� 2 L2.P/ is centered, and for f ; g 2 D ,

E

2

4
Z

X

f d O�
Z

X

g d O�
3

5 D
Z

X

fg d
: (44)

Now, for a general f 2 L2.
/ the definition of
R
X

f d O� follows by the standard
procedure, and equality (44) is true for f ; g 2 L2.
/. The characteristic function
of
R
X

f d O� is

E

2

4expfiu
Z

X

f d O�g
3

5 D exp

8
<

:

Z

X



eiuf .x/ � 1� iuf .x/

�

.dx/

9
=

; : (45)

Relation Between Pathwise and L2.P/ Integrals, and Definition
of the L1.P/ Integral

If f 2 L1.
/\ L2.
/, both integrals of f with respect to � and O� are defined and we
have

Z

X

f d O� D
Z

X

f d��
Z

X

f d
; a.s.

This is proved in a standard way.
Even if we only have f 2 L1.
/, both integrals on the right-hand side above are

well defined, and then, abusing of the language, we also write
R
X

f d O� to denote
that difference of integrals. As a consequence of Theorem 7, that integral belongs
to L1.P/.

Appendix 2: Completely Random Measures

We recall the notion of completely random measures (in the sense of vector mea-
sures) and multiple integrals following Peccati and Taqqu [20]; for the properties
presented here there are no topological conditions on the phase space. We restrict
ourselves to the L2.P/-valued completely random measures.

Let .X;X; �/ be a measure space where � is �-finite and non-atomic. As before,
set X0 D fC 2 X W �.C/ <1g. A centered completely random measure in L2.P/,
for short a completely random measure, with control measure � is a mapping
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' W X0 �˝ ! R such that

1. Fixed C 2 X0, '.�;C/ W ˝ ! R is a centered square integrable random variable.
We denote this random variable by '.C/.

2. If C1; : : : ;Cn 2 X0 are disjoint, the random variables '.C1/; : : : ; '.Cn/ are
independent.

3. For every C1;C2 2 X0,

EŒ'.C1/'.C2/	 D �.C1 \ C2/:

As pointed out by Peccati and Taqqu [20, p. 52], ' is additive and �-additive on X0

in the sense of vector measures on L2.P/, that means, for every finite sequence of
disjoint sets C1; : : : ;Cn 2 X0,

'
� n[

iD1
Ci

	
D

nX

iD1
'.Ci/; a.s.

and the same is true for an infinite sequence of pairwise disjoints sets fCn; n �
1g � X0 such that

S1
nD1 Cn 2 X0. However, we stress that in general, fixed ! 2 ˝ ,

'.!; �/ is not �-additive, that means, in general a completely random measure is not
a random measure in the sense used in Part 2 of this paper.

Multiple Integrals with Respect to a Completely
Random Measure

Itô construction of multiple integrals [5] can be extended to the case that the
integrator is a general completely random measure; see Peccati and Taqqu [20,
Chap. 5], and note the comment on page 83 when ' is an L2.P/ completely random
measure.

The multiple stochastic integral of order n with respect to ', In. f /, is defined
through the same steps as in the Wiener case: For

f D 1C1�����Cn ;

where C1; : : : ;Cn 2 X0, pairwise disjoints, set

In. f / D '.C1/ � � �'.Cn/:
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Therefore, In is extended to L2


�˝n

�
by linearity and continuity. This integral has

the usual properties:

1. In. f / D In.Qf /; where Qf is the symmetrization of f :

Qf .s1; : : : ; sn/ D 1

nŠ

X

�2Gn

f .s�.1/; : : : ; s�.n//;

where Gn is the set of permutations of f1; 2; : : : ; ng:
2. In.af C bg/ D aIn. f /C bIn.g/:
3. EŒIn. f /Im.g/	 D ın;mnŠ

R
Xn
Qf Qg d�˝n;where ın;m D 1; if n D m; and 0 otherwise.

Appendix 3: Canonical Space of the Jumps Part of a Process
with Independent Increments

As in the Lévy processes case, we use a nice construction by Neveu [16] to build a
Poisson random measure on .0;1/�R0 with intensity measure 
 defined in (1). It
is worth remarking that this measure is locally finite on .0;1/ � R0. We separate
the construction in two steps:

Step 1 For m � 0 and k � 1, set

�m;1 D .m;mC 1	 � fx 2 R W 1 < jxjg;
�m;k D .m;mC 1	 � fx 2 R W 1=k < jx � 1=.k � 1/jg; k � 2:

Since for every t > 0, 
t is a Lévy measure, we have that 



�m;k

�
<

1: Denote by 
m;k the restriction of 
 to �m;k. We consider the space of
the finite sequences of elements of �m;k, including the empty sequence;
specifically, let

˝m;k D
[

n�0



�m;k

�n
;

where


�m;k

�0 D f˛g, ˛ being a distinguished element that represents the
empty sequence. Let

Am;k D
˚
B � ˝m;k W B D

[

n�0
Bn; Bn 2 B



�m;k

�n�
:

Since 
m;k.�m;k/ < 1; there is a probability Qm;k on �m;k such that

m;k D cm;k Qm;k; for some constant cm;k > 0. Now define a prob-
ability Pm;k on .˝m;k;Am;k/ in the following way: for B D S

n Bn;
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Bn 2 B


�m;k/

n set

Pm;k.B/ D e�cm;k

1X

nD0

cn
m;k

nŠ
Q˝n

m;k



Bn
�
;

where Q˝0m;k D ı˛ . Then, Neveu [16, Proposition I.6] proves that under
Pm;k, the mapping given by

N0m;k.!/ D
nX

jD1
ı.tj;xj/; if ! D 
.t1; x1/; : : : ; .tn; xn/

�
;

and N0m;k.˛/ D 0; is a Poisson random measure with intensity 
m;k.
Step 2 Now superpose the Poisson random measures N0m;k: Let

.˝N ;AN ;PN/ D
O

m�1;k�1
.˝m;k;Am;k;Pm;k/:

For ! D .!m;k;m � 1; k � 1/; define

N�m;k.!/ D N0m;k.!m;k/

and finally

N�.!/ D
X

m;k

N�m;k.!/;

which is a Poisson random measure with intensity measure 
.
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Introduction to Stochastic Geometry

Daniel Hug and Matthias Reitzner

Abstract This chapter introduces some of the fundamental notions from stochastic
geometry. Background information from convex geometry is provided as far as this
is required for the applications to stochastic geometry.

First, the necessary definitions and concepts related to geometric point processes
and from convex geometry are provided. These include Grassmann spaces and
invariant measures, Hausdorff distance, parallel sets and intrinsic volumes, mixed
volumes, area measures, geometric inequalities and their stability improvements.
All these notions and related results will be used repeatedly in the present and in the
subsequent chapters of the book.

Second, a variety of important models and problems from stochastic geometry
will be reviewed. Among these are the Boolean model, random geometric graphs,
intersection processes of (Poisson) processes of affine subspaces, random mosaics,
and random polytopes. We state the most natural problems and point out important
new results and directions of current research.

1 Introduction

Stochastic geometry is a branch of probability theory which deals with set-valued
random elements. It describes the behavior of random configurations such as
random graphs, random networks, random cluster processes, random unions of
convex sets, random mosaics, and many other random geometric structures. Due to
its strong connections to the classical field of stereology, to communication theory,
and to spatial statistics it has a large number of important applications.

The connection between probability theory and geometry can be traced back
at least to the middle of the eighteenth century when Buffon’s needle problem
(1733), and subsequently questions related to Sylvester’s four point problem (1864)
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and Bertrand’s paradox (1889) started to challenge prominent mathematicians and
helped to advance probabilistic modeling. Typically, in these early contributions a
fixed number of random objects of a fixed shape was considered and their interaction
was studied when some of the objects were moved randomly. For a short historical
outline of these early days of Geometric Probability see [104, Chap. 8] and [105,
Chap. 1].

Since the 1950s, the framework broadened substantially. In particular, the
focus mainly switched to models involving a random number of randomly chosen
geometric objects. As a consequence, the notion of a point process started to play a
prominent role in this field, which since then was called Stochastic Geometry.

In this chapter we describe some of the classical problems of stochastic geometry,
together with their recent developments and some interesting open questions. For a
more thorough treatment we refer to the seminal book on “Stochastic and Integral
Geometry” by Schneider and Weil [104].

2 Geometric Point Processes

A point process � is a measurable map from some probability space .˝;A ;P/ to
the locally finite subsets of a Polish space X (endowed with a suitable �-algebra),
which is the state space. The intensity measure of �, evaluated at a measurable set
A � X, is defined by �.A/ D E�.A/ and equals the mean number of elements of �
lying in A. 32

In many examples considered in this chapter, X is either Rd, the space of
compact (convex) subsets of Rd, or the space of flats (affine subspaces) of a certain
dimension in Rd. More generally,X could be the family F.Rd/ of all closed subsets
of Rd endowed with the hit-and-miss topology (which yields a compact Hausdorff
space with countable basis).

In this section, we start with processes of flats. In the next section, we discuss
particle processes in connection with Boolean models.

2.1 Grassmannians and Invariant Measures

Let X be the space of linear or affine subspaces (flats) of a certain dimension in Rd.
More specifically, for i 2 f0; : : : ; dg we consider the linear Grassmannian

G.d; i/ D fL linear subspace of Rd W dim L D ig

and the affine Grassmannian

A.d; i/ D fE affine subspace of Rd W dim E D ig:
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These spaces can be endowed with a canonical topology and with a metric inducing
this topology. In both cases, we work with the corresponding Borel �-algebra. Other
examples of spaces X are the space of compact subsets or the space of compact
convex subsets of Rd. All these spaces are subspaces of F.Rd/ and are endowed
with the subspace topology.

In each of these examples, translations and rotations act in a natural way on the
elements of X as well as on subsets (point configurations) of X. It is well known and
an often used fact that there is—up to normalization—only one translation invariant
and locally finite measure on Rd, the Lebesgue measure `d.�/. It is also rotation
invariant and normalized in such a way that the unit cube Cd D Œ0; 1	d satisfies
`d.Cd/ D 1.

Analogously, there is only one rotation invariant probability measure on G.d; i/,
which we denote by 
d

i and which by definition satisfies 
d
i .G.d; i// D 1. Observe

that 
d
d�1 coincides (up to normalization) with (spherical) Lebesgue measure �d

on the unit sphere Sd�1, by identifying a unit vector u 2 Sd�1 with its orthogonal
complement u? D L 2 G.d; d�1/. A corresponding remark applies to 
d

1 on G.d; 1/
where a unit vector is identified with the one-dimensional linear subspace it spans.

In a similar way, there is—up to normalization—only one rotation and translation
invariant measure on A.d; i/, the Haar measure �d

i , which is normalized in such a
way that �d

i .fE 2 A.d; i/ W E\Bd ¤ ;g/ D �d�i, where Bd is the unit ball in Rd and
�d denotes its volume. Since the space A.d; i/ is not compact, its total �d

i -measure
is infinite.

It is often convenient to describe the Haar measure �d
i on A.d; i/ in terms of the

Haar measure 
d
i on G.d; i/. The relation is

�d
i .A/ D

Z

G.d;i/

Z

L?

1A.LC x/ `d�i.dx/ 
d
i .dL/; (1)

for measurable sets A � A.d; i/. This is based on the obvious fact that each i-flat
E 2 A.d; i/ can be uniquely written in the form E D L C x with L 2 G.d; i/ and
x 2 L?, the orthogonal complement of L. If a locally finite measure � on A.d; i/ is
only translation invariant, then it can still be decomposed into a probability measure
� on G.d; i/ and, given a direction space L 2 G.d; i/, a translation invariant measure
on the orthogonal complement of L, which then coincides up to a constant with
Lebesgue measure on L?. In fact, a more careful argument shows the existence of a
constant t � 0 such that

�.A/ D t
Z

G.d;i/

Z

L?

1A.LC x/ `d�i.dx/ �.dL/;

for all measurable sets A � A.d; i/. In this situation, � D 
d
i if and only if � is also

rotation invariant and therefore � D �d
i , at least up to a constant factor.
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The Haar measures `d, 
d
i , and �d

i are the basis of the most natural constructions
of point processes on X D Rd;G.d; i/ and A.d; i/, if some kind of invariance is
involved.

2.2 Stationary Point Processes

Next we describe point processes on these spaces in a slightly more formal way than
at the beginning of this section and refer to [71] for a general detailed introduction.
A point process (resp. simple point process) � on X is a measurable map from the
underlying probability space .˝;A ;P/ to the set of locally finite (resp. locally finite
and simple) counting measures N.X/ (resp., Ns.X/) on X, which is endowed with
the smallest �-algebra, so that the evaluation maps ! 7! �.!/.A/ are measurable,
for all Borel sets A � X. For z 2 X, let ız denote the unit point measure at z. It can
be shown that a point process can be written in form

� D
�X

iD1
ı�i ;

where � is a random variable taking values in N0 [ f1g and �1; �2; : : : is a
sequence of random points in X. In the following, we will only consider simple
point processes, where �i ¤ �j for i ¤ j. If � is simple and identifying a
simple measure with its support, we can think of � as a locally finite random set
� D f�i W i D 1; : : : ; �g.

Taking the expectation of � yields the intensity measure

�.A/ D E�.A/

of �. As indicated above, the most convenient point processes from a geometric
point of view are those where the intensity measure equals the Haar measure, or
at least a translation invariant measure, times a constant t > 0, the intensity of
the point process. If we refer to this setting, we write �t and �t to emphasize the
dependence on the intensity t. In the following, we make this precise under the
general assumption that the intensity measure is locally finite. As usual we say that
a point process � is stationary if any translate of � by a fixed vector has the same
distribution as the process �.

Let us discuss the consequences of the assumptions of stationarity or some
additional distributional invariance in some particular cases. If � is a stationary point
process on X D Rd, then �t.A/ D t`d.A/ for all Borel sets A � Rd. Clearly, this
measure is also rotation invariant.

Furthermore, if � is a stationary flat process on X D A.d; i/ and A � Rd is a
Borel set, we set ŒA	 D fE 2 A.d; i/ W E \ A ¤ ;g. Then the number of i-flats of the
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process meeting A is given by �.ŒA	/ and its expectation can be written as

�t.ŒA	/ D t
Z

G.d;i/

Z

L?

1ŒA	.LC x/ `d�i.dx/ �.dL/;

where � is a probability measure on G.d; i/ and t � 0 is the intensity. This
follows from what we said in the previous subsection, since the intensity measure
is translation invariant by the assumption of stationarity of �. Here, the indicator
function 1ŒA	.LC x/ equals 1 if and only if x is in the orthogonal projection AjL? of
A to L?. Thus

�t.ŒA	/ D t
Z

G.d;i/

`d�i.AjL?/ �.dL/:

A special situation arises if � is also isotropic (its distribution is rotation invariant).
In this case and for a convex set A, the preceding formula can be expressed as an
intrinsic volume, which will be introduced in the next section.

2.3 Tools from Convex Geometry

We work in the d-dimensional Euclidean space Rd with Euclidean norm kxk Dphx; xi, unit ball Bd and unit sphere Sd�1. The set of all convex bodies, i.e., compact
convex sets in Rd, is denoted by Kd. The Hausdorff distance between two sets
A;B is defined as dH.A;B/ D inff" � 0 W A � B C "Bd and B � A C "Bdg
where “C” denotes the usual vector or Minkowski addition. When equipped with
the Hausdorff distance, Kd is a metric space. The elements of the convex ring Rd

are the polyconvex sets, which are defined as finite unions of convex bodies.
If Lebesgue measure is applied to elements of Kd, we usually write Vd instead of

`d. Using the Minkowski addition on Kd, we can define the surface area of a convex
body by

lim
"!0C

Vd.K C "Bd/� Vd.K/

"
:

Classical results in convex geometry imply that the limit exists. The mean width of
a convex body K is the mean length of the projection KjL of the set onto a uniform
random line L through the origin,

Z

G.d;1/

V1.KjL/ 
d
1 .dL/:
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These two quantities, which describe natural geometric properties of convex bodies,
are just two examples of a sequence of characteristics associated with convex bodies.

2.3.1 Intrinsic Volumes

More generally, we now introduce intrinsic volumes Vi of convex bodies, i D
1; : : : ; d. These can be defined through the Steiner formula which states that, for
any convex body K 2 Kd , the volume of KC"Bd is a polynomial in " � 0 of degree
d. The intrinsic volumes are the suitably normalized coefficients of this polynomial,
namely,

Vd.K C "Bd/ D
dX

iD0
�iVd�i.K/"

i; " � 0;

where �i is the volume of the i-dimensional unit ball. Clearly, the functional 2Vd�1 is
the surface area, V1 is a multiple of the mean width functional, and V0 corresponds
to the Euler characteristic.

The intrinsic volumes Vi are translation and rotation invariant, homogeneous of
degree i, monotone with respect to set inclusion, and continuous with respect to
the Hausdorff distance. The intrinsic volumes are additive functionals, also called
valuations, which means that

Vi.K [ L/C Vi.K \ L/ D Vi.K/C Vi.L/

whenever K;L;K [ L 2 Kd. Moreover, it is a convenient feature of the intrinsic
volumes that for K � Rd � RN the value Vi.K/ is independent of the ambient
space, Rd or RN , in which it is calculated. In particular, for L 2 G.d; 1/ the intrinsic
volume V1.KjL/ is just the length of KjL.

A famous theorem due to Hadwiger (see [104, Sect. 14.4]) states that the intrinsic
volumes can be characterized by these properties. If � is a translation and rotation
invariant, continuous valuation on Kd, then

� D
dX

iD0
ciVi

with some constants c0; : : : ; cd 2 R depending only on �. If in addition � is
homogeneous of degree i, then � D ciVi. To give a simple example for an
application of Hadwiger’s theorem, observe that the mean projection volume

Z

G.d;i/

`d�i.KjL?/ 
d
i .dL/
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of a convex body K to a uniform random .d � i/-dimensional subspace defines
a translation invariant, rotation invariant, monotone and continuous valuation of
degree d � i. Hence, up to a constant factor (independent of K), it must be equal
to Vd�i.K/. This yields Kubota’s formula

Vd�i.K/ D cd;i

Z

G.d;i/

`d�i.KjL?/ 
d
i .dL/;

with certain constants cd;i which can be determined by comparing both sides for
K D Bd. This formula explains why the intrinsic volumes are often encountered in
stereological or tomographic investigations and are also called “Quermassintegrals”,
which is the German name for an integral average of sections or projections of a
body.

Applications to stochastic geometry require an extension of intrinsic volumes
to the larger class of polyconvex sets. Requiring such an extension to be additive
on Rd suggests to define the intrinsic volumes of polyconvex sets by an inclusion–
exclusion formula. The fact that this is indeed possible can be seen from a result due
to Groemer [38], [104, Theorem 14.4.2], which says that any continuous valuation
on Kd has an additive extension to Rd. Volume and surface area essentially preserve
their interpretation for the extended functionals and also Kubota’s formula remains
valid for all intrinsic volumes. On the other hand, continuity with respect to the
Hausdorff metric is in general not available on Rd.

2.3.2 Mixed Volumes and Area Measures

The Steiner formula can be extended in different directions. Instead of considering
the volume of the Minkowski sum of a convex body and a ball, more generally, the
volume of a Minkowski combination of finitely many convex bodies K1; : : : ;Kk 2
Kd can be taken. In this case, Vd.�1K1C : : :C�kKk/ is a homogeneous polynomial
in �1; : : : ; �k � 0 of degree d, whose coefficients are nonnegative functionals of the
convex bodies involved (see [101, Chap. 5.1]), which are called mixed volumes. We
mention only the special case k D 2,

Vd.�1K1 C �2K2/ D
dX

iD0

 
d

i

!
�i
1�

d�i
2 V.K1Œi	;K2Œd � i	/I

the bracket notation KŒi	 means that K enters with multiplicity i. In particular, for
K;L 2 Kd we thus get

d � V.KŒd � 1	;L/ D lim
"!0C

Vd.K C "L/� Vd.K/

"
;
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which provides an interpretation of the special mixed volume V.KŒd � 1	;L/ as a
relative surface area of K with respect to L. In particular, d � V.KŒd � 1	;Bd/ is the
surface area of K. The importance of these mixed functionals is partly due to sharp
geometric inequalities satisfied by them. For instance, Minkowski’s inequality (see
[101, Chap. 7.2]) states that

V.KŒd � 1	;L/d � Vd.K/
d�1Vd.L/: (2)

If K;L are d-dimensional, then (2) holds with equality if and only if K and L are
homothetic. Note that the very special case L D Bd of this inequality is the classical
isoperimetric inequality for convex sets.

Although Minkowski’s inequality is sharp, it can be strengthened by taking into
account that the left side is strictly larger than the right side if K and L are not
homothetic. Quantitative improvements of (2) which introduce an additional factor
.1C f .d.K;L// on the right-hand side, with a nonnegative function f and a suitable
distance d.K;L/, are extremely useful and are known as geometric stability results.

A second extension is obtained by localizing the parallel sets involved in the
Steiner formula. For a given convex body K, this leads to a sequence of Borel
measures Sj.K; �/, j D 0; : : : ; d � 1, on Sd�1, the area measures of the convex body
K. The top order area measure Sd�1.K; �/ can be characterized via the identity

d � V.KŒd � 1	;L/ D
Z

Sd�1

h.L; u/ Sd�1.K; du/;

which holds for all convex bodies K;L 2 Kd , and where

h.L; u/ WD maxfhx; ui W x 2 Lg; u 2 Rd;

defines the support function of L. Moreover, for any Borel set ! � Sd�1 we have

Sd�1.K; !/ D Hd�1.fx 2 @K W hx; ui D h.K; u/ for some u 2 !g/;

where Hd�1 denotes the .d�1/-dimensional Hausdorff measure. Further extensions
and background information are provided in [101] and summarized in [104].

3 Basic Models in Stochastic Geometry

3.1 The Boolean Model

The Boolean model, which is also called Poisson grain model [41], is a basic
benchmark model in spatial stochastics. Let �t D P1

iD1 ıxi denote a stationary
Poisson point process in Rd with intensity t > 0. By Kd

0 we denote the set of all
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convex bodies K 2 Kd for which the origin is the center of the circumball. Let Q
denote a probability distribution on Kd

0, and let Z1;Z2; : : : be an i.i.d. sequence of
random convex bodies (particles) which are also independent of �t. If we assume that

Z

Kd
0

Vj.K/Q.dK/ <1 (3)

for j D 1; : : : ; d, then

Z D
1[

iD1
.Zi C xi/

is a stationary random closed set, the Boolean model with grain (or shape)
distribution Q and intensity t > 0. Alternatively, one can start from a stationary
point process (particle process) �t on Kd. Then the intensity measure �t D E�t of
�t is a translation invariant measure on Kd which can be decomposed in the form

�t.�/ D t
Z

Kd
0

Z

Rd

1fK C x 2 �g `d.dx/Q.dK/:

The Poisson particle process �t is locally finite if and only if its intensity measure
�t is locally finite, which is equivalent to (3). We obtain again the Boolean model
by taking the union of the particles of �t, that is,

Z D Z.�t/ D
[

K2�t

K:

In order to explore a Boolean model Z, which is observed in a window W 2 Kd,
it is common to consider the values of suitable functionals of the intersection
Z \ W as the information which is available. Due to the convenient properties
and the immediate interpretation of the intrinsic volumes Vi, i 2 f0; : : : ; dg, for
convex bodies, it is particularly natural to study the random variables Vi.Z \ W/,
i 2 f0; : : : ; dg, or to investigate random vectors composed of these random
elements. From a practical viewpoint, one aims at retrieving information about the
underlying particle process, that is, its intensity and its shape distribution, from such
observations.

3.1.1 Mean Values

Let Z0 be a random convex body having the same distribution as Zi, i 2 N, which is
called the typical grain. Formulas relating the mean values EVi.Z\W/ to the mean
values of the typical grain vj D EVj.Z0/, j 2 f0; : : : ; dg, have been studied for a
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long time. Particular examples of such relations are

EVd.Z \W/ D Vd.W/


1 � e�tvd

�
;

EVd�1.Z \W/ D Vd.W/tvd�1e�tvd C Vd�1.W/


1 � e�tvd

�
:

If r.W/ denotes the radius of the inball of W, we deduce from these relations that

lim
r.W/!1

EVd.Z \W/

Vd.W/
D 1 � e�tvd ;

lim
r.W/!1

EVd�1.Z \W/

Vd.W/
D tvd�1e�tvd ;

where the first limit is redundant and equal to p D P.o 2 Z/ D EVd.Z\W/=Vd.W/,
the volume fraction of the stationary random closed set Z. For the other intrinsic
volumes Vi, i 2 f0; : : : ; d � 2g, the mean values EVi.Z \W/ of the Boolean model
Z can still be expressed in terms of the intensity and mean values of the typical grain,
but the relations are more complicated and in general they involve mixed functionals
of translative integral geometry. The formulas simplify again if Z is additionally
assumed to be isotropic (if Z0 is isotropic). For a stationary and isotropic Boolean
model, all mean values EVi.Z\W/ can be expressed in terms of the volume fraction
p and a polynomial function of tvi; : : : ; tvd. Moreover, the limits

ıi WD lim
r.W/!1

EVi.Z \W/

Vd.W/

exist and are called the densities of the intrinsic volumes for the Boolean model.
The system of equations which relates these densities to the (intensity weighted)
mean values tv0; : : : ; tvd can be used to express the latter in terms of the densities
ı0; : : : ; ıd of the Boolean model.

3.1.2 Covariances

While such first order results (involving mean values) have been studied for quite
some time (see [104] for a detailed description), variances and covariances of
arbitrary intrinsic volumes (or of more general functionals) of Boolean models have
been out of reach until recently. In [58], second order information for functionals
of the Boolean model is derived systematically under optimal moment assumptions.
To indicate some of these results, we define for i; j 2 f0; : : : ; dg

�i;j D lim
r.W/!1

Cov


Vi.Z \W/;Vj.Z \W/

�

Vd.W/
(4)
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as the asymptotic covariances of the stationary Boolean model Z, provided the limit
exists. The following results are proved in [58] and ensure the existence of the limit
under minimal assumptions. Note that condition (3) is equivalent to EVi.Z0/ < 1
for i D 1; : : : ; d.

Theorem 1 Assume that EVi.Z0/2 <1 for i 2 f1; : : : ; dg.
(1) Then �i;j is finite and independent of W for all i; j 2 f0; : : : ; dg. Moreover, �i;j

can be expressed as an infinite series involving the intensity t and integrations
with respect to the grain distribution Q and the intensity measure � of �t.

(2) The asymptotic covariance matrix is positive definite if Z0 has nonempty interior
with positive probability.

(3) If even EVi.Z0/3 <1 for i 2 f0; : : : ; dg, then the rate of convergence in (4) is
of the (optimal) order 1=r.W/.

A more general result is obtained in [58], which applies to arbitrary translation
invariant, additive functionals which are locally bounded and measurable (geometric
functionals). Further examples of such functionals are mixed volumes and certain
integrals of area measures. The basic ingredients in the proof are the Fock space
representation of Poisson functionals as developed in [73] (see also the contribution
by Günter Last in this volume) and new integral geometric bounds for geometric
functionals.

For an isotropic Boolean model, the infinite series representation for �i;j can be
reduced to an integration with respect to finitely many curvature based moment
measures of the typical grain Z0. As a basic example, which does not require Z to
be isotropic, we mention (assuming a full-dimensional typical grain Z0) that

�d�1;d D �e�2tvd tvd�1
Z 


etCd.x/ � 1� `d.dx/

C e�2tvd t
Z

etCd.x�y/ Md�1;d.d.x; y//;

where Cd.x/ D EŒVd.Z0 \ .Z0 C x//	, for x 2 Rd, defines the mean covariogram of
the typical grain and

Md�1;d.�/ WD 1

2
E

Z

Z0

Z

@Z0

1f.x; y/ 2 �gHd�1.dx/ `d.dy/

is a mixed moment measure of the typical grain. A formula for the asymptotic
covariance �d�1;d�1 is already contained in [42]. For a stationary and isotropic
Boolean model in the plane R2, explicit formulas are provided in [58] for all
covariances involving the Euler characteristic �0;0; �0;1; �0;2. Moreover, again in
general dimensions and for a stationary Boolean model whose typical grain is a
deterministic ball, some of these formulas can be specified even further and used to
plot the covariances as a function of the intensity. It is an interesting task to interpret
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these plots and to determine rigorously the analytic properties (e.g., zeros, extremal
values) or the asymptotic behavior of the covariances and correlation functions for
increasing intensity.

In addition, in [58] univariate and multivariate central limit theorems, including
rates of convergence, are derived from general new results on the normal approx-
imation of Poisson functionals via the Malliavin–Stein method [81, 82]. For these
we refer to the survey [17], in this volume. Again these results are established for
quite general geometric functionals, employing also tools from integral geometry.
Some of these results do not require stationarity of the Boolean model or translation
invariance of the functionals.

3.2 Random Geometric Graphs

Random graphs play an important role in graph theory since Renyi introduced his
famous random graph model. Since then several models of random graphs have been
investigated. The use of random graphs as a natural model for telecommunication
networks (see, e.g., Zuyev’s survey in [115]) gave rise to additional investigations.
Here we concentrate on random graphs with a geometric construction rule.

The most natural and best investigated graph is the so-called Gilbert graph. Let
�t be a Poisson point process on Rd with an intensity measure of the form �t.�/ D
t`d.�\W/, where W � Rd is a compact convex set with `d.W/ D 1. Let .ıt W t > 0/
be a sequence of positive real numbers such that ıt ! 0 as t ! 1. The Gilbert
graph, or random geometric graph, is obtained by taking the points of �t as vertices
and by connecting two distinct points x; y 2 �t by an edge if and only if kx�yk � ıt.
There is a vast literature on the Gilbert graph and one should have a look at the
seminal book [83] by Penrose or check the recent paper by Reitzner et al. [93] for
further references. For natural generalizations one replaces the role of the norm
by a suitable symmetric function G W Rd ! Œ0; 1	, where two points of �t are
connected with probability G.y � x/. An important particular case is when G is the
indicator function of a symmetric set. Recent developments in this direction are due
to Bourguin and Peccati [16], and Lachièze-Rey and Peccati [66, 67].

Denote by G D .V;E/ the resulting graph where V D �t are the vertices and
E � �2t;¤ are the occurring edges. Objects of interest are clearly the number of
edges Nt and, more general, functions of the edge lengths

X

.x;y/2E
g.ky � xk/:

In particular, one is interested in the edge length powers

L.˛/t D 1

2

X

.x;y/2�2t;¤
1fkx � yk � ıtg kx � yk˛:
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Clearly L.0/t D Nt. It is well known that for any ˛ > �d

EL.˛/t D d�d

2.˛C d/
t2ı˛Cd

t Vd.W/.1C O.ıt// :

This especially shows that the number of edges of the Gilbert graph is of order t2ıd
t ,

whereas its total edge length is of order t2ıdC1
t . The asymptotic variance is given by

VarL.˛/t D
�

d �d

2 .2˛C d/
t2 ı2˛Cd

t C d2 �2d
.˛ C d/2

t3 ı2˛C2d
t

�
Vd.W/.1C O.ıt//;

and the asymptotic covariance matrix is computed in [93].
Many investigations benefit from the fact that these functions are Poisson

U-statistics of order 2, and thus are perfectly suited to apply the Wiener–Itô chaos
expansion, Malliavin calculus and Stein’s method. We refer to [91] and [69] (in
this volume) for more details. There limit theorems are stated and more recent
developments are pointed out.

Questions of interest not mentioned in the current notes concern for instance
percolation problems. For recent developments in this context, we refer, e.g., to the
recent book by Haenggi [40].

3.2.1 Random Simplicial Complexes

A very recent line of research is based on the use of random geometric graphs for
constructing random simplicial complexes. For instance, given the Gilbert graph of
a Poisson point process �t, we construct the Vietoris–Rips complex R.ıt/ by calling
F D fxi1 ; : : : ; xikC1

g a k-face of R.ıt/ if all pairs of points in F are connected by
an edge in the Gilbert graph. This results in a random simplicial complex, and it is
particularly interesting to investigate its combinatorial and topological structure.

For example, counting the number N.k/
t of k-faces is equivalent to a particular

subgraph counting. By definition this is a U-statistic given by

N.k/
t D N.k/

t .W; ıt/ D 1

.kC 1/Š
X

.x1;:::;xkC1/2�kC1
t;¤

1fkxi � xjk � ıt; 81 � i; j � kC 1g:

Using the Slivnyak–Mecke theorem (see [104, Sect. 3.2]), the expectation of N.k/
t

can be computed. Central limit theorems and a concentration inequality follow from
results for local U-statistics. A particularly tempting problem is the asymptotic
behavior of the Betti-numbers of this random simplicial complex. We refer to
[29, 60, 62, 69] and to the recent survey article by Kahle [61] for further information.
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3.3 Poisson Processes on Grassmannians

Let �t be a Poisson process on the space A.d; i/ of affine i-flats with a �-finite
intensity measure �t D t�1, t > 0. Assume in particular that �t is absolutely
continuous with respect to the Haar measure �d

i on A.d; i/. This implies that two
subspaces L1;L2 2 �2t;¤ are almost surely in general position. If 2i < d the
intersection L1 \ L2 is almost surely empty and of interest is the linear hull of the
subspace parallel to L1 and L2, which is of dimension 2i with probability one. If
2i � d, then the dimension of the linear hull of the subspace parallel to L1 and L2 is
d and of interest is the intersection L1\L2, which is an affine subspace of dimension
2i� d with probability one.

Crucial in all the following results mentioned for both cases is the fact that
the functionals of interest are Poisson U-statistics and thus admit a finite chaos
expansion. This makes it particularly tempting to use methods from the Malliavin
calculus for proving distributional results.

3.3.1 Intersection Processes of Poisson Flat Processes

Starting from a stationary process �t of i-flats in Rd with d=2 � i � d�1, we obtain
for given k � d=.d� i/ a stationary process �.k/t of Œki� .k� 1/d	-flats by taking the
intersection of any k flats from �t whose intersection is of the correct dimension. If
�t is Poisson, then the intensity t.k/ and the directional distribution �.k/ of this k-fold
intersection process �.k/t of �t can be related to the intensity t and the directional
distribution � of �t by

t.k/�.k/.�/ D tk

kŠ

Z

A.d;i/

: : :

Z

A.d;i/

1fL1 \ : : : \ Lk 2 �gŒL1; : : : ;Lk	 �.dLk/ : : : �.dL1/;

where the subspace determinant ŒL1; : : : ;Lk	 is defined as the k.d � i/-dimensional
volume of the parallelepiped spanned by orthonormal bases of L?1 ; : : : ;L?k . Natural
questions which arise at this point are the following:

• For which choice of � will t.k/ be maximal if t is fixed?
• Are t and � uniquely determined by the intersectional data t.k/ and �.k/?
• If uniqueness holds, is there a stability result as well? That is, are t� and Ot O� close

to each other (in a quantitative sense) if t.k/�.k/ and Ot.k/ O�.k/ are close?

For further information on this topic, see Sect. 4.4 in [104].
Since in applications the intersection process can only be observed in a convex

window W, one is in particular interested in the sum of their j-th intrinsic volumes



Introduction to Stochastic Geometry 159

given by

˚t D 1

kŠ

X

.L1;:::;Lk/2�k
t;¤

Vj.L1 \ : : : \ Lk \W/

for j D 0; : : : ; d � k.d � i/. The fact that the summands in the definition of ˚t are
bounded and have a bounded support ensures that the sum exists.

The expectation of ˚t can be calculated using the Slivnyak–Mecke theorem,
which yields

E˚t D 1

kŠ
tk
Z
: : :

Z
Vj.L1 \ : : : \ Lk \W/ �1.dL1/ : : : �1.dLk/:

If �t is also translation invariant this leads to the question to determine certain chord
power integrals of the observation window W or more general integrals involving
powers of the intrinsic volumes of intersections L\W where L is an affine subspace.

Recent contributions deal with variances and covariances, multivariate central
limit theorems [74] (see also [69]), and the distribution of the m-smallest intersection
[108]. For further detailed investigations we refer to the recent contribution by Hug
et al. [59].

3.3.2 Proximity of Poisson Flat Processes

A different situation arises if we consider a stationary process of i-flats in Rd with
1 � i < d=2. In this case, generically we expect that any two different i-flats
L1;L2 2 �t are disjoint. A natural way to investigate the geometric situation in
this setting is to study the distances between disjoint pairs of i-dimensional flats, or
more generally to consider the proximity functional.

We associate with such a pair .L1;L2/ 2 �2t;¤ (in general position) a unique pair
of points x1 2 L1 and x2 2 L2 such that kx1 � x2k equals the distance between L1
and L2. This gives rise to a process of triples .m.L1;L2/; d.L1;L2/;L.L1;L2//, where
m.L1;L2/ WD .x1 C y2/=2 is the midpoint, d.L1;L2/ WD kx1 � x2k is the distance,
and L.L1;L2/ 2 G.d; 1/ is the subspace spanned by the vector x1 � x2.

The stationary process of midpoints and its intensity have been studied in [97] for
a Poisson process (see also Sect. 4.4 in [104]), and more recently in [109]. Assume
that �t is a Poisson process on the space A.d; i/, i < d

2
, with intensity measure

�t D t�1. The midpoints m.L1;L2/ D 1
2
.x1 C x2/ form a point process of infinite

intensity, hence we restrict it to the point process

fm.L1;L2/ W d.L1;L2/ � ı; L1;L2 2 �2t;¤g
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and are interested in the number of midpoints in W, that is,

˘t D ˘t.W; ı/ D 1

2

X

.L1;L2/2�2t;¤
1fd.L1;L2/ � ı; m.L1;L2/ 2 Wg:

The Slivnyak–Mecke formula shows that E˘t is of order t2ıd�2i. Schulte and
Thäle [109] proved convergence of the suitably normalized random variable ˘t

to a normally distributed variable with error term of order t� d�i
2 . Moreover, they

showed that after suitable rescaling the ordered distances asymptotically form an
inhomogeneous Poisson point process on the positive real axis. In [69], the authors
add to this a concentration inequality around the median mt of ˘t which shows that
the tails of the distribution are bounded by

exp

�
�1
4

up
uC mt

�

for up
uCmt

� e2 supL02ŒW	 �t.fL W d.L0;L/ � ıg/.
For the process of triples .m.L1;L2/; d.L1;L2/;L.L1;L2// a more detailed anal-

ysis has been carried out in [59], which also emphasizes the duality of concepts
and results as compared to the intersection process (of order k D 2) described
before. While the proximity process provides a “dual counterpart” to the intersection
process of order two, no satisfactory analogue for intersection processes of higher
order is known so far.

3.4 Random Mosaics

Another widely used model of stochastic geometry is that of a random mosaic
(tessellation). A deterministic mosaic of Euclidean spaceRd is a family of countably
many d-dimensional convex bodies Ci � Rd, i 2 N, with mutually disjoint
interiors, whose union is the whole space and with the property that each compact
set intersects only finitely many of the sets. The individual sets of the family, which
necessarily are polytopes, are called the cells of the tessellation. It is clear that
this concept can be extended in various directions, for instance by dropping the
convexity assumption on the cells or by allowing local accumulations of cells, which
leads to a more general partitioning of space.

Formally, a random mosaic (tessellation) X in Rd is defined as a simple particle
process such that for each realization the collection of all particles constitutes a
mosaic. In addition to the cells of the mosaic, the collection of k-dimensional faces
of the cells, for each k 2 f0; : : : ; dg, provides an interesting geometric object
which combines features of a particle process, a random closed set (considering for
instance the union set), or a random geometric graph. For example, coloring the cells
of the tessellation black or white, independently of each other and independently
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of X, one can ask for the probability of an infinite black connected component or
study the asymptotic behavior of mean values and variances of functionals of the
intersection sets ZB \ W, where ZB denotes the union of the black cells and W is
an increasing observation window. For an introduction to such percolation models
we refer the reader to [12, 13, 72, 77]. A first systematic investigation of central
limit theorems in more general continuous percolation models related to stationary
random tessellations is carried out in [78].

3.4.1 Typical Cells and Faces

In the following, we always consider stationary random tessellations X in Rd. By
stationarity, the intensity measure EX of X, which we always assume to be locally
finite and nonzero, is translation invariant. Let c W Kd ! Rd denote a center
function. By this we mean a measurable function which is translation covariant,
that is, c.KC x/ D c.K/C x for all K 2 Kd and x 2 Rd. W.l.o.g. we take c.K/ to be
the center of the circumball, and define Kd

0 WD fK 2 Kd W c.K/ D og as in Sect. 2.3.
Then

EX D t
Z

Kd
0

Z

Rd

1fCC x 2 �g `d.dx/Q.dC/;

where t > 0 and Q is a probability measure on Kd
0 which is concentrated on convex

polytopes. A random polytope Z with distributionQ is called a typical cell of X. This
terminology can be justified by Palm theory or in a “statistical sense.” In addition to
such a “mean cell” we also consider the cell containing a fixed point in its interior.
Because of stationarity, we may choose the origin and hence the zero cell Z0 of a
given stationary tessellation. Applying the same kind of reasoning to the stationary
process X.k/ of k-faces of X, we are led to the intensity t.k/ and the distribution Q.k/

of the typical k-face Z.k/ of X which are determined by

t.k/Q.k/.�/ D E

2

4
X

F2X.k/

1fc.F/ 2 Bg1fF � c.F/ 2 �g
3

5 ;

where B � Rd is a Borel set with `d.B/ D 1 and

t.k/ D E

2

4
X

F2X.k/

1fc.F/ 2 Bg
3

5 :
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Let Mk denote a random measure concentrated on the union of the k-faces of X
which is given by

Mk.�/ D
X

F2X.k/

Hk. � \ F/:

Then the distribution of the k-volume weighted typical k-face Z.k/0 is defined by

1

EMk.B/
E

Z

B

1
˚
Fk.X

.k/ � x/ 2 �� Mk.dx/;

where again B � Rd is a Borel set with `d.B/ D 1 and Fk.X.k/ � x/ is the P-a.s.
unique k-face of X.k/ � x containing o if x is in the support of Mk. Then, for any
nonnegative, measurable function h on convex polytopes, we obtain

Eh
�

Z.k/0 � c.Z.k/0 /
	
D EŒh.Z.k/Vk.Z.k//	

EŒVk.Z.k//	
; (5)

which also explains why Z.k/0 is called the volume weighted typical k-face of X.
This relation between the two types of typical faces is implied by Neveu’s exchange
formula. In the particular case k D d we have Z.d/0 D Z0. Here we followed the
presentation in [7, 8, 98, 99].

For general stationary random mosaics it is apparently difficult to establish
distributional results. More is known about various mean values and intensities. For
instance,

dX

iD0
.�1/it.i/ D 0 (6)

is an Euler type relation for the intensities, which points to an underlying general
geometric fact (Gram’s relation). If Zk denotes the union of the k-faces of X (its
k-skeleton), then the specific Euler characteristic

N�k WD lim
r!1

1

rd
E�.Zk \ rŒ0; 1	d/

exists and satisfies

N�k D
kX

iD0
.�1/it.i/:

Mean value relations for the mean number of j-faces contained in (or containing)
a typical k-faces if j < k (respectively, j � k) or relations for the mean intrinsic
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volumes of the typical k-faces t.k/EVj.Z.k// are also known (see [104, Sect. 10.1] for
this and related results). More generally, asymptotic mean values and second order
properties for functionals of certain colored random mosaics have been investigated
in [78].

A different setting is considered in [43]. The starting point is a general stationary
ergodic random tessellation in Rd. With each cell a random inner structure is
associated (for instance, a point pattern, fiber system, or random tessellation)
independently of the given mosaic and of each other. Formally, this inner structure is
generated by a stationary random vector measure J0. In this framework, with respect
to an expanding observation window strong laws of large numbers, asymptotic
covariances and multivariate central limit theorems are obtained for a normalized
functional, which provides an unbiased estimator for the intensity vector of J0.
Applications to communication networks are then discussed in dimension two
under more specific model assumptions involving Poisson–Voronoi and Poisson line
tessellations as the frame tessellation as well as the tessellations used for the nesting
sequence.

3.4.2 Poisson Hyperplane Mosaics

A hyperplane process �t in Rd with intensity t > 0 naturally divides Rd into
convex polytopes, and the resulting mosaic is called hyperplane mosaic. In the
following, we assume that all required intensities are finite (and positive). Let X
be the stationary hyperplane mosaic induced by �t. Let

d.k/j

t.k/
D
Z

Vj.K/Q
.k/.dK/ D EVj.Z

.k//

denote the mean j-th intrinsic volume of the typical k-face Z.k/ of the mosaic X,
where t.k/ is again the intensity of the process of k-faces. We call d.k/j the specific
j-th intrinsic volume of the k-face process X.k/. If nk;j, for 0 � j � k � d, denotes
the mean number of j-faces of the typical k-face, then the relations

d.k/j D
 

d � j

d � k

!
d. j/; t.k/ D

 
d

k

!
t.0/; nk;j D 2k�j

 
k

j

!

complement the Euler relation (6) valid for any random tessellation (see [104,
Theorem 10.3.1]). In the derivation of these facts the property is used that each j-face
of X lies in precisely


d�j
d�k

�
flats of the .d � k/-fold intersection process �t;.d�k/ and

therefore in 2k�j

d�j

d�k

�
faces of dimension k of X. Further results can be obtained, for

instance, if the underlying stationary hyperplane process �t is Poisson. To prepare
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this, we observe that the intensity measure of �t is of the form

t
Z

Sd�1

Z

R

1fu? C xu 2 �g `1.dx/ �.du/; (7)

where t > 0 and � is an even probability measure on the unit sphere. Since for
u 2 Rd the left-hand side of

t

2

Z

Sd�1

jhu; vij �.dv/ DW h.˘X; u/

is a positively homogeneous convex function (of degree 1), it is the support function
of a uniquely defined convex body ˘X 2 Kd, which is called the associated zonoid
of X. This zonoid can be used to express basic quantities of the mosaic X. For
instance, we have

d.k/j D
 

d � j

d � k

!
Vd�j.˘X/; t.k/ D

 
d

k

!
Vd.˘X/

(see [104, Theorem 10.3.3]). If X (or �t) is isotropic, then ˘X is a ball and these
relations are directly expressed in terms of constants and the intensity t.

In [102], Schneider found an explicit formula for the covariances of the total face
contents of the typical k-face of a stationary Poisson hyperplane mosaic. Let Li.P/
be the total i-face contents of a polytope P � Rd, that is,

Li.P/ D
X

F2Fi.P/

Hi.F/:

The main result is a general new formula for the second moments E.LrLs/.Z.k//,
which is obtained by an application of the Slivnyak–Mecke formula and clever
geometric dissection arguments (refining ideas of R. Miles) in combination with
the mean values

ELr.Z
.k// D 2k�r


k
r

�

t

d

r

� Vd�r.˘X/;

which follow from [100]. As a consequence of these formulas and deep geometric
inequalities, namely the Blaschke–Santaló inequality and the Mahler inequality for
zonoids, he deduced that the variance Var. f0.Z.k/// is maximal if and only if X
is isotropic and minimal if and only if X is a parallel process (involving d fixed
directions only). A similar result is obtained for the variance of the volume of the
typical cell. In the isotropic case, explicit formulas for these variances and, more
generally, for the covariances of the face contents are obtained.
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In addition to the typical cell Z D Z.d/ of a stationary hyperplane tessellation,
we consider the almost surely unique cell Z0 D Z.d/0 containing the origin (the zero
cell). One relation between these two random polytopes is given in (5). Another
one describes the distribution of the typical cell (where here the highest vertex in a
certain admissible direction is chosen as the center function) as the intersection of Z0
with a random cone T.H1; : : : ;Hd/ generated by d independent random hyperplanes
sampled according to a distribution determined by the direction distribution � of �t.
From this description, one can deduce that up to a random translation, Z is contained
in Z0 (see Theorem 10.4.7 and Corollary 10.4.1 in [104]).

For the zero cell, mean values of some functionals are explicitly known. For
instance,

ELr.Z0/ D 2�ddŠVd�r.˘X/Vd.˘
ı
X /;

where ˘ıX is the polar body of the associated zonoid of X. Choosing r D 0, we get
the mean number of vertices, and the choice r D d gives the mean volume of Z0. It
follows, for instance, that

2d � Ef0.Z0/ � dŠ2�d�2d

with equality on the left side if X is a parallel process, and with equality on the right
side if X is isotropic. A related stability result has been established in [14].

3.4.3 Distributional Results

One of the very few distributional results which are known for hyperplane processes
is the following. It involves the inradius r.K/ of a convex body K, which is
defined as the maximal radius of a ball contained in K. We call a hyperplane
process nondegenerate if its directional distribution is not concentrated on any great
subsphere.

Theorem 2 Let Z be the typical cell of a stationary mosaic generated by a
(nondegenerate) stationary Poisson hyperplane process �t with intensity t > 0. Then

P.r.Z/ � a/ D 1 � exp.�2ta/; a � 0:

Clearly r.Z/ � a if and only if a ball of radius a is contained in Z. An extension
covering more general inclusion probabilities (for homothetic copies of an arbitrary
convex body) and typical k-faces has been established in [54, Sect. 4, (9)].

In order to study distributional properties of lower-dimensional typical faces,
Schneider [98] showed that for k 2 f1; : : : ; d � 1g the distribution of the volume-
weighted typical k-face can be described as the intersection of the zero cell with a
random k-dimensional linear subspace. To state this result, let �t denote a stationary
Poisson hyperplane process in Rd with intensity measure as given in (7). Further, let
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t.d�k/ denote the intensity and �.d�k/ the directional distribution (a measure on the
Borel sets of G.d; k/) of the intersection process �t;.d�k/ of order d � k of �t. Both
quantities are determined by the relation

t.d�k/�.d�k/.�/ D td�k

.d � k/Š

Z

.Sd�1/d�k

1fu?1 \ : : : \ u?d�k 2 �g

Œu1; : : : ; ud�k	 �
d�k.d.u1; : : : ; ud�k//;

where Œu1; : : : ; ud�k	 denotes the .d � k/-volume of the parallelepiped spanned by
u1; : : : ; ud�k.

The next theorem summarizes results from [98, Theorem 1] and from [54,
Theorem 1].

Theorem 3 Let X denote the stationary hyperplane mosaic generated by a station-
ary Poisson hyperplane process �t. Then the distribution of the volume-weighted
typical k-face of X is given by

P.Z.k/0 2 �/ D
Z

G.d;k/

P.Z0 \ L 2 �/ �.d�k/.dL/:

The distribution of the typical k-face equals

P.Z.k/ 2 �/ D
Z

G.d;k/

P.Z.X \ L/ 2 �/Rk.dL/;

hence it is described in terms of the typical cells of the induced mosaics X \ L in
k-dimensional subspaces sampled according to the directional distribution

Rk.�/ D Vd�k.˘X/
d
k

�
Vd.˘X/

Z

G.d;k/

1fL 2 �gVk.˘XjL/ �.d�k/.dL/

of the typical k-face of X.

These results turned out to be crucial for extending various results for typical
(volume-weighted) faces, which had been obtained before for the typical cell (the
zero cell).

3.4.4 Large Cells: Kendall’s Problem

Next we turn to Kendall’s problem on the asymptotic shape of the large cells
of a stationary but not necessarily isotropic Poisson hyperplane tessellation. The
original problem (Kendall’s conjecture) concerned a stationary isotropic Poisson
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line tessellation in the plane and suggested that the conditional law for the shape of
the zero cell Z0, given its area V2.Z0/!1, converges weakly to the degenerate law
concentrated at the circular shape. Miles [75] provided some heuristic ideas for the
proof of such a result and suggested also various modifications. The conjecture was
strongly supported by Goldman [34], a first solution came from Kovalenko [64, 65].
Still the approaches of these papers were essentially restricted to the Euclidean plane
and made essential use of the isotropy assumption.

The contribution [56] marks the starting point for a sequence of investigations
which provide a resolution of Kendall’s problem in a substantially generalized form.
To describe the result in some more detail, let �t be a (nondegenerate) stationary
Poisson hyperplane process in Rd with intensity t > 0 and directional distribution
� . In order to find a potential asymptotic shape for the zero cell Z0 of the induced
Poisson hyperplane tessellation, we first have to exhibit a candidate for such a shape
(if it exists), then we have to clarify what we mean by saying that two shapes are
close and finally it remains to determine a quantity which should be used instead of
the “area” of Z0 to measure the size of the zero cell.

Clearly, a natural candidate for a size functional is the volume Vd. The answer
to the first question is less obvious, but is based on a strategy that has repeatedly
been used in the literature with great success (see [104, Sect. 4.6] for various
examples and references). The main idea is to describe the direction distribution
� in geometric terms. This allows one to apply geometric inequalities such as
Minkowski’s inequality (2) and its stability improvement, which then can be
reinterpreted again in probabilistic terms. Instead of the associated zonoid, for the
present problem the Blaschke body associated with �t, alternatively the direction
body B of �t, turns out to be the right tool. This auxiliary body B is characterized as
the unique centered (that is, B D �B) d-dimensional convex body B 2 Kd such that
the area measure of B satisfies Sd�1.B; �/ D � . The existence and uniqueness of B,
for given � , is a deep result from convex geometry which in its original form is also
due to Minkowski (see [101]). Finally, we say that the shape of K 2 Kd is close to
the shape of B if

rB.K/ D inffs=r � 1 W rBC z � K � sBC z; z 2 Rd; r; s > 0g

is small. In particular, rB.K/ D 0 if and only if K and B are homothetic. Let Kd
.o/

denote the set of all K 2 Kd with o 2 K. For any such K we introduce the constant

� D minft�1E�t.ŒK	/ W K 2 Kd
.o/;Vd.K/ D 1g

of isoperimetric type, which can also be expressed in the form

e�� t D maxfP.K � Z0/ W K 2 Kd
.o/;Vd.K/ D 1g:

The following theorem summarizes Theorems 1 and 2 in [56] and a special case
of Theorem 2 in [51]. The latter provides a far reaching generalization of a result
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in [34] on the asymptotic distribution of the area of the zero cell of an isotropic
stationary Poisson line tessellation in the plane.

Theorem 4 Under the preceding assumptions, there is a positive constant c0,
depending only on B, such that for every � 2 .0; 1/ and for every interval I D Œa; b/
with a1=dt � 1,

P.rB.Z0/ � � j Vd.Z0/ 2 I/ � c exp

�c0�

dC1a1=dt
�
;

where c is a constant depending on B and �. Moreover,

lim
a!1 a�1=d lnP.Vd.Z0/ � a/ D �� t:

The same result holds for the typical cell Z.

If the size of Z0 is measured by some other intrinsic volume Vi.Z0/, for i 2
f2; : : : ; d � 1g, a similar result is true if �t is also isotropic (see [57, Theorem 2]).
No such result can be expected for the mean width functional V1. In fact, no limit
shape may exist if size is measured by the mean width, which is proved in [51,
Theorem 4] for directional distributions with finite support. Most likely a limit shape
does not exist if size is measured by the mean width, but for arbitrary � or in case
of the typical cell this is still an open question. Crucial ingredients in the proofs of
the results described so far are geometric stability results, which refine geometric
inequalities and the discussion of the equality cases for these inequalities.

3.4.5 A General Framework

The results described so far suggest the general question which size functionals
indeed lead to asymptotic or limit shapes and how these asymptotic or limit shapes
are determined. A general axiomatic framework for analyzing these questions is
developed in [51]. The main object of investigation is a Poisson hyperplane process
�t in Rd (and its induced tessellation) with intensity measure of the form

E�t D t
Z

Sd�1

1Z

0

1fH.u; x/ 2 �gxr�1 `1.dx/ �.du/; (8)

where t > 0, r � 1, and � is an even nondegenerate (that is, not concentrated on
any great subsphere) probability measure on the Borel sets of the unit sphere. The
case r D 1 corresponds to the stationary case. We refer to t as the intensity, r as the
distance exponent, and � as the directional distribution of �t. Let

˚.K/ WD t�1E�t.ŒK	/ D 1

r

Z

Sd�1

h.K; u/r �.du/; K 2 Kd
.o/;
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which is called the hitting or parameter functional of �t, since t˚.K/ is the mean
number of hyperplanes of �t hitting K. Moreover, we have

P.�t.ŒK	/ D n/ D Œ˚.K/t	n

nŠ
exp .�˚.K/t/ ; n 2 N0;

by the Poisson assumption on �t.
In Theorem 4 we used the volume functional to bound the size of the zero cell.

Many other functionals are conceivable such as the (centered) inradius, the diameter,
the width in a given direction, or the largest distance to a vertex of Z0. It was
realized in [51] that in fact any functional ˙ on Kd

.o/ which satisfies some natural
axioms (continuity, homogeneity of a fixed degree k > 0 and monotonicity under set
inclusion) qualifies as a size functional. From this it already follows that a general
sharp inequality of isoperimetric type is satisfied, that is,

˚.K/ � �˙.K/r=k; K 2 Kd
.o/; (9)

with a positive constant � > 0. The convex bodies K for which equality is attained
are called extremal. Among the bodies of size ˙.K/ D 1 these are precisely the
bodies for which

P.K � Z0/ � e�� t

holds with equality (thus maximizing the inclusion probability). The final ingredient
required in this general setting, if ˚;˙ are given, is a deviation functional # on
fK 2 Kd

.o/ W ˙.K/ > 0g, which should be continuous, nonnegative, homogeneous
of degree zero, and satisfy #.K/ D 0 for some K with ˙.K/ > 0 if and only if K is
extremal. Then exponential bounds of the form

P.#.Z0/ � � j ˙.Z0/ 2 Œa; b	/ � c exp

�c0f .�/a

r=kt
�

(10)

with a function f W RC ! RC which is positive on .0;1/, with f .0/ D 0, and
which satisfies

˚.K/ � .1C f .�//�˙.K/r=k if #.K/ � �;

are established in [51]. Thus if we know that K has positive distance #.K/ from an
extremal body, we can again use this information to obtain an improved version
of a very general inequality of isoperimetric type. As mentioned before, results
of this form are known as stability results. Note that for the choice ˙ D ˚ , the
inequality (9) becomes a tautological identity and all K 2 Kd

.o/ with K ¤ fog are
extremal. Hence, in this case # is identically zero and (10) holds trivially.

Moreover, for the asymptotic distributions of size functionals it is shown that

lim
a!1 a�r=k lnP.˙.Z0/ � a/ D �� t;
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thus providing a far reaching extension of the result for the volume functional [51].
The paper [51] contains also a detailed discussion of various specific choices of
parameters and functionals which naturally occur in this context and which exhibit
a rich variety of phenomena. In the next subsection we point out how this setting
extends to Poisson–Voronoi tessellations. In the case of stationary and isotropic
Poisson hyperplane tessellations, a similar general investigation is carried out in
[52]. Extensions to lower-dimensional faces in Poisson hyperplane mosaics, which
are based on the above-mentioned distributional results for k-faces, are considered
in [53, 54].

Much less is known about the shape of small cells, although this has also been
asked for by Miles [75]. For parallel mosaics in the plane, some work has been done
in [10]. Recently, limit theorems for extremes of stationary random tessellations
have been explored in [22, 27], but the topic has not been exhaustively investigated
so far. In the survey [21], Calka discusses some generalizations of distributional
results for the largest centered inball (centered inradius) RM, the smallest centered
circumball (centered circumradius) and their joint distribution, for an isotropic
Poisson hyperplane process with distance exponent r � 1. These radii are related
to covering probabilities of the unit sphere by random caps. The two-dimensional
situation had already been considered in [20]. In particular, Calka points out that
after a geometric inversion at the unit sphere and by results available for convex hulls
of Poisson point processes in the unit ball (see [23, 24]), the asymptotic behavior of
P.RM � tC tı j Rm D t/ can be determined for a suitable choice of ı as t!1. In
addition, L1-convergence, a central limit theorem, and a moderate deviation result
are available for the number of facets and the volume of Z0.

3.4.6 Random Polyhedra

The techniques developed for the solution of Kendall’s problem turned out to be
useful also for the investigation of approximation properties of random polyhedra
derived from a stationary Poisson hyperplane process �t with intensity t > 0 and
directional distribution � . Here the basic idea is to replace the zero cell by the
K-cell ZK

t defined as the intersection of all half-spaces H� bounded by hyperplanes
H 2 �t for which K � H�. Let dH denote the Hausdorff distance of compact sets in
Rd, and let Ky be the convex hull of K and fyg. If the support of the area measure
Sd�1.K; �/ is contained in the support of � , then

P.dH.K;Z
K
t / > �/ � c1.�/ exp .�c2t�.K; �; �// ;

where c1."/; c2 are constants and

�.K; �; �/ D min
y2@.KC�Bd/

Z

Sd�1

Œh.Ky; u/� h.K; u/	 �.du/ > 0I
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see [55, Theorem1]. Using this bound as a starting point, under various assumptions
on the relation between the body K to be approximated and the directional
distribution � of the approximating hyperplane process, almost sure convergence
dH.K;ZK

t /! 0 is shown as the intensity t!1, including bounds for the speed of
convergence. It would be interesting to consider the rescaled sequence

�
t

log t

� 2
dC1

dH.K;Z
K
t /

and to obtain further geometric information about the limit, for instance, if � is
bounded from above and from below by a multiple of spherical Lebesgue measure.

3.4.7 Poisson–Voronoi and Delaunay Mosaics

Perhaps the most common and best known tessellation in Euclidean space is the
Voronoi tessellation. A Voronoi tessellation arises from a locally finite set �t � Rd

(deterministic or random) of points by associating with each point x 2 �t the cell

v�t .x/ WD fz 2 Rd W kz � xk 6 kz � yk for all y 2 �tg

with nucleus (center) x. One reason for the omnipresence of Voronoi tessellations is
that they are related to a natural growth process starting simultaneously at all nuclei
at the same time. If �t is a stationary Poisson process with intensity t > 0, then the
collection of all cells v�t .x/, x 2 �t, is a random tessellation X of Rd which is called
Poisson–Voronoi tessellation. The distribution of the typical cell of X is naturally
defined by

Q.�/ WD 1

t
E

Z

B

1fv�t .x/� x 2 �g �t.dx/; (11)

where B � Rd is an arbitrary Borel set with volume 1. A random polytope Z with
distribution Q is called typical cell of X. An application of the Slivnyak–Mecke
theorem shows that the typical cell Z is equal in distribution to v�tCıo.o/, hence Z
is stochastically equivalent to the zero cell of a Poisson hyperplane tessellation with
generating Poisson hyperplane process given by Y DPx2�t

ıH.x/, where H.x/ is the
mid-hyperplane of o and x. It is easy to check that Y is isotropic but nonstationary
with intensity measure

EY.�/ D 2dt
Z

Sd�1

1Z

0

1fH.u; x/ 2 �g xd�1 `1.dx/Hd�1.du/; (12)
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where H.u; x/ WD u? C xu is the hyperplane normal to u and passing through
xu. Hence, Y perfectly fits into the framework of the parametric class of Poisson
hyperplane processes discussed before. This also leads to the following analogue
(see [57]) of Theorem 4. To state it, let #.K/, for a convex body K containing the
origin in its interior, be defined by #.K/ WD .Ro � ro/=.Ro C ro/, where Ro is
the radius of the smallest ball with center o containing K and ro is the radius of the
largest ball contained in K and center o.

Theorem 5 Let X be a Poisson–Voronoi tessellation as described above with
typical cell Z. Let k 2 f1; : : : ; dg. There is a constant cd, depending only on the
dimension, such that the following is true. If " 2 .0; 1/ and I D Œa; b/ (b D 1
permitted) with ad=kt � 1, then

P .#.Z/ � " j Vk.Z/ 2 I/ � cd;" exp

�cd"

.dC3/=2ad=kt
�
;

where cd;" is a constant depending on d and ".

It should be noted that conditioning on the mean width V1 is not excluded here.
Moreover, asymptotic distributions of the intrinsic volumes of the typical cell can
be determined as well. Although in retrospect this follows from the general results
in [51], specific geometric stability results have to be established.

The shape of large typical k-faces in Poisson–Voronoi tessellations, with respect
to the generalized nucleus as center function, has been explored in [53]. Here
large typical faces are assumed to have a large centered inradius. A corresponding
analysis for large k-volume seems to be difficult. In this context, the joint distribution
of the typical k-face and the typical k-co-radius is described explicitly and related
to a Poisson process of k-dimensional halfspaces with explicitly given intensity
measure.

The distributional results obtained in [53] complement fairly general distri-
butional properties of stationary Poisson–Voronoi tessellations that have been
established by Baumstark and Last [7]. In particular, they describe the joint
distribution of the d�kC1 neighbors of the k-dimensional face containing a typical
point (i.e., a point chosen uniformly) on the k-faces of the tessellation. Thus they
generalize in particular the classical result about the distribution of the typical cell
of the Poisson–Delaunay tessellation, which is dual to the given Poisson–Voronoi
tessellation. The combinatorial nature of this duality and its consequences are nicely
described in [104, Sect. 10.2]. Kendall’s problem for the typical cell in Poisson–
Delaunay tessellations is explored in [50] (see also [48]).

3.4.8 High-Dimensional Mosaics and Polytopes

Despite significant progress, precise and explicit information about mean values or
even variances and higher moments in stochastic geometry is rather rare. This is one
reason why often asymptotic regimes are considered, where the number of points,
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the intensity of a point process, or the size of an observation window is growing to
infinity. On the other hand, high-dimensional spaces are a central and challenging
topic which has been explored for quite some time, motivated by intrinsic interest
and applications.

Let X be a Poisson–Voronoi tessellation generated by a stationary Poisson
point process with intensity t in Rd. As before, let Z denote its typical cell. By
definition (11), Z contains the origin in its interior. It is not hard to show that t�k �
EŒVd.Z/k	 � kŠt�k, in particular, EŒVd.Z/	 D 1=t. These bounds are independent
of the dimension d. Using a much finer analysis, Alishahi and Sharifitabar [1]
showed that

c

t2
p

d

�
4

3
p
3

�d

� Var.Vd.Z// � C

t2
p

d

�
4

3
p
3

�d

;

where c;C > 0 are absolute constants. In a sense, this suggests that Vd.Z/ gets
increasingly deterministic. On the other hand, if Bd.u/ is a ball of volume u centered
at the origin, then

Vd.Z \ Bd.u//! t�1


1 � e�tu

�
; d!1;

in L2 and in distribution. The paper [1] was the starting point for a more general
high-dimensional investigation of the volume of the zero cell Z0 in a parametric
class of isotropic but not necessarily stationary Poisson hyperplane tessellations.
This parametric class is characterized by the intensity measure of the underlying
Poisson hyperplane process which is of the form (8) but with � being the normalized
spherical Lebesgue measure. That the case of the typical cell of a Poisson–Voronoi
tessellation is included in this model can be seen from (12) by choosing the distance
exponent r D d and by adjusting the intensities. Depending on the intensity t,
the distance parameter r, and the dimension d, explicit formulas for the second
moment E.Vd.Z0/2/ and the variance Var.Vd.Z0// as well as sharp bounds for these
characteristics were derived in [45]. Depending on the tuning of these parameters,
the asymptotic behavior of Vd.Z0/ can differ dramatically.

To describe an interesting consequence of such variance bounds, we define
by Z WD Vd.Z/�1=dZ the volume normalized typical cell of a Poisson–Voronoi
tessellation with intensity t (as above). Let L � Rd be a co-dimension one linear
subspace. Then there is an absolute constant c > 0 such that

P


Vd�1



Z \ L

� � pe=2
� � 1 � c � 1p

d

�
4

3
p
3

�d

:

This is a very special case of Theorem 3.17 in [46]. It can be paraphrased by saying
that with overwhelming probability the hyperplane conjecture, a major problem in
the asymptotic theory of Banach spaces, is true for this class of random polytopes,
see Milman and Pajor [76].
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In [46] also the high-dimensional limits of the mean number of faces and an
isoperimetric ratio of a mean volume and a mean surface area are studied for the
zero cell of a parametric class of random tessellations (as an example of a random
polytope). As a particular instance of such a result, we mention that

lim
d!1 d�1=2 d

p
Ef`.Z0/ D

p
2�b;

where r D bd (with b fixed) increases proportional to the dimension d and ` is
fixed. It is remarkable that this limit is independent of `. At the basis of this and
other results are identities connecting the f -vector of Z0 to certain dual intrinsic
volumes of projections of Z0 to a deterministic subspace.

3.4.9 Poisson–Voronoi Approximation

Let A be a Borel set in Rd and let �t be a Poisson point process in Rd. Assume that
we observe �t and the only information about A at our disposal is which points of
�t lie in A, i.e., we have the partition of the process �t into �t \ A and �t n A. We
try to reconstruct the set A just by the information contained in these two point sets.
For that aim we approximate A by the set A�t of all points in Rd which are closer to
�t \ A than to �t n A.

Applications of the Poisson–Voronoi approximation include nonparametric
statistics (see Einmahl and Khmaladze [32, Sect. 3]), image analysis (reconstructing
an image from its intersection with a Poisson point process, see [63]), quantization
problems (see, e.g., Chap. 9 in the book of Graf and Luschgy [35]), and numerical
integration (approximation of the volume of a set A using its intersection with a
point process �t \ A).

More formally, let �t be a homogeneous Poisson point process of intensity t > 0,
and denote by v�t .x/ the Voronoi cell generated by �t with center x 2 �t. Then the
set A�t is just the union of the Poisson–Voronoi cells with center lying in A, i.e.,

A�t D
[

x2�t\A

v�t .x/:

We call this set the Poisson–Voronoi approximation of the set A. It was first
introduced by Khmaladze and Toronjadze in [63]. They proposed A�t to be an
estimator for A when t is large. In particular, they conjectured that for arbitrary
bounded Borel sets A � Rd, d > 1;

Vd.A�t /! Vd.A/; t!1;

Vd.A4A�t/! 0; t!1; (13)
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almost surely, where 4 is the operation of the symmetric difference of sets. In full
generality this was proved by Penrose [84].

It can be easily shown that for any Borel set A � Rd we have

EVd.A�t / D Vd.A/;

since �t is a stationary point process. Thus Vd.A�t / is an unbiased estimator for the
volume of A. Relation (13) suggests that

EVd.A4A�t/! 0; t!1; (14)

although this is not a direct corollary. The more interesting problems are to find
exact asymptotic of EVd.A4A�t/, VarVd.A�t /, and VarVd.A4A�t/.

Very general results in this direction are provided by Reitzner et al. [92].
Their results for Borel sets with finite volume Vd.A/ depend on the perimeter
Per.A/ of the set A in the sense of variational calculus. If A is a compact set
with Lipschitz boundary (e.g., a convex body), then Per.A/ equals the .d � 1/-
dimensional Hausdorff measure Hd�1.@A/ of the boundary @A of A. In the general
case Per.A/ 6 Hd�1.@A/ holds.

If A � Rd is a Borel set with Vd.A/ <1 and Per.A/ <1, then

EVd.A4A�t/ D cd � Per.A/ � t�1=d.1C o.1//; t!1; (15)

where cd D 2d�2� .1=d/�d�1��1�1=d
d .

The asymptotic order of the variances of A�t and A4A�t as t ! 1 was first
studied in [44] for convex sets and then extended in [92] to arbitrary Borel sets,
where also sharp upper bounds in terms of the perimeter are given. A very general
result in this direction is due to Yukich [114]. If A � Rd is a Borel set with Vd.A/ <
1 and finite .d � 1/-dimensional Hausdorff measure Hd�1.@A/ of the boundary of
A, then

VarVd.A�t / D C1.A/t
�1�1=d.1C o.1//;

and

VarVd.A4A�t/ D C2.A/t
�1�1=d.1C o.1//; t!1;

with explicitly given constants Ci.A/.
A breakthrough was achieved by Schulte [107] for convex sets A and, more

generally, by Yukich [114] for sets with a boundary of finite .d � 1/-dimensional
Hausdorff measure. They proved central limit theorems for Vd.A�t/ and Vd.A4A�t/.

Recently, Lachièze-Rey and Peccati [68] proved bounds for the variance, higher
moments, and central limit theorems for a huge class of sets, including fractals.
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Another interesting open problem is to measure the quality of approximation
of a convex set K by K�t in terms of the Hausdorff distance between both sets.
First estimates for the Hausdorff distance are due to Calka and Chenavier [22],
very recently Lachièze-Rey and Vega [70] proved precise results on the Hausdorff
distance even for irregular sets.

Since A�t ! A in the sense described above, it is of interest to compare the
boundary @A to the boundary of the Poisson–Voronoi approximation @A�t . This has
been explored recently by Yukich [114] who showed that Hd�1.@A�t /—scaled by
a suitable factor independent of A—is an unbiased estimator for Hd�1.@A/, and he
also obtained variance asymptotics. We also mention a very recent deep contribution
due to Thäle and Yukich [111] who investigate a large number of functionals of A�t .

3.5 Random Polytopes

The investigation of random polytopes started 150 years ago when Sylvester
stated in 1864 his four-point-problem in the Educational Times. Choose n points
independently according to some probability measure in Rd. Denote the convex hull
of these points by convfX1; : : : ;Xng. Sylvester asked for the distribution function of
the number of vertices of convfX1; : : : ;X4g in the case d D 2.

Random polytopes are linked to other fields and have important applications.
We mention the connection to functional analysis: Milman and Pajor [76] showed
that the expected volume of a random simplex is closely connected to the so-called
isotropic constant of a convex set which is a fundamental quantity in the local theory
of Banach spaces.

In this section we will concentrate on recent contributions and refer to the surveys
by Hug [49], Reitzner [90], and Schneider [103] for additional information. Let �t

be a Poisson point process with intensity measure of the form �t D t�1, t > 0,
where �1 is an absolutely continuous probability measure on Rd. Then the Poisson
polytope is defined as ˘t D conv.�t/.

There are only few results for given t and general probability measures �1. In
analogy to Efron [31], it immediately follows from the Slivnyak–Mecke theorem
that Ef0.˘t/ D t � E�t.˘t//, connecting the probability content E�t.˘t/ and the
expected number of vertices Ef0.˘t/. Identities for higher moments have been given
by Beermann and Reitzner [9] who extended this further to an identity between the
generating function gI.˘t/ of the number of non-vertices or inner points I.˘t/ D
j�tj � f0.˘t/ and the moment generating function h�t.˘t/ of the �t-measure of ˘t.
Both functions are entire functions on C and satisfy

gI.˘t/.zC 1/ D h�t.˘t/.z/; z 2 C;

thus relating the distributions of the number of vertices and the �t-measure of˘t.
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3.5.1 General Inequalities

Assume that K � Rd is a compact convex set and set �t.�/ D tVd.K\�/. We denote
by ˘K

t D convŒ�t	 the Poisson polytope in K.
In this section we describe some inequalities for Poisson polytopes. Based on the

work of Blaschke [11], Dalla and Larman [28], Giannopoulos [33], and Groemer
[36, 37] showed that

EVd.˘
B
t / � EVd.˘

K
t / � EVd.˘

4
t / (16)

where ˘4t , resp. ˘B
t denotes the Poisson polytope where the underlying convex

set is a simplex, resp. a ball of the same volume as K. The left inequality is true
in arbitrary dimensions, whereas the right inequality is just known in dimension
d D 2 and open in higher dimensions. To prove this extremal property of the simplex
in arbitrary dimensions seems to be very difficult and is still a challenging open
problem. A positive solution to this problem would immediately imply a solution to
the hyperplane conjecture, see Milman and Pajor [76].

There are some elementary questions concerning the monotonicity of functionals
of ˘K

t . First, it is immediate that for all K 2 Kd and i D 1; : : : ; d,

EVi.˘
K
t / � EVi.˘

K
s /

for t � s. Second, an analogous inequality for the number of vertices is still widely
open. It is only known, see [30], that for t � s

Ef0.˘
K
t / � Ef0.˘

K
s /

for d D 2 (and also for smooth convex sets K � R3 if t is sufficiently large). Thirdly,
the very natural implication

K � L ) EVd.˘
K
t j �t.K/ D n/ � EVd.˘

L
t j �t.L/ D n/

was asked by Meckes and disproved by Rademacher [85]. He showed that for
dimension d � 4 there are convex sets K � L such that for t sufficiently small
EVd.˘

K
t j �t.K/ D n/ > EVd.˘

L
t j �t.L/ D n/. In addition, Rademacher showed

that in the planar case this natural implication is true. The case d D 3 is still open.

3.5.2 Asymptotic Behavior of the Expectations

Starting with two famous articles by Rényi and Sulanke [94, 95], the investigations
focused on the asymptotic behavior of the expected values as t tends to infinity.
Due to work of Wieacker [113], Schneider and Wieacker [106], Bárány [2], and
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Reitzner [87], for i D 1; : : : ; d,

Vi.K/� EVi.˘
K
t / D ci.K/t

� 2
dC1 C o

�
t�

2
dC1

	
(17)

if K is sufficiently smooth. Investigations by Schütt [110] and more recently by
Böröczky et al. [15] succeeded in weakening the smoothness assumption. Clearly,
Efron’s identity yields a similar result for the number of vertices.

The corresponding results for polytopes are known only for i D 1 and i D d. In
a long and intricate proof, Bárány and Buchta [3] showed that

Vd.K/� EVd.˘
K
t / D cd.K/t

�1 lnd�1 tC O


t�1 lnd�2 t lln t

�
:

For i D 1, Buchta [18] and Schneider [96] proved that

V1.K/ �EV1.˘
K
t / D c.K/t� 1

d C o.t� 1
d /:

Somehow surprisingly, the cases 2 � i � d � 1 are still open.
Due to Efron’s identity, the results concerning EVd.˘

K
t / can be used to

determine the expected number of vertices of ˘K
t . In [89], Reitzner generalized

these results for Ef0.˘K
t / to arbitrary face numbers Ef`.˘K

t /, ` 2 f0; : : : ; d � 1g.

3.5.3 Variances

In the last years several estimates have been obtained from which the order of the
variances can be deduced, see Reitzner [86, 88, 89], Vu [112], Bárány and Reitzner
[5], and Bárány et al. [6]. The results can be summarized by saying that there are
constants c.K/; c.K/ > 0 such that

c.K/t�1EVi.˘
K
t / � VarVi.˘

K
t / � c.K/t�1EVi.˘

K
t /

and

c.K/t�1Ef`.˘
K
t / � Varf`.˘K

t / � c.K/t�1Ef`.˘
K
t /

if K is smooth or a polytope. It is conjectured that these inequalities hold for general
convex bodies. That the lower bound holds in general has been proved in Bárány
and Reitzner [5], but the general upper bounds are missing.

A breakthrough are recent results by Calka et al. [26] and Calka and Yukich [25]
who succeeded in giving the precise asymptotics of these variances,

VarVi.˘
K
t / D cd;i.K/ t�

dC3
dC1 C o.t�

dC3
dC1 /
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for i D 1; d, and

Varf`.˘K
t / D Ncd;`.K/ t

d�1
dC1 C o.t

d�1
dC1 /

if K is a smooth convex body. The dependence of Ncd;`.K/ on K is known explicitly.

3.5.4 Limit Theorems

First CLTs have been proved by Groeneboom [39], Cabo and Groeneboom [19], and
Hsing [47] but only in the planar case. In recent years, methods have been developed
to prove CLTs for the random variables Vd.˘

K
t / and f`.˘K

t / in arbitrary dimensions.
The main ingredients are Stein’s method and some kind of localization arguments.
For smooth convex sets this was achieved in Reitzner [88], and for polytopes in a
paper by Bárány and Reitzner [4]. The results state that there is a constant c.K/ and
a function ".t/, tending to zero as t!1, such that

ˇ̌
ˇ̌
ˇP
 

Vd.˘
K
t / �EVd.˘

K
t /p

VarVd.˘K
t /

� x

!
�˚.x/

ˇ̌
ˇ̌
ˇ � c.K/ ".t/

and
ˇ̌
ˇ̌
ˇP
 

f`.˘K
t /� Ef`.˘K

t /p
Varf`.˘K

t /
� x

!
� ˚.x/

ˇ̌
ˇ̌
ˇ � c.K/ ".t/:

A surprising recent result is due to Pardon [79, 80] who proved in the Euclidean
plane a CLT for the volume of ˘K

t for all convex bodies K without any restriction
on the boundary structure of K. A similar general result in higher dimensions seems
to be out of reach at the moment.
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The Malliavin–Stein Method
on the Poisson Space

Solesne Bourguin and Giovanni Peccati

Abstract This chapter provides a detailed and unified discussion of a collection
of recently introduced techniques, allowing one to establish limit theorems with
explicit rates of convergence, by combining the Stein’s and Chen–Stein methods
with Malliavin calculus. Some results concerning multiple integrals are discussed
in detail.

1 Introduction

The aim of this chapter is to show that the tools of stochastic analysis developed in
the previous parts of the book (see [19, 30]) may be combined very naturally with
two powerful probabilistic techniques, namely the Stein’s and Chen–Stein methods
for probabilistic approximations. Several remarkable applications of the content of
the present chapter in a geometric context are presented in [18, 32].

2 The Stein’s and Chen–Stein Methods

The Stein’s and Chen–Stein methods can be roughly described as collections of
techniques, allowing one to use differential operators in order to explicitly assess
the distance between probability distributions. In general, these techniques are
applied whenever one wants to compare a known “target” distribution (Gaussian,
Poisson, Gamma, Binomial distributions among others) with an unknown one—that
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is typically not amenable to direct analysis. As it is to be expected, the nature of the
method changes mostly according to the structure of the target distribution.

In this section, Stein’s original method along with two of its variants are
presented, namely the (original) one-dimensional Stein’s method for normal approx-
imations, the one-dimensional Chen–Stein method for Poisson approximations, and
finally, a multidimensional version of Stein’s method for normal approximations. In
what follows, we shall assume that every random element is defined on an adequate
probability space .˝;A ;P/.

2.1 Distances Between Distributions

A crucial notion that will be needed throughout this chapter is that of a distance
between two probability distributions. Recall that a class H of real-valued functions
on Rd is said to be separating if the following implication holds: if F;G are two Rd-
valued random elements such that h.G/; h.F/ 2 L1.˝/ and EŒh.G/	 D EŒh.F/	 for
every h 2 H , then F and G have the same distribution. Also, we shall say (as
usual!) that a sequence of Rd-valued random variables fFn W n � 1g converges in
distribution (or in law) to F if, for every h W Rd ! R bounded and continuous,

EŒh.Fn/	! EŒh.F/	; as n!1:

Definition 1 (Distance Between Probability Distributions) Given a separating
class of real-valued functionsH on Rd, the distance dH .F;G/ between the laws of
two Rd-valued random elements F and G—verifying h.F/; h.G/ 2 L1.˝/ for every
h 2H —is defined as

dH .F;G/ D sup fjE Œh.F/	�E Œh.G/	j W h 2H g : (1)

It is easily checked that the mapping dH .�; �/ verifies the usual axioms of a
distance (or metric) on the class of all probability distributions � on Rd such thatR
Rd jh.x/jd�.x/ < 1 for every h 2 H . We will now present several specific

distances that will be used throughout the chapter. The reader is referred, e.g., to
[11, Chap. 11] or [21, Appendix C] (and the references therein) for any unexplained
definition or result concerning the topological properties of the class of probability
distributions on a metric space.

Definition 2 Fix d � 1, and write B.Rd/ to indicate the corresponding Borel
�-field.

1. The total variation distance between the laws of two Rd-valued random variables
F and G, denoted by dTV.F;G/, is obtained from (1) by taking H to be the set
of all functions hWRd ! R of the type h.x/ D 1B.x/, where B 2 B.Rd/. This
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class of functions will be denoted by HTV in the sequel, in such a way that

dTV.F;G/ D dHTV.F;G/ D sup
B2B.Rd/

jP .F 2 B/� P .G 2 B/j :

2. The Kolmogorov distance between the laws of two random variables F and G,
denoted by dK.F;G/, is obtained from (1) by taking H to be the class of all func-
tions hWRd ! R of the type h .x1; : : : ; xd/ D 1.�1;z1	�����.�1;zd 	 .x1; : : : ; xd/,
where z1; : : : ; zd 2 R. This class of functions will be denoted by HK in the
sequel. In particular,

dK.F;G/ D dHK .F;G/

D sup
z1;:::;zd2R

jP .F 2 .�1; z1	 � � � � � .�1; zd	/

�P .G 2 .�1; z1	 � � � � � .�1; zd	/j :

3. Let F;G be two Rd-valued random elements such that EŒkFkRd 	;EŒkGkRd 	 <

1. The Wasserstein distance between the laws of F and G, denoted by dW.F;G/,
is obtained from (1) by taking H to be the set of all functions hWRd ! R such
that khkLip � 1, where

khkLip D sup
x;y2RdWx¤y

jh .x/ � h .y/ j
kx � ykRd

:

This class of functions will be denoted by HW in the sequel.
4. Let F;G be two Rd-valued random elements such that EŒkFkRd 	;EŒkGkRd 	 <

1. The distance d2.F;G/ between the laws of F and G is obtained from (1) by
taking H to be the set of all functions hWRd ! R, such that h 2 C 1, khkLip � 1
and

M2.h/ WD sup
x;y2RdWx¤y

krh .x/� rh .y/ kRd

kx � ykRd
� 1:

This class of functions is denoted by H2. Note that, if h 2 C 2, then M2.h/ D
supx2Rd kHess h.x/kop, where Hess h.x/ stands for the Hessian matrix of h
evaluated at x, and the operator norm of a d � d matrix A is defined as kAkop D
sup

˚kAxkRd W x 2 Rd; kxkRd D 1�.
5. Let F;G be two Rd-valued random elements such that EŒkFk2

Rd 	;EŒkGk2Rd 	 <

1. The distance d3.F;G/ between the laws of F and G is obtained from (1) by
taking H to be the set of all functions hWRd ! R, such that h is three times
differentiable and all partial derivatives of order 2 and 3 are bounded by 1. This
class of functions is denoted by H3.

Observe that, in the notation introduced above, there is no explicit dependence on
the dimension d: indeed, it will always be the case that the exact value of d is clear
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from the context. As discussed below, the distances d2 and d3 are used mainly in a
multidimensional setting. We observe the following basic facts:

– The five classes HTV; HK ; HW ; H2; H3 are all separating, and the topologies
induced by the corresponding distances are all strictly stronger than the one
induced by the convergence in distribution. In particular, if d.Fn;F/! 0 (where
d stands for any of the distances dTV; dK; dW ; d2 or d3), then Fn converges in
distribution to F (observe that the converse implication might fail).

– One has that dTV � dK and dW � d2. Moreover, if d D 1, N � N .0; 1/ and F is
any random variable in L1.˝/, then dK.F;N/ � 2

p
dW.F;N/.

– If d D 1 and the mapping z 7! P.F � z/ is continuous for every z 2 R, then, as
n!1, Fn converges in distribution to F if and only if dK.Fn;F/! 0.

– The total variation distance also has the following useful equivalent representa-
tion:

dTV.F;G/ D 1

2
sup fjE Œh.F/	�E Œh.G/	j W khk1 � 1g :

2.2 The One-Dimensional Stein’s Method for Normal
Approximations

We will say that a random variable N has the standard GaussianN .0; 1/ distribution
(in symbols: N � N .0; 1/) if the law of N is given by the measure d�.x/ D
.2�/�1=2e�x2=2dx. More generally, we shall use the symbol N .m; �2/ to indicate
the one-dimensional Gaussian distribution with mean m and variance �2, that is,
Y � N .m; �2/ if and only if Y has the same distribution as m C �N, where N �
N .0; 1/. The starting point of Stein’s method is the following result, universally
known as “Stein’s Lemma,” which provides a useful characterization of the measure
� .

Lemma 1 (Stein’s Lemma) Let N be a real-valued random variable. Then, N �
N .0; 1/ if and only if, for every differentiable function f WR ! R such that f 0 2
L1.�/, the expectations E ŒNf .N/	 and E Œ f 0.N/	 are finite and

E ŒNf .N/	 D E
�

f 0.N/
�
:

A proof of this elementary statement can be found, e.g., in [21, Proof of
Lemma 3.1.2]. Now assume that F is some random variable such that the quantity

E
�
Ff .F/� f 0.F/

�

is close to zero for a large class of smooth functions f : is it possible to conclude that
the law of F is close to the N .0; 1/ distribution in some meaningful probabilistic
sense? Somehow surprisingly, such a question admits a positive and rigorous
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answer, that one can formulate by means of the crucial concept of the Stein’s
equation associated with a given test function h.

Definition 3 (Stein’s Equations) Let N � N .0; 1/ and let hWR ! R be a Borel
function such that E jh.N/j < 1. The Stein’s equation associated with h is the
ordinary differential equation

f 0.x/ � xf .x/ D h.x/�E Œh.N/	 ; x 2 R: (2)

A solution to the equation (2) is a function f that is absolutely continuous
(on compact intervals) and such that there exists a version of the derivative f 0
verifying (2) for every x 2 R.

Elementary considerations show that every solution to (2) necessarily has the
form

f .x/ D cex2=2 C ex2=2

xZ

�1
fh.t/�EŒh.N/	ge�t2=2dt (3)

D cex2=2 � ex2=2

1Z

x

fh.t/�EŒh.N/	ge�t2=2dt;

where c 2 R. In what follows, we shall denote by fh the function obtained from (3)
by setting c D 0, that is, we write

fh.x/ WD ex2=2

xZ

�1
fh.t/�EŒh.N/	ge�t2=2dt; x 2 R; (4)

in such a way that fh is the only solution to the Stein’s equation (2) verifying the
asymptotic relation limx!˙1 e�x2=2fh.x/ D 0. One should note that, in general, the
function fh defined in (4) might be only almost everywhere differentiable: from now
on, we stipulate that the symbol f 0h indicates the version of the derivative of fh given
by

f 0h.x/ D xfh.x/C h.x/�EŒh.N/	; x 2 R: (5)

Stein’s equations provide the perfect tool for bridging the gap between the
differential characterization of the Gaussian distribution given in Lemma 1, and the
notion of distance introduced in Definition 1. Consider indeed a generic random
variable F, as well as N � N .0; 1/. Select a function hWR ! R such that
E jh.N/j < 1 and E jh.F/j < 1, and let the function fh be defined as in (4).
Taking expectations (with respect to the law of F) on both sides of (2) yields

E Œh.F/	� E Œh.N/	 D E
�

f 0h.F/� Ffh.F/
�
:
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In particular, if H is a separating class of functions such that E jh.N/j < 1 and
E jh.F/j <1 for every h 2H , one infers that

dH .F;N/ D sup
h2H

ˇ̌
E
�

f 0h.F/� Ffh.F/
�ˇ̌
: (6)

Note that the right-hand side of the previous identity does not involve the target
random variable N: indeed, the Gaussian distribution plays a role in such an
expression only via the characterizing differential operator f .x/ 7! f 0.x/ � xf .x/
(see Lemma 1). The key point is now that if one chooses a separating class H
whose components verify a uniform bound of some sort (as it happens for the
sets HTV; HK and HW introduced in Definition 2), then the elements of the class
ffh W h 2 H g will also satisfy some uniform estimates, that one can put into use
for assessing the right-hand side of (6). We will see that, in general, the mapping
fh associated with a given test function h possesses some additional degree of
smoothness that makes the supremum in (6) quite amenable to analysis. Depending
on the class H specifying the distance dH , the properties of the functions fh
significantly change, and the bounds that can be derived from (6) differ accordingly.

In the next three sections, we will discuss in some detail the (one-dimensional)
bounds that one can deduce when working with H D HTV; HK and HW . Note
that the bounds in the total variation distance are difficult to exploit in a Poisson
context (mainly because one is naturally led to deal with discrete random variables,
whose total variation distance from the normal distribution is equal by definition
to the maximal value of 1); however, we decided to present them for the sake of
completeness.

2.2.1 Stein’s Bounds for the One-Dimensional Total Variation Distance

The following statement provides some classical bounds on the total variation
distance. A proof can be found, e.g., in [21, Proof of Theorem 3.3.1].

Theorem 1 Let N � N .0; 1/ and let hWR! Œ0; 1	 be a Borel function. Then, the
solution fh to the Stein’s equation (2) is such that

k fhk1 �
r
�

2
and k f 0hk1 � 2: (7)

In particular, for any real-valued random variable F 2 L1.˝/ one has the following
bound

dTV.F;N/ � sup
f2FTV

ˇ̌
E
�

f 0.F/
� �E ŒFf .F/	

ˇ̌
; (8)

where

FTV WD
�

f W k fk1 �
r
�

2
; k f 0k1 � 2


: (9)
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Equations (8) and (9) must be formally interpreted in the following sense:
(a) the class FTV is composed of all absolutely continuous functions f that are
bounded by

p
�=2 and such that there exists a version of f 0 that is bounded by

2, and (b) the supremum on the right-hand side of (8) stands for the quantity
sup jE Œu.F/	� E ŒFf .F/	j, where the supremum is taken over all pairs . f ; u/ such
that f 2 FTV and u is a version of f 0 bounded by 2.

2.2.2 Stein’s Bounds for the One-Dimensional Kolmogorov Distance

For every z 2 R, we let fz denote the function fh, as defined in (4), solving the
Stein’s equation (2) associated with the indicator function h D 1.�1;z	. In this case,
the integral in (4) can be explicitly computed, yielding that, for every real x,

fz.x/ D
( p

2�ex2=2˚.x/Œ1 � ˚.z/	 if x � zp
2�ex2=2˚.z/Œ1 �˚.x/	 if x � z,

(10)

where˚.a/ WD P.N � a/. Note that, according to (10), the function fz is everywhere
differentiable, except for the point x D z. According to our convention (5), we shall
therefore write f 0z to indicate the version of the derivative of fz satisfying (2) for every
real x, that is: f 0z .x/ D xfz.x/C 1.�1;z	.x/� ˚.x/, x 2 R.

Theorem 2 Let z 2 R and N � N .0; 1/. The function fz is such that

k fzk1 �
p
2�

4
; k f 0zk1 � 1: (11)

Moreover, for all u; v;w 2 R,

j.wC u/fz.wC u/� .wC v/fz.wC v/j �
 
jwj C

p
2�

4

!
.juj C jvj/ (12)

and the following local estimate holds for every x; h 2 R:

ˇ̌
fz.xC h/� fz.x/ � hf 0z .x/

ˇ̌
(13)

� h2

2

 
jxj C

p
2�

4

!
C h



1Œx;xCh/.z/ � 1ŒxCh;x/.z/

�

D h2

2

 
jxj C

p
2�

4

!
C jhj 
1Œx;xCh/.z/C 1ŒxCh;x/.z/

�
:

In particular, for any integrable random variable F,

dK.F;N/ � sup
f2FK

ˇ̌
E
�

f 0.F/
�� E ŒFf .F/	

ˇ̌
; (14)
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where

FK WD
(

f W k fk1 �
p
2�

4
; k f 0k1 � 1

)
: (15)

A proof of the estimates (11) and (12) can be found in [9, Proof of Lemma 2.3]
(see also [21, Exercise 3.4.4]). The local bound (13) (for which a complete proof
is provided below) can be found in [12, Proof of Theorem 3.1] (where it is used
in a different form) and [17, Proposition 3.1]. One should also notice that (13)
refines previous findings from [31]. Equations (14) and (15) must be interpreted
as follows: (a) the class FK is composed of all absolutely continuous functions f
that are bounded by

p
2�=4, that are differentiable everywhere except for at most

a finite number of points, and such that there exists a version of f 0 that is bounded
by 1, and (b) the supremum on the right-hand side of (14) stands for the quantity
sup jE Œu.F/	� E ŒFf .F/	j, where the supremum is taken over all pairs . f ; u/ such
that f 2 FK and u is a version of f 0 bounded by 2.

Proof (Theorem 2, Estimate (13)) Fix z 2 R. Observe that for every x; h 2 R, we
can write

fz.xC h/� fz.x/ � hf 0z .x/ D
hZ

0



f 0.xC t/ � f 0.x/

�
dt:

As fz is a solution to the Stein’s equation (2), it satisfies, for all y 2 R,

f 0.y/ D yf .y/C 1fy�zg �˚.z/;

which yields, for all x; h 2 R,

fz.xC h/� fz.x/ � hf 0z .x/

D
hZ

0

..xC t/f .xC t/ � xf .x// dtC
hZ

0



1fxCt�zg � 1fx�zg

�
dt WD I1 C I2

and hence, by the triangle inequality,

ˇ̌
fz.xC h/� fz.x/� hf 0z .x/

ˇ̌ � jI1j C jI2j: (16)

Using (12), we have

jI1j �
hZ

0

 
jxj C

p
2�

4

!
jtjdt D h2

2

 
jxj C

p
2�

4

!
: (17)
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Furthermore, observe that

jI2j D 1fh<0g

ˇ̌
ˇ̌
ˇ̌

hZ

0



1fxCt�zg � 1fx�zg

�
dt

ˇ̌
ˇ̌
ˇ̌C 1fh�0g

ˇ̌
ˇ̌
ˇ̌

hZ

0



1fxCt�zg � 1fx�zg

�
dt

ˇ̌
ˇ̌
ˇ̌

D 1fh<0g

ˇ̌
ˇ̌
ˇ̌�

0Z

h

1fxCt�z<xgdt

ˇ̌
ˇ̌
ˇ̌C 1fh�0g

ˇ̌
ˇ̌
ˇ̌�

hZ

0

1fx�z<xCtgdt

ˇ̌
ˇ̌
ˇ̌

D 1fh<0g
0Z

h

1fxCt�z<xgdtC 1fh�0g
hZ

0

1fx�z<xCtgdt:

Bounding t by h in both integrals provides the following upper bound:

jI2j � 1fh<0g.�h/1ŒxCh;x/.z/C 1fh�0gh1Œx;xCh/.z/

� h


1Œx;xCh/.z/� 1ŒxCh;x/.z/

� D jhj 
1Œx;xCh/.z/C 1ŒxCh;x/.z/
�
: (18)

Using estimates (17) and (either side of the equality in) (18) in (16) concludes the
proof. ut

2.2.3 Stein’s Bounds for the Wasserstein Distance

Normal approximations in the Wasserstein distance are dealt with using the
following result:

Theorem 3 Let hWR ! R be such that khkLip � 1, and let N � N .0; 1/.
Then, the function fh defined in (4) (solving the Stein’s equation (2)) is everywhere
continuously differentiable and such that k f 0hk1 �

p
2=� . Also, the derivative f 0h is

almost everywhere differentiable, and there exists a version f 00h of the derivative of
f 0h such that k f 00h k1 � 2. In particular, for every square-integrable random variable
F, one has the bound

dW.F;N/ � sup
f2FW

ˇ̌
E
�

f 0.F/
� �E ŒFf .F/	

ˇ̌
; (19)

where

FW WD
n

f WR! R 2 C1W k f 0k1 �
p
2=�; k f 00k1 � 2

o
; (20)

where C1 indicates the collection of all continuously differentiable functions on R.

A proof of the bound k f 0hk1 �
p
2=� can be found in [21, Sect. 3.5], whereas

the bound on f 00h follows, e.g., from [7, Lemma 4.3]. The definition (20) formally
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indicates that the class FW is composed of all f 2 C1 that are bounded by
p
2=� ,

and whose derivative is a Lipschitz function with Lipschitz constant � 2. Note that
the supremum on the right-hand side of (19) is unambiguously defined, since the
derivative f 0 exists everywhere for every f 2 FW .

2.3 Multidimensional Stein’s Bounds for Normal
Approximations

This subsection provides some extensions of the results of Sect. 2.2, allowing
one to deal with the normal approximation of d-dimensional random vectors, for
d � 2. As a general rule, one has that the multidimensional Stein’s method
requires test functions that are smoother than those one can consider in the one-
dimensional case. This is due to the fact that the differential operators appearing in
the multidimensional Stein’s method are second order operators (see [21, Chap. 4]
for a full discussion of this point). As a consequence, we will only be able to derive
bounds in the Wasserstein distance (that are presented for the sake of completeness,
but cannot be directly applied in a Poisson context) and in the distance d2. The
distance d3 will appear in Sect. 6.2, in connection with interpolation techniques.

Some further (standard) notation is needed. Fix an integer d � 2, and write
Md .R/ to indicate the collection of all real d � d matrices. The Hilbert–Schmidt
inner product and the Hilbert–Schmidt norm on Md .R/, denoted respectively by
h�; �iH:S and k � kH:S, are defined as follows: for every pair of matrices A and B,
hA;BiH:S D Tr



ABT

�
and kAkH:S D

phA;AiH:S, with Tr .�/ the usual trace operator
and �T the usual transposition operator.

The next statement is the exact multidimensional counterpart of Lemma 1.
Given m 2 Rd and a d � d covariance matrix ˙ , we shall denote N .m; ˙/ the
d-dimensional Gaussian distribution with mean m and covariance˙ .

Lemma 2 (Multidimensional Stein’s Lemma) Let ˙ D f˙.i; j/W i; j D 1; : : : ; dg
be a nonnegative definite d�d symmetric matrix. Let N D .N1; : : : ;Nd/ be a random
vector with values in Rd. Then, N � N .0;˙/ if and only if

E ŒhN;rf .N/iRd 	 D E Œh˙;Hess f .N/iH:S	 ;

for every C2 function f WRd ! R having bounded first and second derivatives. Here,
Hess f denotes the Hessian matrix of f .

There are several ways of proving this result: one of the most instructive can be
found in [21, Proof of Lemma 4.1.3], as it is based on the same interpolation
technique we shall explore in Sect. 6.2. As in the previous subsection, the next step
is to define (and solve) an appropriate Stein’s equation linking the multidimensional
Gaussian characterization stemming from Stein’s Lemma and an appropriate notion
of distance.
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Definition 4 (Multidimensional Stein’s Equations) Let N D .N1; : : : ;Nd/ be a
centered Gaussian random vector with positive definite covariance matrix ˙ , and
let hWRd ! R be such that E jh.N/j < 1. The Stein’s equation associated with h
and N is the partial differential equation

h˙;Hess f .x/iH:S � hx;rf .x/iRd D h.x/� E Œh.N/	 : (21)

A solution to the equation (21) is a C2 function fh verifying (21) for every x 2 R.

It is not difficult to check that, whenever h is Lipschitz, a solution to (21) is given
by

fh.x/ D
1Z

0

1

2t
EŒh.N/ � h.

p
txCp1 � tN	 dt; x 2 Rd; (22)

see, e.g., [21, Proposition 4.3.2].

2.3.1 Stein’s Bounds for the Wasserstein Distance

The following statement allows to deal with normal approximations in the Wasser-
stein distance. It represents a quantitative version of Lemma 2.

Theorem 4 Fix d � 2. Let hWRd ! R be a Lipschitz function with constant K > 0.
Then, the solution fh to the Stein’s equation (21), as defined in (22), is of class C 2

and such that

sup
x2Rd

kHess fh.x/kH:S � Kk˙�1kopk˙k1=2op : (23)

In particular, for N a centered d-dimensional Gaussian vector with covariance
matrix ˙ , where ˙ is a positive definite matrix, and for any square-integrable Rd-
valued random vector F,

dW.F;N/ � sup
f2Fd

W .˙/

jE Œh˙;Hess f .x/iH:S	 � E Œhx;rf .x/iRd 	j ; (24)

where

F d
W .˙/ WD

(
f WRd ! R 2 C2W sup

x2Rd

kHess f .x/kH:S � k˙�1kopk˙k1=2op :

)
:

Details on how to prove (23) can be found in [21, Sect. 4.3]. The bound on the
Wasserstein distance is immediately obtained by taking expectations on both sides
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of (21) (with respect to the law of F) in the case where h is a 1-Lipschitz function
and f D fh, and then by applying the definition of dW .

2.3.2 Stein’s Bounds for the d2 Distance

Bounds analogous to those in the previous subsection can be deduced in the case of
the d2 distance. A proof can be found in [26, Proof of Lemma 2.17].

Theorem 5 Fix d � 2. Let h 2H2 (see Definition 2–2). Then, the solution fh to the
Stein’s equation (21), as defined in (22), is of class C 2 and such that

sup
x2Rd

kHess fh.x/kH:S � k˙�1kopk˙k1=2op ; (25)

and

M3. fh/ WD sup
x;2Rd ;x¤y

kHess fh.x/ �Hess fh.x/kop

kx � ykRd
�
p
2�

4
k˙�1k3=2op k˙kop:

(26)

As a consequence, for N � N .0;˙/, where ˙ is a positive definite matrix, and for
any square-integrable Rd-valued random vector F,

d2.F;N/ � sup
f2Fd

2 .˙/

jE Œh˙;Hess f .x/iH:S	 � E Œhx;rf .x/iRd 	j ; (27)

where

F d
2 .˙/ WD

(
f 2 C2W sup

x2Rd

kHess f .x/kH:S � k˙�1kopk˙k1=2op ;

M3. f / �
p
2�

4
k˙�1k3=2op k˙kop:

)
:

As anticipated, the next section deals with some “discrete” variant of Stein’s
method.

2.4 The One-Dimensional Chen–Stein Method for Poisson
Approximations

The Chen–Stein method is an analogue of Stein’s method in the framework of
Poisson approximations. Similar to Stein’s original method for normal approxima-
tions (see Sect. 2.2), the goal of the Chen–Stein method is to provide quantitative
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bounds on the distance (in a certain strong sense) between the law of a random
variable with values in ZC D f0; 1; 2; : : :g and the Poisson distribution with a given
parameter � > 0, denoted by Po.�/. As usual, we shall say that a random variable
X has the Poisson distribution with parameter � > 0 (in symbols, X � Po.�/), if

P.X D k/ D e��
�k

kŠ
; k 2 ZC:

Classic references for Poisson approximations are [4, 13]; see also [8, 28].
Our first elementary remark is that if F and X are two random variables with

values in ZC, then the total variation distance between the laws of F and X (as
introduced in Definition 2) can be rewritten as

dTV.F;X/ D sup
B2B.R/

jP.F 2 B/ �P.X 2 B/j

D sup
B2B.R/

jP.F 2 B \ZC/ �P.X 2 B \ ZC/j

D sup
A�ZC

jP.F 2 A/� P.X 2 A/j :

The following statement is the Poisson equivalent of Stein’s Lemma for the
Gaussian distribution.

Lemma 3 (Chen–Stein Lemma) A random variable W with values in ZC has the
Po.�/ distribution if and only if, for every bounded f WZC ! R,

E ŒWf .W/ � �f .W C 1/	 D 0:

A proof of this lemma can be found e.g. in [13, Proof of Theorem 2.2] or [24, Proof
of Lemma 3.3.3]. As in the case of normal approximations, the Chen–Stein Lemma
suggests the following question: assume that W is a random variable with values in
ZC and such that the quantity

E ŒWf .W/ � �f .W C 1/	

is close to zero for a large family of functions f ; can we conclude that the distribution
of W is close to Po.�/? In order to give a rigorous answer to this question, one has
to introduce the concept of a Chen–Stein (difference) equation.

Definition 5 (Chen–Stein’s Equations) Let Z � Po.�/, and let hWZC ! R be
such that E Œh.Z/	 <1. The Chen–Stein’s equation associated with h is given by

�f .kC 1/� kf .k/ D h.k/� E Œh.Z/	 ; k 2 ZC: (28)
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Any solution f to (28) necessarily verifies

f .k/ D .k � 1/Š
�k

k�1X

iD0
.h.i/� E Œh.Z/	/

�i

iŠ
; k D 1; 2; : : : ; (29)

while the value of f .0/ can be chosen arbitrarily. In what follows, we shall denote
by fh the unique solution to (29) verifying fh.0/ D 0, where the symbol � indicates
the forward difference operator�f .k/ WD f .k C 1/ � f .k/, k D 0; 1; 2; : : :, and, for
j � 2, �jf WD �.�j�1f /.

The explicit representation (29) is derived, e.g., in [13, Theorem 2.1]. The next
statement provides useful bounds on fh; �fh and�2fh. Given a function gWZC ! R,
we write kgk1 D supi�0 jg.i/j.
Proposition 1 Let the above notation prevail, and consider a bounded function
hWZC ! R. Then, the function fh verifies the following estimates:

k fhk1 �
 
1 ^

r
2

e�

!"
sup

i2ZC

h.i/� inf
i2ZC

h.i/

#
I (30)

k�fhk1 �
�
1 � e��

�

�"
sup

i2ZC

h.i/� inf
i2ZC

h.i/

#
; (31)

k�2fhk1 �
�
2 � 2e��

�

�"
sup

i2ZC

h.i/� inf
i2ZC

h.i/

#
: (32)

The estimates (30) and (31) are standard, see, e.g., [13, Theorem 2.3],
whereas (32) is a consequence of the triangle inequality. We also mention a
remarkable estimate by Daly [10, Theorem 1.3], according to which any function f
verifying (29) also satisfies the relation

sup
k�1
j�jf .k/j � 2

�
sup
k�0
j�j�1h.k/j;

holding for any integer j � 2. Such higher order estimates are not needed in our
analysis.

2.4.1 Chen–Stein Bounds for the Total Variation Distance

Given A � ZC, we denote by fA the function fh (as defined in (29), and satisfying
the boundary condition fh.0/ D 0) associated with the test function h.k/ D 1A.k/,
k 2 ZC. As explained above, one has that fA solves the Chen–Stein’s equation

�f .kC 1/� kf .k/ D 1A.k/ �P .Z 2 A/ ; k 2 ZC; (33)
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where Z � Po.�/. Now let W be any random variable with values in ZC. Taking
expectations with respect to the law of W on both sides of (33) yields therefore that

dTV.W;Z/ D sup
A�ZC

jE ŒWfA.W/ � �fA.W C 1/	j : (34)

Since, by virtue of (30)–(32),

k fAk1 � 1 ^
r
2

e�
; k�fAk1 � 1 � e��

�
; k�2fAk1 � 2 � 2e��

�
;

we immediately deduce the following statement, allowing one to deal with Poisson
approximations in the total variation distance:

Theorem 6 Let Z � Po.�/, � > 0, and let W be a random variable with values in
ZC. Then,

dTV.W;Z/ � sup
f2�TV

jE ŒWf .W/ � �f .W C 1/	j ; (35)

where

�TV

WD
(

f WZC ! RW k fk1 � 1 ^
r
2

e�
; k�fk1 � 1 � e��

�
; k�2fk1 �2 � 2e��

�

)
:

The power of the bound (35) will be demonstrated in Sect. 7 below and, in much
more detail, in the survey [32].

3 Relevant Elements of Malliavin Calculus on the Poisson
Space

For the rest of the chapter, we shall demonstrate how the previous bounds based on
the Stein’s and Chen–Stein methods can be combined with the Malliavin operators
discussed in [19]. For the convenience of the reader, we shall briefly recall the
relevant definitions and results.

We work within the general framework outlined in [19], namely: .X;X ; �/

is a �-finite measure space, and � is a Poisson random measure on .X;X / with
intensity measure�. To simplify the discussion, for the rest of this survey we assume
that the space .X;X / is such that � is proper, in the sense formally explained in
[19, Sect. 1.1] (see in particular formula (1.6) therein). For p � 1, we denote by Lp

�

the class of those random variables F such that EjFjp < 1 and F D f .�/, P-a.s.,
where f is a representative of F. Recall that f is a measurable function on N� (the
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class of all �-finite measures on .X;X / taking values in ZC [ fC1g)—see [19,
Sect. 1.2] for more details.

The following objects will appear in the subsequent analysis:

– For every n � 1 and every function g 2 L2s .�
n/, the symbol In.g/ denotes the

multiple Wiener–Itô integral of order n, of g with respect to O� D � � �. We also
adopt the usual notational convention: L2s .�

0/ D R, and I0.c/ D c, for every
c 2 R. See [19, Sect. 1.3]. Recall that every F 2 L2� admits a unique chaotic
expansion of the type

F D EŒF	C
1X

nD1
In.gn/; (36)

where gn 2 L2s .�
n/. See [19, Sect. 1.4].

– The Malliavin derivative operator, denoted by D, transforms random variables
into random functions. Formally, the domain of D, written dom D, is the set of
those random variables F 2 L2� admitting a chaotic decomposition (36) such that

1X

nD1
nnŠkgnk2L2.�n/ <1: (37)

If F 2 dom D, then the random function z 7! DzF is defined as

DzF D
1X

nD1
nIn�1 .gn.z; �// ; z 2 X: (38)

By exploiting the isometric properties of multiple integrals, and thanks to (37),
one sees that DF 2 L2 .P˝ �/, for every F 2 dom D. Fix z 2 X. Given a
random variable G 2 L2� with representative v, we define Gz D v.� C ız/ to
be the random variable obtained by adding the Dirac mass ız to the argument of
v. Since the representative v is P-a.s. uniquely defined, the definition of Gz is
P˝�-a.e. independent of the choice of v. The following result is proved in [19,
Theorem 3].

Lemma 4 For every F 2 L2�, one has that F 2 dom D if and only if the mapping
.!; z/ 7! .Fz�F/.!/ is an element of L2.P˝�/. In this case, one has also that,
P-a.s,

DzF D Fz � F; a:e: � �.dz/:

A consequence of this representation of D is that, if F;G 2 dom D are such that
FG 2 dom D, then D.FG/ D FDGC GDF C DGDF.
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– Due to the chaotic representation property (36), every random function u 2
L2 .P˝ �/ admits a (unique up to negligible sets) representation of the type

uz D
1X

nD0
In .gn.z; �// ; z 2 X; (39)

where, for every z, the kernel gn.z; �/ is an element of L2s .�
n/. The domain of

the divergence operator, denoted by dom ı, is defined as the collection of those
u 2 L2 .P˝ �/ such that the chaotic expansion (39) verifies the condition

1X

nD0
.nC 1/Škgnk2L2.�nC1/

<1:

If u 2 dom ı, then the random variable ı.u/ is defined as

ı.u/ D
1X

nD0
InC1 . Qgn/ ;

where Qgn stands for the canonical symmetrization of gn (as a function in n C 1
variables). The following classic result, proved in [19, Theorem 4], provides a
characterization of ı as the adjoint of the derivative operator D.

Lemma 5 (Integration by Parts Formula) For every G 2 dom D and every
u 2 dom ı, one has that

E ŒGı.u/	 D EŒhDG; uiL2.�/	; (40)

where

hDG; uiL2.�/ D
Z

X

DzG � u.z/ �.dz/:

– The domain of the Ornstein–Uhlenbeck generator (see [22, Chap. 1]), written
dom L, is given by those F 2 L2� such that their chaotic expansion (36) verifies

1X

nD1
n2nŠkgnk2L2.�n/ <1:

If F 2 dom L, then the random variable LF is given by

LF D �
1X

nD1
nIn .gn/ :
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Note that E ŒLF	 D 0, by definition. The following result is a direct consequence
of the definitions of D, ı, and L—see also [19, Proposition 3]

Lemma 6 Consider F 2 L2�. Then, F 2 dom L if and only if F 2 dom D and
DF 2 dom ı. In this case,

ıDF D �LF: (41)

– The domain of the pseudo-inverse L�1 of L is the whole space L2�. If F 2 L2� and
F DP1nD0 In .gn/, then

L�1F D �
1X

nD1

1

n
In .gn/ : (42)

Observe that LF D L.F � EŒF	/ and L�1F D L�1.F � EŒF	/; also, F � EŒF	 D
LL�1F. The following elementary result is one of the staples of the analysis to
follow:

Lemma 7 Let G 2 dom D and F 2 L2�. Then,

EŒFG	 D EŒF	EŒG	C EŒhDG;�DL�1FiL2.�/	: (43)

Proof Using (41), one deduces that F D EŒF	C LL�1F D EŒF	C ı.�L�1F/. It
follows that

EŒFG	 D EŒF	EŒG	C EŒGı.�DL�1F/	:

The conclusion is achieved by applying (40) in the case u D �DL�1F. ut
We also recall the following representation: for F 2 L2� as in (36),

L�1F D �
1Z

0

s�1PsF ds; (44)

where

PsF D EŒF	C
1X

nD1
snIn.gn/; s 2 Œ0; 1	:

See [19, Theorem 7].
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4 One-Dimensional Malliavin–Stein Bounds in the Normal
Approximation on the Poisson Space

As in Sect. 3, we work within the general framework of a Poisson measure �
defined on the measurable space .X;X /. We denote by � the �-finite intensity
measure of �. We shall now show how one can combine the one-dimensional
Stein’s method with the operators of Malliavin calculus presented above, in order
to study the normal approximation of random variables of the type F 2 dom D. As
already recalled, the seed of the ideas developed below originated in the paper [27],
which was the first one to combine Stein’s method and Malliavin operators in the
framework of point measures.

4.1 Bounds on the Wasserstein Distance

The following result provides a useful bound on one-dimensional normal approxi-
mations in the Wasserstein distance. It corresponds to the main finding of Peccati et
al. [27], with the difference that here we work without any topological assumptions
on the measure space .X;X / and only assume that� is �-finite (whereas the results
of [27] are stated for � �-finite and non-atomic).

Theorem 7 Let F 2 dom D be such that E ŒF	 D 0, and let N � N .0; 1/. Then,

dW.F;N/ (45)

�
r
2

�
E
hˇ̌
ˇ1 � ˝DF;�DL�1F

˛
L2.�/

ˇ̌
ˇ
i
C
Z

X

E
h
jDzFj2

ˇ̌
DzL
�1F

ˇ̌i
�.dz/

�
r
2

�
E
h

1 � hDF;�DL�1FiL2.�/

�2iC
Z

X

E
h
jDzFj2

ˇ̌
DzL
�1F

ˇ̌i
�.dz/:

Proof Let f be an element of the class of functions FW , as defined in (20). Observe
that, for every a; b 2 R, one has that

jf .a/� f .b/j �
r
2

�
ja � bj; (46)

and also, since there exists a version of f 00 that is bounded by 2,

jf .a/� f .b/� f 0.a/.b � a/j � .b � a/2; (47)
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which is a consequence of the elementary relation

f .b/ D f .a/C f 0.a/.b � a/C
bZ

a

. f 0.y/� f 0.a//dy:

Relation (46) implies that

Z

X

EŒ. f .F/z � f .F//2	�.dz/ D
Z

X

EŒ. f .Fz/� f .F//2	�.dz/

� 2

�

Z

X

EŒ.DzF/
2	�.dz/ <1;

and therefore, according to Lemma 4, f .F/ 2 dom D. Since F is centered, one can
now apply (43) in the case G D f .F/ to deduce that

E ŒFf .F/	 D E
h˝

Df .F/;�DL�1F
˛
L2.�/

i

D E

Z

X

. f .Fz/� f .F//.�DzL
�1F/�.dz/:

Applying (47) in the case a D F and b D Fz yields

ˇ̌
ˇE ŒFf .F/	� E

h
f 0.F/

˝
DF;�DL�1F

˛
L2.�/

iˇ̌
ˇ � E

�˝jDFj2; jDL�1Fj˛� ;

where
˝jDFj2; jDL�1Fj˛ is shorthand for

Z

X

jDzFj2jDzL
�1Fj�.dz/:

Since f 2 FW , and consequently f 0 is bounded by
p
2=� , we deduce that

ˇ̌
E
�
Ff .F/� f 0.F/

�ˇ̌

�
r
2

�
E
hˇ̌
ˇ
˝
DF;�DL�1F

˛
L2.�/
� 1

ˇ̌
ˇ
i
C
Z

X

E
h
jDzFj2

ˇ̌
DzL
�1F

ˇ̌i
�.dz/;

and the first inequality in the statement is immediately deduced from the bound (19).
The second inequality follows from a standard application of the Cauchy–Schwarz
inequality. ut
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Remark 1 Note that, in general, the bounds in Theorem 7 can be infinite. We now
exhibit a first (elementary) example of a random variable in dom D such that these
bounds are finite.

Example 1 Consider a centered Poisson measure O� on X D RC, with intensity
measure equal to the Lebesgue measure `. Then, for every integer k � 1, the random
variable Fk D k�1=2 O� .Œ0; k	/ 2 dom D and DFk D �DL�1Fk D k�1=21Œ0;k	. One
immediately deduces from Theorem 7 that

dW.F;N/ � 1

k1=2
;

which proves the asymptotic normality of the random variables Fk as k ! 1 and
is consistent with the usual Berry–Esseen estimates in the Central Limit Theorem.

4.2 Bounds on the Kolmogorov Distance

When dealing with the Kolmogorov distance in the framework of Poisson func-
tionals, it is usually very difficult to apply the uniform bound (14), since such
a bound does not exploit the fine second order behavior of the Stein solution fz.
Refining an idea first developed by Schulte in [31], Eichelsbacher and Thäle [12]
have obtained the following powerful estimate, whose proof uses the collection of
local inequalities (13). As in the proof of Theorem 7, given two (possibly random)
functions g; h on X, we write hh; gi to indicate the integral

R
X

h.z/g.z/�.dz/,
whenever it is well defined. As before, whenever both h and g are in L2.�/, we
shall adopt the more precise notation hh; giL2.�/.
Theorem 8 Let F be a centered element of dom D, and let N � N .0; 1/. Then,

dK.F;N/ � E
hˇ̌
ˇ1 � ˝DF;�DL�1F

˛
L2.�/

ˇ̌
ˇ
i
C
p
2�

8
E
�˝jDFj2; jDL�1Fj˛�

C1
2
E
�˝jDFj2; jF �DL�1Fj˛� (48)

C sup
z2R

E
h˝
.DF/D1fF > zg; jDL�1Fj˛

L2.�/

i
;

where Da1fF > zg D 1fFa > zg � 1fF > zg, a 2 X.

Remark 2 In view of Lemma 4, P-a.s. one has that

.DaF/Da1fF > zg D .Fa � F/.1fFa > zg � 1fF > zg/ � 0

for �-almost every a in X.
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Remark 3 Let Fk D k�1=2 O� .Œ0; k	/, k � 1, be the collection of random variables
studied in Example 1. Then, it is an easy exercise to show that relation (48) yields
that, for some finite constant C > 0,

dKol.Fk;N/ � C

k1=2
;

which is once again consistent with the usual Berry–Esseen estimates.

Proof (Theorem 8) Fix z 2 R. By using the explicit form of fz (see (10)) together
with Lemma 4, one proves immediately that fz.F/ 2 dom D, and therefore, by
integrating by parts,

E ŒFfz.F/	 D E

Z

X

. fz.Fa/ � fz.F//.�DaL�1F/�.da/: (49)

Using (13) in the case x D F and h D DaF, one sees that, for every a 2 X,

ˇ̌
fz.Fa/� fz.F/�DaFf 0z .F/

ˇ̌

� .DaF/2

2

 
jFj C

p
2�

4

!
C DaFDa1fF > zg:

Plugging this estimate into (49) and taking the supremum over all z 2 R yields the
desired conclusion. ut

If DFjDL�1Fj 2 dom ı and 1fF > zg 2 dom D, for every z 2 R, then integration
by parts yields

0 � E
h˝
.DF/D1fF > zg; jDL�1Fj˛

L2.�/

i

D E
h˝

D1fF > zg;DFjDL�1Fj˛
L2.�/

i

D EŒ1fF > zgı.DFjDL�1Fj/	 � EŒı.DFjDL�1Fj/2	1=2:

As observed in [12, 31] the latter expectation can be controlled by applying standard
moment estimates for Skorohod integrals, as stated in the forthcoming Proposition 2.
See [20, Proposition 2.3] for a proof. See [25] for similar computations in the context
of Gamma approximations.

Proposition 2 Let u 2 dom ı. Then,

EŒı.u/2	 � E

Z

X

u.x/2�.dx/C E

Z

X

Z

X

.Dyu.x//
2�.dx/�.dy/:
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The bounds appearing in this section involve the inverse L�1 of the Ornstein–
Uhlenbeck operator, which is for the moment a quite abstract object one may find
difficult to deal with. In the next section, we will discuss some results allowing to
explicitly assess expectations involving such a mapping.

5 How Can One Deal with L�1?

The aim of this section is to briefly describe and illustrate some strategies that
one can implement, in order to explicitly compute the bounds appearing in the
previous section. As anticipated, one of the main technical difficulties in order to
deal with such bounds as (45) or (48) is the presence of the operator L�1, which is
consequently the main focus of the forthcoming discussion.

5.1 Using Chaotic Expansions

Our first elementary remark is that, in view of formulae (38) and (42), for every
F 2 L2� having a chaotic decomposition of the type (36), the random variable L�1F
is an element of dom D, and one has that

DzL
�1F D

1X

nD1
In.gn.z; �//; z 2 X: (50)

It follows that expectations involving L�1 can be explicitly studied, whenever one
has access to some detailed information about the kernels gn appearing in the
chaotic decomposition of F: typically, such a study starts with an application of
the fundamental formula gn D .nŠ/�1Tnf , where f is a representative of F and the
operators Tn are defined in [19, formula (1.16)] (see [19, Theorem 2]). This strategy
is illustrated in [18, 32] (and the references discussed therein) in the important case
where F is a so-called U-statistic based on �, so that, in particular, F lives in a finite
sum of Wiener chaoses. For an application of this strategy in the case of random
variables having an infinite chaotic expansion, see, e.g., [14].

As an important illustration, in this section we discuss how the bound on the
Wassertein distance (45) can be used in the special case where F D Iq.g/, where
q � 1 and g 2 L2s .�

q/ (bounds in the Kolmogorov distance can be dealt with in
a similar way). Our starting point is the following statement, whose proof follows
immediately from (45) and (50).

Lemma 8 For q � 1, let F be an element of the qth Wiener chaos of �, that is:
F D Iq.g/, for some g 2 L2s .�

q/. Then, if N � N .0; 1/,

dW.F;N/ �
r
2

�
E

ˇ̌
ˇ̌1� 1

q
kDFk2L2.�/

ˇ̌
ˇ̌C 1

q

Z

X

E jDzFj3 �.dz/: (51)
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Combining (51) with the multiplication formula proved in [19, formula (1.67)],
in [27] the following upper bound was obtained. The proof is standard but very
long and quite technical, and consequently falls outside the scope of the present
survey. As shown in [27], the assumption on the support and boundedness of g
can be considerably weakened, at the cost of some additional technical assumption.
Malliavin-Stein bounds!one-dimensional normal approximation!multiple integrals

Theorem 9 (See Theorem 4.2 in [27]) Let F verify the assumptions of Lemma 8
for some q � 2, and assume in addition that the kernel g is bounded and has support
contained in a set of the form A � � � � � A, where A is a measurable set such that
�.A/ < 1. Then, g 2 L4s .�

q/ and, for every pair of integers .r; l/ such that 1 �
r � q and 1 � l � r ^ .q � 1/, the kernel g ?l

r g (as defined in [19, Sect. 1.6]) are
well defined and square-integrable. Moreover, there exists a universal constant C,
uniquely depending on q, such that

dW.F;N/ �
q
1 � qŠkgk2

L2.�q/
C C max

n
kg ?l

r gkL2.�2q�r�l/; kgk2L4.�q/

o
; (52)

where the maximum runs over all pairs .r; l/ such that 1 � r � q and 1 � l �
r ^ .q � 1/.

The estimate (52) should be compared with analogous bounds for multiple
integrals with respect to a Gaussian measure, as discussed, e.g., in [21, Sect. 5.2.2]
and the references therein. An explicit application of (52) is developed in the
subsequent section.

5.2 CLTs for Multiple Integrals: Necessary and Sufficient
Conditions

As a nontrivial application of (52), we now establish two fourth moment theorems
for Poisson multiple integrals of order 2 and 3. The case of order 2 has been dealt
with in [23], where the authors assume different hypotheses than those appearing
in the upcoming statement. The case of order 3 is new. Notice that the question of
whether similar results can be proved for sequences of multiple Poisson integrals of
order � 4 stays open. Other fourth moment theorems for sums of multiple integrals
whose kernels have a constant sign can be found in [15, 16]. As already observed for
Theorem 9, the findings of the present section should be compared with analogous
results on a Gaussian space—where fourth moment theorems hold for multiple
integrals of arbitrary orders and are at the core of countless applications—see, e.g.,
[21, Theorem 5.2.7] and the discussion therein.

Theorem 10 (Fourth Moment Theorem for Double Integrals) Let f fngn�1 be a
sequence in L2s



�2
�

such that, for each n, the kernel fn verifies the same assumptions
as the kernel g in Theorem 9 (for q D 2 and for some measurable set An such that
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�.An/ <1), and also

lim
n!12k fnk2L2.�2/ D 1:

Furthermore, assume that lim
n!1k fnk4L4.�2/ D 0. Then, it holds that, for N �

N .0; 1/,

E
h
I2 . fn/

4
i
�!
n!1 3 D E

�
N4
� H) dW.I2 . fn/ ;N/ �!

n!1 0:

Moreover, if the sequence
n
I2 . fn/

4
o

n�1 is uniformly integrable, then

E
h
I2 . fn/

4
i
�!
n!1 3 D E

�
N4
�” dW.I2 . fn/ ;N/ �!

n!1 0:

Proof First notice that if I2 . fn/ �!
n!1 converges in distribution to N and the

sequence
n
I2 . fn/

4
o

n�1 is uniformly integrable, then necessarily E
h
I2 . fn/

4
i
�!
n!1

E
�
N4
� D 3. Conversely, using the product formula for Poisson multiple integrals

[19, formula (1.67)], we have

I2 . fn/
2 D 2k fnk2L2.�2/ C I4

�
Afn ˝ fn

	
C 4I3

�
Bfn ?

0
1 fn
	

C2I2
�
2Bfn ?

1
1 fn CBfn ?02 fn

	
C 4I1

�
Bfn ?

1
2 fn
	
;

which yields, using the orthogonality of multiple integrals of different orders,

E
h
I2 . fn/

4
i
D 4k fnk4L2.�2/ C 24kAfn ˝ fnk2L2.�2/ C 96k

Bfn ?
0
1 fnk2L2.�3/

C16kBfn ?12 fnk2L2.�/ C 32kBfn ˝1 fn C 1

2
Bfn ?

0
2 fnk2L2.�2/:

As 24kAfn ˝ fnk2L2.�2/ D 8k fnk4L2.�2/ C 16k fn ?11 fnk2L2.�2/ by Formula 11.6.30 in

[24], we finally get

E
h
I2 . fn/

4
i
D 3

�
4k fnk4L2.�2/

	
C 16k fn ?

1
1 fnk2L2.�2/ C 96k

Bfn ?
0
1 fnk2L2.�3/

C16kBfn ?12 fnk2L2.�/ C 32kBfn ?11 fn C 1

2
Bfn ?

0
2 fnk2L2.�2/:
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The fact that E
h
I2 . fn/

4
i
�!
n!1 3 along with the condition 2k fnk2L2.�2/ �!n!1 1

implies that all the contractions appearing in the above expression go to zero as

n goes to infinity. Furthermore, as kBfn ?11 fnk2L2.�2/ � k fn ?11 fnk2L2.�2/, we get that

kBfn ?11 fnk2L2.�2/ �!n!1 0, which in turn implies that kBfn ?02 fnk2L2.�2/ �!n!1 0. Using

the bound provided in (52) concludes the proof. ut
The next statement contains the announced result for triple integrals.

Theorem 11 (Fourth Moment Theorem for Triple Integrals) Let f fngn�1 be a
sequence in L2s .�

3/ \ L4s .�
3/ such that, for each n, the kernel fn verifies the same

assumptions as the kernel g in Theorem 9 (for q D 3 and for some measurable set
An such that �.An/ < 1), and also lim

n!16k fnk2L2.�3/ D 1. Furthermore, assume

that lim
n!1k fk4

L4.�3/
D 0. Then, it holds that, for N � N .0; 1/,

E
h
I3 . fn/

4
i
�!
n!1 3 D E

�
N4
� H) dW.I3 . fn/ ;N/ �!

n!1 0:

Moreover, if the sequence
n
I3 . fn/

4
o

n�1 is uniformly integrable, then

E
h
I3 . fn/

4
i
�!
n!1 3 D E

�
N4
�” dW.I3 . fn/ ;N/ �!

n!1 0:

Proof As before, if I3 . fn/ converges in distribution to N and the sequencen
I3 . fn/

4
o

n�1 is uniformly integrable, then necessarily E
h
I3 . fn/

4
i
�!
n!1 3.

Conversely, using the multiplication formula [19, formula (1.67)] and the
combinatorial relation [24, formula (11.6.30)] as in the proof of Theorem 10,
we get

E
h
I3 . fn/

4
i
D 3

�
36k fk4

L2.�3/

	
C 1296k fn ?

1
1 fnk2L2.�4/ C 1296k fn ?

2
2 fnk2L2.�2/

C9720kBfn ?01 fnk2L2.�5/ C 324k
Bfn ?

2
3 fnk2L2.�/ C 1944k2Bfn ?12 fn CBfn ?03 fnk2L2.�3/

C1944kBfn ?11 fn C 2Bfn ?02 fnk2L2.�4/ C 648k
Bfn ?

2
2 fn CBfn ?13 fnk2L2.�2/ (53)

(note that the above relation can be deduced—as an interesting exercise!—by a
careful use of the multiplication formula). The condition 6k fnk2L2.�2/ �!n!1 1 ensures

that 3

�
36k fk4

L2.�3/

�
�!
n!1 3, hence implying that all the norms appearing in the

expression of the fourth moment converge to zero as n goes to infinity. Furthermore,
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it can be seen that

k fn ˝1 fnk2L2.�4/ Ck
Bfn ?

1
1 fn C 2Bfn ?02 fnk2L2.�4/ �!n!1 0 H) k

Bfn ?
0
2 fnk2L2.�4/ �!n!1 0;

as kBfn ?11 fnk2L2.�4/ � k fn ?11 fnk2L2.�4/.
The same argument yields kBfn ?13 fnk2L2.�2/ �!n!1 0. Observe that fn ?03 fn D f 2n

and hence

kBfn ?03 fnk2L2.�3/ D k fk4
L4.�3/

�!
n!1 0:

Combining this with k2Bfn ?12 fn CBfn ?03 fnk2L2.�3/ �!n!1 0 yields

kBfn ?12 fnk2L2.�3/ �!n!1 0:

Using the bound (52) along with the conclusion that all the norms of the contractions
norms in the fourth moment expression converge to zero as n goes to infinity
concludes the proof. ut

5.3 Mehler’s Formula and Second Order Inequalities

For many random variables F 2 L2� having a chaotic decomposition as in (36)
(especially in the context of stochastic geometry), the task of explicitly computing
the kernels gn D Tnf turns out to be technically very challenging. As a consequence,
it might be preferable to work directly with the integral representation (44),
combined with the Mehler’s formula [19, formula (1.71)], providing an explicit
probabilistic representation of the operators fPtg. This line of research has been
successfully pursued in [20], where Berry–Esseen bounds (in the Kolmogorov
distance) not displaying L�1 have been deduced from (48) via Mehler’s formula.
These estimates are expressed in terms of the following quantities �i, i D 1; : : : ; 6:

�1 WD 2
�Z �

E.Dx1F/
2.Dx2F/

2
�1=2�

E.D2
x1;x3

F/2.D2
x2;x3

F/2
�1=2

�3.d.x1; x2; x3//

�1=2
;

�2 WD
�Z

E.D2
x1;x3F/

2.D2
x2;x3F/

2 �3.d.x1; x2; x3//

�1=2
;

�3 WD
Z

EjDxFj3 �.dx/
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�4 WD 1

2

�
EF4

�1=4
Z �

E.DxF/4
�3=4

�.dx/;

�5 WD
�Z

E.DxF/4 �.dx/

�1=2
;

�6 WD
�Z

6
�
E.Dx1F/

4
�1=2�

E.D2
x1;x2F/

4
�1=2 C 3E.D2

x1;x2F/
4 �2.d.x1; x2//

�1=2
:

The next bound can be seen as an extension, to the Poisson setting, of the second
order Poincaré inequalities on the Gaussian space—see, e.g., [21, Theorem 5.3.3].

Theorem 12 (See [20]) Let F 2 dom D be such that EŒF	 D 0 and VarŒF	 D 1,
and let N be a standard Gaussian random variable. Then,

dK.F;N/ � �1 C �2 C �3 C �4 C �5 C �6:

As explained in [20], the content of Theorem 12 has striking connections with
the theory of stabilization, as initiated in the seminal paper [29]. See again [20]
for several applications to nearest neighbor graph statistics, as well as to intrinsic
volumes of k-faces arising in Voronoi tessellations and to nonlinear functionals of
shot-noise processes.

5.4 A Connection with Logarithmic Sobolev Inequalities

We conclude this section by showing how Mehler’s formula [19, formula (1.71)]
can be used to provide a direct, intrinsic proof, of an important modified logarithmic
Sobolev inequality proved by Wu in [33]. Recall that the entropy of a given random
variable F such that F > 0, a.s.-P, and EF <1 is defined as

Ent.F/ WD E.F log F/� E.F/ logE.F/:

Theorem 13 (Modified Logarithmic Sobolev Inequality—See [33]) Let F 2
dom D be such that F > 0 with probability one. Then, writing ˚.x/ WD x log x,
x > 0,

Ent.F/ D EŒ˚.F/	 �˚.E.F// � E

Z

X



Dz˚.F/� ˚ 0.F/DzF

�
�.dz/: (54)

Proof By a standard approximation argument we can assume that there exist finite
constants �; � such that 0 < � < F < � with probability one. In this way, all
computations appearing below—involving in particular exchanging derivations and
expectations—are formally justified by classical measure-theoretical results. We
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shall use the relation d=dtPtF D �t�1LPtF, as well as the fact that the mapping

.x; y/ 7! y.˚ 0.xC y/ �˚ 0.x//

is convex (see also [6] for a broader analysis of this property). We have

EŒ˚.F/	 � ˚.E.F// D E.˚.P1F/�˚.P0F//

D
1Z

0

E

�
d

dt
˚.PtF/

�
dt D

1Z

0

E

�
˚ 0.PtF/

d

dt
PtF

�
dt

D �
1Z

0

E


˚ 0.PtF/LPtF

�
t�1dt D

1Z

0

E


˚ 0.PtF/ıDPtF

�
t�1dt

D
Z

X

E

2

4
1Z

0

.Dz˚
0.PtF/ � DzPtF/ t�1dt

3

5�.dz/:

Using convexity and Mehler’s formula, together with the relation DPtF D tPtDF,
we deduce that, for all z,

E

2

4
1Z

0

.Dz˚
0.PtF/ � DzPtF/ t�1dt

3

5 �E
2

4
1Z

0

.˚ 0.F C tDzF/� ˚ 0.F// dt � DzF

3

5

DE
2

4

0

@
1Z

0

˚ 0.F C tDzF/dt � ˚ 0.F/

1

A�DzF

3

5 :

Since

1Z

0

˚ 0.F C tDzF/dt D 1

DzF
.˚.F C DzF/�˚.F//;

we deduce the desired conclusion. ut
Several applications of (54) in the context of concentration estimates for Poisson

functionals can be found in [2, 3].
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6 Multidimensional Malliavin–Stein Bounds in the Normal
Approximation on the Poisson Space

As in the previous sections, we continue working within a general Poisson measure
�, on the measurable space .X;X /, with �-finite intensity measure given by �.
We will now discuss some multidimensional extension of the bounds presented in
Sect. 3.

6.1 Bounds Using Stein’s Method

The following bound, that is based on the estimates of Theorem 5, allows one to
deal with normal approximations, in the sense of the distance d2, where the target
Gaussian distribution has a non-singular covariance matrix.

Theorem 14 Fix d � 2 and let ˙ D f�.i; j/ W i; j D 1; : : : ; dg be a d � d positive
definite matrix. Suppose that N � N .0;˙/ and that F D .F1; : : : ;Fd/ is a Rd-
valued random vector such that EŒFi	 D 0 and Fi 2 dom D, i D 1; : : : ; d. Then,

d2.F;N/ � k˙�1kopk˙k1=2op

vuut
dX

i;jD1
EŒ.˙.i; j/ � hDFi;�DL�1FjiL2.�//2	 (55)

C
p
2�

8
k˙�1k3=2op k˙kop

Z

X

E

2

4
 

dX

iD1
jDzFij

!2  dX

iD1
jDzL

�1Fij
!3

5�.dz/: (56)

Proof If either one of the expectations in (55) and (56) is infinite, there is nothing to
prove. We shall therefore work under the assumption that both expressions (55)–(56)
are finite. By the definition of the distance d2, and by using a standard approximation
argument, one sees that it is sufficient to show the following estimate:

jEŒh.X/	� EŒh.F/	j

� Ak˙�1kopk˙k1=2op

vuut
dX

i;jD1
EŒ.˙.i; j/ � hDFi;�DL�1FjiL2.�//2	 (57)

C
p
2�

8
Bk˙�1k3=2op k˙kop

Z

X

E

2

4
 

dX

iD1
jDzFij

!2  dX

iD1
jDzL

�1Fij
!3

5�.dz/;
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for any h 2 C1 with first and second bounded derivatives, such that khkLip � A
and M2.h/ � B. To prove (57), we use Theorem 5 to infer that

jEŒh.X/	� EŒh.F/	j
D jEŒh˙;Hess fh.F/iH:S: � hF;rfh.F/iRd 	j

D
ˇ̌
ˇ̌
ˇ̌E

2

4
dX

i;jD1
˙.i; j/

@2

@xi@xj
fh.F/�

dX

kD1
Fk

@

@xk
fh.F/

3

5

ˇ̌
ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
ˇ̌

dX

i;jD1
E

"
˙.i; j/

@2

@xi@xj
fh.F/

#
C

dX

kD1
E

"
ı.DL�1Fk/

@

@xk
fh.F/

#ˇ̌
ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
ˇ̌

dX

i;jD1
E

"
˙.i; j/

@2

@xi@xj
fh.F/

#
�

dX

kD1
E

2

4
*

D

 
@

@xk
fh.F/

!
;�DL�1Fk

+

L2.�/

3

5

ˇ̌
ˇ̌
ˇ̌ :

We write
@

@xk
fh.F/ WD 'k.F1; : : : ;Fd/ D 'k.F/. By using Lemma 4, we deduce that,

P-a.s. and for every z 2 X (except at most for a set of � measure 0),

Dz'k.F1; : : : ;Fd/ D
dX

iD1

@

@xi
'k.F/.DzFi/C Rk;

with Rk D
dP

i;jD1
Ri;j;k.DzFi;DzFj/, and

jRi;j;k.y1; y2/j �
1

2
sup
x2Rd

ˇ̌
ˇ̌
ˇ
@2

@xi@xj
'k.x/

ˇ̌
ˇ̌
ˇ � jy1y2j:

It follows that

jEŒh.X/	�EŒh.F/	j

D
ˇ̌
ˇ̌
ˇ̌

dX

i;jD1

E

"
˙.i; j/

@2

@xi@xj
fh.F/

#
�

dX

i;kD1

E

"
@2

@xi@xk
. fh.F//hDFi;�DL�1FkiL2.�/

#

C
dX

i;j;kD1

E
�hRi;j;k.DFi;DFj/;�DL�1FkiL2.�/

�
ˇ̌
ˇ̌
ˇ̌

�
q
EŒkHess fh.F/k2H:S:	 �

vuut
dX

i;jD1

E
h

˙.i; j/� hDFi;�DL�1FjiL2.�/

�2iC jR2j;
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where

R2 D
dX

i;j;kD1
EŒhRi;j;k.DFi;DFj/;�DL�1FkiL2.�/	:

Theorem 5 yields that kHess fh.F/kH:S: � k˙�1kop k˙k1=2op khkLip. Using the
elementary fact that all partial derivatives of order 3 of h are bounded by M3.h/,
we have

jRi;j;k.y1; y2/j �
1

2
sup
x2Rd

ˇ̌
ˇ̌
ˇ

@3

@xi@xj@xk
fh.y/

ˇ̌
ˇ̌
ˇ � jy1y2j

�
p
2�

8
M2.h/k˙�1k3=2op k˙kop � jy1y2j

�
p
2�

8
Bk˙�1k3=2op k˙kop � jy1y2j;

from which we deduce the desired conclusion. ut
In the next subsection, we shall show how one can deal with singular covariance

matrices.

6.2 Bounds Obtained by Interpolation

The proof of the next result uses an interpolation technique, sometimes called “smart
path method” that represents a valid alternative to Stein’s method, and allows in
particular to deal with covariance matrices that are degenerate. The price to pay is
the fact that one has to deal with smoother test functions.

Theorem 15 Fix d � 1 and let˙ D f˙.i; j/ W i; j D 1; : : : ; dg be a d�d covariance
matrix (not necessarily positive definite). Suppose that N D .N1; : : : ;Nd/ �
N .0;˙/ and that F D .F1; : : : ;Fd/ is a Rd-valued random vector such that
EŒFi	 D 0 and Fi 2 dom D, i D 1; : : : ; d. Then,

d3.F;X/ �
d

2

vuut
dX

i;jD1
EŒ.˙.i; j/ � hDFi;�DL�1FjiL2.�//2	 (58)

C1
4

Z

X

E

2

4
 

dX

iD1
jDzFij

!2  dX

iD1
jDzL

�1Fij
!3

5�.dz/: (59)
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Proof We will work under the assumption that both expectations in (58) and (59)
are finite. By the definition of the distance d3, we need only to show the following
estimate:

jEŒ'.X/	 �EŒ'.F/	j � 1

2

dX

i;jD1
EŒj˙.i; j/ � hDFi;�DL�1FjiL2.�/j	

C1
4

Z

X

E

2

4
 

dX

iD1
jDzFij

!2  dX

iD1
jDzL

�1Fij
!3

5�.dz/

for any ' 2 C 3 with second and third derivatives bounded by 1. Without loss of
generality, we may assume that F and N are independent. For t 2 Œ0; 1	, we set

�.t/ D EŒ'.
p
1 � t.F1; : : : ;Fd/C

p
tN/	:

We have immediately

j�.1/� �.0/j � sup
t2.0;1/

j� 0.t/j:

Indeed, due to the assumptions on ', the function t 7! �.t/ is differentiable on
.0; 1/, and one has also

� 0.t/ D
dX

iD1
E

"
@

@xi
'
�p

1 � t.F1; : : : ;Fd/C
p

tN
	 1

2
p

t
Ni �

1

2
p
1 � t

Fi

!#

WD 1

2
p

t
A � 1

2
p
1 � t

B:

On the one hand, we have (by integration by parts)

A D
dX

iD1
E

"
@

@xi
'.
p
1 � t.F1; : : : ;Fd/C

p
tN/Ni

#

D
dX

iD1
E

2

4E
"
@

@xi
'.
p
1 � taCptN/Ni

#

jaD.F1;:::;Fd/

3

5

D pt
dX

i;jD1
˙.i; j/E

2

4E
"

@2

@xi@xj
'.
p
1 � taCptN/

#

jaD.F1;:::;Fd/

3

5

D pt
dX

i;jD1
˙.i; j/E

"
@2

@xi@xj
'.
p
1 � t.F1; : : : ;Fd/C

p
tN/

#
:
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On the other hand,

B D
dX

iD1
E

"
@

@xi
'.
p
1 � t.F1; : : : ;Fd/C

p
tN/Fi

#

D
dX

iD1
E

2

4E
"
@

@xi
'.
p
1 � t.F1; : : : ;Fd/C

p
tb/Fi

#

jbDN

3

5 :

We now write ' t;b
i .�/ to indicate the function on Rd defined by

'
t;b
i .F1; : : : ;Fd/ D

@

@xi
'.
p
1 � t.F1; : : : ;Fd/C

p
tb/:

Integrating by parts

EŒ'
t;b
i .F1; : : : ;Fd/Fi	

D E

2

4
dX

jD1

@

@xj
'

t;b
i .F1; : : : ;Fd/hDFj;�DL�1FiiL2.�/

3

5C E
�hRi

b;�DL�1Fii
�
;

where Ri
b is a residue verifying

jEŒhRi
b;�DL�1Fii	j (60)

� 1

2

 
max

k;l
sup
x2Rd

ˇ̌
ˇ̌ @

@xk@xl
'

t;b
i .x/

ˇ̌
ˇ̌
! Z

X

E

2

64

0

@
dX

jD1
jDzFjj

1

A
2

jDzL
�1Fij

3

75�.dz/:

Thus,

B D p1 � t
dX

i;jD1
E

2

4E
"

@2

@xi@xj
'.
p
1 � t.F1; : : : ;Fd/C

p
tb/hDFi;�DL�1FjiL2.�/

#

jbDX

3

5

C
dX

iD1
E

�
E
h
hRi

b;�DL�1FiiL2.�/
i

jbDN

�

D p1 � t
dX

i;jD1
E

"
@2

@xi@xj
'.
p
1 � t.F1; : : : ;Fd/C

p
tN/hDFi;�DL�1FjiL2.�/

#

C
dX

iD1
E

�
E
h
hRi

b;�DL�1Fii
i

jbDN

�
:
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Putting the estimates on A and B together, we infer

� 0.t/

D 1

2

dX

i;jD1

E

"
@2

@xi@xj
'.
p
1 � t.F1; : : : ;Fd/C

p
tX/.˙.i; j/ � hDFi;�DL�1FjiL2.�//

#

� 1

2
p
1 � t

dX

iD1

E
h
E
�hRi

b;�DL�1FiiL2.�/
�

jbDX

i
:

We notice that
ˇ̌
ˇ̌
ˇ
@2

@xi@xj
'.
p
1� t.F1; : : : ;Fd/C

p
tb/

ˇ̌
ˇ̌
ˇ � 1;

and also
ˇ̌
ˇ̌
ˇ
@2

@xk@xl
'

t;b
i .F1; : : : ;Fd/

ˇ̌
ˇ̌
ˇ D .1 � t/ �

ˇ̌
ˇ̌
ˇ

@3

@xi@xk@xl
'.
p
1 � t.F1; : : : ;Fd/C

p
tb/

ˇ̌
ˇ̌
ˇ

� .1 � t/:

To conclude, we can apply inequality (60) and deduce the estimates

jEŒ'.N/	 �EŒ'.F/	j
� sup

t2.0;1/
j� 0.t/j

� 1

2

dX

i;jD1
EŒj˙.i; j/ � hDFi;�DL�1FjiL2.�/j	

C 1 � t

4
p
1 � t
k' 000k1

Z

X

E

2

4
 

dX

iD1
jDzFij

!2  dX

iD1
jDzL

�1Fij
!3

5�.dz/

� d

2

vuut
dX

i;jD1
EŒ.˙.i; j/ � hDFi;�DL�1FjiL2.�//2	

C1
4

Z

X

E

2

4
 

dX

iD1
jDzFij

!2  dX

iD1
jDzL

�1Fij
!3

5�.dz/;

thus concluding the proof. ut
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7 Poisson Approximation on the Poisson Space

As before, the framework of this section is the one of a general Poisson measure �
on the measurable space .X;X /, with �-finite intensity measure given by �. The
aim of this section is to discuss the combination of the Chen–Stein method (see
Sect. 2.4) and the Malliavin calculus of variations (see Sect. 3 and [19]) in order to
study Poisson approximations for functionals of �, both in the one-dimensional case
(Sect. 7.1) and the multidimensional case (Sect. 7.2).
The main achievement in the one-dimensional case is a general inequality on the
Poisson space (see Theorem 16) assessing the distance in total variation between
the law of a Poisson random variable and the law of a (sufficiently regular) integer-
valued Poisson functional. The multidimensional case is treated as part of a wider
result allowing one to assess the distance (in a certain sense) between the law of
vector of functionals of � and the law of a vector composed by Poisson and Gaussian
elements. A strong motivation for this set of results comes from applications in
stochastic geometry (as illustrated by Lachièze-Rey and Reitzner [18] and Schulte
and Thäle [32]).

7.1 One-Dimensional Chen–Stein–Malliavin Method

Based on the Chen–Stein bounds discussed in Sect. 2.4.1, the following result
provides a general inequality (in terms of Malliavin operators) assessing the distance
(in total variation) between the law of a Poisson random variable and the law of an
integer-valued functional of �.

Theorem 16 Let Z � Po.�/, � > 0 and assume that F 2 L2.P/ is an element of
dom D such that E.F/ D � and F takes values in ZC. Then,

dTV.F;Z/ � 1 � e��

�
E
ˇ̌
� � hDF;�DL�1FiL2.�/

ˇ̌

C1 � e��

�
E

2

4
Z

X

ˇ̌
DzF .DzF � 1/DzL

�1F
ˇ̌
�.dz/

3

5 (61)

� 1 � e��

�

r
E
h

� � hDF;�DL�1FiL2.�/

�2i

C1 � e��

�
E

2

4
Z

X

ˇ̌
DzF .DzF � 1/DzL

�1F
ˇ̌
�.dz/

3

5 : (62)
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If F D �.A/, where �.A/ D �, then one has that DzF D �DzL�1F D 1A.z/, and

� � hDF;�DL�1FiL2.�/ D
Z

X

ˇ̌
DzF .DzF � 1/DzL

�1F
ˇ̌
�.dz/ D 0:

Proof Let the notation of Sect. 2.4.1 prevail. Using the Chen–Stein bound (35) of
Theorem 6 and recalling the relation ıD D �L, one infers that for all f 2 �TV, it
holds that

EŒFf .F/� �f .F C 1/	 D EŒ.F � �/f .F/� ��f .F/	

D EŒı.�DL�1F/f .F/� ��f .F/	:

Integrating by parts yields

EŒı.�DL�1F/f .F/	 D EŒhDf .F/;�DL�1FiL2.�/	;

where, by virtue of Lemma 4, Dzf .F/ D f .FCDzF/� f .F/. Observe that Lemma 4
implies that, since F takes values in ZC, then one can always choose a version
of DzF with values in Z, in such a way that F C DzF D Fz takes values in ZC.
Furthermore, observe that for every f W ZC ! R and every k; a 2 ZC such that
k > a, one has that

f .k/ D f .a/C�f .a/.k � a/C
k�1X

jDa

�2f . j/.k � 1 � j/I

on the other hand, when k; a 2 ZC are such that k < a,

f .k/ D f .a/C�f .a/.k � a/C
a�1X

jDk

�2f . j/. jC 1 � k/:

These two relations yield that, for every k; a 2 ZC,

j f .k/ � f .a/��f .a/.k � a/j � k�
2fk1
2

j.k � a/.k � a � 1/j :

Taking a D F and k D Fz, one therefore deduces that

Dz f .F/ D �f .F/DzF C Rz;

where Rz is a residual random function verifying

jRzj � k�
2fk1
2

jDzF .DzF � 1/j ; z 2 Z:
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As a consequence,

EŒhDf .F/;�DL�1FiL2.�/ � ��f .F/	

D E
�
�f .F/.hDF;�DL�1FiL2.�/ � �/

� � E

Z

X

.Rz � DzL
�1F/ �.dz/;

and the desired conclusion follows by taking absolute values on both sides, as well
as by applying the estimates available on k�fk1 and k�2fk1. Inequality (62)
follows from the Cauchy–Schwarz inequality. ut
The following statement is a consequence of Theorem 16.

Proposition 3 Let Z � Po.�/, � > 0 and let fFn W n � 1g � dom D be a sequence
of random variables with values in ZC such that EŒFn	 ! �, as n ! 1. Assume
that, as n!1,

1. E
ˇ̌
� � hDFn;�DL�1FniL2.�/

ˇ̌! 0, and

2. E

�R

X

ˇ̌
DzFn .DzFn � 1/DzL�1Fn

ˇ̌
�.dz/

�
! 0.

Then, dTV.Fn;Z/ !
n!1 0 and Fn converges in distribution to Z.

Note that in Proposition 3 we do not assume that EŒFn	 D �, for every n. In order
to apply Theorem 16, one has therefore to use the triangle inequality to write

dTV.Fn;Z/ � dTV.Fn;Zn/C dTV.Zn;Z/

where Zn has a Poisson distribution with mean �n WD EŒFn	, and then use the
classical fact that dTV.Zn;Z/ � j� � �nj. The effectiveness of Proposition 3
compared to more classical existing methods to prove convergence in law towards
a Poisson distribution lies in the fact that it only involves two sequences of
mathematical expectations. The so-called method of moments (as the Poisson
distribution is determined by its moments, it follows that, in order to prove that
a given sequence fFng converges in distribution to Po.�/, it is sufficient to prove
that EŒFk

n	 converges to EŒPo.�/k	, for every integer k � 1) is extremely demanding
(and very little used) in the framework of Poisson measures. This is mainly due to
the fact that the combinatorial structures involved in the so-called diagram formulae
(that are mnemonic devices used to compute moments by means of combinatorial
enumerations—see [24, Chap. 4]) become quickly too complex to be effectively put
into use. When compared to the method of moments, the simplicity of Proposition 3
provides a powerful alternative to computing the moments of all orders of the
sequence under consideration.
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7.2 Portmanteau Inequalities on the Poisson Space

This section is aimed at presenting recent portmanteau inequalities on the Poisson
space proved in [5, Theorem 2.1], involving vectors of random variables that
are functionals of � (the term Portmanteau is used to indicate the encompassing
of several results of different nature into one statement). This estimate—which
is formally stated in formula (67) below—is expressed in terms of Malliavin
operators, and basically allows one to measure the distance between the laws of
a general random element and of a random vector whose components are in part
Gaussian and in part Poisson random variables. The inequality (67) is a genuine
“portmanteau statement”—in the sense that it can be used to directly deduce a
number of disparate results about the convergence of random variables defined on a
Poisson space (such as a multi-dimensional version of Theorem 16 but also assess
convergence to Poisson–Gaussian limits), as well as to recover known ones (such as
Theorems 7, 14–16). These results span a wide spectrum of asymptotic behaviors
that are dealt with in a completely unified way in these Portmanteau inequalities.
Apart from Malliavin calculus, one of the main technical tools in the proof of these
inequalities is an interpolation technique used in [1] for proving multidimensional
Poisson results.
Before giving a statement of the Portmanteau inequalities, it is necessary to
introduce some additional notation. Fix two integers d;m. Observe that, in the
discussion to follow, one can take either d or m to be zero, and in this case every
expression involving such an index is set equal to zero by convention. The main
objects appearing in the upcoming statement of the Portmanteau inequalities are:

– A metric d01 between the laws of two Z
dC � R-valued random vectors X and Y

such that EkXk
Z

d
C
�R, EkYk

Z
d
C
�R <1, is given by

d01.X;Y/ D sup
h2H0

1

jE.h.X//� E.h.Y//j;

where H0
1 indicates the collection of all functions

 W ZdC �R 7! R W . j1; : : : ; jdI x/ 7!  . j1; : : : ; jdI x/

such that  is bounded by 1 and, for all j1; : : : ; jd, the mapping x 7!
 . j1; : : : ; jdI x/ is in Lip.1/.

– A metric d02 between the laws of two Z
dC �Rm—valued random vectors X and Y

such that EkXk
Z

d
C
�Rm , EkYk

Z
d
C
�Rm <1, is given by

d02.X;Y/ D sup
h2H0

2

jE.h.X//� E.h.Y//j;
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where H0
2 indicates the collection of all functions

 W ZdC �Rm 7! R W . j1; : : : ; jdI x1; : : : ; xm/ 7!  . j1; : : : ; jdI x1; : : : ; xm/

such that j j is bounded by 1 and for all j1; : : : ; jd, the mapping .x1; : : : ; xm/ 7!
 . j1; : : : ; jdI x1; : : : ; xm/ is bounded and admits continuous bounded partial
derivatives up to the order three with kgkLip � 1, kg00k1 � 1 and kg000k1 � 1.

– A vector � D .�1; : : : ; �d/ of strictly positive real numbers, as well as a random
vector Z D .Z1; : : : ;Zd/ � Pod.�1; : : : ; �d/, that is, the elements of Z are
independent and such that Zi has a Poisson distribution with parameter �i, for
every i D 1; : : : ; d.

– A m � m covariance matrix ˙ D f˙.i; j/W i; j D 1; : : : ;mg, and a vector
N D .N1; : : : ;Nm/ � N .0;˙/, that is, N is a m-dimensional centered Gaussian
vector with covariance matrix˙ .

– A vector H defined as the .d C m/-dimensional random element H D .Z;N/. It
is assumed that Z is independent of N and that H is independent of �.

– A vector F D .F1; : : : ;Fd/ of random variables with values in ZC such that, for
every i D 1; : : : ; d, Fi 2 dom D and E ŒFi	 D �i.

– A vector G D .G1; : : : ;Gm/ of centered elements of dom D.
– A vector V defined as the .d C m/-dimensional random element V D .F;G/.

Note that, by definition, V is �.�/-measurable.

Note that the two metrics d01 and d02 induce a topology, on the class of probability
distributions, respectively, on Z

dC � R and Z
dC � Rm, that is stronger than the

topology of weak convergence. The following quantities used in the statement of
the Portmanteau inequalities are defined in terms of Malliavin operators and play a
specific role in the quantification of the distance separating the laws of the vector
V and H. After the definition of each quantity of interest, an interpretation of what
they measure is provided

˛1.�;F/ WD
dX

iD1
E

ˇ̌
ˇ�i �

˝
DFi;�DL�1Fi

˛
L2.�/

ˇ̌
ˇ

C
dX

iD1
E

Z

X

ˇ̌
DzFi .DzFi � 1/DzL

�1Fi

ˇ̌
�.dz/: (63)

The quantity ˛1.�d;F/ has the form
Pd

iD1 ai where each ai measures the distance
between the laws of Fi and Zi. Note that each ai is the term appearing in the general
bound of Theorem 16, applied to Fi.

˛2.F/ WD
X

1�i¤j�d

E

ˇ̌
ˇ
˝
DFi;�DL�1Fj

˛
L2.�/

ˇ̌
ˇ (64)
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C
X

1�i¤j�d

E

Z

X

ˇ̌
DzFj



DzFj � 1

�
DzL
�1Fi

ˇ̌
�.dz/

C
X

1�j¤k�d

dX

iD1
E

Z

X

ˇ̌
DzFjDzFkDzL

�1Fi

ˇ̌
�.dz/:

The quantity ˛2.F/ measures the independence between the elements of F. This
quantity is clearly specific to the multidimensional case and does not have any one-
dimensional equivalent. Note that it vanishes if one takes d to be one.

�.˙;G/ WD
mX

k;jD1
E

ˇ̌
ˇ˙. j; k/ � ˝DGj;�DL�1Gk

˛
L2.�/

ˇ̌
ˇ

CE
Z

X

0

@
mX

jD1

ˇ̌
DzGj

ˇ̌
1

A
20

@
mX

jD1

ˇ̌
DzL
�1Gj

ˇ̌
1

A�.dz/: (65)

The quantity �.˙;G/measures the distance between the laws of G and N, and plays
the same role as the bounds appearing in Theorems 14 and 15.

ˇ.F;G/ WD
dX

iD1

mX

jD1
E
˝jDL�1Gjj; jDFij

˛
L2.�/

: (66)

The quantity ˇ.F;G/ provides an estimate of how independent F and G are by
quantifying the degree of independence between their elements. This quantity is
clearly specific to the multidimensional case and does not have any one-dimensional
equivalent. Note that it vanishes if one takes d D 1;m D 0 or d D 0;m D 1. A
further connection between the quantity ˇ.F;G/ and the “degree of independence”
of F and G (the same can be said about ˛2.F/ and the degree of dependence of the
elements of F) can be obtained by combining the integration by parts formula of
Lemma 5 with the standard relation L D �ıD, yielding that, for every j D 1; : : : ;m
and i D 1; : : : ; d,

E
h˝

DGj;�DL�1Fi
˛
L2.�/

i
D E

h˝�DL�1Gj;DFi
˛
L2.�/

i
D Cov.Gj;Fi/:

The fact that the dependence structure of the elements of the vector V can be
assessed by means of a small number of parameters is a remarkable consequence
of the use of the Stein and Chen–Stein methods, as well as of the integration by
parts formulae of Malliavin calculus. In general, characterizing independence on
the Poisson space is a very delicate (and mostly open) issue.
The following theorem states the Portmanteau inequalities.
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Theorem 17 Let the above assumptions and notation prevail. Then, for every d;m
there exists an adequate distance d?.�; �/, as well as a universal constant K (solely
depending on � and˙), such that

d?.H;V/ � K f˛1.�;F/C ˛2.F/C �.˙;G/C ˇ.F;G/g ; (67)

where d? D d01 if d � 0;m D 1, d? D d02 if d � 0;m � 2 and d? D dTV if
d � 1;m D 0. Furthermore, the distances d01 and d02 provide a stronger topology
than the one of convergence in distribution on RdCm.

The remarkable fact pointed out in the statement of this theorem is that the above
introduced coefficients can be linearly combined in order to measure the overall
proximity of the laws of H and V .

Proof Due to its high technicality and length, we only give the key ideas of the proof
of Theorem 17. For the complete details of the proof, see [5, Proof of Theorem 3.1].
Even though the statement is multidimensional, an interpolation technique is used
in order to deal with each component of the vector V one-dimensionally. Let  be
a function belonging to the class of functions associated with the three distances
appearing in the statement. The main goal is to bound a quantity of the type
jE . .F;G//� E . .Z;N//j with the bound (67). We can assess such a quantity
in the following way:

jE . .F;G// �E . .Z;N// j � jE . .F;G//� E . .F;N// j
CjE . .F;N//�E . .Z;N// j:

The first step will be to deal with E . .F;N// � E . .Z;N// and the second step
will be to assess E . .F;G//� E . .F;N//.
We give the general method used to deal with those two steps. For Step 1, the term
E . .F;N// �E . .Z;N// can be decomposed further in the following way:

E Œ .F;N/�  .Z;N/	 D
dX

kD1
E
�
 


Z.1;k�1/;F.k;d/;N

� �  
Z.1;k/;F.kC1;d/;N
��
:

Each term appearing in the sum can be assessed independently by using the
one-dimensional Chen–Stein method, providing a recursive way of using a one-
dimensional method to prove a multidimensional result.
Step 2 is slightly more delicate, as one has to take into account the dependence
between F and G. The case m D 1 is quite direct using Taylor expansions and the
case m D 2 relies on an interpolation technique inspired by Arratia et al. [1]. ut
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U-Statistics in Stochastic Geometry

Raphaël Lachièze-Rey and Matthias Reitzner

Abstract A U-statistic of order k with kernel f W Xk ! Rd over a Poisson process
� is defined as

X

.x1;:::;xk/

f .x1; : : : ; xk/;

where the summation is over k-tuples of distinct points of �, under appropriate
integrability assumptions on f . U-statistics play an important role in stochastic
geometry since many interesting functionals can be written as U-statistics, like
intrinsic volumes of intersection processes, characteristics of random geometric
graphs, volumes of random simplices, and many others. It turns out that the Wiener–
Ito chaos expansion of a U-statistic is finite and thus Malliavin calculus is a
particularly suitable method. Variance estimates, approximation of the covariance
structure, and limit theorems which have been out of reach for many years can
be derived. In this chapter we state the fundamental properties of U-statistics and
investigate moment formulae. The main object of the chapter is to introduce the
available limit theorems.

1 U-Statistics and Decompositions

1.1 Definition

Let .X;X/ be a Polish space, k � 1, and f W Xk ! R be a measurable function. The
U-statistic of order k with kernel f over a point set � 2 N.X/ is 0 if � has strictly
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less than k points and the formal sum

U. f ; �/ D
X

xk2�k
¤

f .xk/

otherwise, where �k
¤ is the class of k-tuples xk D .x1; : : : ; xk/ of distinct points from

�; we recall that N.X/ stands for the class of all locally finite counting measures on
.X;X/. Remark that, since the sum is over all such k-tuples, f can be assumed to be
symmetric without loss of generality.

An abundant literature deals with the asymptotic study of the random variable
U. f ; Q�p/ as p !1 when Q�p is a binomial process of intensity p, i.e., a set of p iid
variables over X. Here we are concerned with a Poisson process � over X which
intensity measure is a non-atomic locally finite measure � on X. If f 2 L1s .�

k/ D
L1s .X

kI�k/, the expectationEU.j f j; �/ is finite a.s, whence the definition of U. f ; �/
makes sense. We want to point out that f depends on � only via the k-tuples �k

¤ but
may depend on parameters like the dimension of the space, the intensity measure �
of �, etc.

The Poisson point process can equivalently be introduced as the random measure
� D P

x2� ıx, since � is assumed to have no atoms. Below we rather adopt the
vision of point processes as random point sets, as it eases certain formulations and
highlights the geometric point of view in the applications.

1.2 Chaotic Decomposition and Multiple Wiener–Itô Integrals

Recall that In.�/ is the n-th order multiple Wiener–Itô integral over � defined in
[20, Sect. 1.3], and that, by virtue of [20, Theorem 2], every L2.P�/ functional
of � admits a Wiener–Itô decomposition, i.e., a representation as an infinite series
of orthogonal multiple Wiener–Itô integrals. The decomposition of a Poisson
U-statistic is finite and has been computed in [27, Lemma 3.3].

Theorem 1 Let f 2 L1s .�
k/ such that U. f ; �/ 2 L2.P�/ . We have the L2.P�/-

decomposition

U. f ; �/ D
kX

nD0
In.hn/; (1)

where

hn.xn/ D
 

n

k

!Z

Xn

f .xn; xk�n/�
k�n.dxk�n/I xn 2 Xn: (2)
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Furthermore, hn is a function of L1s .�
n/\ L2s .�

n/.

Remark 1 Somewhat counterintuitively, f 2 L1s .�
k/ \ L2s .�

k/ does not imply that
EU. f ; �/2 < 1 (see [27]), but in most examples f is bounded and has a bounded
support, which makes the latter condition automatically satisfied.

As is apparent from Theorem 1, each U-statistic of order k is a finite sum of
multiple Wiener–Itô integrals of order n � k, and it is not difficult to prove that
conversely any multiple Wiener–Itô integral of order n � 1 can be written as a finite
sum of U-statistics whose orders are smaller or equal to n. From a formal point of
view, it is therefore equivalent to study the asymptotics of finite sums of U-statistics
or of finite sums of multiple Wiener–Itô integrals. U-statistics are more likely to
appear in applications, but the homogeneity of multiple Wiener–Itô integrals makes
them easier to deal with, and some of the Malliavin operators take a particularly
intuitive form. Consider for instance the case where F D Ik. f / is a multiple Wiener–
Itô integral of order k � 1, and f 2 L2.�k/. The Malliavin derivative in x 2 X,
Ornstein–Uhlenbeck operator, and inverse Ornstein–Uhlenbeck operator, defined in
[20, Sect. 1.5], are well defined for �-a.e. x and take the following elementary form

DxF D kIk�1. f .x; �//; x 2 X; LF D �kIk. f /; L�1F D �k�1Ik. f /: (3)

For a U-statistic F, one can still derive DxF;LF;L�1F using the linearity of these
operators and the decomposition (1).

The object of this section is the study of sums of multiple Wiener–Itô integrals
whose orders are bounded by some k � 1. The chaotic decomposition also yields
that any L2.P�/ variable can be approximated by such a sum, allowing us in some
cases to pass on limit theorems stated here to infinite sums. The following result
gives the first two moments of U-statistics.

Proposition 1 Let f 2 L1s .�
k/. Then EjU. f ; �/j <1 and

EU. f ; �/ D
Z

Xk

f .xk/ �
k.dxk/: (4)

If furthermore U. f ; �/ 2 L2.P�/,

Var.U. f ; �// D
kX

nD1
nŠkhnk2 (5)

where hn is given in Theorem 1 and k � k denotes the usual L2.�n/-norm.

Proof The first statement is a direct consequence of the multivariate Mecke
equation, while the second stems from the orthogonality between multiple Wiener–
Itô integrals In.hn/; 0 � n � k, see [20, Lemma 4]. ut



232 R. Lachièze-Rey and M. Reitzner

1.3 Hoeffding Decomposition

Assume that � is a probability distribution. Let p � 1; Q�p D fX1; : : : ;Xpg be a
family of i.i.d. variables with common distribution � on X. Given a measurable
kernel h over Xk; k � 1, the traditional Hoeffding decomposition (see, e.g., Vitale
[33]) is written

U.h; Q�p/ D kŠ

 
p

k

!
�

p
k .h/ D kŠ

 
p

k

!
kX

mD0

 
k

m

!
�p

m.Hm/;

where

�p
m.Hm/ D 1
p

m

�
X

1�i1<i2<���<im�p

Hm.Xi1 ; : : : ;Xim/; 0 � m � k;

and each kernel Hm is symmetric and completely degenerate, i.e.,

EHm.x1; : : : ; xm�1;Xm/ D
Z

X

Hm.x1; : : : ; xm�1; y/�.dy/ D 0

for �.m�1/-a.e. x1; : : : ; xm�1. This property implies in particular the orthogonality
of the �p

m.Hm/, 1 � n � k. If � is a probability measure, the Hm are uniquely
determined and can be expressed explicitly via an inclusion–exclusion formula

Hm.x1; : : : ; xm/ D
mX

nD0
.�1/m�n

X

1�i1<���<in�m

 
k

n

!�1
hn.xi1 ; : : : ; xin/; (6)

where hn is defined in (2). As is clear in this last formula, this decomposition is
different from (1) because in the latter, the integration is performed with respect to
the compensated measure � � �, while in �p

m.Hm/ the compensation occurs in the
kernel Hm.

The Hoeffding rank m1 is defined as the smallest index m such that kHmk ¤ 0,
and we can see through (6) that it is equal to the smallest index n such that khnk ¤ 0.

We furthermore have Hm1 D

 k

m1

��1
hm1 . As proved in [8] for binomial processes or

[19] for Poisson processes, the stochastic integral of order m1 dominates the sum in
certain asymptotic regimes, and limit theorems for geometric U-statistics can then
be derived by studying this term, see Sect. 2.1.2.
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1.4 Contraction Operators

Let f 2 L2s .�
q/; g 2 L2s .�

k/. Let 0 � l � r � min.q; k/. The contraction kernel
of f and g of index .r; l/, denoted f ?l

r g is a function of k C q � r � l arguments,
decomposed in .xr�l; yq�r; zk�r/, where xr�l 2 Xr�l; yq�r 2 Xq�r , and zk�r 2
Xk�r. It is properly defined �kCq�r�l-a.e. by

f ?l
r g.xr�l; yq�r; zk�r/ WD

Z
f .xl; xr�l; yq�r/g.xl; xr�l; zk�r/ �

l.dxl/:

Contraction operators are used below to assess the distance between a multiple
Wiener–Itô integral and the normal law. For conditions ensuring that the contraction
functions are well defined everywhere and twice integrable, see for instance [22].

2 Rates of Convergence

Let F 2 L2.P�/ be a random variable of the form

F D
kX

nD0
In.hn/ (7)

with kernels hn 2 L2s .�
n/; n � 1. This model encompasses U-statistics, as outlined

by Theorem 1, as well as finite sums of U-statistics and multiple Wiener–Itô
integrals.

In applied situations, the set-up consists of a fixed integer k � 1, a family of
measures �t; t > 0 on X, and a family of kernels hn;t 2 L2s .�

n
t /, 1 � n � k, t > 0.

We study the random variables

Ft WD
kX

nD0
In.hn;t/; t > 0; (8)

where the stochastic integration is performed with respect to �n
t . Our limit theorems

are about the existence of families .at/t>0; .bt/t>0; and of a random variable V
such that

QFt WD Ft � atp
bt
! V
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as t!1 in the weak topology. If not stated otherwise, we consider at D EFt; bt D
Var.Ft/. In the applications we consider in this chapter, �t is either of the form

• �t D t� for some reference measure � on the space X, or
• �t D 1Xt� where Xt � X depends on t.

The following two settings occur in the most important applications.
If � D �t is a Poisson point process on X D Rd, the measure � will often be the

Lebesgue measure `d, or, for X D Rd � M, a product measure � D `d ˝ 
 with
a probability measure 
 on a topological marks space .M;M /. See Sect. 2.1.1 for
more on marked U-statistics.

If � D �t is a Poisson ‘flat’ process on the Grassmannian X D A.d; i/ of affine
i-dimensional subspaces (flats) of Rd, the intensity measure�.�/will be a translation
invariant measure on A.d; i/. The Poisson flat process is only observed in a compact
convex window W � Rd with interior points. Thus, we can view �t as a Poisson
process on the set ŒW	 defined by

ŒW	 D fh 2 A.d; i/ W h \W ¤ ;g :

2.1 Central Limit Theorems

Let F be of the form (7) satisfying EF D h0 D 0. Let N � N .0; 1/, �2 D
Var.F/. The next result gives bounds on the distance between F and N in terms of
the contractions between the kernels of F. The result in the Wasserstein distance has
been established in [18], and the one in Kolmogorov distance in [9].

Theorem 2 Put

B.F/ D max

�
max
1
khn ?

l
r hmk; max

nD1;:::;k khnk2L4.�n/

�

B0.F/ D max.j1 � �2j;B.F/;B.F/3=2/

where max1 is over 1 � l � r � n � m � k with l ¤ m. There exists a constant
Ck > 0 not depending on the kernels of F such that

dW.F;N/ � ��1CkB.F/ (9)

dK.F;N/ � CkB0.F/: (10)

We reproduce here the important steps of the proof for the Wasserstein bound.
The main result, due to Peccati et al. [22], is a general inequality on the Wasserstein
distance between a Poisson functional F with expectation EF D 0 and variance
�2 > 0 and the normal law. The fact that F has a finite chaos expansion and that its
kernels are twice integrable yields that the operators DxF;LF;L�1F are well defined
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for �-a.e. x. We have

dW.F;N/ � 1

�

q
EŒ.�2 � hDxF;�DxL�1FiL2.�//2	 (11)

C 1

�2

Z

X

EŒ.DxF/2jDxL�1Fj	�.dx/:

See the surveys [20] and [4] (in this volume) for a proof and more insights on
this result. To translate these inequalities into bounds on the contraction norms,
we use the multiplication formula from [22], see also [20], which yields that the
multiplication of multiple Wiener–Itô integrals is a linear combination again of
multiple Wiener–Itô integrals. For k; q � 1; f 2 L2s .�

q/; g 2 L2s .�
k/,

Iq. f /Ik.g/ D
q_kX

rD0
rŠ

 
q

r

! 
k

r

!
rX

lD0

 
r

l

!
IqCp�r�l. f Q?l

rg/; (12)

where the symmetrized contraction kernels f Q?l
rg are the average of kernels f ?l

r g
over all possible permutations of the arguments.

If for instance F D Ik. f / is a multiple Wiener–Itô integral of order k � 1, (3)
gives the value of the Malliavin operators, and a computation then yields the
bound (9) with fk D f I fi D 0 for i ¤ k, see [24, Proposition 5.5]. If F is a general
functional with a finite decomposition, such as a U-statistic (see (1)), Malliavin
operators are computed using linearity and yield the bound (9), see the proof of
Theorem 3.5 in [18].

Concerning Kolmogorov distance, Schulte [31] has derived a Stein’s bound
similar to (11), but with more terms on the right-hand side (Theorem 1.1), reflecting
the effect that test functions are indicator functions, more irregular than the Lipschitz
functions involved in Wasserstein distance. This bound was later improved by
Eichelsbacher and Thäle [9, Theorem 3.1], reducing the number of additional terms.
With similar computations as in the Wasserstein case, one can then prove [9,
Theorem 4.1] that these additional terms only add contraction norms k fi ?r

l fjk3=2
up to a constant, yielding the bound B0.F/.

Remark 2 The terms in B0.F/ bounding the Kolmogorov distance are smaller than
the original terms present in B.F/ if the bound goes to 0, and don’t change the bound
magnitude or its eventual convergence to 0.

Remark 3 The constant Ck explodes as k ! 1. In other papers [21, 27] similar
bounds are derived in more specific cases, with a different method. The constants
are more tractable and allow for instance to approximate accurately the distance
from a Gaussian to an infinite series of multiple Wiener–Itô integrals by that of its
truncation at some order (see for instance [30]).
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Theorem 3 (Fourth Moment Theorem) Assume that F is of the form (7) and that
the kernels hn are nonnegative. Then for some C0k > 0

B.F/ � C0k
p
EF4 � 3�4:

• In view of (9), the convergence of the fourth moment to that of a Gaussian
therefore implies central limit, with a bound for Wasserstein distance. In this case,
as noted in [9], using (10) yields a similar bound for Kolmogorov distance. The
positiveness of the kernels is adapted to U-statistics with a nonnegative kernel.

• It is remarkable that, in case of an infinite collection .Ft/t>0, the convergence of
the fourth moment to that of the Gaussian variable as t ! 1 is sufficient for
such variables to converge to the normal law. The only technical requirement is
that the variables F4t ; t > 0; are uniformly integrable.

Example 1 (De Jong’s Theorem) Assume that � is a probability distribution. Let f2
be a nonzero degenerate symmetric kernel of L1s .�

2/, i.e., such that

Z

X

f2.x; y/�.dx/ D 0 for �-a.e. y 2 X:

This degeneracy property implies that U. f2; �/ D I. f2/, we also assume that f2 2
L4s .�

2/. De Jong [6] derived a fourth moment central limit theorem for binomial
U-statistics of the form U. f2; Q�p/, where p 2 N goes to infinity and Q�p is a sequence
of p iid variables with law �. In the Poisson framework, (10) yields Berry–Esseen
bounds between F D U. f2; �/ D I2. f2/ and N:

dW. QF;N/ � C2
1

k f2k2 b. f2/

dK. QF;N/ � C2
1

k f2k2 max.b. f2/; b. f2/
3=2/

where

b. f2/ D max

k f2 ?

0
2 f2k; k f2 ?

1
1 f2k; k f2 ?

1
2 f2k

�
:

See Eichelsbacher and Thäle [9, Theorem 4.5] for details. In [23], Peccati and Thäle
derive bounds on the Wasserstein distance between such a U-statistic and a target
Gamma variable, also in terms of contraction operators.

2.1.1 Local U-Statistics with Marks

For many applications, it is useful to assume that the state space is of the form S�M
where S is a subset of Rd containing the points ti of �, and .M;M / is a marks space,
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i.e. a locally compact space endowed with some probability measure 
. The space
M contains marks mi that will be randomly assigned to each point of the process.
Define X D Rd �M; � D `˝ 
.

For t > 0, introduce Xt D Œ�t1=d; t1=d	d �M, �t D 1Xt�, and let �t be a Poisson
measure with intensity �t. Let f be a real function on X locally integrable, i.e., such
that for every compact S � Rd,

R
S�M j f jd�k <1. Assume also that f is a spatially

stationary function of X, i.e., such that for �k-almost all .tk;mk/ 2 Xk; z 2 Rd,

f .tk C z;mk/ D f .tk;mk/; (13)

where tk C z is the result of the addition of z to each member of tk. We consider the
U-statistic Ft D U. f ; �t/, well defined for each t. The tail behavior of the function
f is fundamental regarding the asymptotic behavior of Ft as t!1.

Definition 1 Let f W .Rd�M/k ! R locally integrable. Then f is rapidly decreasing
if it is stationary and satisfies the following integrability condition: There exists a
non-vanishing probability density � on .Rd/k�1 such that for p D 2; 4,

Ap. f / D
Z

.Rd/k�1�Mk

f .0; tk�1;mk/
p�.tk�1/1�p`k�1

d .dtk�1/
k.dmk/ <1:

The slight abuse of notation f .0; tk�1;mk�1/ means that tk D .0; tk�1/ D
.0; t2; : : : ; tk�1/, and mk D .m1; : : : ;mk/.

We have in this case the following result, which is a consequence of Theorem 6.2
and Example 2.12-(ii) in [19]:

Theorem 4 Let Ft D U. f ; �t/ where f is a rapidly decreasing locally integrable
function. Then we have for some C1;C2;C3 > 0 not depending on t,

C1t � Var.Ft/ � C2t

dW. QFt;N1/ � C3t
�1=2:

Remark 4 Reitzner and Schulte [27] first established this result in the case where
f is the indicator function of a ball of Rd (any non-vanishing continuous density �
can be chosen in this case because f .0; �/ has a compact support).

Remark 5 A similar result holds if F is simply assumed to be a finite sum of
multiple Wiener–Itô integrals whose kernels are rapidly decreasing functions, the
U-statistics being a particular case.

2.1.2 Geometric U-Statistics

Coming back to the general framework, let �t D t�, and �t a Poisson process with
intensity measure �t on X. Let Ft D U. f ; �t/ where f 2 L1s .�

k/ is fixed and is such
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that F has a finite variance. Then Ft � EFt admits the decomposition (8) with the
kernels hn D hn;t; n D 1; : : : ; k, defined by

hn;t.xn/ D tk�n

 
k

n

! Z

Xk�n

f .xn; xk�n/�
k�n.dxk�n/; xn 2 Xn:

An important feature is the Hoeffding rank of the U-statistic

n1 WD inffn W khn;tk ¤ 0g;

which does not depend on t. The variance expression (4) yields that In1 .hn1;t/ is the
predominant term in (8), in the sense that Ft � In1 .hn1;t/ D o.Ft/ for the L2.P�/
norm as t!1. It yields the following result (Theorem 7.3 in [19]).

Theorem 5 Let QFt D Var.Ft/
�1=2.Ft � EFt/. For some C1;C2;C3 > 0 not

depending on t,

C1t
2k�n1 � Var.Ft/ � C2t

2k�n1 :

(i) If n1 D 1, U. f ; �t/ follows a central limit theorem and

dW. QFt;N/ � C3t
�1=2;

dK. QFt;N/ � C3t
�1=2:

(ii) If n1 > 1, U. f ; �t/ does not follow a CLT and QFt converges to a Gaussian chaos
of order n1 (see [19, Theorem 7.3–2]).

This result is also a particular case of Theorem 6.

Remark 6 Point (i) first appears in [27].

Remark 7 Point (ii) crucially uses the results of Dynkin and Mandelbaum [8].

Remark 8 The speed of convergence to the Gaussian chaos in (ii) is studied by
Peccati and Thäle [23] in case the limit is a Gamma distributed random variable.

2.1.3 Regimes Classification

The crucial difference in Theorems 4 and 5 is the area of influence of a given point
x 2 �t. In the case of a local U-statistic, for any t > 0, a typical point x 2 �t

interacts with other points of �t via the contributions f .x; x1; : : : ; xk�1/ for points
xi of �t. Given that f satisfies (13), f .x; x1; : : : ; xk�1/ is likely to be small if one of
the xi is far from x, independently of t. Therefore, the points of � which interaction
with x via the kernel f gives a significant contribution for t large will be near x. The
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situation is different for a geometric U-statistic, where a point of �t interacts with
any other point via f , regardless of their distance. Both these regimes can be seen as
two particular cases of a continuum.

Let f W Xk ! R be a rapidly decreasing function. Let ˛t > 0, defined to be
the scaling factor;Xt D Œ�t1=d; t1=d	d � M, �t D 1Xt`d ˝ 
. Let ft be the kernel
obtained by rescaling with the stationary function f ,

ft.xk/ D f .˛txk/; xk 2 Xk
t ; (14)

and Ft D U. ft; �t/, where �t is the Poisson measure with intensity �t.
Say that f has non-degenerate projections if none of the functions

fn.xn/ D
Z

Xk�n
t

f .xn; xk�n/d�k�n
t ; xn 2 Xn;

well defined in virtue of (13) is �-a.e. equal to 0. It is trivially the case if for instance
k fk ¤ 0 and f � 0 �-a.e. Concerning notation, every spatial transformation of a
point x D .t;m/ 2 Rd � M, such as translation, rotation, or multiplication by a
scalar, is only applied to the spatial component t.

Subsequently, any spatial transformation applied to a k-tuple of points xk D
.x1; : : : ; xk/ is applied to the spatial components of the xi’s. The quantity vt D ˛�d

t
is relevant because it gives the magnitude of the number of points interacting with a
typical point x. The case vt D ˛t D 1 is that of local U-statistic. If vt D t is roughly
the volume of Xt, it corresponds to geometric U-statistics. In the latter case it is
useless to assume that f is rapidly decreasing, as only the behavior of f over X1 is
relevant.

Theorem 6 Assume that ft is of the form (14), where f is a rapidly decreas-
ing function with nondegenerate projections. With the notation above, there are
C1;C2;C3 > 0 such that

C1 � Var.Ft/

tv2k�2
t max.1; v�kC1

t /
� C2;

and

dW. QFt;N/ � C3t
�1=2 max.1; v�kC1

t /1=2

dK. QFt;N/ � C3t
�1=2 max.1; v�kC1

t /1=2:

Concerning the bound for Kolmogorov distance, it is not formally proved in the
literature. It relies on the fact that in Theorem 2, B0.F/ � CB.F/ for some C > 0 in
the case where � ! 1 and B.F/! 0. Then one can simply reproduce the proof of
[19], entirely based on an upper bound for B.F/.
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Remark 9 Theorems 4 and 5-(i) can be retrieved from this theorem by setting,
respectively, vt D 1 or vt D t.

Remark 10 If some projections do vanish, the convergence might be modified, and
the limit might not even be Gaussian, as it is the case for the degenerate geometric
U-statistics of Theorem 5-(ii).

Remark 11 Depending on the asymptotic behavior of vt, we can identify four
different regimes:

1. Long interactions: vt ! 1, CLT at speed t�1=2, the first chaos I1;t.ht;1/

dominates (geometric U-statistics).
2. Constant size interactions: vt D 1, CLT at speed t�1=2, all chaoses have the

same order of magnitude (local U-statistics).
3. Small interactions: vt ! 0; tv�kC1

t ! 1, CLT at speed .tv�kC1
t /�1=2, higher

order chaoses dominate. In the case of random graphs .k D 2/, the corresponding
bound in .tvt/

�1=2 has been obtained in [18].
4. Rare interactions: tv�kC1

t ! c < 1, the bound does not converge to 0. In the
case k D 2, it has been shown in [18] that there is no CLT but a Poisson limit in
the case c > 0 (see [4, Chap. 6] in this book for more on Poisson limits).

2.2 Other Limit Laws and Multi-Dimensional Convergence

Besides the Gaussian chaoses appearing in Theorem 5-(ii), some characterizations
of non-central limits have also been derived for Poisson U-statistics.

2.2.1 Multidimensional Convergence

We consider in this section the conjoint behavior of random variables Ft D
.F1;t; : : : ;Fk;t/ where, for t > 0; 1 � m � k; qm � 1, and Fm;t D Iqm.hm;t/ for
some hm;t 2 L2s .�

qm/.
Any candidate for the limit of Ft which is in L2.P�/ should have covariance

matrix

Cm;n D lim
t!1EFm;tFn;t; 1 � m; n � k;

if the limit exists. In this case there is indeed asymptotic normality if all contraction
norms

khm;t ?
l
r hn;tk

go to 0 as t ! 1, for 0 � l � r � qn � qm with l ¤ qm; r ¤ 0, see [24,
Theorem 5.8]. Explicit bounds on the speed of convergence with a specific distance
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related to thrice differentiable functions on .Rd/k are contained in [4, Chap. 6] in
this book, and the convergence is stable, in the sense of Bourguin and Peccati [3].

If now Ft D .F1;t; : : : ;Fk;t/ where each Fm;t is a U-statistic, one can consider the
random vector Gt constituted by all multiple Wiener–Itô integrals with respect to
kernels from the decompositions of the Fm;t, as defined in (2). One can then infer
conditions for asymptotic normality of Ft by applying the previous considerations
to Gt.

As noted in Remark 11, some U-statistics behave asymptotically like Poisson
variables. Asymptotic joint laws of U-statistics can also converge to random vectors
with marginal Poisson laws, and it can also happen that they converge to an hybrid
random vector which has both Gaussian and Poisson marginals, here again the
reader is referred to the survey [4], in this volume.

2.2.2 Gamma

Similar results to those of Sect. 2.1 with Gamma limits have been derived by Peccati
and Thäle [23] for Poisson chaoses of even order. The distance used there is

d3.U;V/ D sup
h2H3

jEŒh.U/� h.V/	j

for two random variables U;V , where H3 is the class of functions of class C3 with
the first three derivatives uniformly bounded by 1. We again denote by f Q?l

rg the
symmetrized contraction kernels .

For 
 > 0, let F.
=2/ be a Gamma distribution with mean and variance both
equal to 
=2. We introduce the centered unit variance variable G.
/ WD 2F.
=2/�
.

Theorem 7 Let F D Ik.hk/ for some even integer k � 2. We have

d3.Ik.hk/;G.
// � Dk maxfkŠkhkk � 2
I khk ?
p
p hkkI khk ?

l
r hkk1=2I khk Q?q=2

q=2hk � ckhkkg

where the maximum is taken over all p D 1; : : : ; k � 1 such that p ¤ k=2 and all
.r; l/ such that r ¤ l and l D 0, or r 2 f1; : : : ; kg and l 2 f1; : : : ;min.r; k � 1/g.
Also

ck D 4

.q=2/Š

 q

q=2

�2 :

Remark 12 In the case of double Wiener–Itô integrals .k D 2/, the authors of [23]
provide a fourth moment theorem, in the sense that under some technical conditions,
a sequence of double Wiener–Itô integrals converges to a Gamma variable if their
first moments converge to that of a Gamma variable.
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Remark 13 This result enables to give an upper bound on the speed of convergence
to the second Gaussian chaos in Theorem 5 in the case n1 D 2, if this limit is indeed
a Gamma variable.

Remark 14 The case q D 4 has also been settled in a recent paper by Fissler and
Thäle [10].

3 Large Deviations

There are only few investigations concerning concentration inequalities for Poisson
U-statistics. Most results require a nice bound on sup�2N.X/; z2X DzF.�/ < 1: For
U-statistics of order � 2 this condition is usually not satisfied, even if the kernel
f is bounded. For U-statistics of order 1, this holds if k fk1 < 1. Therefore we
split our investigations into a section on U-statistics of order one and another one
on higher order local U-statistics. We start with a general result. Throughout this
section we assume that f � 0 and f ¤ 0.

3.1 A General LDI

In this section we sketch an approach developed in [28] leading to a general
concentration inequality. Here it is necessary to view � as a random counting
measure

P
ıx (and continue writing x 2 � if x is in the support of �). For two

counting measures � and 
 we define the difference �n
 by

�n
 D
X

x2X
.�.fxg/� 
.fxg//C ıx : (15)

For x 2 � and f 2 L1s .�
k/, we recall that

U. f ; �/ D
X

x2�
F.x; �/ with F.x; �/ D

X

xk�12.�nfxg/k�1
¤

f .x; xk�1/:

Assume that in addition to � a second point set � 2 Ns.X/ is chosen. The non-
negativity of f yields

U. f ; �/ � U. f I �/C k
X

x2�
F.x; �/1.x … �/

D U. f I �/C k
Z

F.x; �/ d.�n�/ :
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The convex distance of a finite point set � 2 Ns.X/ to some A � Ns.X/ was
introduced in [26], and is given by

d.�;A/ D max
u

min
�2A

Z
u d.�n�/;

where for given � the maximum is taken with respect to all nonnegative measurable
functions u W X! RC satisfying kuk22;� D

R
u2d� � 1. To link the convex distance

to the U-statistic, we insert for u the normalized function kF.x; �/k�12;�F.x; �/ and
rewrite U. f ; �/ in terms of the convex distance as follows:

d.�;A/ � min
�2A

Z
1

kF.x; �/k2;� F.x; �/d.�n�/

� 1

kkF.x; �/k2;� min
�2A

�
U. f ; �/� U. f I �/

	
:

If we assume F.x; �/ � B for some B 2 R, then kF.x; �/k22;� � B
P

x2� F.x; �/ D
BU. f ; �/, which implies

d.�;A/ � 1

k
p

B
min
�2A

U. f ; �/� U. f I �/p
U. f I �/ 1.8x 2 � W F.x; �/ � B/ : (16)

In [26], a LDI for the convex distance was proved. For � a Poisson point process
on some lcscH1 space X with finite intensity measure, and for A � N.X/, we have

P.A/P .d.�;A/ � s/ � exp

�
� s2

4

�
; s � 0:

Precisely as in [28], this concentration inequality combined with the estimate (16)
yields the following theorem.

Theorem 8 Assume that ".�/ and B 2 R satisfy P.9x 2 � W F.x; �/ > B/ � ".B/.
Let m be the median of U. f ; �/. Then for u � 0

P.jU. f ; �/�mj � u/ � 4 exp

�
� u2

4k2B.uC m/

�
C 3".B/ : (17)

In the next sections we apply this to U-statistics of order one and to local
U-statistics. In the applications, the crucial ingredient is a good estimate for ".B/.

1Locally compact second countable Hausdorff space.
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3.2 LDI for First Order U-Statistics

There are several concentration inequalities for integrals of functions f 2 L1.�/
over Poisson point processes, i.e., U-statistics of order one,

U. f ; �/ D
X

x2�
f .x/ D

Z
f d�; f � 0;

in which case DzU D f .z/, z 2 X. Assuming that k fk1 D B <1, we have a.s.

kDzUk1 D B:

A result by Houdre and Privault [12] shows that for any �-compact metric space X

P.U � k fk1 � u/ � exp

�
� k fk1
k fk1 g


 u

k fk1
��

(18)

where g.u/ D .1C u/ ln.1C u/ � u; u � 0 and because f � 0 the 1-norm equals
the expectation EU. f ; �/. A similar result is due to Ane and Ledoux [1]. Reynaud-
Bouret [29] proves an estimate involving the 2-norm k fk2 instead of the 1-norm.
A slightly more general estimate is given by Breton et al. [5].

We could also make use of Theorem 8 and choose B D k fk1. This yields

P.jU. f ; �/�mj � u/ � 4 exp

�
� u2

4k fk1.uC m/

�
; (19)

which is a slightly weaker estimate than (18).

3.3 LDI for Local U-Statistics

In this paragraph we assume that X is equipped with a norm k�k and B.x; r/ denotes
the ball of radius r around x 2 X. We call U. f ; �/ a local U-statistic of radius r if
f .x1; : : : ; xk/ D 0 for maxi¤j kxi � xjk > r. We have

F.x; �/ � k fk1�.B.x; r//k�1

and

P.9x W F.x; �/ > B/ � E
X

x2�
1.F.x; �/ > B/

D
Z

X

P.F.x; �/ > B/d�:
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And it remains to estimate

P

 
�.B.x; r// >

�
B

k fk1
� 1

k�1

!
:

We use the Chernoff bound for the Poisson distribution, namely

P.�.Bd.x; r// > r/ � inf
s�0 eE.es�1/�sr; (20)

since �.B.x; r// is a Poisson distributed random variable with mean

E�.Bd.x; r// D �.Bd.x; r// � sup
x2X

�.Bd.x; r// DW E : (21)

Because infs�0 E.es � 1/� sr D r.1� ln.r=E//�E we estimate the right-hand side
of (20) by exp


� 1
2
r
�

for Ee2 � r. This leads to

P.9x W F.x; �/ > B/ � �.X/ exp

 
�1
2

�
B

k fk1
� 1

k�1

!
WD ".B/

for B � Ek�1e2.k�1/k fk1. We set B D k fk 1k1. u2

.uCm/ /
k�1

k and combine this with the
general Theorem 8.

Theorem 9 Set E WD supx2X �.Bd.x; r//. Then for u2

.uCm/ � Eke2kk fk1,

P.jU. f ; �/�mj � u/ � 4�.X/ exp

�
� 1

4k2
k fk� 1

k1
� u2

uC m

	 1
k

�
:

Clearly, in particular situations more careful choices of ".B/ and B lead to more
precise bounds.

4 Applications

In this section we investigate some applications of the previous theorems in
stochastic geometry. In all these cases X is either a subset of Rd or a subset of the
affine Grassmannian A.d; i/, the space of all i-dimensional spaces in Rd, endowed
with the usual hit-and-miss topology and Borel �-algebra.

We state some normal approximation and concentration results which follow
from the previous theorems. In many cases multi-dimensional convergence and
convergence to other limit distributions can be proved in various regimes. We
restrict our presentation to certain ‘simple’ cases without making any attempt for
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completeness. Our aim is just to indicate recent trends, we refer to further results
and investigations in the literature.

4.1 Intersection Process

Let �t be a Poisson process on the space A.d; i/with an intensity measure of the form
�.�/ D t�.�/ with t 2 RC and a �-finite non-atomic measure � . The Poisson flat
process is only observed in a compact convex window W � Rd with interior points.
Thus, we can also view �t as a Poisson process on the set X D ŒW	 defined by

ŒW	 D fL 2 A.d; i/ W L \W ¤ ;g :

Given the i-flat process �t, we investigate the .d � k.d � i//-flats in W which
occur as the intersection of k flats of �t. Hence we assume k � d=.d� i/. They form
the intersection process �.k/t , see [13, Sect. 3.3.1]. In particular, we are interested in
the sum of the j-th intrinsic volumes given by

˚t D ˚t.W; i; k; j/ D 1

kŠ

X

.L1;:::;Lk/2�k
t;¤

Vj.L1 \ : : : \ Lk \W/

for j D 0; : : : ; d � k.d � i/, i D 0; : : : ; d � 1 and k D 1; : : : ; bd=.d � i/c. Here one
has to restrict the sum to those k-tuples of i-flats that are in general position. This is
necessary in case of a discrete directional distribution, for example.

For the definition of the j-th intrinsic volume Vj.�/ we refer to [13]. We remark
that V0.K/ is the Euler characteristic of the set K, and that Vn.K/ of an n-dimensional
convex set K is the Lebesgue measure `n.K/. Thus ˚t.W; i; 1; 0/ is the number of
flats in W and˚t.W; i; k; d�k.d�i// is the .d�k.d�i//-volume of their intersection
process.

To ensure that the expectations of these random variables are neither 0 nor
infinite, we assume that 0 < �.ŒW	/ < 1, and that 2 � k � bd=.d � i/c
independent random i-flats on ŒW	 with probability measure �.�/=�.ŒW	/ intersect
in a .d � k.d � i//-flat almost surely and their intersection flat hits the interior of
W with positive probability. For example, these conditions are satisfied if the flat
process is stationary and isotropic.

The fact that the summands in the definition of ˚t are bounded and have a
bounded support makes sure that all moment conditions are satisfied and we can
apply Theorem 5. Denote by Q̊ t the normalized version of ˚t.
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Theorem 10 Let N be a standard Gaussian random variable. Then constants c D
c.W; i; k; j/ exist such that

dW. Q̊ t;N/ � ct�1=2;

dK. Q̊ t;N/ � ct�1=2;

for t � 1.

Furthermore, it can be shown [27] that the asymptotic variances satisfies Var˚t D
C˚ t2k�1.1 C o.1// as t ! 1 with a constant C˚ D C˚.W; i; k; j/. The order of
magnitude already follows from the first part of Theorem 5.

For more information we refer to [11, 21]. In the second paper the Wiener–Itô
chaos expansion is used to derive even multivariate central limit theorems in an
increasing window for much more general functionals ˚t.

4.2 Flat Processes

For i < d
2

two i-dimensional planes in general position will not intersect. Thus the
intersection process described in the previous section will be empty with probability
one. A natural way to investigate the geometric situation in this setting is to ask
for the distances between these i-dimensional flats, or more general for the so-
called proximity functional already introduced in [13]. The central limit theorems
described in the following fits precisely into the setting of this contribution, we refer
to [32] for further results.

Let �t be a Poisson process on the space A.d; i/ with an intensity measure of
the form �t.�/ D t�.�/ with t 2 RC and a �-finite non-atomic measure � . The
Poisson flat process is observed in a compact convex window W � Rd. For two
i-dimensional planes in general position there is a unique segment Œx1; x2	 with

d.L1;L2/ D kx2 � x1k D min
y2L1;z2L2

kz � yk:

The midpoints m.L1;L2/ D 1
2
.x1 C x2/ form a point process of infinite intensity,

hence we restrict this to the point process

fm.L1;L2/ W d.L1;L2/ � ı;L1;L2 2 �2¤g

and are interested in the number of midpoints in W

˘t D ˘t.W; ı/ D 1

2

X

L1;L22�2¤
1.d.L1;L2/ � ı;m.L1;L2/ 2 W/:
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It is not difficult to show that E˘t is of order t2ıd�2i. The U-statistic ˘t is local on
the space A.d; i/. Thus the following theorem due to Schulte and Thäle [32] is in
spirit similar to Theorem 4. Denote by Q̆ t the normalized version of ˘t.

Theorem 11 Let N be a standard Gaussian random variable. Then constants
c.W; i/ exist such that

dK. Q̆ t;N/ � c.W; i/t�
d�i
2 ;

for t � 1.

Moreover, Schulte and Thäle proved that the ordered distances form after suitable
rescaling asymptotically an inhomogeneous Poisson point process on the positive
real axis. There is a generalization of Theorem 11 including powers and directional
constrains in a recent paper of Hug et al. [14].

We add to this a concentration inequality which follows immediately from
Theorem 9. Observe that �t.X/ D t�.ŒW	/, and denote by Bd.h; ı/ a ball with
center in h and radius ı.

Theorem 12 Denote by mt the median of ˘t . Then

P.j˘t � mtj � u/ � 4t�.ŒW	/ exp

�
� 1
16

up
uC mt

�

for up
uCmt

� e2t suph2ŒW	 �.Bd.h; ı//.

4.3 Gilbert Graph

Let �t be a Poisson point process on Rd with an intensity-measure of the form
�t.�/ D t`d.� \W/, where `d is Lebesgue measure and W � Rd a compact convex
set with `d.W/ D 1. Let .rt W t > 0/ be a sequence of positive real numbers such
that rt ! 0, as t!1. The random geometric graph is defined by taking the points
of �t as vertices and by connecting two distinct points x; y 2 �t by an edge if and
only if kx � yk � rt. The resulting graph is called Gilbert graph.

There is a vast literature on the Gilbert graph and one should have a look at
Penrose’s seminal book [25]. More recent developments are due to Bourguin and
Peccati [3], Lachièze-Rey and Peccati [18, 19], and Reitzner et al. [28].

In a first step one is interested in the number of edges

Nt D Nt.W; rt/ D 1

2

X

.x;y/2�2t;¤
1.kx � yk � rt/
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of this random geometric graph. It is natural to consider instead of the norm
functions 1. f .y� x/ � rt/ and instead of counting more general functions g.y� x/:

X

.x;y/2�2t;¤
1. f .y � x/ � rt/ g.y � x/:

For simplicity we restrict our investigations in this survey to the number of edges Nt

in the thermodynamic setting where trd
t tends to a constant as t ! 1. Further

results for other regimes, multivariate limit theorems, and sharper concentration
inequalities can be found in Penrose’s book and the papers mentioned above.

Because of the local definition of the Gilbert graph, Nt is a local U-statistic.
Theorem 6 with 
t D trd

t can be applied.

Theorem 13 Let N be a standard Gaussian random variable. Then constants c.W/
exist such that

dW. QNt;N/ � c.W/t�1=2;

dK. QNt;N/ � c.W/t�1=2;

for t � 1.

A concentration inequality follows immediately from Theorem 9. Observe that
�t.X/ D t`d.W/.

Theorem 14 Denote by mt the median of Nt. Then there is a constant cd such that

P.jNt �mtj � u/ � 4t`d.W/ exp

�
� 1
16

up
uC mt

�

for up
uCmt

� cd.

In [28] a concentration inequality for all u � 0 is given using a similar but more
detailed approach.

4.4 Random Simplicial Complexes

Given the Gilbert graph of a Poisson point process �t we construct the Vietoris–Rips
complex R.rt/ by calling F D fxi1 ; : : : ; xikC1

g a k-face of R.rt/ if all pairs of points
in F are connected by an edge in the Gilbert graph. Observe that, e.g., counting the
number N.k/

t of k-faces is equivalent to a particular subgraph counting. By definition
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this is a local U-statistics given by

N.k/
t D N.k/

t .W; rt/ D 1

.kC 1/Š
X

.x1;:::;xkC1/2�kC1
t;¤

1.kxi � xjk � rt; 81 � i; j � kC 1/:

Central limit theorems and a concentration inequality follow immediately from the
results for local U-statistics. We restrict our statements again to the thermodynamic
case where trd

t tends to a constant as t!1. Results for other regimes can be found,

e.g., in Penrose’s book. Because of the local definition of the Gilbert graph, N.k/
t is

a local U-statistic. Theorem 6 with 
t D trd
t can be applied.

Theorem 15 Let N be a standard Gaussian random variable. Then constants c.W/
exist such that

dW. QN.k/
t ;N/ � c.W/t�1=2;

dK. QN.k/
t ;N/ � c.W/t�1=2;

for t � 1.

A concentration inequality follows immediately from Theorem 9. Observe that
�t.X/ D t�.ŒW	/.

Theorem 16 Denote by mt the median of N.k/
t . Then

P.jN.k/
t � mtj � u/ � 4t`d.W/ exp

 
� 1

4.kC 1/2
u
2
k

.uC mt/
1
k

!

for u2

uCmt
� cd;k.

Much deeper results concerning the topology of random simplicial complexes are
contained in [7, 15, 17]. We refer the interested reader to the recent survey article
by Kahle [16]

4.5 Sylvester’s Constant

Again we assume that the Poisson point process � has an intensity-measure of the
form �t.�/ D t`d.� \ W/, where `d is Lebesgue measure and W � Rd a compact
convex set with `d.W/ D 1.

As a last example of a U-statistic we consider the following functional related
to Sylvester’s problem. Originally raised with k D 4 in 1864, Sylvester’s original
problem asks for the distribution of the number of vertices of the convex hull of four
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random points. Put

Nt D Nt.W; k/ D
X

.x1;:::;xk/2�k
¤

1.x1; : : : ; xk are vertices of conv.x1; : : : ; xk//;

which counts the number of k-tuples of the process such that every point is a vertex
of the convex hull, i.e., the number of k-tuples in convex position.

The expected value of U is then given by

ENt D tkP.X1; : : : ;Xk are vertices of conv.X1; : : : ;Xk//;

where X1; : : : ;Xk are independent random points chosen according to the uniform
distribution on W.

The question to determine the probability that k random points in a convex set W
are in convex position has a long history, see, e.g., the more recent development by
Bárány [2]. In our setting, the function t�kNt is an estimator for this probability and
we are interested in its distributional properties.

The asymptotic behavior of Var.Nt/ is of order t2k�1. Together with Theorem 5,
we immediately get the following result showing that the estimator H is asymptoti-
cally Gaussian. Again, by QNt we denote the normalized version of Nt.

Theorem 17 Let N be a standard Gaussian random variable. Then there exists a
constant c.W; k/ such that

dW

 QNt;N

� � c.W; k/t�
1
2 :

For much more information on random polytopes we refer the reader to [13],
Sect. 3.5, in this survey.
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Poisson Point Process Convergence and Extreme
Values in Stochastic Geometry

Matthias Schulte and Christoph Thäle

Abstract Let �t be a Poisson point process with intensity measure t�, t > 0,
over a Borel space X, where � is a fixed measure. Another point process �t on
the real line is constructed by applying a symmetric function f to every k-tuple
of distinct points of �t. It is shown that �t behaves after appropriate rescaling like
a Poisson point process, as t ! 1, under suitable conditions on �t and f . This
also implies Weibull limit theorems for related extreme values. The result is then
applied to investigate problems arising in stochastic geometry, including small cells
in Voronoi tessellations, random simplices generated by non-stationary hyperplane
processes, triangular counts with angular constraints, and non-intersecting k-flats.
Similar results are derived if the underlying Poisson point process is replaced by a
binomial point process.

1 Introduction

This chapter deals with the application of the Malliavin–Chen–Stein method for
Poisson approximation to problems arising in stochastic geometry. More precisely,
we will develop a general framework which yields Poisson point process conver-
gence and Weibull limit theorems for the order-statistic of a class of functionals
driven by an underlying Poisson or binomial point process on an abstract state space.

To motivate our general theory, let us describe a particular situation to which our
results can be applied (see Remark 4 and also Example 4 in [29] for more details).
Let K be a convex body in R

d, d � 2, (that is a compact convex set with interior
points) whose volume is denoted by `d.K/. For t > 0 let �t be the restriction to K of
a translation-invariant Poisson point process in R

d with intensity t and let .�t/t>0 be
a sequence of real numbers satisfying t2=d�t ! 1, as t ! 1. Taking �t as vertex
set of a random graph, we connect two different points of �t by an edge if and only if
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their Euclidean distance does not exceed �t. The so-constructed random geometric
graph, or Gilbert graph, is among the most prominent random graph models (see
[25] for some recent developments and [22] for an exhaustive reference). We now
consider the order statistic �t D fM.m/

t W m 2 Ng defined by the edge-lengths of
the random geometric graph, that is, M.1/

t is the length of the shortest edge, M.2/
t is

the length of the second-shortest edge etc. Now, our general theory implies that the
rescaled point process t2=d�t converges towards a Poisson point process on RC with
intensity measure given by B 7! ˇd

R
B ud�1 du for Borel sets B � RC, where ˇ D

�d`d.K/=2 and �d stands for the volume of the d-dimensional unit ball. Moreover,
it implies that there is a constant C > 0 only depending on K such that

ˇ̌
ˇ̌
ˇP
�

t2=dM.m/
t > y

	
� e�ˇyd

m�1X

iD0

.ˇyd/i

iŠ

ˇ̌
ˇ̌
ˇ � C maxfydC1; y2dg t�2=d

for any m 2 N, y 2 .0; t2=d�t/ and t � 1. In particular, the distribution of the rescaled
length t2=dM.1/

t of the shortest edge of the random graph converges, as t!1, to a
Weibull distribution with survival function y 7! e�ˇyd

, y � 0, at rate t�2=d .
Our purpose here is to establish a general framework that can be applied to a

broad class of examples. We also allow the underlying point process to be a Poisson
or a binomial point process. Our main result for the Poisson case refines those in [29]
or [30] and improves the rate of convergence. Its proof follows the ideas of Peccati
[21] and Schulte and Thäle [29], but uses the special structure of the functional
under consideration as well as recent techniques from [20] around Mehler’s formula
on the Poisson space. This saves some technical computations related to the product
formula for multiple stochastic integrals (cf. [18], in this volume, as well as [19, 32]).
In case of an underlying binomial point process we use a bound for the Poisson
approximation of (classical) U-statistics from [1]. As application of our main results,
we present a couple of examples, which continue and complement those studied in
[29, 30]. These are

1. Cells with small (nucleus-centered) inradius in a Voronoi tessellation.
2. Simplices generated by a class of rotation-invariant hyperplane processes.
3. Almost collinearities and flat triangles in a planar Poisson or binomial process.
4. Arbitrary length-power-proximity functionals of non-intersecting k-flats.

The rest of this chapter is organized as follows. Our main results and their
framework are presented in Sect. 2. The application to problems arising in stochastic
geometry is the content of Sect. 3. The proofs of the main results are postponed to
the final Sect. 4.
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2 Results

Let �t (t > 0) be a Poisson point process on a measurable space .X;X / with
intensity measure �t WD t�, where � is a fixed �-finite measure on X. To avoid
technical complications, we shall assume in this chapter that .X;X / is a standard
Borel space. This ensures, for example, that any point process on X can almost
surely be represented as a sum of Dirac measures. Let further k 2 N and f W Xk ! R

be a measurable symmetric function. Our aim here is to investigate the point process
�t on R which is induced by �t and f as follows:

�t WD 1

kŠ

X

.x1;:::;xk/2�k
t;¤

ıf .x1;:::;xk/ : (1)

Here �k
t;¤ stands for the set of all k-tuples of distinct points of �t and ıx is the unit

Dirac measure concentrated at the point x 2 R. We shall assume that

�k
t . f�1.Œ�s; s	// <1 for all s > 0 ;

to ensure that �t is a locally finite counting measure on R.
For m 2 N we denote by M.m/

t the distance from the origin to the m-th point of �t

on the positive half-line RC WD .0;1/, and by M.�m/
t the distance from the origin to

the m-th point on the negative half-line R� WD .�1; 0	. If �t has less than m points
on the positive or negative half-line, we put M.m/

t D 1 or M.�m/
t D1, respectively.

Fix � 2 R and for y1; y2 2 R define

˛t.y1; y2/ WD 1
kŠ

Z

Xk

1ft��y1 < f .x1; : : : ; xk/ � t��y2g�k
t .d.x1; : : : ; xk// :

We remark that, as a consequence of the multivariate Mecke formula for Poisson
point processes (see [18, formula (1.11)]), ˛t.y1; y2/ can be interpreted as

˛t.y1; y2/ D 1

kŠ
E

X

.x1;:::;xk/2�k
t;¤

1ft��y1 < f .x1; : : : ; xk/ � t��y2g ;

which is the expected number of points of �t in .t��y1; t��y2	 if y1 < y2 and zero if
y1 � y2. Moreover, let, for k � 2,

rt.y/ WD max
1�`�k�1

Z

X`

� Z

Xk�`

1fj f .x1; : : : ; xk/j � t��yg�k�`
t .d.x`C1; : : : ; xk//

�2

�`t .d.x1; : : : ; x`//

for y � 0 and put rt � 0 if k D 1.
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Theorem 1 Let 
 be a �-finite non-atomic Borel measure on R. Then, there is a
constant C � 1 only depending on k such that

ˇ̌
ˇ̌P.t�M.m/

t > y/� e�
..0;y	/
m�1X

iD0


..0; y	/i

iŠ

ˇ̌
ˇ̌ � j
..0; y	/� ˛t.0; y/j C C rt.y/

and

ˇ̌
ˇ̌P.t�M.�m/

t � y/� e�
..�y;0	/
m�1X

iD0


..�y; 0	/i

iŠ

ˇ̌
ˇ̌ � j
..�y; 0	/� ˛t.�y; 0/j C C rt.y/

for all m 2 N and y � 0. Moreover, if

lim
t!1˛t.y1; y2/ D 
..y1; y2	/ for all y1; y2 2 R with y1 < y2 (2)

and

lim
t!1 rt.y/ D 0 for all y > 0 ; (3)

the rescaled point processes .t� �t/t>0 converge in distribution to a Poisson point
process on R with intensity measure 
.

Remark 1 Let us comment on the particular case k D 1. Here, the point process
�t is itself a Poisson point process on R with intensity measure derived from ˛t as
a consequence of the famous mapping theorem, for which we refer to Sect. 2.3 in
[16]. This is confirmed by our Theorem 1.

Remark 2 Theorem 1 generalizes earlier versions in [29, 30], which have a similar
structure, but where the quantity

Ort.y/ WD sup
.Ox1;:::;Ox`/2X`
1�`�k�1

�k�`
t


˚
.x1; : : : ; xk�`/ 2 X

k�` W

j f .Ox1; : : : ; Ox`; x1; : : : ; xk�`/j � t��yg/

for y � 0 is considered instead of rt.y/. It is easy to see that rt.y/ and Ort.y/ are
related by

rt.y/ � inf
">0
˛t.�y � "; y/ Ort.y/ for all y � 0 :

In particular, this means that the rate of convergence of the order statistics in
Theorem 1 improves that in [29, 30] by removing a superfluous square root from
Ort.y/. Moreover and in contrast to [29, 30], the constant C only depends on the
parameter k.
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In our applications presented in Sect. 3, the function f is always strictly positive
so that �t is concentrated on RC. Moreover, the measure 
 will be of a special form.
The following corollary deals with this situation. To state it, we use the convention
that ˛t.y/ WD ˛t.0; y/ for y � 0.

Corollary 1 Let ˇ; � > 0. Then there is a constant C > 0 only depending on k such
that

ˇ̌
ˇ̌P.t�M.m/

t > y/ � e�ˇy�
m�1X

iD0

.ˇy� /i

iŠ

ˇ̌
ˇ̌ � jˇy� � ˛t.y/j C C rt.y/

for all m 2 N and y � 0. If, additionally,

lim
t!1˛t.y/ D ˇy� and lim

t!1 rt.y/ D 0 for all y > 0 ; (4)

the rescaled point processes .t� �t/t>0 converge in distribution to a Poisson point
process on RC with the intensity measure


.B/ D ˇ�
Z

B

u��1 du; B � RC Borel : (5)

Remark 3 The limiting Poisson point process appearing in the context of Corol-
lary 1 is usually called a Weibull process on RC, the reason for this being that the
distance from the origin to the next point follows a Weibull distribution.

If � is a finite measure, i.e., if �.X/ < 1, one can replace the underlying
Poisson point process �t by a binomial point process �n having a fixed number of n
points which are independent and identically distributed according to the probability
measure �. � /=�.X/. Without loss of generality we assume that �.X/ D 1 in what
follows. In this situation, we consider instead of �t defined at (1) the derived point
process O�n on R given by

O�n WD 1

kŠ

X

.x1;:::;xk/2�k
n;¤

ıf .x1;:::;xk/ ;

where �k
n;¤ stands for the collection of all k-tuples of distinct points of �n. For m 2 N

let bM.m/
n and bM.�m/

n be defined similarly as M.m/
n and M.�m/

n above with �t replaced by
O�n. For n; k 2 N we denote by .n/k the descending factorial n �.n�1/ � : : : �.n�kC1/.
Using the notation

˛n.y1; y2/ WD .n/k
kŠ

Z

Xk

1 fn��y1 < f .x1; : : : ; xk/ � n��y2g �k.d.x1; : : : ; xk// ;
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rn.y/ WD max
1�`�k�1.n/2k�`

Z

X`

� Z

Xk�`

1 fj f .x1; : : : ; xk/j � n��yg

�k�`.d.x`C1; : : : ; xk//

�2
�`.d.x1; : : : ; x`//

for y1; y2; y 2 R, we can now present the binomial counterpart of Theorem 1.

Theorem 2 Let � be a probability measure on X and 
 be a �-finite non-atomic
Borel measure on R. Then, there is a constant C � 1 only depending on k such that

ˇ̌
ˇ̌P.n� bM.m/

n > y/� e�
..0;y	/
m�1X

iD0


..0; y	/i

iŠ

ˇ̌
ˇ̌

� j
..0; y	/ � ˛n.0; y/j C C
�

rn.y/C ˛n.0; y/

n

	

and

ˇ̌
ˇ̌P.n� bM.�m/

n � y/� e�
..�y;0	/
m�1X

iD0


..�y; 0	/i

iŠ

ˇ̌
ˇ̌

� j
..�y; 0	/� ˛n.�y; 0/j C C
�

rn.y/C ˛n.�y; 0/

n

	

for all m 2 N and y � 0. Moreover, if

lim
n!1˛n.y1; y2/ D 
..y1; y2	/ for all y1; y2 2 R with y1 < y2

and

lim
n!1 rn.y/ D 0 for all y > 0 ;

the rescaled point processes .n� O�n/n�1 converge in distribution to a Poisson point
process on R with intensity measure 
.

As in the Poisson case, Theorem 2 allows a reformulation as in Corollary 1 for
the special situation in which f is nonnegative and 
 has a power-law density. As
above, we use the convention that ˛n.y/ WD ˛n.0; y/ for y � 0.

Corollary 2 Let ˇ; � > 0. Then there is a constant C > 0 only depending on k such
that

ˇ̌
ˇ̌P.n� bM.m/

n > y/� e�ˇy�
m�1X

iD0

.ˇy� /i

iŠ

ˇ̌
ˇ̌ � jˇy� � ˛n.y/j C C

�
rn.y/C ˛n.y/

n
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for all m 2 N and y � 0. If, additionally,

lim
n!1˛n.y/ D ˇy� and lim

n!1 rn.y/ D 0 for all y > 0 ;

the rescaled point processes .n� O�n/n�1 converge in distribution to a Poisson point
process on RC with intensity measure given by (5).

3 Examples

In this section we apply the results presented above to problems arising in stochastic
geometry, see [11]. The minimal nucleus-centered inradius of the cells of a Voronoi
tessellation is considered in Sect. 3.1. This example is inspired by the work [5] and
was not previously considered in [29], although it is closely related to the minimal
edge length of the random geometric graph discussed in the introduction. Our
next example generalizes Example 6 of [29] from the translation-invariant case to
arbitrary distance parameters r � 1. In dimension two it also sheds some new light
onto the area of small cells in line tessellations. Our third example is inspired by
a result in [31] and deals with approximate collinearities and flat triangles induced
by a planar Poisson or binomial point process. Our last example deals with non-
intersecting k-flats. The result generalizes Example 1 in [29] and one of the results
in [30] to arbitrary distance powers a > 0.

3.1 Voronoi Tessellations

For a finite set � ¤ ; of points in R
d, d � 2, the Voronoi cell v�.x/ with nucleus

x 2 � is the (possibly unbounded) set

v�.x/ D
˚
z 2 R

d W kx � zk � kx0 � zk for all x0 2 � n fxg�

of all points in R
d having x as their nearest neighbor in �. The family

V� D fv�.x/ W x 2 �g

subdivides Rd into a finite number of random polyhedra, which form the so-called
Voronoi tessellation associated with �, see [27, Chap. 10.2]. For � D ;we put V; D
fRdg. One characteristic measuring the size of a Voronoi cell v�.x/ is its nucleus-
centered inradius R.x; �/. It is defined as the radius of the largest ball included in
v�.x/ and having x as its midpoint. Note that R.x; �/ takes the value1 if � D fxg.
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Define

R.V�/ WD minfR.x; �/ W x 2 �g

for nonempty � and R.V;/ WD 1.
In [5] the asymptotic behavior of R.V�/ has been investigated in the case that

� is a Poisson point process in a convex body K of intensity t > 0, as t ! 1.
Using Corollary 1 we can get back one of the main results of [5] and add a rate
of convergence to the limit theorem (compare with [5, Eq. (2b)] in particular).
Moreover, we provide a similar result for an underlying binomial point process.

Corollary 3 Let �t be a Poisson point process with intensity measure t`djK, where
`djK stands for the restriction of the Lebesgue measure to a convex body K and
t > 0. Then, there exists a constant C > 0 depending on K such that

ˇ̌
ˇP


t2=dR.V�t / > y

� � e�2d�1�d`d.K/yd
ˇ̌
ˇ � C t�2=d maxfydC1; y2dg

for all y � 0 and t � 1. In addition, if �n is a binomial point process with n � 2

independent points distributed according to `d.K/�1 `djK, then

ˇ̌
ˇP


n2=dR.V�n/ > y

�� e�2d�1�d`d.K/yd
ˇ̌
ˇ � C n�2=d maxfyd; y2dg

for y � 0 and with a constant C > 0 depending on K.

Proof To apply Corollary 1 we first have to investigate ˛t.y/ for fixed y > 0. For this
we abbreviate V�t by Vt and observe that—by definition of a Voronoi cell—R.Vt/ is
half of the minimal interpoint distance of points from �t, i.e.

R.Vt/ D 1

2
min

˚kx1 � x2k W .x1; x2/ 2 �2t;¤g :

Consequently, we have

˛t.y/ D t2

2

Z

K

Z

K

1fkx1 � x2k � 2yt��g dx2 dx1

D t2

2

Z

Rd

`d.K \ Bd
2yt�� .x1// dx1 � t2

2

Z

RdnK
`d.K \ Bd

2yt�� .x1// dx1 ;

where Bd
r .x/ is the d-dimensional ball of radius r > 0 around x 2 R

d. From
Theorem 5.2.1 in [27] (see Eq. (14) in particular) it follows that

t2

2

Z

Rd

Vd.K \ Bd
2yt�� .x1// dx1 D t2

2
`d.K/ �d.2yt�� /d D 2d�1`d.K/�dydt2��d :
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Moreover, Steiner’s formula [27, Eq. (14.5)] yields

t2

2

Z

RdnK
`d.K \ Bd

2yt�� .x1// dx1

� �d

2
t2.2yt�� /d `d

��
z 2 R

d n K W inf
z02K
kz � z0k � 2yt��

�

D �d

2
t2.2yt�� /d

d�1X

jD0
�d�jVj.K/.2yt�� /d�j ;

where V0.K/; : : : ;Vd�1.K/ are the so-called intrinsic volumes of K, see [11] or [27].
Choosing � D 2=d, this implies that ˛t.y/ is dominated by its first integral term and
that

ˇ̌
˛t.y/� 2d�1�d`d.K/y

d
ˇ̌ � c1 t�2=d maxfydC1; y2dg

for t � 1 with a constant c1 only depending on K.
Finally, we have to deal with rt.y/. Here, we have

rt.y/ D t3
Z

K

�Z

K

1fkx � yk � 2yt��g dy

�2
dx

� t3`d.K/ .t
�2�d2

dyd/2 D `d.K/ 4
d�2d y2dt�1 :

In the binomial case, one can derive analogous bounds for ˛n.y/ and rn.y/, y > 0.
Since min.2=d; 1/ D 2=d for all d � 2, application of Corollaries 1 and 2 completes
the proof. ut
Remark 4 We have used in the proof that R.V�t / is half of the minimal inter-point
distance between points of �t in K. Thus, Corollary 3 also makes a statement about
this minimal inter-point distance. Consequently, 2R.V�t/ is also the same as the
shortest edge length of a random geometric graph based on �t as discussed in the
introduction (cf. [25] and [22] for an exhaustive reference on random geometric
graphs) or as the shortest edge length of a Delaunay graph (see [11] or [6, 27]
for background material on Delaunay graphs or tessellations). A similar comment
applies if �t is replaced by a binomial point process �n.

3.2 Hyperplane Tessellations

Let H be the space of hyperplanes in R
d, fix a distance parameter r � 1 and a

convex body K � R
d, and define as in [12, Sect. 3.4.5] a (finite) measure � on H
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by the relation

Z

H

g.H/ �.dH/ D
Z

Sd�1

1Z

0

g.u? C pu/1f.u?C pu/\ K ¤ ;g pr�1 dp du ;

where g � 0 is a measurable function on H, u? is the linear subspace of all
vectors that are orthogonal to u, and du stands for the infinitesimal element of the
normalized Lebesgue measure on the .d�1/-dimensional unit sphere Sd�1. By �t we
mean in this section a Poisson point process on H with intensity measure �t WD t�,
t > 0. Let us further write for n 2 N with n � d C 1, �n for a binomial process on
H consisting of n 2 N hyperplanes distributed according to the probability measure
�.H/�1 �.

If K D R
d in the Poisson case, one obtains a tessellation of the whole R

d into
bounded cells. In this context one is interested in the so-called zero cell Z0, which
is the almost surely uniquely determined cell containing the origin. If r D 1, Z0
has the same distribution as the zero-cell of a rotation- and translation-invariant
Poisson hyperplane tessellation. If r D d, Z0 is equal in distribution to the so-called
typical cell of a Poisson–Voronoi tessellation as considered in the previous section,
see [27]. Thus, the tessellation induced by �t interpolates in some sense between
the translation-invariant Poisson hyperplane and the Poisson–Voronoi tessellation,
which explains the recent interest in this model [8, 9, 12]. For more background
material about random tessellations (and in particular Poisson hyperplane and
Poisson–Voronoi tessellations) we refer to Chap. 10 in [27] and Chap. 9 in [6] and
also to [11].

We are interested here in the simplices generated by the hyperplanes of �t

or �n, which are contained in the prescribed convex set K. For a .d C 1/-tuple
.H1; : : : ;HdC1/ of distinct hyperplanes of �t or �n let us write ŒH1; : : : ;HdC1	 for
the simplex generated by H1; : : : ;HdC1 and define the point processes

�t WD 1

.dC 1/Š
X

.H1;:::;HdC1/2�dC1
t;¤

ı`d.ŒH1;:::;HdC1	/ 1
˚
ŒH1; : : : ;HdC1	 � K

�

and

O�n WD 1

.dC 1/Š
X

.H1;:::;HdC1/2�dC1
n;¤

ı`d.ŒH1;:::;HdC1	/ 1
˚
ŒH1; : : : ;HdC1	 � K

�
:

By M.m/
t and bM.m/

n we mean the mth order statistics associated with �t and O�n,
respectively. In particular M.1/

t and bM.1/
n are the smallest volume of a simplex

included in K. Moreover, for fixed hyperplanes H1; : : : ;Hd in general position let
z.H1; : : : ;Hd/ WD H1 \ : : : \ Hd be the intersection point of H1; : : : ;Hd. By Hı;u

we denote the hyperplane with unit normal vector u 2 S
d�1 and distance ı > 0 to
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the origin. The following result generalizes [29, Theorem 2.6] from the translation-
invariant case r D 1 to arbitrary distance parameter r � 1.

Corollary 4 Define

ˇ WD 1

.dC 1/Š
Z

Hd

Z

Sd�1

1fH1 \ : : : \ Hd \ K ¤ ;g juTz.H1; : : : ;Hd/jr�1

� `d.ŒH1; : : : ;Hd; z.H1; : : : ;Hd/C H1;u	/
�1=d du�d.d.H1; : : : ;Hd// :

Then td.dC1/�t and nd.dC1/ O�n converge, as t ! 1 or n ! 1, in distribution to a
Poisson point process on RC with intensity measure given by

B 7! ˇ

d

Z

B

u.1�d/=d du

for Borel sets B � RC. In particular, for each m 2 N, td.dC1/M.m/
t and nd.dC1/bM.m/

n

converge towards a random variable with survival function

y 7! exp

 � ˇ y1=d

� m�1X

iD0

.ˇy1=d/i

iŠ
; y � 0 :

Proof For y > 0 we have

˛t.y/ D tdC1

.dC 1/Š
Z

HdC1

1fŒH1; : : : ;HdC1	 � Kg

� 1f`d.ŒH1; : : : ;HdC1	/ � yt�� g�dC1.d.H1; : : : ;HdC1// :

For fixed hyperplanes H1; : : : ;Hd in general position we parametrize HdC1 by a pair
.ı; u/ 2 Œ0;1/�Sd�1, where ı is the distance of HdC1 to the origin. Then ˛t.y/ can
be rewritten as

˛t.y/ D 1

2.dC 1/Š
Z

Hd

Z

Sd�1

1Z

�1
tdC11fŒH1; : : : ;Hd;Hı;u	 � Kg

� 1f`d.ŒH1; : : : ;Hd;Hı;u	/ � yt�� gjıjr�1 dı du�d.d.H1; : : : ;Hd// :
(6)

Since the hyperplane Hı;u has the distance juTz.H1; : : : ;Hd/ � ıj to z.H1; : : : ;Hd/,
we have that

`d.ŒH1; : : : ;Hd;Hı;u	/

D juTz.H1; : : : ;Hd/� ıjd `d.ŒH1; : : : ;Hd; z.H1; : : : ;Hd/C H1;u	/ :
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Let � D d.dC 1/ and M WD maxfkzkr�1 W z 2 Kg. For fixed H1; : : : ;Hd 2 Hd such
that H1 \ : : : \ Hd \ K ¤ ; and u 2 S

d�1 we can estimate the inner integral in (6)
from above by

M

1Z

�1
tdC11fjuTz.H1; : : : ;Hd/� ıjd

`d.ŒH1; : : : ;Hd; z.H1; : : : ;Hd/C H1;u	/ � yt�� g dı

� 2M `d.ŒH1; : : : ;Hd; z.H1; : : : ;Hd/C H1;u	/
�1=d y1=d:

The hyperplanes H1 � z.H1; : : : ;Hd/; : : : ;Hd � z.H1; : : : ;Hd/ partition the unit
sphere S

d�1 into 2d spherical caps S1; : : : ; S2d . For each u 2 Sj (1 � j � 2d),
transformation into spherical coordinates shows that

`d.ŒH1; : : : ;Hd; z.H1; : : : ;Hd/C H1;u	/ � cd `d�1.Sj/ ;

where cd > 0 is a dimension dependent constant and `d�1.Sj/ is the spherical
Lebesgue measure of Sj. Consequently, we have

˛t.y/ � M

.dC 1/Š
Z

Hd

1fH1 \ : : : \Hd \ K ¤ ;g

�
2dX

jD1

Z

Sj

�
y

cd `d�1.Sj/

�1=d

du�d.d.H1; : : : ;Hd//

� M

.dC 1/Š
Z

Hd

1fH1 \ : : : \Hd \ K ¤ ;g

�
2dX

jD1
`d�1.Sj/

�
y

cd `d�1.Sj/

�1=d

�d.d.H1; : : : ;Hd// :

Since the last expression is finite, we can apply the dominated convergence theorem
in (6). By the same arguments we used to obtain an upper bound for the inner
integral in (6), we see that, for H1; : : : ;Hd 2 Hd and u 2 S

d�1,

lim
t!1

1Z

�1
tdC11 fŒH1; : : : ;Hd;Hı;u	 � Kg1 f`d.ŒH1; : : : ;Hd;Hı;u	/ � yt�� g jıjr�1 dı

D 21 fH1 \ : : : \Hd \ K ¤ ;g `d.ŒH1; : : : ;Hd; z.H1; : : : ;Hd/C H1;u	/
�1=d

� juTz.H1; : : : ;Hd/jr�1y1=d :
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Altogether, we obtain that

lim
t!1˛t.y/ D ˇy1=d :

By the same estimates as above, we have that, for any ` 2 f1; : : : ; dg,

t`
Z

H`

�
tdC1�`

Z

HdC1�`

1fŒH1; : : : ;HdC1	 � H;Vd.ŒH1; : : : ;HdC1	/ � yt�� g

�dC1�`
d.H`C1; : : : ;HdC1/
��2

�`


d.H1; : : : ;H`/

�

� t`
Z

H`

�
Mt�`

Z

Hd�`

Z

Sd�1

1fH1 \ : : : \Hd \ K ¤ ;g y1=d

`d


ŒH1; : : : ;Hd; z.H1; : : : ;Hd/C H1;u	

��1=d
du�d�`
d.H`C1; : : : ;Hd/

��2

�`


d.H1; : : : ;H`/

�
:

Hence, rt.y/! 0 as t !1 so that application of Corollary 1 completes the proof
of the Poisson case. The result for an underlying binomial point process follows
from similar estimates and Corollary 2. ut
Remark 5 Although Corollary 1 or Corollary 2 deliver a rate of convergence, we
cannot provide such rate for this particular example. This is due to the fact that
the exact asymptotic behavior of ˛t.y/ or ˛n.y/ depends in a delicate way on the
smoothness behavior of the boundary of K.

Corollary 4 admits a nice interpretation in the planar case d D 2. Namely, the
smallest triangle contained in K coincides with the smallest triangular cell included
in K of the line tessellation induced by �t or �n (note that this argument fails in
higher dimensions). This way, Corollary 4 also makes a statement about the area of
small triangular cells, which generalizes Corollary 2.7 in [29] from the translation-
invariant case r D 1 to arbitrary distance parameters r � 1:

Corollary 5 Denote by At or An the area of the smallest triangular cell in K of a
line tessellation generated by a Poisson line process �t or a binomial line process
�n with distance parameter r � 1, respectively. Then t6At and n6An both converge
in distribution, as t ! 1 or n ! 1, to a Weibull random variable with survival
function y 7! exp.�ˇ y1=2/, y � 0, where ˇ is as in Corollary 4.
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3.3 Flat Triangles

So-called ley lines are expected alignments of a set of locations that are of
geographical and/or historical interest, such as ancient monuments, megaliths and
natural ridge-tops [4]. For this reason, there is some interest in archaeology, for
example, to test a point pattern on spatial randomness against an alternative favoring
collinearities. We carry out this program in case of a planar Poisson or binomial
point process and follow [31, Sect. 5], where the asymptotic behavior of the number
of so-called flat triangles in a binomial point process has been investigated.

Let K be a convex body in the plane and let � be a probability measure on
K which has a continuous density ' with respect to the Lebesgue measure `2jK
restricted to K. By �t we denote a Poisson point process with intensity measure
�t WD t�, t > 0, and by �n a binomial process of n � 1 points which are independent
and identically distributed according to �. For a triple .x1; x2; x3/ of distinct points
of �t or �n we let �.x1; x2; x3/ be the largest angle of the triangle formed by x1; x2
and x3. We can now build the point processes

�t WD 1

6

X

.x1;x2;x3/2�3t;¤
ı���.x1;x2;x3/

and

O�n WD 1

6

X

.x1;x2;x3/2�3n;¤
ı���.x1;x2;x3/

on the positive real half-line. The interpretation is as follows: if for a triple
.x1; x2; x3/ in �3t;¤ or �3n;¤ the value ���.x1; x2; x3/ is small, then the triangle formed
by these points is flat in the sense that its height on the longest side is small.

Corollary 6 Define

ˇ WD
Z

K

Z

K

1Z

0

s.1 � s/ '.sx1 C .1� s/x2/ kx1 � x2k2 ds�.dx1/ �.dx2/:

Further assume that the density ' is Lipschitz continuous. Then the rescaled point
processes t3�t and n3 O�n both converge in distribution to a homogeneous Poisson
point process on RC with intensity ˇ, as t ! 1 or n ! 1, respectively. In
addition, there is a constant Cy > 0 depending on K, ' and y such that

ˇ̌
ˇ̌
ˇP.t

3M.m/
t > y/ � e�ˇy

m�1X

iD0

.ˇy/i

iŠ

ˇ̌
ˇ̌
ˇ � Cy t�1
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and

ˇ̌
ˇ̌
ˇP.n

3M.m/
n > y/ � e�ˇy

m�1X

iD0

.ˇy/i

iŠ

ˇ̌
ˇ̌
ˇ � Cy n�1

for all t � 1, n � 3 and m 2 N.

Proof To apply Corollary 1 we have to consider the limit behavior of ˛t.y/ and rt.y/
for fixed y > 0, as t!1. For x1; x2 2 K and " > 0 define A.x1; x2; "/ as the set of
all x3 2 K such that � � �.x1; x2; x3/ � ". Then we have

˛t.y/ D t3

6

Z

K

Z

K

Z

K

1fx3 2 A.x1; x2; yt�� /g '.x1/'.x2/'.x3/ dx3 dx2 dx1 :

Without loss of generality we can assume that x3 is the vertex adjacent to the largest
angle. We indicate this by writing x3 D LA.x1; x2; x3/. We parametrize x3 by its
distance h to the line through x1 and x2 and the projection of x3 onto that line, which
can be represented as sx1 C .1 � s/x2 for some s 2 Œ0; 1	. Writing x3 D x3.s; h/, we
obtain that

˛t.y/ D t3

2

Z

K

Z

K

1Z

0

1Z

�1
1fx3.s; h/ 2 A.x1; x2; yt�� /; x3 D LA.x1; x2; x3/g

� '.x1/'.x2/'.x3.s; h//kx1 � x2k dh ds dx2 dx1 :

The sum of the angles at x1 and x2 is given by

arctan.jhj=.skx1 � x2k//C arctan.jhj=..1� s/kx1 � x2k// :

Using, for x � 0, the elementary inequality x � x2 � arctan x � x, we deduce that

jhj
s.1 � s/kx1 � x2k �

h2

s2.1 � s/2kx1 � x2k2
� arctan.jhj=.skx1 � x2k//C arctan.jhj=..1� s/kx1 � x2k//

� jhj
s.1 � s/kx1 � x2k :

Consequently, � � �.x1; x2; x3.s; h// � yt�� is satisfied if

jhj � s.1 � s/kx1 � x2kyt��
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and cannot hold if

jhj � s.1 � s/kx1 � x2k.yt�� C 2y2t�2� /

and t is sufficiently large. Let Ay;t be the set of all x1; x2 2 K such that

Bd
tan.t�� y=2/kx1�x2k.x1/; Bd

tan.t�� y=2/kx1�x2k.x2/ � K :

Now the previous considerations yield that, for t sufficiently large and .x1; x2/ 2 Ay;t,

t3

2

1Z

0

1Z

�1
1fx3.s; h/ 2 A.x1; x2; yt�� /; x3.s; h/ D LA.x1; x2; x3/g

� kx1 � x2k'.x1/'.x2/'.x3.s; h// dh ds

D t3
1Z

0



s.1 � s/kx1 � x2kyt�� C R.x1; x2; s/

�kx1 � x2k

� '.x1/'.x2/'.sx1 C .1� s/x2/ ds

C t3

2

1Z

0

1Z

�1
1fx3.s; h/ 2 A.x1; x2; yt�� /; x3.s; h/ D LA.x1; x2; x3/gkx1 � x2k

� '.x1/'.x2/


'.x3.s; h// � '.sx1 C .1 � s/x2/

�
dh ds

with R.x1; x2; s/ satisfying the estimate jR.x1; x2; s/j � 2s.1�s/kx1�x2ky2t�2� . For
.x1; x2/ 62 Ay;t the right hand-side is an upper bound. The choice � D 3 leads to

j˛t.y/� ˇyj

�
Z

K2nAy;t

1Z

0

s.1 � s/kx1 � x2k2y '.x1/'.x2/'.sx1 C .1 � s/x2/ ds d.x1; x2/

C 2t�3
Z

K2

1Z

0

s.1 � s/y2kx1 � x2k2 '.x1/'.x2/'.sx1 C .1 � s/x2/ ds d.x1; x2/

C t3

2

Z

K2

1Z

0

1Z

�1
1fx3.s; h/ 2 A.x1; x2; yt�� /gkx1 � x2k'.x1/'.x2/

� ˇ̌'.x3.s; h//� '.sx1 C .1 � s/x2/
ˇ̌
dh ds d.x1; x2/ :
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Note that `22.K n Ay;t/ is of order t�3 so that the first integral on the right-hand side
is of the same order. By the Lipschitz continuity of the density ' there is a constant
C' > 0 such that

j'.x3.s; h//� '.sx1 C .1 � s/x2/j � C'h :

This implies that the third integral is of order t�3. Combined with the fact that also
the second integral above is of order t�3, we see that there is a constant Cy;1 > 0

such that

j˛t.y/ � ˇyj � Cy;1t
�3

for t � 1.
For given x1; x2 2 K, we have that

Z

K

1fx3 2 A.x1; x2; yt�� /g '.x3/ dx3 � M
Z

K

1fx3 2 A.x1; x2; yt�� /g dx3

with M D supz2K '.z/. By the same arguments as above, we see that the integral
over all x3 such that the largest angle is adjacent to x3 is bounded by

M

1Z

0

s.1 � s/kx1 � x2kyt�3 C 2s.1� s/kx1 � x2ky2t�6ds

� 2Mdiam.K/.yt�3 C 2y2t�6/ ;

where diam.K/ stands for the diameter of K. The maximal angle is at x1 or x2 if
x3 is contained in the union of two cones with opening angle 2t�3y and apices at
x1 and x2, respectively. The integral over these x3 is bounded by 2Mdiam.K/2t�3y.
Altogether, we obtain that

Z

K

1fx3 2 A.x1; x2; yt�� /g'.x3/ dx3

� 2Mdiam.K/.yt�3 C 2y2t�6/C 2Mdiam.K/2yt�3:

This estimate implies that, for any ` 2 f1; 2g,

t`
Z

K`

�
t3�`

Z

K3�`

1fx3 2 A.x1; x2; yt�3/g�3�`.d.K`C1; : : : ;K3//
�2
�`.d.K1; : : : ;K`//

� t6�`.M`2.K//4�`


2Mdiam.K/.yt�3 C 2y2t�6/C 2Mdiam.K/2yt�3

�2
:
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Since the upper bound behaves like t�` for t � 1, there is a constant Cy;2 > 0 such
that

rt.y/ � Cy;2t
�1

for t � 1. Now an application of Corollary 1 concludes the proof in case of an
underlying Poisson point process. The binomial case can be handled similarly using
Corollary 2. ut
Remark 6 We have assumed that the density ' is Lipschitz continuous. If this is not
the case, one can still show that the rescaled point processes t3�t and n3 O�n converge
in distribution to a homogeneous Poisson point process on RC with intensity ˇ.
However, we are then no more able to provide a rate of convergence for the
associated order statistics M.m/

t .

Remark 7 In [31, Sect. 5] the asymptotic behavior of the number of flat triangles
in a binomial point process has been investigated, while our focus here was on
the angle statistic of such triangles. However, these two random variables are
asymptotically equivalent so that Corollary 6 also delivers an alternative approach
to the results in [31]. In addition, it allows to deal with an underlying Poisson point
process, where it provides rates of convergence in the case of a Lipschitz density.

3.4 Non-Intersecting k-Flats

Fix a space dimension d � 3 and let k � 1 be such that 2k < d. By G.d; k/ let
us denote the space of k-dimensional linear subspaces of R

d, which is equipped
with a probability measure & . In what follows we shall assume that & is absolutely
continuous with respect to the Haar probability measure on G.d; k/. The space of k-
dimensional affine subspaces of Rd is denoted by A.d; k/ and for t > 0 a translation-
invariant measure �t on A.d; k/ is defined by the relation

Z

A.d;k/

g.E/ �t.dE/ D t
Z

G.d;k/

Z

L?

g.LC x/ `d�k.dx/ &.dL/ ; (7)

where g � 0 is a measurable function on A.d; k/. We will use E and F to indicate
elements of A.d; k/, while L and M will stand for linear subspaces in G.d; k/, see [11,
formula (1)] in this book. We also put � D �1. For two fixed k-flats E;F 2 A.d; k/
we denote by d.E;F/ D inffkx1 � x2k W x1 2 E; x2 2 Fg the distance of E and
F. For almost all E and F it is realized by two uniquely determined points xE 2 E
and xF 2 F, i.e. d.E;F/ D kxE � xFk, and we let m.E;F/ WD .xE C xF/=2 be the
midpoint of the line segment joining xE with xF .

Let K � R
d be a convex body and let �t be a Poisson point process on A.d; k/

with intensity measure�t as defined in (7). We will speak about �t as a Poisson k-flat
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process and denote, more generally, the elements of A.d; k/ or G.d; k/ as k-flats. We
will not treat the binomial case in what follows since the measures �t are not finite.
We notice that in view of [27, Theorem 4.4.5 (c)] any two k-flats of �t are almost
surely in general position, a fact which from now on will be used without further
comment.

Point processes of k-dimensional flats in R
d have a long tradition in stochastic

geometry and we refer to [6] or [27] as well as to [11] for general background
material. Moreover, we mention the works [10, 26], which deal with distance
measurements and the so-called proximity of Poisson k-flat processes and are close
to what we consider here. While in these papers only mean values are considered,
we are interested in the point process �t on RC defined by

�t WD 1

2

X

.E;F/2�2t;¤
ıd.E;F/a 1fm.E;F/ 2 Kg

for a fixed parameter a > 0. A particular case arises when a D 1. Then M.1/
t ,

for example, is the smallest distance between two k-flats from �t that have their
midpoint in K.

Corollary 7 Define

ˇ D `d.K/

2
�d�2k

Z

G.d;k/

Z

G.d;k/

ŒL;M	 &.dL/&.dM/ ;

where ŒL;M	 is the 2k-dimensional volume of a parallelepiped spanned by two
orthonormal bases in L and M. Then, as t ! 1, t2a=.d�2k/�t converges in
distribution to a Poisson point process on RC with intensity measure

B 7! .d � 2k/
ˇ

a

Z

B

u.d�2k�a/=a du ; B � RC Borel :

Moreover, there is a constant C > 0 depending on K, & and a such that

ˇ̌
ˇ̌
ˇP.t

2a=.d�2k/M.m/
t > y/� exp


�ˇy.d�2k/=a
� m�1X

iD1



ˇy.d�2k/=a

�i

iŠ

ˇ̌
ˇ̌
ˇ

� C .y2.d�2k/=a C yd�kC2.d�2k/=a/ t�1

for any t � 1, y � 0 and m 2 N.
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Proof For y > 0 and t > 0 we have that

˛t.y/ D t2

2

Z

A.d;k/

Z

A.d;k/

1fd.E;F/ � y1=at��=a; m.E;F/ 2 Kg�.dE/�.dF/ :

We abbreviate ı WD y1=at��=a and evaluate the integral

I WD
Z

A.d;k/

Z

A.d;k/

1fd.E;F/ � ı; m.E;F/ 2 Kg�.dE/�.dF/ :

For this, we define V WD E C F and U WD V? and write E and F as E D L C x1
and F D M C x2 with L;M 2 G.d; k/ and x1 2 L?, x2 2 M?. Applying now
the definition (7) of the measure � and arguing along the lines of the proof of
Theorem 4.4.10 in [27], we arrive at the expression

I D
Z

G.d;k/

Z

G.d;k/

Z

U

Z

U

ŒL;M	 `2k

�
K \

�
V C

�
x1 C x2
2

���

� 1fkx1 � x2k � ıg `d�2k.dx1/`d�2k.dx2/&.dL/&.dM/ :

Substituting u D x1 � x2, v D .x1 C x2/=2 (a transformation having Jacobian equal
to 1), we find that

I D
Z

G.d;k/

Z

G.d;k/

Z

U

Z

U

ŒL;M	 `2k


K \ .V C v/�1fkuk � ıg

`d�2k.du/`d�2k.dv/&.dL/&.dM/ :

(8)

Since U has dimension d � 2k, transformation into spherical coordinates in U gives

Z

U

1.kuk � ı/ du D .d � 2k/�d�2k

ıZ

0

rd�2k�1 dr D �d�2kı
d�2k :

Moreover,

Z

U

`2k


K \ .V C v/� `d�2k.dv/ D `d.K/
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since V D U?. Combining these facts with (8) we find that

I D ıd�2k `d.K/ �d�2k

Z

G.d;k/

Z

G.d;k/

ŒL;M	 &.dL/&.dM/

and that

˛t.y/ D 1

2
`d.K/ �d�2k y.d�2k/=a t2��.d�2k/=a

Z

G.d;k/

Z

G.d;k/

ŒL;M	 &.dL/&.dM/ :

Consequently, choosing � D 2a=.d � 2k/ we have that

˛t.y/ D ˇy.d�2k/=a :

For the remainder term rt.y/ we write

rt.y/ D t
Z

A.d;k/

�
t
Z

A.d;k/

1fd.E;F/a � yt�� ; m.E;F/ 2 Kg�.dF/

�2
�.dE/ :

This can be estimated along the lines of the proof of Theorem 3 in [30]. Namely,
using that Œ � ; � 	 � 1 and writing diam.K/ for the diameter of K, we find that

rt.y/ � t�d�k.diam.K/C 2t��y/d�k
Z

G.d;k/

�
t
Z

G.d;k/

Z

.LCM/?

1fkxka � yt��g

��k.diam.K/=2/k `d�2k.dx/&.dM/

�2
&.dL/

� t�d�k.diam.K/C 2t��y/d�k


t�d�2k.yt�� /.d�2k/=a�k.diam.K/=2/k

�2

D �d�k.diam.K/C 2t�2a=.d�2k/y/d�k�2d�2k�
2
k .diam.K/=2/2k y2.d�2k/=a t�1 ;

where we have used that � D 2a=.d � 2k/. This puts us in the position to apply
Corollary 1, which completes the proof. ut
Remark 8 A particularly interesting case arises when the distribution & coincides
with the Haar probability measure on G.d; k/. Then the double integral in the
definition of ˇ in Corollary 7 can be evaluated explicitly, namely we have

Z

G.d;k/

Z

G.d;k/

ŒL;M	 &.dL/&.dM/ D

d�k

k

�
�2d�k
d

k

�
�d�d�2k

according to [13, Lemma 4.4].
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Remark 9 Corollary 7 generalizes Theorem 4 in [30] (where the case a D 1 has
been investigated) to general length-powers a > 0. However, it should be noticed
that the set-up in [30] slightly differs from the one here. In [30] the intensity
parameter t was kept fixed, whereas the set K was increased by dilations. But
because of the scaling properties of a Poisson k-flat process and the a-homogeneity
of d.E;F/a, one can translate one result into the other. Moreover, we refer to [14]
for closely related results including directional constraints.

Remark 10 In [29] a similar problem has been addressed in the case where &
coincides with the Haar probability measure on G.d; k/. For a pair .E;F/ 2 �2t;¤
satisfying E\K ¤ ; and F\K ¤ ;, the distance between E and F was measured by

dK.E;F/ D inffkx1 � x2k W x1 2 E \ K; x2 2 F \ Kg;

and it has been shown in Theorem 2.1 ibidem that the associated point process

�t WD 1

2

X

.E;F/2�2t;¤
ıdK .E;F/ 1fE \ K ¤ ;; F \ K ¤ ;g

converges, after rescaling with t2=.d�2k/, towards the same Poisson point process as
in Corollary 7 when & is the Haar probability measure on G.d; k/ and a D 1.

4 Proofs of the Main Results

4.1 Moment Formulas for Poisson U-Statistics

We call a Poisson functional S of the form

S D
X

.x1;:::;xk/2�k
t;¤

f .x1; : : : ; xk/

with k 2 N0 WD N[f0g and f W Xk ! R a U-statistic of order k of �t, or a Poisson U-
statistic for short (see [17]). For k D 0 we use the convention that f is a constant and
S D f . In the following, we always assume that f is integrable. Moreover, without
loss of generality we assume that f is symmetric since we sum over all permutations
of a fixed k-tuple of points in the definition of S.

In order to compute mixed moments of Poisson U-statistics, we use the following
notation. For ` 2 N and n1; : : : ; n` 2 N0 we define N0 D 0, Ni D Pi

jD1 nj; i 2
f1; : : : ; `g, and

Ji D
(
fNi�1 C 1; : : : ;Nig; Ni�1 < Ni

;; Ni�1 D Ni

; i 2 f1; : : : ; `g:
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Let ˘.n1; : : : ; n`/ be the set of all partitions � of f1; : : : ;N`g such that for any
i 2 f1; : : : ; `g all elements of Ji are in different blocks of � . By j� j we denote
the number of blocks of � . We say that two blocks B1 and B2 of a partition � 2
˘.n1; : : : ; n`/ intersect if there is an i 2 f1; : : : ; `g such that B1 \ Ji ¤ ; and
B2 \ Ji ¤ ;. A partition � 2 ˘.n1; : : : ; n`/ with blocks B1; : : : ;Bj� j belongs to
Q̆ .n1; : : : ; n`/ if there are no nonempty sets M1;M2 � f1; : : : ; j� jg with M1\M2 D
; and M1 [ M2 D f1; : : : ; j� jg such that for any i 2 M1 and j 2 M2 the blocks Bi

and Bj do not intersect. Moreover, we define

˘¤.n1; : : : ; n`/ D f� 2 ˘.n1; : : : ; n`/ W j� j > minfn1; : : : ; n`gg:
If there are i; j 2 f1; : : : ; `g with ni ¤ nj, we have˘¤.n1; : : : ; n`/ D ˘.n1; : : : ; n`/.

For � 2 ˘.n1; : : : ; n`/ and f W XN` ! R we define f� W Xj� j ! R as the function
which arises by replacing in the arguments of f all variables belonging to the same
block of � by a new common variable. Since we are only interested in the integral
of this new function in the sequel, the order of the new variables does not matter.
For f .i/ W Xni ! R, i 2 f1; : : : ; `g, let ˝`iD1f .i/ W XN` ! R be given by


˝`iD1 f .i/
�
.x1; : : : ; xN`/ D

Ỳ

iD1
f .i/.xNi�1C1; : : : ; xNi/ :

The following lemma allows us to compute moments of Poisson U-statistics (see
also [23]. Here and in what follows we mean by a Poisson functional F D F.�t/

a random variable only depending on the Poisson point process �t for some fixed
t > 0.

Lemma 1 For ` 2 N and f .i/ 2 L1s .�
ki
t / with ki 2 N0, i D 1; : : : ; `, such that

Z

Xj�j

j
˝`iD1 f .i/
�
�
j d�j� jt <1 for all � 2 ˘.k1; : : : ; k`/ ;

let

Si D
X

.x1;:::;xki /2�ki
t;¤

f .i/.x1; : : : ; xki/; i D 1; : : : ; ` ;

and let F be a bounded Poisson functional. Then

E

h
F
Ỳ

iD1
Si

i
D

X

�2˘.k1;:::;k`/

Z

Xj�j


˝`iD1 f .i/
�
�
.x1; : : : ; xj� j/

� E

2

4F

0

@�t C
j� jX

iD1
ıxi

1

A

3

5 �
j� j
t .d.x1; : : : ; xj� j// :
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Proof We can rewrite the product as

F.�t/
Ỳ

iD1

X

.x1;:::;xki /2�ki
t;¤

f .i/.x1; : : : ; xki/

D
X

�2˘.k1;:::;k`/

X

.x1;:::;xj�j/2�j�j

t;¤


˝`iD1 f .i/
�
�
.x1; : : : ; xj� j/F.�t/

since points occurring in different sums on the left-hand side can be either equal or
distinct. Now an application of the multivariate Mecke formula (see [18, formula
(1.11)]) completes the proof of the lemma. ut

4.2 Poisson Approximation of Poisson U-Statistics

The key argument of the proof of Theorem 1 is a quantitative bound for the Poisson
approximation of Poisson U-statistics which is established in this subsection. From
now on we consider the Poisson U-statistic

SA D 1

kŠ

X

.x1;:::;xk/2�k
t;¤

1f f .x1; : : : ; xk/ 2 Ag ;

where f is as in Sect. 2 and A � R is measurable and bounded. We assume that
k � 2 since SA follows a Poisson distribution for k D 1 (see Sect. 2.3 in [16], for
example). In the sequel, we use the abbreviation

h.x1; : : : ; xk/ WD 1

kŠ
1f f .x1; : : : ; xk/ 2 Ag; x1; : : : ; xk 2 X :

It follows from the multivariate Mecke formula (see [18, formula (1.11)]) that

sA WD EŒSA	 D
Z

Xk

h.x1; : : : ; xk/ �
k
t .d.x1; : : : ; xk// :

In order to compare the distributions of two integer-valued random variables Y and
Z, we use the so-called total variation distance dTV defined by

dTV.Y;Z/ D sup
B�Z

ˇ̌
P.Y 2 B/� P.Z 2 B/

ˇ̌
:
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Proposition 1 Let SA be as above, let Y be a Poisson distributed random variable
with mean s > 0 and define

%A WD max
1�`�k�1

Z

X`

� Z

Xk�`

h.x1; : : : ; xk/ �
k�`
t



d.x`C1; : : : ; xk/

��2
�`t


d.x1; : : : ; x`/

�
:

Then there is a constant C � 1 only depending on k such that

dTV.SA;Y/ � jsA � sj C C min

�
1;
1

sA


%A : (9)

Remark 11 The inequality (9) still holds if Y is almost surely zero (such a Y can be
interpreted as a Poisson distributed random variable with mean s D 0). In this case,
we obtain by Markov’s inequality that

dTV.SA;Y/ D P.SA � 1/ � ESA D sA:

Our proof of Proposition 1 is a modification of the proof of Theorem 3.1 in [21].
It makes use of the special structure of SA and improves of the bound in [21] in case
of Poisson U-statistics. To prepare for what follows, we need to introduce some
facts around the Chen–Stein method for Poisson approximation (compare with [3]).
For a function f W N0 ! R let us define �f .k/ WD f .k C 1/ � f .k/, k 2 N0, and
�2f .k/ WD f .k C 2/ � 2f .kC 1/C f .k/, k 2 N0. For B � N0 let fB be the solution
of the Chen–Stein equation

1fk 2 Bg � P.Y 2 B/ D sf .kC 1/� kf .k/; k 2 N0 : (10)

It is known (see Lemma 1.1.1 in [2]) that fB satisfies

k fBk1 � 1 and k�fBk1 � min

�
1;
1

s


DW "1 ; (11)

where k � k1 is the usual supremum norm.
Besides the Chen–Stein method we need some facts concerning the Malliavin

calculus of variations on the Poisson space (see [18]). First, the so-called integration
by parts formula implies that

EŒ fB.SA/.SA � EŒSA	/	 D E

Z

X

Dx fB.SA/.�DxL�1SA/ �t.dx/ ; (12)

where D stands for the difference operator and L�1 is the inverse of the Ornstein–
Uhlenbeck generator (this step requires that E

R
X
.DxSA/

2 �t.dx/ < 1, which is a
consequence of the calculations in the proof of Proposition 1). The following lemma
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(see Lemma 3.3 in [24]) implies that the difference operator applied to a Poisson U-
statistic leads again to a Poisson U-statistic.

Lemma 2 Let k 2 N, f 2 L1s .�
k
t / and

S D
X

.x1;:::;xk/2�k
t;¤

f .x1; : : : ; xk/ :

Then

DxS D k
X

.x1;:::;xk�1/2�k�1
t;¤

f .x; x1; : : : ; xk�1/ ; x 2 X :

Proof It follows from the definition of the difference operator and the assumption
that f is a symmetric function that

DxS D
X

.x1;:::;xk/2.�tCıx/
k
¤

f .x1; : : : ; xk/�
X

.x1;:::;xk/2�k
t;¤

f .x1; : : : ; xk/

D
X

.x1;:::;xk�1/2�k�1
t;¤



f .x; x1; : : : ; xk�1/C � � � C f .x1; : : : ; xk�1; x/

�

D k
X

.x1;:::;xk�1/2�k�1
t;¤

f .x; x1; : : : ; xk�1/

for x 2 X. This completes the proof. ut
In order to derive an explicit formula for the combination of the difference

operator and the inverse of the Ornstein–Uhlenbeck generator of SA, we define
h` W X` ! R, ` 2 f1; : : : ; kg, by

h`.x1; : : : ; x`/ WD
Z

Xk�`

h.x1; : : : ; x`; Ox1; : : : ; Oxk�`/ �k�`
t .d.Ox1; : : : ; Oxk�`// :

We shall see now that the operator �DL�1 applied to SA can be expressed as a sum
of Poisson U-statistics (see also Lemma 5.1 in [28]).

Lemma 3 For x 2 X,

�DxL�1SA D
kX

`D1

X

.x1;:::;x`�1/2�`�1t;¤

h`.x; x1; : : : ; x`�1/ :
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Proof By Mehler’s formula (see Theorem 3.2 in [20] and also [18, Sect. 1.7]) we
have

�L�1SA D
1Z

0

Z
1

s
E

2
64

X

.x1;:::;xk/2.�.s/t C�/k¤

h.x1; : : : ; xk/ � sA

ˇ̌
�t

3
75P.1�s/�t.d�/ ds

where �.s/t , s 2 Œ0; 1	, is an s-thinning of �t and P.1�s/�t is the distribution of a

Poisson point process with intensity measure .1�s/�t. Note in particular that �.s/t C�
is a Poisson point process with intensity measure s�t C .1 � s/�t D �t. The last
expression can be rewritten as

�L�1SA D
1Z

0

Z
1

s
E
� X

.Ox1;:::;Oxk/2�k
¤

h.Ox1; : : : ; Oxk/� sA

ˇ̌
�t
�
P.1�s/�t.d�/ ds

C
kX

`D1

 
k

`

! 1Z

0

Z
1

s
E
� X

.x1;:::;x`/2.�.s/t /`
¤

X

.Ox1;:::;Oxk�`/2�k�`
¤

h.x1; : : : ; x`; Ox1; : : : ; Oxk�`/
ˇ̌
�t
�
P.1�s/�t.d�/ ds :

By the multivariate Mecke formula (see [18, formula (1.11)]), we obtain for the first
term that

1Z

0

Z
1

s
E

2

64
X

.Ox1;:::;Oxk/2�
k
¤

h.Ox1; : : : ; Oxk/� sA

ˇ̌
�t

3

75 P.1�s/�t .d�/ ds

D
1Z

0

Z
1

s

� X

.Ox1;:::;Oxk/2�
k
¤

h.Ox1; : : : ; Oxk/� sA

�
P.1�s/�t .d�/ ds D

1Z

0

.1 � s/k � 1
s

ds sA :

To evaluate the second term further, we notice that for an `-tuple .x1; : : : ; x`/ 2 �`t;¤
the probability of surviving the s-thinning procedure is s`. Thus

E

2

64
X

.x1;:::;x`/2.�.s/t /`
¤

X

.Ox1;:::;Oxk�`/2�k�`
¤

h.x1; : : : ; x`; Ox1; : : : ; Oxk�`/
ˇ̌
�t

3

75

D s`
X

.x1;:::;x`/2�`t;¤

X

.Ox1;:::;Oxk�`/2�k�`
¤

h.x1; : : : ; x`; Ox1; : : : ; Oxk�`/
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for ` 2 f1; : : : ; kg. This leads to

�L�1SA D
1Z

0

.1 � s/k � 1
s

ds sA

C
kX

`D1

 
k

`

! 1Z

0

Z
s`�1

X

.x1;:::;x`/2�`t;¤

X

.Ox1;:::;Oxk�`/2�k�`
¤

h.x1; : : : ; x`; Ox1; : : : ; Oxk�`/

P.1�s/�t.d�/ ds :

Finally, we may interpret� as .1�s/-thinning of an independent copy of �t, in which
each point has survival probability .1 � s/. Then the multivariate Mecke formula
([18, formula (1.11)]) implies that

�L�1SA D
1Z

0

.1 � s/k � 1
s

ds sA

C
kX

`D1

 
k

`

! 1Z

0

s`�1.1� s/k�` ds
X

.x1;:::;x`/2�`t;¤
h`.x1; : : : ; x`/ :

Together with

1Z

0

s`�1.1 � s/k�` ds D .` � 1/Š.k � `/Š
kŠ

; ` 2 f1; : : : ; kg;

we see that

�L�1SA D sA

1Z

0

.1 � s/k � 1
s

dsC
kX

`D1

1

`

X

.x1;:::;x`/2�`t;¤
h`.x1; : : : ; x`/ :

Applying now the difference operator to the last equation, we see that the first term
does not contribute, whereas the second term can be handled by using Lemma 2.

ut
Now we are prepared for the proof of Proposition 1.

Proof (of Proposition 1) Let YA be a Poisson distributed random variable with mean
sA > 0. The triangle inequality for the total variation distance implies that

dTV.SA;Y/ � dTV.Y;YA/C dTV.YA; SA/ :
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A standard calculation shows that

dTV.Y;YA/ � js� sAj

so that it remains to bound

dTV.YA; SA/ D sup
B�N0
jP.SA 2 B/� P.YA 2 B/j :

For a fixed B � N0 it follows from (10) and (12) that

P.SA 2 B/� P.YA 2 B/ D E ŒsA�fB.SA/� .SA � sA/fB.SA/	

D E

2

4sA�fB.SA/�
Z

X

Dx fB.SA/.�DxL�1SA/ �t.dx/

3

5 :

(13)

Now a straightforward computation using a discrete Taylor-type expansion as in
[21] shows that

Dx fB.SA/ D fB.SA C DxSA/ � fB.SA/

D
DxSAX

kD1



fB.SA C k/� fB.SA C k � 1/�

D
DxSAX

kD1
�fB.SA C k � 1/

D �fB.SA/DxSA C
DxSAX

kD2



�fB.SA C k � 1/��fB.SA/

�
:

Together with (11), we obtain that

ˇ̌
ˇ̌

DxSAX

kD2



�fB.SA C k � 1/��fB.SA/

�ˇ̌ˇ̌ � 2k�fBk1maxf0;DxSA � 1g

� 2"1;A maxf0;DxSA � 1g

with

"1;A WD min
n
1;
1

sA

o
:
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Hence, we have

Dx fB.SA/ D �fB.SA/DxSA C Rx;

where the remainder term satisfies jRxj � 2"1;A maxf0;DxSA�1g. Together with (13)
and �DxL�1SA � 0, which follows from Lemma 3, we obtain that

jP.SA 2 B/� P.YA 2 B/j

�
ˇ̌
ˇ̌
ˇ̌E

2

4sA�fB.SA/ ��fB.SA/

Z

X

DxSA.�DxL�1SA/ �t.dx/

3

5

ˇ̌
ˇ̌
ˇ̌

C 2"1;A
Z

X

EŒmaxf0;DxSA � 1g.�DxL
�1SA/	 �t.dx/ :

(14)

It follows from Lemmas 2 and 3 that

E

2

4�fB.SA/

Z

X

DxSA.�DxL�1SA/ �t.dx/

3

5

D E

2

64�fB.SA.�t//

Z

X

0

B@k
X

.x1;:::;xk�1/2�k�1
t;¤

h.x; x1; : : : ; xk�1/

1

CA

�

0

B@
kX

`D1

X

.x1;:::;x`�1/2�`�1t;¤

h`.x; x1; : : : ; x`�1/

1

CA �t.dx/

3

75 :

Consequently, we can deduce from Lemma 1 that

E

2

4�fB.SA/

Z

X

DxSA.�DxL�1SA/ �t.dx/

3

5

D k
kX

`D1

X

�2˘.k�1;`�1/

Z

Xj�jC1

E

2

4�fB

0

@SA

0

@�t C
j� jX

iD1
ıxi

1

A

1

A

3

5

.h.x; �/˝ h`.x; �//� .x1; : : : ; xj� j/ �j� jC1t .d.x; x1; : : : ; xj� j// :
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For the particular choice ` D k and j� j D k � 1 we have

Z

Xj�jC1

E

2

4�fB

0

@SA

0

@�t C
j�jX

iD1

ıxi

1

A

1

A

3

5
h.x; �/˝ h`.x; �/
�
�
.x1; : : : ; xj�j/

�j�jC1
t .d.x; x1; : : : ; xj�j//

D 1

kŠ

Z

Xk

E

"
�fB

 
SA

 
�t C

k�1X

iD1

ıxi

!!#
h.x1; : : : ; xk/�

k
t .d.x1; : : : ; xk//

D 1

kŠ

Z

Xk

E

"
�fB

 
SA

 
�t C

k�1X

iD1

ıxi

!!
��fB.SA.�t//

#
h.x1; : : : ; xk/�

k
t .d.x1; : : : ; xk//

C 1

kŠ

Z

Xk

E Œ�fB.SA.�t//	 h.x1; : : : ; xk/�
k
t .d.x1; : : : ; xk//

D 1

kŠ

Z

Xk

E

"
�fB

 
SA

 
�t C

k�1X

iD1

ıxi

!!
��fB.SA.�t//

#
h.x1; : : : ; xk/�

k
t .d.x1; : : : ; xk//

C 1

kŠ
E
�
�fB.SA/	sA :

Since there are .k � 1/Š partitions � 2 ˘.k � 1; k � 1/ with j� j D k � 1, we obtain
that

ˇ̌
ˇ̌
ˇ̌E

2

4sA�fB.SA/��fB.SA/

Z

X

DxSA.�DxL�1SA/ �t.dx/

3

5

ˇ̌
ˇ̌
ˇ̌

� k
kX

`D1

X

�2˘¤.k�1;`�1/

Z

Xj�jC1

ˇ̌
ˇ̌
ˇ̌E

2

4�fB

0

@SA

0

@�t C
j� jX

iD1
ıxi

1

A

1

A

3

5

ˇ̌
ˇ̌
ˇ̌

.h.x; �/˝ h`.x; �//� .x1; : : : ; xj� j/ �j� jC1t .d.x; x1; : : : ; xj� j//

C
Z

Xk

ˇ̌
ˇ̌
ˇE
"
�fB

 
SA

 
�t C

k�1X

iD1
ıxi

!!
��fB.SA.�t//

#ˇ̌
ˇ̌
ˇ

h.x1; : : : ; xk/ �
k
t .d.x1; : : : ; xk// :
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Now (11) and the definition of %A imply that, for ` 2 f1; : : : ; kg,

X

�2˘¤.k�1;`�1/

Z

Xj�jC1

ˇ̌
ˇ̌
ˇ̌E

2

4�fB

0

@SA

0

@�t C
j� jX

iD1
ıxi

1

A

1

A

3

5

ˇ̌
ˇ̌
ˇ̌



h.x; �/˝ h`.x; �/

�
�
.x1; : : : ; xj� j/ �j� jC1t .d.x; x1; : : : ; xj� j//

� "1;A j˘¤.k � 1; ` � 1/j%A :

Hence, the first summand above is bounded by

k"1;A

kX

`D1
j˘¤.k � 1; ` � 1/j%A :

By (11) we see that

ˇ̌
ˇ̌
ˇE
"
�fB

 
SA

 
�t C

k�1X

iD1
ıxi

!!
��fB.SA.�t//

#ˇ̌
ˇ̌
ˇ

� 2"1;AE
"

SA

 
�t C

k�1X

iD1
ıxi

!
� SA.�t/

#
;

and the multivariate Mecke formula for Poisson point processes (see [18, formula
(1.11)]) leads to

E

" 
SA

�
�t C

k�1X

iD1
ıxi

	!
� SA.�t/

#

D
X

;¤I�f1;:::;k�1g

kŠ

.k � jIj/Š E
X

.y1;:::;yk�jIj/2�k�jIj
t;¤

h.xI; y1; : : : ; yk�jIj/

D
X

;¤I�f1;:::;k�1g

kŠ

.k � jIj/Š hjIj.xI/ ;

where for a subset I D fi1; : : : ; ijg � f1; : : : ; k � 1g we use the shorthand notation
xI for .xi1 ; : : : ; xij/. Hence,

Z

Xk

ˇ̌
ˇ̌
ˇE
"
�fB

 
SA

 
�t C

k�1X

iD1
ıxi

!!
��fB.SA.�t//

#ˇ̌
ˇ̌
ˇ h.x1; : : : ; xk/ �

k
t .d.x1; : : : ; xk//
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� 2"1;A
Z

Xk

X

;¤I�f1;:::;k�1g
hjIj.xI/

kŠ

.k � jIj/Š h.x1; : : : ; xk/ �
k
t .d.x1; : : : ; xk//

� 2"1;A kŠ.2k�1 � 1/%A :

This implies that

ˇ̌
ˇ̌
ˇ̌E

2

4sA�fB.SA/ ��fB.SA/

Z

X

DxSA.�DxL�1SA/ �t.dx/

3

5

ˇ̌
ˇ̌
ˇ̌

� "1;A
�

k
kX

`D1
j˘¤.k � 1; `� 1/j C 2kŠ.2k�1 � 1/

�
%A DW C1 "1;A%A :

(15)

For the second term in (14) we have

2

Z

X

E
�

maxf0;DxSA � 1g.�DxL
�1SA/

�
�t.dx/

� 2

k

Z

X

E
�

maxf0;DxSA � 1gDxSA
�
�t.dx/

C 2
Z

X

E
�

maxf0;DxSA � 1g jDxL�1SA C DxSA=kj��t.dx/

� 2

k

Z

X

E
�
.DxSA � 1/DxSA

�
�t.dx/

C 2
Z

X

E

hp
DxSA.DxSA � 1/ jDxL�1SA C DxSA=kj

i
�t.dx/

� 3
Z

X

E
�
.DxSA � 1/DxSA

�
�t.dx/C

Z

X

E
�jDxL�1SA C DxSA=kj2��t.dx/ :

It follows from Lemmas 2 and 1 that
Z

X

E
�
.DxSA � 1/DxSA

�
�t.dx/

D
Z

X

k2
X

�2˘.k�1;k�1/

Z

Xj�j

.h.x; �/˝ h.x; �//� d�j� jt �t.dx/� k
Z

Xk

h d�k
t :
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Since there are .k � 1/Š partitions with j� j D k � 1 and for each of them

.h.x; �/˝ h.x; �//�.x1; : : : ; xj� j/ D 1

kŠ
h.x; x1; : : : ; xj� j/ ;

this leads to
Z

X

E
�
.DxSA � 1/DxSA

�
�t.dx/

D k2
X

�2˘¤.k�1;k�1/

Z

X

Z

Xj�j

.h.x; �/˝ h.x; �//� d�j� jt �t.dx/

� k2j˘¤.k � 1; k � 1/j%A :

Lemmas 2 and 3 imply that

DxL�1SA C DxSA=k D �
k�1X

`D1

X

.x1;:::;x`�1/2�`�1t;¤

h`.x; x1; : : : ; x`�1/

so that Lemma 1 yields

Z

X

E
�jDxL

�1SA C DxSA=kj2��t.dx/

D
Z

X

k�1X

i;jD1

X

�2˘.i�1;j�1/

Z

Xj�j

.hi.x; �/˝ hj.x; �//� d�j� jt �t.dx/

�
k�1X

i;jD1
j˘.i � 1; j� 1/j%A :

From the previous estimates, we can deduce that

2"1;A

Z

X

E
�

maxf0;DxSA � 1g.�DxL
�1SA/

�
�t.dx/

� "1
�
3k2j˘¤.k � 1; k � 1/j C

k�1X

i;jD1
j˘.i � 1; j� 1/j

�
%A DW C2 "1;A%A :

(16)
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Combining (14) with (15) and (16) shows that

dTV.SA;Y/ � jsA � sj C .C1 C C2/"1;A%A ;

which concludes the proof. ut
Remark 12 As already discussed in the introduction, the proof of Proposition 1—
the main tool for the proof of Theorem 1—is different from that given in [29].
One of the differences is Lemma 3, which provides an explicit representation for
�DxL�1SA based on Mehler’s formula. We took considerable advantage of this in the
proof of Proposition 1 and remark that the proof of the corresponding result in [29]
uses the chaotic decomposition of U-statistics and the product formula for multiple
stochastic integrals (see [18]). Another difference is that our proof here does not
make use of the estimates established by the Malliavin–Chen–Stein method in [21].
Instead, we directly manipulate the Chen–Stein equation for Poisson approximation
and this way improve the rate of convergence compared to [29] . A different method
to show Theorems 1 and 2 is the content of the recent paper [7].

4.3 Poisson Approximation of Classical U-Statistics

In this section we consider U-statistics based on a binomial point process �n

defined as

SA D 1

kŠ

X

.x1;:::;xk/2�k
n;¤

1f f .x1; : : : ; xk/ 2 Ag ;

where f is as in Sect. 2 and A � R is bounded and measurable. Recall that in the
context of a binomial point process �n we assume that �.X/ D 1. Denote as in the
previous section by sA WD EŒSA	 the expectation of SA. Notice that

sA D .n/k
Z

Xk

h.x1; : : : ; xk/ �
k.d.x1; : : : ; xk// (17)

with h.x1 : : : ; xk/ D .kŠ/�11f f .x1; : : : ; xk/ 2 Ag.
Proposition 2 Let SA be as above and let Y be a Poisson distributed random
variable with mean s > 0 and define

%A WD max
1�`�k�1.n/2k�`

Z

X`

� Z

Xk�`

h.x1; : : : ; xk/ �
k�`.d.x`C1; : : : ; xk//

�2

�`


d.x1; : : : ; x`/

�
:
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Then there is a constant C � 1 only depending on k such that

dTV.SA;Y/ � jsA � sj C C min
n
1;
1

sA

o�
%A C s2A

n

	
:

Proof By the same arguments as at the beginning of the proof of Proposition 1 it
is sufficient to assume that s D sA in what follows. To simplify the presentation we
put N WD fI � f1; : : : ; ng W jIj D kg and rewrite SA as

SA D
X

I2N

1f f .XI/ 2 Ag ;

where X1; : : : ;Xn are i.i.d. random elements in X with distribution � and where XI

is shorthand for .Xi1 ; : : : ;Xik/ if I D fi1; : : : ; ikg. In this situation it follows from
Theorem 2 in [1] that

dTV.S;Y/ �min

�
1;
1

sA

X

I2N

0

B@P. f .XI/ 2 A/2 C
k�1X

rD1

X

J2N
jI\JjDr

P. f .XI/ 2 A/P. f .XJ/ 2 A/

1

CA

Cmin

�
1;
1

sA

X

I2N

k�1X

rD1

X

J2N
jI\JjDr

P. f .XI/ 2 A; f .XJ/ 2 A/ :

Since sA D EŒSA	 D .n/k
kŠ P. f .X1; : : : ;Xk/ 2 A/, we have that

X

I2N

0

B@P. f .XI/ 2 A/2 C
k�1X

rD1

X

J2N
jI\JjDr

P. f .XI/ 2 A/P. f .XJ/ 2 A/

1

CA

D .n/k
kŠ

0

B@
�

kŠ

.n/k
sA

�2
C

k�1X

rD1

X

J2N
jI\JjDr

�
kŠ

.n/k
sA

�2
1

CA

D kŠ

.n/k
s2A

 
1C

k�1X

rD1

 
k

r

! 
n � k

k � r

!!

� kŠ

.n/k
s2A 2

k.n � 1/k�1

� 2kkŠs2A
n

:
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For the second term we find that

X

I2N

k�1X

rD1

X

J2N
jI\JjDr

P. f .XI/ 2 A; f .XJ/ 2 A/

D .n/k
kŠ

k�1X

rD1

 
k

r

! 
n � k

k � r

!
P. f .X1; : : : ;Xk/ 2 A; f .X1; : : : ;Xr;XkC1; : : : ;X2k�r/ 2 A/

� .n/k
kŠ

k�1X

rD1

 
k

r

! 
n � k

k � r

!
.kŠ/2

.n/2k�r
%A

� 2kkŠ %A :

Putting C WD 2kkŠ proves the claim. ut

4.4 Proofs of Theorems 1 and 2 and Corollaries 1 and 2

Proof (of Theorem 1) We define the set classes

I D fI D .a; b	 W a; b 2 R; a < bg

and

V D fV D
n[

iD1
Ii W n 2 N; Ii 2 I; i D 1; : : : ; ng:

From [15, Theorem 16.29] it follows that .t� �t/t>0 converges in distribution to a
Poisson point process � with intensity measure 
 if

lim
t!1P.�t.t

��V/ D 0/ D P.�.V/ D 0/ D exp.�
.V//; V 2 V ; (18)

and

lim
t!1P.�t.t

�� I/ > 1/ D P.�.I/ > 1/ D 1�.1C
.I// exp.�
.I//; I 2 I : (19)

Note that I � V and that every set V 2 V can be represented in the form

V D
n[

iD1
.ai; bi	 with a1 < b1 < � � � < an < bn and n 2 N :
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For V 2 V we define the Poisson U-statistic

SV;t D 1

kŠ

X

.x1;:::;xk/2�k
t;¤

1f f .x1; : : : ; xk/ 2 t��Vg ;

which has expectation

EŒSV;t	 D 1

kŠ
E

X

.x1;:::;xk/2�k
t;¤

1f f .x1; : : : ; xk/ 2 t��Vg

D
nX

iD1

1

kŠ
E

X

.x1;:::;xk/2�k
t;¤

1f f .x1; : : : ; xk/ 2 t�� .ai; bi	g D
nX

iD1
˛t.ai; bi/:

Since �.V/ is Poisson distributed with mean 
.V/ D Pn
iD1 
..ai; bi	/, it follows

from Proposition 1 that

dTV.SV;t; �.V// �
ˇ̌
ˇ̌

nX

iD1
˛t.ai; bi/�

nX

iD1

..ai; bi	/

ˇ̌
ˇ̌C C rt.ymax/

with ymax WD maxfja1j; jbnjg and C � 1. Now, assumptions (2) and (3) yield that

lim
t!1 dTV.SV;t; �.V// D 0 :

Consequently, the conditions (18) and (19) are satisfied so that .t� �t/t>0 converges
in distribution to �. Choosing V D .0; y	 and using the fact that t�M.m/

t > y is
equivalent to S.0;y	;t < m lead to the first inequality in Theorem 1. The second one

follows analogously from V D .�y; 0	 and by using the equivalence of t�M.�m/
t � y

and S.�y;0	;t < m. ut
Proof (of Corollary 1) Theorem 1 with 
 defined as in (5) yields the assertions of
Corollary 1. ut
Proof (of Theorem 2 and Corollary 2) Since the proofs are similar to those of
Theorem 1 and Corollary 1, we skip the details. ut
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U-Statistics on the Spherical Poisson Space

Solesne Bourguin, Claudio Durastanti, Domenico Marinucci,
and Giovanni Peccati

Abstract We review a recent stream of research on normal approximations for
linear functionals and more general U-statistics of wavelets/needlets coefficients
evaluated on a homogeneous spherical Poisson field. We show how, by exploiting
results from Peccati and Zheng (Electron J Probab 15(48):1487–1527, 2010)
based on Malliavin calculus and Stein’s method, it is possible to assess the rate
of convergence to Gaussianity for a triangular array of statistics with growing
dimensions. These results can be exploited in a number of statistical applications,
such as spherical density estimations, searching for point sources, estimation of
variance, and the spherical two-sample problem.

1 Introduction

1.1 Overview

The purpose of this chapter is to review some recent developments concerning com-
putations of Berry–Esseen bounds in two classical statistical frameworks, that is:
linear functionals and U-statistics associated with wavelets coefficients evaluated on
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spherical Poisson fields. These statistics are motivated by some standard problems
in statistical inference, such as: (1) testing for the functional form of an unknown
density function f .�/I (2) estimation of the variance; (3) comparison between two
unknown density functions f .�/ and g.�/ (the so-called two sample problem). While
the former are indeed among the most common (and basic) problems in statistical
inference, we shall investigate their solution under circumstances which are not
standard, for a number of reasons. Firstly, we shall consider the case of directional
data, e.g., we shall assume that the domain of the density functions f .�/ and g.�/ is a
compact manifold, which we shall take for definiteness (and for practical relevance)
to be the unit sphere S

2 � R
3. Note that all the arguments we review can easily

be extended to S
d; d � 2 (or, with more work, to other compact manifolds), but

we shall not pursue these generalizations here for brevity and simplicity. Secondly,
as opposed to most of the existing statistical procedures, we shall focus on “local”
tests, e.g., we shall allow for the possibility that not all the manifold (the sphere)
is observable, but possibly only strict subsets. Finally, and most importantly, we
shall consider classes of “high-frequency” tests, where the number of procedures
to be implemented is itself a function of the number of observations available, in
a manner to be made rigorous later. For all these objectives, but especially for the
latter, the Malliavin–Stein techniques that we shall adopt and describe turn out to
be of the greatest practical importance, as they allow, for instance, to determine
how many joint procedures can be run while maintaining an acceptable Gaussian
approximation for the resulting statistics.

Malliavin–Stein techniques for Poisson processes are discussed in detail in [4]
of this volume. Our specific purpose, in view of the previous considerations, is
to apply and extend the now well-known results of [23, 24] (see also [21]) in
order to deduce bounds that are well adapted to the applications we mentioned,
e.g., those where the dimension of a given statistic increases with the number
of observations. Our principal motivation originates from the implementation of
wavelet systems on the sphere in the framework of statistical analysis for cosmic
rays data. As noted in [7], in these circumstances, when more and more data become
available, a higher number of wavelet coefficients is evaluated, as it is customarily
the case when considering, for instance, thresholding nonparametric estimators. We
shall hence be concerned with sequences of Poisson fields, whose intensity grows
monotonically; it is then possible to exploit local normal approximations, where the
rate of convergence to the asymptotic Gaussian distribution is related to the scale
parameter of the corresponding wavelet transform in a natural and intuitive way.
Moreover, in a multivariate setting the wavelets localization properties are exploited
to establish bounds that grow linearly with the number of functionals considered;
it is then possible to provide explicit recipes, for instance, for the number of joint
testing procedures that can be simultaneously entertained ensuring that the Gaussian
approximation may still be shown to hold, in a suitable sense. These arguments are
presented for both linear and U-statistics; proof for the latter (which are provided
in [5]) are considerably more complicated from the technical point of view, but
remarkably the main qualitative conclusions go through unaltered.
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In Sect. 2 we review some background material and notation on Poisson pro-
cesses, Malliavin–Stein approximations, and spherical wavelets/needlets. In Sect. 3
we review results on linear functionals, while in Sect. 4 we focus on nonlinear
U-statistics. Throughout the chapter, we discuss motivating applications and high-
light avenues for further research; for the proofs, at most main ideas and quick
sketches are provided, but we provide full references to the existing literature
whenever needed.

2 Background

2.1 Poisson Random Measures and Malliavin–Stein Bounds

Throughout this chapter, we take for granted that we are working on a suitable
probability space .˝;A;P/. We work within the general framework outlined in [15],
namely: .X;X ; �/ is a �-finite measure space, and � is a proper Poisson random
measure on .X;X / with intensity measure �. For p � 1, we denote by Lp

� the class
of those random variables F such that EjFjp < 1 and F D f .�/, P-a.s., where f
is a representative of F. Recall that f is a measurable function from N� (the class
of all measures on .X;X / taking values in ZC [ fC1g)—see [15, Sect. 1.2] for
more details. We will, however, specialize this general framework for the purpose
of the present chapter: we take X D RC � S

2, with X D B.X/, the class of Borel
subsets of X. The control measure � of � is taken to have the form � D � � 
,
where � is some measure on RC and 
 is a probability measure on S

2 of the form

.dx/ D f .x/dx, where f is a density on the sphere. We shall assume that �.f0g/ D 0
and that the mapping � 7! �.Œ0; t	/ is strictly increasing and diverging to infinity as
t!1. We also adopt the notation

Rt WD �.Œ0; t	/; t � 0;

that is, t 7! Rt is the distribution function of �. We shall also assume f .x/ to be
bounded and bounded away from zero, e.g.,

�1 � f .x/ � �2 , some �1; �2 > 0; for all x 2 S
2: (1)

To simplify the discussion, we shall take �.ds/ D R � `.ds/, where ` is the Lebesgue
measure and R > 0, in such a way that Rt D R � t.

We now state two Stein bounds for random variables living in the first chaos
associated with the Poisson measure �. These statements are specializations of the
general results presented in [4]. In what follows, we shall use the symbols �. f / and
O�. f /, respectively, to denote the Wiener–Itô integrals of f with respect to � and with
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respect to the compensated Poisson measure

O�.A/ D �.A/� �.A/; A 2 B.X/;

where we use the convention �.A/ � �.A/ D 1 whenever �.A/ D 1 (recall that
� is �-finite). We shall consider Wiener–Itô integrals of functions f having the form
f D 1Œ0;t	 � h, where t > 0 and h 2 L2.S2; 
/ \ L1.S2; 
/. For a function f of this
type we simply write

�. f / D �.1Œ0;t	 � h/ WD �t.h/; and O�. f / D O�.1Œ0;t	 � h/ WD O�t.h/:

Observe that, for fixed t, the mapping A 7! O�t.1A/ defines a Poisson measure on
.S2;B.S2//, with control Rt � 
 WD 
t.

Theorem 1 Let the notation and assumptions of this section prevail.

1. Let h 2 L2.S2; 
/ WD L2.
/, let N � N.0; 1/ and fix t > 0. Then, the following
bound holds:

dW. O�t.h/;N/ �
ˇ̌
ˇ1 � khk2L2.S2;
t/

ˇ̌
ˇC

Z

S2

jh.z/j3
t.dz/;

where dW denotes the Wasserstein distance as defined in [4, Sect. 6.2.1].
2. For a fixed integer d � 1, let N � Nd .0;˙/, with ˙ a positive definite

covariance matrix and let

Ft D .Ft;1; : : : ;Ft;d/ D . O�t .ht;1/ ; : : : O�t .ht;d//

be a collection of d-dimensional random vectors such that ht;a 2 L2.
/. If we call
�t the covariance matrix of Ft, then:

d2 .Ft;N/ �
��˙�1

��
op k˙k

1
2
op k˙ � �tkH:S:

C
p
2�

8

��˙�1
�� 32

op k˙kop

dX

i;j;kD1

Z

S2

jht;i .x/j
ˇ̌
ht;j .x/

ˇ̌ jht;k .x/j 
t .dx/ ;

� ��˙�1��op k˙k
1
2
op k˙ � �tkH:S:

Cd2
p
2�

8

��˙�1
�� 32

op k˙kop

dX

iD1

Z

S2

jht;i .x/j3 
t .dx/ ;

where k�kop and k�kH:S: stand, respectively, for the operator and Hilbert–Schmidt
norms and where the distance d2 is the one defined in [4, Sect. 6.2.1].
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Remark 1 As pointed out earlier, Theorem 1 is a specialized restatement of [4,
Theorems 7 and 14].

It should be noted that the convergence in law implied by Theorem 1 is in fact stable,
as defined, e.g., in the classic reference [10, Chap. 4].

2.2 Needlets

In this subsection, we review very quickly some simple and basic facts on the
construction of spherical wavelets. Recall first that the set of spherical harmonics

fYlm W l � 0;m D �l; : : : ; lg

provides an orthonormal basis for the space of square-integrable functions on the
unit sphere L2



S
2; dx

� WD L2


S
2
�
, where dx stands for the Lebesgue measure on

S
2 (see for instance [1, 11, 17, 32]). Spherical harmonics are eigenfunctions of the

spherical Laplacian �S2 corresponding to eigenvalues �l .lC 1/, e.g. �S2Ylm D
�l.lC 1/Ylm. For every l � 0, we define as usual Kl as the linear space given by the
restriction to the sphere of the polynomials with degree at most l, e.g.,

Kl D
lM

kD0
span fYkm W m D �k; : : : ; kg ;

where the direct sum is in the sense of L2


S
2
�
. It is well known that for every

integer l D 1; 2; : : :, there exists a finite set of cubature points Ql � S
2, as well as a

collection of weights f��g, indexed by the elements of Ql, such that

8f 2 Kl;

Z

S2

f .x/dx D
X

�2Ql

�� f .�/:

Now fix B > 1, and write Œx	 to indicate the integer part of a given real x. In what
follows, we shall denote by Xj D f�jkg and f�jkg, respectively, the set QŒ2BjC1	 and
the associated class of weights. We also write Kj D cardfXjg. As proved in [19, 20]
(see also e.g. [3, 25, 26] and [17, Chap. 10]), cubature points and weights can be
chosen to satisfy

�jk  B�2j ; Kj  B2j;

where by a  b, we mean that there exists c1; c2 > 0 such that c1a � b � c2a.
Fix B > 1 as before, as well as a real-valued mapping b on .0;1/. We assume

that b verifies the following properties: (1) the function b .�/ has compact support
in
�
B�1;B

�
(in such a way that the mapping l 7! b



l

B j

�
has compact support
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in l 2 �
Bj�1;BjC1�) (2) for every � � 1,

P1
jD0 b2.�B�j/ D 1 (partition of unit

property), and (3) b .�/ 2 C1 .0;1/. The collection of spherical needlets f jkg,
associated with B and b.�/, are then defined as a weighted convolution of the
projection operator Ll.hx; yi/ DPl

mD�l Ylm .x/ Ylm .y/, that is

 jk .x/ WD
q
�jk

X

l

b

�
l

Bj

�
Ll

˝

x; �jk
˛�
: (2)

The properties of b entail the following quasi-exponential localization property
(see [19] or [17, Sect. 13.3]): for any � D 1; 2; : : :, there exists �� > 0 such that for
any x 2 S

2,

ˇ̌
 jk.x/

ˇ̌ � ��Bj



1C Bj arccos


˝
x; �jk

˛��� .

Note that d.x; y/ WD arccos .hx; yi/ is indeed the spherical distance. From local-
ization, the following bound can be established on the Lp



S
2
�

norms: for all
1 � p � C1, there exist two positive constants qp and q0p such that

qpBj
�
1� 2

p

	

� �� jk

��
Lp.S2/ � q0pBj

�
1� 2p

	

: (3)

In the sequel, we shall write

ˇjk WD
˝
f ;  jk

˛
L2.S2/ D

Z

S2

f .x/  jk .x/ dx

for the so-called needlet coefficient of index j; k. Our aim in this chapter is to
review asymptotic results for linear and nonlinear functionals of needlet coefficients
given by

Ǒ
jk D

NtX

iD1
 jk .Xi/ , j D 1; 2; : : : ; k D 1; : : : ;Kj; (4)

where the function jk is defined according to (2), and where fX1; : : : ;XNtg represent
the points in the support of some random Poisson measure.

2.3 Needlet Coefficients as Wiener–Itô Integrals

The first step to be able to exploit the existing results on Malliavin–Stein approxi-
mations is to express our needlet coefficients as Wiener–Itô integrals with respect to
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a Poisson random measure. For every j � 1 and every k D 1; : : : ;Nj, consider
the function  jk defined in (2), and observe that  jk is trivially an element of
L3.S2; 
/ \ L2.S2; 
/\ L1.S2; 
/. We write

�2jk WD
Z

S2

 2jk .x/ f .x/dx; bjk WD
Z

S2

 jk .x/ f .x/dx:

Observe that, if f .x/ D 1
4�

(that is, the uniform density on the sphere), then bjk D 0
for every j > 1. On the other hand, under (3),

�1
�� jk

��2
L2.S2/ � �2jk � �2

�� jk

��2
L2.S2/ :

Note that (see (3)) the L2-norm of
˚
 jk
�

is uniformly bounded above and below,

and therefore the same is true for
n
�2jk

o
: For every t > 0 and every j; k, introduce

the kernel

h.Rt/
jk .x/ D  jk .x/p

Rt�jk
; x 2 S

2;

and write

Q̌.Rt/
jk WD O�t

�
h.Rt/

jk

	
D
Z

S2

h.Rt/
jk .x/ O�t .dx/ D

X

x2supp.�t/

h.Rt/
jk .x/� Rt �

Z

S2

h.Rt/
jk .x/
.dx/ ,

(5)

The random variable Q̌.Rt/
jk can always be represented in the form

Q̌.Rt/
jk D

�P�t.S
2/

iD1  jk .Xi/� Rtbjk

	

p
Rt�jk

;

where fXi W i � 1g is a sequence of i.i.d. random variables with common distribution

, and independent of the Poisson random variable O�t.S

2/. Moreover, the following
relations are immediately checked:

E
h Q̌.Rt/

jk

i
D 0; E

�� Q̌.Rt/
jk

	2� D 1:

This representation will provide the main working tool for deducing Malliavin–
Stein bounds for linear and U-statistics on spherical Poisson fields. We start first
with the linear case, which is discussed in [7].
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3 Linear Statistics

The joint distribution of the coefficients f Ǒjkg (as defined in (4)) is required in
statistical procedures devised for the research of so-called point sources, again for
instance in an astrophysical context (see, e.g., [31]). The astrophysical motivation
can be summarized as follows: we assume that under the null hypothesis, we are
observing a background of cosmic rays governed by a Poisson random measure on
the sphere S

2, with the form of the measure �t.�/ defined earlier. In particular, �t is
built from a measure � verifying the stated regularity conditions, and the intensity
of �t.dx/ D EŒ�t.dx/	 is given by the absolutely continuous measure Rt � f .x/dx,
where Rt > 0 and f is a density on the sphere. This situation corresponds, for
instance, to the presence of a diffuse background of cosmological emissions. Under
the alternative hypothesis, the background of cosmic rays is generated by a Poisson
random measure of the type:

��t .A/ D �t.A/C
PX

pD1
�
.p/
t

Z

A

ı�p.x/dx ,

where f�1; : : : ; �Pg � S
2; each mapping t 7! �

.p/
t is an independent Poisson point

process over Œ0;1/ with intensity �p, and

8
<

:

Z

A

ı�p.x/dx D 1
9
=

;”
˚
�p 2 A

�
.

In this case, one has that ��t is a Poisson measure with atomic intensity

��t .A/ WD EŒ��t .A/	 D Rt

Z

A

f .x/dxC
PX

pD1
�pt �

Z

A

ı�p.x/dx .

In this context, the informal expression “searching for point sources” can then be
translated into “testing for P D 0” or “jointly testing for �p > 0 at p D 1; : : : ;P.”
The number P and the locations f�1; : : : �Pg can be in general known or unknown.
We refer for instance to [9, 30] for astrophysical applications of these ideas.

3.1 Bounds in Dimension One

The following result is proved in [7], and it is established applying the content
of Theorem 1, Part 1, to the random variables Q̌.Rt/

jk introduced in the previous
subsection. In the next statement, we write N � N.0; 1/ to denote a centered
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Gaussian random variable with unit variance. Recall that �2 WD supx2S2 j f .x/j,
p � 1, and that the constants qp; q0p have been defined in (3).

Proposition 1 (See [7]) For every j; k and every t > 0, one has that

dW

� Q̌.Rt/
jk ;N

	
� .q03/3�2Bj

p
Rt�

3
jk

:

It follows that for any sequence . j.n/; k.n/; t.n//; Q̌.Rt.n//
j.n/k.n/ converges in distribution

to N, as n ! 1, provided B2j.n/ D o.Rt.n// (remember that the family f�jkg is
bounded from above and below) .
The Gaussian approximation that we reported can be given the following heuristic
interpretation. It is natural to view the factor B�j as the “effective scale” of the
wavelet, i.e., the radius of the region centered at �jk where the wavelet function
concentrates its energy. Because needlets are isotropic, this “effective area” is of
order B�2j. For governing measures with bounded densities which are bounded away
from zero, the expected number of observations on a spherical cap of radius B�j

around �jk is hence given by

card
˚
Xi W d.Xi; �jk/ � B�j

� ' Rt

Z

d.x;�jk/�B�j

f .�jk/dx,

where

�1B
�2jRt � �t

Z

d.x/�Bj

f .�jk/dx � �2B�2jRt:

Because the Central Limit Theorem can only hold when the effective number of
observations grows to infinity, the condition B�2jRt ! 1 is consequently rather
natural.

3.2 Multidimensional Bounds

A natural further step is to exploit Part 2 of Theorem 1 for the computation of
multidimensional Berry–Esseen bounds involving vectors of needlet coefficients of
the type (5). We stress that it is possible here to allow for a growing number of
coefficients to be evaluated simultaneously, and investigate the bounds that can be
obtained under these circumstances. More precisely, it is possible to focus on

Q̌.Rt/

j.t/� WD

 Q̌.Rt/

j.t/k1
; : : : ; Q̌.Rt/

j.t/kdt

�
;
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where dt !1; as t !1: Throughout the sequel, we shall assume that the points
at which these coefficients are evaluated satisfy the condition:

inf
k1¤k2D1;:::;dt

d


�j.t/k1 ; �j.t/k2

�  1p
dt

, (6)

where the symbol  indicates in general that the ratio of two positive numerical
sequences is bounded from above and below. Condition (6) is rather minimal; in
fact, the cubature points for a standard needlet/wavelet construction can be taken to
form a .dt/

�1=2-net [2, 8, 19, 25], so that the following, stronger condition holds:

inf
k1¤k2D1;:::;dt

d


�j.t/k1 ; �j.t/k2

�  sup
k1¤k2D1;:::;dt

d


�j.t/k1 ; �j.t/k2

�  1p
dt

.

The following result is the main achievement in [7].

Theorem 2 Let the previous assumptions and notation prevail. Then for all � D
2; 3 : : : ; there exist positive constants c and c0; (depending on �; �1; �2 but not from
t; j.t/; d.t/) such that we have

d2
� Q̌.Rt/

j.t/: ;N
	
� cdt


1C Bj.t/ infk1¤k2D1;:::;dt d


�j.t/k1 ; �j.t/k2

���

C
p
2�

8

c0dtBj.t/

q
Rt�

2
j.t/k1

�2j.t/k2�
2
j.t/k3

:

Under tighter conditions on the rate of growth of dt;Bj.t/ with respect to Rt; it is
possible to obtain a much more explicit bound, as follows:

Corollary 1 Let the previous assumptions and notation prevail, and assume more-
over that there exist ˛; ˇ such that, as t!1

B2j.t/  R˛t ; 0 < ˛ < 1; dt  Rˇt ; 0 < ˇ < 2˛:

Then, there exists a constant � (depending on �1; �2, but not on j; dj;B) such that

d2
� Q̌.Rt/

j.t/: ;Z
	
� � dtBj.t/

p
Rt

; (7)

for all vectors

 Q̌.Rt/

jk1
; : : : ; Q̌.Rt/

jkdt

�
; such that (6) holds.

To make the previous results more explicit, assume that dt scales as B2j.t/I
loosely speaking, this corresponds to the cardinality of cubature points at scale j,
so in a sense we would be focussing on the “whole” set of coefficients needed for
exact reconstruction of a bandlimited function at that scale. In these circumstances,
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however, the “covariance” term A.t/; i.e., the first element on the right-hand side
of (7), is no longer asymptotically negligible and the approximation with Gaussian
independent variables cannot be expected to hold (the approximation may however
be implemented in terms of a Gaussian vector with dependent components).

On the other hand, for the second term, convergence to zero when dj.t/  B2j.t/

requires B3j.t/ D o.
p

Rt/. In terms of astrophysical applications, for Rt ' 1012

this implies that one can focus on scales until 180ı=Bj ' 180ı=102 ' 2ıI this is
close to the resolution level considered for ground-based cosmic rays experiments
such as ARGO-YBJ (see [9]). Of course, this value is much lower than the factor
Bj D o.

p
Rt/ D o.106/ required for the Gaussian approximation to hold in the

one-dimensional case (e.g., on a univariate sequence of coefficients, for instance
corresponding to a single location on the sphere).

As mentioned earlier, in this chapter we presented the specific framework of
spherical Poisson fields, which we believe is of interest from the theoretical and the
applied point of view. It is readily verified, however, how these results continue to
hold with trivial modifications in a much greater span of circumstances, indeed in
some cases with simpler proofs. For instance, assume that one observes a sample of
i.i.d. random variables fXtg, with probability density function f .�/ which is bounded
and has support in Œa; b	 � R. Consider the kernel estimates

Ofn.xnk/ WD 1

nB�j

nX

tD1
K

�
Xt � xnk

B�j

�
, (8)

where K.�/ denotes a compactly supported and bounded kernel satisfying standard
regularity conditions, and for each j the evaluation points .xn0; : : : ; xnBj/ form a B�j-
net; for instance

a D xn0 < xn1 < � � � < xnBj D b; xnk D aC k
b � a

Bj
; k D 0; 1; : : : ;Bj:

Conditionally on �t.Œa; b	/ D n; (8) has the same distribution as

Of�t .xnk/ WD 1

�tŒa; b	B�j

bZ

a

K
�u � xnk

B�j

	
�t.du/ ,

where �t is a Poisson measure governed by Rt �
R

A f .x/dx for all A � Œa; b	:
Considering that �t

Rt
! 1 a.s., a bound analogous to (7) can be established with little

efforts for the vector Ofn.xn:/ WD
nOfn.xn1/; : : : ; Ofn.xnBj/

o
. Rather than discussing these

developments, though, we move to more general nonlinear transforms of wavelets
coefficients, as considered by Bourguin et al. [5].
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4 Nonlinear Transforms and U-Statistics

In the sequel, it is convenient to rewrite the needlet transforms in the following,
equivalent version:

 j.x; �/ D
q
�j�

X

l2�j

b

�
l

Bj

�
Ll .hx; �i/ , �j WD

�
2Bj�1; 2BjC1� :

We shall repeatedly use the following bounds on their Lp-norms

cpBj.p�2/ � �� j

��p

Lp.S2/ � CpBj.p�2/: (9)

We shall now review some results on U-statistics of order 2 (see [14]) on the sphere,
so we have as before X D Œ0; t	� S2, X being the corresponding Borel �-field and
� � �t .x/ WD � .Œ0; t	/ � 
 .x/, x 2 S

2 such that 
 is absolutely continuous with
respect to the Lebesgue measure over the sphere, allowing f to be its corresponding
density function such that


 .dx/ D f .x/ dx:

Writing as before O�t.dx/ D �t.dx/ � �t.dx/ to be the compensated Poisson random
measure, we obtain

Uj� .t/ D
X

.x;y/2�2
¤

hj�.x; y/ ; (10)

we shall focus in particular on the kernel

hj�.x; y/ D . j.xI �/ �  j.yI �//2: (11)

It is readily seen that statistics such as (10) provide a natural estimator of

Mj�;t WD E
�
Uj� .t/

� D
Z

S2�S2
hj�.x; y/�

2
t .dx; dy/ D 2R2t

�
G.2/ �G2

.1/

	
;

where

Gj�.n/ WD Ef
�
 n

j .�; �/
� D

Z

S2

 n
j� .x/ f .x/ dx (12)

and

Gj�.2/�G2
j� .1/ D Ef

�
 2j .�; �/

� �Ef
�
 j.�; �/

�2 WD �2f .�/
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is the conditional variance of  j.XtI �/; e.g., the variance of  j.XI �/ for X a single
random variable with density f .�/:As such, it can be used as a goodness-of-fit testing
procedure, or to check uniformity ( f .�/ D .4�/�1).
Applying [14, Theorem 1], we get

Uj� .t/ D I2.hj�.x; y//C I1

0

@2
Z

S2

hj�.x; y/�t.dy/

1

AC
Z

S2�S2
hj�.x; y/


2.dx; dy/

D I2.hj�.x; y//C I1
�

h.1;t/j� .x/
	
C

Z

S2�S2
h.x; y/
2.dx; dy/;

where

h.1;t/j� WD
Z

S2

hj�.x; y/�t .dy/ :

As for the linear case, we shall then introduce a normalized process

QUj� .t/ WD Uj� .t/ �Mj�;t

V
1
2

j�;t

;

where

Mj�;t WD E
�
Uj� .t/

� D
Z

S2�S2
hj�.x; y/�

2
t .dx; dy/ D 2R2t

�
G.2/ �G2

.1/

	
;

and

Vj�;t WD Var
�
Uj� .t/

� D Var

2

64
X

.x;y/2�2
¤

hj�.x; y/

3

75 :

Here and in the sequel, we write for brevity G.n/ rather than Gj� .n/ when no
confusion is possible. It can be shown that (see [5] for details)

Vj�;t D R3t˙j� C o


R3t
�
;

where

˙j� WD
�
4

��
Gj�.4/� G2

j�.2/
	
C 4

�
Gj�.2/�G2

j� .1/
	2��

:
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We can hence focus on the (Hoeffding) decomposition

QUj�It D I1
�Qh.1;t/j� .x/

	
C I2.Qhj�.x; y//; (13)

where

Qhj�.x; y/ D hj�.x; y/p
R3t˙j�

and

Qh.1;t/j� .x/ D h.1;t/j� .x/
p

R3t˙j�

D
R
S2

hj�.x; y/�t .dy/
p

R3t˙j�

:

It is then possible to establish the following result

Theorem 3 As Rt ! 1; for any j > 0 and � belonging to set of cubature points
Ql � S

2 ,

dW

 QUj�It;N

� � CBj

p
Rt

,

where N denotes a standard Gaussian variable.

For details of the proof, we refer to [5]. The main ideas can be sketched as follows;
for any j; �, in the decomposition (13), it is possible to show that

E
h


I2.Qhj�.x; y//
�2i D O

�
1

Rt

�
;

so that I1
�Qh.1;t/j� .x/

	
is the dominant term as Rt ! 1 . Therefore we apply again

Theorem 1, Part 1, with the help of the following technical result.

Lemma 1 Let � D
n
k1; : : : ; kD WPD

iD1 ki D K; ki ¤ kj 8i ¤ j
o
,

LK .x1; x2; ::; xD/ D
X

fk1;:::;kDg2�
ck1;:::;kD

DY

iD1
 j .xi; �/

ki ;
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and Cki as defined in (9). Hence

ˇ̌
ˇ̌
ˇ̌
ˇ̌

Z

.S2/
˝D

LK .x1; x2; : : : ; xD/ 

˝D .dx1 : : : dxD/

ˇ̌
ˇ̌
ˇ̌
ˇ̌

�
X

fk1;:::;kDg2�
ck1;:::;kD

 
DY

iD1
Cki

!
Bj
�

K�2DC2PD
iD1 ı

0
ki

	

;

where ıki
0 is the Kronecker delta function.

Indeed, the previous Lemma yields the following useful bound:

ˇ̌
ˇ̌
ˇ̌
ˇ̌

Z

.S2/
˝D

LK .x1; x2; : : : ; xD/ 

˝D .dx1 : : : dxD/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
� MBj.K�2DC2N0/:

From this bound, it is for instance easy to see that

mnB.n�2/j � Gj�.n/ � MnB.n�2/j;

where Gj� .n/ is defined in (12); it follows also that

m4B
2j � ˙j� � M4B

2j:

As for the linear case, (3) can be extended to growing arrays of statistics, and then
applied, for instance, to high-frequency local estimates of variances/dispersion or to
the classical two-sample problem. Details and further discussion are provided in [5].
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Determinantal Point Processes

Laurent Decreusefond, Ian Flint, Nicolas Privault, and Giovanni Luca Torrisi

Abstract In this survey we review two topics concerning determinantal (or
fermion) point processes. First, we provide the construction of diffusion processes
on the space of configurations whose invariant measure is the law of a determinantal
point process. Second, we present some algorithms to sample from the law of a
determinantal point process on a finite window. Related open problems are listed.

1 Introduction

Determinantal (or fermion) point processes have been introduced in [27] to represent
configurations of fermions. Determinantal point processes play a fundamental role
in the theory of random matrices as the eigenvalues of many ensembles of random
matrices form a determinantal point process, see, e.g., [18]. The full existence
theorem for these processes was proved in [34], in which many examples occurring
in mathematics and physics were discussed. The construction of [34] has been
extended in [32] with the introduction of the family of ˛-determinantal point
processes.

Determinantal point processes have notable mathematical properties, e.g., their
Laplace transforms, Janossy densities, and Papangelou conditional intensities admit
closed form expressions. Due to their repulsive nature, determinantal point pro-
cesses have been recently proposed as models for nodes’ locations in wireless
communication, see [28, 37].
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This paper is structured as follows. In Sect. 2 we give some preliminaries on point
processes, including the definition of determinantal point processes, the expression
of their Laplace transform (Theorem 1), Janossy densities (Proposition 3), and
Papangelou intensity (Theorems 2 and 3), cf. [9, 10, 15, 15, 18, 23, 29, 32]. We
also refer to [7, 13, 33] for the required background on functional analysis.

In Sect. 3 we review the integration by parts formula for determinantal point
processes and its extension by closability, cf. [8, 11].

In Sect. 4 we report a result in [11] on the construction of a diffusion on the space
of configurations which has the law of a determinantal point process as invariant
measure. To this aim we use arguments based on the theory of Dirichlet forms, cf.
[14, 25] and the appendix. It has to be noticed that the construction of the diffusion
provided in [11] differs from that one given in [36], where alternative techniques are
used.

Section 5 deals with the simulation of determinantal point processes. We provide
two different simulation algorithms to sample from the law of a determinantal point
processes on a compact. In particular, we describe the (standard) sampling algorithm
given in [17] (see Algorithm 1 below) and an alternative simulation algorithm
obtained by specializing the well-known routine to sample from the law of a finite
point process with bounded Papangelou conditional intensity (see, e.g., [19, 20, 23]
and Algorithm 2 below). We show that the number of steps in the latter algorithm
grows logarithmically with the size of the initial dominating point process, which
gives a rough idea of the simulation time required by this algorithm. Finally, we
propose a new approximate simulation algorithm for the Ginibre point process,
which presents advantages in terms of complexity and CPU time.

Finally, some open problems are listed in Sect. 6.

2 Preliminaries

2.1 Locally Finite Point Processes, Correlation Functions,
Janossy Density, and Papangelou Intensity

Let X be a locally compact second countable Hausdorff space, and X be the
Borel �-algebra on X. For any subset A 	 X, let jAj denote the cardinality of
A, setting jAj D 1 if A is not finite. We denote by Ns the set of locally finite point
configurations on X:

Ns WD f� 	 X W j� \�j <1 for all relatively compact sets � � Xg:

In fact, Ns can be identified with the set of all simple nonnegative integer-valued
Radon measures on X (an integer-valued Radon measure 
 is said to be simple
if for all x 2 X, 
.fxg/ 2 f0; 1g). Hence, it is naturally topologized by the vague
topology, which is the weakest topology such that for any continuous and compactly
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supported function f on X, the mapping

� 7! h f ; �i WD
X

y2�
f .y/

is continuous. We denote by Ns the corresponding Borel �-field. For � 2 Ns, we
write � [ y0 D � [ fy0g for the addition of a particle at y0 and � n y0 D � n fy0g for
the removal of a particle at y0. We define the set of finite point configurations on X

by

N f
s :={� 	 X: j�j <1},

which is equipped with the trace �-algebra N f
s D NsjN f

s
. For any relatively

compact subset � 	 X, let Ns.�/ be the space of finite configurations on �,
and Ns.�/ the associated (trace-) �-algebra. As in [15], we define for any Radon
measure � on X the (�-)sample measure L� on .N f

s ;N
f

s / by

Z

N f
s

f .˛/ L�.d˛/ WD
X

n�0

1

nŠ

Z

Xn

f .fx1; : : : ; xng/ �.dx1/ � � ��.dxn/; (1)

for any measurable f W N f
s ! RC. Similarly, we define its restriction to the relatively

compact set � 	 X by

Z

Ns.�/

f .˛/ L
�.d˛/ WD
X

n�0

1

nŠ

Z

�n

f .fx1; : : : ; xng/ �.dx1/ � � ��.dxn/;

for any measurable f W Ns.�/! RC. A simple and locally finite point process � is
defined as a random element on a probability space .˝;A/ with values in Ns. We
denote its distribution by P. It is characterized by its Laplace transform L�, which
is defined, for any measurable nonnegative function f on X, by

L�.f / D
Z

Ns

e�hf ;�i P.d�/:

We denote the expectation of an integrable random variable F defined on
.Ns;Ns;P/ by

EŒF.�/	 WD
Z

Ns

F.�/P.d�/:
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For ease of notation, we define by

�A WD � \ A;

the restriction of � 2 Ns to a set A � X. The restriction of P to Ns.A/ is denoted
by PA and the number of points of �A, i.e., �.A/ WD j� \ Aj, is denoted by �.A/. A
point process � is said to have a correlation function � W N f

s ! Œ0;1/ with respect
to (w.r.t.) a Radon measure � on .X;X / if � is measurable and

Z X

˛��; ˛2N f
s

f .˛/P.d�/ D
Z

N f
s

f .˛/ �.˛/ L�.d˛/;

for all measurable nonnegative functions f on N f
s . When such a measure � exists, it

is known as the intensity measure of �. For ˛ D fx1; : : : ; xkg, where k � 1, we will
sometimes write �.˛/ D �k.x1; : : : ; xk/ and call �k the k-th correlation function.
Here �k is a symmetric function on Xk. Similarly, the correlation functions of �,
w.r.t. a Radon measure � on X, are (if they exist) measurable symmetric functions
�k W Xk �! Œ0;1/ such that

E

"
kY

iD1
�.Bi/

#
D

Z

B1�����Bk

�k.x1; : : : ; xk/ �.dx1/ � � ��.dxk/;

for any family of mutually disjoint bounded subsets B1; : : : ;Bk of X, k � 1. The
previous formula can be generalized as follows:

Proposition 1 Let B1; : : : ;Bn be disjoint bounded Borel subsets of X. Let k1; : : : ; kn

be integers such that
Pn

iD1 ki D N. Then,

E

"
nY

iD1

�.Bi/Š

.�.Bi/ � ki/Š

#
D

Z

B
k1
1 �:::�Bkn

n

�.fx1; : : : ; xNg/ �.dx1/ � � ��.dxN/:

We require in addition that �n.x1; : : : ; xn/ D 0 whenever xi D xj for some 1 � i ¤
j � n. Heuristically, �1 is the particle density with respect to �, and

�n.x1; : : : ; xn/ �.dx1/ � � ��.dxn/

is the probability of finding a particle in the vicinity of each xi, i D 1; : : : ; n. For any
relatively compact subset� 	 X, the Janossy densities of �, w.r.t. a Radon measure
� on X, are (if they exist) measurable functions jn� W �n ! Œ0;1/ satisfying for all
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measurable functions f W Ns.�/! Œ0;1/,

E Œ f .��/	 D
X

n�0

1

nŠ

Z

�n

f .fx1; : : : ; xng/ jn� .x1; : : : ; xn/ �.dx1/ � � ��.dxn/: (2)

Using the simplified notation j�.˛/ WD jn�.x1; : : : ; xn/, for ˛ D fx1; : : : ; xng, where
n � 1, by (2) it follows that j� is the density of P� with respect to L��, when
P� 
 L��. Now we list some properties of the Janossy densities.

• Symmetry:

jn�


x�.1/; : : : ; x�.n/

� D jn� .x1; : : : ; xn/ ;

for every permutation � of f1; : : : ; ng.
• Normalization constraint: for each relatively compact subset � 	 X,

1X

nD0

1

nŠ

Z

�n

jn� .x1; : : : ; xn/ �.dx1/ � � ��.dxn/ D 1:

For n � 1, the Janossy density jn�.x1; : : : ; xn/ is in fact the joint density (multiplied
by a constant) of the n points given that the point process has exactly n points. For
n D 0, j0�.;/ is the probability that there are no points in �. We also recall that the
Janossy densities can be recovered from the correlation functions via the relation

jn�.x1; : : : ; xn/ D
X

m�0

.�1/m
mŠ

Z

�m

�nCm.x1; : : : ; xn; y1; : : : ; ym/ �.dy1/ � � ��.dym/;

and vice versa using the equality

�n.x1; : : : ; xn/ D
X

m�0

1

mŠ

Z

�m

jmCn
� .x1; : : : ; xn; y1; : : : ; ym/ �.dy1/ � � ��.dym/;

see [9, Theorem 5.4.II].
Following [15], we now recall the definition of the so-called reduced and reduced

compound Campbell measures. The reduced Campbell measure of a point process
� is the measure C� on the product space .X � Ns;X ˝Ns/ defined by

C�.A � B/ D
Z

Ns

X

x2�
1A.x/1B.� n x/P.d�/:
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The reduced compound Campbell measure of a point process � is the measure OC�

on the product space .N f
s � Ns;N f

s ˝Ns/ defined by

OC�.A � B/ D
Z

Ns

X

˛��; ˛2N f
s

1A.˛/1B.� n ˛/P.d�/:

The integral versions of the equations above can be written respectively as

Z
h.x; �/C�.dx � d�/ D

Z X

x2�
h.x; � n x/P.d�/; (3)

for all nonnegative measurable functions h W X � Ns ! RC, and

Z
h.˛; �/ OC�.d˛ � d�/ D

Z X

˛��; ˛2N f
s

h.˛; � n ˛/P.d�/;

for all nonnegative measurable functions h W N f
s � Ns ! RC. Comparing (3) with

the well-known Mecke formula (see .7/ in [21]) leads us to introduce the following
condition:

.˙/: C� 
 �˝ P.

The Radon–Nikodym derivative c of C� w.r.t. � ˝ P is called (a version of) the
Papangelou intensity of �. Assumption .˙/ implies that OC� 
 L�˝P and we denote
the Radon–Nikodym derivative of OC� w.r.t. L� ˝ P by Oc, and call Oc the compound
Papangelou intensity of �. One then has for any � 2 Ns, Oc.;; �/ D 1, as well
as for all x 2 X, Oc.x; �/ D c.x; �/. The Papangelou intensity c has the following
interpretation:

c.x; �/ �.dx/

is the probability of finding a particle in the vicinity of x 2 X conditional on the
configuration �.
The compound Papangelou intensity verifies the following commutation relation:

Oc.
; � [ �/ Oc.�; �/ D Oc.
 [ �; �/; (4)

for all �; 
 2 N f
s and � 2 Ns. The recursive application of the previous relation also

yields

Oc.fx1; : : : ; xng; �/ D
nY

kD1
c.xk; � [ x1 [ � � � [ xk�1/;

for all x1; : : : ; xn 2 X and � 2 Ns, where we have used the convention x0 WD ;.
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The assumption .˙/, along with the definition of the reduced Campbell measure,
allows us to write the following identity, known as the Georgii–Nguyen–Zessin
identity:

Z

Ns

X

y2�
u.y; � n y/P.d�/ D

Z

Ns

Z

X

u.z; �/ c.z; �/ �.dz/P.d�/; (5)

for all measurable nonnegative functions u W X�Ns ! RC. We also have a similar
identity for the compound Papangelou intensity:

Z

Ns

X

˛��; ˛2N f
s

u.˛; � n ˛/P.d�/ D
Z

Ns

Z

N f
s

u.˛; �/ Oc.˛; �/ L�.d˛/P.d�/; (6)

for all measurable functions u W N f
s �Ns ! RC.

Note that Eqs. (5) and (6) are generalizations of Eqs. .1:7/ and .1:8/ of [21]. Indeed,
in the case of the Poisson point process, c.z; �/ D 1 and c.˛; �/ D 1.
Combining relation (5) and the definition of the correlation functions, we find

EŒc.x; �/	 D �1.x/;

for �-a.e. x 2 X. More generally, using (6), we also have

EŒOc.˛; �/	 D �.˛/; (7)

for P-a.e. ˛ 2 N f
s .

2.2 Kernels and Integral Operators

As usual, we denote by X a locally compact second countable Hausdorff space and
by � a Radon measure on X. For any compact set � 	 X, we denote by L2.�;�/
the Hilbert space of complex-valued square integrable functions w.r.t. the restriction
of the Radon measure � on �, equipped with the inner product

hf ; giL2.�;�/ WD
Z

�

f .x/g.x/�.dx/; f ; g 2 L2.�;�/;

where z denotes the complex conjugate of z 2 C. By definition, an integral operator
K W L2.X; �/ ! L2.X; �/ with kernel K W X2 ! C is a bounded operator



318 L. Decreusefond et al.

defined by

Kf .x/ WD
Z

X

K.x; y/f .y/ �.dy/; for �-almost all x 2 X:

We denote by P� the projection operator from L2.X; �/ to L2.�;�/ and define the
operator K� D P�KP�. We note that the kernel of K� is given by K�.x; y/ WD
1�.x/K.x; y/1�.y/, for x; y 2 X. It can be shown that K� is a compact operator.
The operator K is said to be Hermitian or self-adjoint if its kernel verifies

K.x; y/ D K.y; x/; for �˝2-almost all .x; y/ 2 X2. (8)

Equivalently, this means that the integral operators K� are self-adjoint for any
compact set � 	 X. If K� is self-adjoint, by the spectral theorem for self-
adjoint and compact operators we have that L2.�;�/ has an orthonormal basis
f'�j gj�1 of eigenfunctions of K�. The corresponding eigenvalues f��j gj�1 have
finite multiplicity (except possibly the zero eigenvalue) and the only possible
accumulation point of the eigenvalues is the zero eigenvalue. In that case, the kernel
K� of K� can be written as

K�.x; y/ D
X

n�1
��n '

�
n .x/'

�
n .y/; (9)

for x; y 2 �. We say that an operator K is positive (respectively nonnegative) if its
spectrum is included in .0;C1/ (respectively Œ0;C1/). For two operators K and
I, we say that K > I (respectively K � I) in the operator ordering if K � I is a
positive operator (respectively nonnegative operator).
We say that a self-adjoint integral operator K� is of trace class if

X

n�1
j��n j <1;

and define the trace of K� as TrK� D P
n�1 ��n . If K� is of trace class for every

compact subset � 	 X, then we say that K is locally of trace class. It is easily seen
that if a Hermitian integral operator K W L2.X; �/ ! L2.X; �/ is of trace class,
then Kn is also of trace class for all n � 2. Indeed, Tr.Kn/ � kKkn�1

op Tr.K/, where
kKkop is the operator norm of K.
Let Id denote the identity operator on L2.X; �/ and let K be a trace class operator
on L2.X; �/. We define the Fredholm determinant of IdCK as

Det.IdCK/ D exp

0

@
X

n�1

.�1/n�1
n

Tr.Kn/ă

1

A : (10)
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It turns out that

Det.IdCK/ D
X

n�0

1

nŠ

Z

Xn

det.K.xi; xj//1�i;j�n �.dx1/ : : : �.dxn/; (11)

where K is the kernel of K and det.K.xi; xj//1�i;j�n is the determinant of the n � n
matrix .K.xi; xj//1�i;j�n. Equation (11) was obtained in Theorem 2:4 of [32], see
also [7] for more details on the Fredholm determinant.
We end this section by recalling the following result from [15, Lemma A.4]:

Proposition 2 Let K be a nonnegative and locally of trace class integral operator
on L2.X; �/. Then one can choose its kernel K (defined everywhere) such that the
following properties hold:

(i) K is nonnegative, in the sense that for any c1; : : : ; cn 2 C and �-a.e.
x1; : : : ; xn 2 X, we have

Pn
i;jD1 NciK.xi; xj/cj � 0.

(ii) K is a Carleman kernel, i.e., Kx D K.�; x/ 2 L2.X; �/ for �-a.e. x 2 X.
(iii) For any compact subset � 	 X, TrK� D

R
�

K.x; x/ �.dx/ and

Tr .P�KkP�/ D
Z

�

hKx;K
k�2KxiL2.�;�/ �.dx/;

for k � 2.

Henceforth, the kernel of a nonnegative and locally of trace class integral operator
K will be chosen according to the previous proposition.

2.3 Determinantal Point Processes

A locally finite and simple point process � on X is called determinantal point
process if its correlation functions w.r.t. the Radon measure � on .X;X / exist and
are of the form

�k.x1; : : : ; xk/ D det.K.xi; xj//1�i;j�k;

for any k � 1 and x1; : : : ; xk 2 X, where K.�; �/ is a measurable function.
Throughout this paper we shall consider the following hypothesis:

(H1): The operator K is locally of trace class, satisfies (8), and its spectrum is
contained in Œ0; 1/, i.e., 0 � K < Id in the operator ordering. We denote by K
the kernel of K.

By the results in [27, 34] (see also Lemma 4.2.6 and Theorem 4.5.5 in [18]), it
follows that under (H1), there exists a unique (in law) determinantal point process
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with integral operator K. In this survey, we shall only consider determinantal
point processes with Hermitian kernel. However, we mention that many important
examples of determinantal point processes exhibit a non-Hermitian kernel, see [2–
6, 24, 35].

Let us now recall the following result from, e.g., [32] (see Theorem 3.6 therein)
that gives the Laplace transform of �.

Theorem 1 Let K be an operator satisfying .H1/ and � the determinantal point
process with kernel K. Then � has Laplace transform

L�.f / D Det


Id�K'

�
;

for each nonnegative f on X with compact support, where ' D 1 � e�f and K' is
the trace class integral operator with kernel

K'.x; y/ D
p
'.x/K.x; y/

p
'.y/; x; y 2 X:

Let K be an operator satisfying assumption .H1/. We define the operators on
L2.X; �/:

J WD .Id �K/�1K; (12)

and

JŒ�	 WD .Id �K�/
�1K�; (13)

where � is a compact subset of X. The operator J is called global interaction
operator, and the operator JŒ�	 is called local interaction operator. We emphasize
that, unlike K�, JŒ�	 is not a projection operator, i.e., in general JŒ�	 ¤ P�JP�.
In any case, JŒ�	 has some notable properties, as proved in [15]. First, it is easily
seen that JŒ�	 exists as a bounded operator and its spectrum is included in Œ0;C1/.
Second, JŒ�	 is also an integral operator, and we denote by JŒ�	 its kernel (in fact,
one can even show that JŒ�	 is a Carleman operator, cfr. the beginning of Sect. 3 in
[15]). Third, JŒ�	 is a trace class operator. Finally, by (9) we have

JŒ�	.x; y/ D
X

n�1

��n
1 � ��n

'�n .x/'
�
n .y/;

for x; y 2 �.
For ˛ D fx1; : : : ; xkg 2 Ns.�/, we denote by det JŒ�	.˛/ the determinant

det .JŒ�	.xi; xj//1�i;j�k:
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Note that for all k 2 N�, the function

.x1; : : : ; xk/ 7! det JŒ�	.fx1; : : : ; xkg/

is �˝k-a.e. nonnegative (thanks to Proposition 2) and symmetric in x1; : : : ; xk

(see, e.g., the Appendix of [15]), and we simply write det JŒ�	.fx1; : : : ; xkg/ D
det JŒ�	.x1; : : : ; xk/. The relevance of the local interaction operator becomes clear
when computing the Janossy densities of the determinantal point process. More
precisely, the following proposition holds.

Proposition 3 (Lemma 3.3 of [32]) Let K be an operator satisfying .H1/ and �
the determinantal point process with kernel K. Then, for a compact subset � 	 X

and n 2 N
�, the determinantal process � admits Janossy densities

jn�.x1; : : : ; xn/ D Det.Id�K�/ det JŒ�	.x1; : : : ; xk/; (14)

for x1; : : : ; xk 2 �. The void probability is equal to j0�.;/ D Det.Id�K�/.

We emphasize that (14) still makes sense if kK�kop D 1; indeed the zeros
of Det.Id � K�/ are of the same order of the poles of det JŒ�	.x1; : : : ; xk/, see
Lemma 3.4 of [32] for a more formal proof.
We now give some properties linking the rank of K, Rank.K/, and the number of
points of the determinantal point process with integral operator K.

Proposition 4 (Theorem 4 in [34], See also [18]) Let K be an operator satisfying
.H1/ and � the determinantal point process with kernel K. We have:

(a) The probability of the event that the number of points is finite is either 0 or
1, depending on whether Tr.K/ is finite or infinite. The number of points in a
compact subset � 	 X is finite since Tr.K�/ <1.

(b) The number of points is less than or equal to n 2 N
� with probability 1 if and

only if K is a finite rank operator satisfying Rank.K/ � n.
(c) The number of points is n 2 N

� with probability 1 if and only if K is an
orthogonal projection satisfying Rank.K/ D n.

We now give the Papangelou intensity of determinantal point processes.

Theorem 2 (Theorem 3.1 of [15]) Let K be an operator satisfying .H1/ and �
the determinantal point process with kernel K. Then, for each compact set � 	
X, �� satisfies condition .˙/ (with �� in place of �). A version of its compound
Papangelou intensity Oc� is given by

Oc�.˛; �/ D det JŒ�	.˛ [ �/
det JŒ�	.�/

; ˛ 2 N f
s ; � 2 Ns;
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where the ratio is defined to be zero whenever the denominator vanishes. This
version also satisfies the inequalities

Oc�.˛; �/ � Oc�.˛; � 0/; and 0 � Oc�.˛; �/ � det JŒ�	.˛/ �
Y

x2˛
JŒ�	.x; x/;

(15)

whenever � � � 0 2 Ns.�/ and ˛ 2 Ns.�/ n !.

Let K be an operator satisfying .H1/ and let � be the determinantal point process
with kernel K. Let J be the operator defined in (12). As proved in [15], J satisfies
the following properties: it is locally of trace class and its kernel .x; y/ 7! J.x; y/
can be chosen to satisfy Proposition 2. Moreover, � is stochastically dominated by a
Poisson point process with mean measure J.x; x/ �.dx/ i.e., denoting by QP the law
of the Poisson process,

Z
f dP �

Z
f d QP;

for all increasing measurable f . Here, we say that f is increasing if f .�/ � f .� 0/
whenever � � � 0 2 Ns.
We finally report the following theorem.

Theorem 3 (Theorem 3.6 in [15]) Let K be an operator satisfying .H1/ and � the
determinantal point process with kernel K. Then � satisfies condition .˙/, and its
compound Papangelou intensity is given by

Oc.˛; �/ D lim
n!1 Oc�n.˛; ��n/; for L� ˝ P � almost every.˛; �/; (16)

where .�n/n2N is an increasing sequence of compact sets in X converging to X.

In general (16) does not give a closed form for the compound Papangelou intensity.
In order to write Oc in closed form, additional hypotheses have to be assumed, see
Proposition 3.9 in [15].

3 Integration by Parts

Hereafter we assume that X is a subset of Rd, equipped with the Euclidean distance,
� is a Radon measure on X and � 	 X is a fixed compact set. We denote by x.i/

the ith component of x 2 Rd.
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3.1 Differential Calculus

We denote by C1c .�;Rd/ the set of all C1-vector fields v W � �! Rd (with
compact support) and by C1b .�k/ the set of all C1-functions on �k whose
derivatives are bounded.

Definition 1 A function F W Ns.�/! R is said to be in S� if

F.��/ D f01f�.�/D0g C
nX

kD1
1f�.�/Dkgfk.��/; (17)

for some integer n � 1, where for k D 1; : : : ; n, fk 2 C1b .�k/ is a symmetric
function and f0 2 R is a constant.

The gradient of F 2 S� of the form (17) is defined by

rNs
x F.��/ WD

nX

kD1
1f�.�/Dkg

X

y2��
1fxDygrxfk.��/; x 2 �; (18)

where rx denotes the usual gradient on Rd with respect to the variable x 2 �.
For v 2 C1c .�;Rd/, we also let

rNs
v F.��/ WD

X

y2��
rNs

y F.��/ � v.y/ D
nX

kD1
1f�.�/Dkg

X

y2��
ryfk.��/ � v.y/; (19)

where � denotes the inner product on Rd.
Next, we recall some notation from [1, 11]. Let Diff0.X/ be the set of all diffeo-
morphisms from X into itself with compact support, i.e., for any ' 2 Diff0.X/;
there exists a compact set outside of which ' is the identity map. In particular, note
that Diff0.�/ is the set of diffeomorphisms from � into itself. In the following, �'
denotes the image measure of � by '.
Henceforth, we assume the following technical condition.

.H2/ W The Radon measure � is absolutely continuous w.r.t. the Lebesgue mea-
sure ` on X, with Radon–Nikodym derivative � D d�

d` which is strictly positive
and continuously differentiable on �.

Then for any ' 2 Diff0.�/; �' is absolutely continuous with respect to � with
density given by

p�' .x/ D
d�'.x/

d�.x/
D �.'�1.x//

�.x/
Jac.'�1/.x/; (20)
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where Jac.'�1/.x/ is the Jacobian of '�1 at point x 2 X. We are now in a position
to give the quasi-invariance result, see [8, 11, 35].

Proposition 5 Assume (H1) and (H2) and let � be the determinantal point process
with kernel K. Then, for any measurable nonnegative f on� and any ' 2 Diff0.�/,

E
h
e�hfı'; �i

i
D E

�
e�hf�ln. p

�
' /; �i det J'Œ�	.�/

det JŒ�	.�/

�
: (21)

We point out that the right-hand side of (21) is well defined since detJŒ�	 > 0,
P�-a.e.

3.2 Integration by Parts

Here we give an integration by parts formula on the set of test functionals S� and
an extension to closed gradients and divergence operators.
We start by introducing a further condition.

.H3/ W For any n � 1, the function

.x1; : : : ; xn/ 7�! det JŒ�	.x1; : : : ; xn/

is continuously differentiable on �n.

Assuming .H1/ and .H3/, we define the potential energy U W Ns.�/ �! R

UŒ�	.˛/ WD � log det JŒ�	.˛/

and its directional derivative along v 2 C1c .�;Rd/

rNs
v UŒ�	.��/ WD �

1X

kD1
1f�.�/Dkg

X

y2��

rydet JŒ�	.��/

det JŒ�	.��/
� v.y/

D
1X

kD1
1f�.�/Dkg

X

y2��
Uy;k.��/ � v.y/: (22)

The term Uy;k in the previous definition is given by

Uy;k.��/ WD �rydet JŒ�	.��/

det JŒ�	.��/
on f�.�/ D kg.
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Under Condition .H2/ we define

ˇ�.x/ WD r�.x/
�.x/

;

and

B�v .��/ WD
X

y2��
.�ˇ�.y/ � v.y/C divv.y//; v 2 C1c .�;Rd/;

where div denotes the adjoint of the gradient r on �, i.e., div verifies
Z

�

g.x/ divrf .x/ dx D
Z

�

rf .x/ � rg.x/ dx; f ; g 2 C1.�/.

The following integration by parts formula holds, see [11].

Lemma 1 Assume .H1/, .H2/ and .H3/, and let � be the determinantal point
process with kernel K. Then, for any compact subset � 	 X, any F;G 2 S�

and vector field v 2 C1c .�;Rd/, we have

E
�
G.��/rNs

v F.��/
� D E

�
F.��/divNs

v G.��/
�
; (23)

where

divNs
v G.��/ WD �rNs

v G.��/C G.��/

�B�v .��/CrNs

v UŒ�	.��/
�
:

Next, we extend the integration by parts formula by closability to a larger class of
functionals. We refer to the appendix for the notion of closability. Let

L2� WD L2.Ns.�/;P�/

be the space of square-integrable functions with respect to P�. It may be checked
that S� is dense in L2�.
For v 2 C1c .�;Rd/, we consider the linear operators rNs

v W S� �! L2� and
divNs

v W S� �! L2� defined, respectively, by F 7! rNs
v F and F 7! divNs

v F. The
following theorem is proved in [11].

Theorem 4 Assume .H1/, .H2/, .H3/ and

Z

�n

ˇ̌
ˇ̌
ˇ

@
x
.h/
i

det JŒ�	.x1; : : : ; xn/@x
.k/
j

det JŒ�	.x1; : : : ; xn/

det JŒ�	.x1; : : : ; xn/

ˇ̌
ˇ̌
ˇ

1fdet JŒ�	.x1;:::;xn/>0g �.dx1/ � � ��.dxn/ <1 (24)

for any n � 1, 1 � i; j � n, and 1 � h; k � d. Then
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.i/ For any vector field v 2 C1c .�;Rd/, the linear operators rNs
v and divNs

v are
well defined and closable. In particular, we have

rNs
v .S�/ � L2� and divNs

v .S�/ � L2�:

.ii/ Denoting by rNs
v (respectively divNs

v ) the minimal closed extension of rNs
v

(respectively divNs
v ), for any vector field v 2 C1c .�;Rd/, we have

E
h
G.��/rNs

v F.��/
i
D E

h
F.��/divNs

v G.��/
i
;

for all F 2 dom
�
rNs
v

	
, G 2 dom

�
divNs

v

	
.

Note that under the assumptions .H1/, .H2/ and .H3/, condition (24) is satisfied if,
for any n � 1, the function

.x1; : : : ; xn/ 7�! det JŒ�	.x1; : : : ; xn/;

is strictly positive on the compact�n.

4 Stochastic Dynamics

4.1 Dirichlet Forms

Assume .H1/, and let � be the determinantal point process with kernel K. We
consider the bilinear map E defined on S� �S� by

E.F;G/ WD E

"
X

y2��
rNs

y F.��/ � rNs
y G.��/

#
: (25)

For F 2 S� of the form (17), i.e.,

F.��/ D f01f�.�/D0g C
nX

kD1
1f�.�/Dkgfk.��/;

we also define the Laplacian H by

HF.��/ D
nX

kD1
1f�.�/Dkg

X

y2��


�ˇ�.y/ � ryfk.��/��yfk.��/CUy;k.��/ � ryfk.��/
�
;

where� D �divr denotes the Laplacian operator on Rd.
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In the following, we consider the subspace QS� of S� consisting of functions F 2
S� of the form

F.��/ D f .h'1; ��i; : : : ; h'M; ��i/1f�.�/�Kg;

for some integers M;K � 1, '1; : : : ; 'M 2 C1.�/, f 2 C1b .RM/. Note that QS� is
dense in L2� (see, e.g., [25, p. 54]).
Theorem 5 below is proved in [11]. We refer the reader to the appendix for the
required notions of Dirichlet forms theory.

Theorem 5 Under the assumptions of Theorem 4, we have

.i/ The linear operator H W QS� �! L2� is symmetric, nonnegative definite, and
well defined, i.e., H. QS�/ � L2�. In particular the operator square root H1=2

of H exists.
.ii/ The bilinear form E W QS�� QS� �! R is symmetric, nonnegative definite, and

well defined, i.e., E. QS� � QS�/ � R.
.iii/ H1=2 and E are closable and the following relation holds:

E.F;G/ D EŒH1=2 F.��/H1=2 G.��/	; 8 F;G 2 dom.H1=2/. (26)

.iv/ The bilinear form .E; dom.H1=2// is a symmetric Dirichlet form.

4.2 Associated Diffusion Processes

We start recalling some notions, see Chaps. IV and V in [25]. We call N the space
of N-valued Radon measures on X, as opposed to Ns the space of simple N-valued
Radon measures on X. We denote by N.�/ the space of N-valued Radon measures
supported on a compact � 	 X. We equip N with the vague topology and denote
by N the corresponding Borel �-algebra and by N .�/ the corresponding trace-�-
algebra. Given � in the set P.N.�// of the probability measures on .N.�/; N .�//,
we call a �-stochastic process with state space N.�/ the collection

M�;� D .˝ ;A; .At/t�0; .Mt/t�0; .P�/�2N.�/;P�/;

where A WD W
t�0At is a �-algebra on the set ˝ , .At/t�0 is the P� -completed

filtration generated by the process Mt W ˝ �! N.�/, P� is a probability measure
on .˝ ;A/ for all � 2 N.�/, and P� is the probability measure on .˝ ;A/ defined by

P�.A/ WD
Z

N.�/

P�.A/ �.d�/; A 2 A.
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A collection .M�;� ; .�t/t�0/ is called a �-time homogeneous Markov process with
state space N.�/ if �t W ˝ �! ˝ is a shift operator, i.e., Ms ı �t D MsCt, s; t � 0,
the map � 7! P�.A/ is measurable for all A 2 A, and the time homogeneous Markov
property

P�.Mt 2 A jAs/ D PMs.Mt�s 2 A/; P�-a.s.; A 2 A; 0 � s � t; � 2 N.�/;

holds. Recall that a �-time homogeneous Markov process .M�;� ; .�t/t�0/with state
space N.�/ is said to be �-tight on N.�/ if .Mt/t�0 is right-continuous with left
limits P� -almost surely; P�.M0 D �/ D 1 8� 2 N.�/; the filtration .At/t�0 is right
continuous; the following strong Markov property holds:

P� 0.MtC� 2 A jA� / D PM� .Mt 2 A/

P� 0-almost surely for all At-stopping time � , � 0 2 P.N.�//, A 2 A and t � 0,
cfr. Theorem IV.1.15 in [25]. In addition, a �-tight process on N.�/ is said to be a
�-special standard process on N.�/ if for any � 0 2 P.N.�// which is equivalent to
� and all At-stopping times � , .�n/n�1 such that �n " � we have that M�n converges
to M� , P� 0-almost surely.
The following theorem is proved in [11]. Therein E� denotes the expectation under
P� , � 2 N.�/. Here again, we refer the reader to the appendix for the required
notions of Dirichlet forms theory.

Theorem 6 Assume the hypotheses of Theorem 4, let P be the law of a determi-
nantal point process � with kernel K, and E be the Dirichlet form constructed in
Theorem 5. Then there exists a P�-tight special standard process .M�;P� ; .�t/t�0/
on N.�/ such that:

1. M�;P� is a diffusion, in the sense that:

P�.f! W t 7!Mt.!/ is continuous on Œ0;C1/g/ D 1; E-a.e. � 2 N.�/:
(27)

2. The transition semigroup of M�;P� is given by

ptF.�/ WD E� ŒF.Mt/	; � 2 N.�/; F W N.�/ �! R square integrable;

and it is properly associated with the Dirichlet form .E; dom.H1=2//, i.e., ptF is
an E-a.c., P�-version of exp.�tHgen

� /F, for all square integrable F W N.�/ �!
R and t > 0 (where Hgen

� is the generator of E).
3. M�;P� is unique up to P�-equivalence (we refer the reader to Definition 6.3

page 140 in [26] for the meaning of this notion).
4. M�;P� is P�-symmetric, i.e.,

E ŒG.��/ ptF.��/	 D E ŒF.��/ ptG.��/	 ;

for square integrable functions F and G on N.�/.
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5. M�;P� has P� as invariant measure.

In dimension d � 2, the diffusion constructed in the previous theorem is non-
colliding. Indeed, the following theorem holds.

Theorem 7 Assume d � 2, and the hypotheses of Theorem 4. Then

P�.f! 2 ˝ W Mt.!/ 2 Ns.�/; for any t 2 Œ0;1/g/ D 1; E-a.e. � 2 Ns.�/.

4.3 An Illustrative Example

Let � WD B.0;R/ � R2 be the closed ball centered at the origin with radius R 2
.0; 1/, let f'.R/k g1�k�3, denote the orthonormal subset of L2.B.0;R/; `/ defined by

'
.R/
k .x/ WD 1

R

r
kC 1
�

�
x.1/

R
C i

x.2/

R

�k

; x D .x.1/; x.2// 2 B.0;R/; k D 1; 2; 3;

where � D ` is the Lebesgue measure on R2 and i WD p�1 denotes the complex
unit. We consider the truncated Bergman kernel (see [18]) restricted to �

KBe.x; y/ WD
3X

kD1
R2.kC1/'.R/k .x/'.R/k .y/; x; y 2 B.0;R/;

and denote by KBe the associated integral operator.
We now discuss the conditions of Theorem 6. First, KBe is readily seen to

be Hermitian and locally of trace class with nonzero eigenvalues �k WD R2.kC1/,
k D 1; 2; 3. As a consequence, the spectrum of KBe is contained in Œ0; 1/ and
the triplet .KBe;KBe; `/ satisfies assumption .H1/. In addition, Condition .H2/ is
trivially satisfied since � D ` is the Lebesgue measure.

Denoting by �� the determinantal point process with kernel KBe, the Janossy
densities of �� are given by

j.k/� .x1; : : : ; xk/ D Det .Id �KBe/det JŒ�	.x1; : : : ; xk/;

for k D 1; 2; 3; .x1; : : : ; xk/ 2 �k, and where the kernel JŒ�	 of JŒ�	 is given by

JŒ�	.x; y/ WD
3X

hD1

R2.hC1/

1 � R2.hC1/
'
.R/
h .x/'.R/h .y/:
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Moreover, �� has at most 3 points according to Proposition 4, which means that
jk� D 0, for k � 4. To prove condition .H3/ it suffices to remark that the function

.x1; : : : ; xk/! det.JŒ�	.xp; xq//1�p;q�k

is continuously differentiable on �k, for k � 3. Condition (24) is trivially satisfied
for k > 3 since as already observed in this case jk� D 0. Next, we check that
Condition (24) is verified for k D 3. To that end, note that

JŒ�	.x1; x2; x3/ D A.x1; x2; x3/A.x1; x2; x3/
�;

where the matrix A WD .Aph/1�p;h�3 is given by

Aph WD RhC1
p
1 � R2.hC1/

'
.R/
h .xp/

and A.x1; x2; x3/� denotes the transpose conjugate of A.x1; x2; x3/. Hence,

det JŒ�	.x1; x2; x3/ D jdet A.x1; x2; x3/j2;

and since the previous determinant is a Vandermonde determinant, we have

det A.x1; x2; x3/ D
3Y

pD1

s
1C p

�.1 � R2. pC1//

0

@
3Y

pD1
.x.1/p C ix.2/p /

1

A

Y

1�p<q�3
..x.1/p � x.1/q /C i.x.2/p � x.2/q //:

So, Condition (24) with k D 3 reduces to

Z

B.0;R/3

ˇ̌
ˇ̌
ˇ̌
@

x
.h/
i
jdet A.x1; x2; x3/j2@x

.k/
j
jdet A.x1; x2; x3/j2

jdet A.x1; x2; x3/j2

ˇ̌
ˇ̌
ˇ̌ `.dx1/`.dx2/`.dx3/ <1;

for all 1 � i; j � 3 and 1 � h; k � 2, and for this it suffices to check

Z

B.0;R/3

ˇ̌
ˇ̌
ˇ
@

x
.1/
1

jdet A.x1; x2; x3/j2
jdet A.x1; x2; x3/j2

ˇ̌
ˇ̌
ˇ `.dx1/`.dx2/`.dx3/ <1:
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This latter integral can be written as

Z

B.0;R/3

ˇ̌
ˇ̌
ˇ̌

2x.1/1
.x.1/1 /

2 C .x.2/1 /2
C 2

3X

jD2

x.1/1 � x.1/j

.x.1/1 � x.1/j /2 C .x.2/1 � x.2/j /2

ˇ̌
ˇ̌
ˇ̌ `.dx1/`.dx2/`.dx3/;

which is indeed finite. Condition (24) may be verified also for k < 3 by taking
into account some properties of generalized Vandermonde determinants, we refer
the reader to [11] for the details. Consequently, by Theorem 6 we have the existence
of a diffusion process properly associated with the determinantal point process with
the Bergman-type kernel KBe.

5 Simulation

5.1 Standard Simulation of Determinantal Point Processes

In this section, we describe the standard algorithm to sample from the law of a
determinantal point process. The main results of this section can be found in the
seminal work of Hough et al. [17], along with the improvements found in [12, 18,
22]. We recall the algorithm introduced there in order to insist on its advantages
and disadvantages compared to directly simulating according to the densities. The
standard algorithm first yields a way to simulate the number of points n 2 N of
a determinantal point process on a given compact � 	 X. Second, it provides a
sample from the Janossy density jn�. Let us now discuss in detail these two steps.

Theorem 8 Let K be a trace class integral operator satisfying (H1) (we often
take K�, which is indeed of trace class), f'ngn�1 an orthonormal basis of
L2.X; �/ formed by eigenfunctions of K and f�ngn�1 the corresponding sequence
of eigenvalues. We write

K.x; y/ D
X

n�1
�n'n.x/'n.y/; x; y 2 X: (28)

Let fBngn�1 be a sequence of independent Bernoulli random variables of mean
EŒBn	 D �n. The Bernoulli random variables are defined on a distinct probability
space, say .˝;F/. Then, define the (random) kernel

KB.x; y/ D
X

n�1
Bn'n.x/'n.y/; x; y 2 X:

Finally, define the point process � on .Ns�˝;Ns˝F/ as the point process obtained
by first drawing the Bernoulli random variables, and then the point process with
kernel KB. We have that � is a determinantal point process on X with kernel K.
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For the remainder of this paragraph, we consider a general kernel K of the form (28)
and wish to generate a sample of the determinantal point process with kernel K.

According to Theorem 8, the number of points on X is distributed as the sum of
independent Bernoulli random variables. More precisely,

j�.X/j �
X

n�1
Bn;

where Bn � Be.�n/, n 2 N. Define T WD supfn � 1 = Bn D 1g. Since
P

n�1 �n DP
n�1P.Bn D 1/ < 1, by a direct application of the Borel–Cantelli lemma, we

have that T < 1 almost surely. Hence the method is to simulate first a realization
of T, say t, and then t � 1 independent Bernoulli random variables B1; : : : ;Bt�1,
each Bn with mean �n, n D 1; : : : ; t � 1 Finally, set Bt D 1.
The simulation of the random variable T can be obtained by the inversion method,
as we know its cumulative distribution function explicitly. Indeed, for n 2 N,

P.T D n/ D �n

1Y

iDnC1
.1 � �i/;

hence

F.r/ D P.T � r/ D
X

n�r

�n

1Y

iDnC1
.1 � �i/; 8r 2 N: (29)

To generate a random variable with law F requires the numerical computation of
the generalized inverse F�1.u/ WD infft 2 N = F.t/ � ug. In many practical cases,
as in the case of the Ginibre point process, the numerical calculations may augment
the complexity of the algorithm and the CPU. This is the main reason for which we
shall propose an approximate simulation of the Ginibre point process.

Assume we have simulated the number of points of the determinantal point
process on a compact �. For the clarity, we suppose T D n and B1 D 1;B2 D
1; : : : ;Bn D 1. This assumption is equivalent to a simple reordering of the
eigenvectors .'n/n2N. Then we have reduced the problem to that of simulating the
vector .X1; : : : ;Xn/ of joint density

p.x1; : : : ; xn/ D 1

nŠ
det


 QK.xi; xj/
�
1�i;j�n

;

where QK.x; y/ D Pn
jD1  j.x/ j.y/, for x; y 2 �, where here . j/j2N is the

reordering of .'j/j2N. The determinantal point process of kernel QK has n points
almost surely by Proposition 4, which means that it remains to simulate the
unordered vector .X1; : : : ;Xn/ of points of the point process. The idea of the
algorithm is to start by simulating X1, then X2jX1, until XnjX1; : : : ;Xn�1. The key
here is that in the determinantal case, the density of these conditional probabilities
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takes a computable form. Let us start by observing that

det

 QK.xi; xj/

�
1�i;j�ni

D det . k.xl//1�k;l�ni
det

�
 l.xk/

	

1�k;l�n
;

so the density of X1 on � is

p1.x1/ D
Z
: : :

Z
p.x1; : : : ; xn/ �.dx2/ � � ��.dxn/

D 1

nŠ

X

�;�2Sn

sgn.�/sgn.�/ �.1/.x1/ �.1/.x1/
nY

kD2

Z
 �.k/.xk/ �.k/.xk/�.dxk/

D 1

nŠ

X

�2Sn

j �.1/.x1/j2

D 1

n

nX

kD1
j k.x1/j2;

where Sn is the n-th symmetric group and sgn.�/ is the sign of the permutation
� 2 Sn. By a similar computation, we may compute the distribution of X2jX1, whose
density with respect to � is given by

pX2jX1 .x2/ D
p2.X1; x2/

p1.X1/
D 1

.n � 1/ŠP j j.X1/j2
X

�2Sn


j �.1/.X1/j2j �.2/.x2/j2 �  �.1/.X1/ �.2/.X1/ �.2/.x2/ �.1/.x2/
�

D 1

n � 1

0

@
nX

iD1
j j.x2/j2 � j

nX

jD1

 j.X1/pP j j.X1/j2
 j.x2/j2

1

A :

The previous formula can be generalized recursively and has the advantage of
giving a natural interpretation of the conditional densities. Indeed, we may write
the conditional densities at each step in a way that makes the orthogonalization
procedure appear. This is presented in the final algorithm, which was explicitly
obtained in [22] (see also [17] for the proof). We define the vector v.x/ WD
. 1.x/; : : : ;  n.x//t, where t stands for the transpose operator, denote by kv.x/k
its Euclidean norm, and given x 2 C

n, we set x� WD xt.
It is then known that Algorithm 1 yields a sample fX1; : : : ;Xng of a determinantal

point process with kernel QK.x; y/ D
nX

jD1
 j.x/ j.y/, x; y 2 �.



334 L. Decreusefond et al.

Algorithm 1 Simulation of the determinantal projection point process
sample Xn from the distribution with density pn.x/ D kv.x/k2=n, x 2 �
e1  v.Xn/=kv.Xn/k
for j D n� 1! 1 do

sample Xj from the distribution with density

pj.x/ D 1

j

h
kv.x/k2 �

n�jX

kD1

je�
k v.x/j2

i

wj v.Xj/�Pn�j
kD1



e�

k v.Xj/
�

ek; en�jC1 wj=kwjk
end for
return .X1; : : : ;Xn/

5.2 Simulation Using Markov Chains

Exploiting the bound (15), an alternative algorithm to sample from the law of a
determinantal point process on a finite window is readily obtained by specializing
the general theory developed in [19, 20, 23], which allow to sample from the law
of finite point processes with bounded Papangelou intensity. Let us give a brief
description.
In the remainder of this paragraph, we fix a compact set � 	 X, and turn our
attention to the simulation of a determinantal point process with kernel K�. The
following bound holds for the Papangelou conditional intensity c�:

8x 2 �; 8� 2 Ns; c�.x; �/ � JŒ�	.x; x/ D J.x; x/; (30)

where we have specialized the bound (15) and have noticed that JŒ�	.x; x/ D J.x; x/
for x 2 �. We first simulate a Glauber process associated with the measure
J.x; x/d�.x/:

• Draw an initial configuration D0 according to the distribution of a Poisson point
process over� with mean measure J.x; x/d�.x/.

• Define a Poisson process on RC of intensity M D R
�

J.x; x/d�.x/ and denote by
.Tn; n � 1/ its arrival times.

• At each time Tn, a particle appears at a position randomly located according to
the probability distribution M�1J.x; x/d�.x/ independently from any other event.

• To each particle, we assign an exponentially distributed lifetime of mean 1,
independently from any other event, i.e., each particle dies after an exponential
distributed time.

• The Glauber process D is formed by the random variables Dt denoting the
number of particles alive at time t.

Once this process is constructed, we can use the coupling from the past to simulate
the determinantal point process:
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• Simulate a (dominating) Glauber process D corresponding to the mean measure
J.x; x/d�.x/ over � on a time horizon T, with initial configuration D0 . Record
all birth dates and locations along the sample-path.

• Define two configuration-valued Markov chains, L and U. L stands for lower and
U for upper since we will guarantee Lt � Ut � Dt at any time t � 0, L0 D ; and
U0 D D0.

• Read the time-line of the process D.

1. When there is a death in the sample-path of D, then the corresponding particle
dies (in both U and L) provided it exists.

2. When there is a birth at x in D at time t, draw a uniform sample S on Œ0; 1	,
independently from everything else. If S � c.x;Ut�/ then x is added to Lt D
Lt� [ x. If S � c.x;Lt�/, then Ut D Ut� [ fxg.

3. If at time T, UT D LT then UT is a sample of the determinantal point process
of Papangelou intensity c. If not, expand the sample-path of D to ŒT; 2T	 and
replay the same algorithm.

A crucial question is then how to choose T to avoid both a too long simulation if
T is large and the need to extend several times the sample-path of D if T is too
small. A very crude bound on the coalescence time, i.e., the time at which U and L
coincide, is the hitting time of the null configuration by D. Indeed, since for any time
t, Lt � Ut � Dt, if DT D ; then UT D ; and LT D ;. It turns out that the number of
points of D follow the dynamics of an M/M/1 queue. If the initial population of D0

is large then Proposition 6.8 of [30] entails that T0 is of the order of log.jD0j/. This

means that the coalescence time of our algorithm is an O

�
log

R

�

J.x; x/ d�.x/

�
; but

in practice, we are well below this upper bound (Fig. 1).
Finally, we present some samples of the coalescence time in a practical example

known as the Gaussian model (see [22]). More precisely, Fig. 2 shows the distribu-
tions of the coalescence time of Lt and Ut and the stopping time of the algorithm for
500 samples of the Gaussian model DPP with � D 50.
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Fig. 1 CFTP simulations for Gaussian model DPP with � D 50 and ˛ D 0:04, respectively at time
Ti, the i-th jump time from time t D �n. Notations: “�” WD Dt, “r” WD Ut and “�”.red/ WD Lt.
(a) at time T0; (b) at time T25; (c) at time T50
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Fig. 2 Histogram of the
coalescence time of Lt and Ut

and the stopping time on 500
samples of a Gaussian model
with � D 50 and ˛ D 0:04
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The two simulation methods presented are conceptually quite different and are
therefore difficult to compare. To be more precise, in the standard algorithm, there
are two time-consuming steps: the simulation of the Bernoulli random variables and
the simulation under the density pi for which we are a priori required to proceed
by rejection sampling. This requires an evaluation of the supremum of pi on a
grid which can be unboundedly big. In the algorithm based on Markov chains,
we avoid the previous problem by only evaluating elaborate functionals (in our
case, the Papangelou conditional intensity c) on a specific configuration, and not
on the whole grid. Additionally, the standard algorithm relies on the knowledge
of the eigenfunctions and the eigenvalues of the kernel K� whereas the algorithm
based on Markov chains works well with any expression of JŒ�	. However, the
time necessary to reach equilibrium can be quite long, which is the main drawback
of this algorithm. Thus, quantifying the execution time of the MCMC algorithm
is of practical interest. We roughly discussed this question in this section, but
a comparison with the standard algorithm is in general quantitatively difficult
since the better performing algorithm depends on the kernel K� of the underlying
determinantal point process.

5.3 Approximate Simulation of the Ginibre Point Process

In this paragraph, we introduce a specific determinantal point process which is fast
to simulate in practice, well suited for applications, and converges weakly to the
Ginibre point process.
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The Ginibre point process, see [16], is the determinantal point process on C with
kernel

KGin.z1; z2/ WD
1X

nD0
'n.z1/'n.z2/; z1; z2 2 C; (31)

where 'n.z/ WD 1p
�nŠ

e� 12 jzj2zn for each n � 0. Further details concerning the Ginibre
point process may be found in [18, 31].
We introduce a new kernel, by setting

KN
Gin.z1; z2/ WD

N�1X

nD0
'
p

N
n .z1/'

p
N

n .z2/; z1; z2 2 B.0;
p

N/; (32)

where we define '
p

N
n WD 1p

��.nC1;N/e
� 12 jzj2zn1fz2B.0;

p
N/g, for 0 � n � N � 1. Here,

�.z; a/ WD R a
0

e�ttz�1 dt, a � 0; z 2 C is the lower incomplete Gamma function. This
kernel defines a determinantal point process named truncated Ginibre point process
conditioned on having N points, see [12] for details. Clearly, this determinantal point
process can be simulated as described by Algorithm 1. Fixing the number N of
points in the ball B.0;

p
N/ ensures a fast execution time.

As already noticed, Algorithm 1 yields a sample of the truncated Ginibre point
process conditioned on having N points on the ball B.0;

p
N/. In order to simulate

the process on B.0; a/, a � 0, we need to apply a homothetic transformation to
the N points, which translates to a homothety on the eigenfunctions. To summarize,
the simulation algorithm for the truncated Ginibre process conditioned on having N
points on the ball B.0; a/ is done according to Algorithm 2.

Algorithm 2 Simulation of the truncated Ginibre point process

define 'k.z/ D N
�a2�.kC1;N/ e

� N
2a2

jzj2
.Nz

a2 /
k, for z 2 B.0;

p
N/ and 0 � k � N � 1.

define v.z/ WD .'0.z/; : : : ; 'N�1.z//, for z 2 B.0;
p

N/.
sample XN from the distribution with density pN.z/ D kv.z/k2=N, z 2 B.0;

p
N/

set e1 D v.XN /=kv.XN /k
for i D N � 1! 1 do

sample Xi from the distribution with density

pi.x/ D 1

i

h
kv.x/k2 �

N�iX

jD1

je�
j v.x/j2

i

set wi D v.Xi/�PN�i
jD1

�
e�

j v.Xi/
	

ej; eN�iC1 D wi=kwik
end for
return .X1; : : : ;XN/



338 L. Decreusefond et al.

The next theorem from [12] and the subsequent comment guarantee that the
above algorithm can be interpreted as an approximate simulation algorithm for the
Ginibre point process.

Theorem 9 The kernel KN
Gin converges to KGin, as N tends to infinity, uniformly on

compacts.

As a consequence of Theorem 9 and Proposition 3.10 in [32], the truncated Ginibre
point process conditioned on having N points converges weakly to the Ginibre point
process.

6 Open Questions

We mention here a few open questions.

• Let P be the law of a determinantal point process � onX, and ' a diffeomorphism
of the whole space. Is the image of P by ' absolutely continuous with respect
to P? If yes, is it possible to compute the corresponding Radon–Nikodym
derivative?

• Is the diffusion constructed in Theorem 6 ergodic?
• Consider a sequence of diffusions defined by Theorem 6 and indexed by

compacts�n increasing to Rd. Does M�n ;P�n
converge weakly to some limiting

diffusion as n ! 1? If yes, may we compute the properly associated Dirichlet
form?

• Is it possible to approximate in distribution the diffusion constructed in Theo-
rem 6 by a continuous-time Markov process (such as a Glauber dynamics)?

• What is the error committed by the approximate simulation algorithm to sample
from the target law, i.e., the law of the Ginibre point process?

• Let � be a determinantal point process with integral operator K. Can one
generalize the results presented in this chapter to include the case where 1 is
an eigenvalue of K?

Acknowledgements The authors wish to thank Low Kah Choon who produced the graphs of
Sect. 5 and who contributed to some heuristics in the section.

Appendix

First, we recall some results and properties on the closability of linear operators.
Given .X; k � kX/ and .Y; k � kY/ two Banach spaces, and A W dom.A/ �! Y a linear
operator defined on a subspace dom.A/ of X, the domain of A, the operator A is said
to be closed if, for any sequence .xn/n�1 � dom.A/, such that xn converges to x in X
and Axn converges to y in Y we have x 2 dom.A/ and y D Ax, i.e., dom.A/ is closed
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(or equivalently complete) w.r.t. the graph norm k � kG WD k � kX C kA � kY . A linear
operator A W dom.A/ �! Y is said closable if, for any sequence .xn/n�1 � dom.A/
such that xn converges to 0 in X and Axn converges to y in Y it holds y D 0. In
other words, A is closable if, for any sequence .xn/n�1 � dom.A/ such that xn

converges to 0 in X and .xn/n�1 is Cauchy w.r.t. the graph norm k � kG it holds Axn

converges to 0 in Y. The minimal closed extension of the closable operator A is the
closed operator A whose domain dom.A/ is the completion of dom.A/ w.r.t. k � kG,
i.e.,

dom.A/ WD fx 2 X W 9 .xn/n�1 � dom.A/ W xn ! x in X

and .Axn/n�1 converges in Yg

and we define

Ax WD lim
n!1Axn; x 2 dom.A/;

where the limit is in Y and .xn/n�1 is some sequence in dom.A/ such that xn

converges to x in X and .Axn/n�1 converges in Y.
Next, we recall some notions of Dirichlet forms theory. We begin with some

definitions related to bilinear forms (see [25] for details). Let H be a Hilbert space
with inner product h�; �i and A W dom.A/ � dom.A/ �! R a bilinear form defined
on a dense subspace dom.A/ of H, the domain of A. The form A is said to be
symmetric if A.F;G/ D A.G;F/, for any F;G 2 dom.A/, and nonnegative definite
if A.F;F/ � 0, for any F 2 dom.A/. Let A be symmetric and nonnegative definite,
A is said closed if dom.A/ equipped with the norm

kFkA WD
p
A.F;F/C hF;Fi; F 2 dom.A/;

is a Hilbert space. A symmetric and nonnegative definite bilinear form A is said
closable if, for any sequence .Fn/n�1 � dom.A/ such that Fn goes to 0 in H and
.Fn/n�1 is Cauchy w.r.t. k � kA it holds that A.Fn;Fn/ converges to 0 in R as n goes
to infinity. Let A be closable and denote by dom.A/ the completion of dom.A/ w.r.t.
the norm k � kA. It turns out that A is uniquely extended to dom.A/ by the closed,
symmetric, and nonnegative definite bilinear form

A.F;G/ D lim
n!1A.Fn;Gn/; .F;G/ 2 dom.A/ � dom.A/,

where f.Fn;Gn/gn�1 is any sequence in dom.A/ � dom.A/ such that .Fn;Gn/

converges to .F;G/ 2 dom.A/ � dom.A/ w.r.t. the norm k � kA C k � kA. Suppose
H D L2.B;B; ˇ/ where .B;B; ˇ/ is a measure space. A symmetric, nonnegative
definite, and closed form A is said to be a symmetric Dirichlet form if

A.FC ^ 1;FC ^ 1/ � A.F;F/; F 2 dom.A/,
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where FC denotes the positive part of F. Suppose that B is a Hausdorff topological
space and let A be a symmetric Dirichlet form. An A-nest is an increasing sequence
.Cn/n�1 of closed subsets of B such that

[

n�1
fF 2 dom.A/ W F D 0 ˇ-a.e. on B n Cng

is dense in dom.A/ w.r.t. the norm k � kA. We say that a subset B0 � B is A-
exceptional if there exists an A-nest .Cn/n�1 with B0 � B nSn�1 Cn. Throughout
this paper we say that a property holds A-almost everywhere (A-a.e.) if it holds
up to an A-exceptional set. Moreover, a function f W B ! R is called A-almost
continuous (A-a.c.) if there exists an A-nest .Cn/n�1 such that the restriction fjCn of
f to Cn is continuous for each n � 1.

Let B be again a Hausdorff topological space. A symmetric Dirichlet form A on
the Hilbert space L2.B;S .B/; ˇ/ is called quasi-regular if

(1) There exists an A-nest .Cn/n�1 consisting of compact sets.
(2) There exists a k � kA-dense subset of dom.A/ whose elements have A-a.c. ˇ-

versions.
(3) There exist Fk 2 dom.A/, k � 1, having A-a.c. ˇ-versions QFk, k � 1, such

that . QFk/k�1 is a separating set for B n N (i.e., for any x; y 2 B n N, x ¤ y,
there exists QFk� such that QFk�.x/ ¤ QFk�.y/), where N is a subset of B which is
A-exceptional.

Acknowledgement This work was supported in part by the Singapore MOE Tier 2 grant
MOE2012-T2-2-033 ARC 3/13.

References

1. Albeverio, S., Kondratiev, Y.G., Röckner, M.: Analysis and geometry on configuration spaces.
J. Funct. Anal. 154, 444–500 (1998)

2. Borodin, A., Okounkov, A., Olshanski, G.: Asymptotics of Plancherel measures for symmetric
groups. J. Am. Math. Soc. 13, 481–515 (2000)

3. Borodin, A., Olshanski, G.: Point processes and the infinite symmetric group. Math. Res. Let.
5, 799–816 (1998)

4. Borodin, A., Olshanski, G.: Distributions on partitions, point processes, and the hypergeomet-
ric kernel. Commun. Math. Phys. 211, 335–358 (2000)

5. Borodin, A., Olshanski, G.: Harmonic analysis on the infinite-dimensional unitary group and
determinantal point processes Ann. Math. 161, 1319–1422 (2005)

6. Borodin, A., Olshanski, G.: Random partitions and the gamma kernel. Adv. Math. 194, 141–
202 (2005)

7. Brezis, H.: Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise.
[Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris (1983)

8. Camilier, I., Decreusefond, L.: Quasi-invariance and integration by parts for determinantal and
permanental processes. J. Funct. Anal. 259, 268–300 (2010)



Determinantal Point Processes 341

9. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Elementary
Theory and Methods. Probability and its Applications (New York), vol. I, 2nd edn. Springer,
New York (2003)

10. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. General Theory
and Structure. Probability and its Applications (New York), vol. II, 2nd edn. Springer, New
York (2008)

11. Decreusefond, L., Flint, I., Privault, N., Torrisi, G.L.: Stochastic dynamics of determinantal
processes by integration by parts. Commun. Stoch. Anal. 9, 375–399 (2015)

12. Decreusefond, L., Flint, I., Vergne, A.: Efficient simulation of the Ginibre point process. Adv.
Appl. Probab. 52(4), 1003–1012 (2015)

13. Dunford, N., Schwartz, J.T.: Linear Operators. Part I. General Theory. With the assistance
of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience
Publication. Wiley Classics Library. Wiley, New York (1988)
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