
Stephen Poole
Oscar Hernandez
Pavel Shamis (Eds.)

 123

LN
CS

 8
35

6

First Workshop, OpenSHMEM 2014
Annapolis, MD, USA, March 4–6, 2014
Proceedings

OpenSHMEM and
Related Technologies
Experiences, Implementations, and Tools

Lecture Notes in Computer Science 8356
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Stephen Poole Oscar Hernandez
Pavel Shamis (Eds.)

OpenSHMEM and
Related Technologies
Experiences, Implementations,
and Tools

First Workshop, OpenSHMEM 2014
Annapolis, MD, USA, March 4-6, 2014
Proceedings

13

Volume Editors

Stephen Poole
Oscar Hernandez
Pavel Shamis
Oak Ridge National Laboratory
One Bethel Valley Road
P.O. Box 2008, MS-6164
Oak Ridge, TN 37831-6164, USA
E-mail: {spoole,oscar,shamisp}@ornl.gov

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-05214-4 e-ISBN 978-3-319-05215-1
DOI 10.1007/978-3-319-05215-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014931857

CR Subject Classification (1998): D.2, C.2, F.3, D.4, H.4, F.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

OpenSHMEM is a modern derivative of the SGI SHMEM API, originally
developed by Cray Research, Inc., for efficient programming of large-scale sys-
tems. Because of its strong following among users, the Extreme Scale Systems
Center at Oak Ridge National Laboratory, together with the University of Hous-
ton, led the effort to standardize the API with the input from the vendors and
user community. In 2012, version 1.0 was released and opened for comments
or further revisions. The goal of OpenSHMEM is to make sure that OpenSH-
MEM applications are portable across OpenSHMEM implementations provided
by multiple vendors, including SGI, Cray, IBM, Hewlett-Packard, Intel, and Mel-
lanox Technologies.

OpenSHMEMis a communication library following the partitioned global ad-
dress space (PGAS) programing model and providing one-sided communication
semantics that enables decoupling of the data transfer from the synchronization
of the communication source and target. Irregular communication patterns with
small/medium-sized data transfers, in which data source and data target are not
previously known, often benefit from a one-sided communication library such as
OpenSHMEM because of its low-latency operations.

This first OpenSHMEM workshop that was open to the community, which
will be part of a series of annual events, was dedicated to the promotion and
advancement of parallel programming with the OpenSHMEM programming in-
terface and to helping shape its future direction. The workshop is the premier
venue for discussing and presenting the latest developments, implementation
technology, tools, trends, recent research ideas, and results related to OpenSH-
MEM and its use in applications. As we move to Exascale, there are several areas
in OpenSHMEM that we need to address to ensure that OpenSHMEM will work
on future systems, including better scalability, resilience, I/O, multi-threading
support, power and energy efficiency, locality, etc.

This year’s workshop website at http://www.csm.ornl.gov/workshops/

openshmem2013 contains information about the agenda. The program consisted
of a keynote speaker, several invited talks and technical paper presentations from
industry, academia, and national laboratories, as well as a panel session. These
talks discussed the current state of OpenSHMEM, tools, and ideas for future
extensions for OpenSHMEM based on future software and hardware trends. In
addition, we held four tutorials: one on the OpenSHMEM API, one on acceler-
ator programming with OpenACC/OpenMP and OpenSHMEM, one on Open-
SHMEM tools and one on InfiniBand/Verbs programming. On the last day of
the workshop we held a panel session where we summarized the results of the

VI Preface

workshop and proposed roadmap for OpenSHMEM, with input from the
community. This book contains 12 technical papers, and two short position pa-
pers that were presented at the OpenSHMEM workshop. All the papers were
peered reviewed by three different members of the Program Committee.

March 2014 Steve Poole
Oscar Hernandez

Pavel Shamis

Organization

Program and Co-chairs

Oscar Hernandez
Pavel Shamis
Steve Poole

Tutorials Chair

Manjunath Venkata

Workshop Organizer

Jennifer Goodpasture

Program Committee

Barbara Chapman University of Houston, USA
Steve Poole Oak Ridge National Laboratory, USA
Tony Curtis University of Houston, USA
Barney Maccabe Oak Ridge National Laboratory, USA
Nick Park Department of Defense, USA
Duncan Poole NVIDIA, USA
Stephane Chauveau CAPS Enterprise, France
Sameer Shende University of Oregon, USA
Wolfang Nagel TU-Dresden, Germany
Duncan Roweth Cray Inc., USA
Gary Grider Los Alamos National Laboratory, USA
Manjunath Venkata Oak Ridge National Laboratory, USA
Gilad Shainer Mellanox Technologies, USA
Matt Baker Oak Ridge National Laboratory, USA
Laura Carrington San Diego Supercomputing Center, USA
Monika ten Bruggencate Cray, USA
George Bosilca University of Tennessee, USA
Gregory Koenig Oak Ridge National Laboratory, USA
Josh Lothian Oak Ridge National Laboratory, USA
Chung-Hsing Hsu Oak Ridge National Laboratory, USA

Table of Contents

OpenSHMEM Implementations and Evaluations

Designing a High Performance OpenSHMEM Implementation Using
Universal Common Communication Substrate as a Communication
Middleware . 1

Pavel Shamis, Manjunath Gorentla Venkata, Stephen Poole,
Aaron Welch, and Tony Curtis

A Comprehensive Performance Evaluation of OpenSHMEM Libraries
on InfiniBand Clusters . 14

Jithin Jose, Jie Zhang, Akshay Venkatesh, Sreeram Potluri, and
Dhabaleswar K. (DK) Panda

Benchmarking Parallel Performance on Many-Core Processors 29
Bryant C. Lam, Ajay Barboza, Ravi Agrawal, Alan D. George, and
Herman Lam

Implementing OpenSHMEM Using MPI-3 One-Sided
Communication . 44

Jeff R. Hammond, Sayan Ghosh, and Barbara M. Chapman

Analyzing the Energy and Power Consumption of Remote Memory
Accesses in the OpenSHMEM Model . 59

Siddhartha Jana, Oscar Hernandez, Stephen Poole,
Chung-Hsing Hsu, and Barbara M. Chapman

Applications

Hybrid Programming Using OpenSHMEM and OpenACC 74
Matthew Baker, Swaroop Pophale, Jean-Charles Vasnier,
Haoqiang Jin, and Oscar Hernandez

Tools

Towards Parallel Performance Analysis Tools for the OpenSHMEM
Standard . 90

Sebastian Oeste, Andreas Knüpfer, and Thomas Ilsche

Profiling Non-numeric OpenSHMEM Applications with the TAU
Performance System . 105

John Linford, Tyler A. Simon, Sameer Shende, and Allen D. Malony

X Table of Contents

A Global View Programming Abstraction for Transitioning MPI Codes
to PGAS Languages . 120

Tiffany M. Mintz, Oscar Hernandez, and David E. Bernholdt

Extending the OpenSHMEM Analyzer to Perform Synchronization
and Multi-valued Analysis . 134

Swaroop Pophale, Oscar Hernandez, Stephen Poole, and
Barbara M. Chapman

OpenSHMEM Extensions and Future Directions

OpenSHMEM Extensions and a Vision for Its Future Direction 149
Stephen Poole, Pavel Shamis, Aaron Welch, Swaroop Pophale,
Manjunath Gorentla Venkata, Oscar Hernandez, Gregory Koenig,
Tony Curtis, and Chung-Hsing Hsu

Reducing Synchronization Overhead Through Bundled
Communication . 163

James Dinan, Clement Cole, Gabriele Jost, Stan Smith,
Keith Underwood, and Robert W. Wisniewski

Thread-Safe SHMEM Extensions . 178
Monika ten Bruggencate, Duncan Roweth, and Steve Oyanagi

Implementing Split-Mode Barriers in OpenSHMEM 186
Michael A. Raymond

Author Index . 191

Designing a High Performance OpenSHMEM

Implementation Using Universal
Common Communication Substrate

as a Communication Middleware

Pavel Shamis1, Manjunath Gorentla Venkata1, Stephen Poole1,
Aaron Welch2, and Tony Curtis2

1 Extreme Scale Systems Center (ESSC)
Oak Ridge National Laboratory (ORNL)
{shamisp,manjugv,spoole}@ornl.gov

2 Computer Science Department
University of Houston (UH)
{dawelch,arcurtis}@uh.edu

Abstract. OpenSHMEM is an effort to standardize the well-known
SHMEM parallel programming library. The project aims to produce an
open-source and portable SHMEM API and is led by ORNL and UH. In
this paper, we optimize the current OpenSHMEM reference implementa-
tion, based on GASNet, to achieve higher performance characteristics. To
achieve these desired performance characteristics, we have redesigned an
important component of the OpenSHMEM implementation, the network
layer, to leverage a low-level communication library designed for imple-
menting parallel programming models called UCCS. In particular, UCCS
provides an interface and semantics such as native atomic operations
and remote memory operations to better support PGAS programming
models, including OpenSHMEM. Through the use of microbenchmarks,
we evaluate this new OpenSHMEM implementation on various network
metrics, including the latency of point-to-point and collective operations.
Furthermore, we compare the performance of our OpenSHMEM imple-
mentation with the state-of-the-art SGI SHMEM. Our results show that
the atomic operations of our OpenSHMEM implementation outperform
SGI’s SHMEM implementation by 3%. Its RMA operations outperform
both SGI’s SHMEM and the original OpenSHMEM reference implemen-
tation by as much as 18% and 12% for gets, and as much as 83% and
53% for puts.

1 Introduction

OpenSHMEM [1] [2] is an effort towards creating an open standard for the
well-known SHMEM library, and is a starting point to accommodate future
extensions to the SHMEM API. SHMEM is a Partitioned Global Address Space
(PGAS) based parallel programming model. OpenSHMEM 1.0 is a SHMEM

S. Poole, O. Hernandez, and P. Shamis (Eds.): OpenSHMEM 2014, LNCS 8356, pp. 1–13, 2014.
c© Springer International Publishing Switzerland 2014

2 P. Shamis et al.

specification based on SGI’s SHMEM API, which predominantly supports one-
sided communication semantics as well as providing collective communication
operations, atomic operations, and synchronization operations. Currently, there
are many production-grade proprietary implementations of the SHMEM API.
OpenSHMEM 1.0 is an effort to create an open, unified standard and a reference
implementation [3] of the SHMEM API, led by ORNL’s ESSC and UH.

The current reference implementation, which supports various network inter-
faces in an effort to be portable to spur adoption, is based on the GASNet com-
munication middleware [4]. Though proprietary SHMEM implementations have
outstanding performance characteristics on their native hardware, the current
reference implementation of OpenSHMEM has several performance drawbacks.
For example, atomic operations in the current implementation have a latency
that is at least 27% slower than that of the native low-level drivers. In this pa-
per, in order to arrive at the desired performance characteristics, we redesign
the network layer of the OpenSHMEM reference implementation to leverage
the Universal Common Communication Substrate (UCCS) communication li-
brary [5] [6], a low-level network library for implementing parallel programming
models. For the rest of the paper, the current reference implementation will
be called OpenSHMEM-GASNet and the new reference implementation using
UCCS will be referred to as OpenSHMEM-UCCS .

The rest of the paper is organized as follows: Section 2 provides a brief
overview of the UCCS communication middleware and OpenSHMEM specifi-
cation. Section 3 discusses related works in the area of OpenSHMEM implemen-
tations. Section 4.1 details the network layer of OpenSHMEM, and the way it
was designed to be independent of underlying network infrastructure. Section
4.2 provides details of UCCS interfaces, data structures, and semantics of opera-
tions, and Section 4.3 provides the details of its integration with OpenSHMEM.
Section 5 provides an evaluation of the OpenSHMEM-UCCS implementation
by comparing it to OpenSHMEM-GASNet and SGI’s SHMEM, and we present
concluding remarks in Section 6.

2 Background

This section provides a brief background for the OpenSHMEM specification and
UCCS communication middleware.

2.1 OpenSHMEM

Despite the fact that the original SHMEM library was designed by Cray Re-
search, which later was merged with Silicon Graphics (SGI), there are multiple
variants of the SHMEM API that have been introduced by different system and
hardware vendors. The SGI SHMEM library, which is a part of SGI’s Message
Passing Toolkit (MPT), provides the original SHMEM interface developed by
Cray Research and SGI. Cray provides a SHMEM library implementation for the
SeaStar, Aries, and Gemini interconnects. HP supports SHMEM concepts with

Designing a High Performance OpenSHMEM Implementation 3

the HP SHMEM library, which is based on the Quadrics SHMEM library and is
available on HP systems. Despite the broad availability of SHMEM implemen-
tations, the SHMEM API has not been standardized. As a result, application
developers have to handle incompatibilities of different SHMEM implementa-
tions at the application level. The OpenSHMEM specification was borne out of
the desire to standardize the many similar yet incompatible SHMEM communi-
cation libraries into a single API. The OpenSHMEM reference implementation
is an open-source implementation of this specification.

2.2 UCCS

UCCS is a communication middleware that aims to provide a high performing
low-level communication interface for implementing parallel programming mod-
els. UCCS aims to deliver a broad range of communication semantics such as
active messages, collective operations, puts, gets, and atomic operations. This
enables implementation of one-sided and two-sided communication semantics to
efficiently support both PGAS and MPI-style programming models. The inter-
face is designed to minimize software overheads, and provide direct access to
network hardware capabilities without sacrificing productivity. This was accom-
plished by forming and adhering to the following goals:

– Provide a universal network abstraction with an API that addresses the
needs of parallel programming languages and libraries.

– Provide a high-performance communication middleware by minimizing soft-
ware overheads and taking full advantage of modern network technologies
with communication-offloading capabilities.

– Enable network infrastructure for upcoming parallel programming models
and network technologies.

In order to evaluate the OpenSHMEM reference implementation with UCCS
instead of GASNet, the reference implementation was extended to integrate with
the UCCS network substrate.

3 Related Work

The OpenSHMEM reference implementation is the first open-source implemen-
tation of the OpenSHMEM specification, which was developed in conjunction
with the specification by the University of Houston and Oak Ridge National
Laboratory. Since the OpenSHMEM specification is based on SGI’s SHMEM
API, SGI SHMEM was the first commercial implementation of the specification.

The HPC community and system vendors embraced the specification and re-
leased various implementations of the specification. The University of Florida is
developing the GSHMEM [7] project which is an OpenSHMEM implementation
based solely on the GASNet runtime. Ohio State University (OSU) distributes
the MVAPICH-X runtime environment [8], which is focused on enabling MVA-
PICH InfiniBand and iWARP support for OpenSHMEM and UPC in addition

4 P. Shamis et al.

to MPI. Sandia National Laboratory provides an open source implementation
of the specification for the Portals [9] network stack. In addition to the above
implementations, there are SHMEM implementations that are tightly coupled
to particular network technologies developed by network and system vendors.
Mellanox ScalableSHMEM [10] provides support for a family of Mellanox inter-
connects and is based on proprietary software accelerators [11]. Cray and HP
SHMEM provide proprietary SHMEM implementations for platforms developed
by these vendors, both of which have been making steps toward supporting the
OpenSHMEM specification. Tilera Many-Core processors are supported within
TSHMEM [12].

The OpenSHMEM reference implementation differentiates itself as an open-
source and explorable community platform for development and extension of
the OpenSHMEM Specification. Using high-performance UCCS middleware, the
UCCS reference implementation aims to deliver performance that is as good or
better than the state-of-the-art commercial implementations.

4 Design

The design section discusses the OpenSHMEM communication layer, the UCCS
API, and the integration of UCCS as a communication layer in OpenSHMEM.

4.1 OpenSHMEM Communication Layer

The OpenSHMEM reference implementation consists of the core API and a sep-
arate communication layer that can have multiple implementations for handling
low-level networking hardware, designed in a way that allows them to be eas-
ily swapped out for one another. This separation between layers was done in a
way that was as minimalistic as reasonably possible, yet still would be generic
enough so as to be able to fully accommodate any potential communication
infrastructure cleanly. This allows for the maximum amount of common func-
tionality to be reused across communication layer implementations, but requires
careful construction.

Moving in this direction, the first task involved dividing all communica-
tion primitives such as puts, gets, and atomics between network-agnostic and
network-specific sections. Additionally, any particular functions that multiple
network layers may share were also taken out and implemented in the upper
layers of the library. These functions include a handful of basic procedures that
also do not include any assumptions or code specific to a particular communica-
tion infrastructure, but may still be needed during use, such as range checking
for processing element (PE) numbers, symmetric addressing, memory allocation
and deallocation, and state information querying.

Other communication calls that could be implemented using the previously
described primitives were done so in the upper layers of the library as well,
removing additional strain on the requirements for generating and maintaining
communication layers. Most notably, these include collective calls such as barrier,

Designing a High Performance OpenSHMEM Implementation 5

broadcast, and reduction operations. Finally, any functions that do not require
any communication at all were implemented solely in the upper layer, such as
shmem wait().

4.2 UCCS API

The UCCS API is a generic and network hardware agnostic interface that defines
abstract concepts, which isolate programmers from hardware specific details. To
accomplish this, it first defines a few key concepts: communication contexts,
resources, and endpoints. Communication contexts are a method of providing
communication scope and isolation to multiple instances of user or system code,
and are represented in application code as opaque handles. These handles contain
all information about the associated communication context, including resources,
endpoints, and memory, and are at the topmost layer of the communication
abstraction. Resources represent a particular communication channel available
for a network, for which there may be several for a given network in cases such
as multi-rail architectures. Similar to communication contexts, resources are also
represented by opaque handles, and all the descriptors for the available resources
of a particular transport type or list of types in a given communication context
are initialized at once.

In order to complete a communication call, a specific endpoint must be se-
lected to communicate with using a specific resource. These endpoints represent
the ultimate destination for a communication operation, and are also represented
by opaque handles. To obtain a set of valid endpoints, a connectivity map must
be generated for a resource and be queried to discover if a particular execution
context is reachable via the resource for which it was generated. Endpoints in
UCCS are defined in relation to resources, such that any one endpoint descriptor
is only associated with one particular resource descriptor. Figure 1 describes the
relationship between UCCS context, resources, and endpoints.

The interface for UCCS is divided between the core API and its run-time
environment (RTE) (Figure 2). The RTE API is an interface providing run-
time services such as process startup, out-of-band communication, and a key
storage and retrieval system, as well as other run-time services. UCCS does
not implement run-time services, but relies on external libraries such as ORTE
[13], SLURM [14], STCI [15], and other third party runtime libraries. Such an
approach allows it to decouple the core communication API from the run-time
environment, in a way that enables easy porting to different run-time libraries.

The core API features consist of initialization, remote memory access, atomic
memory operations, active messages, and collectives. Aside from the functions
required for creating descriptors for communication contexts, resources, and end-
points, UCCS also provides methods for querying network capabilities and regis-
tering, deregistering, and exporting memory segments for use in future calls.
Remote Memory Access (RMA) operations consist of functions for one-sided puts
and gets optimized for either short, medium, or largemessage sizes, as well as func-
tions for non-contiguous data. Atomic Memory Operation (AMO) functions in-
clude atomic add, fetch-and-add, increment, fetch-and-increment, swap, and

6 P. Shamis et al.

Endpoint
Process 0

Endpoint
Process 0Endpoint

Process 0
Endpoint
Process 0

Endpoint
Process 0

Endpoint
Process N

UCCS Resource
Cray Gemini 2

UCCS Context

UCCS Resource
InfiniBand

Endpoint
Process 0

Endpoint
Process 0Endpoint

Process 0
Endpoint
Process 0

Endpoint
Process 0

Endpoint
Process N

Endpoint
Process K

Endpoint
Process 0Endpoint

Process 0
Endpoint
Process 0

Endpoint
Process 0

Endpoint
Process M

UCCS Resource
Cray Gemini

Fig. 1. A relation between the UCCS communication context, resource, and endpoints

conditional swap for both 32 and 64 bit data sizes. The Active Message (AM) in-
terface can be used to support remote execution and two-sided communication op-
erations. This is performed by first registering a callback handler, then sending the
data itself in a manner similar to the RMA put operations. Group communication
can also be performed using the provided collective operation functions.

All communication calls in UCCS are inherently non-blocking, so their com-
pletion must be checked by waiting on a request handle created for tracking
an operation’s progress. To aid in the management of outstanding operations,
UCCS provides functions to test or wait on these handles in whichever way
best suits the given situation. The user may test or wait either on a specific
handle, all handles in a provided list, or any of the handles in a provided list.
These management functions result in a returned status that indicates whether
the operation completed successfully, an error occurred, or some other status as
appropriate. In addition to the test and wait functions for remote completion,
it is also possible to ensure local completion of all outstanding operations by
flushing all communication intended for a particular set of endpoints from the
local execution context calling the function.

4.3 UCCS and OpenSHMEM Integration

The UCCS and RTE APIs provide an interface that enables simple yet efficient
implementation of the OpenSHMEM API (Figure 3). The integration process
can be divided into two primary phases: UCCS library initialization and com-
munication semantics implementation.

4.3.1 Initialization
The initialization of the RTE starts up all the PEs in the system, after which
the number of participating PEs and each individual caller’s index (PE number)
can then be queried.

Designing a High Performance OpenSHMEM Implementation 7

Active Message API Atomic APIRDMA PUT/GET API Collectives API

Short,
Large

Short
Large

Medium

Contiguous Non-Contiguous

UCCS I/Ovec

Contiguous Non-Contiguous

Scatter
Gather
Generic

Fetch
Fetch and Add

Increment
SWAP

CSWAP

Barrier
Bcast
Gather
Scatter

Allgather
AlltoAll

….

RTE

Commercial and open
source bootstrap
environments and

schedulers

Core Communication API Run Time API

Fig. 2. UCCS API Layout

Once the RTE has been initialized, system data can then be exchanged be-
tween PEs without the need for the full communication framework to be online.
For a high performance implementation of OpenSHMEM, this can be especially
important for two reasons:

1. There is no requirement that the symmetric heaps on the PEs must exist in
memory at exactly the same address, so all PEs must be able to broadcast
the starting address of their own symmetric heap to all other PEs to allow
address translation.

2. Some network technologies such as InfiniBand may require some form of
memory registration information before being able to access remote devices,
which would also have to be communicated first before any communication
operations from client code may be called at all.

To communicate this data, the RTE layer’s Storage Retrieval System (SRS)
was used, which allows for the easy broadcasting of key-value pairs throughout
the system. The starting addresses for the symmetric heaps as well as data
on memory segments and associated registration information are individually
published to the SRS session, which automatically handles distribution of the
data to other PEs subscribed to the session in the system. To keep proper track of
this, all information collected about a particular PE is wrapped in a container,
such that the full view of the system is an array of these containers indexed
by PE id. After the initial bootstrapping is complete, the UCCS context may
be created, and resources discovered for it. After creating the descriptors for
the resources, those resources are then queried to discover what their network
capabilities are. These capabilities include the list of supported operations as well
threshold values for the maximum size for small and medium messages supported
by the network resource. This information is then stored so as to make the best
choices for what operations and message sizes to use in future communication.
When all this information is obtained and exchanged, the endpoints may then be
set up. During the PE initialization process, each PE will query UCCS endpoints
to determine the reachability of every other PE. Finally, a barrier is performed
based on the exchanged information, which will establish successful completion
of UCCS initialization upon return.

8 P. Shamis et al.

4.3.2 Communication Semantics
OpenSHMEMRMA and AMO operations map directly to RMA and AMO inter-
faces in UCCS. Since UCCS exposes only non-blocking semantics, OpenSHMEM
communication calls are implemented as a UCCS communication operation and
then a wait on the operation’s associated request handle. Once the handle has
been completed, the OpenSHMEM operation is marked for completion as well.
In all cases, the destination address must first be modified so that the offset
of the address with respect to the calling PE’s symmetric heap is the same as
the offset for the new address with respect to the destination PE’s heap. For
puts and gets on arbitrary sizes of data, the size of the message is first checked
against the threshold values discovered in intialization for the maximum allowed
for short or medium messages. The destination endpoint is then looked up using
the address translation table built during initialization, and the put or get for the
appropriate size is invoked on it for the requested values. Atomics are similar, but
don’t have the requirement to check for message size, merely needing to have the
appropriate UCCS call invoked and waited for to satisfy OpenSHMEM’s com-
pletion policy. Since all other communication operations are built off of these,
all that is left is to ensure that upon exit all associated memory is freed, and
call the RTE’s own finalize function.

UCCS

IB-VERBS uGNI PAMI

OpenSHMEM

R
TE

Shared
Memory

ORTE

STCI

SLURM

Hydra

Driver driver

Fig. 3. OpenSHMEM and UCCS software layers

5 Results

The evaluation of this implementation was conducted on an SGI Altix XE1300
system located at the Oak Ridge National Laboratory’s Extreme Scale System
Center. The system consists of 12 compute nodes, each with two Intel Xeon
X5660 CPUs for a total of 12 CPU cores and 24 threads. Compute nodes are
interconnected with Mellanox’s ConnectX-2 QDR HCA with one port. This par-
ticular system was selected due to the availability of SGI MPT version 2.03 that
comes with a state-of-the-art SHMEM implementation for InfiniBand intercon-
nects. In addition, we installed the newly updated OpenSHMEM 1.0 imple-
mentation, GASNet version 1.20.2, and pre-production UCCS version 0.4. This
version of the UCCS library provides high-performance communication services
for InfiniBand interconnects only. Evaluation of intra-node communication sup-
port and other interconnects is out of the scope of this paper. All tests were run

Designing a High Performance OpenSHMEM Implementation 9

with both the OpenSHMEM implementation’s GASNet and UCCS communica-
tion layers, as well as SGI’s SHMEM and, when appropriate, are compared to
results obtained using InfiniBand verbs (IB-verbs) library. We were not able to
evalute the Mellanox ScalableSHMEM implementation, since the pre-production
version of the library did not run on our platform.

 1

 10

 100

 1000

 10000

8 16 32 64 128 256 512 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB256KB512KB 1MB 2MB 4MB

La
te

nc
y

(u
se

c)

Message Size

OpenSHMEM−UCCS
OpenSHMEM−GASNet

SHMEM SGI
IB−verbs

Fig. 4. SHMEM Put Latency

The first test measures the latency for put operations, by using a ping-pong
approach. The first PE puts to a location on the second PE, which is simply
waiting for the value at that location to fully update. Upon noticing the update,
it then puts to a location on the first PE that it likewise is waiting on, upon
receipt of which the ping-pong operation is complete. The time for the complete
exchange is halved to determine the latency for a single put operation, in order to
achieve a result similar to what the IB-verbs Perftest benchmark produces. This
test found median latencies for increasingly large message sizes ranging from 8
bytes to 4 megabytes (based on powers of two). The results of this test are com-
pared to that of IB-verbs, as seen in Figure 4. These results show performance
close to IB-verbs for message sizes larger than 512 bytes, with OpenSHMEM-
UCCS performing the closest to IB-verbs, the largest difference being only 3%.
For small messages, OpenSHMEM-UCCS had the best performance, ranging
from 2-11% slower than IB-verbs. In contrast, OpenSHMEM-GASNet was 1-
67% slower, and SGI’s implementation completed in 7-88% more time compared
to IB-verbs.

The second test measures the latency for messages of varying sizes using gets.
The median latency for a get of a particular size is recorded for all message

10 P. Shamis et al.

sizes based on a power of two, starting from eight bytes and continually dou-
bling up to four megabytes. The results are compared to those obtained using
IB-verbs in Figure 5. It can be seen that the performance seen with IB-verbs can
be closely matched in all implementations for all message sizes, with the UCCS
version consistently performing the closest to IB-verbs with negligible overhead
at its best and being 4% slower at its worst. The GASNet communication layer
performed similarly, though latency starts to drag noticeably behind IB-verbs
for increasingly large message sizes, resulting in higher overheads of 2-12%. SGI
SHMEM performed similar to GASNet runs for larger message sizes, but expe-
rienced more overhead for smaller sizes resulting in a 6-22% overhead.

 1

 10

 100

 1000

 10000

8 16 32 64 128 256 512 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB256KB512KB 1MB 2MB 4MB

La
te

nc
y

(u
se

c)

Message Size

OpenSHMEM−UCCS
OpenSHMEM−GASNet

SHMEM SGI
IB−verbs

Fig. 5. SHMEM Get Latency

The third test measures the latency for atomics by using long long fetch-and-
add operations. This test was the most straightforward one, simply finding the
median time elapsed to perform one such operation and comparing the results to
IB-verbs. The fourth test measures the time it takes to perform a barrier opera-
tion on all PEs. This test was performed using two, four, eight, and twelve PEs,
with the median time recorded for only OpenSHMEM-GASNet , OpenSHMEM-
UCCS , and SGI, as there is no equivalent test for IB-verbs. For the runs done
using both of the OpenSHMEM implementations, a recursive doubling algo-
rithm was used for the barrier itself. The results for the fetch-and-add tests are
shown in Figure 6(a) and the barrier results are in Figure 6(b). When execut-
ing atomics, the UCCS communication layer consistently performed better than
SGI’s implementation, which in turn performed better than the GASNet layer.
OpenSHMEM-UCCS took 5% more time to execute compared to IB-verbs, while

Designing a High Performance OpenSHMEM Implementation 11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

OpenSHMEM−UCCSOpenSHMEM−GASNet SHMEM SGI IB−verbs

L
at

en
cy

 (
u

se
c)

2.96358

3.59657

3.06426
2.83

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 4 6 8 10 12

L
at

en
cy

 (
u

se
c)

Number of PEs (single process per node)

OpenSHMEM−UCCS
OpenSHMEM−GASNet

SHMEM SGI

(b)

Fig. 6. SHMEM Long Long Fetch-and-Add (a) and Barrier All (b)

 5e−05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0.00055

 0.0006

 2 3 4 5 6 7 8

G
U

P
S

Number of PEs (single process per node)

OpenSHMEM−UCCS
OpenSHMEM−GASNet

SHMEM SGI

Fig. 7. GUPS

SGI took 8% more and OpenSHMEM-GASNet took 27% more time. On barri-
ers, OpenSHMEM-UCCS again performed the best, with OpenSHMEM-GASNet
performing 9-58% slower, and SGI performing 25-36% slower.

The final test is based on the RandomAccess benchmark from the High Per-
formance Computing Challenge (HPCC) [16], used to measure the performance
of the memory architecture of a system in terms of Giga UPdates per Second
(GUPS). This is determined by the number of random memory locations that
can be updated in one second, which can be used to give an idea of peak perfor-
mance of the system with respect to random memory access. For each random

12 P. Shamis et al.

location, a value is retrieved through a get, a new value stored with a put, and
another value incremented with an atomic operation. This test was run for two,
four, and eight PEs, where the amount of work done for each run was multiplied
by the number of participating PEs. The GUPS achieved from these tests can
be seen in Figure 7. The UCCS communication layer achieved the highest per-
formance in all runs, with SGI achieving 82-92% of the GUPS when compared
agaisnt the UCCS layer. The GASNet layer, however, performed almost three
times slower than the UCCS layer, reaching between 35% and 39% of the GUPS
that the UCCS layer achieved. This is likely due to the extra overhead GASNet
incurs on its communication, particularly atomic operations, by relying on active
messages for successful execution of its calls. SGI’s SHMEM, on the other hand,
likely saw its relative performance difference due to the greater latency for small
put operations.

6 Conclusion and Future Work

This paper presented OpenSHMEM-UCCS , an OpenSHMEM reference imple-
mentation whose communication is based on UCCS, a low-level communica-
tion middleware. An evaluation with microbenchmarks and the RandomAccess
benchmark for GUPS showed that it outperformed the current reference imple-
mentation (OpenSHMEM-GASNet) and the state-of-the-art SGI SHMEM. Par-
ticularly, the OpenSHMEM-UCCS RMA and atomic operations outperformed
OpenSHMEM-GASNet and SGI’s implementation. For example, for the widely
used put operation, OpenSHMEM-UCCS outperformed the current reference
implementation by as much as 53%, and SGI’s implementation by as much
as 83%. When running the RandomAccess benchmark for measuring GUPS,
using OpenSHMEM-GASNet resulted in only 35-39% the GUPS achieved by
OpenSHMEM-UCCS , while SGI’s implementation achieved 82-92% of the per-
formance. These results were able to be achieved due to a focus on minimizing
software overheads in the communication path while focusing on the needs and
capabilities of the underlying network hardware. The previous implementation
with GASNet relied heavily on active messages for atomic and some remote
memory operations, whereas the UCCS communication layer provides seman-
tics that directly map to low-level atomic and RDMA primitives of network
hardware. This allows for a much tighter and streamlined flow that can achieve
results much closer to what the network hardware supports.

Moving forward with UCCS and its integration with OpenSHMEM, we plan
to extend the UCCS library to support intra-node communication as well as
additional transport layers such as such Cray uGNI and IBM PAMI. Moreover,
we plan to extend the UCCS InfiniBand transport layer to support InfiniBand
Dynamically Connected Transport, extended AMOs, and on demand memory
registration.

Acknowledgments. This work is supported by the United States Department
of Defense and used resources of the Extreme Scale Systems Center located at
the Oak Ridge National Laboratory.

Designing a High Performance OpenSHMEM Implementation 13

References

1. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., Smith, L.:
Introducing OpenSHMEM: SHMEM for the PGAS community. In: Proceedings of
the Fourth Conference on Partitioned Global Address Space Programming Model,
PGAS 2010, New York, NY, USA (2010)

2. Poole, S.W., Hernandez, O., Kuehn, J.A., Shipman, G.M., Curtis, A., Feind, K.:
OpenSHMEM - Toward a Unified RMA Model. In: Encyclopedia of Parallel Com-
puting, pp. 1379–1391 (2011)

3. Pophale, S.S.: SRC: OpenSHMEM library development. In: Lowenthal, D.K., de
Supinski, B.R., McKee, S.A. (eds.) ICS, p. 374. ACM (2011)

4. Bonachea, D.: GASNet Specification, v1.1. Technical report, Berkeley, CA, USA
(2002)

5. Shamis, P., Venkata, M.G., Kuehn, J.A., Poole, S.W., Graham, R.L.: Universal
Common Communication Substrate (UCCS) Specification. Version 0.1. Tech Re-
port ORNL/TM-2012/339, Oak Ridge National Laboratory, ORNL (2012)

6. Graham, R.L., Shamis, P., Kuehn, J.A., Poole, S.W.: Communication Middleware
Overview. Tech Report ORNL/TM-2012/120, Oak Ridge National Laboratory,
ORNL (2012)

7. Yoon, C., Aggarwal, V., Hajare, V., George, A.D., Billingsley III, M. GSHMEM:
A Portable Library for Lightweight, Shared-Memory, Parallel Programming. In:
Partitioned Global Address Space, Galveston, Texas (2011)

8. Jose, J., Kandalla, K., Luo, M., Panda, D.K.: Supporting Hybrid MPI and Open-
SHMEM over InfiniBand: Design and Performance Evaluation. In: Proceedings of
the 2012 41st International Conference on Parallel Processing, ICPP 2012, pp.
219–228. IEEE Computer Society, Washington, DC (2012)

9. Brightwell, R., Hudson, T., Pedretti, K., Riesen, R., Underwood, K.D.: (Portals
3.3 on the Sandia/Cray Red Storm System)

10. Mellanox Technologies LTD.: Mellanox ScalableSHMEM: Support the Open-
SHMEM Parallel Programming Language over InfiniBand (2012), http://www.

mellanox.com/related-docs/prod software/PB ScalableSHMEM.pdf
11. Mellanox Technologies LTD.: Mellanox Messaging (MXM): Message Accelerations

over InfiniBand for MPI and PGAS libraries (2012),
http://www.mellanox.com/related-docs/prod_software/PB_MXM.pdf

12. Ho Lam, B.C., George, A.D., Lam, H.: TSHMEM: Shared-Memory Parallel Com-
puting on Tilera Many-Core Processors. In: 2013 IEEE 27th International Sym-
posium on Parallel and Distributed Processing Workshops and PhD Forum, pp.
325–334 (2013), http://www.odysci.com/article/1010113019802138

13. Castain, R.H., Woodall, T.S., Daniel, D.J., Squyres, J.M., Barrett, B., Fagg, G.E.:
The Open Run-Time Environment (OpenRTE): A Transparent Multi-Cluster En-
vironment for High-Performance Computing. In: Di Martino, B., Kranzlmüller, D.,
Dongarra, J. (eds.) EuroPVM/MPI 2005. LNCS, vol. 3666, pp. 225–232. Springer,
Heidelberg (2005)

14. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: Simple linux utility for resource
management. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2003. LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003)

15. Buntinas, D., Bosilica, G., Graham, R.L., Vallée, G., Watson, G.R.: A Scalable
Tools Communication Infrastructure. In: Proceedings of the 22nd International
High Performance Computing Symposium, HPCS 2008 (2008)

16. HPCC: RandomAccess Bechmark (2013), http://icl.cs.utk.edu/hpcc/index.
html

http://www.mellanox.com/related-docs/prod_software/PB_ScalableSHMEM.pdf
http://www.mellanox.com/related-docs/prod_software/PB_ScalableSHMEM.pdf
http://www.mellanox.com/related-docs/prod_software/PB_MXM.pdf
http://www.odysci.com/article/1010113019802138
http://icl.cs.utk.edu/hpcc/index.html
http://icl.cs.utk.edu/hpcc/index.html

A Comprehensive Performance Evaluation

of OpenSHMEM Libraries
on InfiniBand Clusters�

Jithin Jose, Jie Zhang, Akshay Venkatesh,
Sreeram Potluri, and Dhabaleswar K. (DK) Panda

Department of Computer Science and Engineering, The Ohio State University
{jose,zhanjie,akshay,potluri,panda}@cse.ohio-state.edu

Abstract. OpenSHMEM is an open standard that brings together sev-
eral long-standing, vendor-specific SHMEM implementations that allows
applications to use SHMEM in a platform-independent fashion. Several
implementations of OpenSHMEM have become available on clusters in-
terconnected by InfiniBand networks, which has gradually become the
de facto high performance network interconnect standard. In this pa-
per, we present a detailed comparison and analysis of the performance of
different OpenSHMEM implementations, using micro-benchmarks and
application kernels. This study, done on TACC Stampede system using
up to 4,096 cores, provides a useful guide for application developers to
understand and contrast various implementations and to select the one
that works best for their applications.

Keywords: OpenSHMEM, Clusters, InfiniBand, Performance Evalua-
tion.

1 Introduction and Motivation

Data-driven applications often pose challenges associated with load balancing
and often exhibit irregular communication patterns. These issues are harder to
address with a traditional message-passing programming paradigm. The Par-
titioned Global Address Space (PGAS) programming models present an al-
ternative approach compared to message passing and are believed to improve
programmability of such applications. PGAS languages like Unified Parallel C
(UPC) [15] and Co-array Fortran (CAF) [1] have been undergoing standardiza-
tion for over a decade now. More recently, there has been the OpenSHMEM
effort to standardize API for the different vendor specific implementations of
SHMEM, a library-based PGAS model. The OpenSHMEM standard is gain-
ing attention as it allows existing codes that were written using vendor-specific
SHMEM API to be made platform-independent with minimal effort. It is also
seen as an alternative to PGAS languages for designing new applications.

� This research is supported in part by National Science Foundation grants #OCI-
0926691, #OCI-1148371 and #CCF-1213084.

S. Poole, O. Hernandez, and P. Shamis (Eds.): OpenSHMEM 2014, LNCS 8356, pp. 14–28, 2014.
c© Springer International Publishing Switzerland 2014

A Comprehensive Performance Evaluation of OpenSHMEM Libraries 15

Multi-core processors and high-performance interconnects have been driving
the growth of modern high-end supercomputing systems. Earlier work has shown
different alternatives to designing OpenSHMEM communication and synchro-
nization operations on multi-core nodes [2,11]. InfiniBand (IB) has emerged
as the most popular interconnect on these systems. Around 41% of the most
recent Top 500 list of supercomputers use IB. Several designs have also been
presented for implementing OpenSHMEM operations on InfiniBand clusters [5].
Several full-fledged implementations of OpenSHMEM are available for modern
InfiniBand clusters. The performance of each of these implementations can differ
based on the design choices they make. It is important for application developers
to understand the performance of the various implementations to choose the one
that is right for their application and system. Lack of a systematic performance
comparison and an analysis of the different implementations makes it harder for
application developers to make this choice.

In this paper, we address this by providing a detailed comparison and analysis
of the performance of different publicly available OpenSHMEM implementations
using micro-benchmarks and application kernels. We analyze the scalability of
the implementations in terms of performance and memory footprint. The study
is conducted on TACC Stampede system using up to 4,096 cores.

To summarize, the following contributions are made in this paper:

1. We present a detailed comparison of the performance of different OpenSH-
MEM implementations using pt-to-pt and collective micro-benchmarks.

2. We provide a detailed analysis of the performance trends observed in different
implementations.

3. We analyze the performance of application kernels showing how users can
draw a correlation between the micro-benchmark results and application
performance.

The rest of the paper is organized as follows: Section 2 provides an overview
of OpenSHMEM communication routines and introduces different OpenSHMEM
implementations over InfiniBand. In Section 3, we present our evaluation method-
ology and we present our evaluation results in Section 4. We discuss our perfor-
mance results in Section 5, and finally conclude in Section 6.

2 Background

2.1 PGAS Models and OpenSHMEM

In PartitionedGlobal Address Space (PGAS) programmingmodels, each Process-
ing Element (PE) has access to its own private local memory and a global shared
memory space. The locality of the global shared memory is well defined. Such a
model allows for better programmability through a simple sharedmemory abstrac-
tion while ensuring performance by exposing data and thread locality. SHMEM
(SHared MEMory) [13] is a library-based approach to realize the PGAS model

16 J. Jose et al.

and offers one-sided point-to-point communication operations, along with collec-
tive and synchronization primitives. SHMEM also offers primitives for atomic op-
erations, managing memory, and locks. There are several implementations of the
SHMEM model that are customized for different platforms. However, these im-
plementations are not portable due to minor variations in the API and seman-
tics. OpenSHMEM [9] aims to create a new, open specification to standardize the
SHMEM model to achieve performance, programmability, and portability.

2.2 OpenSHMEM Communication Operations

The OpenSHMEM Specification v1.0 [9] defines several types of communication
operations — data transfer, atomics, and collective communication operations.
We provide a brief overview of these operations in this section.

Data Transfer Operations: The data transfer operations defined in OpenSH-
MEM consist of shmem put and shmem get, and their variants. The source/ des-
tination address of data transfer operations can either be in symmetric heap or
symmetric static memory, as defined in the OpenSHMEM specification.
shmem put writes the local data to the corresponding data objects at target
process. shmem get fetches the data from a remote process and stores it in the
local data object.

Atomic Operations: These routines allow operations on a symmetric object
guaranteeing that another process will not update the target between the time
of the fetch and the update. In OpenSHMEM specification, six atomics rou-
tines are defined. shmem swap performs an atomic swap operation. shmem cswap

conditionally updates a target data object on an arbitrary processing element
(PE) and returns the prior contents of the data object in one atomic operation.
shmem fadd and shmem finc perform atomic fetch-and-add and atomic fetch-
and-increment operations, respectively. Similarly, shmem add and shmem inc op-
erations do atomic add and atomic increment operations.

Collective Operations: The collective operations defined in OpenSHMEM
specification consist of shmem broadcast, shmem collect, shmem reduce, and
shmem barrier. The broadcast operation copies a block of data from one PE to
one or more target PEs. Collect operation concatenates elements from the source
array to a target array over the specified PEs. Reduction operation performs an
associative binary operation over the specified PEs. Barrier operation provides
collective synchronization in which no PE may leave the barrier prior to all PEs
entering the barrier.

2.3 Overview of OpenSHMEM Libraries for InfiniBand Clusters

There are several implementations of OpenSHMEM libraries that support one-
sided OpenSHMEM semantics for clusters interconnected by InfiniBand (IB)
networks. The OpenSHMEM group from University of Houston introduced the

A Comprehensive Performance Evaluation of OpenSHMEM Libraries 17

reference OpenSHMEM implementation [9] that first conformed to the then
standardized, one-sided semantics. The reference implementation is based on
data transfers over InfiniBand networks that leveraged on its RDMA capabili-
ties for one-sided operations. This reference implementation uses GASNet [3] as
the underlying communication runtime. In this paper, we denote this reference
implementation as ‘UH-SHMEM’.

ScalableSHMEM [6] is another OpenSHMEM implementation that supports
the standard’s point-to-point and collective routines over InfiniBand networks
that utilize custom advanced features [12]. OpenMPI [8], likewise, also provides
an implementation of OpenSHMEM semantics over IB and leverages on many of
Mellanox’s IB features. These stacks are represented as ‘Scalable-SHMEM’ and
‘OMPI-SHMEM’, respectively in this paper.

MVAPICH2-X [7] provides a unified high-performance runtime that supports
both MPI and PGAS programming models on InfiniBand clusters. The uni-
fied runtime also delivers superior performance compared to using separate MPI
and PGAS libraries by optimizing the use of network and memory resources.
MVAPICH2-X supports two PGAS models: Unified Parallel C (UPC) and Open-
SHMEM. The MVAPICH2-X OpenSHMEM is denoted as ‘MV2X-SHMEM’ in
this paper.

We consider all four of the above-mentioned implementations (UH-SHMEM,
Scalable-SHMEM, OMPI-SHMEM, and MV2X-SHMEM) in our performance
evaluation.

3 Evaluation Methodology

Memory
Footprint

Application
Performance

Pt-to-pt Atomics
Performance

Pt-to-pt Data Movement
Performance

Collectives
Performance

Fig. 1. Evaluation Methodology

We follow a five-pronged approach
to evaluate the different OpenSH-
MEM implementations available for
InfiniBand clusters, as shown in Fig-
ure 1. We start with a comparison of
the performance of different OpenSH-
MEM API including put/get opera-
tions, atomics, and collectives. We use
micro-benchmarks to evaluate each of
these operations separately. We then
compare the memory scalability of the
implementations by measuring their
memory footprint as they scale to an
increasing number of cores. We finally
use several application kernels to com-
pare the performance of different implementations. We draw a correlation be-
tween the performance of OpenSHMEM implementations using application ker-
nels to that we see in micro-benchmarks. We summarize the performance results
along these five dimensions in Section 5. This methodology helps application
developers to select an implementation that is best for their use case.

18 J. Jose et al.

4 Experimental Evaluation

In this section, we describe our experimental test-bed and discuss our evalua-
tions. We study the performance characteristics of point-to-point and collective
operations, application-level performance, and scalability characteristics for the
different OpenSHMEM libraries. In the experimental evaluations, we use the fol-
lowing acronyms to denote the different OpenSHMEM libraries — UH-SHMEM
(University of Houston - OpenSHMEM), MV2X-SHMEM (MVAPICH2X-Open-
SHMEM), OMPI-SHMEM (OpenMPI OpenSHMEM), and Scalable-SHMEM
(Mellanox ScalableSHMEM).

4.1 Experiment Setup

We use TACC Stampede [14] for our performance studies. This cluster is equipped
with compute nodes composed of Intel Sandybridge series of processors using
Xeon dual eight-core sockets, operating at 2.70GHz with 32GB RAM. Each
node is equipped with MT4099 FDR ConnectX HCAs (54Gbps data rate) with
PCI-Ex Gen3 interfaces. The operating system used is CentOS release 6.3, with
kernel version 2.6.32-279.el6, and OpenFabrics version 1.5.4.1.

For UH-SHMEM, we use version 1.d in combination with GASNet version
1.20.2. We configure GASNet with --enable-segment-fast option. The MV2X-
SHMEM is based on MVAPICH2-X v2.0a. The OpenMPI OpenSHMEM is from
the public repository https://bitbucket.org/jladd math/mlnx-oshmem.git.
We use “--mca btl openib,self --mca btl openib if include mlx4 0” as
runtime parameters for OMPI-SHMEM. We use Scalable-SHMEM version 2.2
in our experiments. For all microbenchmark evaluations, we report results that
are averaged across 1,000 iterations and three different runs to eliminate exper-
imental errors.

4.2 Data Movement Operation Performance

In this section, we evaluate the performance of OpenSHMEM point-to-point data
movement (shmem put and shmem get) operations. We use OSU OpenSHMEM
microbenchmarks [10] for these evaluations.

The osu oshm put benchmark measures latency of a shmem putmem operation
for different data sizes. In this benchmark, processing element (PE) ‘0’ issues
shmem putmem to write data at PE 1 and then calls shmem quiet. PE 1 waits on
a shmem barrier. The put operation is repeated for a fixed number of iterations,
depending on the data size. The average latency per iteration is reported. A few
warm-up iterations are run without timing to ignore any start-up overheads.
Both PEs call shmem barrier all after the test for each message size. Similarly,
osu oshm get benchmark measures the shmem get operation. In this benchmark,
PE 0 does a shmem getmem operation to read data from PE 1 in each iteration.
The average latency per iteration is reported.

The latency results of shmem put and shmem get are presented in Figure 2 and
3, respectively. For clarity, the results are presented in two graphs — for small

A Comprehensive Performance Evaluation of OpenSHMEM Libraries 19

messages and large messages. The graphs also present the InfiniBand verbs level
latencies for RDMA write and read operations, which are denoted as ‘IB-Verbs’.
There exists slight difference in performance for different OpenSHMEM libraries.
For a 4 byte shmem put operation, the latencies reported are 1.92, 1.47, 1.41,
and 1.83 µs for UH-SHMEM, MV2X-SHMEM, Scalable-SHMEM, and OMPI-
SHMEM respectively. However, the verbs level RDMA write latency is 0.84
µs. The higher latency observed at OpenSHMEM layer is because of the extra
synchronization operation (shmem quiet). For a 64KB shmem put operation, the
latencies reported are 14.83, 13.24, 17.85, and 18.54 µs for UH-SHMEM, MV2X-
SHMEM, Scalable-SHMEM, and OMPI-SHMEM, respectively. The verbs level
latency reported for 64KB message size is 12.78 µs.

The performance results for the shmem get operation are similar. For a 4 byte
shmem get operation, the latencies reported are 2.07, 1.79, 2.31, and 1.79 µs for
UH-SHMEM, MV2X-SHMEM, Scalable-SHMEM, and OMPI-SHMEM, respec-
tively. The verbs level RDMA read latency reported is about 1.79 µs, which is
similar to the numbers observed at OpenSHMEM layer. Unlike the osu oshm put

benchmark, there is no extra synchronization operation for osu oshm get bench-
mark. For a 64KB shmem put operation, the latencies reported are 15.2, 12.88,
16.84, and 13.14 µs for UH-SHMEM, MV2X-SHMEM, Scalable-SHMEM, and
OMPI-SHMEM, respectively. The verbs level latency observed for 64KB mes-
sage size is 12.83 µs. For all the different message sizes, MV2X-SHMEM consis-
tently performs the best for both shmem put and shmem get operations.

 0

 1

 2

 3

 4

 5

 2 4 16 64 256 1K

L
at

en
cy

 (
u

s)

Message Size (bytes)

UH-SHMEM
MV2X-SHMEM

Scalable-SHMEM
OMPI-SHMEM

IB-Verbs

(a) Small Messages

 0

 50

 100

 150

 200

4K 16K 128K 1M

L
at

en
cy

 (
u

s)

Message Size (bytes)

UH-SHMEM
MV2X-SHMEM

Scalable-SHMEM
OMPI-SHMEM

IB-Verbs

(b) Large Messages

Fig. 2. Put Performance Results (Inter-node)

4.3 Atomic Operation Performance

The OpenSHMEM atomic operation performance is presented in Figure 4. We
use the OSU benchmark for this evaluation also. The osu oshm atomics bench-
mark measures the performance of atomic fetch-and-operate and atomic operate
routines for 64-bit data types. In this benchmark, the first PE in each pair issues
back-to-back atomic operations of a type to its peer PE. The average latency
per atomic operation and the aggregate operation rate are reported. This is

20 J. Jose et al.

 0

 1

 2

 3

 4

 5

 2 4 16 64 256 1K

L
at

en
cy

 (
u
s)

Message Size (bytes)

UH-SHMEM
MV2X-SHMEM

Scalable-SHMEM
OMPI-SHMEM

IB-Verbs

(a) Small Messages

 0

 50

 100

 150

 200

 250

 300

4K 16K 128K 1M

L
at

en
cy

 (
u

s)

Message Size (bytes)

UH-SHMEM
MV2X-SHMEM

Scalable-SHMEM
OMPI-SHMEM

IB-Verbs

(b) Large Messages

Fig. 3. Get Performance Results (Inter-node)

repeated for each of the atomic operations — Fetch and Add (shmem fadd),
Fetch and Increment (shmem finc), Add (shmem add), Increment (shmem inc),
Compare and Swap (shmem cswap), and Swap (shmem swap). The performance
results indicate that MV2X-SHMEM provides much lower latency for all of the
different atomic routines. In MV2X-SHMEM, the atomic routines are imple-
mented directly over Remote Direct Memory Access (RDMA). The latencies
reported for a shmem fadd operation are 4.52, 3.04, 17.11, and 25.74 µs for UH-
SHMEM, MV2X-SHMEM, Scalable-SHMEM, and OMPI-SHMEM, respectively.
The verbs level numbers for fetch-add and compare-swap operations reported
are 2.54, and 2.71 µs, which are close to the latencies observed at OpenSHMEM
level.

fadd finc add inc cswap swap

L
at

en
cy

(u
s)

OMPI−SHMEM
Scalable−SHMEM
UH−SHMEM
MV2X−SHMEM
IB−Verbs

 0

 5

 10

 15

 20

 25

 30

 35

 40

Fig. 4. Atomic Operation Performance (Inter-node)

4.4 Collectives Performance

In this section, we compare the performance of various collective operations in
OpenSHMEM specification - shmem broadcast, shmem reduce, shmem collect,

A Comprehensive Performance Evaluation of OpenSHMEM Libraries 21

and shmem barrier - across various implementations and design choices, with a
varying number of processes. We use OSU OpenSHMEM collective benchmarks
for these evaluations. The benchmarks measure the average latency of the col-
lective operation across N processes, for various message lengths, over multiple
iterations. In these experiments, we vary the number of processes from 128 to
2,048. The results are presented in Figures 5, 6, 7, and 8. The Y-axis represents
latency reported in µs and X-axis represents message size.

We compare the performance of each collective operation, among the Open-
SHMEM libraries. In UH-SHMEM library, two versions of collective operations
are available — linear and tree algorithm based implementations. We include
these also in our evaluations, which are denoted as ‘UH-SHMEM (Linear)’ and
‘UH-SHMEM (Tree)’, respectively.

In Figure 5, we compare the performance of shmem reduce operation. As we
can see from the results, MV2X-SHMEM offers lower latency for all of the differ-
ent system scales. The performance of Scalable-SHMEM and OMPI-SHMEM are
similar, but the latencies are little higher. However, UH-SHMEM linear and tree
versions show very high latency. Thus, we show UH-SHMEM results for smaller
system sizes (128 and 256 processes) and exclude these results for higher system
sizes. For 2,048 processes, the latencies measured for a 4 byte shmem reduce

operation for MV2-X SHMEM, OMPI-SHMEM, and Scalable-SHMEM are 27,
240, and 316 µs, respectively.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

UH-SHMEM(Linear)
UH-SHMEM(Tree)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(a) 128 Processes

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

UH-SHMEM(Linear)
UH-SHMEM(Tree)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(b) 256 Processes

 1

 10

 100

 1000

 10000

 100000

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(c) 1,024 Processes

 1

 10

 100

 1000

 10000

 100000

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(d) 2,048 Processes

Fig. 5. Reduce Performance Results

22 J. Jose et al.

shmem broadcast latency results are presented in Figure 6. These results also
exhibit same pattern as the shmem reduce results. MV2X-SHMEM offers lower
latencies for all the message sizes for varying system sizes. MV2X-SHMEM uti-
lizes a combination of hardware based multicast scheme and tuned algorithms
realized in software for implementing the broadcast operation. Since the collec-
tive operations are implemented over point-to-point operations, the impact of
point-to-point performance is reflected in collective operation performance. At
2,048 system scale, the latencies measured for a 4 byte shmem broadcast oper-
ation for MV2-X SHMEM, OMPI-SHMEM, and Scalable-SHMEM are 7, 149,
and 110 µs, respectively.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

UH-SHMEM(Linear)
UH-SHMEM(Tree)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(a) 128 Processes

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

UH-SHMEM(Linear)
UH-SHMEM(Tree)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(b) 256 Processes

 1

 10

 100

 1000

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(c) 1,024 Processes

 1

 10

 100

 1000

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(d) 2,048 Processes

Fig. 6. Broadcast Performance Results

The performance results for shmem collect also exhibit a similar pattern.
There is no tree-algorithm-based implementation in UH-SHMEM for shmem

collect. Results for UH-SHMEM linear algorithm based design results and
other OpenSHMEM stacks are presented in Figure 7. There is no tree-algorithm-
based implementation of shmem collect in UH-SHMEM. At 2,048 system size,
the latencies measured for a 4 byte shmem collect operation for MV2-X
SHMEM, OMPI-SHMEM, and Scalable-SHMEM are 237, 28261, and 22599 µs,
respectively.

shmem barrier and shmem barrier all performance results are presented
in Figure 8. The only difference between these barrier operations is that in

A Comprehensive Performance Evaluation of OpenSHMEM Libraries 23

 1

 10

 100

 1000

 10000

 100000

 1e+06

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

UH-SHMEM(Linear)
MV2X-SHMEM

Scalable-SHMEM
OMPI-SHMEM

(a) 128 Processes

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

UH-SHMEM(Linear)
MV2X-SHMEM

Scalable-SHMEM
OMPI-SHMEM

(b) 256 Processes

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(c) 1,024 Processes

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(d) 2,048 Processes

Fig. 7. Collect Performance Results

shmem barrier, the participating processes can be dynamically specified, but
in shmem barrier all, all the PEs participate in barrier operation (just like
MPI Barrier(MPI COMM WORLD)). The time for shmem barrier operation with
2,048 processes are 83, 141, and 357 µs, for MV2X-SHMEM, Scalable-SHMEM,
and OMPI-SHMEM, respectively. There is no tree-algorithm-based implementa-
tion of shmem barrier all. At 2,048 processes, the latency reported for shmem
barrier all operation are 83, 250, 361µs, for MV2X-SHMEM, Scalable-
SHMEM, and OMPI-SHMEM, respectively.

2,048

L
at

en
cy

(u
s)

Number of Processes

UH−SHMEM(Linear)
UH−SHMEM(Tree)
OMPI−SHMEM
Sclable−SHMEM
MV2X−SHMEM

 1

 10

 100

 1,000

 10,000

 100,000

 1,000,000

 10,000,000

128 256 512 1,024

(a) shmem barrier Performance

MV2X−SHMEM

 1

 10

 100

 1,000

 10,000

 100,000

 1,000,000

 10,000,000

128 256 512 1,024 2,048

L
at

en
cy

(u
s)

Number of Processes

UH−SHMEM(Linear)
OMPI−SHMEM
Sclable−SHMEM

(b) shmem barrier all Performance

Fig. 8. Barrier Performance Results

24 J. Jose et al.

4.5 Memory Scalability

This section presents the memory footprint analysis results. Memory footprint
refers to memory consumption of a particular process. It is imperative to keep a
lower memory footprint for scalability, especially considering the modern multi/
many-core architectures. We used a simple OpenSHMEM ‘Hello World’ program
with shmem barrier all and shmem collect32 calls for this evaluation. We ex-
ecuted this program over different system scales ranging from 128 to 2,048. The
memory footprint is measured by reading the VmHWM entry in/proc/self/status.
As it can observed from the figure, the memory requirement of MV2X-SHMEM
is lower compared to other OpenSHMEM libraries. Also, the memory footprint of
Scalable-SHMEM and OMPI-SHMEM increases with increase in scale. At 2,048
processes, the memory footprints are 1,646, 1,111, 967, and 344 MB, for UH-
SHMEM, OMPI-SHMEM, Scalable-SHMEM, and MV2X-SHMEM, respectively.

 0

 500

 1,000

 1,500

 2,000

 2,500

128 256 512 1,024 2,048

M
em

or
y

Fo
ot

pr
in

t(
M

B
)

Number of Processes

UH−SHMEM
OMPI−SHMEM
Scalable−SHMEM
MV2X−SHMEM

Fig. 9. Memory Scalability Evaluation

4.6 Application Performance

In this section, we present the application kernel evaluation results. We consider
two application kernels — Heat Image and DAXPY. These are part of OpenSH-
MEM test suite [9]. We first explain the communication characteristics of these
kernels and then we present the performance evaluation results.

Heat Image Kernel: This application kernel solves the heat conduction task
based on row-based distribution of the matrix. The application distributes the
matrix in rows among PEs and then exchanges the result of computation. The
major communication operation is the data transfer across the matrix rows/
columns (using shmem put) and the synchronization operations (using shmem

barrier all.) Finally, after doing all the transfers, the output is written to a
file in an image format. The matrix size is specified as input. In our experiments,
we used an input matrix of size 32,768 × 32,768 bytes.

A Comprehensive Performance Evaluation of OpenSHMEM Libraries 25

The performance results of the Heat Image kernel is presented in Figure 10(a).
In these experiments, we kept the input size constant (32K × 32K) and var-
ied the system scale from 256 processes to 4,096 processes. We plot the execu-
tion time (in seconds) in the Y-axis and the system scale is plotted on X-axis.
We present the results for all the OpenSHMEM stacks. For UH-SHMEM, we
evaluate using both ‘Linear’ and ‘Tree’ based algorithms, and denote these as
‘UH-SHMEM (Linear)’ and ‘UH-SHMEM (Tree)’, respectively. As it can be ob-
served from the results, the execution time reduces for MV2X-SHMEM, OMPI-
SHMEM, and Scalable-SHMEM, as the system size increases. However, the ex-
ecution time remains constant for linear and tree based UH-SHMEM versions.
For all the system sizes, MV2X-SHMEM performs better compared to other
OpenSHMEM libraries. At 4,096 processes, the Heat Image kernel execution
time reported are 538, 537, 19, 257, and 361 seconds, for UH-SHMEM (Linear),
UH-SHMEM (Tree), MV2X-SHMEM, Scalable-SHMEM, and OMPI-SHMEM,
respectively.

Figure 10(b) presents the profiling results (obtained using HPC Toolkit [4])
of the kernel at 1,024 cores, and provides the time taken for each of the Open-
SHMEM routines. The results indicate that the time for shmem barrier, and
startpes, are the major factors contributing to overall execution time. The
barrier time for UH-SHMEM linear and tree are similar, as explained in Sec-
tion 4.4. The initialization time for OMPI-SHMEM and Scalable-SHMEM are
observed to be higher than other libraries. As it can be observed from the figure,
MV2X-SHMEM offers lower execution time for startpes and shmem barrier.

 1

 10

 100

 1,000

 10,000

 100,000

256 512 1,024 2,048 4,096

T
im

e(
s)

Number of Processes

OMPI_SHMEM
Scalable−SHMEM
UH−SHMEM(Linear)
UH−SHMEM(Tree)
MV2X−SHMEM

(a) Execution Time (b) Profiling Results

Fig. 10. Heat Image Performance Results

DAXPY Kernel: This kernel is a simple DAXPY like kernel with computation
and communication. It simulates a typical application that uses one dimensional
array for local computation and does a reduction collective operation of the re-
sult. Here the data transfer is done using shmem put operation, synchronization
using shmem barrier all, and reduction using shmem reduce operations. The
execution time reported by the benchmark involves the OpenSHMEM initial-
ization time also. The performance results are presented in Figure 11(a). The
execution time (in seconds) is plotted in the Y-axis and the system size is pre-
sented in the X-axis.

26 J. Jose et al.

In the benchmark, the problem size increases with increase in the system
size. However, there is a significant difference in performance between different
OpenSHMEM libraries. OMPI-SHMEM and Scalable-SHMEM execution times
are much higher compared to UH-SHMEM andMV2X-SHMEM. Profiling results
(for a system size of 1,024 cores) presented in Figure 11(b) indicate that the
initialization time (indicated as ‘startpes’) is the major contributor to the overall
execution time for these stacks. Also, time for reduce operation is higher for UH-
SHMEM (Linear) and UH-SHMEM (Tree). At 4,096 processes, the execution
times reported are 151, 83, 29, 1594, 1776 seconds, for UH-SHMEM (Linear),
UH-SHMEM (Tree), MV2X-SHMEM, Scalable-SHMEM, and OMPI-SHMEM,
respectively. For both the application kernels, MV2X-SHMEM performs better
as compared to other OpenSHMEM libraries.

 1

 10

 100

 1,000

 10,000

256 512 1,024 2,048 4,096

T
im

e(
s)

Number of Processes

OMPI−SHMEM
Scalable−SHMEM
UH−SHMEM(Linear)
UH−SHMEM(Tree)
MV2X−SHMEM

(a) Execution Time (b) Profiling Results

Fig. 11. DAXPY Performance Results

5 Discussion of Performance Results

We summarize the comparison between the different libraries using the five-
pronged diagram presented earlier, depicted in Figure 12. We see that all the
libraries perform very similar to one another, when we consider the perfor-
mance of Put and Get operations. This is because of the direct simple imple-
mentation of Put and Get operations over underlying RDMA operations. For
OpenSHMEM atomics, we see that MV2X-SHMEM and UH-SHMEM perform
considerably better than the other two implementations. MV2X-SHMEM out-
performs UH-SHMEM due to its IB atomics-based implementation. We see a
distinct difference in the performance of OpenSHMEM collectives between the
different implementations owing to the different algorithms used. We see that
MV2X-SHMEM outperforms all other implementations for all the collectives.
When memory scalability is considered, we see that MV2X-SHMEM, Scalable-
SHMEM, and OMPI-SHMEM have much smaller memory footprints compared
to the reference implementation. For application level performance, we see that
MV2X-SHMEM outperforms other libraries, owing to the better atomics and
collective implementation.

A Comprehensive Performance Evaluation of OpenSHMEM Libraries 27

Memory
Footprint

Application
Performance

Pt-to-pt Atomics
Performance

Pt-to-pt Data Movement
Performance

Collectives
Performance

MV2X-SHMEM

UH-SHMEM

Scalable-SHMEM

OMPI-SHMEM

(Closer to center is better)

Fig. 12. Evaluation Results

6 Conclusion

In this paper we provided a comprehensive performance evaluation of differ-
ent OpenSHMEM implementations over InfiniBand. We compare University of
Houston OpenSHMEM, Mellanox Scalable-SHMEM, OpenMPI OpenSHMEM,
and MVAPICH2-X OpenSHMEM. We presented a detailed comparison of the
performance of different OpenSHMEM implementations using point-to-point
and collective micro-benchmarks. We also provided a detailed analysis of the
performance trends observed in different OpenSHMEM implementations. We
analyzed the performance of two application kernels - Heat Image and DAXPY.
The study indicates that MVAPICH2-X OpenSHMEM stack delivers best perfor-
mance and scalability. The study also demonstrates how application developers
can draw a correlation between the micro-benchmark results and application
performance using various OpenSHMEM stacks on InfiniBand clusters.

References

1. Co-Array Fortran, http://www.co-array.org
2. Brightwell, R., Pedretti, K.: An Intra-Node Implementation of OpenSHMEMUsing

Virtual Address Space Mapping. In: The 5th Conference on Partitioned Global
Address Space (PGAS) (2011)

3. Bonachea, D.: GASNet Specification v1.1. Tech. Rep. UCB/CSD-02-1207, U. C.
Berkeley (2008)

4. HPCToolkit, http://hpctoolkit.org/
5. Jose, J., Kandalla, K., Luo, M., Panda, D.: Supporting Hybrid MPI and OpenSH-

MEM over InfiniBand: Design and Performance Evaluation. In: 41st International
Conference on Parallel Processing, ICPP (2012)

6. Mellanox Scalable SHMEM, http://www.mellanox.com/page/products dyn?

product family=133&mtag=scalableshmem

7. MVAPICH2-X: Unified MPI+PGAS Communication Runtime over OpenFab-
rics/Gen2 for Exascale Systems, http://mvapich.cse.ohio-state.edu/

http://www.co-array.org
http://hpctoolkit.org/
http://www.mellanox.com/page/products_dyn?product_family=133&mtag=scalableshmem
http://www.mellanox.com/page/products_dyn?product_family=133&mtag=scalableshmem
http://mvapich.cse.ohio-state.edu/

28 J. Jose et al.

8. OpenMPI: Open Source High Performance Computing,
http://www.open-mpi.org/

9. OpenSHMEM, http://openshmem.org/
10. OSU Micro-benchmarks, http://mvapich.cse.ohio-state.edu/benchmarks/
11. Potluri, S., Kandalla, K., Bureddy, D., Li, M., Panda, D.K.: Efficient Intranode

Desgins for OpenSHMEM on Multicore Clusters. In: The 6th Conference on Par-
titioned Global Address Space, PGAS (2012)

12. Shainer, G., Wilde, T., Lui, P., Liu, T., Kagan, M., Dubman, M., Shahar, Y., Gra-
ham, R., Shamis, P., Poole, S.: The Co-design Architecture for Exascale Systems,
a Novel Approach for Scalable Designs. Computer Science-Research and Develop-
ment, 1–7 (2013)

13. Silicon Graphics International: SHMEM API for Parallel Programming,
http://www.shmem.org/

14. TACC Stampede Cluster, http://www.xsede.org/resources/overview
15. UPC Consortium: UPC Language Specifications, v1.2. Tech. Rep. LBNL-59208,

Lawrence Berkeley National Lab (2005)

http://www.open-mpi.org/
http://openshmem.org/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://www.shmem.org/
http://www.xsede.org/resources/overview

Benchmarking Parallel Performance
on Many-Core Processors

Bryant C. Lam, Ajay Barboza, Ravi Agrawal,
Alan D. George, and Herman Lam

NSF Center for High-Performance Reconfigurable Computing (CHREC)
Department of Electrical and Computer Engineering

University of Florida
Gainesville, FL 32611-6200

{blam,barboza,ragrawal,george,hlam}@chrec.org

Abstract. With the emergence of many-core processor architectures
onto the HPC scene, concerns arise regarding the performance and pro-
ductivity of numerous existing parallel-programming tools, models, and
languages. As these devices begin augmenting conventional distributed
cluster systems in an evolving age of heterogeneous supercomputing,
proper evaluation and profiling of many-core processors must occur in
order to understand their performance and architectural strengths with
existing parallel-programming environments and HPC applications. This
paper presents and evaluates the comparative performance between two
many-core processors, the Tilera TILE-Gx8036 and the Intel Xeon Phi
5110P, in the context of their applications performance with the SHMEM
and OpenMP parallel-programming environments. Several applications
written or provided in SHMEM and OpenMP are evaluated in order to
analyze the scalability of existing tools and libraries on these many-core
platforms. Our results show that SHMEM and OpenMP parallel appli-
cations scale well on the TILE-Gx and Xeon Phi, but heavily depend on
optimized libraries and instrumentation.

Keywords: PGAS, SHMEM, OpenMP, many-core, parallel program-
ming, performance analysis, high-performance computing, parallel ar-
chitectures.

1 Introduction

With the emergence of many-core processors into the high-performance com-
puting (HPC) scene, there is strong interest in evaluating and evolving existing
parallel-programming models, tools, and libraries. This evolution is necessary to
best exploit the increasing single-device parallelism from multi- and many-core
processors, especially in a field focused on massively distributed supercomput-
ers. Although many-core devices offer exciting new opportunities for application
acceleration, these devices need to be properly evaluated between each other and
the conventional servers they potentially supplement or replace.

S. Poole, O. Hernandez, and P. Shamis (Eds.): OpenSHMEM 2014, LNCS 8356, pp. 29–43, 2014.
© Springer International Publishing Switzerland 2014

30 B.C. Lam et al.

A very popular parallelization method for HPC applications is a hybrid mix
of shared-memory threads with OpenMP [3] for intra-node communication be-
tween processor cores and single-program, multiple-data (SPMD) processes with
MPI [5] for inter-node communication. Partitioned global address space (PGAS)
languages and libraries, however, are experiencing rising interest with their po-
tential to provide high-performance around a straightforward memory and com-
munication model. Notable members of the PGAS family include Unified Parallel
C (UPC), X10, Chapel, Co-Array Fortran (CAF), Titanium, and SHMEM [9].

In this paper, we present and evaluate the performance of SHMEM and
OpenMP applications on two current-generation many-core devices, the Tilera
TILE-Gx and the Intel Xeon Phi. The SHMEM applications are evaluated with
two library implementations: the OpenSHMEM reference implementation [11] on
both platforms, and TSHMEM [7]—an OpenSHMEM library optimized specifi-
cally for Tilera many-core processors—on the TILE-Gx. OpenMP implementa-
tions are provided by the native compiler for each platforms. Results from these
applications emphasize comparative performance of our many-core devices and
the effectiveness of each parallel-programming environment.

The remainder of the paper is organized as follows. Section 2 provides back-
ground on the SHMEM library and OpenSHMEM efforts, our previous research
with TSHMEM (SHMEM for Tilera processors), OpenMP, and brief architec-
tural descriptions of the Tilera TILE-Gx and Intel Xeon Phi. Section 3 presents
and evaluates several SHMEM and OpenMP applications on the two many-core
platforms. Finally, Section 4 provides conclusions and directions for future work.

2 Background

This section provides brief background of the parallel-programming environ-
ments under analysis (SHMEM, OpenSHMEM, TSHMEM, and OpenMP) and
the Tilera and Intel many-core platforms that will execute these applications.

2.1 SHMEM and OpenSHMEM

The SHMEM communication library adheres to a strict PGAS model whereby
each cooperating parallel process (also known as a processing element, or PE)
consists of a shared symmetric partition within the global address space. Each
symmetric partition consists of symmetric objects (variables or arrays) of the
same size, type, and relative address on all PEs. Originally developed to provide
shared-memory semantics on the distributed-memory Cray T3D supercomputer,
SHMEM closely models SPMD via its symmetric, partitioned, global address
space.

There are two types of symmetric objects that can reside in the symmetric
partitions: static and dynamic. Static variables reside in the heap segment of the
program executable and are allocated during link time. These static variables,
when parallelized as multiple processes, appear at the same virtual address to
all processes running the same executable, thus ensuring its symmetry across all

Benchmarking Parallel Performance on Many-Core Processors 31

partitions. Dynamic symmetric variables, in contrast, are allocated at runtime
on all PEs via SHMEM’s dynamic memory allocation function shmalloc(). These
dynamic variables, however, may or may not be allocated at the same virtual
address on all PEs, but are typically at the same offset relative to the start of
each symmetric partition.

SHMEM provides several routines for explicit communication between PEs,
including one-sided data transfers (puts and gets), blocking barrier synchro-
nization, and collective operations. In addition to being a high-performance,
lightweight library, SHMEM has historically provided for atomic memory op-
erations not available in popular library alternatives until recently (e.g., MPI
3.0).

Due to the lightweight nature of SHMEM, commercial variants have emerged
from vendors such as Cray, SGI, and Quadrics. Application portability between
variants, however, proved difficult due to different functional semantics, incom-
patible APIs, or system-specific implementations. This situation had regrettably
fragmented developer adoption in the HPC community. Fortunately, SHMEM
has seen renewed interest in the form of OpenSHMEM, a community-led effort
to create a standard specification for SHMEM functions and semantics. Version
1.0 of the OpenSHMEM specification has already seen commercial adoption by
vendors such as Mellanox [8].

2.2 GASNet and the OpenSHMEM Reference Implementation

The OpenSHMEM community provides a reference implementation of their li-
brary with primary source-code contributions from the University of Houston
and Oak Ridge National Laboratory [11]. This reference implementation is com-
pliant with version 1.0 of the OpenSHMEM specification and is implemented
atop GASNet [2], a low-level networking layer and communication system for
supporting SPMD parallel-programming models such as PGAS. GASNet de-
fines a core and an extended networking API that are implemented via conduits.
These conduits enable support for numerous networking technologies and sys-
tems. By leveraging GASNet’s conduit abstraction, the OpenSHMEM reference
implementation is portable to numerous cluster-based systems.

2.3 TSHMEM for Tilera Many-Core Processors

Our prior work with OpenSHMEM involved the design and evaluation of a
library called TSHMEM (TileSHMEM) for Tilera many-core processors [7].
Along with improving developer productivity via the lightweight SHMEM API,
TSHMEM delivers a high-performance many-core programming library and en-
ables SHMEM application portability for the Tilera TILE-Gx and TILEPro
architectures. With the purpose of leveraging many-core capabilities and op-
timizations, TSHMEM is built atop Tilera-provided libraries and evaluated via
microbenchmarking in order to demonstrate realizable performance and minimal
overhead between the underlying libraries and TSHMEM functionality. Notable
optimizations in TSHMEM include leveraging the Tilera on-chip mesh network

32 B.C. Lam et al.

for very-low-latency barriers. Optimization and evolution of TSHMEM contin-
ues as we research and experiment with functionality for current and future
OpenSHMEM standards.

2.4 OpenMP

The OpenMP specification defines a collection of library routines, compiler direc-
tives, and environment variables that enable application parallelization via mul-
tiple threads of execution [3]. Standardized in 1997, OpenMP has been widely
adopted and is portable across multiple platforms.

OpenMP commonly exploits SMP architectures by enabling both data-level
and thread-level parallelism. Parallelization is typically achieved via a fork-and-
join approach controlled by compiler directives whereby a master thread will fork
several child threads when encountering an OpenMP parallelization section. The
child threads may be assigned to different processing cores and operate indepen-
dently, thereby sharing the computational load with the master. Threads are
also capable of accessing shared-memory variables and data structures to assist
computation. At the end of each parallel section, child threads are joined with
the master thread and the parallel section closes. The master thread continues
on with sequential code execution until another parallel section is encountered.

While other multi-threading APIs exist (e.g., POSIX threads), OpenMP is
comparatively easier to use for developers that desire an incremental path to
application parallelization for their existing sequential code. With the emergence
of many-core processors such as the TILE-Gx and Xeon Phi, OpenMP is evolving
to become a viable choice for single-device supercomputing tasks.

2.5 Tilera TILE-Gx

Tilera Corporation, based in San Jose, California, develops commercial many-
core processors with emphases on high performance and low power in the cloud
computing, general server, and embedded devices markets. Each Tilera many-
core processor is designed as a scalable 2D mesh of tiles, with each tile consisting
of a processing core and cache system. These tiles are attached to several on-
chip networks via non-blocking cut-through switches. Referred to as the Tilera
iMesh (intelligent Mesh), this scalable 2D mesh consists of dynamic networks
that provide data routing between memory controllers, caches, and external I/O
and enables developers to explicitly transfer data between tiles via a low-level
user-accessible dynamic network.

Our research focuses on the current-generation Tilera TILE-Gx8036. The
TILE-Gx is Tilera’s new generation of 64-bit many-core processors. Differenti-
ated by a substantially redesigned architecture from its 32-bit predecessor—the
TILEPro—the TILE-Gx exhibits upgraded processing cores, improved iMesh
interconnects, and novel on-chip accelerators. Each 64-bit processing core is at-
tached to five dynamic networks on the iMesh. The TILE-Gx8036 (a specific
model of the TILE-Gx36) has 36 tiles, each consisting of a 64-bit VLIW proces-
sor with 32k L1i, 32k L1d, and 256k L2 cache. Furthermore, the L2 cache of each

Benchmarking Parallel Performance on Many-Core Processors 33

core is aggregated to form a large unified L3 cache. The TILE-Gx8036 offers up to
500 Gbps of memory bandwidth and over 60 Tbps of on-chip mesh interconnect
bandwidth. An operating frequency from 1.0 to 1.2 GHz allows this processor
to perform up to 750 billion operations per second at 10 to 55W (22W typical)
TDP. Other members of the TILE-Gx family include the TILE-Gx9, TILE-Gx16,
and TILE-Gx72. In addition, the TILE-Gx includes hardware accelerators not
found on previous Tilera processors: mPIPE (multicore Programmable Intelli-
gent Packet Engine) for wire-speed packet classification, distribution, and load
balancing; and MiCA (Multicore iMesh Coprocessing Accelerator) for crypto-
graphic and compression acceleration.

2.6 Intel Xeon Phi

The Xeon Phi is Intel’s line of many-core coprocessors. With processing cores
based on the original Intel Pentium architecture, the Xeon Phi architecture is
comprised of up to 61 x86-like cores with an in-order memory model on a ring-
bus topology. Its performance strength is derived from the 512-bit SIMD vector
units on each core, providing maximum performance to highly vectorized appli-
cations. With four hardware-thread units per core (up to 244), the Xeon Phi can
theoretically achieve more than 1 TFLOPS of double-precision performance.

Each core of the Xeon Phi consists of an x86-like processor with hardware
support for four threads and 32k L1i, 32k L1d, and 512k L2 caches. The unifi-
cation of the L2 caches are globally available to the cores as an L3 cache and
are kept coherent via a globally distributed tag directory. Several wide high-
bandwidth bidirectional ring interconnects connect the cores to each other and
to the on-board GDDR5 memory modules. Data movement is facilitated by this
bidirectional hardware ring bus. The main BL ring carries 64-byte wide data
in each direction while the narrower AD and AK carry address and coherence
information respectively.

With the Xeon Phi, Intel aims to offer a general-purpose application copro-
cessor and accelerator for large-scale heterogeneous systems. Housed in a GPU
form factor, the Xeon Phi attaches to the PCIe bus of a standard host server and
provides application acceleration via three modes of operation: offload for highly
parallel work while the host processor executes typically serial work, symmet-
ric for parallel work sharing between the host and coprocessor, and native for
only-coprocessor application executions. Multiple Xeon Phi coprocessors can be
attached to a single server for very high computational throughput per unit area.
By supporting tools and libraries (e.g., OpenMP, Intel Clik, Intel MKL) avail-
able for code acceleration on Xeon processors, code portability to the Xeon Phi
is relatively straightforward. Further performance optimizations for the Xeon
Phi generally enable higher parallelism for the application on other platforms.

Our research focuses on the Intel Xeon Phi 5110P coprocessor. This coproces-
sor model is comprised of 60 cores with 240 hardware threads, 30 MB of on-chip
cache, and 8 GB GDDR5 memory with peak bandwidth of 320 GB/s. Operating
at 1.053 GHz, this passively-cooled coprocessor operates at 225W TDP.

34 B.C. Lam et al.

3 SHMEM and OpenMP Performance Studies

SHMEM and OpenMP are highly amenable programming environments for SMP
architectures due to their shared-memory semantics. With many-core proces-
sors emerging onto the HPC scene, developers are exceedingly interested in the
performance and scalability of their applications for these devices. This sec-
tion attempts to fairly analyze several applications, written in both SHMEM
and OpenMP, on the TILE-Gx and Xeon Phi many-core processors. We then
analyze several SHMEM-only applications to showcase performance differences
between SHMEM-library implementations and conclude the section with obser-
vational experiences with both SHMEM and OpenMP, emphasizing their respec-
tive strengths and weaknesses.

3.1 Experimental Setup

The many-core platforms targeted by our research are the Tilera TILEmpower-
Gx stand-alone server with a single TILE-Gx8036 [10] operating at 1.0 GHz,
and the Intel Xeon Phi 5110P [6] passively-cooled PCIe card operating at 1.053
GHz attached to a standard host server. While the Xeon Phi is also designed as a
coprocessor capable of offloaded workloads when paired with a Xeon host proces-
sor, we conduct our application executions with the Xeon Phi in native-execution
mode only. All workloads execute only on the Xeon Phi with no significant in-
fluence from the host processor.

The SHMEM implementations under analysis include the OpenSHMEM refer-
ence implementation version 1.0d (referred to afterward as simply OpenSHMEM)
and our TSHMEM library. The underlying API in OpenSHMEM is provided by
GASNet version 1.20.2. GASNet was straightforwardly cross-compiled for the
TILE-Gx, but cross-compiling for the Xeon Phi required minor source-code mod-
ifications to resolve missing x86 assembly instructions from the instruction-set
architecture (ISA). Because the Xeon Phi has an in-order memory model, sev-
eral x86 instructions related to memory fencing (i.e., sfence, lfence, mfence) are
not necessary and are not included in the Xeon Phi ISA. These memory-fence
instructions in GASNet were replaced with compiler barriers that effectively re-
solve into no-ops. In contrast, the OpenSHMEM library cleanly cross-compiles
for both the TILE-Gx and Xeon Phi due to its use of the GASNet API. We
leverage the GASNet SMP conduit for our experiments with OpenSHMEM.
The second SHMEM implementation is our TSHMEM library which natively
builds for the TILE-Gx. Due to significant use of Tilera libraries, TSHMEM
portability to other platforms is under investigation for future work.

OpenMP is supported on both platforms via their native compiler. The TILE-
Gx uses GCC version 4.4.6. OpenMP programs are compiled for the Xeon Phi
with ICC version 13.0.1. Unless otherwise mentioned, all SHMEM and OpenMP
applications are compiled with O2 optimizations.

Benchmarking Parallel Performance on Many-Core Processors 35

3.2 SHMEM and OpenMP Applications

Our performance analysis of parallel-programming environments consists of three
applications written each in both SHMEM and OpenMP. These applications are
presented as follows: matrix multiply, linear curve fitting, and exponential curve
fitting. In conducting our performance evaluation, we attempt to be impartial by
evaluating how well an application’s algorithm will map to the programming en-
vironment. When possible, specific optimizations were made only when the com-
putational algorithm remained unchanged for both versions of the application.
Scalability results are presented with increasing number of PEs, where PEs are ei-
ther processes in SHMEM or threads in OpenMP. Serial-baseline executions were
written only in the C programming language and are used for both OpenMP and
SHMEM scalability at 1 PE. Results are reported in execution times for each ap-
plication with power-of-two PEs as well as the realistic maximum number of PEs
per device: 36 for the TILE-Gx and 240 for the Xeon Phi (60 cores).

Matrix Multiply. Matrix multiplication is a fundamental kernel in HPC and
the computational sciences. The matrix-multiplication algorithm chosen for in-
strumentation was a partial-row dissemination with loop-interchange optimiza-
tion for three matrices: C = A×B. Each PE is partitioned a block of sequential
rows to compute the partial result. In the case of OpenMP, the A, B, and C ma-
trices are shared among the threads via compiler directives. Because of SHMEM’s
symmetric heap, the A and C matrices can be easily partitioned among the PEs,
but each PE receives a private copy of the B matrix due to the pattern of com-
putation. There are other parallelization strategies that do not require private
matrix copies, but the pattern of computation and communication would have
differentiated from the OpenMP version. In addition to row dissemination, loop
interchange can easily occur since each matrix element in C has no data depen-
dency with its other elements. By interchanging the inner-most loop with one of
its outer loops, locality of reference and cache-hit rates drastically increase.

Execution times for SHMEM and OpenMP matrix multiplication are pre-
sented in Figure 1a. While the TILE-Gx execution times are significantly longer
than the Xeon Phi’s, normalizing the results with device power consumption will
show more competitive conclusions. This power normalization, however, is only
mentioned casually and will be investigated in the future.

For both platforms, OpenMP, OpenSHMEM, and TSHMEM execution times
scale with each other up to 8 PEs. At this point, OpenSHMEM begins to stop
scaling as closely with OpenMP and TSHMEM and eventually increases in ex-
ecution time with higher PE counts. The performance of TSHMEM, however,
follows closely with OpenMP for the TILE-Gx. Due to the Xeon Phi’s 4-way SMT
processing cores, each core’s L1 and L2 caches are shared amongst its hardware-
thread engines. Our Xeon Phi is equipped with 60 cores, therefore scalability
beyond 60 is highly impacted by cache-hit rates as threads begin competing for
per-core resources. For this specific OpenMP matrix multiplication, the Xeon
Phi stops scaling around 128 threads. For the TILE-Gx, TSHMEM outperforms
OpenSHMEM for all PE counts.

36 B.C. Lam et al.

1 2 4 8 16 32 64 12
8

25
6

1

10

100

Matrix Multiply

Number of PEs

E
xe
cu

ti
on

T
im

e
(s
ec
)

(a)

1 2 4 8 16 32 64 12
8

25
6

1

10

100 Linear Curve Fitting

Number of PEs

E
xe
cu

ti
on

T
im

e
(s
ec
)

(b)

1 2 4 8 16 32 64 12
8

25
6

1

10

100

1,000
Exponential Curve Fitting

Number of PEs

(c)() ()
TILE-Gx8036: OpenMP OpenSHMEM TSHMEM

Xeon Phi 5110P: OpenMP OpenSHMEM

Fig. 1. Execution times for (a) matrix multiplication (2048×2048, double); (b) linear
curve fitting (400M points, float); and (c) exponential curve fitting (400M points, float).
For TILE-Gx, TSHMEM and OpenMP execution times commonly overlap.

Linear Curve Fitting. The second application is curve fitting via linear least-
squares approximation. By using the least-mean-squares approximation, we can
define a best-fit curve with minimal sum-of-squared deviation from an existing
data set. If the data points are (x1, y1), (x2, y2), . . . , (xn, yn) where x and y are
variables such that x is independent and y is dependent, then f(x) can be de-
fined as a curve with deviation d from each point in the data set. Least-squares
approximation defines the best curve fit with the following deviation property:

Benchmarking Parallel Performance on Many-Core Processors 37

∏
= d21 + d22 + · · · + d2n =

n∑

i=1
d2i =

n∑

i=1
[yi − f(xi)]2 = minimum

For a straight line given by the equation f(a, b) = a+bx, the slope and intercept
can be calculated as follows: b =

∑
(dxdy)/

∑
dx2; a = ȳ − bx̄.

The implementation of linear curve fitting can be highly parallelized since
the points distributed among the PEs can be used to compute the partial sum
and the intermediate values of the deviations. These partial results can then
be combined with summation reduction operations. This application provides
a contrast between these two programming environments as the application is
lightweight and primarily consists of memory-bound computation.

Figure 1b presents execution times for linear curve fitting for each program-
ming environment and device. Similar to matrix multiplication on the TILE-
Gx, the execution times of TSHMEM, OpenSHMEM, and OpenMP track each
other until OpenSHMEM begins to stop scaling significantly after 8 PEs. Our
TSHMEM library continues to outperform OpenSHMEM on TILE-Gx for all PE
counts. The Xeon Phi performance shows similar scaling for OpenSHMEM and
OpenMP, with a runtime disadvantage to OpenSHMEM. Interestingly, the serial
baseline performs exceedingly well on the Xeon Phi without any parallelization
due to aggressive cache prefetching, locality of reference across the unified L3
of the device, and strong memory performance for streaming data from arrays.
The performance of this application begins increasing at 4 PEs for the OpenMP
version and 8 PEs for the SHMEM version. OpenSHMEM on the Xeon Phi stops
scaling after 36 PEs.

Exponential Curve Fitting. Our final application for SHMEM and OpenMP
performance analysis on the TILE-Gx and Xeon Phi is curve fitting via expo-
nential approximation. An exponential equation of the form y = aebx can be
represented in linear format via logarithm: ln(y) = ln(a) + bx. This form allows
us to leverage the previous linear curve-fitting application and supplement it
with logarithm functions for exponential approximation. Once this transforma-
tion is achieved, linear curve fitting is executed and the final result is transformed
back by taking the inverse logarithm. Exponential curve fit is computationally
intensive as compared to linear curve fit as it involves logarithmic transformation
of points.

The execution times are presented in Figure 1c. For the TILE-Gx, the perfor-
mance for OpenMP, OpenSHMEM, and TSHMEM follow the same pattern as
the previous two applications. TSHMEM and OpenMP continue to track each
other’s execution times on the TILE-Gx, while OpenSHMEM does not scale as
well with more than 16 PEs. The Xeon Phi, however, shows a surprisingly differ-
ent trend. Unlike the two previous applications, OpenSHMEM outperforms the
OpenMP version until it eventually stops scaling soon after 36 PEs. The per-
formance difference was determined to be a log-deviation calculation whereby
its reduction operation in OpenMP was seven times slower at 2 PEs than the
same reduction with OpenSHMEM. Similar to linear curve fit, the serial baseline

38 B.C. Lam et al.

for exponential curve fit performs well when compared to OpenMP. OpenMP
has parity performance with the serial baseline around 4 PEs. In comparison,
OpenSHMEM is at parity performance with the serial baseline at 2 PEs. Both
OpenMP and OpenSHMEM continue to increase speedup as PEs increase until
32 for OpenSHMEM and 128 for OpenMP.

3.3 SHMEM-only Applications

In conducting our analyses with SHMEM and OpenMP, writing applications
to be algorithmically similar creates a disadvantage on optimization techniques
available from each parallel-programming environment. While we pursued that
approach in order to facilitate fair many-core platform comparisons for the com-
putation and communication patterns of those algorithms, this subsection offers
an alternative look. In this subsection, we present several parallel applications
that were independently developed with the SHMEM programming library: ma-
trix multiply and heat image from the OpenSHMEM test suite [11], a huge
radix sort implementation, and process-based parallelization of the FFTW li-
brary with SHMEM. These applications are meant to showcase high performance
with SHMEM as well as its specific tradeoffs.

OSH Matrix Multiply. The OpenSHMEM (OSH) website provides a test
suite with benchmarks and applications [11]. One of the applications provided
from the 1.0d test suite is a matrix multiplication kernel. The performance of this
kernel is shown in Figure 2a for OpenSHMEM and TSHMEM for our many-core
platforms. The serial baseline used is identical to the one from Figure 1a.

The execution times from Figures 1a and 2a show that OSH matrix multi-
plication is around 1.5 to 2 times slower than our own matrix multiplication
presented in Section 3.2 when executed on the TILE-Gx. The Xeon Phi also
performed worse for this application, reaching parity performance with the se-
rial baseline at 16 PEs and stopped scaling soon after 36 PEs. The fundamental
reason is due to the algorithm used in this implementation. As mentioned be-
fore, our matrix multiplication has to obtain a private copy of the second matrix,
forcing the memory requirements to scale with the number of PEs and the size
of the matrix. For large matrix sizes, these private copies become a problem as
more and more PEs increasingly coexist on a single device. The communication
time of obtaining this private copy also increases with more PEs in the system,
explaining the slight increase in execution time at 32 and 36 PEs for TSHMEM
compared to OpenMP in Figure 1a. The OSH matrix multiplication, however,
uses a distributed data structure that divides up all matrices among the PEs.
This data distribution results in more communication time to obtain non-local
elements of the second matrix to perform matrix multiplication on its managed
elements, but the advantage is substantially lower memory use for increasing PE
sizes. While this approach is slower for these devices, it is more amenable for
very large matrices, higher PE counts, or distributed systems with long latencies.

While the communication pattern plays a role in this application, TSHMEM
on the TILE-Gx achieves the same runtime as OpenSHMEM on the Xeon Phi

Benchmarking Parallel Performance on Many-Core Processors 39

1 2 4 8 16 32 64 12
8

25
610

100

1,000
OSH Matrix Multiply

Number of PEs

E
xe
cu

ti
on

T
im

e
(s
ec
)

(a)

2 4 8 16 32 64 12
8

10

100

OSH Heat Image

Number of PEs

(b)

2 4 8 16 32 64 12
8

10

100
HAMR

Number of PEs

E
xe
cu

ti
on

T
im

e
(s
ec
)

(c)

2 4 8 16 32 64 12
8

25
6

1

10

100
FFTW

Number of PEs

(d)

TILE-Gx8036: OpenSHMEM TSHMEM
Xeon Phi 5110P: OpenSHMEM

Fig. 2. Execution times for (a) OSH matrix multiply (2048×2048, double); (b) OSH
heat image (1024×1024); (c) HAMR (3.8 GB); and (d) FFTW with SHMEM (8192
FFT operations on 8192-length float arrays)

at or around 36 PEs. This result is worthy of mention due to the difference in
power consumption of the two devices.

OSH Heat Image. The second application is also from the OpenSHMEM test
suite: heat-conduction modeling. This application takes width and height parame-
ters as inputs and solves a heat-conduction task. Each PE generates its own initial
data, performs computation, reduction, and finally generates an output image.

Execution times are shown in Figure 2b. Trends in execution time show that
OpenSHMEM stops scaling around 16 PEs on the TILE-Gx whereas TSHMEM

40 B.C. Lam et al.

continues on to effectively leverage the entire device. Due to the relatively sparse
communication pattern in this application, the Xeon Phi executes an order of
magnitude faster due to its more powerful cores compared to the TILE-Gx.

Huge, Asynchronous 128-bit MSB Radix Sort (HAMR). HAMR is an
in-place huge radix sort. Designed as an application benchmark to test commu-
nication and integer comparisons, it fills the requested memory with random
128-bit integers and subdivides the work to the PEs. There are two main phases
to the benchmark: (1) asynchronous parallel key exchange, and (2) local MSB
radix sort. For any significant size of memory, the intensive all-to-all commu-
nication of the first phase contributes significantly more toward total runtime
than the second phase.

Execution times for HAMR are shown in Figure 2c. OpenSHMEM on the
TILE-Gx stops scaling around 8 PEs whereas TSHMEM continues and excels
at communication. The Xeon Phi’s OpenSHMEM also begins performing rel-
atively poorly after 8 PEs as scaling becomes noticeably decreased compared
to TSHMEM on the TILE-Gx. In addition to the communication, the TILE-
Gx performs exceptionally well relative to the Xeon Phi for this benchmark.
Excelling at integer operations, the TILE-Gx displays a higher computational
density per watt of power given that the TDP of the TILE-Gx is around eight
times less than the Xeon Phi’s TDP.

Large, Distributed 1D-FFT with SHMEM and FFTW. The final ap-
plication involves the process-based parallelization of a popular FFT library,
FFTW [4]. The application performs a distributed 1D-DFT computation us-
ing the FFTW library, with data setup and inter-process communication via
SHMEM. While the FFTW library is already multithreaded internally, this ap-
plication uses SHMEM instead of MPI to handle inter-process communication
via fast one-sided puts to quickly exchange data. Designed primarily for cluster-
based systems, we experiment with this application on our many-core platforms.

The execution times in Figure 2d show OpenSHMEM and TSHMEM execu-
tions on the TILE-Gx and Xeon Phi. The scalability of OpenSHMEM signifi-
cantly decreases after 8 PEs on the TILE-Gx, but continues for the Xeon Phi.
While previous applications showed slightly better performance with TSHMEM
compared to OpenSHMEM at 8 PEs or less, execution times with FFTW show
significantly superior performance for TSHMEM on the TILE-Gx. TSHMEM
executions were approximately 20% faster than OpenSHMEM TILE-Gx ex-
ecutions. The weaker performance for OpenSHMEM with FFTW may have
also manifested on the Xeon Phi, possibly explaining the close performance of
TSHMEM on TILE-Gx to that of OpenSHMEM on the Xeon Phi.

3.4 Observational Experiences with SHMEM and OpenMP
To conclude our application analyses with OpenMP and SHMEM, we recap
recurring themes and provide observational experiences with both of these pro-
gramming environments.

Benchmarking Parallel Performance on Many-Core Processors 41

In our experience with developing OpenMP and SHMEM applications, sev-
eral advantages and disadvantages arose for both. OpenMP’s main advantage is
incremental parallelization of existing sequential applications. Through profiling,
sequential code can be iterated on and gradually parallelized until the desired
performance criteria are met. However, due to the use of compiler directives
and developer-hidden parallelization, difficult-to-debug issues such as unneces-
sary synchronization, code serialization, or race conditions may occur. Addition-
ally, OpenMP is typically unavailable for development on distributed systems
and requires the use of other parallel-programming environments such as MPI
for inter-node communication. The advantages of OpenMP’s shared-memory
model, however, allow it to remain a strong and viable choice for SMP-centric
parallelization.

As alluded to previously, the OpenMP matrix multiplication application from
Section 3.2 efficiently shares the three matrices with its child threads. When
designing the same algorithm in SHMEM, sharing large data structures stored
locally necessitates converting them into distributed data structures. For many-
core devices, these distributed structures are not necessarily an advantage as
the structures would still reside in the globally shared memory of SHMEM’s
symmetric PGAS, but incur more work for the developer to realize the same
performance outcome for a single device. However, as shown from the results,
SHMEM excels at large symmetric workloads whereby each PE receives com-
putationally equivalent data and tasks. Asymmetric communication is also a
strong suit for both SHMEM and OpenMP, but SHMEM performs them via
standard library function calls. OpenMP, however, requires compiler support to
implement these communication calls. As a result, SHMEM is highly suited for
both local and distributed parallel programming (as was the original SHMEM
on the Cray T3D distributed supercomputer) and is capable of taking the role
of both MPI and OpenMP in a large, distributed, modern SMP-based cluster.

In all applications tested on the TILE-Gx, TSHMEM was able to success-
fully outperform the OpenSHMEM reference implementation. OpenSHMEM has
scaling issues beyond 8 or 16 PEs, less than one-fourth or one-half of the de-
vice, and is partially attributed to less optimization for the TILE-Gx. Despite
the underlying GASNet libraries cross-compiling successfully, the TILE-Gx is
only generically supported. In contrast, OpenSHMEM on the Xeon Phi shows
increased promise for scalability due to additional x86-based optimizations in
the GASNet libraries, but several applications still display a surprisingly lower
level of performance, especially relative to TSHMEM on the TILE-Gx (e.g.,
OpenSHMEM’s matrix multiply, Figure 2a, 32 PEs). TSHMEM and OpenMP
consistently scale together for these applications, demonstrating TSHMEM’s po-
tential for a hardware-aware bare-metal approach to designing a SHMEM library
for many-core devices.

42 B.C. Lam et al.

4 Conclusions
We have presented and evaluated three applications written in both OpenMP
and SHMEM on the TILE-Gx and Xeon Phi. SHMEM implementations used
include the OpenSHMEM reference implementation and our prior work with
TSHMEM for Tilera many-core processors. In addition, four independently de-
veloped SHMEM applications were evaluated on our many-core platforms in
order to emphasize comparative performance of the devices and the SHMEM-
library implementations.

Several major contributions are illustrated with this work. The performance of
SHMEM and OpenMP applications for our many-core platforms show scalability
concerns for GASNet and the OpenSHMEM reference implementation on both
platforms. When applicable, TSHMEM and OpenMP performance are compa-
rable and scale similarly on the TILE-Gx. Furthermore, TSHMEM outperforms
OpenSHMEM in execution times and scalability for all SHMEM applications
evaluated. This conclusion provides validation to a bare-metal library design for
TSHMEM on many-core devices.

Future work for this research includes power normalization of results to quan-
tify each platform’s computational density per watt, and additional results for
the TILE-Gx and Xeon Phi with NAS Parallel Benchmarks [1] to evaluate their
architectural strengths at different categories of computation and communica-
tion common among HPC applications.

Acknowledgements. This work was supported in part by the I/UCRC Pro-
gram of the National Science Foundation under Grant Nos. EEC-0642422 and
IIP-1161022.

References
1. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fa-

toohi, R., Fineberg, S., Frederickson, P., Lasinski, T., Schreiber, R., Simon, H.,
Venkatakrishnan, V., Weeratunga, S.: The NAS Parallel Benchmarks. Tech. Rep.
RNR-94-007, NASA Advanced Supercomputing Division (1994)

2. Bonachea, D.: GASNet specification, v1.1. Tech. rep., University of California at
Berkeley, Berkeley, CA, USA (2002)

3. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Computational Science Engineering 5(1), 46–55 (1998)

4. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings
of the IEEE 93(2), 216–231 (2005)

5. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable im-
plementation of the MPI message passing interface standard. Parallel Comput-
ing 22(6), 789–828 (1996)

6. Intel Corporation: Intel Xeon Phi coprocessor 5110P (2013),
http://ark.intel.com/products/71992/

7. Lam, B.C., George, A.D., Lam, H.: TSHMEM: shared-memory parallel computing
on Tilera many-core processors. In: Proc. of 18th International Workshop on High-
Level Parallel Programming Models and Supportive Environments, HIPS 2013.
IEEE (2013)

http://ark.intel.com/products/71992/

Benchmarking Parallel Performance on Many-Core Processors 43

8. Mellanox Technologies: Mellanox ScalableSHMEM (2013), http://www.mellanox.
com/related-docs/prod_software/PB_ScalableSHMEM.pdf

9. Silicon Graphics International Corp.: SHMEM API for parallel programming
(2013), http://www.shmem.org/

10. Tilera Corporation: TILE-Gx8036 processor family (2013), http://www.tilera.
com/products/processors/TILE-Gx_Family

11. University of Houston: OpenSHMEM source releases (2013), http://openshmem.
org/site/Downloads/Source

http://www.mellanox.com/related-docs/prod_software/PB_ScalableSHMEM.pdf
http://www.mellanox.com/related-docs/prod_software/PB_ScalableSHMEM.pdf
http://www.shmem.org/
http://www.tilera.com/products/processors/TILE-Gx_Family
http://www.tilera.com/products/processors/TILE-Gx_Family
http://openshmem.org/site/Downloads/Source
http://openshmem.org/site/Downloads/Source

Implementing OpenSHMEM

Using MPI-3 One-Sided Communication�

Jeff R. Hammond1, Sayan Ghosh2, and Barbara M. Chapman2

1 Argonne National Laboratory
Argonne IL, 60439

jhammond@alcf.anl.gov
2 Dept. of Computer Science

University of Houston
Houston, Texas

{sgo,chapman}@cs.uh.edu

Abstract. This paper reports the design and implementation of Open-
SHMEM over MPI using new one-sided communication features in MPI-
3, which include not only new functions (e.g. remote atomics) but also a
newmemory model that is consistent with that of SHMEM.We use a new,
non-collective MPI communicator creation routine to allow SHMEM col-
lectives to use their MPI counterparts. Finally, we leverage MPI shared-
memory windows within a node, which allows direct (load-store) access.
Performance evaluations are conducted for shared-memory and InfiniBand
conduits using microbenchmarks.

Keywords: SHMEM, MPI-3, RMA, one-sided communication.

1 Introduction

SHMEM [1,10] is a one-sided communication interface originally developed for
Cray systems but subsequently adopted by numerous vendors (SGI, Quadrics,
IBM, Mellanox, etc.) for use in high-performance computing. OpenSHMEM [7]
represents a community effort to standardize SHMEM in order to enable portable
applications and grow the user base. There are essentially two kinds of SHMEM
implementations: (1) platform-specific, proprietary i.e. closed-source, highly op-
timized implementations and (2) portable (at least to some extent), open-source
reference implementations. Examples of the former include SGI-SHMEM and
CraySHMEM, while the latter includes the OpenSHMEM reference implemen-
tation from University of Houston, based upon widely portable GASNet [5] and

� This manuscript has been created by UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DEAC02-06CH11357. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display publicly, by or on
behalf of the Government.

S. Poole, O. Hernandez, and P. Shamis (Eds.): OpenSHMEM 2014, LNCS 8356, pp. 44–58, 2014.
c© Springer International Publishing Switzerland 2014

Implementing OpenSHMEM Using MPI-3 One-Sided Communication 45

SHMEM based upon Portals4 [4], which is portable to the most common com-
modity networks. MVAPICH2-X [14] is not proprietary in the sense that it is
freely available and not distributed by any platform vendor, but it is currently
closed-source and only supports InfiniBand, for which it is highly optimized.

Among the current reference implementations – that is, the ones based upon
GASNet and Portals4, respectively – are limited in portability only by their
underlying conduits. GASNet has broad support of both commodity and HPC
networks; we are not aware of any widely used platform that is not supported.
Despite the wide portability of GASNet, it is not supported directly by vendors
nor is it shipped in binary form for commodity systems (in part due to the dif-
ferent ways PGAS compilers use it, which require different configurations) and
it lacks explicit support for atomic operations, which prevents the use of na-
tive hardware implementations when available. On the other hand, the Portals4
implementation is itself a reference implementation of the Portals4 specifica-
tion [3], which aims to have optimized implementations where at least some
of the features have customized hardware support. The Portals4 reference im-
plementation currently supports shared memory, TCP/IP and InfiniBand. In
contrast to the aforementioned conduits, MPI is supported on the widest vari-
ety of platforms, is supported by all major HPC vendors and can be trivially
installed via the appropriate package management system on the most common
platforms. Broad portability and vendor support are not the only advantages
of an MPI-based implementation. The MPI ecosystem includes powerful perfor-
mance and debugging tools as well as parallel math and I/O libraries (as just
two examples), all of which are now available for use in SHMEM applications.
Finally, because GASNet nor Portals4 provide collective operations, any imple-
mentation of these must be implemented on top of point-to-point operations
inside of the SHMEM library. On the other hand, an MPI-based implementa-
tion immediately leverages many years of algorithm and software development
of MPI collectives. The relatively recent release of the MPI-3 standard has made
possible – for the first time – a direct implementation of SHMEM and PGAS
programming models using the one-sided functionality therein. Prior to MPI-3,
lack of important atomic operations (e.g. fetch-and-add and compare-and-swap),
inconvenient memory model (designed to support non-cache coherent systems),
and awkward synchronization functions made MPI one-sided communication an
inadequate conduit for models like SHMEM. Additional criticism and analysis
of the MPI-2 one-sided communication in the context of PGAS can be found
in Bonachea and Duell [6] and Dinan, et al. [8]. With the features provided in
MPI-3, it is possible to implement SHMEM relatively efficiently since essentially
all SHMEM calls map directly to one or two MPI calls and the synchronization
modes in MPI-3 are not excessive relative to SHMEM semantics. Given this, the
limiting factor in SHMEM performance when implemented using MPI-3 is the
quality of the MPI implementation. The purpose of this paper is to demonstrate
the first implementation of OpenSHMEM using MPI-3 as the conduit. We leave
performance analysis/profiling and discussion on RMA implementation quality
for future work. We refer to our implementation of OpenSHMEM over MPI-3

46 J.R. Hammond, S. Ghosh, and B.M. Chapman

as OSHMPI. We compare our implementation to existing implementations for
shared memory and InfiniBand, which include those based upon GASNet and
Portals4 as well as the optimized MVAPICH2-X implementation. We also com-
pare OSHMPI with a vendor implementation of OpenSHMEM from Mellanox,
called Mellanox-ScalableSHMEM which works with the OpenFabrics RDMA for
Linux stack (OFED).

2 Background

In order to motivate our design choices, we summarize the important semantics
of the SHMEM and MPI-3 models to understand how they must be reconciled
in the implementation and the performance effects associated therewith.

2.1 SHMEM

One-Sided Communication. SHMEM one-sided communication operations
are locally blocking, meaning they return once the local buffer is available for
reuse. Single-element, contiguous and strided variants of Put (remote write)
and Get (remote read) are provided. For each of these, the type is encoded in
the function name, which enables compiler type-checking (for example, this is
not available in MPI C code except via collaboration of compiler extensions
and metadata in the MPI header file [11]). SHMEM also supports the common
atomic operations of swap, compare-and-swap, add, fetch-and-add, increment
and fetch-and-increment, all of which block on local completion, which entails a
round trip in four of the six cases.

The synchronization primitives for one-sided operations are Fence and Quiet,
with the former corresponding to point-wise ordering and the latter to ordering
with respect to all remote targets. Some implementations specify that these or-
dering points correspond to remote completion, which is sufficient but not always
necessary to ensure ordering. In any case, we choose the conservative interpre-
tation - these functions enforce remote completion of one-sided operations.

Collective Communication. SHMEM provides Barrier, Broadcast, Reduc-
tion and Gather operations with type support encoded into the function names,
just as for one-sided operations. Subsets of processes (referred as PEs or Pro-
cessing Elements in SHMEM) are described using (PE start, logPE stride,

PE size) tuples, which is not fully general, but are still useful for some applica-
tions. With the exception of shmem barrier all, collectives take an argument
pSync, which presumably allows for the implementation to avoid additional in-
ternal state for collectives.

2.2 MPI-3

Barrett, et al. discussed MPI-3 RMA semantics in detail in Ref. [2]; we summarize
only the salient points related to SHMEM here.

Implementing OpenSHMEM Using MPI-3 One-Sided Communication 47

One-Sided Communication. The MPI 3.0 standard [17] represents a signif-
icant change from previous iterations of MPI, particularly with respect to one-
sided communication (RMA). New semantics for memory consistency, ordering
and passive-target synchronization were introduced, all three of which have a
significant (positive) impact on an MPI-based implementation of SHMEM.

The unified memory model of MPI-3 RMA stipulates that direct local access
and RMA-based access to the memory associated with a window1 see the same
data (but not necessarily immediately) without explicit synchronization. This
model is not required, rather the user must query for it, but it should be possible
for implementations to support this on cache-coherent architectures.

Prior to MPI-3, RMA operations were specified as unordered and the only
means for ordering operations was to remote-complete them. This entails a rather
high overhead and so MPI-3 now specifies that accumulate operations are ordered
by default; these operations have always been specified as element-wise atomic,
unlike Put and Get. The user can inform the implementation that ordering is not
required but then the user is required to enforce ordering via remote completion
in the application.

In MPI-2, passive target synchronization was specified in the form of an epoch
delineated with calls to MPI Win lock and MPI Win unlock. Only upon return-
ing from the latter call was any synchronization implied and it implied global
visibility, i.e. remote completion. MPI-3 provides the user the ability to specify
local and remote completion separately and to do so without terminating an
epoch. These semantics are more consistent with SHMEM and ARMCI [18] as
well as many modern networks.

Collective Communication. MPI collective communication occurs on a
communicator, which is an opaque object associated with a group processes.
Communication on one communicator is independent of communication on an-
other, which enables strict separation of different sets of messages in the case of
point-to-point and allows for a well-defined semantic for collective operations on
overlapping groups of processes. In MPI-2, communicators could only be created
collectively on the parent communicator, meaning that a subcommunicator to be
derived from the default (world) communicator (containing all processes) could
not be created without the participation of all processes. This precluded their
use in SHMEM collectives unless all possible subcommunicators were created at
initialization, which is obviously unreasonable.

MPI-3 introduced a new function for creating subcommunicators that is collec-
tive only on the group of processes that are included in the new communicator [9].
This enables subcommunicators associated with (PE start, logPE stride,

PE size) tuples to be created on the fly as necessary. Of course, creating subcom-
municators on the fly is potentially expensive relative to a particular collective
operation, so a high-quality implementation of SHMEM over MPI-3 would main-
tain a cache of these since it is reasonable to assume that they will be reused.
The MVAPICH2-X implementation of OpenSHMEM does this internally despite

1 A window is the opaque memory registration object of MPI RMA upon which all
one-sided operations act.

48 J.R. Hammond, S. Ghosh, and B.M. Chapman

not explicitly using the MPI-3 interface for collectives [16]. Another potential
bottleneck in this process is the translation of the root PE (necessary only for
broadcast operations) to a process in the subcommunicator, which is O(N) in
space and time [23]. However, we can avoid this translation routine if necessary
due to the restricted usage necessary in SHMEM collectives.

3 Implementation Design

In this section, we outline the design of the mapping from SHMEM to MPI-
3. The mapping of SHMEM functions to MPI-3 ones is mostly straightforward
due to the flexibility MPI-3 RMA, but there are a few key issues that must be
addressed.

Symmetric Heap: The use of symmetric variables is a unique concept in one-
sided communication that deserves special mention [20]. SHMEM communica-
tion operations act on virtual addresses associated with symmetric variables,
which include data in the symmetric heap (dynamically allocated) and statically
allocated data, such as global variables and variables declared with the static
attribute. Communication with stack variables is not supported within OpenSH-
MEM. On the other hand, the MPI window object is opaque and communication
operations act on data in the window specified via offsets relative to the window
base, which can be different on every PE. Whereas SHMEM requires all alloca-
tions from the symmetric heap be symmetric (i.e. uniform across all PEs), MPI
supports the general case where PEs can pass different sizes (including zero) to
the window constructor routine. Prior to MPI-3, the only window constructor
routine was MPI Win create, which was a registration routine that took local
memory buffers as input. This precluded the use of symmetric allocations for
scalable metadata; it had to be assumed that the base address was different
at every PE, thus requiring O(N) metadata in the window object. MPI-3 pro-
vides a new routine for constructing windows that includes memory allocation
(MPI Win allocate), hence permits the implementation to allocate symmetri-
cally. It also permits the use of shared memory segments for intranode optimiza-
tion. This is available explicitly to the user via MPI Win allocate shared and
implicitly in the case of MPI Win allocate. By explicit, we mean that the user
can query the virtual address associated with a window segment in another PE
on the same node and access it via load-store; the implicit case is where the
implementation uses shared memory to bypass the network interface when the
user makes MPI communication calls.

Put and Get: SHMEM performs communication against symmetric data, which
can be either global, static or symmetric heap (sheap) data. The latter is quite
easy to deal with; we allocate an MPI window of sufficient size (controlled by
an environment variable) and allocate memory out of it. To access this data
remotely, one merely translates the local address into a remote offset within
the sheap window, which is not expensive. Global data is registered with MPI
using MPI Win create at initialization using the appropriate operating system
mechanism to get the base address and size of this region. We use one window

Implementing OpenSHMEM Using MPI-3 One-Sided Communication 49

for bss and data segments (global data can reside in both places) but two may
be required in some cases. The lookup function (shmem window offset) differ-
entiates between the two windows. We use a much simpler special case as that
of [8] because valid symmetric variables always fall within one of two windows.
Because the symmetric heap window is allocated rather than just registered,
it supports directly local access within a node, so for this case, we use direct
access when all PEs reside in a single node. This can be generalized to mul-
tiple nodes using overlapping windows – one each for internode and intranode
communication2 – but this has not yet been implemented.

void __shmem_put(MPI_Datatype type, int type_size, void *target,

const void *source, size_t len, int pe)

{

enum shmem_window_id_e win_id;

shmem_offset_t offset;

__shmem_window_offset(target, pe, &win_id, &offset));

if (world_is_smp && win_id==SHEAP_WINDOW) {

void * ptr = smp_sheap_ptrs[pe] + (target - sheap_base_ptr);

memcpy(ptr, source, len*type_size);

} else {

MPI_Win win = (win_id==SHEAP_WINDOW) ? sheap_win : text_win;

int n = (int)len; assert(len<(size_t)INT32_MAX);

MPI_Accumulate(source, n, type, pe, offset, n, type, MPI_REPLACE, win);

MPI_Win_flush_local(pe, win);

}

}

void shmem_int_put(int *target, const int *source, size_t len, int pe)

{ __shmem_put(MPI_INT, 4, target, source, len, pe); }

Fig. 1. The implementation of SHMEM put using MPI for one type-variant. The code
is modified from the original for presentation purposes.

Synchronization: The synchronization primitives shmem fence and
shmem quiet are both mapped to MPI Win flush all in order to ensure pair-
wise and global ordering of one-sided operations. Because shmem fence does
not take a specific PE as an argument, the implementation would like have to
maintain O(N) state to implement the minimum synchronization required. We
assume that the MPI implementation already tracks the remote processes and
only flushes those that are the the target of communication and thus it is redun-
dant for our implementation to do this. The assumption that MPI Win flush all

is an efficient way to implement shmem fence may not always be true, but it is
perhaps worth noting that the Portals4 implementation does something similar
to avoid O(N) state.

Atomics. Atomic operations map from SHMEM to MPI similarly as with Put
and Get. Table 1 specifies how each SHMEM function translates to an MPI
function. Because shmem inc and shmem finc are just special cases of shmem add

and shmem fadd, respectively, we do not list them.

2 The need for two windows may be obviated in a future version of the MPI standard.

50 J.R. Hammond, S. Ghosh, and B.M. Chapman

Table 1. Correspondance between SHMEM and MPI atomic operations

SHMEM function MPI function Accumulate operation

shmem cswap MPI Compare and swap -
shmem swap MPI Fetch and op MPI REPLACE

shmem fadd MPI Fetch and op MPI SUM

shmem add MPI Accumulate MPI SUM

Collective Operations. We follow the same approach as [16] with respect to
non-collective communicator creation [9]. Figure 2 shows the code that is used
to translate a SHMEM PE group triplet to an MPI subcommunicator. Only
Broadcast requires the rank translation of the root; when an invalid rank (e.g.
-1) is passed to this function, translation is skipped. The use of a cache for
communicators is an obvious optimization but one that is not yet implemented
in OSHMPI.

Table 2 shows the mapping from SHMEM to MPI with respect to collective
operations. Because the shmem collect routine provides only the count at each
PE, the MPI implementation requires an MPI Allgather to form the vector of
counts. The translation from SHMEM reduction operators to their MPI coun-
terparts is trivial and is left as an exercise for the reader.

void __shmem_acquire_comm(int pe_start, int pe_logs, int pe_size,
MPI_Comm * comm, int pe_root, int * broot)

{
if (pe_start==0 && pe_logs==0 && pe_size==shmem_world_size) {

*comm = SHMEM_COMM_WORLD; *broot = pe_root;
} else {

MPI_Group strgrp;
int * pe_list = malloc(pe_size*sizeof(int)); assert(pe_list!=NULL);
int pe_stride = 1<<pe_logs;
for (int i=0; i<pe_size; i++) pe_list[i] = pe_start + i*pe_stride;
MPI_Group_incl(SHMEM_GROUP_WORLD, pe_size, pe_list, &strgrp);
MPI_Comm_create_group(SHMEM_COMM_WORLD, strgrp, pe_start, comm);
if (pe_root>=0) *broot = __shmem_translate_root(strgrp, pe_root);
MPI_Group_free(&strgrp);
free(pe_list);

}
}

Fig. 2. Code to create an MPI sub communicator associated with a PE subgroup

Table 2. Mapping of SHMEM collectives to MPI collective functions

SHMEM MPI

shmem barrier MPI Barrier

shmem broadcast MPI Bcast

shmem collect MPI Allgatherv

shmem fcollect MPI Allgather

shmem <op> to all MPI Allreduce(op)

Implementing OpenSHMEM Using MPI-3 One-Sided Communication 51

4 Results

In this section, we evaluate the performance of OSHMPI versus other imple-
mentations of OpenSHMEM (GASNet, Portals4, MVAPICH2-X and Mellanox).
While these are not the only OpenSHMEM implementations available, they are
a representative set and sufficient to make a reasonable evaluation of the quality
of our implementation and of MPI-3 as a conduit. In particular, the comparison
of OSHMPI using the MPI-3 implementation found in MVAPICH2 to the Open-
SHMEM implementation in MVAPICH2-X is particularly useful, since this uses
at least some of the same implementation features and thus exposes more of the
semantic differences. However, as will be shown below, there appear to be imple-
mentation issues that prevent MPI-3 from achieving its full potential, i.e. not all
the differences are due to semantics. Most of the test cases are taken from pub-
licly available benchmarks or example codes packaged with the OpenSHMEM
reference API.

The evaluation platform used is a dual-socket AMD 6128 (8 cores/socket) clus-
ter with QDR InfiniBand from Mellanox and 64 GB of memory per node. We
use the latest release of each of the implementations considered. OSHMPI uses
MPICH 3.1b2 for SMP, and MVAPICH2 2.0a for distributed cases. The Open-
SHMEM reference implementation uses GASNet 1.20 configured for GASNet
“smp” and “ibv” conduits only; this implementation is referred to as GASNet.
For SHMEM-Portals and Portals4 (henceforth, Portals4), the repository trunk
is used, configured with --with-implementation=ib --enable-ib-shmem.

MVAPICH2-X 2.0a provides the OpenSHMEM implementation, which is de-
noted as MVAPICH2-X. Mellanox-ScalableSHMEM version 2.0 is also included
in our evaluation (configured with only --with-oshmem), denoted as MLNX.

4.1 OpenSHMEM versus MPI-3 – Implementation Effects

Figure 3 compares the message rate for messages from 8 byte to 8 MB us-
ing tests written for the MPI-3 and OpenSHMEM interfaces and implemented
with MVAPICH2 and MVAPICH2-X, respectively. The purpose of this test is
to elucidate differences in the implementation of the two protocols within a pre-
sumably similar implementation. The differences need not necessarily be so large
but MVAPICH2 inherits an implementation design for one-sided that is not tar-
geting one-sided networks, whereas the OpenSHMEM implementation clearly
exploits the one-sided nature of InfiniBand in a direct way.

4.2 Latency and Message-Rate Evaluation

In this section, we evaluate the performance of the OSHMPI, Portals4, GASNet,
Mellanox-ScalableSHMEM and MVAPICH2-X implementations using the OSU
microbenchmarks [15]. These tests measures the message rate, average latencies
for varying message sizes and types of one-sided operations. Figures 4a, 4b, 4c
and 4d show the average latencies on a shared memory system or across the
network on distributed nodes with increasing data sizes from 1 to 220 bytes.

52 J.R. Hammond, S. Ghosh, and B.M. Chapman

102

103

104

105

106

107

20 25 210 215 220 225

Lo
g

M
es

sa
ge

 R
at

e
(M

es
sa

ge
s/

s)

Message size (bytes)

MPI-3
OpenSHMEM

102

103

104

105

106

107

108

20 25 210 215 220 225

Lo
g

M
es

sa
ge

 R
at

e
(M

es
sa

ge
s/

s)

Message size (bytes)

MPI-3
OpenSHMEM

Fig. 3. Internode and intranode (both with 2 PEs) message rate (long puts) of MPI-3
and OpenSHMEM interfaces as implemented with MVAPICH2 and MVAPICH2-X,
respectively

Figure 5 shows aggregate unidirectional put injection rate with message size
varying from 1 to 222 bytes on shared-memory and distributed nodes.

The shared-memory performance of OSHMPI is generally superior as com-
pared to others, which is due to the use of MPI-3 shared memory windows
that allows direct load-store access on the target memory without any addi-
tional overhead. Portals4 cannot do this due to the lack of XPMEM support
and GASNet appears to require additional overhead, either due to locking or
copying through shared segments. Mellanox-ScalableSHMEM has performance
close to GASNet for distributed nodes, the sharp drop/rise in the performance
plot (Figure 5) suggests message-transfer protocol crossover at certain sizes. On
the other hand, OSHMPI suffers from poor message rate/latency on distributed
nodes. This is mostly due to the implementation quality but a small portion of
the overhead can be attributed to the requirement of two MPI function calls to
implement a blocking Put operation – since MPI Put is nonblocking, it must be
followed by MPI Win flush local – which may entail more software overhead
than implementations that use only a single call to the conduit API.

The operation rate test for OpenSHMEM atomic routines are similar to the
Put message-rate test. The benchmark measures the performance of atomic
fetch-operate routines supported in OpenSHMEM by issuing back-to-back atomic
operations of a type from the origin to the target PE. Figure 6 shows the aver-
age latency and aggregate message rate per atomic operation for all the atomic
operations between two PEs on two nodes.

4.3 SHMEM Barrier Performance

Barriers are used extensively in parallel programs, perhaps unnecessarily in some
cases, but they are nonetheless an essential collective operation that needs to be
efficient. Figure 7 shows barrier latencies for the shared memory and distributed
cases (on 2, 4, 8, and 16 PEs). OSHMPI and MVAPICH2-X have nearly identi-
cal performance, indicating the same underlying implementation (using the MPI
collective infrastructure in MVAPICH2). The OSHMPI routine shmem barrier

also performs local and remote synchronization, meaning a memory barrier and a

Implementing OpenSHMEM Using MPI-3 One-Sided Communication 53

 0.01

 0.1

 1

 10

 100

 1000

20 25 210 215 220

Lo
g

La
te

nc
y

(u
s)

Message size (bytes)

GASNet
MVAPICH2-X

OSHMPI
Portals4

MLNX

(a) Get latency (SMP)

 1

 10

 100

 1000

20 25 210 215 220

Lo
g

La
te

nc
y

(u
s)

Message size (bytes)

GASNet
MVAPICH2-X

OSHMPI
Portals4

MLNX

(b) Get latency (Dist)

 0.01

 0.1

 1

 10

 100

 1000

20 25 210 215 220

Lo
g

La
te

nc
y

(u
s)

Message size (bytes)

GASNet
MVAPICH2-X

OSHMPI
Portals4

MLNX

(c) Put latency (SMP)

 0.1

 1

 10

 100

 1000

20 25 210 215 220

Lo
g

La
te

nc
y

(u
s)

Message size (bytes)

GASNet
MVAPICH2-X

OSHMPI
Portals4

MLNX

(d) Put latency (Dist)

Fig. 4. Get/Put latencies on 2 PEs of one node (SMP) and two nodes (Dist)

remote flush of all outstanding communication operations, which is not explicitly
required by the OpenSHMEM specification but is implied by examples programs
therein. Barrier illustrates a significant benefit of using MPI as a conduit for
SHMEM; collective operations are heavily optimized in MPI implementations
and often use the best available algorithms. Building collectives on top of point-
to-point operations in a SHMEM-oriented conduit may make it difficult or even
impossible to achieve the same performance as MPI. For example, MPI leverages
hardware implementations of collectives on systems such as IBM Blue Gene. Al-
ternatively, a SHMEM-oriented conduit may not provide the most appropriate
point-to-point operations for implementing synchronous collectives, thereby re-
quiring the SHMEM collective implementation to poll on memory locations or
use other inefficient protocols.

4.4 Solving 2D Heat Equation

The 2D heat benchmark predicts the heat distribution, resulting from conduction
in a 2D domain and could be solved iteratively using - Jacobi, Gauss-Seidel and
Successive Over-relaxation methods. The benchmark code (shmem 2dheat.c) is
available with the OpenSHMEM reference API package. In the 2D heat bench-
mark, data is distributed evenly across PEs (plus one or more rows to facilitate
”ghost” transfers from neighbors). Rows of data are communicated between ad-
jacent PEs, with the communication overhead of (2∗npes−1) per iteration. The
results of the 2D heat benchmark on 128, 256, 512, and 1024 PEs for OSHMPI,

54 J.R. Hammond, S. Ghosh, and B.M. Chapman

102

103

104

105

106

107

108

20 25 210 215 220 225

Lo
g

R
at

e
(M

es
sa

ge
s/

s)

Message size (bytes)

OSHMPI
GASNet
Portals4

MVAPICH2-X
MLNX

(a) n=1, ppn=2(SMP)

102

103

104

105

106

107

20 25 210 215 220 225

Lo
g

R
at

e
(M

es
sa

ge
s/

s)

Message size (bytes)

OSHMPI
GASNet
Portals4

MVAPICH2-X
MLNX

(b) n=2, ppn=1

103

104

105

106

107

108

20 25 210 215 220 225

Lo
g

R
at

e
(M

es
sa

ge
s/

s)

Message size (bytes)

OSHMPI
GASNet
Portals4

MVAPICH2-X
MLNX

(c) n=8, ppn=1

103

104

105

106

107

108

20 25 210 215 220 225

Lo
g

R
at

e
(M

es
sa

ge
s/

s)

Message size (bytes)

OSHMPI
GASNet
Portals4

MVAPICH2-X
MLNX

(d) n=16, ppn=1

Fig. 5. Unidirectional Put message-rate on 2, 8, and 16 PEs within a node (top-left)
and across nodes

MVAPICH2-X, GASNet, Mellanox-ScalableSHMEM and Portals4 on a (32K ×
32K) matrix are shown in Figure 8. For this particular benchmark, some of the
GASNet runs terminated with a segmentation fault, hence we are unable to show
GASNet results beyond 256 PEs.

5 Observations

For shared memory systems, the performance of OSHMPI and MVAPICH2-
X is comparable, which is not surprising given that the implementations are
documented to use the same optimizations. The Portals4 intranode performance
is not surprisingly slow given that XPMEM could not be used due to the inability
to install this kernel module because it requires elevated privileges. 3 Additional
performance artifacts are seen in Portals4 for messages between 1 and 64 KiB
in internode tests, which may be the result of protocol crossover effects.

In distributed case however, both in terms of latency and message rate,
OSHMPI is noticeably worse than other implementations. One can only as-
sume that the MPI-3 implementation in MVAPICH2 is not as optimized as the
SHMEM implementation in MVAPICH2-X (see Figure 3). For larger messages,
however, both the direct and indirect (that is, via MPI-3) performance is similar,

3 XPMEM is a Linux kernel module (originally developed by SGI) that enables a
process to attach memory segments from another process to it’s address space.

Implementing OpenSHMEM Using MPI-3 One-Sided Communication 55

1

 10

 100

shm
em

_int_fadd
shm

em
_int_finc

shm
em

_int_add
shm

em
_int_inc

shm
em

_int_csw
ap

shm
em

_int_sw
ap

shm
em

_longlong_fadd
shm

em
_longlong_finc

shm
em

_longlong_add
shm

em
_longlong_inc

shm
em

_longlong_csw
ap

shm
em

_longlong_sw
ap

Lo
g

La
te

nc
y

(u
s)

MVAPICH2-X
OSHMPI

Portals4
GASNet

MLNX

 0.01

 0.1

 1

shm
em

_int_fadd
shm

em
_int_finc

shm
em

_int_add
shm

em
_int_inc

shm
em

_int_csw
ap

shm
em

_int_sw
ap

shm
em

_longlong_fadd
shm

em
_longlong_finc

shm
em

_longlong_add
shm

em
_longlong_inc

shm
em

_longlong_csw
ap

shm
em

_longlong_sw
ap

Lo
g

M
ill

io
n

op
s/

s

Fig. 6. Atomic latency and operations rate between 2 PEs across 2 nodes

 0.1

 1

 10

 100

 1000

 10000

 100000

GASNet

PORTALS4

OSHM
PI

M
VAPICH2-X

M
LNX

Lo
g

La
te

nc
y

(u
s)

Implementations

npes = 2
npes = 4
npes = 8

npes = 16

 1

 10

 100

 1000

GASNet

PORTALS4

OSHM
PI

M
VAPICH2-X

M
LNX

Lo
g

La
te

nc
y

(u
s)

Implementations

npes = 2
npes = 4
npes = 8

npes = 16

Fig. 7. Barrier latencies on 2, 4, 8, and 16 PEs within a node (left) and across nodes
(right). n=1,ppn=npes for SMP and n=npes,ppn=1 for Dist.

so the MPI-3 implementation appears to be related to the short-message imple-
mentation, which one hopes will be optimized in future releases of MVAPICH2.
GASNet performs the best for short-to-medium messages but is not as robust
as the others when a larger number of PEs are used; we were unable to run the
2D heat test for 256 PEs or larger with this implementation.

The atomic latency and message rate performance of MVAPICH2-X and
OSHMPI for distributed nodes are found to be very similar, as evident from
Figure 6, suggesting that the MVAPICH2 SHMEM and MPI-3 implementations
are of similar quality.

We notice significant latency variations across SHMEM implementations of
barrier routines (shown in Figure 7). Particularly, GASNet and Portals4 latencies
are a minimum ∼10x to that of OSHMPI and MVAPICH2-X on two nodes.
GASNet performance significantly degrades for 16 distributed PEs.

We had also performed other collective tests – broadcast, reduce and col-
lect – and observed that GASNet performance was substantially worse for col-
lect/reduce (for both SMP and distributed nodes). On the other hand, OSHMPI
and MVAPICH2-X have identical performance for both shared and distributed
cases, which is not surprising given their use of the same infrastructure internally.

56 J.R. Hammond, S. Ghosh, and B.M. Chapman

103

104

M
VAPICH2-X

OSHM
PI

GASNet

PORTALS4

M
LNX

Lo
g

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

Implementations

(a) n=16, ppn=8

103

104

105

M
VAPICH2-X

OSHM
PI

GASNet

PORTALS4

M
LNX

Lo
g

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

Implementations

JACOBI GAUSS-SEIDEL SOR

(b) n=16, ppn=16

103

104

M
VAPICH2-X

OSHM
PI

PORTALS4

M
LNX

Lo
g

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

Implementations

(c) n=64, ppn=8

103

104

M
VAPICH2-X

OSHM
PI

PORTALS4

M
LNX

Lo
g

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

Implementations

(d) n=64, ppn=16

Fig. 8. 2D-Heat benchmark performance of SHMEM implementations on
128/256/512/1024 PEs for 32K × 32K matrix

6 Related Work

Since the introduction of SHMEM for Cray T3D, there have been several other
implementations, including QSHMEM [21], HP-SHMEM [12], SGI-SHMEM [24],
GPSHMEM [19], and IBM TurboSHMEM [13], each with distinct API specifica-
tions. In addition to MVAPICH2-X and Portals-SHMEM, Gator-SHMEM [25]
and Mellanox ScalableSHMEM [22] are additional implementations of the Open-
SHMEM API.

7 Conclusions and Future Work

This paper describes the initial design and implementation of an OpenSHMEM
implementation using MPI-3 as a communication conduit. With the recent im-
provements in the MPI-3 specification, particularly related to RMA, MPI is now
a suitable conduit for PGAS programming models like SHMEM. The simplicity
of our implementation indicates a good semantic match between the two models.
Additionally, the performance is similar to existing PGAS runtimes such as GAS-
Net, Portals4, Mellanox-ScalableSHMEM and MVAPICH2-X for many cases, al-
though clearly there is room for improvement for distributed memory. On the
other hand, the intranode, i.e. shared-memory, performance was excellent and in

Implementing OpenSHMEM Using MPI-3 One-Sided Communication 57

many cases better than the others, suggesting that MPI shared-memory windows
are an effective way to optimize one-sided communication within a node.

The performance of collective operations was excellent with the MPI imple-
mentation, as one might expect given the substantial investment in these over
the last 20 years. While SHMEM is primarily about one-sided communication,
SHMEM applications may rely upon collective operations, particularly in certain
mathematical procedures (e.g. Krylov solvers), where dot products are essential.

In the future, we will generalize our intranode optimizations to work in the
general case where PEs are spread across multiple nodes, i.e. shared-memory
access will be used within a node while MPI operations will be used between
nodes. This usage is permitted using the unified memory model of MPI-3 that
can be supported on cache-coherent systems. OSHMPI currently lacks intranode
optimizations for atomics and strided operations but it is straightforward to add
these, the former using compiler intrinsics instead of inline assembly to maintain
a high degree of portability. MPI datatypes will be used to support SHMEM
operations on more than 231 elements, which may be required on 64-bit systems
with abundant memory.

Acknowledgment. This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under contract DE-AC02-
06CH11357. We are thankful to all the anonymous reviewers who helped us
improve the paper.

References

1. Bariuso, R., Knies, A.: Shmem user’s guide (1994)

2. Barrett, B., Hoefler, T., Dinan, J., Thakur, R., Balaji, P., Gropp, B., Underwood,
K.D.: Remote memory access programming in MPI-3. Preprint, Argonne National
Laboratory (April 2013)

3. Barrett, B.W., Brightwell, R., Hemmert, S., Pedretti, K., Wheeler, K., Under-
wood, K., Riesen, R., Maccabe, A.B., Hudson, T.: The Portals 4.0 message passing
interface (SAND2013-3181) (April 2013)

4. Barrett, B.W., Brigthwell, R., Scott Hemmert, K., Pedretti, K., Wheeler, K., Un-
derwood, K.D.: Enhanced support for OpenSHMEM communication in Portals.
In: Symposium on High-Performance Interconnects, pp. 61–69 (2011)

5. Bonachea, D.: GASNet specification, v1.1. Technical Report UCB/CSD-02-1207,
U.C. Berkeley (2002)

6. Bonachea, D., Duell, J.: Problems with using MPI 1.1 and 2.0 as compilation tar-
gets for parallel language implementations. Int. J. High Perform. Comput. Netw. 1,
91–99 (2004)

7. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., Smith, L.:
Introducing OpenSHMEM: SHMEM for the PGAS community. In: Proceedings of
the Fourth Conference on Partitioned Global Address Space Programming Model,
p. 2. ACM (2010)

58 J.R. Hammond, S. Ghosh, and B.M. Chapman

8. Dinan, J., Balaji, P., Hammond, J.R., Krishnamoorthy, S., Tipparaju, V.: Sup-
porting the Global Arrays PGAS model using MPI one-sided communication. In:
Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS) (May 2012)

9. Dinan, J., Krishnamoorthy, S., Balaji, P., Hammond, J.R., Krishnan, M., Tippa-
raju, V., Vishnu, A.: Noncollective communicator creation in MPI. In: Cotronis,
Y., Danalis, A., Nikolopoulos, D.S., Dongarra, J. (eds.) EuroMPI 2011. LNCS,
vol. 6960, pp. 282–291. Springer, Heidelberg (2011)

10. Feind, K.: Shared memory access (shmem) routines. In: Cray User Group, CUG
2005 (1995)

11. Gribenko, D., Zinenko, A.: Enabling Clang to statically check MPI type safety. In:
International Conferences on High Performance Computing (HPC-UA) (October
2012)

12. HP. HP Alphaserver SC 40, http://h18002.www1.hp.com/alphaserver/archive/
sc/sys_sc40_features.html

13. IBM. HPC Toolkit, https://computing.llnl.gov/mpi/klepacki.pdf (2004)
14. Jose, J., Kandalla, K., Luo, M., Panda, D.K.: Supporting hybrid MPI and Open-

SHMEM over InfiniBand: Design and performance evaluation. In: 2012 41st Inter-
national Conference on Parallel Processing (ICPP), pp. 219–228 (2012)

15. Jose, J., Kandalla, K., Luo, M., Panda, D.K.: Supporting hybrid MPI and Open-
SHMEM over InfiniBand: Design and performance evaluation. In: 2012 41st Inter-
national Conference on Parallel Processing (ICPP), pp. 219–228. IEEE (2012)

16. Jose, J., Kandalla, K., Zhang, J., Potluri, S., Panda, D.K.: Optimizing collective
communication in OpenSHMEM (October 2013)

17. MPI Forum. MPI: A message-passing interface standard. Version 3.0 (November
2012)

18. Nieplocha, J., Carpenter, B.: ARMCI: A portable remote memory copy library
for distributed array libraries and compiler run-time systems. In: Rolim, J., et al.
(eds.) IPPS-WS 1999 and SPDP-WS 1999. LNCS, vol. 1586, pp. 533–546. Springer,
Heidelberg (1999)

19. Parzyszek, K., Nieplocha, J., Kendall, R.A.: A generalized portable SHMEM li-
brary for high performance computing. Technical report, Ames Lab., Ames, IA,
US (2000)

20. Poole, S.W., Hernandez, O., Kuehn, J.A., Shipman, G.M., Curtis, A., Feind, K.:
OpenSHMEM - toward a unified RMA model. In: Encyclopedia of Parallel Com-
puting, pp. 1379–1391. Springer (2011)

21. Quadrics. Quadrics/SHMEM programming manual (2001)
22. Shainer, G., Wilde, T., Lui, P., Liu, T., Kagan, M., Dubman, M., Shahar, Y.,

Graham, R., Shamis, P., Poole, S.: The co-design architecture for exascale sys-
tems, a novel approach for scalable designs. In: Computer Science-Research and
Development, pp. 1–7 (2013)

23. Träff, J.L.: Compact and efficient implementation of the MPI group operations,
pp. 170–178 (2010)

24. Woodacre, M., Robb, D., Roe, D., Feind, K.: The SGI AltixTM 3000 global shared-
memory architecture (2005)

25. Yoon, C., Aggarwal, V., Hajare, V., George, A.D., Billingsley III, M.: GSHMEM:
A portable library for lightweight, shared-memory, parallel programming. In: Pro-
ceedings of Partitioned Global Address Space, Galveston, Texas (2011)

http://h18002.www1.hp.com/alphaserver/archive/sc/sys_sc40_features.html
http://h18002.www1.hp.com/alphaserver/archive/sc/sys_sc40_features.html
https://computing.llnl.gov/mpi/klepacki.pdf

Analyzing the Energy and Power Consumption

of Remote Memory Accesses
in the OpenSHMEM Model

Siddhartha Jana1, Oscar Hernandez2, Stephen Poole2,
Chung-Hsing Hsu2, and Barbara M. Chapman1

1 HPCTools, Computer Science Department,
University of Houston,

Houston, Texas
{sidjana,chapman}@cs.uh.edu

2 Computer Science and Mathematics Division
Oak Ridge National Laboratory,

Oak Ridge, Tennessee
{oscar,spoole,hsuc}@ornl.gov

Abstract. PGAS models like OpenSHMEMprovide interfaces to explic-
itly initiate one-sided remote memory accesses among processes. In addi-
tion, the model also provides synchronizing barriers to ensure a consistent
view of the distributed memory at different phases of an application. The
incorrect use of such interfaces affects the scalability achievable while us-
ing a parallel programming model. This study aims at understanding the
effects of these constructs on the energy and power consumption behavior
of OpenSHMEM applications. Our experiments show that cost incurred
in terms of the total energy and power consumed depends on multiple fac-
tors across the software and hardware stack. We conclude that there is a
significant impact on the power consumed by the CPU and DRAM due to
multiple factors including the design of the data transfer patterns within
an application, the design of the communication protocols within amiddle-
ware, the architectural constraints laid by the interconnect solutions, and
also the levels of memory hierarchy within a compute node. This work mo-
tivates treating energy and power consumption as important factors while
designing compute solutions for current and future distributed systems.

1 Introduction

Recent studies on the challenges facing the Exascale era express a need for
understanding the energy profile of applications that depend on inter-process
communication on large-scale systems. The amount of energy consumed due to
data movement poses a serious threat to the usability of distributed memory
models on future systems. One-sided communication in PGAS models are anal-
ogous to memory accesses in shared-memory models. However, its impact on the
performance and power consumption is different.

Shared memory models are characterized by implicit data transfers that are
bounded by the distance between the CPU and the different levels of the memory

S. Poole, O. Hernandez, and P. Shamis (Eds.): OpenSHMEM 2014, LNCS 8356, pp. 59–73, 2014.
c© Springer International Publishing Switzerland 2014

60 S. Jana et al.

hierarchy. Such data transfers include intra-node cache and memory accesses
that consume very low energy, typically of the order of 800-1000 pico Joules [7].
In contrast, inter-process communication patterns in PGAS models are initiated
by the programmer and bounded by a number of factors internal and external to
a single compute node. In this paper, we present our study of the factors affect-
ing the energy and power consumption behavior of parallel programming models.
These can be categorized as either internal or external based on the associated
layers of the hardware and the software stack. Benedict [6] and Hoefler [12] list
some of the factors that have the potential to affect the energy consumption of
interconnect solutions. They include the router/switch organization, flow con-
trol, congestion control, routing and deadlock handling, network topology, load
balancing, reliability, and QoS support.

The scope of this paper is to discuss the energy consumption by the CPU and
the memory hierarchy while servicing remote data transfers and synchronization
constructs provided by the OpenSHMEM model.

PGAS implementations like OpenSHMEM stand out with respect to their
memory consistency model. To maintain a consistent view of the progress of
execution and the globally-shared memory among multiple processes (or pro-
cessing elements), OpenSHMEM provides synchronizing constructs like shmem
barrier all(), shmem fence(), and shmem quiet(). The impact of such barriers on
the performance and scalability of distributed applications is well known [17]. In
Section 3, we discuss our findings on the factors affecting the power consumption
of applications that use such barriers.

The OpenSHMEM memory model permits RDMA operations. Our studies
indicate that during the progress of such operations, there is a significant impact
on the power consumed by the CPU and DRAM due to multiple factors including
the design of the data transfer patterns within an application, the design of the
communication protocols within a middleware, the architectural constraints laid
by the interconnect solutions, and also the levels of memory hierarchy within
a compute node. We present a study of the parameters that affect the power
consumption behavior of such interfaces in Section 4.

Our empirical study was carried out at the granularity of various OpenSHMEM
constructs. Because of the fine level of granularity, it was essential to reduce the
impact on the power readings by external noise like the host Operating system
and background processes. In Section 2, we describe our experimental setup for
collecting the energy and power readings under such conditions.

2 Notes on Experimental Setup

The details of the test environment used to obtain the empirical results in this
paper are listed in Table 1.

2.1 Setup for Monitoring Energy and Power Consumption

In order to monitor energy consumption by different components of a compute
node (cores, socket, memory), we used Intel’s Running Average Power Limiting

Analyzing the Energy and Power Consumption of Remote Memory Accesses 61

Table 1. Test machine and environment details

Processor Intel Xeon CPU E5-2670
Microarchitecture Intel’s Sandy Bridge
Maximum Thermal Design Power (TDP) 115 Watts
Hyperthreading support Disabled
Sockets 2
Cores/socket 8
L1 cache size (per core) 32KB
L2 cache size (per core) 256KB
L3 cache size (shared - 1/socket) 20MB
Infiniband card Mellanox MT26428 [ConnectX VPI PCIe 2.0 5GT/s]
Infiniband switch InfiniScale IV 36-Port QSFP 40 Gb/s, MTS 3600
Compiler gcc version 4.4.6
Compiler flags used -O3
OpenSHMEM version Mellanox OpenSHMEM ver. 2.2-23513

Intel Sandy Bridge Processor
Xeon CPU E5-2670

(cores + private L1&L2 caches)

Control
Registers

Model Specific Registers
/dev/cpu/*/msr

Device File System
devfs

PAPI RAPL Component

Vampir Trace API

Mellanox Infiniband card
MT26428

DRAM

Shared L3 cache

*.otf, *.def, *.events

otfprofile
tool

Vampir Visualizer
tool

Infiniband Switch
MTS3600

remote
compute

node

Fig. 1. Experimental Setup incorporating Intel’s RAPL interface for fine-grained power
monitoring

(RAPL) interface [1]. Fig. 1 illustrates our experimental setup which incorporates
this interface by monitoring the thermal and power management values of the
model-specific registers (MSRs) exposed by the Intel Sandy Bridge processor, E5-
2670. In order to read the RAPL counters in MSRs from the device file system
(/dev/cpu/*/msr on devfs), we used the RAPL component provided by PAPI
v5.1 [18]. In addition, we used Vampir Trace [14] for fine-grained instrumentation
of our synthetic microbenchmarks.

Verifications by David et al. [8], Hackenberg et al. [11], and Dongarra et al. [9]
provide empirical evidence of a high correlation between the energy consump-
tion readings provided by the RAPL interface and direct power measurements.
However, readings provided by this interface have certain shortcomings due to

62 S. Jana et al.

its model-based approach for estimating the metrics [11]. The fact that energy
values of DRAM as reported by RAPL only take into account the memory ac-
cesses initiated by the CPU and not other I/O devices (e.g. the network card),
was a major obstacle in this study. Nevertheless, these DRAM-specific values are
a good estimation of the impact of the energy consumption due to data transfers
between the CPU and the memory. Any direct memory accesses by the intercon-
nect (without the participation of the CPU) would only lead to further increase
in the impact of the power/energy consumption. Due to space constraints, we
do not present these in this paper.

2.2 Reducing Noise in Readings Due to the OS and Background
Processes

To reduce OS noise and avoid other processes from being scheduled on the mon-
itored socket, we used Linux CPU shielding [13]. This ensured that all unrelated
processes/threads (including most OS service threads) were scheduled on the
extra unmonitored socket on the compute node (refer to Table 1 for the machine
details). We verified this approach by observing a steady power consumption
of 3.786 Watts when none of our experimental processes were scheduled on the
monitored socket.

3 Effects of Synchronization Barriers

For applications in which the work distribution among multiple processes is non-
uniform, using synchronizing constructs1 result in a subset of processes waiting
for varying intervals of time without making any progress. Thus, applications
become bounded by the speed of the slowest process, thereby significantly im-
pacting both its performance and scalability [17]. This impact worsens with the
rise in the number of processes executing the application. In this section, we
underscore the notion that such a lack of progress by processes lead to signifi-
cant waste of computational resources. This in turn implies a rise in the energy
consumption of applications. We study this impact on the energy cost in terms
of two factors - the cost incurred by processes waiting for different time periods
within a barrier, and the cost incurred by the entire system with a rise in the
number of processes participating in a barrier.

PGAS implementations like OpenSHMEM decouple communication and syn-
chronization operations [10]. A process may progress in its execution of code
segments while being oblivious to communication operations initiated by other
processes. In other words, processes are permitted to have an inconsistent view of
the globally shared memory during a phase of an application. To ensure sequen-
tial consistency and an ordering of remote data transfer operations, OpenSHMEM
applications may use synchronizing constructs like shmem barrier all(),
shmem fence(), and shmem quiet(). We discuss the impact of using the global
barrier - shmem barrier all() below:

1 In the rest of the text, we use the words ‘synchronizing construct’ and ‘barriers’
interchangeably.

Analyzing the Energy and Power Consumption of Remote Memory Accesses 63

Table 2. Microbenchmark and line charts for studying the impact of barrier on energy
and power cost
(i) varying wait periods within a barrier (ii) varying number of processes participating
in a barrier

Line charts Code snippets

for (s l e e p c n t =0;
s l e ep cn t>=MAX SLEEP
; s l e e p c n t +=5)

{
shmem barr i e r a l l () ;
i f (me == 0)

s l e ep (s l e e p c n t) ;
else

s l e ep (MAX SLEEP) ;
// START monitoring
shmem barr i e r a l l () ;
// STOP monitoring

}

for (cnt=num pes () −1;
cnt>=0; cnt−−)

{
shmem barr i e r a l l () ;
i f (me <= cnt)

s l e ep (CONST SLEEP) ;
// START monitoring
shmem barr i e r a l l () ;
// STOP monitoring

}

64 S. Jana et al.

(a) Impact of wait period within a barrier

(b) Impact of number of processes participating in a barrier

Fig. 2. Empirical results illustrating the impact of barriers on the energy and power
cost of the system

– Energy and power consumption with respect to time spent within a barrier :
The line chart and the code snippet of the microbenchmark used to verify
this is presented in the first row of Table 2.

Fig.2a illustrates that a linear growth in the time spent by a process within
a barrier leads to a linear rise in total energy consumed by the system (cores
and the DRAM)2. In addition, we also observe that the power consumption
or the rate of change in energy, is independent of the time spent by a process
waiting at a barriers. We discuss this observation in Section 3.1

– Energy and power consumption with respect to the number of processes wait-
ing at a barrier :

The line chart and the code snippet of the microbenchmark used to verify
this is presented in the second row of Table 2

2 For our experiments, the linear relationship between the energy (E) consumed and
the time (T) spent within a barrier was: E = (33.1446*T)-1.88467. As expected, the
model was characterized with a high Coefficient of determination (r2=0.999027).

Analyzing the Energy and Power Consumption of Remote Memory Accesses 65

Fig. 3. Comparing the types of instructions executed by the CPU while waiting at a
barrier. The count includes (i) Total number of instructions (ii) Number of conditional
branch instructions (iii) Number of conditional branch instructions that are ‘taken’
(iv) The number of conditional branch instructions that are ‘not taken’.

The results depicted in Fig. 2b verify the claim that an increase in the
number of processes waiting at a barrier leads to a linear rise in the energy
consumed over the entire system which, in turn implies a linear rise in the
average power consumption.

3.1 A Note on Implementation of Barriers

Common implementations of a barrier incorporate the use of shared semaphores
which are subjected to repeated atomic polling by each process. The purpose
of this polling is to keep track of the state of the semaphore objects. These
are typically globally shared so that they remain accessible by other processes3.
The polling is always atomic in nature to ensure that only one process can test
or set it at any point in time. Furthermore, this polling is typically performed
directly over the copy of the semaphore object within the remotely accessible
memory, thus avoiding accesses to stale cached versions. This in turn increases
the pressure on the memory. Additionally, the polling is continuous, to ensure
that there is no significant delay between the time each process signals entering
the barrier and the time this event is detected.

Such software-based implementations of barriers result in the CPU repeatedly
executing the same set of instructions without making any progress in the appli-
cation. It is only when a semaphore signals the end of the barrier, that the CPU
executes a code fragment that prepares the process to exit the barrier region. In

3 If RDMA is supported by the interconnect, the overhead of the management of
semaphores reduces when they are remotely accessible.

66 S. Jana et al.

accordance with this design, Fig. 3 depicts the change in the energy and power
consumption pattern with respect to the types of instructions executed by the
CPU. The waste in CPU cycles can be observed by the linear rise in the differ-
ence between the number of conditional-branch instructions that are ‘taken’ and
‘not taken’.

Also, the high correlation between the total number of instructions executed
and the total number of conditional-branch instructions hint at the execution of
the same set of instructions, irrespective of the time spent in the barrier. This
homogeneity in the instruction types result in a constant power consumption by
the system (Fig. 2a)

4 Effects of Remote Data Transfers

This section discusses the impact of the use of explicit data transfer routines
on the energy cost of OpenSHMEM applications. While using these routines,
a programmer may decide to transfer the program data in multiple fragments
based on the design of an application. While this practice makes it easier to align
the semantics of an algorithm to an implementing program, our studies indicate
that such practices come at a significant cost.

Thus, we identify two application characteristics to analyze the communica-
tion patterns in OpenSHMEM programs:

– Total size of the data to be transferred
This factor is governed by the problem size of the application and granularity
of parallelism chosen4.

– Number of explicit calls (or fragments) used to transfer the data
This factor is dependent on the nature of the design of the application by
the programmer.

However, it must be noted that the actual progress of the data movement
depends on a number of factors related to the design and the capabilities of the
underlying software and hardware stack. Fig. 4 categorizes these factors depend-
ing on whether they impact the energy and power profiles of internal system-
components like the CPU and DRAM i.e. the intra-node factors, or external
components like the interconnect solutions i.e. inter-node factors.

The study of the effects of inter-node factors on the energy profile of remote
data transfers is outside the scope of this paper. Nevertheless, in order to account
for their impact, we abstract their effects in terms of the net achievable band-
width. Fig. 5 illustrates this constraint with respect to the two communication-
based parameters discussed above. We observe that for any given data transfer
size, maximum bandwidth is achievable with minimum amount of fragmentation.

The impact of the intra-node factors on the energy and power cost incurred
in Sections 4.1 and 4.2, respectively.

4 The granularity of parallelism is typically determined by the number of processes
participating in the data/task distribution.

Analyzing the Energy and Power Consumption of Remote Memory Accesses 67

Fig. 4. Top: Parameters that define communication patterns from an OpenSHMEM
programmer’s point of view. Bottom: Underlying factors within the software and hard-
ware stack that impact the power and energy cost of interfaces for remote data transfer.

Fig. 5. The impact of the interconnect solution can be summarized by the achievable
bandwidth with respect to:
(i) size of the total data to be transferred
(ii) number of fragments into which the transfer is divided into.

68 S. Jana et al.

Table 3. Microbenchmark for evaluating energy and power consumption by varying
the total size of data payload and the number of fragments

Line chart Code snippet

me = my pe () ;
for (j=1 ; j<=MAX WRK SIZE ; j ∗=2)
{

for (f r a g c n t=MINMSGNUM;
f rag cn t<=j ; f r a g c n t ∗=2)

{
by t e s p e r f r a g = j / f r a g c n t ;
shmem barr i e r a l l () ;
// START monitoring
i f (me == 0)

for (i t =0; i t<f r a g c n t ;
i t++)

shmem putmem(. ,
b y t e s p e r f r ag , 1) ;

shmem barr i e r a l l () ;
// STOP monitoring

}
}

4.1 Energy Consumption Observations

Fig. 6 illustrates the energy consumption by the CPU and the DRAM with
respect to the different message sizes of data transferred (in bytes along X-axis)
and the number of fragments used to transfer the total data (along Y-axis). The
noteworthy observations are:

– Energy consumed holds a correlation to the number of instructions executed.
Since an increase in the number of data transfers initiated implies a rise in
the number of instructions executed, the energy consumption increases with
rise in fragmentation.

– For large bulk transfers with a fixed message size, the energy consumed
remains independent of the initial rise in fragmentation.

– Using a constant number of fragments, the energy consumed in servicing the
transfer of small to medium sized messages (2 to 65536 bytes) is independent
of the total size of the data transferred. This behavior can also be observed
in terms of the spectrum of the achievable bandwidth shown in Fig.5. This
behavior can be explained by the fact that for such small-sized messages,
the cost in managing the data buffers for remote transfers overshadows the

Analyzing the Energy and Power Consumption of Remote Memory Accesses 69

Fig. 6. Relationship between energy consumption by cores(left) and the total number of
instructions executed(right). Top: Results for cases where: Fragments ∈ [1, 2097152].
Bottom: Results for cases where: Fragments ∈ [1, 1024].

actual movement of the data. This cost is independent of the message size
and hence leads to a steady bandwidth and energy consumption.

– For large bulk transfers (>65536 bytes), the energy consumed increases with
the size of the data to be transferred. This can be attributed to cost incurred
in handling data buffers. For large messages, this becomes dependent on the
actual size of data that is being transferred.

4.2 Power Consumption Observations

Fig.s 7 depicts the power consumption by the CPU cores and the DRAM for
different message sizes and number of fragments.

– For small data transfer sizes, the power consumed by the CPU (16 Watts)
and the DRAM (7 Watts) is low.

– The power consumed by the CPU during transfer of large bulk data payloads
(16.2 Watts) is marginally more (1.25%) than that consumed during small
data transfers.

– The power consumed by the DRAM during transfer of large bulk data pay-
loads (9 Watts) is significantly more (22%) than that consumed during small
data transfers.

70 S. Jana et al.

Fig. 7. (I,II,IV)Power consumed by CPU, DRAM, total system (III) Total L3 cache
misses. The various distinct levels of power are represented as:
(A)Small payload sized(up to 2KB) transfers lead to less power consumption by the
cores and DRAM;
(B)Medium to large message sizes(4K and beyond) imply accesses of large memory
regions and this impacts power consumption;
(C)Large payload sizes with minimum fragmentation leads to higher power consump-
tion by the cores. The underlying NIC is generally responsible for chunking such large
transfers, the effect on which is not accounted for by the cores.

– With very low fragmentation, the CPU consumes more power than with
fragmented data payload.

– As the message size is increased (along x-axis), the transition of the change
in the power consumption behavior by the CPU appears to hold a correlation
to the sizes of the intermediate levels of the cache hierarchy. The transition
levels correspond to the sizes of the L1 and L2 caches - 32KB and 256KB
respectively. Since the caches were flushed after every set of readings, one
can speculate that every cache miss in L1 and L2 adds on to the memory
pressure on the shared L3 cache thereby resulting in a proportional rise in
cache misses. This effect can be observed in Fig. 7(III), which illustrates the
number of L3 cache misses.

– From Fig. 7, the average power consumption by the system (CPU+DRAM)
while servicing large bulk message sizes (28 Watts) is 21.73% higher than
that consumed by small message sizes (23 Watts).

Analyzing the Energy and Power Consumption of Remote Memory Accesses 71

5 Related Work

There has been a great deal of research directed towards measuring and manag-
ing the energy and power consumption of applications. Proposals like Thrifty [2]
have been put forth to direct large-scale research towards redesigning the com-
plete computing stack. The goal of such efforts is directed towards building
power-aware Exascale platforms.

Some of the model-based techniques provided by chip manufacturers to dy-
namically monitor and manage the power or energy consumption include: Intel’s
RAPL [1], AMD’s APM module [3], NVIDIA’s NVML [4].

Hoefler [12] mentions discussions by the IEEE standard on energy efficient
Ethernet specifications including - dynamic link-speed reduction, receiver mod-
ification, network routing, and deep sleep states. However, initial research indi-
cates latencies and network jitter with these techniques.

Past efforts towards understanding and managing the power consumption
trends of applications have been significant. One of the static based approaches
for managing power consumption by processes is for the compiler to evaluate a
program and determine sections within the code where the energy consumption
profile changes. This knowledge in the form of power management hints can then
be conveyed to the runtime to adjust the voltage/frequency scaling of applica-
tions [5]. Korthikanti and Agha [15] study the power consumption behavior of
shared memory architectures while handling applications with different problem
sizes. Li et al. [16] use DCT and DVFS techniques to study the opportunities of
reducing power consumption of hybrid MPI-OpenMP applications. The focus of
our work has been to perform a fine-grained study of OpenSHMEM communi-
cation interfaces which are responsible for remote memory accesses.

6 Conclusion

In this paper we presented our study of the energy and power consumption
behavior of a system while participating in synchronizing global barriers and
remote data transfers.

We observed that the energy and power cost is dependent on the time spent
within barriers and the number of processes participating in the barriers.

Additionally, our study indicates that the energy and power cost incurred
by a system while servicing remote data transfers are dependent on a number
of factors characterizing the underlying the hardware and software stack. These
include the sizes of the memory hierarchy, design of the communication protocols,
and the capabilities of the interconnect solutions.

The impact of these factors depend on the size of the total data to be trans-
ferred within a communication phase of an application. In addition, the number
of data transfers initiated to transfer this load also impact the energy and power
consumption behavior of OpenSHMEM-like PGAS applications.

The results put forth in this paper motivate the need for taking energy and
power costs into account while designing efficient PGAS libraries for large-scale
systems.

72 S. Jana et al.

Acknowledgments. This work is supported by the U.S. Department of Defense
and used resources of the Extreme Scale Systems Center located at the Oak
Ridge National Laboratory. Experiments included resources of the Oak Ridge
Leadership Computing Facility, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-00OR22725. Vampir
trace is developed at the Center for Information Services and HPC of Technische
Universität Dresden in Germany. PAPI is an open-source research project of the
Innovative Research Laboratory of the University of Tennessee, Knoxville in the
U.S.

Thanks are due to Joseph Schuchart and the Vampir-support team at Tech-
nische Universität Dresden, for offering support with Vampir. Special thanks are
also due to Pavel Shamis from ORNL for his input on the usage of Infiniband
verbs.

References

1. Intel 64 and ia-32 architectures software developers manual volume 3b: System
programming guide, part 2

2. Thrifty: An exascale architecture for energy-proportional computing,
http://science.energy.gov/~/media/ascr/pdf/research/cs/aa/A oph uiuc

thrifty 110215.pdf

3. Linux tuning guide, amd opteron 6200 series processors (April 2012)
4. Nvml api reference manual, ver.5.319.43 (August 2013)
5. Aboughazaleh, N., Childers, B., Melhem, R., Craven, M.: Collaborative compiler-

os power management for time-sensitive applications. Tech. rep., Department of
Computer Science, University of Pittsburgh (2002)

6. Benedict, S.: Review: Energy-aware performance analysis methodologies for hpc
architectures-an exploratory study. J. Netw. Comput. Appl. 35(6), 1709–1719
(2012), http://dx.doi.org/10.1016/j.jnca.2012.08.003

7. Choi, J.W., Bedard, D., Fowler, R., Vuduc, R.: A theoretical framework for
algorithm-architecture co-design. In: Proc. IEEE Int’l. Parallel and Distributed
Processing Symp. (IPDPS), Boston, MA, USA (May 2013)

8. David, H., Gorbatov, E., Hanebutte, U.R., Khanna, R., Le, C.: Rapl: Memory
power estimation and capping. In: 2010 ACM/IEEE International Symposium on
Low-Power Electronics and Design (ISLPED), pp. 189–194 (2010)

9. Dongarra, J., Ltaief, H., Luszczek, P., Weaver, V.M.: Energy Footprint of Advanced
Dense Numerical Linear Algebra Using Tile Algorithms on Multicore Architec-
tures. In: 2012 Second International Conference on Cloud and Green Computing,
pp. 274–281 (2012), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=6382829

10. High Performance Computing Tools group and at UH, Extreme Scale Systems Cen-
ter at ORNL: Openshmem application programming interface, version 1.0. Tech.
rep., University of Houston (UH), Oak Ridge National Laboratory, ORNL (2012),
http://www.openshmem.org

11. Hackenberg, D., Ilsche, T., Schone, R., Molka, D., Schmidt, M., Nagel, W.: Power
measurement techniques on standard compute nodes: A quantitative comparison.
In: 2013 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 194–204 (2013)

http://science.energy.gov/~{}/media/ascr/pdf/research/cs/aa/A_oph_uiuc_thrifty_110215.pdf
http://science.energy.gov/~{}/media/ascr/pdf/research/cs/aa/A_oph_uiuc_thrifty_110215.pdf
http://dx.doi.org/10.1016/j.jnca.2012.08.003
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6382829
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6382829
http://www.openshmem.org

Analyzing the Energy and Power Consumption of Remote Memory Accesses 73

12. Hoefler, T.: Software and hardware techniques for power-efficient hpc networking.
Computing in Science Engineering 12(6), 30–37 (2010)

13. Kerrisk, M.: Linux programmer’s manual (2012),
http://man7.org/linux/man-pages/man7/cpuset.7.html

14. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller,
M., Nagel, W.: The vampir performance analysis tool-set. In: Resch, M., Keller,
R., Himmler, V., Krammer, B., Schulz, A. (eds.) Tools for High Performance Com-
puting, pp. 139–155. Springer, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-68564-7_9

15. Korthikanti, V.A., Agha, G.: Towards optimizing energy costs of algorithms
for shared memory architectures. In: Proceedings of the 22nd ACM Sympo-
sium on Parallelism in Algorithms and Architectures, SPAA 2010, p. 157 (2010),
http://portal.acm.org/citation.cfm?doid=1810479.1810510

16. Li, D., de Supinski, B.R., Schulz, M., Cameron, K., Nikolopoulos, D.S.:
Hybrid MPI/OpenMP power-aware computing. In: 2010 IEEE International
Symposium on Parallel & Distributed Processing (IPDPS), pp. 1–12 (2010),
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5470463

17. Markatos, E., Crovella, M., Das, P., Dubnicki, C., LeBlanc, T.: The effects of
multiprogramming on barrier synchronization. In: Proceedings of the Third IEEE
Symposium on Parallel and Distributed Processing, pp. 662–669 (1991)

18. Mucci, P.J., Browne, S., Deane, C., Ho, G.: Papi: A portable interface to hardware
performance counters. In: Proceedings of the Department of Defense HPCMP Users
Group Conference, pp. 7–10 (1999)

http://man7.org/linux/man-pages/man7/cpuset.7.html
http://dx.doi.org/10.1007/978-3-540-68564-7_9
http://portal.acm.org/citation.cfm?doid=1810479.1810510
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5470463

Hybrid Programming Using OpenSHMEM

and OpenACC

Matthew Baker1, Swaroop Pophale3, Jean-Charles Vasnier4, Haoqiang Jin2,
and Oscar Hernandez1

1 Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37840, USA
bakermb@ornl.gov,oscar@ornl.gov

2 NASA Ames, Moffet Field, California USA
haoqiang.jin@nasa.gov

3 University of Houston, Houston, Texas 77004, USA
spophale@cs.uh.edu

4 CAPS Entreprise, France
jvasnier@caps-entreprise.com

Abstract. With high performance systems exploiting multicore and
accelerator-based architectures on a distributed shared memory system,
heterogenous hybrid programming models are the natural choice to ex-
ploit all the hardware made available on these systems. Previous efforts
looking into hybrid models have primarily focused on using OpenMP
directives (for shared memory programming) with MPI (for inter-node
programming on a cluster), using OpenMP to spawn threads on a node
and communication libraries like MPI to communicate across nodes. As
accelerators get added into the mix, and there is better hardware sup-
port for PGAS languages/APIs, this means that new and unexplored
heterogenous hybrid models will be needed to effectively leverage the
new hardware. In this paper we explore the use of OpenACC directives
to program GPUs and the use of OpenSHMEM, a PGAS library for one-
sided communication between nodes. We use the NAS-BT Multi-zone
benchmark that was converted to use the OpenSHMEM library API for
network communication between nodes and OpenACC to exploit accel-
erators that are present within a node. We evaluate the performance of
the benchmark and discuss our experiences during the development of
the OpenSHMEM+OpenACC hybrid program.

1 Introduction

New HPC systems are increasingly turning to accelerators to increase compute
power while mitigating the rising cost of power [1]. For example, four of the top
ten super computers use GPUs as their main devices to perform the majority of
the computations. Oak Ridge National Laboratories Titan [2], a DOE leadership
class machine, makes extensive use of GPUs, using one Nvidia Kepler GPU per
node. Without a major breakthrough in technology, the future of the fastest
super computers will consist of clusters with multiple cores and attached to
specialized devices for accelerators, interconnects and I/O. Modern cluster nodes

S. Poole, O. Hernandez, and P. Shamis (Eds.): OpenSHMEM 2014, LNCS 8356, pp. 74–89, 2014.
c© Springer International Publishing Switzerland 2014

Hybrid Programming Using OpenSHMEM and OpenACC 75

have many different types of hardware that need to be exploited efficiently to
make the maximum use of the provided resources. Current nodes have multiple
sockets with attached memory, each socket has a CPU with multiple cores. On
top of this the node usually has an attached accelerator, currently the most
common one is the GPU. In addition the nodes are all connected with network
hardware that provides better support for PGAS languages/libraries to allow
them to communicate. This means that each node has three different major
components that need to be programmed for. Each of these components has
its own programming model with its own challenges. When these models are
used together for hybrid programming models, new challenges arise, specially
when one of the models deals with heterogeneous programming. In this paper
we explore a new hybrid programming model OpenSHMEM+OpenACC.

OpenSHMEM is the result of standardizing several shmem libraries [3]. It is
a one-sided communication library where individual processes do one-sided puts
and gets, as compared to MPI that does synchronized send/receive between pairs
of processes. This allows for data to be sent without having to wait on remote
nodes to do communication. OpenACC is the result of standardizing compiler
directives for accelerator programming sanctioned by the OpenACC organiza-
tion. It allows for an OpenMP-like programming with support for incremental
parallelism. This includes the ability to incrementally add directives to a code to
program for GPUs, rather than having to do a considerable amount of code re-
structure to just start using an accelerator (like with the OpenCL standard). We
use the NASA Advanced Supercomputing (NAS) Block Tri-diagonal (BT) Mul-
tizone benchmark [4] to evaluate our results. This benchmark is structured so
that there are multiple zones that can be solved independently with the bound-
ary values of each zone exchanged on each iteration, making it well suited to
experimentation with heterogeneous hybrid programming model.

This paper is organized into 5 sections. In Section 2 we discuss the other re-
search done on hybrid programming models and provide background information
on the BT-MZ benchmark used, the OpenACC directives, and the OpenSHMEM
library in Section 3 . In Section 4 we discuss the implementation details of how
OpenSHMEM and OpenACC are used together. The results are presented in
Section 5. We discuss the platforms used and the timings from running BT-MZ
on those platforms. In Section 6 we interpret the results we obtain and discuss
the future paths for exploration in this hybrid programming.

2 Related Work

Hybrid models that explore shared-memory and distributed-memory program-
ming have been researched over the last few decades. The idea is to exploit
the strengths of the different models, including the in-node efficiency, memory
savings, accelerator programming, and the scalability characteristics within a dis-
tributed memory system. The shared and distributed programming models mod-
els have been evolving separately and an attempt to unify them resulted in the
creation of new languages and models such as the HPCS and PGAS languages
(X10, Chapel, Fortress, UPC, etc). In terms of heterogenous programming, there

76 M. Baker et al.

have been attempts to explore the use of message passing libraries and acceler-
ator languages and APIs (i.e. CUDA, OpenCL). Recently, a high-level approach
to program accelerators has been released, called OpenACC that improves porta-
bility across accelerators. Some applications have successfully used the model of
MPI/OpenACC, MPI/OpenCL, MPI/CUDA. Very little work has been done to
explore OpenSHMEM with accelerator programming models.

3 Background

In this section we introduce the different models that we used to experiment
with heterogenous hybrid programming.

3.1 OpenSHMEM

The OpenSHMEM library is a PGAS library that provides a library API for
programmers using the Single Program Multiple Data (SPMD) programming
paradigm for programs written in C, C++ and Fortran. The OpenSHMEM Spec-
ification [5] provides the definition, functionality and expected behavior of these
powerful library calls that are meant for communicating and processing data.
The SGI SHMEM library specification and implementation motivated Open-
SHMEM Specification 1.0 which was finalized by the OpenSHMEM community
in early 2012. OpenSHMEM is an evolving open standard for all SHMEM library
implementations and we expect many useful changes to the API and library
in the near future to be able to cater to the growing and ever changing high
performance computing environment. The current library specification provides
API for one-sided reads and writes, remote atomic memory operations, broad-
casts, reductions, collects, distributed locking, and collective and point-to-point
synchronization and ordering primitives. OpenSHMEM put/get calls provide ex-
cellent opportunities for hiding communication latency by overlapping communi-
cation with computation when the underlying hardware supports true one-sided
remote direct memory access (RDMA). Along with performance, application
programmers require both portability and productivity and the OpenSHMEM
library facilitates this by providing a standard and simple API.

3.2 OpenACC

Directives comprise a mechanism that allows a program to “direct” (or “hint”)
the compiler as to what it should do about a region of code that is often in prox-
imity to the directive’s occurrence in the program. In the C/C++ and Fortran
languages directives appear as lines prefixed with #pragma id or !$id, respec-
tively, where id signifies the directives API that these directives belong to. In
the case of Fortran, for instance, OpenMP and HPF use omp and hpf respec-
tively. It is the directive’s API specification that designates what is legal – when
put this way, directive APIs can be thought of as separate languages meant to
annotate C & Fortran sources.

Hybrid Programming Using OpenSHMEM and OpenACC 77

Using directives to program accelerators is not new. Data and executable
code placement on National Semiconductors’ NAPA1000 reprogrammable chips
is steered from pragma-annotated C [6], while intelligent memory operations
can be offloaded onto a FlexRAM array by using the the CFlex pragmas for
the C language [7]. IBM’s Cell BE is programmable with the Cell Superscalar
(CellSs) [8]. The accessibility to GPUs saw the emergence of OpenHMPP [9] and
hiCUDA [10], while for the more recent Intel Many Integrated Cores (MIC), it
was shown how work offloading can be achieved by OpenMP offloading (#pragma
offload target(mic) combined with OpenMP directives) [11].

The OpenACC specification comprises a programming model supported by
a directives-based API that was put together by a consortium of four, namely
CAPS enterprise, Cray Inc, the Portland Group Inc (PGI) and NVIDIA. The
specification was put together to provide a prototype implementation to speedup
the OpenMP accelerator directive process, which constantly gets merged in the
OpenMP accelerator model [12]. The OpenACC defines a host and accelerator
programming model where accelerated regions are used to define which parts
of the program can be (1) offloaded to an accelerator and/or (2) data regions
describe the data motion between the accelerator and the CPU, where some host
variables become available on the device. (acc data).

The data regions address concerns with the (mostly) disjoint CPU and accel-
erator memory spaces and the lifetime of data objects. Similar to OpenMP where
the programmer tags objects as private, shared, lastprivate, OpenACC of-
fers a number of clauses. Some of the supported clauses are the following: (1)
the copyin clause for objects that are to copied over to the accelerator at the
begining of the region, (2) the copyout and then copied back to the CPU at
the end of the region, (3) the present clause for checking if an object is already
available on the accelerator (in order to avoid redundant or outdated copies) and
(4) copy that combines copyin and copyout.

In recognition of existing accelerators’ processing element (PE) topology,
OpenACC orchestrates the work to be assigned to the accelerator’s PE in a
hierarchical fashion: there are gangs of workers where each worker performs a
vector operation. The actual mapping is both target and compiler specific. In
the case of NVIDIA GPUs, for instance, the number of gangs corresponds to the
number of CUDA threadblocks, the number of workers determines the size of
the warps or the Y dimension of the threadblock while the vector suggests the
SIMD length [13]. To designate work for offloading onto the accelerator, Ope-
nACC makes available the parallel directive, which will, essentially, launch
work on the device according to a compiler-selected or user-selected configura-
tion of gangs, workers and vectors.

In addition to the parallel directive, OpenACC offers the kernel and loop

directives. Given a region of sequential statements, where statements may be
loops or less complex statements, the kernel directive instructs the compiler to
organize the statements into kernels and execute them sequentially on the accel-
erator. An implementation is free to modify the organization of gangs, workers
and vectors between launches. The reader may assume that a mapping to CUDA
would suggest that the kernels have been queued up for serial launching over a

78 M. Baker et al.

CUDA stream. The loop directive is meant to map loop nests onto the gang,
worker and vector hierarchy.

3.3 Hybrid Programming with OpenSHMEM and OpenACC

Using the OpenSHMEM and OpenACC programming models together is a new
type of hybrid model. The low latency characteristic of OpenSHMEM combined
with accelerator programming of OpenACC makes it an attractive model to
explore. However, there are limitations from both APIs that makes it hard for
them to interoperate. For example, the accelerator memory is not part of the
symmetric memory required and used by the OpenSHMEM library. Also, the
current OpenSHMEM 1.0 specification is not thread safe which limits the use of
OpenSHMEM library API to outside of OpenACC regions.

3.4 BT Multizone Benchmark

The Block Tri-diagonal (BT) benchmark is part of the NPB benchmark suite. The
benchmark simulates a CFD application that solves 3-dimensional compressible
Navier-Stokes equations using Alternating Direction Implicit (ADI) to find the
finite difference solution to the problem by solving three sets of uncoupled sys-
tems of equations in x, y and z directions. These equations are block tridiagonal
with a 5x5 block size. The multi-zone version of the benchmark a logically rect-
angular discretization mesh is divided into a two-dimensional horizontal tiling of
three-dimensional zones [4] and the aspect ratios are changed from the original
NPB to avoid pathologically shaped zones. In the reference BT-MZ implemen-
tation (MPI+OpenMP) a MPI process executes the initialization step and after
initial setup and synchronization of all processes the benchmark loops over the
computation kernels. Communication between processes occurs after the compu-
tations are completed and the root process verifies the results obtained for the
problem size class chosen. The number of zones grows with the problem size and
the ratio of the largest zone over the smallest zone is about 20. The zones span a
signifiant range and can be modulated by using different classes of input data.

4 Implementation

The OpenSHMEM+OpenACC version of the BT-MZ benchmark is structured
into five distinct steps (similar to the reference BT-MZ implementation). The
first setup is to set up the zones, then all the zones are initialized. These two steps
are done independently on each node and without accelerators. The next step
is the boundary exchange and OpenSHMEM is used to communicate between
nodes as they exchange boundary values. The next step is the BT solver, where
using OpenACC directives computation is offloaded to the accelerator. These
two steps that consist of the boundary exchange and the solver, are looped over
for a fixed number of iterations. After this a verification step is performed to
ensure that the solver produced the correct result. Conversion of the benchmark

Hybrid Programming Using OpenSHMEM and OpenACC 79

from using MPI+OpenMP to OpenSHMEM+OpenACC is a two step process
where we first replace all MPI calls be equivalent OpenSHMEM calls to get
an intermediate OpenSHMEM+OpenMP BT-MZ version. This is used as the
starting point for OpenACC related modifications.

4.1 Inter Process Communication Using OpenSHMEM

We use the OpenSHMEM communication library to communicate between pro-
cesses. It effectively accomplishes the same role asMessagePassing Interface (MPI)
did in the reference implementation of the NPB-MZ hybrid parallel benchmark.
The difference emanates from the fact that all communication in OpenSHMEM is
one-sided, thus not requiring the participation of the target process. In the Open-
SHMEM+OpenACChybridbenchmarkOpenSHMEMcommunicates data related
to overlap regions of zones, and OpenACC parallelizes loops within each zone.

The BT-MZ benchmark has distinct communication and computation phases.
There is no communication during the solving stage (x-solve, y-solve and z-
solve). While porting the BT-MZ benchmark to use OpenSHMEM certain design
choices have to be made which include decisions regarding the program variables
that need to be symmetric, the choice of communication primitives (put vs get)
and synchronization points. Since OpenSHMEM does not have matching sends
and receives (refer Listing 1.1) this exchange has to be ordered with an extra
communication to indicate the correct offset location (Listing 1.2, line 1) and
point to point synchronization (Listing 1.2, lines 4, 6, 7) that guarantees that
the correct data has been communicated. Listing 1.2 shows how the exchange is
effected using OpenSHMEM communication and synchronization calls. Moreover
there is a significant benefit in using put as (unlike get) it returns as soon as the
buffer is available for reuse [5]. The final verification stage performs a reduction
of solutions over all processes and computes residues from over all zones.

1 if (iodd == 0) {

2 MPI_Isend (&qbc_ou[qoffset],m_size ,

3 dp_type ,ip,tag+myid ,

4 comm_setup ,& requests [nr]);

5 MPI_Irecv (&qbc_in[qoffset],m_size ,

6 dp_type ,ip,tag+ip,

7 comm_setup ,

8 &requests [nr+1]) ;

9 }

10 else {

11 MPI_Irecv (&qbc_in[qoffset],m_size ,

12 dp_type , ip , tag+ip ,

13 comm_setup ,

14 &requests [nr]);

15 MPI_Isend (&qbc_ou[qoffset],m_size ,

16 dp_type , ip ,tag+myid ,

17 comm_setup ,

18 &requests [nr+1]) ;

19 }

Listing 1.1. MPI buffer exchange in
reference BT-MZ exch qbc routine

1 shmem_putmem (& dest_qoffset ,

2 &qoffset ,

3 sizeof(idx_t),ip);

4 shmem_fence ();

5 shmem_long_put (&done , &x,1, ip);

6 shmem_quiet ();

7 shmem_wait (&done , 0);

8 shmem_double_put (

9 &qbc_in[dest_qoffset],

10 &qbc_ou[qoffset],

11 m_size , ip);

12 shmem_quiet ();

Listing 1.2. OpenSHMEM buffer
exchange in exch qbc routine

80 M. Baker et al.

4.2 Targeting Hybrid Architectures with OpenACC Directives

4.2.1 Introducing the OpenACC Directives
We started with the OpenSHMEM and OpenMP version of BT-MZ. We first
find the OpenMP pragmas, which indicates code kernels that are already parallel
and replaced them with OpenACC pragmas. We started by replacing OpenMP
pragma (refer Listing 1.3) with OpenACC #pragma acc kernels around the
main computational loops of x-solve, y-solve, z-solve compute rhs, and add (re-
fer Listing 1.4). This pragma indicates to the compiler that it should generate
accelerated kernels for each loop nest. Only with this approach we do not expect
to see performance gain since for every kernel the runtime will transfer the data
back and forth to the accelerator and at this stage the kernels are not optimized
at all. Unlike OpenMP where a subroutine called in a OpenMP parallel context
is the same machine code as the host core, OpenACC regions are compiled to
CUDA code and then compile by the Nvidia CUDA compiler for the GPU. This
means that the compiler must either know that a function will be called in Ope-
nACC or the function must be inlined. Because of this the subroutines lhs init,
matvec sub, matmul sub, binvcrhs and bincrhs have to be manually copied to
the same source file so they be inlined by the OpenACC compiler. The new
OpenACC 2.0 solves this problem using the routine directive. 1

1 #pragma omp parallel for
2 for (k = 1; k <= nz -2; k++) {
3 for (j = 1; j <= ny -2; j++) {
4 for (i = 1; i <= nx -2; i++) {
5 for (m = 0; m < 5; m++) {
6 u(m,i,j,k) = u(m,i,j,k)

+ rhs(m,i,j,k);
7 }
8 }
9 }

10 }

Listing 1.3. Original OpenMP
pragmas in add routine

1 #pragma acc kernels
2 for (k = 1; k <= nz -2; k++) {
3 for (j = 1; j <= ny -2; j++) {
4 for (i = 1; i <= nx -2; i++) {
5 for (m = 0; m < 5; m++) {
6 u(m,i,j,k) = u(m,i,j,k)

+ rhs(m,i,j,k);
7 }
8 }
9 }

10 }

Listing 1.4. New OpenACC pragma
add routine

4.2.2 Split Loop Nests
After inlining these subroutines the loops in the OpenACC regions were very
large with high memory utilization. By experience, we know that splitting a
huge loop nest into smaller ones will allow both OpenACC compiler, capsmc,
and NVCC, to generate more optimized code for the GPU. This has advantages
as it allows the compiler to find more parallelism to exploit, reduce register
pressure and the device shared memory footprint. It does not negatively affect
performance since maximum data is kept on the GPU between the different calls
to the OpenACC kernels, prefetch to local caches and memories, which improves
performance.

After splitting the solver loop nests into smaller ones, these loop nests are
not anymore parallel. In order to enable the parallelization on the two outer

1 This directive will be available in the CAPS OpenACC compiler later this year.

Hybrid Programming Using OpenSHMEM and OpenACC 81

loops, two additional dimensions were added to the fjac, njac, and lhs arrays
(refer Listing 1.5 and Listing 1.6). We had to redeclare those arrays because the
dimensions depend on the external loop levels. In the x-solve file (similarly for
y-solve and z-solve), the external loop levels are based on the nz and ny sizes
(respectively on, nz and nx, ny and nx). This enables the compiler to parallelize
this loop nest by removing the dependencies between the different iterations of
the outer loop accessing these arrays. While this puts additional pressure on the
GPU memory, it allows us to reestablish the parallelism lost by splitting the
loop nest.

1 for (k = 1; k <= nz -2; k++) {
2 for (j = 1; j <= ny -2; j++) {
3 for (i = 1; i <= nx -2; i++) {
4 ...
5 fjac[i][0][1] = -(u(1,i,j,k) * tmp2 *
6 u(1,i,j,k))
7 + c2 * qs(i,j,k);
8 fjac[i][1][1] = (2.e0 - c2)
9 * (u(1,i,j,k) / u(0,i,j,k));

10 fjac[i][2][1] = - c2 * (u(2,i,j,k) * tmp1);
11 fjac[i][3][1] = - c2 * (u(3,i,j,k) * tmp1);
12 fjac[i][4][1] = c2;
13 ...
14 }
15 }
16 }

Listing 1.5. Original arrays in x solve routine

1 double fjacX [5][5][PROBLEM_SIZE+1][ny][nz];
2 #pragma acc kernels loop independent present (up[0:size5],rhsp[0:size5])
3 for (k = 1; k <= nz -2; k++) {
4 for (j = 1; j <= ny -2; j++) {
5 for (i = 1; i <= nx -2; i++) {
6 ...
7 fjacX[i][1][0][j][k] = -(u(1,i,j,k) * temp2 * u(1,i,j,k))
8 + c2 * qs(i,j,k);
9 fjacX[i][1][1][j][k] = (2.0 - c2) * (u(1,i,j,k) / u(0,i,j,k));

10 fjacX[i][1][2][j][k] = - c2 * (u(2,i,j,k) * temp1);
11 fjacX[i][1][3][j][k] = - c2 * (u(3,i,j,k) * temp1);
12 fjacX[i][1][4][j][k] = c2;
13 ...
14 }
15 }
16 }

Listing 1.6. Expanded arrays and OpenACC pragma x sovle routine

4.2.3 Reducing Data Transfers
To reduce the data transfer between the different OpenACC kernels we make
the data reside on the GPU. We allocate the data on the GPU with the pragma
#pragma acc enter data create for all the data at the beginning of the BT-MZ
benchmark. The #pragma acc data present pragma is used to indicate to the
kernels that the data already resides on the accelerator when the kernels block
arrives. The #pragma acc update host and #pragma acc update device pragmas
are used to manually update the data on the host or device after the data on
the other side is modified.

82 M. Baker et al.

To allocate the memory for the different matrices, we used the OpenACC enter
data directive from OpenACC 2.0 was already available in the CAPS OpenACC
compiler. As shown in Listing 1.7, we allocate all the zones for each matrices. We
cannot do only one allocation per matrix because the OpenACC’s present table
maps the addresses between the hosts and device pointers using the address of
the first element. In our case, the matrix is a double linked vector and these
addresses will in not available in the solver functions.

1 u = (double *)shmalloc (sizeof (double)*PROC_MAX_SIZE5);
2 for (iz = 0; iz < proc_num_zones; iz++) {
3 zone = proc_zone_id[iz];
4 size=nxmax[zone]*ny[zone]*nz[zone]*5;
5 up=&u[start5[iz]];

7 #pragma acc enter data create(up[0:size], ...)

9 initialize(&u[start5[iz]], ...);
10 ...
11 }

Listing 1.7. Allocates in main routine to create data on GPU

In the solver functions, to indicate the data is already available on the device,
we used the #pragma acc data directive with the present clause. This allows the
runtime to know this data is already on the device and ready to be used. On
this data directive we also specify to the runtime to allocate the locals lhs, fjac
and njac buffer, if not already done, using the pcreate clause. The Listing 1.8
illustrates this.

1 #pragma acc data present (up[0:size5],...) pcreate (lhsX ,fjacX ,njacX)
2 {
3 #pragma acc kernels loop independent
4 for (i = 0; i <= isize; i++)
5 ...
6 } //end data

Listing 1.8. Data clauses in x solve routine

Two operations compose the timestep loop, the exchange boundaries function
call and the solver function calls. At every timestep, we need to update U matrix
on the host with the values from the device before updating the boundary val-
ues. Then perform the OpenSHMEM communications to update the other PEs
and afterwards, we update the U matrix from the host to the device. We use
the #pragma acc update device—host directive around the OpenSHMEM calls
(Refer to Listing 1.9).

1 #pragma acc update host(u[0:size])
2 ...
3 // OpenSHMEM communications
4 ...
5 #pragma acc update device(u[0:size])

Listing 1.9. Update clauses in exch qbc routine

Hybrid Programming Using OpenSHMEM and OpenACC 83

4.2.4 Improve Kernels Performance
After improving the cumulative time taken for transfers by reducing their oc-
currences we focus on optimizing the kernels. There are many ways to improve
the performance of these kernels. The optimization we applied are the following:
increased the threads to execute the different kernels, take care of the coalescing,
unrolled some of the loops and pre-accessing some data.

To improve the global performance of the kernels, a first step consist in in-
dicating the compiler that it can parallelize on more loop levels. To do so, the
use of the #pragma acc loop independent indicates that the user knows for sure
this particular loop level is parallel and can be executed by multiple OpenACC
threads. As a result, the kernel in itself is executed by more number of threads
and each thread does less work.

A well-known performance issue on the Nvidia GPU is the non-contiguous
global memory accesses, also known as un-coalesced accesses (refer to List-
ing 1.10). The goal of this optimization is to allow contiguous accelerator threads
in the thread grid to work on contiguous data in the memory. This way the
memory controller can reduce the number of memory loads and stores to the
data. When a thread is accessing data in the GPU memory, the memory con-
troller will load the memory segment that contains this particular data. So if
contiguous threads are accessing contiguous data at the same time, the memory
controller will load the needed memory segment for all this threads only once.
To do so, we will ensure that the inner parallelized loop level corresponds to
the most contiguous dimension of the main arrays of each loop nest (refer to
Listing 1.11).

1 #pragma acc kernels loop independent present (up[0:size5],rhsp[0:size5])
2 for (k = 1; k <= nz -2; k++) {
3 #pragma acc loop independent
4 for (j = 1; j <= ny -2; j++) {
5 #pragma acc loop independent
6 for (i = 1; i <= nx -2; i++) {
7 ...
8 fjacX [1][0][i][j][k] = -(u(1,i,j,k) * temp2 * u(1,i,j,k))
9 + c2 * qs(i,j,k);

10 fjacX [1][1][i][j][k] = (2.0 - c2) * (u(1,i,j,k) / u(0,i,j,k));
11 fjacX [1][2][i][j][k] = - c2 * (u(2,i,j,k) * temp1);
12 fjacX [1][3][i][j][k] = - c2 * (u(3,i,j,k) * temp1);
13 fjacX [1][4][i][j][k] = c2;
14 ...
15 }
16 }
17 }

Listing 1.10. Un-coalesced array accesses in x solve routine

84 M. Baker et al.

1 #pragma acc kernels loop independent present (up[0:size5],rhsp[0:size5])
2 for (i = 1; i <= nx -2; i++) {
3 #pragma acc loop independent
4 for (j = 1; j <= ny -2; j++) {
5 #pragma acc loop independent
6 for (k = 1; k <= nz -2; k++) {
7 ...
8 fjacX [1][0][i][j][k] = -(u(1,i,j,k) * temp2 * u(1,i,j,k))
9 + c2 * qs(i,j,k);

10 fjacX [1][1][i][j][k] = (2.0 - c2) * (u(1,i,j,k) / u(0,i,j,k));
11 fjacX [1][2][i][j][k] = - c2 * (u(2,i,j,k) * temp1);
12 fjacX [1][3][i][j][k] = - c2 * (u(3,i,j,k) * temp1);
13 fjacX [1][4][i][j][k] = c2;
14 ...
15 }
16 }
17 }

Listing 1.11. Coalesced array access in x sovle routine

Unrolling is a well-known technique to increase the global performance of
kernels. It allows to increase the amount of work per thread and takes advantage
of data reuse.

Finally, in order to help the CAPS OpenACC compiler get better performance,
in some kernels, we pre-loaded some of the values in temporary variables (refer
to Listing 1.12). At runtime, the data will be preloaded in a register which has
a very low latency access latency (few memory cycles) compare to an access to
gloabl memory (400-700 memory cycles). Otherwise, it accesses the same data
in global memory multiple times resulting in higher latencies.

1 double tmprhs0 , tmprhs1 , tmprhs2 , tmprhs3 , tmprhs4 ;
2 tmprhs0 = rhs(0,i-1,j,k);
3 tmprhs1 = rhs(1,i-1,j,k);
4 tmprhs2 = rhs(2,i-1,j,k);
5 tmprhs3 = rhs(3,i-1,j,k);
6 tmprhs4 = rhs(4,i-1,j,k);

8 rhs(0,i,j,k) = rhs(0,i,j,k) - lhsX [0][0][AA][i][j][k]* tmprhs0
9 - lhsX[0][1][AA][i][j][k]*tmprhs1

10 - lhsX[0][2][AA][i][j][k]*tmprhs2
11 - lhsX[0][3][AA][i][j][k]*tmprhs3
12 - lhsX[0][4][AA][i][j][k]*tmprhs4 ;

Listing 1.12. Preloading temporary values matvec sub routine

5 Results

5.1 Platform

These tests were run on the Titan supercomputer, a Cray XK7 supercomputer
[14]. Titan has 18,688 compute nodes equipped with 1 GPU per node. The nodes
are connected with Cray’s Gemini interconnect. For OpenSHMEM Titan has
installed Cray’s shmem implementation version 5.6.3. For OpenACC Titan has
capsmc version 3.3.4. For this paper we used a beta version of the CAPS compiler,
version 3.3beta-r50937. Additionally the GNU compiler collection version 4.7.1,
nvidia CUDA compiler version 5.5 and CUDA driver 5.0 were used.

Hybrid Programming Using OpenSHMEM and OpenACC 85

5.2 Timing and Scalability

In the following figure you can see the different speedup. the Figure 1 shows the
speed ups of the different configuration compared to the fully serial version 1
PE on 1 node of the class C. the Figure 2 shows the speed ups of the different
configuration compared to the fully serial version 16 PEs on 16 nodes of the
class D.

We focused on the execution of the OpenSHMEM version and the
OpenSHMEM-OpenACC version of the BT-MZ benchmark. We choose to com-
pare the class C and D. The class C is composed of 256 zones with zone sizes
distributed from 13x8x28 to 57x38x28 elements and executes 200 iterations. The
class D is composed of 1024 zones with zone sizes distributed from 22x16x34 to
98x73x34 elements and executes 250 iterations. We first run these tests against
a serial version on a single node, then compare the speed up of using 8, 16, 32,
64, 128, and 256 nodes. We also compare the speed of using OpenACC as well,
showing what benefits or deficits that are incurred for using GPU acceleration.
We do this in a seperate graph for a class C run and a class D run.

In Figure 1 we can see that the OpenACC struggles to match the speedup from
the pure OpenSHMEM version at first. Then after 64 nodes the performance of
the pure OpenSHMEM version plateaus while the GPU version continues to see
gains. The most likely explanation for this is that for class C after 64 nodes,
OpenSHMEM is no longer able to extract additional parallelism. This may be a
result of the simplistic nature of the port from MPI to OpenSHMEM. It may be
possible to get additional performance gains by restructuring the communication
patterns. OpenACC continues to see performance gains because distributing
more zones across more PEs with more GPUs allows for fewer transfers of zones
across the PCIe bus increasing the efficiency of the GPUs.

Fig. 1. Speed-up for the Class C of BT-MZ

In Figure 2 we can see that OpenACC and OpenSHMEM+OpenACC both
continue to see the same amount of performance gain as we add more PEs. How-
ever, unlike in Class C where OpenSHMEM saw an early lead before dropping off
in gains, both see the same amount of performance gain for the additional PEs.

86 M. Baker et al.

Fig. 2. Speed-up for the Class D pf BT-MZ

However, in this run we also see the version with OpenACC has a consistent
performance advantage of 10%.

On the figure 3 we can see the percentage of the time spent in the exch boundary
function call for the OpenSHMEM-OpenACC version of the code. This function
call is also where the updates to GPU memory occur, so in addition to the time
spent in network communication it also encompasses the time spent transferring
data between the GPU and the system memory. For the OpenSHMEM serial exe-
cution we observed up to 3% of time spent in exch qbc for 256 PE. Concerning the
OpenSHMEM-OpenACC version the time spent in exch qbc goes up to 47%.

Fig. 3. Proportion of time spent in exch qbc and the solver for the Class D Of BT-MZ

We also compared the performance of the Serial-C version [15] and the Ope-
nACC version of the BT benchmark (non-MZ) for the class B and C. The B class
computes on a matrix of 102x102x102 elements for 200 iterations. The C class
computes on a matrix of 162x162x162 elements for 200 iterations. In the table
1, you can see the time of execution of the different class on 1 node of Titan.

Hybrid Programming Using OpenSHMEM and OpenACC 87

Here we can see that increasing the size of the data to compute on the accelera-
tor allows us to get some good speedup compare to the serial execution. It uses
the same algorithm with the same code implementation for the BT solver. This
isolates the performance of OpenACC versus the performance of OpenSHMEM
for this algorithm. We do this to demonstrate the performance gains of using a
GPU implementation without OpenSHMEM communication.

Table 1. Execution time of the NAS BT benchmark for Class B & C

Class B C

serial 427.53 1575.67
ACC 99.71 460.74
speed-up 4.29 3.42

6 Conclusions and Future Work

While the non multi-zone version of the BT benchmark showed great perfor-
mance benefit, the Multizone version struggled to match serial performance.
This was largely because, as seen in the time spent exchanging data, because as
the zones got smaller the benefits extracted from the GPU became smaller, since
the transfer times overwhelmed the computational benefits. Using larger prob-
lem sizes should also result in larger gains in speed, since we can see increases in
the ratio of transfer versus computation as the number of nodes was increased
for the same problem size.

In our OpenSHMEM and OpenACC hybrid most of the performance problems
came from the need to communicate memory stored on the GPU across the
network. Network performance was good but since the GPUs had to send their
data to main memory to communicate over the network the performance gains
of having accelerators was hard to realize in a distributed environment.

Using an accelerator that uses host memory should eliminate these problems.
The AMD APUs would not suffer from the performance degradation associated
with transferring memory from the accelerator to the host system and thus
should not have problems associated with transferring small zones to and from
the independent accelerator memory. This would solve a large part of the growth
seen in figure 3 since the boundary exchange includes memory transfer from the
accelerator.

We can see in Table 1 that OpenACC saw a solid performance gain when run
in serial with one zone, so it is safe to say that we are not seeing performance
degradation because of the execution on the accelerator. In figure 3 we can see
that the memory exchange, including updating system memory and transfers
across the network, quickly grew in the dominance of the total run time. In
figure 1 we can see that the BT-MZ benchmark without OpenACC is initially
faster, and with the evidence in table 1 and figure 3 it is reasonable to guess that
most of this slowdown is the accelerator transfer. Because of this we believe it
is reasonable to project that an integrated solution like an AMD APU will see
performance closer to what we saw in figure 2.

88 M. Baker et al.

Further work can include increasing the problem size, allowing the GPU to
do more compute work for the zones between transfers. The ability to target
the benchmark to fill the memory size of the GPU would expose the maximum
benefits of the GPUs. It would also be interesting to see the results of exceeding
the maximum size of the GPU memory to see how OpenACC would cope or
suggest to future OpenACC specifications to support the swapping of memory
from the GPU to the host.

One interesting avenue to explore for this purpose would be using the accel-
erator as the primary source of memory, as opposed to the system memory. In
the current implementation, the benchmark still has to transfer memory to the
system memory in order to communicate barrier conditions with OpenSHMEM.
If something similar to the GPU direct with CUDA and MPI could be imple-
mented for OpenSHMEM there would be no need to transfer this memory to
the system memory. In fact, the host system could be made unnecessary in an
extreme case. Further exploration of how OpenSHMEM and OpenACC can be
utilized together represents a large challenge that also holds promise for excel-
lent performance. The main hurdle to this remains an awareness of the GPU
and how it works with memory transfers and it’s impact on communication.

Acknowledgments. This work is supported by the United States Department
of Defense and used resources of the Extreme Scale Systems Center located at
the Oak Ridge National Laboratory.

References

1. Top500: Top 500 supercomputer sites (2013), http://www.top500.org/
2. Bland, B.: Titan - early experience with the titan system at oak ridge national lab-

oratory. In: Proceedings of the 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis, SCC 2012, pp. 2189–2211. IEEE Computer So-
ciety (2012)

3. Poole, S., Hernandez, O., Kuehn, J., Shipman, G., Curtis, A., Feind, K.: Open-
shmem - toward a unified rma model. In: Padua, D. (ed.) Encyclopedia of Parallel
Computing, pp. 1379–1391. Springer US (2011)

4. Jin, H., der Wijngaart, R.F.V.: Performance characteristics of the multi-zone nas
parallel benchmarks. In: IPDPS. IEEE Computer Society (2004)

5. OpenSHMEM Org.: Openshmem specification (2011)
6. Gokhale, M., Stone, J.: Napa c: compiling for a hybrid risc/fpga architecture. In:

Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines,
pp. 126–135 (1998)

7. Fraguela, B.B., Renau, J., Feautrier, P., Padua, D., Torrellas, J.: Programming the
flexram parallel intelligent memory system. SIGPLAN Not. 38, 49–60 (2003)

8. Bellens, P., Perez, J.M., Badia, R.M., Labarta, J.: Cellss: a programming model
for the cell be architecture. In: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, SC 2006. ACM, New York (2006)

9. OpenHMPP: OpenHMPP: Concepts & Directives (2012)
10. Han, T.D., Abdelrahman, T.S.: hiCUDA: a high-level directive-based language for

GPU programming. In: Proceedings of 2nd Workshop on General Purpose Process-
ing on Graphics Processing Units, GPGPU-2, pp. 52–61. ACM, New York (2009)

http://www.top500.org/

Hybrid Programming Using OpenSHMEM and OpenACC 89

11. Koesterke, L., Boisseau, J., Cazes, J., Milfeld, K., Stanzione, D.: Early Experiences
with the Intel Many Integrated Cores Accelerated Computing Technology. In: Pro-
ceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery, TG 2011,
pp. 21:1–21:8. ACM, New York (2011)

12. OpenACC: How does the openacc api relate to openmp api? (2013)
13. NVIDIA: OpenACC Directives for Accelerators. In: NVIDIA Developer Zone

(2012), http://developer.download.nvidia.com/CUDA/training/OpenACC 1 0

intro jan2012.pdf

14. Oak Ridge Leadership Computing Facility: Introducing titan: Advancing the era
of accelerated computing (2013), http://www.olcf.ornl.gov/titan/

15. Center for Manycore Programming, Seoul National University, Korea: Snu npb
suite site (2013)

http://developer.download.nvidia.com/CUDA/training/OpenACC_1_0_intro_jan2012.pdf
http://developer.download.nvidia.com/CUDA/training/OpenACC_1_0_intro_jan2012.pdf
http://www.olcf.ornl.gov/titan/

Towards Parallel Performance Analysis Tools

for the OpenSHMEM Standard

Sebastian Oeste, Andreas Knüpfer, and Thomas Ilsche

Technische Universität Dresden, Center for Information Services and HPC (ZIH)

Abstract. This paper discusses theoretic and practical aspects when
extending performance analysis tools to support the OpenSHMEM stan-
dard for parallel programming. The theoretical part covers the mapping
of OpenSHMEM’s communication primitives to a generic event record
scheme that is compatible with a range of PGAS libraries. The visual-
ization of the recorded events is included as well. The practical parts
demonstrate an experimental extension for Cray-SHMEM in Vampir-
Trace and Vampir and first results with a parallel example application.
Since Cray-SHMEM is similar to OpenSHMEM in many respects, this
serves as a realistic preview. Finally, an outlook on a native support for
OpenSHMEM is given together with some recommendations for future
revisions of the OpenSHMEM standard from the perspective of perfor-
mance tools.

Keywords: OpenSHMEM, Performance Analysis, Tracing, Tools In-
frastructure.

1 Introduction

In the field of High Performance Computing (HPC), MPI was and is the dom-
inating parallelization standard. It provides a huge range of point-to-point and
collective communication operations and is the de-facto standard in for highly
parallel programming beyond multi-threading in High Performance Computing
(HPC). Another model for parallel programming is gaining more and more at-
tention lately, the Partitioned Global Address Space (PGAS) paradigm. It pro-
motes the idea of shared memory parallelization even for large scale distributed
memory parallel machines. For this purpose it employs Remote Direct Memory
Access (RDMA) operations, also called one-sided communication. A number of
efforts in the HPC community currently follow this paradigm. Among them may
be promising candidates for a true rival for MPI. One of the main prospects of
PGAS is the reduced complexity compared to hybrid MPI plus OpenMP paral-
lelism. An indication that this may be true is the addition of one-sided operations
to the MPI standard.

On the one hand, the set of PGAS approaches contains language extensions
like Unified Parallel C (UPC) or Co-Array Fortran (CAF) which need their own
compilers. On the other hand, it contains PGAS libraries that have the advantage
that well-known languages like C/C++ and Fortran gain PGAS functionalities

S. Poole, O. Hernandez, and P. Shamis (Eds.): OpenSHMEM 2014, LNCS 8356, pp. 90–104, 2014.
c© Springer International Publishing Switzerland 2014

Towards Parallel Performance Analysis Tools for the OpenSHMEM Standard 91

and no extra compilers are needed. SHMEM is one flavor of such PGAS libraries.
In the history of SHMEM there are several implementations like Cray-SHMEM,
SGI-SHMEM or Quadrics SHMEM with quite different APIs. With OpenSH-
MEM there is a new effort to create a open standard to make all vendor versions
of SHMEM API-compatible.

This paper presents a concept for a generic infrastructure to record event
traces from OpenSHMEM parallel application programs. Its goal is an integra-
tion in the Score-P monitoring system which produces event traces in the Open
Trace Format 2 (OTF2) that are to be visualized and analyzed with the Vampir
tool. In section 2 we describe the common techniques for the performance moni-
toring of parallel applications. Section 3 presents a concept for a generic tracing
infrastructure for PGAS approaches in general and OpenSHMEM in particular.
Section 4 gives an overview of an existing prototypical implementation for trace
recording of SHMEM events using Cray-SHMEM and the VampirTrace package.
The paper ends with an outlook on a native OpenSHMEM event tracing solution
for the parallel performance analysis.

2 Parallel Performance Analysis Tools

Tools for parallel performance analysis are an important part of the HPC soft-
ware ecosystem. Since the parallel execution performance and the scalability are
most significant properties in HPC, developers need to pay attention to perfor-
mance analysis and tuning. And they need support by appropriate tools.

Just like debugging is very difficult without dedicated debugging tools, the
detailed investigation of the run-time behavior apart from the wall clock duration
is almost impossible. And both kinds of task get notably more complicated in
the parallel case.

2.1 Instrumentation

To monitor HPC applications it is necessary to be able to measure the run-time
behavior inside target programs exactly. To reach this we need concrete run-time
information from the application during execution. A way to to get run-time in-
formation of a program during execution is instrumentation. Instrumentation
refers to a modification of the program code to measure certain events of inter-
est. The measurement code is inserted before and after an event appears and
triggers routines in the measurement environment to gather the information.
Instrumentation can take place at different times of the program transformation
process. There are several techniques to instrument a program.

– Static instrumentation The code will be inserted before execution.
– Dynamic instrumentation The code will be inserted during execution.
– Manual instrumentation The code is inserted manually this affords the

most flexibility. The user can place measurement calls exactly on those parts
of the program provides the most interest.

92 S. Oeste, A. Knüpfer, and T. Ilsche

– Automatic instrumentation The code will be inserted automatically for
example through certain linker options, or compiler functionalities. Which
invokes corresponding functions with information like file name, line number,
function name. Automatic instrumentation typically inserts enter and leave
events.

– Binary instrumentation The instrumentation appears on the binary, ex-
ecutable file. Toolkits like the DyninstAPI are able to insert measurement
code after the actual program is compiled [11].

The different ways to instrument an application makes instrumentation in gen-
eral a flexible solution. We are currently developing an instrumentation tool
for C and C++ sources which creates a wrapper library by parsing a header
file and re-defining all symbols with performance annotations. This tools uses
mechanisms for dynamic and static linking libraries and even supports profiling
interfaces based on weak symbols.

2.2 Sampling

Another technique to record information is sampling. Sampling works without
any modification of the programs source code or binary executable. During the
execution of the program periodic interrupts occur to collect information about
the state of the program. Popular information for sampling are values of perfor-
mance counters or the state of the call stack. The granularity depends on the
sampling frequency. An advantage of sampling compared with instrumentation
is the ability to make forecasts about the overhead behavior. The overhead of
program analysis using sampling grows linear with the sampling frequency.

2.3 Profiling

One way to present the acquired information from instrumentation or sampling
is to create a so called profile. A profile in general is an summary of performance
metrics e.g. the time difference between enter and leave events or the number
of calls of a function. A profile can be created from information acquired by
sampling or by instrumentation. Common kinds of profiles are the flat profile
which is the simplest form of a profile. Because the aggregated information just
depends on the regions or instrumented functions. Significantly for a flat profile
is that it provides no caller context. Another form of a profile is a call-path
profile which is a representation of the execution path. A call-path profile gives
information about possible routes through a program - each route through the
program is a own record.

2.4 Event Tracing

Parallel event tracing tools try to capture the run-time behavior of a target
application by recording events of interest. Usually, event tracing relies on in-
strumentation to be notified about such events, but there are also sampling-
based approaches. For every event a so called event record is stored. All records

Towards Parallel Performance Analysis Tools for the OpenSHMEM Standard 93

are stored separately in every processing element (PE) in temporal order. Ev-
ery record contains at least the type (what), the time (when) and the location
(where) of an event and might carry further type-specific data. Usually, the
stream of event records is stored in a local memory buffer and is stored to the
file system only at the end of the measurement. See [12] for more background.

The events of interest that are used for parallel event tracing of High Per-
formance Computing (HPC) applications can be grouped into three groups: Se-
quential events, parallel events, and scalar values.

Sequential Execution Events. This includes all activities in all sequential
phases of the parallel PEs. They have no direct effects on other PEs and are
the same for all parallel programs no matter if they use MPI, Pthreads, or any
other parallelization model. The monitoring system merely needs a way to find
out the location (where) of the events. The granularity of such events may vary.
Typical examples are the call to (enter event) or return from (leave event) for
subroutine calls or the begin and end of loop bodies.

Events for Parallel Communication and Synchronization. Communi-
cation and synchronization event records cover the remaining parts of parallel
programs. They represent all activities that directly affect two or more PEs.
They are represented as local event records on some or all of the involved PEs.
In particular, they allow to identify the communication peer(s) explicitly or
implicitly.

This group of events is closely modeled according to the perspective of the pro-
grammer, i.e. the events represent the basic building blocks for communication
and synchronization that the parallelization model provides. For parallelization
libraries such as OpenSHMEM, this is close to their APIs.

There are a number of examples from established HPC parallelization models.
First, there are point-to-point communication calls and collective communication
calls from MPI [10], including both, the blocking and the non-blocking modes.
Second, there are parallel regions and synchronization points from OpenMP
which are not implemented as API calls but as code pragmas. Also there are
data transfers calls between hosts and devices as well as synchronization points
for GPGPU computing models such as CUDA and OpenCL. And there are
PGAS-style communication and synchronization types which are applicable to
OpenSHMEM and several other PGAS-libraries or PGAS language extensions,
see also [8].

Usually, all communication and synchronization event records are surrounded
by events for the API call to reference which exact API call was used and to
capture the duration of the call (the time between the enter and the leave events).

Hardware Counters, System Metrics, and User-defined Metrics. In ad-
dition to the previous two groups, there are event records for counters ormetrics.
Usually, they provide summaries of events of interest which are too fine-grained
to be recorded individually. The prime examples are CPU hardware performance
counters counting floating point instructions, memory accesses, cachemisses, TLB

94 S. Oeste, A. Knüpfer, and T. Ilsche

misses, and many more. Sampling such counters at the enter and leave points of
subroutine calls provides interesting data about the floating point instructions,
memory accesses, etc. that happened inside the call. Besides hardware performance
counters, also system counters like memory consumption or temperature can be
captured in this way, even though they are not strictly counting discrete events.
Also external metrics like the power consumption or the throughput rates of stor-
age subsystems can be captured like this. Last but not least, so called user defined
metrics can be provided by the application code itself to indicate relevant proper-
ties of its inner workings. Examples could be the number of outstanding requests
at a point in time, partition sizes of problem decompositions, or the residual value
of an iterative solver.

2.5 Existing Tools and Related Work

There are a couple of performance analysis tools which support the techniques
described above with a strong focus on High Performance Computing (HPC).
The Tuning an Analysis Utilities (TAU) specialize in profiling with some trac-
ing functionalities [17]. Scalasca focuses on automatic detection of well-known
performance problems in parallel programs based on an event trace replay mech-
anism [5]. Vampir provides interactive visualization and exploration of parallel
event traces [12]. All of the previously mentioned tools work together with the
Score-P monitoring infrastructure for code instrumentation, profile collection
and event trace recording [9]. There is also Vampir’s previous default monitor-
ing system called VampirTrace with a similar feature set. VampirTrace comes
as a regular component of the Open MPI package and is therefore available
on a large number of HPC machines worldwide [12]. HPCToolkit is one estab-
lished example that relies on periodic sampling including call stack unwinding
to capture the dynamic run-time behavior of parallel target applications [1].

With respect to performance tools for the rather young OpenSHMEM stan-
dard, there are very few pieces of related work. A prototypical extension to Vam-
pirTrace has been created by S. Jana and J. Schuchart at ORNL which capture
traces of OpenSHMEM API calls but not data transfers. Using their extension,
they facilitated an analysis of the energy consumption of certain OpenSHMEM
library calls using the counter plug-in infrastructure of VampirTrace [7]. As far
as we know this was not published yet. The extension of VampirTrace for the
recording of API calls as well as data transfers for Cray-SHMEM, which was the
basis for Section 4, was published in [16].

3 Concept of a Tracing Infrastructure for OpenSHMEM

The effort to provide recording of sequential events and counters or metrics
for OpenSHMEM programs in existing monitoring systems is minimal. Yet, the
PGAS-style communication scheme requires theoretical and practical changes in
the recording and representation of events. Furthermore, the monitoring infras-
tructure needs to implement its internal communication with OpenSHMEM.

Towards Parallel Performance Analysis Tools for the OpenSHMEM Standard 95

Fig. 1. Timeline visualization of put and get operations and their points of completion

3.1 Modeling and Recording PGAS Activities

While MPI is clearly clearly the dominating message passing model in the HPC
landscape, there are several promising players in the PGAS realm. There are
language extensions like Co-Array Fortran [15] and UPC [3] on the one hand
and libraries like OpenSHMEM [4], GASPI [2], ARMCI [13], GlobalArrays [14]
but also MPI 3.0 with the on-sided operations [10] on the other hand. All of
them share the concept of the Partitioned Global Address Space with ’put’
and ’get’ operations (sometimes called ’write’ and ’read’, though) as the key
communication operations. Therefore, there should be a single model and a
single set of event records to represent all PGAS parallelization libraries. This
allows analysis tools to be generic and usable for all PGAS libraries1.

Still, there are semantic differences between all the flavors of ’put’ and ’get’
operations and there are various kinds of synchronization mechanisms. Further-
more, there are some more concepts present in some of the PGAS libraries but
not in all of them. In [8] a combined model is presented covering all of them. In
the remainder of this paper, only the OpenSHMEM operations are discussed.

Put and Get Operations. OpenSHMEM defines a variety of put and get op-
erations. There are calls for individual numbers, for arrays or blocks, and strided
ones for regular subarrays. All of them are blocking, i.e. the API calls only returns
after the local completion of the operation. For get operations, local completion
also ensures remote completion, that means the operation is not affected by fol-
lowing activities on the remote (passive) side. For put operations, only the local
completion is given, i.e. following changes at the source address won’t influence

1 The model is also applicable to PGAS language extensions even though their ’put’
and ’get’ calls are hidden from the programmer. The compilers will generate them
from the language constructs like loops. However, the remainder of this paper focuses
on the PGAS libraries in general and OpenSHMEM in particular.

96 S. Oeste, A. Knüpfer, and T. Ilsche

the locally completed operation. Remote completion, which means that the sent
data is visible at the remote (passive) side, is not ensured and may happen later.

Put and get operations are recorded on the active PE only. Four event records
are used for this, see also Fig.1. As first an last, an enter record (E) and a leave
record (L) are written which denote the name of the called API function. The
time between them is the duration of the API call. The actual data transfer is
recorded as a RMA put event or an RMA get event, see Fig.2. They include the
target PE, the transfer size in bytes, and a matching number. They also include
a reference to a memory window, which is only relevant for other PGAS flavors
which use multiple “memory windows” or “communicators”. In OpenSHMEM
there is always a single “symmetric heap” and the specification of the target PE
always uses global IDs.

The completion of put or get operations is marked with completion event
records on the same (active) PE. In all cases, the local completion has to be
marked with an ’RmaOpCompleteBlocking’ record with the same matching num-
ber. Since all OpenSHMEM ’put’ or ’get’ calls are blocking until the local com-
pletion, this completion event is put at the end of the associated API call, just
before the leave event, see Fig.1 and Fig.2. For ’put’ operations where there is
a separate remote completion which may or may not be detectable. From the
OpenSHMEM API level it is visible for example when there is a following call to
’shmem barrier all’, see Fig.1(top right). In this case, an optional ’RmaOpCom-
pleteRemote’ record can be written. It is connected to the originating put event
with the same matching number. However, an OpenSHMEM program may pro-
ceed without ever notifying the active PE (that issued the put operation) about
the remote completion. In such cases, the remote completion record is left out,
see Fig.1(top left).

Visualization of Put and Get Operations. The graphical visualization of
put and get operations relies on the event records over time on the active PE.
Besides depicting the API call, the data transfer will be shown with an arrow
from the source PE to the destination PE. The start time of the arrow is the
time of the respective put or get event and that is equal to the start time of

OTF2 Rma(Put|Get)

OTF2 LocationRef location local PE
OTF2 TimeStamp time time stamp
OTF2 RmaWinRef window memory window
uint32 t target target PE in context of window
uint64 t size number of bytes transferred
uint64 t matching matching number

OTF2 RmaOp(Test|(Complete(Blocking|NonBlocking|Remote))

OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaWinRef window memory window
uint64 t matching matching number

Fig. 2. OTF2 record definitions for put, get, and completion events

Towards Parallel Performance Analysis Tools for the OpenSHMEM Standard 97

the API call. The end time for the arrows should be the time of completion.
This is trivial for get operations where the local completion is the same as the
remote completion. Thus, it is visualized as in Fig.1(bottom) giving a realistic
impression of the duration and the speed of the data transfer.

It is not well defined for put operations, because local completion is not equal
to remote completion and because remote completion might be invisible for the
monitoring system. Even if the remote completion is visible, it is most probably
visible only at a point in time later than the actual arrival of the data transfer.
At least it is generally recommended by all PGAS programming models to issue
individual remote memory accesses as early as possible and to uses barriers,
fences, or other memory synchronization operations as late as possible. Since
neither of the local or remote completion points give a good indication of the
actual duration of a put data transfer, the local completion time is used because
it is always available. It follows that the shown arrows for put operations need
to be read differently. They are an indication when the put operation started
and between which PEs it happens. Yet it does not indicate the transfer time.

Atomic RMA Operations. OpenSHMEM supports a number of atomic RMA
operations that read and write remote variables in an atomicity manner, i.e.
with the guarantee that no other local or remote memory access can interfere
in between. A separate event record type is defined for atomic operations, see
Fig.3. It is to be used like the put and get record types. In addition to those,
it stores the type of atomic operations and it has separate fields to store the
data volume sent and received. They should contain the number of bytes that
two separate put and get operations would carry if they would try to mimic the
effect of the atomic operation (without the atomicity).

OTF2 RmaAtomicType

OTF2 RMA ATOMIC TYPE SWAP swap
OTF2 RMA ATOMIC TYPE COMPARE AND SWAP compare and swap
OTF2 RMA ATOMIC TYPE FETCH AND ADD fetch and add
OTF2 RMA ATOMIC TYPE FETCH AND INCREMENT fetch and increment
OTF2 RMA ATOMIC TYPE ADD remote add
OTF2 RMA ATOMIC TYPE INCREMENT remote increment

...

OTF2 RmaAtomic

OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaWinRef window window
uint32 t target rank of target in context of window
OTF2 RmaAtomicType type type of atomic operation
uint64 t size sent number of bytes transferred to target
uint64 t size received number of bytes transferred from target
uint64 t matching matching number

Fig. 3. OTF2 record definitions for atomic events including the types of atomic oper-
ations that are relevant for OpenSHMEM

98 S. Oeste, A. Knüpfer, and T. Ilsche

Like put and get records, atomic RMA records should be followed by a local
complete record and an optional global complete record. For the visualization a
single arrow like that of a put operation should be used. If the ’size received’
field is larger than 0 then a second arrow head pointing backward should be
added.

Collective Operations. Collective operations in OpenSHMEM are operations
performed simultaneously by a subset of PEs. They are represented by a pair
of event records ’OTF2 RmaCollectiveBegin’ and ’OTF2 RmaCollectiveEnd’ as
shown inf Fig.4. The former merely denotes the begin of the operation, the latter
contains all information about it. This pair of records is to be written by every
participating PE.

The field ’sync level’ is always set to ’OTF2 RMA SYNC LEVEL ALL’ for Open-
SHMEM which means that memory and the execution is synchronized by Open-
SHMEM collectives. Since OpenSHMEM collectives have no ’root’ PE, the ’root’
field is always set to a special value ’NONE’. The fields ’size sent’ and
’size received’ contain the number of bytes sent and received by the current
PE if the collective operation would be mimicked by the minimal number of put
and get operations. In the OpenSHMEM API these subsets of PE’s in collective
operations are known as active set. The participating PE’s are managed in a
group which refers to a memory window.

In the visualization all matching collective operations should be connected
like shown in Fig.1(right) for the ’shmem barrier all’ operation.

OTF2 RmaCollectiveBegin

OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp

OTF2 RmaCollectiveEnd

OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaSyncLevel sync level synchronization level
OTF2 RmaWinRef window memory window
uint32 t root root process/rank if there is one
uint64 t size sent number of bytes sent
uint64 t size received number of bytes received

Fig. 4. OTF2 record definitions for marking collective RMA operations

Locks. For the mutex lock concept, a separate set of events are introduced.
Besides the API calls, they keep track of the lock type (exclusive lock or write
lock vs. shared lock or read lock) and the lock instance. In the visualization, all
operations working on the same lock on the same PE instance are connected
until the lock is cleared. When several PEs compete for the same lock, then no
connections are drawn between the PEs but when they are displayed side by side
with aligned time axes, it becomes apparent, that only one can hold the lock at
any time. See Fig.5 for an example.

Towards Parallel Performance Analysis Tools for the OpenSHMEM Standard 99

Fig. 5. Timeline visualization of two PEs performing competing lock operations

OTF2 LockType

OTF2 LOCK TYPE EXCLUSIVE only one lock allowed at the same time, e.g.,
write-lock, mutex, MPI exclusive lock

OTF2 LOCK TYPE SHARED multiple shared locks allowed at the same time, e.g.,
read-lock, MPI shared lock

OTF2 (Request|Try)Lock

OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaWinRef window memory window
uint32 t target rank of target in context of window
OTF2 RmaLockType lock type Type of lock (shared vs. exclusive)
uint64 t lock id lock id in context of window

OTF2 ReleaseLock

OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaWinRef window
uint32 t target rank of target in context of window
uint64 t lock id lock id in context of window

Fig. 6. OTF2 record definitions for lock operations

The record definitions are shown in Fig.6, see also [8]. The reference to a
memory window and a reference to a target PE are not relevant for OpenSHMEM
but only important for other PGAS flavors.

3.2 Communication on Lower Level Layers

All OpenSHMEM implementations will translate OpenSHMEM API functions
to calls of lower transport layers. There are multiple such layers which may
range from the second-level DMAPP library in Cray systems to the low-level
Infiniband network layer, compare also the OSI model [6].

The presented event trace recording will only capture the OpenSHMEM layer
but not the lower layers beneath. The primary reason for this is, that the per-
formance analysis shall reflect the source code of the OpenSHMEM application.
If a performance problem is detected in the way OpenSHMEM is used, then
the (typical) optimization step will be to change the OpenSHMEM calls in the
source code instead of changing details in the given OpenSHMEM library.

Should there be interest in the performance analysis of lower transport layers,
then this should not be specific for OpenSHMEM but address this particular
layer. For example, a monitoring extension for the low-level Infiniband layer
might be used with OpenSHMEM, MPI, or GASPI. At the same time, it means
that the connection between high-level API calls and low-level operations is lost.

100 S. Oeste, A. Knüpfer, and T. Ilsche

3.3 Internal Communication Inside the Monitoring System

Apart from the user-visible aspects, there are internal tasks in the monitoring
system for bookkeeping and synchronization which depend on parallel communi-
cation. They usually rely on the same parallelization method as used by the tar-
get program to avoid conflicts between different parallelization libraries. Those
tasks include the collective initialization and finalization of the monitoring in-
stances, the synchronization of the local timers used by every parallel instance,
the unification of identifiers in the event records, and more.

While this constitutes a considerable part of the effort when porting an ex-
isting monitoring system to OpenSHMEM, this paper focuses on the user’s per-
spective of performance analysis tools for parallel applications.

4 A Demonstration for Cray-SHMEM with VampirTrace

We already developed an experimental solution to monitor the communication
of SHMEM applications based on Cray-SHMEM. Because Cray-SHMEM can co-
exist with MPI and because it guarantees that all SHMEM PE numbers are equal
to the MPI ranks (within MPI COMM WORLD), the steps from Section 3.3 could be
re-used from the existing MPI monitoring infrastructure. This was accomplished
with the VampirTrace library [12]. MPI Init is called just before start pes

and MPI Finalize after shmem finalize. The communication semantics of the
SHMEM operations were mapped to related MPI operations, for example a
shmem int put was mapped to MPI Put.

The instrumentation of SHMEM API functions was realized by using the weak
symbols of the Cray-SHMEM library. The Cray SHMEM library provides weak
symbols for all library functions that can be overwritten by so called wrapper
functions. Inside the wrapper functions the real call to the Cray SHMEM library
is executed, yet before and after the data to be recorded is collected and stored
to memory buffers. Eventually, the memory buffers are flushed to traces files. At
the very end, a post processing is performed before the parallel event traces are
ready to be analyzed with the Vampir visualization tool (see also further down).

Demonstration Example

Our demonstration example is a 2D simulation of the heat equation which runs
with 16 PEs on a 1500x1500 matrix [16]. We ran the program several times on a
the petascale Cray XE6 system Hermit at HLRS Stuttgart. The heat equation
program use a regular block-wise data distribution. Each node computes its own
area for every iteration whereupon a halo exchange with the four neighbors is
performed using one-sided operations.

An Example of SHMEM Performance Analysis

For performance analysis the parts of communication are of particular interest.
Fig.4 shows a zoomed view of one of the communication sections in Vampir.

Towards Parallel Performance Analysis Tools for the OpenSHMEM Standard 101

Fig. 7. Representation of a SHMEM communication section in Vampir. The run-time
is shown horizontally from left to right while all PEs are arranged vertically.

The lines between the functions of the processes represent the direction of the
communication. Vampir even provides further information such as the message
size or the transfer rate in a more detailed view. The figure shows that the
communication between the processes is done with the shmem double get and
the shmem double iget functions. Besides individual communication operations,
Vampir also provides a communication matrix, an overview of all communication
operations between sender and receiver PEs.

Figure 8 shows the communication matrix for the average transfer time. The
communication matrix indicates that the upper and lower borders (to/from the
PE ±4) are transfered faster than the left and right borders (to/from the PE
±1). Yet, in all directions the same amount of data is transfered, as the same
communication matrix view for the sum of message sizes would reveal.

The reason for the differing speeds are two different communication opera-
tions. For the horizontal halos shmem double get is used which can transfer the
entire data block with a single low-level RMA operation. For the vertical halos
the shmem double iget function has to be used, because the vertical halos of
the two-dimensional array are not located in contiguous memory ranges. Thus,
multiple small RMA operations have to be issued.

Overhead and Perturbation

The monitoring approach explained above including the instrumentation and
run-time data collection will induce a certain overhead, of course. As long as
this overhead is small enough and evenly distributed over the entire test run, the
resulting perturbation of the recorded trace will be negligible, i.e. the recorded
behavior is sufficiently close to the “real” behavior without the presence of the
monitoring system. Then, it is sensible to reason about the parallel performance

102 S. Oeste, A. Knüpfer, and T. Ilsche

Fig. 8. View of Vampir communication matrix showing average transfer time

behavior of the “real” program run based on the event trace analysis. If used
with some caution and with the help of some advanced features of VampirTrace
such as selective instrumentation and filtering the overhead can be controlled.

In our example we compared the wall clock times of the un-instrumented and
the instrumented cases for eight different configurations with 4 to 81 PEs. For
averages of 10 runs in each configuration, the instrumented execution time was
within 6% of the original execution time.

5 Outlook to Native OpenSHMEM Support and
Summary

The prototype solution described in the previous section shows an approach to
the performance analysis of PGAS libraries. Implementing this for OpenSHMEM
does pose some practical challenges. While the prototype assumes the direct
relation to MPI, this is not generally the case for OpenSHMEM. Therefore the
infrastructure of the monitoring library has to rely on OpenSHMEM for internal
communication. OpenSHMEM does provide all the necessary communication
primitives, including collectives, to implement measurement infrastructure such
as the timer synchronization and the unification of distributed identifiers.

The instrumentation mechanism via weak symbols provides a reliable, portable
and convenient way for the library wrapping step. While this functionality is op-
tionally offered in the OpenSHMEM reference implementation, it is not currently
defined by the standard. Performance analysis tools would greatly benefit if this
was defined there. The MPI profiling interface (PMPI) has seeded a wide variety
of tools - from lightweight profiling to flexible and complex measurement infras-
tructures. Alternatives using library pre-loading or linker wrapping are feasible

Towards Parallel Performance Analysis Tools for the OpenSHMEM Standard 103

but less straightforward, harder to make portable and generally divert the tool
developers from core features.

Another open issue for implementing a parallel measurement infrastructure
for OpenSHMEM is the lack of a finalization function. This would provide a
reliable way to run measurement related code (e.g. combining results from mul-
tiple ranks) after the logical end of the application while it is still valid for the
measurement infrastructure to use OpenSHMEM for communication. Also it
would be guaranteed that the application does not call any other OpenSHMEM
functions afterwards – so the recording is already complete at finalization time.

The possibilities for OpenSHMEM performance analysis described in this pa-
per make no claim to be complete. It would be very interesting to hear from
the OpenSHMEM user community what other information would be helpful
to improve their applications. This extends to the developers of OpenSHMEM
implementations that want to optimize their implementations. For instance, per-
formance metrics that are internal to the OpenSHMEM implementation could
be exposed to the monitoring infrastructure and recorded along with the ap-
plication events. Examples might be the sizes of internal buffers or the current
length of message queues.

Summary

In the first part of this paper we presented a concept for the event trace record-
ing for OpenSHMEM applications, in particular the representation of one-sided
communication primitives as event records and their suggested visualization.
The second part shows a preliminary solution for the event trace recording of
Cray-SHMEM applications. It includes results from an example case together
with the Vampir visualization of the produced traces and a brief study of the
introduced run-time overhead. Finally, an outlook for a native event tracing tool
for OpenSHMEM is given.

Acknowledgments. This work is supported in a part by the German Research
Foundation (DFG) in the Collaborative Research Center 912 “Highly Adaptive
Energy-Efficient Computing“. The authors would like to thank the HLRS for pro-
viding the compute time on Hermit used for the Cray-SHMEM demonstration.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey,
J., Tallent, N.R.: Hpctoolkit: tools for performance analysis of optimized parallel
programs. Concurrency and Computation: Practice and Experience 22(6), 685–701
(2010)

2. Alrutz, T., et al.: GASPI – A partitioned global address space programming inter-
face. In: Keller, R., Kramer, D., Weiss, J.-P. (eds.) Facing the Multicore-Challenge
III 2012. LNCS, vol. 7686, pp. 135–136. Springer, Heidelberg (2013)

104 S. Oeste, A. Knüpfer, and T. Ilsche

3. Carlson, W.W., Draper, J.M., Culler, D.E.: S-246, 187 introduction to UPC and
language specification

4. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., Smith, L.:
Introducing OpenSHMEM – SHMEM for the PGAS community (2010)

5. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The
Scalasca performance toolset architecture. Concurrency and Computation: Practice
and Experience 22(6), 702–719 (2010)

6. Information technology – Open Systems Interconnection – Basic Reference Model
(1994)

7. Jana, S., Schuchart, J.: Tracing and visualizing power consumption of OpenSH-
MEM applications. Personal Communications (September 2013)

8. Knüpfer, A., Dietrich, R., Doleschal, J., Geimer, M., Hermanns, M.-A., Rössel,
C., Tschüter, R., Wesarg, B., Wolf, F.: Generic support for remote memory access
operations in Score-P and OTF2. In: Cheptsov, A., Brinkmann, S., Gracia, J.,
Resch, M.M., Nagel, W.E. (eds.) Tools for High Performance Computing 2012, pp.
57–74. Springer, Heidelberg (2013)

9. Knüpfer, A., Rössel, C., an Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D.,
Geimer, M., Gerndt, M., Lorenz, D., Malony, A., et al.: Score-p: A joint per-
formance measurement run-time infrastructure for periscope, scalasca, tau, and
vampir. In: Tools for High Performance Computing 2011, pp. 79–91. Springer, Hei-
delberg (2012)

10. Message Passing Interface Forum. MPI: A message-passing interface standard, ver-
sion 2.2. Specification (September 2009)

11. Miller, B.P., Bernat, A.R.: Anywhere, any time binary instrumentation. In: ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and En-
gineering (PASTE), Szeged, Hungary (September 2011)

12. Müller, M.S., Knüpfer, A., Jurenz, M., Lieber, M., Brunst, H., Mix, H., Nagel,
W.E.: Developing scalable applications with vampir, vampirserver and vampirtrace.
In: Parallel Computing: Architectures, Algorithms and Applications, vol. 15, pp.
637–644. IOS Press (2008)

13. Nieplocha, J., Carpenter, B.: ARMCI: A portable remote memory copy library
for distributed array libraries and compiler run-time systems. In: Rolim, J., et al.
(eds.) IPPS-WS 1999 and SPDP-WS 1999. LNCS, vol. 1586, pp. 533–546. Springer,
Heidelberg (1999)

14. Nieplocha, J., Harrison, R.J., Littlefield, R.J.: Global arrays: A non-uniform-
memory-access programming model for high-performance computers. The Journal
of Supercomputing 10, 10–197 (1996)

15. Numrich, R.W., Reid, J.: Co-array fortran for parallel programming. ACM Fortran
Forum 17(2), 1–31 (1998)

16. Oeste, S.: Aufzeichnung einseitiger Kommunikation zur Leistungsanalyse paralleler
SHMEM-Anwendungen, Bachelor thesis in German (2012)

17. Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High
Perform. Comput. Appl. 20(2), 287–311 (2006)

Profiling Non-numeric OpenSHMEM

Applications with the TAU Performance System

John Linford2, Tyler A. Simon1,2, Sameer Shende2,3, and Allen D. Malony2,3

1 University of Maryland Baltimore County
2 ParaTools Inc.

3 University of Oregon

Abstract. The recent development of a unified SHMEM framework,
OpenSHMEM, has enabled further study in the porting and scaling of ap-
plications that can benefit from the SHMEM programming model. This
paper focuses on non-numerical graph algorithms, which typically have
a low FLOPS/byte ratio. An overview of the space and time complexity
of Kruskal’s and Prim’s algorithms for generating a minimum spanning
tree (MST) is presented, along with an implementation of Kruskal’s al-
gorithm that uses OpenSHEM to generate the MST in parallel without
intermediate communication. Additionally, a procedure for applying the
TAU Performance System to OpenSHMEM applications to produce in-
depth performance profiles showing time spent in code regions, memory
access patterns, and network load is presented. Performance evaluations
from the Cray XK7 “Titan” system at Oak Ridge National Laboratory
and a 48 core shared memory system at University of Maryland, Balti-
more County are provided.

1 Introduction

Non-numerical algorithms (NNA) are characterized by a low FLOPS/byte ratio
and can be defined as those which spend most of their computational time doing
either a search or sort. Memory locality, not computational load, is the primary
performance factor. This class of algorithms is particularly challenging for HPC
systems in the Top500 [11] as these systems are optimized for compute-intensive
codes. NNAs often involve searching or traversing graphs, which are defined by
a collection of vertices connected by edges. Graphs are used to model problems
defined in terms of relationships or connections between objects. The mathemat-
ical properties of graphs facilitate the modeling of many useful computational
problems, e.g. problems related to connectivity and routing optimization in
networks.

Many graph algorithms begin by finding a minimum spanning tree (MST).
Given a connected graph, a spanning tree is a subgraph that connects all the
vertices and is a tree. For weighted graphs, the sum of the edge weights in a
spanning tree is the weight of the spanning tree. A minimum spanning tree is a
spanning tree with weight less than or equal to the weight of every other span-
ning tree. MSTs have many practical applications in communication networks,

S. Poole, O. Hernandez, and P. Shamis (Eds.): OpenSHMEM 2014, LNCS 8356, pp. 105–119, 2014.
c© Springer International Publishing Switzerland 2014

106 J. Linford et al.

network design and layout of highway systems. They provide a reasonable way
to cluster points in space into natural groups and can be used to approximate
solutions to hard problems, like the Traveling Salesman Problem [13].

Two common algorithms for finding anMST are Kruskal’s [10] and Prim’s [15].
The primary difference between these algorithms is the order of graph traversal
(breadth first vs. depth first). We provide an overview of the space and time
complexity of these algorithms and present an OpenSHMEM [3,7] implementa-
tion of Kruskal’s algorithm. The implementation uses the symmetric hierarchical
memory to generate the MST in parallel without intermediate communication,
thereby minimizing network load. We use the TAU Performance System [16] to
quantify the performance of our OpenSHMEM MST algorithm.

2 Background

2.1 The TAU Performance System

The challenge of developing parallel scientific and engineering applications for
scalable, high-performance computer systems routinely involves the use of par-
allel performance tools to gain a deeper understanding of the code’s execution
characteristics and to guide optimizations. The evolving hardware technology of
parallel computing platforms and the sophistication of software technologies to
program them gives rise to complex performance interactions that requires care-
ful measurement and analysis to understand. TAU is a robust, powerful, state-of-
the-art toolset for performance investigation that has been applied across many
scalable parallel computing paradigms and environments. TAU works efficiently
on hundreds of thousands of threads and processes with codes written in Fortran,
C/C++, Python, UPC, and Chapel, utilizing MPI, SHMEM, and DMAPP for
communication, and pthreads and OpenMP for multi-threading.

Shown in Figure 1, TAU consists of three layers: instrumentation, measure-
ment, and analysis. Each layer uses multiple modules that may be configured in
a flexible manner under user control. TAU implements a multi-level instrumen-
tation framework that includes source, runtime, and compiler-based instrumen-
tation to expand the scope of performance instrumentation. This design makes it
possible for TAU to easily provide alternative instrumentation techniques that
target a common measurement API. The role of the instrumentation layer is
to insert code (a.k.a. probes) to make performance events visible to the mea-
surement layer. Performance events can be defined and instrumentation inserted
in a program at several levels of the program transformation process. A com-
plete performance view may require contribution of event information across
code levels. To support this, TAU’s instrumentation mechanisms are based on
the code type and transformation level: source (manual, preprocessor), object
(compiler-based instrumentation), library interposition (pre-wrapped libraries),
static linker (redirecting and substituting calls to an alternate routine), runtime
linker (runtime interposition of libraries), binary (pre-execution at runtime),
re-writing (dynamic instrumentation), interpreter (language runtime), virtual

Profiling Non-numeric OpenSHMEM Applications 107

Listing 1.1. OpenSHMEM Minimum Spanning Tree

1 s t a r t p e s (0) ;
2 i f (shmem my pe () == 0) {
3 // Read graph s i z e (number o f nodes) from f i l e
4 // Broadcast graph s i z e to a l l o ther PEs
5 }
6
7 // Al l PEs r e c e i v e graph s i z e
8 shmem bar r i e r a l l () ;
9

10 // Calcu la t e work d i v i s i o n
11 nNodes = graphSize / n pes ;
12
13 // A l l o c a t e shmem for graph
14 graph = (int ∗) shmal loc (graphSize ∗nNodes∗ s izeof (int)) ;
15 span = (int ∗) shmal loc (graphSize ∗nNodes∗ s izeof (int)) ;
16 memset(span , 0 , graphSize ∗nNodes∗ s izeof (int)) ;
17
18 int ∗ bu f f e r = NULL;
19 i f (my pe == 0) {
20 bu f f e r = mal loc (graphSize ∗nNodes∗ s izeof (int)) ;
21 for (i =0; i<n pes ; ++i) {
22 for (j =0; j<graphSize ∗nNodes ; ++j) {
23 // Read edge weight from f i l e in to b u f f e r [j]
24 }
25 shmem int put (graph , bu f f e r , nNodes∗ graphSize , i) ;
26 }
27 }
28
29 // Al l PEs r e c e i v e graph
30 shmem bar r i e r a l l () ;
31 f r e e (bu f f e r) ;
32
33 // Al l PEs pick t h e i r lowes t edges (Kruskal ’ s a l gor i t hm)
34 for (j =0; j<nNodes ; ++j) {
35 minWeight = INT MAX;
36 minNode = 0 ;
37 for (i =0; i<graphSize ; ++i) {
38 weight = graph [j ∗ graphSize+i] ;
39 i f (weight && (weight < minWeight)) {
40 minWeight = weight ;
41 minNode = i ;
42 }
43 }
44 span [j ∗ graphSize+minNode] = minWeight ;
45 }
46
47 shmem bar r i e r a l l () ;
48 // span now conta ins the minimum spanning t r e e

108 J. Linford et al.

Fig. 1. The TAU framework architecture

machine (byte-code instrumentation), and operating system (kernel-level instru-
mentation). This broad coverage across instrumentation levels provides flexibil-
ity in exploring performance artifacts at any level of program transformation.
TAU is open source and all instrumentation, measurement, and analysis tools
are distributed under a BSD-like license.

The core of TAU is its scalable measurement infrastructure which provides
rich parallel profiling and tracing support. Performance information containing
execution time and hardware counter data can be captured for instrumented
events for all threads of execution. Communication events additionally record
message-related data that track process interactions. TAU can also associate
metadata with performance experiments.

SHMEMapplicationanalysis is achievedwithTAUvia source code instrumenta-
tion, library interposition, compiler instrumentation, and sampling.TAUcan track
memory allocations – both in a PE’s local memory and in the symmetric heap –
and network I/O caused by transfers to and from symmetric memory. In statically
linkedbinaries (e.g. forCray systems),memory tracking is achievedbywrapping all
allocation and deallocation routines at link time. Dynamically linked applications
may use tau exec to preload a memory tracking runtime library.

To track OpenSHMEM API calls and monitor communication between PEs,
TAU provides a single wrapper library applicable to all OpenSHMEM implemen-
tations. In past, SHMEMwrapper library developmentwas determined by the spe-
cific SHMEM library used by the system. This necessitated the production and
maintenance of several library variants and complicated the goal of portable per-
formance observation for the SHMEM runtime layer. However, the portability of
theOpenSHMEMstandard enables TAU tomaintain only a single implementation
of a single OpenSHMEM wrapper library. This approach provides performance
measurements at the language and the runtime level to achieve complete coverage
of the OpenSHMEM application source and runtime libraries.

Profiling Non-numeric OpenSHMEM Applications 109

2.2 Minimum Spanning Tree Algorithm

We use the symmetric hierarchical memory defined by OpenSHMEM to calculate
the MST as shown in Listing 1.1. The basic idea is to divide the graph among
the OpenSHMEM processing elements (PEs) by writing the edge weights to
symmetric memory (the graph variable in Listing 1.1). Each PE examines the
nodes it has been sent and writes the minimum edge weight to another region of
symmetric memory (span in Listing 1.1). This effectively distributes Kruskal’s
greedy algorithm across all PEs. By selecting the minimum edge connected to
all nodes, we ensure the resultant graph will be the minimum spanning tree.

3 Related Work

OpenSHMEM [3,7] has emerged as an effort to join the disparate SHMEM imple-
mentations into a common, portable and high performance standard. Bader and
Cong have demonstrated fast data structures for distributed shared memory [1].
Pophale et. al defined the performance bounds of OpenSHMEM [14].

NNA benchmarks are emerging to evaluate HPC system at scale. The Graph
500 is one such benchmark [12]. The problem of finding a minimum spanning
tree (MST) can be formally stated as: given an undirected, weighted graph
G = (V,E), a minimum spanning tree is the set of edges T in E that con-
nect all vertices in V at a minimum cost. Figure 2 illustrates the MST for a
fully connected graph with random edge weights and eight vertices. Both Prim’s
and Kruskal’s algorithms are considered “greedy” since they make the locally
optimal choice at each iteration, i.e. they choose an edge with minimum weight
that does not create a cycle [15,10].

Fig. 2. Fully connected eight node graph with minimum spanning tree

110 J. Linford et al.

3.1 Performance Analysis

Both profiling and tracing are relevant to better understanding the performance
characteristics of an application. While profiling shows summary statistics, trac-
ing can reveal the temporal variation in application performance. Among tools
that use the direct measurement approach, the VampirTrace [9] package provides
a wrapper interposition library that can capture the traces of I/O operations us-
ing the library preloading scheme used in tau exec. Scalasca [4] is a portable
and scalable profiling and tracing system that can automate the detection of
performance bottlenecks in message passing and shared memory programs. Like
many other tools, it uses library wrapping for MPI. TAU may be configured to
use Scalasca or VampirTrace internally. TAU, VampirTrace, and Scalasca use
the PAPI [2] library to access hardware performance counters present on most
modern processors. However, only the tau exec scheme provides the level of in-
tegration of all sources of performance information – MPI, I/O, and memory – of
interest to us, with the rich context provided by TAU. With this support, we can
utilize the VampirServer [8] parallel trace visualization system to show the per-
formance data through scalable timeline displays. Profile performance data can
also be easily stored in the PerfDMF database [6]. TAU’s profile browser, Para-
Prof, and its cross-experiment analysis and data-mining tool PerfExplorer [5]
can interface with the performance database to help evaluate the scalability of
an application.

4 Analysis of Prim’s and Kruskal’s MST Algorithms

This section provides time and space complexity analysis for a serial implemen-
tation of two MST algorithms in preparation for the discussion of a Kruskal’s
algorithm implementation that uses OpenSHMEM.

4.1 Prim’s Algorithm

Prim’s algorithm works by picking any vertex X to be the root of the MST. While
the tree does not contain all vertices in the graph, find a minimally weighted
edge leaving the tree and add it to the tree.

1. Choose any vertex X . Let S(set of vertices)={X} and A(set of edges)=∅.
2. Find a minimally weighted edge such that one endpoint is in S and the other

endpoint is in (V − S). Add this edge to A and the other endpoint to S.
3. If (V − S) = ∅, then stop. {S,A} is the Minimum Spanning Tree.
4. Else go to Step 1.

We implemented Prim’s algorithm in C and generated a MST using random
edge weights for 1 to 1000 vertices. Figure 3(a) shows the runtime of the serial
Prim’s implementation using both directed and undirected graphs. Only the num-
ber of vertices vary by case. These were run on an eight processor Intel Nehalem
node that was not dedicated, thus others were using the system. We expect this is

Profiling Non-numeric OpenSHMEM Applications 111

the cause of the fluctuation in times between the directed and undirected curves.
The O(n2) time complexity of the algorithm is apparent, as shown by the blue
line which was fit to the undirected data. We see that the directed graphs had the
same O(n2) trend but ran slower overall by a constant.

The space complexity of Prim’s Algorithm is shown in Figure 3(b). The data
was fit to an O(n2) curve and we can see the actual space usage is between
linear and quadratic, but not quite as low as O(n × log2(n)). The results for
space usage for the directed and undirected graph experiments were identical so
only the directed results are presented here.

(a) Time (b) Space

Fig. 3. Complexity of Prim’s algorithm

4.2 Kruskal’s Algorithm

Kruskal’s algorithm is similar to Prim’s but with a different search order:

1. Place every vertex in its own set.

2. Select edges in order of increasing weight.

3. As each edge is selected, determine if the vertices connected by that edge
are in different sets. If so then insert the edge into the set that is the MST
and take the union of sets containing each vertex.

4. Repeat steps 1-3 until all edges have been explored.

Figure 4(a) shows the Kruskal’s algorithm runtime for an undirected graph
under experimental conditions similar to those in the Prim’s experiments. The
graph representation is an adjacency matrix, so edge weights can be compared in
constant time. At each iteration, the minimum edge can be located in O(log2(E))
time, which is O(log2(V)), since the graph is simple. The total running time
is O((V + E) × log2(V)), which is O(E × log2(V)) since the graph is simple
and connected. The data show a very tight O(n × log2(n)) fit, which was the
theoretical expectation. The space complexity of Kruskal’s algorithm is shown in
Figure 4(b). The data fits almost perfectly to the theoretical O(n2) expectation.

112 J. Linford et al.

(a) Time (b) Space

Fig. 4. Complexity of Kruskal’s algorithm

5 OpenSHMEM Performance Analysis

We executed our OpenSHMEM experiments on 256 nodes of the “Titan” Cray
XK7 supercomputer and on a 48 core shared memory system at University of
Maryland Baltimore County (UMBC), consisting of 8, 6 core AMD Opteron pro-
cessors with 530GB of globally accessible shared memory. The application code
was an OpenSHMEM implementation of Kruskal’s algorithm as in Listing 1.1. In
each experiment, we used TAU to gather data for time spent in code regions of in-
terest (e.g. broadcast graph and calc spanning tree), heap memory allocated
and deallocated by routines like malloc and free, total bytes of memory used in
all routines, network I/O events initiated by routines like shmem int put), and
time spent waiting in barrier routines. We also enabled callpath profiling in TAU
so that the full execution path to all events was recorded. We used source based
instrumentation and the TAU compiler wrapper scripts to automatically intro-
duce measurement hooks into the OpenSHMEM application code at compile
time.

TAU uses the PSHMEM interface to support measurement of OpenSHMEM
routines. For every routine in the OpenSHMEM standard, PSHMEM provides
an analogous routine with a slightly different name. This allows profiling tools
to intercept and measure OpenSHMEM calls made by a user’s application by
defining routines with the same function signatures as OpenSHMEM routines
– “wrapper” functions – which call the appropriate PSHMEM routines. TAU
provides an OpenSHMEM wrapper library which can be linked to any OpenSH-
MEM application to acquire runtime measurements of OpenSHMEM routines.
The library can be used statically- or dynamically-linked applications. In our ex-
periments the application was statically linked since statically linked executables
are preferred on Titan.

Our fully instrumented applicationwas approximately 4% slower than the unin-
strumented application. If only time in code regions of interest were measured (no
memory or I/O measurements are taken) then overhead was approximately 1.5%.
Regardless of which events are recorded, TAU’s overhead is approximately O(1) in

Profiling Non-numeric OpenSHMEM Applications 113

the number of application processes, i.e. as the number of PEs increases the over-
head incurred by TAU remains relatively constant. Large applications can benefit
from reducing instrumentation to only regions of interest by use of a TAU select
file. We used a TAU select file to insert timers at specific source lines in the Open-
SHMEM application rather than fully instrument every routine.

Figure 5 shows exclusive time spent by PE 0 in regions of the code. The vast
majority of the time (64.987 seconds) is spent in reading the graph from file and
broadcasting the edge weights to the other PEs. The time spent calculating the
minimum spanning tree is minimal, only 0.008 seconds. Figure 6 is the counter-
part to Figure 5. It shows exclusive time spent by PE 1 in regions of the code.
The profile on all PEs except for PE 0 is nearly identical. The majority of time
is spent receiving data from PE 0, followed by a brief calculation to construct
the MST.

If we exclude the file I/O data we see only those routines directly involved in
the MST calculation. Figure 7 shows inclusive mean time spent by all PEs in
routines that do not perform file I/O or wait for PE 0 to complete its file I/O
operations. This figure shows that the initial broadcast of the graph weights via
shmem int put is the most expensive step in the MST calculation.

Figures 5-7 show data taken from interval events, which have a defined start
and stop point. Interval events are used to measure time spent in a code region.
Events such as memory allocations are recorded as atomic events, which record
a quantity (e.g. bytes allocated) when they are triggered. Figure 8 shows the
mean of atomic events gathered during the 512 PE experiment on Titan. Memory
allocation events and network sends and receives are visible. For example, across
all 512 PEs there was an average of thirteen heap memory allocations in the
shmem int put call in the broadcast graph section of the application. TAU has
also flagged two potential memory leaks caused by not explicitly deallocating
memory before the program exists. These leaks are of no concern since the
operating system will deallocate all heap memory on program exit. However,
if this application were converted to a library then these leaks would need to be
addressed.

Communication atomic events record the number of bytes sent or received
between PEs. TAU can display this information as a communication heat map
as in Figure 9. The communications matrix of the Titan supercomputer and
the 48-node shared memory appliance are markedly different. In both cases,
there is virtually no communication between PEs after PE 0 has distributed
the graph data. On both systems, peak communication volume is visible in red
in the zeroth row of the array and we see that no nonzero PE communicates
with itself. However, each PE on the 48-core appliance sends eight bytes to
every other PE while on Titan only PE 0 communicates with other PEs. From
our callpath data we determined that these sends on the 48-core appliance were
initiated by the shmem barrier all routine. This demonstrates TAU’s ability to
highlight implementation differences between libraries and explain unexpected
communication patterns.

114 J. Linford et al.

Fig. 5. Exclusive time on PE 0 of 512 on Titan, showing time spent reading the graph
from file and broadcasting it to the other PEs

Fig. 6. Exclusive time on PE 1 of 512 on Titan, showing time spent waiting to receive
the graph data from PE 0 and then calculating the MST

Fig. 7. Exclusive mean time on all 512 PEs on Titan in routines called while calculating
the MST after the graph has been broadcast

Profiling Non-numeric OpenSHMEM Applications 115

Fig. 8. The mean of context events observed in the OpenSHMEM implementation of
Kruskal’s algorithm on 512 PEs on Titan

TAU can construct a complete application callgraph from the callpath data
as shown in Figure 10. Boxes are colored according to their exclusive time: more
time is spent in red boxes than blue boxes. We note that three different memory
allocation routines were used in this application, though heap memory allocation
was only explicitly performed via malloc and shmalloc.

TAU can also perform application scaling studies. To demonstrate this on
Titan, we varied the number of PEs as a power of two ranging from four to
512. Afer each run, we used TAU’s profile browser (ParaProf) to package the
application data as a packed profile file and then imported the packed profile
into a TAUdb database [6]. We then used TAU’s cross-experiment analysis and
data-mining tool PerfExplorer [5] to explore the application scalability.

Figure 11 shows the runtime breakdown for varying PE counts on Titan.
shmem barrier all is the most expensive routine, accounting for approximately
80% of the application runtime in all cases. The relative cost of broadcasting the
graph decreases as the number of cores increases. The cost of computing the
MST is small in all cases and is included in the “other” category accounting for
approximately 3% of the application runtime.

116 J. Linford et al.

(a) 48-core Shared Memory Appliance (b) Titan

Fig. 9. Communication heat maps showing differences in the OpenSHMEM implemen-
tations on the 48-core appliance and Titan

Fig. 10. Kruskal’s OpenSHMEM callgraph. Box color corresponds to exclusive time.
Blue boxes are close to minimum and red boxes are close to maximum.

Profiling Non-numeric OpenSHMEM Applications 117

Fig. 11. Kruskal’s OpenSHMEM callgraph. Box color corresponds to exclusive time.
Blue boxes are close to minimum and red boxes are close to maximum.

6 Conclusions and Future Work

We have provided a performance analysis of both serial and parallel implemen-
tations of the standard minimum spanning tree (MST) algorithms from Prim
and Kruskal. We have developed an efficient OpenSHMEM implementation of
Kruskal’s MST algorithm and provided a profile of that implementation on two
HPC systems. We have demonstrated the portability of applications that use
OpenSHMEM and the portability of the profiling features of the TAU Perfor-
mance System. Our results suggest that OpenSHMEM is a flexible and powerful
API for PGAS programming that can be applied effectively to non-numeric al-
gorithms with a low FLOPS/byte ratio.

Profiling tools like TAU would benefit from further standardization and sup-
port for the PSHMEM interface. Unlike the PMPI interface which is fairly
mature, complete, and widely available, the PSHMEM interface has not been
completely established and in some implementations of OpenSHMEM is only
partially implemented. This necessitates special checks when TAU compiles
its OpenSHMEM wrapper library. TAU’s maintainers will continue to improve
TAU’s resilience to variations in the PSHMEM interface until the interface is
finalized.

TAU could also benefit from an interface which exposes synchronization of the
symmetric heap. At present, TAU intercepts the underlying system allocation
and deallocation calls and OpenSHMEM library calls to mark operations on the
symmetric heap. However, it is difficult to observe in a trace when an update

118 J. Linford et al.

to the symmetric heap becomes visible to other PEs. TAU could make use of a
mechanism for notifying a performance measurement system of symmetric heap
updates when they occur to improve the quality of the application performance
data.

Acknowledgments. Authors would like to thank The University of Oregon
NeuroInformatics Center and the NSF Center for Hybrid Multicore Productivity
Research at UMBC. This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

References

1. Bader, D.A., Cong, G.: Fast shared-memory algorithms for computing the mini-
mum spanning forest of sparse graphs. J. Par. Distrib. Comp. 66(11), 1366–1378
(2006), http://dx.doi.org/10.1016/j.jpdc.2006.06.001

2. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming
interface for performance evaluation on modern processors. International Journal
of High Performance Computing Applications 3(14), 189–204 (2000)

3. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C.,
Smith, L.: Introducing OpenSHMEM: SHMEM for the PGAS community.
In: Proceedings of the Fourth Conference on Partitioned Global Address
Space Programming Model, PGAS 2010, pp. 2:1–2:3. ACM, New York (2010),
http://doi.acm.org/10.1145/2020373.2020375

4. Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: Scalable parallel trace-based per-
formance analysis. In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.)
PVM/MPI 2006. LNCS, vol. 4192, pp. 303–312. Springer, Heidelberg (2006)

5. Huck, K., Malony, A.: PerfExplorer: A performance data mining framework for
large-scale parallel computing. In: Proceedings of the ACM/IEEE Conference on
Supercomputing, SC 2005 (2005)

6. Huck, K., Malony, A., Bell, R., Li, L., Morris, A.: PerfDMF: Design and imple-
mentation of a parallel performance data management framework. In: Proceedings
of the International Conference on Parallel Processing. IEEE (2005)

7. Jose, J., Kandalla, K., Luo, M., Panda, D.: Supporting hybrid MPI and OpenSH-
MEM over InfiniBand: Design and performance evaluation. In: The 41st Interna-
tional Conference on Parallel Processing (ICPP), pp. 219–228 (2012)

8. Knüpfer, A., Brendel, R., Brunst, H., Mix, H., Nagel, W.E.: Introducing the open
trace format (OTF). In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Don-
garra, J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 526–533. Springer, Heidelberg
(2006)

9. Knupfer, A., Brunst, H., Nagel, W.: High performance event trace visualization.
In: Proceedings of Parallel and Distributed Processing (PDP). IEEE (2005)

10. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-
man problem. Proceedings of the American Mathematical Society 7 (1956)

11. Meuer, H., Strohmaier, E., Dongara, J., Simon, H.: TOP 500 Supercomputer Sites
(2013), http://www.top500.org

http://dx.doi.org/10.1016/j.jpdc.2006.06.001
http://doi.acm.org/10.1145/2020373.2020375
http://www.top500.org

Profiling Non-numeric OpenSHMEM Applications 119

12. Murphy, R.C., Wheeler, K.B., Barrett, B.W., Ang, J.A.: Introducing the Graph
500 (May 2010)

13. Papadimitriou, C.H.: The Euclidean traveling salesman problem is NP-complete.
Theoretical Computer Science 4(3), 237–244 (1977)

14. Pophale, S., Nanjegowda, R., Curtis, T., Chapman, B., Jin, H., Poole, S., Kuehn,
J.: OpenSHMEM performance and potential: A NPB experimental study. In: The
6th Conference on Partitioned Global Address Space Programming Models, PGAS
2012 (2012)

15. Prim, R.C.: Shortest connection networks and some generalizations. Bell System
Technical Journal 36, 1389–1401 (1957)

16. Shende, S.S., Malony, A.D.: The TAU Parallel Performance System. Int. J. High
Perform. Comput. Appl. 20(2), 287–311 (2006),
http://dx.doi.org/10.1177/1094342006064482

http://dx.doi.org/10.1177/1094342006064482

A Global View Programming Abstraction for

Transitioning MPI Codes to PGAS Languages

Tiffany M. Mintz, Oscar Hernandez, and David E. Bernholdt

Oak Ridge National Laboratory
1 Bethel Valley Rd
Oak Ridge TN, USA

{mintztm,oscar,bernholdtde}@ornl.gov

Abstract. The multicore generation of scientific high performance com-
puting has provided a platform for the realization of Exascale computing,
and has also underscored the need for new paradigms in coding paral-
lel applications. The current standard for writing parallel applications
requires programmers to use languages designed for sequential execu-
tion. These languages have abstractions that only allow programmers to
operate on the process centric local view of data. To provide suitable
languages for parallel execution, many research efforts have designed
languages based on the Partitioned Global Address Space (PGAS) pro-
gramming model. Chapel is one of the more recent languages to be de-
veloped using this model. Chapel supports multithreaded execution with
high-level abstractions for parallelism. With Chapel in mind, we have
developed a set of directives that serve as intermediate expressions for
transitioning scientific applications from languages designed for sequen-
tial execution to PGAS languages like Chapel that are being developed
with parallelism in mind.

1 Introduction

The prevalence of multicore architectures for scientific computing has ushered in
a new era in high performance computing. The multicore era has been marked
by Peta-scale supercomputing machines with distributed shared memory ar-
chitectures that exploit the advantages of both the data and message passing
parallel paradigms[1]. The distributed shared memory architecture, known as
the Non-Uniform Memory Access (NUMA) architecture [2, 3], is composed of
a distributed yet globally accessible address space that allows all processors to
have direct access to all memory. The address space is distributed such that
each processor has a direct connection to a portion of memory, and is provided
a mapping which allows direct access to memory connected to other processors.
This global mapping enables a fast, direct reference of data stored in memory
partitions connected to other processors (remote data), and even faster access
to data in the processor’s own memory partition (local data). Since the NUMA
architecture is implemented on multicore devices [4–6], several processors are
placed on a chip to form a single compute node with a direct connection to the

S. Poole, O. Hernandez, and P. Shamis (Eds.): OpenSHMEM 2014, LNCS 8356, pp. 120–133, 2014.
c© Springer International Publishing Switzerland 2014

Global View Programming Abstraction 121

same memory partition. Each node is effectively a Symmetric Multiprocessor
(SMP) with very fast, uniform access to memory from each processor.

While the multicore, NUMA architecture provides fast data movement and
the potential for easy programmability, the current standard for programming
scientific applications for parallel execution does not truly exploit these advan-
tages. A sufficient programming model would need to provide mechanisms for
managing data locality as well as take advantage of the global view of data
provided by the architecture. Over the years, there has been much attention
given to the need for programming models and languages that provide high level
constructs that map well to scientific applications and provide opportunities for
optimal use of the underlying architecture[7]. A programming model that has
been the basis for much of the research and development of new languages is
Partitioned Global Address Space (PGAS) [8–10]. There has been consistent
research and development of PGAS languages from HPF in the early 90s to
Chapel which debuted about a decade later with new features and functionality
continually being added.

Although PGAS languages have yet to be fully adopted by the general HPC
community, we are encouraged by the continued progress being made in the
development of Chapel [11, 12] and the lessons learned from previous languages
like HPF [13], X10[14] and ZPL[15]. So with a focus on aiding the adoption of
PGAS languages by computational scientists in the HPC community, we have
developed a directives based approach to expressing the global view of local
data distributions and data movement in SPMD codes. This set of directives
will serve as an intermediate step for incrementally transforming scientific codes
from sequential, local view languages to parallel, global view languages.

The directives provide representations for high-level expressions of data distri-
butions, parallel data movement, processor arrangements and processor groups.
These assertions provide high-level constructs for describing the global nature of
an application without programmers having to manage low-level details. The di-
rectives also correlate to high-level structures in Chapel, such as locales, parallel
loops and domain maps so that replacing the directives with Chapel code is easy
and straightforward. In addition to using the directives for describing the global
state, a handle to the global domain is also created with every data distribution
to allow parallel loops and interprocessor communication to be expressed from
the global view using directives. For assertions of interprocessor data movement,
the directives are translated to OpenSHMEM message passing operations, which
provide consistent performance gains over MPI.

In this paper we continue our discussion of PGAS languages in Section 2.
Section 3 gives more specific details about the directives and how they can be
used to create explicit expressions of an application’s global view. Section 4
provides a case study of the directives in stencil and matrix multiply codes.
Section 5 concludes this paper with a summary of our approach.

122 T.M. Mintz, O. Hernandez, and D.E. Bernholdt

2 Implementations of the PGAS Model

Parallel programming models designed for partitioned global address space
(PGAS) languages UPC [16], Global Arrays (GA) [17], Co-Array Fortran (CAF)
[18] Fortran 2008, and Titanium [19], target large distributed memory systems
at different levels of abstraction. The PGAS languages provide a means for ex-
pressing local and global views of data and do not expect the programmer to
provide all the details of data exchange, thus improving productivity. To achieve
high performance, these models may be adapted to operate on a “local”, or frag-
mented, view of data, which entails major code reorganization. These languages
are good for single-sided communication of small to medium size messages since
they are optimized for low message latencies. They map well to data decompo-
sition parallel schemes. However, their adoption has been limited as they have
limited support for hybrid programming models and incremental parallelism.

The DARPA-funded “HPCS” programming languages Fortress [20], Chapel
[21], and X10 [22] were designed to support highly productive programming for
ultra scale HPC systems and merge the concepts of global views of data, tasks
and locality. They provide a wealth of new ideas related to correctness, locality,
efficiency and productivity. These languages offer different levels of expressivity
and abstraction, giving them distinct flavors from the application developer’s
perspective. Yet they have much in common, including the assumption of a hi-
erarchically parallel architecture and a global address space. They allow users to
control the placement of work and data (tasks and data distributions), exploit
ideas from object-oriented programming, and provide efficient synchronization
via transactions. These new languages imply a high learning curve for the user
and may not be intuitive enough for widespread adoption. Many proposed fea-
tures have yet to be tested in real petascale-level applications. Nevertheless,
much can be learned from these efforts and in the longer term, one or more of
them may be adopted.

3 Enabling a Global Perspective

In order to help programmers transition their applications from source code
written with a sequential language and parallelism enabled through the use of
MPI, we have developed a set of directives that are representative of some of the
principal concepts that are expressible using PGAS languages. A few of the key
features of most PGAS languages is the expression of data from a global view,
expressing data distribution patterns, and processor affinity for data movement.
To achieve our goal of providing high-level programming abstractions that map
to PGAS language constructs, we developed directives that provide high-level
descriptions of data distributions, parallel computation and interprocessor data
movement, as well as high level expressions for arranging and grouping proces-
sors. With these directives, the programmer is able to identify the regions of
their application that map well to the high level constructs provided by PGAS
languages, and incrementally transition their source code to these languages.

Global View Programming Abstraction 123

The remainder of this section, gives a description of each directive and how they
may be used in scientific applications.

3.1 Data Distributions

One of the major differences between PGAS languages and sequential languages
is the view of data. Sequential languages provide abstractions for a processor
centric, local view of data; while PGAS languages primarily provide abstractions
for a global view of data. Since the current standard for programming parallel
applications uses sequential languages coupled with message passing library calls,
programmers currently have to write their programs so that their data sets are
pre-distributed, and all subsequent computation and communication is expressed
relative to the distributed local data. In this programming model, there is no
native abstraction for expressing the global view and using this expression to
program applications.

To enable the expression of a global view of data in scientific applications,
we use the data map directive to describe the distribution of data across pro-
cessors. This directive allows the definition of BLOCK, CYCLIC and BLOCK CYCLIC

distributions, and provides a handle to a global domain that can be used to
access data and perform specific operations from the global view. The clauses
associated with data map are local data, global domain, distribution and
expand. The notation used to describe local and global data is:

buf<size1,...,sizeN>:[low1 idx..high1 idx,...,lowN idx..highN idx],

where buf is the name of a pointer or array,N is the number of dimensions in buf,
size1,...,sizeN is a list of the size of allocated memory for each dimension (op-
tional for global domain clause), and low1 idx..high1 idx,...,lowN idx..highN idx
is a list of the range of indices for each dimension. The distribution clause
allows the programmer to specify a distribution that corresponds to each dimen-
sion, or specify the distributions in list form to explicitly indicate the distribu-
tion of each dimension (i.e. distribution(NONE, BLOCK) would indicate that
the first dimension is not distributed and the second dimension has a BLOCK
distribution). The expand clause is most applicable for data mappings that re-
quire a ”scratch” space in the local data region. This region can be used to
store regularly accessed data that is resident on another processor but should
be mirrored on the current processor. Halo regions or ghost cells are common
implementations of a scratch space in a data region. Section 4 provides exam-
ples of how data map is used to describe distributions that are frequently used
in scientific applications.

3.2 Processor Groups and Arrangements

Features such as processor groups and common processor arrangements pro-
vide a basis for which more complex expressions can be built. Our group and
arrange processors directives establish this foundation using succinct expres-
sions that describe how the processors are assembled and ordered.

124 T.M. Mintz, O. Hernandez, and D.E. Bernholdt

To create a processor group, a programmer would provide a group name and
use triplet notation to indicate which processors would be in the group. A simple
example of how the group directive could be used is provided in Fig. 1. The group
that is created serves as a unique identifier for subsequent directive assertions.
Once the group is created it can be mapped to an arrangement, data distribu-
tion, and some expression of computation or interprocessor data movement. If a
group is not created or instanced by a directive, we assume the group to be all
processors.

Fig. 1. Example using group directive to create the group ’even proc’

Arranging processors has an equally simple expression which uses a combina-
tion of keywords and intuitively named clauses to describe the processors’ dispo-
sition. This directive supports several arrangements, including Master-Worker,
Grid, Tree, Ring, and List. Each of these arrangements have their own set of
associated clauses for creating the corresponding formations. Table 1 gives a list
of the arrangements and their clauses.

Each arrangement also has a unique set of relationships that can be assigned
based on the values passed to the directive. See Table 1. These relationships help
to describe data movement more concisely and with terminology that is familiar
to the user. Using this directive also relieves the programmer from having to
compute and manage, in some form, the process ids that correspond to these
relationships.

3.3 Data Movement

Once the programmer has defined how the processors will be grouped and how
they will be arranged within the group, expressing data movement using the

Global View Programming Abstraction 125

Table 1. Arrangements, associated clauses and the defined relationships within each
formation

GRID
<1D|2D|3D>

MASTER-WORKER

TREE

RING

LIST

global domain is very straightforward. Configuring the data mapping relative to
the processor arrangement enables a simplified expression of communication and
computation from the global view. To express data movement across processors,
programmers need only assert the update directive. The clauses associated with
this directive are update domain, update mirror, and on. The on clause is used
to specify the destination of the update.

When specifying a destination, the programmer can leverage the relationships
among processors in the arrangement declared for the group. For example, if
the processors are arranged in a list configuration, the programmer can simply
indicate HEAD, TAIL, NEXT, or PREVIOUS as the destination for the update. To
further support the PGAS programming model, this directive is translated to
an appropriate communication pattern using the OpenSHMEM message passing
library.

As previously stated, the expression of computation is also simplified when us-
ing the global view of data. Defining a global domain allows the expression of
a parallel loop in the form of a forall directive. This directive has the clauses
index var, domain and expression. The domain clause is used to define the iter-
ation space of the parallel forall loop. A user can specify the global domain created
by the data distribution or express the domain as a range of indices. If an explicit
range is specified, each processor’s iteration space is determined by evenly dis-
tributing the indices in the range according to the number of the processors in
the group. The index var clause accepts a list if variables used to iterate over the
domain. If the global domain handle is specified in the domain clause, then the
variables’ position in the list corresponds to that dimension in the global domain.
If index ranges are specified in the domain clause, then the variables’ position in
index var corresponds to the range in the same position of the domain clause.

126 T.M. Mintz, O. Hernandez, and D.E. Bernholdt

The computation in the expression clause is then concurrently executed on each
processor in the group.

4 Preliminary Experiments

As an initial step to demonstrating the simplicity of programming with our global
view directives to incrementally transition applications to a PGAS programming
paradigm, we have chosen two algorithms that are commonly implemented in
scientific applications. The first algorithm is Jacobi’s iterative method for solving
a system of linear equations, and the second algorithm is a dense matrix-matrix
multiplication. We compare C+MPI versions of these algorithms to selective
portions of the algorithms programmed using the directives. These experiments
were executed on a Cray XK7 system with 83 compute nodes. Each node has a
16-core AMD Opteron 6274 processor running at 2.2 GHz with 32 gigabytes of
DDR3 memory, and Cray’s high performance Gemini network.

4.1 2D Jacobi Iterative Solver

The 2D Jacobi iterative solver implements a common data distribution pattern
where the problem space is mapped onto a two dimensional grid and partitioned
across processors typically in block fashion. Points in the grid are updated itera-
tively, but an update may require data in neighboring cells that reside in a par-
tition stored on another processor. This requires frequent remote data accesses
to processors that ”own” the neighboring data. So parallel implementations not
only represent the program space as a 2D grid, but the processor formation is
also conceptualized as a 2D grid. While this is a very common distribution and
data access pattern, there are no native programming abstractions in sequential
languages that embody the concept. PGAS languages like Chapel have native
representations of this data distribution, but because of the global view of data,
have no need for explicit point-to-point communication when accessing remote
data.

Using our directives, we were able to explicitly express this distribution of
data while preserving the global view in the program for very simple, unob-
trusive assertions of communication. First we show, in Fig. 2, the difference in
how the 2D Grid arrangement is constructed in the two versions of the algo-
rithm. As you can see, we have been able to greatly reduce lines of code and
programming effort for constructing a 2D Grid. Next, Fig. 3 shows how the
data map directive was used to express the block data distribution and create
a handle to the global domain. In this assertion, we specify mat as the local
partition of data with plines rows and pcols columns. The ”scratch” space
which will be used to store remote data is defined as an expansion of one row
and one column (in every direction) of the local partition mat, and this data is
to be mirrored in the distribution. The global domain is defined as a 2D matrix
with plines*proc y rows and pcols*proc x columns, and is accessible through
the handle Global Matrix. Global Matrix is then used to assert an update of

Global View Programming Abstraction 127

Fig. 2. Comparison of C and directive versions of 2D Grid setup

Fig. 3. Depiction of the block distribution created with the directives in the Jacobi
algorithm

128 T.M. Mintz, O. Hernandez, and D.E. Bernholdt

Fig. 4. Comparison of MPI code and directive assertion for communicating with neigh-
boring processors

the remote data using the keyword ALL NEIGHBORS to indicate the destination.
Figure 4 shows a comparison of the C+MPI and directive version of this com-
munication. As in Fig. 2 we are again able to greatly reduce the lines of code
and programming effort for expressing this communication.

As for performance, the overhead for creating and managing a 2D grid and the
additional data structures needed for the neighbor communication in the C+MPI
code is approximately 3.7x greater than the overhead to create and manage the
2D grid and block distribution with the directives. This significant difference in
overhead performance is primarily due to the need for additional data structures
to send and receive non-contiguous data in the matrix columns when using MPI
point-to-point communication. Because OpenSHMEM provides strided message
passing operations for point-to-point communication, the directive translation
does not require additional structures for transferring data between east and
west neighbors. So, the overhead performance cost for constructing the topology
and distribution for a Jacobi algorithm using these global view directives is
O(1) since the number of computations and memory accesses needed to assign
neighbors and compute and maintain global offsets and indices in the underlying
translation of the directives is constant on each process even as the number of
processes increase.

Moreover, translating the communication between neighboring processes using
OpenSHMEM put operations provided additional performance improvements

Global View Programming Abstraction 129

over the original C+MPI code which implements MPI Send and MPI Recv op-
erations. The OpenSHMEM translation of the directives provided a 2x average
speedup over the MPI implementation of the neighbor communication. The per-
formance results for the overhead and communication are plotted in Fig. 5 and
Fig. 6, respectively.

Fig. 5. Graph of overhead in C+MPI and directive version of the Jacobi solver

Fig. 6. Graph of neighbor communication time in C+MPI and directive version trans-
lated to OpenSHMEM of the Jacobi solver

4.2 Matrix-Matrix Multiply

The matrix-matrix multiply algorithm has a similar data distribution as the Ja-
cobi algorithm. This distribution is also a block distribution, but only the first
dimension of the 2D space is distributed. The processor arrangement for this
algorithm is a MASTER-WORKER formation where the master also shares the com-
putational workload. Because of its computational characteristics, we were able

130 T.M. Mintz, O. Hernandez, and D.E. Bernholdt

Fig. 7. C+MPI and global view directives versions of Matrix-Matrix Multiplication
algorithm

to almost completely program this algorithm using our global view directives.
Figure 7 shows a comparison of the C+MPI version and the version using our
global view directives. The most obvious difference is the substantial reduction
in the lines of code. Another significant difference is the use of the data’s global
view to express loop computation. We were able to execute each loop using the
forall directive.

Since in the C+MPI code the master processor is responsible for computing
then distributing initial data, there is a considerable difference in the overhead.

Global View Programming Abstraction 131

Fig. 8. Graph of matrix-matrix multiply overhead for (a)C+MPI version and
(b)Directive version

Fig. 9. Graph of average execution time for communication needed to transfer the
matrix-matrix multiply solution to the master process

The directive code uses the forall directive to initialize data which does not re-
quire any message passing communication. Figure 8 provides the graphs plotting
the overhead.

As for the communication needed to update the matrix-matrix multiply solu-
tion on the master processor, the update directive is translated to OpenSHMEM
put operations on all the processors except the master with a barrier synchroniza-
tion. Even with a notoriously costly collective synchronization, the OpenSHMEM
translation of the directive provides a 2.5x average speedup over MPI. Figure 9
shows the average execution time for the matrix-matrixmultiply communication.

5 Conclusion

Supercomputing architectures are steadily pushing the performance envelope in
order to reach the next levels of computing capabilities. While our computer

132 T.M. Mintz, O. Hernandez, and D.E. Bernholdt

and computational scientists have been able to steadily evolve their applications
to run on these advanced architectures, more and more effort is being spent
transforming source code. This is a definite signal to the HPC community for
a new programming paradigm that provides high- level abstractions for parallel
programming and enables good performance. We believe the PGAS model has
the potential to be or greatly influence a new paradigm. PGAS languages like
Chapel are continually making progress toward providing a rich set of features
for parallel programming and good run-time performance. We believe incremen-
tally transitioning scientific applications to PGAS languages will facilitate their
adoption. Our global view directives are a fitting approach to this incremen-
tal transition. By providing directive assertions for data distributions, processor
groups and arrangements, and global data movement, we enable global expres-
sions that are analogous to the expressions found in Chapel codes in applications
with an otherwise local, processor centric view of data.

Acknowledgment. This research is sponsored by the Office of Advanced Sci-
entific Computing Research; U.S. Department of Energy, including the use of
resources of the Oak Ridge Leadership Computing Facility. The work was per-
formed at the Oak Ridge National Laboratory, which is managed by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725. This manuscript has been au-
thored by a contractor of the U.S. Government. Accordingly, the U.S. Govern-
ment retains a non-exclusive, royalty-free license to publish or reproduce the
published form of this contribution, or allow others to do so, for U.S. Govern-
ment purposes.

References

1. Top 500 supercomputers (2013), http://www.top500.org/
2. Bolosky, W., Fitzgerald, R., Scott, M.: Simple but effective techniques for numa

memory management. In: Proceedings of the Twelfth ACM Symposium on Oper-
ating Systems Principles, SOSP 1989, pp. 19–31. ACM, New York (1989)

3. Black, D., Gupta, A., Weber, W.D.: Competitive management of distributed shared
memory. In: COMPCON Spring 1989. Thirty-Fourth IEEE Computer Society In-
ternational Conference: Intellectual Leverage, Digest of Papers, pp. 184–190 (1989)

4. Blagodurov, S., Zhuravlev, S., Fedorova, A., Kamali, A.: A case for numa-aware
contention management on multicore systems. In: Proceedings of the 19th Inter-
national Conference on Parallel Architectures and Compilation Techniques, PACT
2010, pp. 557–558. ACM, New York (2010)

5. Rabenseifner, R., Hager, G., Jost, G.: Hybrid mpi/openmp parallel programming
on clusters of multi-core smp nodes. In: 2009 17th Euromicro International Confer-
ence on Parallel, Distributed and Network-based Processing, pp. 427–436 (2009)

6. Jin, H., Jespersen, D., Mehrotra, P., Biswas, R., Huang, L., Chapman, B.: High
performance computing using mpi and openmp on multi-core parallel systems.
Parallel Comput. 37(9), 562–575 (2011)

7. Kasim, H., March, V., Zhang, R., See, S.: Survey on parallel programming model.
In: Cao, J., Li, M., Wu, M.-Y., Chen, J. (eds.) NPC 2008. LNCS, vol. 5245, pp.
266–275. Springer, Heidelberg (2008)

http://www.top500.org/

Global View Programming Abstraction 133

8. Yelick, K., Bonachea, D., Chen, W.Y., Colella, P., Datta, K., Duell, J., Graham,
S.L., Hargrove, P., Hilfinger, P., Husbands, P., Iancu, C., Kamil, A., Nishtala,
R., Su, J., Welcome, M., Wen, T.: Productivity and performance using partitioned
global address space languages. In: Proceedings of the 2007 International Workshop
on Parallel Symbolic Computation, PASCO 2007, pp. 24–32. ACM, New York
(2007)

9. Bonachea, D., Hargrove, P., Welcome, M., Yelick, K.: Porting gasnet to portals:
Partitioned global address space (pgas) language support for the cray xt. Cray
User Group, CUG 2009 (2009)

10. Barrett, R.F., Alam, S.R., d Almeida, V.F., Bernholdt, D.E., Elwasif, W.R.,
Kuehn, J.A., Poole, S.W., Shet, A.G.: Exploring hpcs languages in scientific com-
puting. Journal of Physics: Conference Series 125(1), 012034 (2008)

11. Dun, N., Taura, K.: An empirical performance study of chapel programming lan-
guage. In: 2012 IEEE 26th International Parallel and Distributed Processing Sym-
posium Workshops PhD Forum (IPDPSW), pp. 497–506. IEEE Computer Society,
Los Alamitos (2012)

12. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel
language. Int. J. High Perform. Comput. Appl. 21(3), 291–312 (2007)

13. Kennedy, K., Koelbel, C., Zima, H.: The rise and fall of high performance fortran:
an historical object lesson. In: Proceedings of the Third ACM SIGPLAN Confer-
ence on History of Programming Languages, HOPL III, pp. 7–1–7–22. ACM, New
York (2007)

14. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, OOPSLA
2005, pp. 519–538. ACM, New York (2005)

15. Chamberlain, B.L., Choi, S.E., Deitz, S.J., Snyder, L.: The high-level parallel lan-
guage zpl improves productivity and performance. In: Proceedings of the First
Workshop on Productivity and Performance in High-End Computing (PPHEC
2004), pp. 66–75. Citeseer (2004)

16. Carlson, W.W., Draper, J.M., Culler, D.E., Yelick, K., Brooks, E., Warren, K.: In-
troduction to UPC and language specification. Technical report, Center for Com-
puting Sciences (May 1999)

17. Nieplocha, J., Krishnan, M., Tipparaju, V., Palmer, B.: Global Arrays User Manual
18. Numrich, R.W., Reid, J.K.: Co-Array Fortran for parallel programming. ACM

Fortran Forum 17(2), 1–31 (1998)
19. Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy, A.,

Hilfinger, P., Graham, S., Gay, D., Colella, P., Aiken, A.: Titanium: A high per-
formance Java dialect. Concurrency: Practice and Experience 10, 825–836 (1998)

20. Allen, E., Chase, D., Luchangco, V., Maessen, J.W., Ryu, S., Steele Jr., G., Tobin-
Hochstadt, S.: The Fortress language specification, version 0.785 (2005)

21. Cray Inc.: Chapel specification 0.4 (2005), http://chapel.cs.washington.edu/
specification.pdf

22. Charles, P., Donawa, C., Ebicioğlu, K., Grothoff, C., Kielstra, A., Saraswat, V.,
Sarkar, V., Praun, C.V.: X10: An object-oriented approach to non-uniform cluster
computing. In: Proceedings of the 20th ACM SIGPLAN Conference on Object-
Oriented Programing, Systems, Languages, and Applications, ACM SIGPLAN,
pp. 519–538 (2005)

http://chapel.cs.washington.edu/specification.pdf
http://chapel.cs.washington.edu/specification.pdf

Extending the OpenSHMEM Analyzer

to Perform Synchronization
and Multi-valued Analysis

Swaroop Pophale1, Oscar Hernandez2,
Stephen Poole2, and Barbara M. Chapman1

1 University of Houston, Houston, Texas 77004, USA
{spophale,chapman}@cs.uh.edu

2 Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37840, USA
{oscar,spoole}@ornl.gov

Abstract. OpenSHMEM Analyzer (OSA) is a compiler-based tool that
provides static analysis for OpenSHMEMprograms. It was developedwith
the intention of providing feedback to the users about semantics errors due
to incorrect use of the OpenSHMEM API in their programs, thus making
development of OpenSHMEM applications an easier task for beginners as
well as experienced programmers. In this paper we discuss the improve-
ments to theOSA tool to perform parallel analysis to detect collective syn-
chronization structure of a program. Synchronization is a critical aspect of
all programming models and in OpenSHMEM it is the responsibility of the
programmer to introduce synchronization calls to ensure the completion of
communication among processing elements (PEs) to prevent use of old/in-
correct data, avoid deadlocks and ensure data race free execution keeping
in mind the semantics of OpenSHMEM library specification. Our analysis
yields three tangible outputs: a detailed control flow graph (CFG) making
all the OpenSHMEM calls used, a system dependence graph and a barrier
tree. The barrier tree represents the synchronization structure of the pro-
gram presented in a simplistic manner that enables visualization of the pro-
gram’s synchronization keeping in mind the concurrent nature of SPMD
applications that use OpenSHMEM library calls. This provides a graphi-
cal representation of the synchronization calls in the order in which they
appear at execution time and how the different PEs in OpenSHMEMmay
encounter them based upon the different execution paths available in the
program. Our results include the summarization of the analysis conducted
within themiddle-end of a compiler and the improvements we have done to
the existing analysis to make it aware of the parallelism in the
OpenSHMEM program.

1 Introduction

OpenSHMEM is a PGAS library that may be used with C, C++ or Fortran
SPMD programs to achieve potentially low-latency communication via its one-
sided remote direct memory access (RDMA) calls on shared as well as distributed
systems that have the required hardware capability. Compilers are not aware
of the parallel semantics of the OpenSHMEM library and they treat it like a

S. Poole, O. Hernandez, and P. Shamis (Eds.): OpenSHMEM 2014, LNCS 8356, pp. 134–148, 2014.
c© Springer International Publishing Switzerland 2014

Extending the OpenSHMEM Analyzer to Perform Synchronization 135

black box, thus hindering optimizations. OpenSHMEM analyzer (OSA) [1] is
the first effort to develop a compiler-base tool aware of the parallel semantics
of an OpenSHMEM library. OSA is built on top of the OpenUH compiler, that
provides information about the structure of the OpenSHMEM code and semantic
checks to ensure the correct use of the symmetric data in OpenSHMEM calls.

This paper describes how we built on top of the existing OSA framework to
provide an in-depth synchronization analysis based on the control flow of the
OpenSHMEM program that can be used to match collective synchronization
calls, which are the building blocks for detecting the possible concurrent execu-
tion paths of an application. Our framework uses the concepts of multivalued
seeds and multivalued expressions to build a multi-valued system dependence
graph in the context of OpenSHMEM, which later is used to build a barrier-tree
representation. Concurrency in an SPMD application results from distinct paths
of execution which are effected by providing conditions that evaluate to differ-
ent values on different PEs. Such expressions within the conditionals are called
multi-valued expressions [2–5] and the particular variable used within the expres-
sion that causes this phenomenon is the multi-valued seed. Here we implement
the critical parts of the framework proposed in [6] and provide insights into the
the practical aspects of detection of multi-valued expressions by identification
and tracing of multi-valued seeds.

Within the OpenUH compiler the source code is converted into an intermedi-
ate representation (IR) called WHIRL. Each phase within the OpenUH compiler
performs lowering of WHIRL (starting from Very High WHIRL) to finally get
the executable in machine instructions. We do our analysis within the inter-
procedural analysis phase (IPA) using the High WHIRL to help us build inter-
procedural control flow and data flow graphs while preserving the high level
constructs of a program, such as DO LOOP, DO WHILE, and IF, which are
critical for multi-valued analysis. We merge information available from different
phases of the compiler and present the results of our analysis in the form of two
graphs: a system dependence graph at the statement level clearly marking the
control and data dependences across statements in the program, while the second
graph structure is the barrier- tree where the leaves of tree are OpenSHMEM
collective synchronization calls (shmem barrier and shmem barrier all) and the
nodes are operators (discussed in Section 4) that represent the possible concur-
rent control flow within the program. This visual aid provides the programmer
with necessary information to verify if there is congruence in the intent of the
program with its actual execution structure.

This paper is organized as follows. We describe our motivation for extending
the analysis capability of OSA in Section 2 and provide better understanding of
OpenSHMEM’s memory model and synchronization semantics in Section 3. We
discuss the changes to the infrastructure and implementation details in Section 4
and present our results with the help of the Matrix Multiplication application in
Section 5. Section 6 describes different static analysis techniques that have been
explored for concurrency and synchronization detection in parallel programming
models. In Section 7 we summarize our contributions and our aspirations for the
future of the OSA tool.

136 S. Pophale et al.

2 Motivation

The main characteristics of a program are captured by the control flow and data
flow within the program. Especially in parallel programming it is often benefi-
cial to be able to visualize the interaction of the different program components.
PEs executing in parallel may take different paths depending on the explicit or
implicit requirements set by the programmer. These are often expressed as condi-
tions over variables that evaluate to different values on different PEs. Capturing
this information in a simplistic visual manner can aid the users understand the
concurrency in their applications. Figure 1 show a control flow graph (CFG) of
an OpenSHMEM program described in Listing 1.1. Here each basic block has
a single entry point and a single point of exit, and may contain OpenSHMEM
calls. Using this CFG alone cannot convey the different paths that are possi-
ble within the program. To be able to distinguish these different paths we need
to identify multi-value conditionals we need to essentially follow the propaga-
tion of the multi-value seeds through the program and mark the conditionals
that are affected directly or indirectly by them [7]. To build such multi-valued
CFG, we need to identify multi-valued seeds, determine the control flow and
capture the effect of such seeds by analyzing the data flow. This results in a
system dependence graph that can be used to do logical program slicing based
on multi-valued conditions. This can later used to build a barrier tree to perform
our synchronization analysis.

Listing 1.1. An OpenSHMEM program example with unaligned barriers

1 int main(int argc , char *argv[]){
2 int me,npes;
3 int i,old;

5 start_pes(0);
6 me = _my_pe ();
7 npes = _num_pes ();
8 y = me*2;
9 x=me;

10 if(me==0){
11 shmem_barrier_all();
12 int temp = x+y;
13 shmem_barrier_all();
14 }
15 else {
16 if(me==1){
17 shmem_barrier_all();
18 old = shmem_int_finc (&y, 0);
19 shmem_int_sum_to_all(&y,&x,1,1,0,npes -1,pWrk ,pSync);
20 x= x+10;
21 shmem_int_get(&y,&y,1,0);
22 shmem_barrier_all();
23 }
24 else{
25 shmem_barrier_all();
26 shmem_int_sum_to_all(&y,&x,1,1,0,npes -1,pWrk ,pSync);
27 x=y*0.23
28 shmem_barrier_all();
29 }
30 }
31 return 0;
32 }

Extending the OpenSHMEM Analyzer to Perform Synchronization 137

Fig. 1. Control Flow Graph of the OpenSHMEM program from Listing 1.1

The CFG is represented as a sequence of basic blocks which shows the pos-
sible alternatives within the program but does not provide explicit information
on what or how the control is determined and what data dependence may af-
fect the concurrency relationship between different parallel paths of execution.
This is better depicted by the system dependence graph [8] as shown in Figure
2. To determine the exact execution path or slice we look at the combination
of the data flow and control flow information generated by the compiler. The
system dependence graph is expressed in terms of statements and based on the
CFG and the outcome of the conditional statements each control edge is either
marked true (T) or false (F). In Figure 2 if we were to take a forward slice
of the sample program based on the multi-valued PE number me at A2, then
we get either A2-A3-A4-A5-A6-B1-B2-B3-C or A2-A3-A4-A5-A6-C-D1-D2-D3-
D4-D5-D6 or A2-A3-A4-A5-A6-C-E1-E2-E3-E4 depending on the value of me.
These slices help us identify the multi-valued conditionals in the program by
finding the points at with the execution paths diverge. Synchronization anal-
ysis is another important aspect to understand the relationship between code
regions. A code phases [9] can be defined as a valid (synchronization free) path
enclosed within two global synchronization statements. Since OpenSHMEM has
unaligned global synchronization, the first step is to identify these statements
across different execution paths. This helps in the identification of potentially
concurrent code or errors due to unmatched barriers. Our work in this paper ad-
dresses the challenges of extracting information from the compiler and merging
it with rules based off OpenSHMEM library semantics and presenting it to the
user in a condensed meaningful format for visual inspection which can be used
to detect synchronization mismatch, incorrect conditionals etc.

138 S. Pophale et al.

return 0; eturn

 start_pes(0);

shmem_barrier_all();barrier all();

T

if(me==1)

F

shmem_barrier_all();

T

F

ENTRY

tart pes(0); me = _my_pe(); npes = _num_pes(); x=me; if(me==0)

old = shmem_int_finc (&y, 0) shmem_int_sum_to_all(&y,&x,1,1,
0,npes-1,pWrk,pSync);

T
T

T T

shmem_barrier_all()

shmem_int_sum_to_all(&y,&x,1,1,0,npes-
1,pWrk,pSync);

F

x=x+10

shmem_barrier_all()

A1 A2 A3 A4 A5

B1

D1 D2 D3
D4 D5

C

E1 E2

;_ y_p (); p _ _p ()A33 if(me==0if(me==x=me;x=mee;x=meA5A5A5

T
T T T T

 y=me*2; A6

T

_ y_p (); p _ _p ();A33my pe();my pe(); npes = _ _p ();num pes();s()sA3A33 A4A4

TT TT

y=me*2s ;s()s ;s() A4A4 y=me*

TTTTTTT

m_int_finc (y,) shmem_int_sum_to_allm int finc (&y, 0) shmem int sum to allm to allDDD333f ()

TTTTTTT
T

shmem_int_get(&y,&y,1,0)

D6

int temp = x+y; shmem_barrier_all(); B2 B3

T T
1)1)

FFF

1==1=emp = y; _ _ ();B3B3B3emp = x+y; shmem bB3B3

TT

if(meme=Cbarrier all();

TT

S

F

x = y * 0.23 E3

TT

D5

TT

shmem_int_ge

DD
S
(&y,&x,1,111,,,

Sync);
(&(&&(&

0xx x+100

TT

xDDDD4444 x=x+10

F

23 shmem_barrier_all()
;

F

E4

T

F

_all(&y,&x,1,1
)

1 x = y 0.21,0,npes-

F

x = y * 0 2E3

Control Dependence Edge

Data Dependence Edge

Control Dependence Edge

Data Dependence Edge

Fig. 2. System Dependence Graph of OpenSHMEM example (Listing 1.1) showing the
control and data dependencies at statement level

3 OpenSHMEM Library

As mentioned before OpenSHMEM is a PGAS library that provides routines
for programmers using the SPMD programming paradigm. The OpenSHMEM
Specification [10] provides the definition, functionality and expected behavior of
these library calls. OpenSHMEM communication calls are one-sided, i.e. they
do not require the involvement of the target PE for completion and when the
underlying hardware allows RDMA, it can provide excellent opportunities for
hiding communication latency by overlapping communication with computation.

OpenSHMEM introduces the concept of symmetric variables. By definition,
symmetric data consists of variables that are allocated by an OpenSHMEM li-
brary (using special memory allocation calls) or defined as global or static in
C/C++ or in common or save blocks in Fortran [10]. These variables have the
same name, size, type, storage allocation, and offset address on all PEs. The
library calls shmalloc (C/C++) and shpalloc (Fortran) allocate and manage
symmetric variables on the symmetric heap, which is remotely accessible from
every other PE. Symmetric data allocation is a collective process and Open-
SHMEM Specification requires that it appear at the same point in the code
with identical size value [10]. This data is local to the PE and is not visible
or directly accessible to a remote PE. Some OpenSHMEM library routines like
shmem put and shmem get may use local variables as the source and target re-
spectively. Hence for analysis for multi-valued seeds we must consider both types
of data in conjunction with the OpenSHMEM calls they are used with.

Extending the OpenSHMEM Analyzer to Perform Synchronization 139

3.1 Synchronization Semantics

Collective synchronization is provided by shmem barrier and shmem barrier all
(over a subset of PEs and all PEs respectively) in OpenSHMEM. A barrier
call guarantees synchronization as well as completion of all pending remote
and local OpenSHMEM data transfer operations and leaves the memory in
a consistent state. A shmem barrier is defined over an active set. An ac-
tive set is a logical grouping of PEs based on the triplet, namely,PE start,
logPE pe, and the PE size [10]. OpenSHMEM allows for unaligned barri-
ers, both the code listings, Listing 1.2 and 1.3, are equivalent and valid as
per OpenSHMEM Specification 1.0. This makes it easy to miss synchroniza-
tion errors and may lead to unintended execution patterns or worse, dead-lock.

Listing 1.2. C code with unaligned
barriers

1 if(_my_pe () % 2 == 0){
2 ...
3 shmem_barrier_all();
4 } else{
5 ...
6 shmem_barrier_all();
7 }

Listing 1.3. C code with aligned bar-
rier

1 f(_my_pe () % 2 == 0){
2 ...
3 } else{
4 ...
5 }
6 shmem_barrier_all();

By providing information at compile time the programmer can analyze the
program structure before execution, thus preventing resource wastage.

4 Methodology

As discussed above, the two main concepts to consider for concurrency analysis
of OpenSHMEM program are multi-valued expressions and unaligned barriers.
In this section, we discuss the structure of the OSA and the additional analysis
added to it to be able to do the multi-valued analysis and evaluate the system
dependence graph and the barrier-tree for the entire program.

4.1 OSA Infrastructure

Figure 3 shows the different stages within the compiler and the shaded region
are the phases where OSA tool does most of its analysis. Since we need the
data flow information, alias analysis and the control flow information for each
individual procedure we build our analysis at the local inter-procedural phase. At
this phase all analyses is performed on the High WHIRL IR where variables and
control flow statements are preserved and can be easily mapped to the source
code and the control flow is fixed [11]. We used the DU-manager, Alias Manager
and control flow analysis data structures to build our system dependence graph
to perform multi-valued analysis.

140 S. Pophale et al.

Fig. 3. Shaded blocks indicate OSA analysis within the OpenUH compiler

4.1.1 Identification of Multivalued Seeds
As defined in Section 2multi-valued expressions evaluate to different results on dif-
ferent PEs. The outcome of a multi-valued expression depends on a multi-valued
seed. [5] states certain generic rules governing the multi-calued property of pro-
gramming variables. For example, uninitialized data structures are marked as
multi-valued. We extend certain assumptions about the expressions that gener-
ate from a known single-valued or multi-valued seed based on the OpenSHMEM
programming model. We modify the classification scheme formulti-valued seed in
presence of OpenSHMEM calls and their treatment of different programvariables.

For example, the return value for the OpenSHMEM call my pe() is unique
for every PE and hence is multi-valued. In contrast num pes() returns the same
value throughout the program for all PEs and hence the return value (and the
variable associated with it) is considered single valued. Likewise, other Open-
SHMEM library calls have an impact on the variable they modify. Generally,
all PE-to-PE operations that modify data cause the variable to become multi-
valued, while collective operations that modify target variables on all the PEs
cause the target to be single-valued (else they result in multi-valued target). By
analyzing the type of a variable and how it is modified (for example, if it is
defined via a multi-valued OpenSHMEM call) we can then classify it as a single
or multi-valued seed. A multi-valued seed may affect the value of other program
variables or may only alter the control flow. The detection of resulting multi-
valued variables is done by propagating the multi-valued seeds using the D-U

Extending the OpenSHMEM Analyzer to Perform Synchronization 141

Table 1. Rules for building a barrier expression

Placement of barriers Operator used Result

b1 followed by b2 · b1 · b2
if{ b1 } else { b2 }; | b1 | b2

for(n times) b; · b1· b2 · ... bn

Chains generated. For every definition of a program variable there is a use-list
associated with it and a set of statements that may directly or indirectly (via
aliases) use the variable. We append this information with the control depen-
dencies extracted from the control flow graph with the help of the dominator
frontier information. Both of this combined gives the system dependence graph
which the OSA generates for the user to inspect.

4.1.2 Generating Barrier Trees
[7] defines a barrier expression as being very similar to a path expression,
with barriers connected by operators that best describe the control flow of the
program. We extract the synchronization structure in a tree format by iter-
ating over the IR generated by the compiler. By recording the barriers (both
shmem barrier all and shmem barrier) their relative position, and the control
flow between them we generate a barrier tree for the entire program where the
barriers are leaf nodes and the operators are the nodes of the tree. Like reg-
ular expressions, barrier trees use three types of operators: concatenation (·),
alternation (|), and quantification (∗) [12]. Table 1 gives the rules that govern
the barrier expression generation. It is important to note that if the result of a
quantification operation can at times be statically non-deterministic and we may
not be able to compute the barrier-expression in terms of the exact number of
barriers encountered for such a program. Additionally we borrow the operator |c
from [7] to indicate the operator concurrent alternation. This operator indicates
that the different execution paths diverge from a multi-valued conditional.

Listing 1.4. OpenSHMEM example to explain concurrent alternate paths of execution

1 int main(){
2 if(){
3 shmem_barrier_all(); //b1
4 ..
5 shmem_barrier_all(); //b2
6 }
7 else {
8 shmem_barrier_all(); //b3
9 ..

10 }
11 return 0;
12 }

We use the multi-value analysis saved in the system dependence graph to dis-
tinguish concurrent paths that may be present with a barrier tree. In our barrier
tree representation the main function entry is indicated by the concatenation

142 S. Pophale et al.

(a) Barrier-tree without multi-valued
analysis

(b) Barrier-tree with multi-valued anal-
ysis

Fig. 4. Barrier trees generated by OSA for code Listing 1.4(where CON-
CAT=concatenation, ALT= alternation, AltC = alternate concurrent, B =
shmem barrier, and BA = shmem barrier all)

(CONCAT) as root. All operators are appended by a number which indicates
their relative position of occurrence in the program’s control flow. All barriers
(barrier all = BA, barrier=B) have independent numbering based on breadth
first traversal ordering. This means that barriers in the if-then branch will have
lower numeric labels than the if-else branch. Other operators are represented as
follows: quantification (QUANT), alternation (ALT), and alternate concurrent
(AltC). For example, the code in Listing 1.4 would evaluate to the barrier expres-
sion: (b1.b2) | b3 and would be represented by our compiler analysis (without
multi-value information)by a barrier-tree in Figure 4a. Purely based on Fig-
ure 4a the programmer has no way of knowing the different paths of execution
that may be possible. Consider two possible scenarios, if the first if conditional
in line 2 resulted in the same value on all PEs then all PEs would either en-
counter barriers b1-b2 or b3. But if the same conditional resulted in different
values on different PEs then some PEs would encounter barriers b1-b2 and oth-
ers would encounter b3 : which is a obvious stall situation caused by un-matched
synchronization calls. This is indicated by AltC (alternate concurrent) label in
Figure 4b. We augment the multi-value analysis to this providing a more mean-
ingful representation of the program structure. Figure 4b depicts the barrier tree
for the second scenario discussed above.

5 Results

We test our analysis framework on the Matrix Multiplication application which is
part of the examples in the OpenSHMEM Validation and Verification Suite [13].
The application consists of three 2-D arrays A, B, and C, where C is used to
store the product of two matrices A and B.

Extending the OpenSHMEM Analyzer to Perform Synchronization 143

Listing 1.5. Matrix Multiplication application’s main body

2 for (i = 0; i < rows; i++)
3 {
4 for (p = 1; p <= np; p++)
5 {
6 // compute the partial product of c[i][j]
7 ...
8 // send a block of matrix A to the adjacent PE
9 shmem_barrier_all ();

10 if (rank == np - 1){
11 shmem_double_put (&a_local [i][0], &a_local [i][0], blocksize , 0);
12 shmem_barrier_all ();
13 }
14 else{
15 shmem_double_put (&a_local [i][0], &a_local [i][0], blocksize ,
16 rank + 1);
17 shmem_barrier_all ();
18 }
19 ...
20 shmem_barrier_all ();

This program performs matrix multiplication based on 1D block-column dis-
tribution where in every iteration, the PE calculates the partial result of matrix-
matrix multiply and communicates the current portion of matrix A to its right
neighbor and receives the next portion of matrix A from its left neighbor. The
main body of the benchmark is as shown in the code Listing 1.5.

Figure 5 shows the control flow as captured by our analysis which clearly
marks out the OpenSHMEM calls and their placement. From the control flow
analysis of the compiler, we use the dominator frontier information to extract
control dependencies at the statement level. We merge this information with the
data flow analysis (captured by Def-Us chains as discussed in Section 4) and
present it as a system dependence graph in Figure 6.

Here, the control dependencies are represented by light/dashed arrows while
the data dependencies are represented by bold arrows. For conditionals branches
are marked with either T or F indicating when the branch is taken. This makes
understanding the control and data dependence easier for the programmer.

We present the result of ourmulti-valued analysis in Figure 7.When we perform
a logical slicing on the system dependence graph based on the PE number (stored
in variable rank). In a multi PE execution scenario the statements in shaded boxes
are executed only byPE 0. The program synchronization structure along with the
multi-valued analysis is captured by the barrier tree generated byOSA in Figure 8.
The entry into main() is indicated by operator CONCAT1. We follow the rep-
resentation discussed in Section 4. The alternate concurrent paths are indicated
by the double-circles labeledAltC4 and AltC5 and the two nested for-loops are
represented byQUANT2 andQUANT3. Since all loops run for the same num-
ber of times for all PEs, all PEs will encounter either BA4 or BA5 equal number
of times. Thus, just by glancing at the barrier tree generated by OSA it is evident
that the all PEs will encounter the same number of barriers. This makes the pro-
cess of debugging and verification a trivial task. This becomes more critical when
applications becomemore complexwith numerous branching statements involving
multi-valued conditionals.

144 S. Pophale et al.

Fig. 5. Control flow representation with OpenSHMEM calls for Matrix Multiplication
application

MAIN

start_pes(0) rank=_my_pe() size=_num_pes()

np=size

blocksize=COLUMNS

B_mat_disp=rank*blocksize

Shmem_barrier_all() for(i=0;i<ROWS;i++)

for (i; i < ROWS; i++)

...

if(rank == 0)

return (0)

if (rank == np - 1)

shmem_double_put (...)

a_local[i][j]=i+1*j+1*rank+1 b_local[i][j]=i+2*j+2*rank+1

for (p; p <= np; p++) shmem_barrier(..,np,..)shmem_barrier(.., np, ..)B_mat_disp = (np - 1) * blocksize

for(j=0;j<blocksize;j++)

a_local[i][j]=... b_local[i][j]=...c_local[i][j]=0.0

for (k; k < blocksize; k++) shmem_Barrier_all()if (B_mat_disp == 0)

for (j; j < blocksize; j++)

c_local[i][j] = c_local[i][j] + ..] *b_local[k + B_mat_disp][j]

shmem_double_put(...)

T

shmem_barrier_all()

TF

shmem_barrier_all()

F

B_mat_disp = ..

T

B_mat_disp = B_mat_disp - blocksize

F

printf ()

TTF

Fig. 6. System dependence graph as generated by OSA for Matrix Multiplication ap-
plication

Extending the OpenSHMEM Analyzer to Perform Synchronization 145

rank=_my_pe()

if (rank == np - 1)

shmem_double_put (...)

B_mat_disp=rank*blocksizea_local[i][j]=i+1*j+1*rank+1 b_local[i][j]=i+2*j+2*rank+1

F

shmem_barrier_all()

F

shmem_double_put(...)

T

shmem_barrier_all()

T

printf ()

if(rank == 0)

T

shmem_barrier(..,np,..)

T

shmem_barrier(.., np, ..)

F

MAIN

start_pes(0) size=_num_pes()

np=size

blocksize=COLUMNS Shmem_barrier_all() for(i=0;i<ROWS;i++)

for (i; i < ROWS; i++)

... return (0)

for (p; p <= np; p++)B_mat_disp = (np - 1) * blocksize

for(j=0;j<blocksize;j++)

for (k; k < blocksize; k++) shmem_Barrier_all()if (B_mat_disp == 0)

a_local[i][j]=... b_local[i][j]=...c_local[i][j]=0.0

for (j; j < blocksize; j++)B_mat_disp = ..

T

B_mat_disp = B_mat_disp - blocksize

F

c_local[i][j] = c_local[i][j] + ..] *b_local[k + B_mat_disp][j]

Fig. 7. Slicing of the System dependence graph on PE 0 indicating statements executed
by PE 0 only

6 Related Work

Depending on the semantics of the parallel programming model, most applica-
tions rely on synchronization primitives to ensure updates or maintain order-
ing of different programming sub-tasks. Errors in synchronization could lead
to incorrect or irreproducible execution characteristics. Hence research on syn-
chronization and concurrency has always been an important aspect for the high
performance programming community. One of the first research to verify pro-
gram synchronization patterns and was done in [14] for Split-C. They analyze the
effects of single valued expression on the control flow and concurrency character-
istics of the program and define rules that govern the synchronization sequences.
Like OpenSHMEM, Split-C has unaligned barriers and this work simplifies their
identification with the use of keywords that are used for annotating the named
barriers. [7] tries to identify and match unaligned barriers for MPI programs
to uncover potential synchronization errors. They evaluate the different concur-
rent paths the processes in the MPI program may take by using multi-value
conditional and barrier expression analysis and verify that each processes en-
counters an equal number of barriers. For other PGAS languages, like Tita-
nium [15] is in identification of textually aligned barriers and was first proposed
in [9]. They propose an inter-procedural algorithm that computes the set of all
concurrent statements by first modifying the CFG and provide rules to per-
form a modified depth first search to ascertain pairs of concurrent expressions.
Other parallel programming languages, such as X10 [16, 17], Ada [18, 19], and
Java [20,21] have also explored analysis based on synchronization structure of a
program.

146 S. Pophale et al.

Fig. 8. Barrier tree as generated by OSA for Matrix Multiplication application (where
CONCAT=concatenation, ALT= alternation, AltC = alternate concurrent, QUANT =
quantification, B = shmem barrier, and BA = shmem barrier all). * Indicates operators
and barriers in code Listing 1.5.

7 Conclusions and Future Work

The main contribution of our work is to provide an enhanced OSA that presents
more complex analysis in an easy to understand visual manner to an Open-
SHMEM programmer. We provide CFG explicit with the OpenSHMEM calls, for
providing detailed information about the usage and placement of OpenSHMEM
calls, and a system dependence graph that clearly indicates the control and data
dependencies prevalent in the application. The barrier tree provides a simplistic
representation of the synchronization pattern along with information on concur-
rent execution paths available which makes discovering potential errors due to
mis-aligned or missing synchronization easier for the OpenSHMEM programmer.
We also pave the way for more complex analysis towards suggesting optimiza-
tions, which needs information like the system dependence graph along with the
multivalued analysis and the synchronization analysis.

During the development of this analysis framework tracking and evaluating
active-sets was challenging and we hope that the future library specification of
OpenSHMEM will address this by providing implicit active-sets with handles.
This will simplify the analysis considerably resulting in better accuracy of pre-
dicting which PEs may take a particular concurrent path making it possible to
provide specialized optimization feedback based on a particular PE or a group of

Extending the OpenSHMEM Analyzer to Perform Synchronization 147

PEs. Our current implementation considers OpenSHMEM barrier and barrier all
synchronization calls but can be easily extended to account for other collective
calls with implicit synchronization semantics. As future work we would like to
integrate support for implicit synchronization and provide useful optimization
hints to the user based on OpenSHMEM semantics. For example, if an appli-
cation has no updates between two consecutive barriers on the same execution
path we would want to indicate that there is no requirement for the extra syn-
chronization to the application programmer/user at compile time thus helping
achieve better performance.

Acknowledgments. This work is supported by the United States Department
of Defense and used resources of the Extreme Scale Systems Center located at
the Oak Ridge National Laboratory.

References

1. Oscar, H., Siddhartha, J., Pophale, S., Stephen, P., Kuehn, J., Barbara, C.: The
OpenSHMEM Analyzer. In: Proceedings of the Sixth Conference on Partitioned
Global Address Space Programming Model, PGAS 2012 (2012)

2. Taylor, R.N.: A general-purpose algorithm for analyzing concurrent programs.
Commun. ACM 26, 361–376 (1983)

3. Lin, Y.: Static nonconcurrency analysis of openMP programs. In: Mueller, M.S.,
Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP
2005/2006. LNCS, vol. 4315, pp. 36–50. Springer, Heidelberg (2008)

4. Masticola, S.P., Ryder, B.G.: Non-concurrency analysis. In: Proceedings of the
Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPOPP 1993, pp. 129–138. ACM, New York (1993)

5. Auslander, J., Philipose, M., Chambers, C., Eggers, S.J., Bershad, B.N.: Fast, effec-
tive dynamic compilation. In: Proceedings of the ACM SIGPLAN 1996 Conference
on Programming Language Design and Implementation, PLDI 1996, pp. 149–159.
ACM, New York (1996)

6. Swaroop, P., Oscar, H., Stephen, P., Barbara, C.: Static analyses for unaligned
collective synchronization matching for OpenSHMEM. In: Proceedings of the Sev-
enth Conference on Partitioned Global Address Space Programming Model, PGAS
2013 (2013)

7. Zhang, Y., Duesterwald, E.: Barrier matching for programs with textually un-
aligned barriers. In: Proceedings of the 12th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPoPP 2007, pp. 194–204. ACM,
New York (2007)

8. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
In: Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language
Design and Implementation, PLDI 1988, pp. 35–46. ACM, New York (1988)

9. Kamil, A.A., Yelick, K.A.: Concurrency analysis for parallel programs with textu-
ally aligned barriers. Technical Report UCB/EECS-2006-41, EECS Department,
University of California, Berkeley (2006)

10. OpenSHMEM.org: OpenSHMEM specification 1.0 (2011)
11. Chakrabarti, G., Chow, F.: Structure layout optimizations in the open64 compiler:

Design, implementation and measurements (2008)

148 S. Pophale et al.

12. Kleene, S.C.: Representation of events in nerve nets and finite automata. Automata
Studies (1956)

13. Swaroop, P., Oscar, H., Stephen, P., Barbara, C.: Poster: Validation and verification
suite for OpenSHMEM. In: Proceedings of the Seventh Conference on Partitioned
Global Address Space Programming Model, PGAS 2013 (2013)

14. Aiken, A., Gay, D.: Barrier inference. In: Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 1998, pp.
342–354. ACM, New York (1998)

15. Luigi, K.Y., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy,
A., Hilfinger, P., Graham, S., Gay, D., Colella, P., Aiken, A.: Titanium: A high-
performance java dialect, pp. 10–11. ACM (1998)

16. Markstrum, S.A., Fuhrer, R.M., Millstein, T.D.: Towards concurrency refactoring
for x10. In: Proceedings of the 14th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2009, pp. 303–304. ACM, New York
(2009)

17. Muller, S., Chong, S.: Towards a practical secure concurrent language. In: Pro-
ceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA 2012, pp. 57–74. ACM, New York
(2012)

18. Kaiser, C., Pajault, C., Pradat-Peyre, J.-F.: Modelling remote concurrency with
ada. In: Abdennadher, N., Kordon, F. (eds.) Ada-Europe 2007. LNCS, vol. 4498,
pp. 192–207. Springer, Heidelberg (2007)

19. Burns, A., Wellings, A.: Concurrency in Ada. Cambridge University Press, New
York (1995)

20. Vakilian, M., Negara, S., Tasharofi, S., Johnson, R.E.: Keshmesh: a tool for de-
tecting and fixing java concurrency bug patterns. In: Proceedings of the ACM
International Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion, SPLASH 2011, pp. 39–40. ACM, New
York (2011)

21. Magee, J., Kramer, J.: Concurrency: state models & Java programs. John Wiley
& Sons, Inc., New York (1999)

OpenSHMEM Extensions and a Vision

for Its Future Direction

Stephen Poole1, Pavel Shamis1, Aaron Welch2,
Swaroop Pophale2, Manjunath Gorentla Venkata1, Oscar Hernandez1,

Gregory Koenig1, Tony Curtis2, and Chung-Hsing Hsu1

1 Extreme Scale Systems Center
Oak Ridge National Laboratory

{spoole,shamisp,manjugv,oscar,koenig,hsuc}@ornl.gov
2 Computer Science Department

University of Houston
{dawelch,swaroop,arcurtis}@uh.edu

Abstract. The Extreme Scale Systems Center (ESSC) at Oak Ridge
National Laboratory (ORNL), together with the University of Houston,
led the effort to standardize the SHMEM API with input from the ven-
dors and user community. In 2012, OpenSHMEM specification 1.0 was
finalized and released to the OpenSHMEM community for comments. As
we move to future HPC systems, there are several shortcomings in the
current specification that we need to address to ensure scalability, higher
degrees of concurrency, locality, thread safety, fault-tolerance, parallel
I/O capabilities, etc. In this paper we discuss an immediate set of ex-
tensions that we propose to the current API and our vision for a future
API, OpenSHMEM Next-Generation (NG), that targets future Exascale
systems. We also explain our rational for the proposed extensions and
highlight the lessons learned from other PGAS languages and communi-
cation libraries.

1 Introduction

OpenSHMEM [1] [2] [3], an API for the Partitioned Global Address Space
(PGAS) programming model, is a derivative of SGI’s SHMEM API, which was
originally developed by Cray. The SHMEM API is widely used in parallel ap-
plications [4] and has been adopted by multiple system vendors including IBM,
Quadrics, Hewlett Packard, QLogic, and Mellanox Technologies. Although these
implementations are similar in functionality and semantics, they have minor dif-
ferences that inhibit portability. The OpenSHMEM API is the result of an open
source community effort to standardize the SHMEM API used by the scientific
community and hardware vendors, jointly led by the ESSC at ORNL, and the
University of Houston.

The OpenSHMEM API provides a complete set of concise and powerful li-
brary calls to satisfy the communication needs of parallel applications. These
include collective communication operations, remote memory access (RMA),

S. Poole, O. Hernandez, and P. Shamis (Eds.): OpenSHMEM 2014, LNCS 8356, pp. 149–162, 2014.
c© Springer International Publishing Switzerland 2014

150 S. Poole et al.

atomic memory operations, synchronization operations, distributed lock oper-
ations, and operations to check process and data accessibility. A complete set of
operations, and semantics of the operations are detailed in [1].

Although the OpenSHMEM API provides an adequate and complete set of
operations for implementing communication libraries for the time it was devel-
oped, it requires additional functionality for the exascale era. Particularly, as
the needs of exascale applications change, so does system architecture - nodes
have multiple CPU sockets and computing cores with varying instruction sets
and power calibrating interfaces, network interfaces provide low-latency and high
bandwidth communication, native support for RMA operations, collective oper-
ation functionality, etc. To better accommodate these technological shifts, the
API needs to incorporate other useful concepts either born out of OpenSHMEM
user experience or lessons from the evolution of other parallel programming lan-
guages and communication libraries (e.g. CAF 2.0, Titanium, UPC, Chapel,
MPI 3.0).

The most important changes that are critical for OpenSHMEM are the
following:

– Non-blocking Operations: The invocation of a library call returns before the
operation is complete, providing the application with the opportunity to hide
the latency of the operation with additional computation.

– Fault Tolerance: The API should enable implementation of fault-tolerant and
fault-aware communication. In addition, it should provide adequate support
for building fault resilient applications.

– Hybrid Programming: The API should support, or at least not prohibit,
interoperability with other programming models. This provides the applica-
tion an opportunity to use multiple programming models simultaneously to
better suit architectural needs, including heteregenous systems.

– Isolation: This provides private communication contexts for groups of PEs.
This is an important attribute for enabling the construction of libraries, so as
to separate communication performed within an OpenSHMEM application
with communication performed by libraries that application may call.

– Locality: This will help to define processing elements (PEs) and symmetric
memory areas that are “next” to each other and that can be mapped to
multiple devices/accelerators within a node or to nodes close to each other.

In this paper, we propose a series of extensions to the OpenSHMEM API that
work toward adding some of the above functionality. Our work in this paper can
be classified into two different categories:

1. A series of extensions that strive to maintain backward compatibility with
the current OpenSHMEM API, while aiming to improve programmer pro-
ductivity and the performance and scalability of OpenSHMEM applications.
The extensions include 1) Explicit active sets 2) Non-blocking operations
3) Library shutdown, and 4) Multi-threading support.

2. We make a case for a series of extensions that is far-reaching and geared more
towards the needs of exascale era applications and hardware. The extensions

OpenSHMEM Extensions and a Vision for Its Future Direction 151

in this category include 1) Isolation 2) Locality 3) Errormodel, and 4) Parallel
I/O.

The rest of the paper is organized as follows: In Section 2, we describe the
motivation behind adding the proposed incremental extensions to OpenSHMEM
and the potential benefit that can be gained by adding these useful features.
In Section 3, we describe in detail the different extensions and their semantics
with concrete examples and prototypes. We also provide a broader view of the
different aspects that may greatly impact OpenSHMEM in the march towards
Exascale and discuss a few nascent concepts for OpenSHMEM-NG in Section 4.
Section 5 throws light on the different features that were found lacking and then
added into other parallel programming languages and libraries (namely Chapel,
UPC, Co-array Fortran, Titanium, and MPI-3). We conclude in Section 6 by
summarizing our work and highlighting the key contributions.

2 Motivation for the Incremental Extensions

In OpenSHMEM 1.0, collective operations are performed on implicitly defined
active sets, which represent a subset of participating PEs for the collective call.
These must be defined using a strided pattern that is restricted to powers of
two. These operations are expected to be called by all members of the defined
set of PEs, but for any PEs that are not in the set, calling the same operation
results in undefined behavior. There are a number of limitations to this approach,
including the inability to specify an arbitrary stride or to select participating
PEs through other methods. It can also become cumbersome and redundant
to provide the full details of the active set with each successive call, and could
lend itself to error and inconsistencies. Furthermore, active sets are currently
designed to exist only during the life of a particular collective call. Allowing
the user to explicitly define an active set provides opportunity for reuse, which
will increase programmer productivity. This is possible while still maintaining
backward compability with OpenSHMEM 1.0 since active sets may be reused
throughout the entire application without significantly changing the memory,
execution, and synchronization models of OpenSHMEM 1.0.

Overlapping computation with communication allows for better concurrency
and utilization of resources when using hardware that supports the operations.
There are very tangible benefits that may be realized by making collectives,
atomics, and RMA communication calls non-blocking. The time spent waiting on
the results of a computation or a RMA operation may be better utilized by doing
other useful work. Non-blocking calls expose potential completion latency that
may be utilized by the application to execute other units of work or by hybrid
programming models (i.e. OpenSHMEM plus multithreading and tasking).

For verifying the potential for overlap in the context of OpenSHMEM , we
developed a working prototype for a non-blocking version of the atomic call
shmem longlong fadd() called shmem longlong fadd nb(). The prototype was im-
plemented using the OpenSHMEM reference implementation [5] with the Uni-
versal Common Communication Substrate communication middleware (UCCS)

152 S. Poole et al.

Fig. 1. Potential Overlap using Non-blocking Fetch-and-Add

[6] [7]. UCCS is a high-performance communication middleware that provides a
broad range of semantics useful for the PGAS programming model. This proto-
type was put to the test using a custom version of the Communication Offload
MPI-based Benchmark (COMB) [8], modified to work using OpenSHMEM in-
stead of MPI code. This test first times the execution of shmem longlong fadd
nb() immediately followed by a wait call on the operation (effectively making it
a blocking atomic operation). Next, it times the execution of the non-blocking
atomic followed by increasingly large amounts of work before waiting on the
operation. When the total time spent starts to exceed the “blocking” time, all
the latency that can be exploited for additional computation has been used,
so it records the time breakdown for the point at which it crossed the latency
boundary.

Using this benchmark, we show that for atomic memory updates, 86% of the
total time taken by the call can be employed doing other useful work (see Fig-
ure 1). This is significant and insightful especially since atomics are low latency
calls - the overlap opportunity afforded by other non-blocking calls like collective
operations and data transfer will be much greater. Additionally, the non-blocking
call was shown to not add any noticeable overhead, so there is no disadvantage
to using the non-blocking calls over their blocking counterparts.

3 Proposed Extensions

In this section, we describe and present our proposed set of extensions to Open-
SHMEM 1.0. These incremental extensions are aimed at addressing some of
the scalability bottlenecks of OpenSHMEM interfaces, and providing communi-
cation interfaces that enable overlapping communication with computation in
applications.

Our set of extensions consist of:

– Explicit active sets, which allow the OpenSHMEM users to define the crite-
rion for creation of the active set as well as the lifetime of the active set.

– Non-blocking collective operations include a method for invoking the collective
operation, and a method for learning the progress of the call. It enables the
OpenSHMEM users to overlap collective communication with computation.

OpenSHMEM Extensions and a Vision for Its Future Direction 153

– Non-blocking put, get, and atomic operations, like the non-blocking collective
operations extension, have a method for invoking the call, and a method for
learning the progress of the call.

– Abort and exit support allows OpenSHMEM programs to terminate at any
point during their execution. It enables applications to free the resources
before exiting, or facilitate sanity checks before exiting the OpenSHMEM
environment.

3.1 Explicit Active Sets

Our proposed extension to active sets will help the programmer define and reuse
active sets explicitly via a proposed API. The active set construct will help
the user group sets of processes and reuse active sets across collective operations
using the OpenSHMEM API. Our proposed active set extension is an incremental
extension to the active sets in OpenSHMEM 1.0, where it implicitly created
sets of processes used for executing collective operations. A set of API calls
will be used to define a set of PEs that comprise an active set, each using a
different selection strategy, and will return an opaque handle that can be used
thereafter to identify this set of PEs. This handle will only be guaranteed to be
usable within collectives for PEs within the set, though the associated creation
function may be called by any superset of the PEs contained in the set. Whether
a particular calling PE is in the active set defined by the handle may be checked
by calling the shmem in aset() function, which will return a non-zero value if
it is in the set, or zero if it is not. The size of a particular set can be queried
through the shmem aset size() function, and the shmem aset delete() function
destroys the active set object. The full list of supported call signatures for active
sets is included below in Table 1.

In the case of concurrent collective operations that involve overlapping active
sets the user has to ensure that they do not work on the same pSync or pWrk
arrays. With these new extensions, the user will be able to create active sets
using one of the four active set creation calls that can be used to select the
member PEs of the active set. These calls allow the user to create active sets
using strided sets based on both powers of two and arbitrary strides, generic
arrays of participating PE ids, and via user-defined functions. For the latter
case, a user may define an active set with a function that when called on a set of
size n, will produce the ith PE id in the set for 0 ≤ i < n. All PE ids generated
by the function must be both valid and unique in the set, and the id generated
for a particular input must always be the same regardless of how many times it
is called. The user can pass an arbitrary amount of data as actual parameters to
the function specified at creation time of the active set. After being passed to the
creation function, these parameters should remain constant for the lifetime of
the active set. As an example, a custom function may be thought of as being very
similar to a mathematical function such as f(i) = i2 + PE start, for 0 ≤ i < n,
for which n = 4 and PE start = 2 would produce the set {2, 3, 6, 11}.

In addition, we will use explicit active sets as arguments to create the pro-
posed non-blocking collective calls as described in Section 3.2.1. This is to

154 S. Poole et al.

Table 1. Examples of Proposed active set operations and their APIs

Create a strided active
set.

shmem aset *shmem create strided aset(int PE start, int
PE stride, int PE size)

Create a log-strided
active set.

shmem aset *shmem create log strided aset(int PE start,
int PE log stride, int PE size, int stride base)

Create a user-defined
active set.

shmem aset *shmem create custom aset(int PE start,
shmem offset fn offset, int PE size, void *const params)

Create a generic active
set.

shmem aset *shmem create generic aset(int *PE list, int
PE size)

Check if a PE is in an
active set.

int shmem in aset(shmem aset *aset)

Query the size of an
active set.

int shmem aset size(shmem aset *aset)

Delete an active set. void shmem delete aset(shmem aset *aset);

encourage the use of explicit active sets, together with non-blocking collective
operations, while minimizing changes to the existing OpenSHMEM 1.0 API. The
behavior for the original collective operations will remain the same, including
shmem barrier all(), which will always require the participation of all PEs in
the system.

An example is shown below demonstrating the process of creating and using
a strided active set:

1 int main(int argc , char **argv) {
2 shmem_aset *aset;
3 ...
4 /* creates an active set containing PEs 0, 3, 6, 9, ... */
5 aset = shmem_create_strided_aset(0, 3, npes / 3);
6 /* equivalent to the OpenSHMEM 1.0-style (me % 3 == 0) */
7 if (shmem_in_aset(aset)) {
8 shmem_barrier_aset(aset , pSync);
9 }

10 }

Similarly, creating a custom function for selecting the PEs in an active set
involves little more than creating the custom function itself:

1 int my_custom_index_fn(int PE_index , int PE_start , int PE_size , void
*const_params) {

2 return PE_index * PE_index + PE_start ;
3 }
4 int main(int argc , char **argv) {
5 shmem_aset *aset;
6 ...
7 /* creates an active set containing PEs 2, 3, 6, 11 */
8 aset = shmem_create_custom_aset(2, &my_custom_index_fn, 4, NULL);
9 if (shmem_in_aset(aset)) {

10 shmem_barrier_aset(aset , pSync);
11 }
12 }

Theplacementanduse of the shmem create custom aset() and shmem in aset()
functions here may seem unusual for some OpenSHMEM application developers.
Being placed outside of the conditionalmeans that the create function canbe called

OpenSHMEM Extensions and a Vision for Its Future Direction 155

by PEs that are not in the defined active set. This is due to the updated syntax for
active set creation, and will still result in valid code.

The performance of each of the four methods is compared using barrier op-
erations to that of the implicitly defined active sets from OpenSHMEM 1.0 in
Figure 2. All the tests were performed using the same OpenSHMEM reference
implemention modified to use UCCS as described in Section 2. Each of the re-
sults represents the time spent performing a barrier on four PEs, using either an
implicitly defined logarithmically strided active set or one of the four methods for
creating explicit active sets as previously described. It can be seen that not only
is there no additional overhead for defining active sets explicitly compared to the
original implicit definitions, but there is also no performance penalty dependent
on which method for defining an explicit active set is chosen.

 0
 0.25
 0.5

 0.75
 1

 1.25
 1.5

 1.75
 2

 2.25
 2.5

 2.75
 3

OriginalLog−Strided Strided User Generic

L
at

en
cy

 (
u

se
c)

2.72795 2.68725 2.70546 2.70332 2.69797

Fig. 2. Performance of Barriers on Active Sets

3.2 Non-blocking Operations

All proposed non-blocking operations require a mechanism to check for comple-
tion of the request. For this purpose we introduce an opaque request object of
type shmem request handle t and two query functions defined on this request ob-
ject, namely, shmem wait request() and shmem test request(). Each non-blocking
operation will produce exactly one such handle, which will be unique to that par-
ticular outstanding operation. All calls to non-blocking operations return imme-
diately and all participating PEs must check for completion by using a wait
or a test before reusing any resources involved in the operation. A call to wait
will return only once the operation is completed, while test returns immediately
with information on the status of the request, regardless of whether or not it has
completed. There are no specific requirements in terms of the progress model for
these operations and an OpenSHMEM library implementation is free to choose
when and how the operations progress.

3.2.1 Non-blocking Collective Operations
We extend the OpenSHMEM API for collective operations such as collection,
reduction, barrier and broadcast by adding their non-blocking variants. With the

156 S. Poole et al.

new non-blocking collective operations a single collective call is replaced by a
call to the non-blocking collective (which would return a request handle) followed
by a call to shmem wait request() which accepts the handle as a parameter and
returns when the collective call has completed on the calling PE. All non-blocking
collective operations are defined on explicit active set handles as discussed in
Section 3.1, instead of the triplet PE start, logPE stride and PE size. Worth
noting is that pSync remains a required part of the function call. This is due to
the fact that the active set handles themselves do not have any dedicated memory
assigned to them, separating the handling of memory from the selection of PEs
for any particular active set definition. This allows a developer to maintain the
same high degree of control over lower level management of the program and its
associated memory as has been traditionally possible, while still receiving the
benefits of the new active set definitions. A complete example showing a non-
blocking collective operation in an OpenSHMEM program is illustrated below:

1 int main(int argc , char *argv[]){
2 shmem_aset *aset1;
3 shmem_request_handle_t request1 ;
4 ...
5 start_pes(0);
6 ...
7 if(me%2 == 0){
8 // aset1 contains 0,2,4,6
9 aset1 = create_aset_strided(0,2,4,&err);

10 shmem_broadcast32_nb(&y,&x,1,aset1 ,pSync , &request1);
11 ...
12 //some useful work
13 ...
14 shmem_wait_request(request1);
15 }
16 ...
17 return 0;
18 }

The non-blocking collective semantics allow multiple outstanding collective
operations to be in progress on a given active set at any particular point in
time. Each outstanding non-blocking and blocking collective requires its own
symmetric array. A high quality implementation would not require a call to
shmem test request() to progress the outstanding collective operation. However,
a semantically correct implementation can progress asynchronously, or during a
call to the OpenSHMEM library.

3.2.2 Non-blocking Atomic Operations
In the same manner, we introduce non-blocking variants for the OpenSHMEM
atomic library calls (swap, compare-and-swap, increment, fetch-and-increment,
add, and fetch-and-add). A call to a non-blocking atomic returns a handle which
can be passed as a parameter to shmem wait request(). The wait returns when
the atomic operation has completed on all the local as well as target PE. An
example of non-blocking atomic operation in an OpenSHMEM program is illus-
trated below:

OpenSHMEM Extensions and a Vision for Its Future Direction 157

1 int main(int argc , char *argv[]){
2 shmem_request_handle_t request1 ;
3 ...
4 start_pes(0);
5 ...
6 shmem_longlong_fadd_nb(target , 10, 1, &oldval , &request1);
7 ...
8 //some useful work
9 ...

10 shmem_wait_request(request1);
11 ...
12 return 0;
13 }

3.2.3 Non-blocking Data Transfer Operations
According to OpenSHMEM Specification 1.0, a put operation returns only af-
ter the local buffer is available for reuse. As a non-blocking extension to the
put operation, the call will return immediately and the local buffer will not be
available for reuse until the operation has achieved local completion. These non-
blocking semantics can be especially advantageous for communication patterns
that involve communicating parts of an array to different PEs without immedi-
ate reuse. The get operation returns only after the value is updated at the local
PE. For programs that do not need the value updated by the get call immedi-
ately, waiting for local completion is an unnecessary burden. The non-blocking
get operation will allow the local PE to execute other calls and operations while
waiting for the remote data to be communicated. An example of a non-blocking
get operation in an OpenSHMEM program is illustrated below:

1 int main(int argc , char *argv[]){
2 shmem_request_handle_t request1 ;
3 ...
4 start_pes(0);
5 ...
6 shmem_int_get_nb(target , source , 1, me+1, &request1);
7 //some useful work
8 //call wait before the value is required by local PE
9 shmem_wait_request(request1);

10 x = target + 0.25 * y;
11 ...
12 return 0;
13 }

Non-blocking data transfer is not a novel concept and SHMEM implementations
like Quadrics [9] have included it in their library APIs. We differ in our approach
as we define the non-blocking operations on explicit active set handles. By cre-
ating an explicit active set we not only simplify the API but make OpenSHMEM
programs more suitable for analysis via compiler based tools.

3.3 Thread Safety

In OpenSHMEM 1.0 there is no support for thread safety nor guarantees for
what one might expect when trying to execute an OpenSHMEM program in
a multi-threaded environment. Providing basic thread safety support may pro-
mote interoperability between OpenSHMEM and other programming models

158 S. Poole et al.

and allow data transfers to be broken down into smaller units to facilitate com-
munication latency hiding via overlap. Since a PE maps to a process in a multi
threaded environment, as the current specification stands, multiple threads ex-
ecuting OpenSHMEM calls such as start pes(), shmem finalize(), shmalloc(),
shfree(), and shrealloc() can lead to unpredictable execution patterns and re-
sults. Collective operations are a major OpenSHMEM functionality group that
may be executed by only one thread per PE. Since the concept of an active
set is a purely logical one in OpenSHMEM Specification 1.0 there is no way to
define operations on it. With explicit active set handles there is a programmable
object on which we can now define thread-safe operations and constraints. Al-
though prototypes to these functions are beyond the scope of this paper, four
hierarchical execution model modes for threading support proposed by Cray
(thread single, thread funneled, thread serialized and thread multiple) [10] could
be well suited for providing thread safety semantics with the new extensions.
Each of the four levels of threading support specifies the number of threads per
PE that may participate, and this is set through a thread safety initialization
call shmem init thread() which accepts one of the four modes as an argument.

3.4 Abort and Exit Support

The OpenSHMEM Specification 1.0 does not have any support for an abort
or exit call. As an extension to OpenSHMEM Specification 1.0, we propose a
shmem finalize() function to shut down the library, and shmem abort() to sig-
nal the abortion of the OpenSHMEM program. The primary difference in the
semantics of shmem finalize() and shmem abort() is that shmem finalize() in-
dicates normal completion of the program and the OpenSHMEM environment
can be re-initialized after finalize by calling start pes(). shmem abort(), however,
signals the run-time that OpenSHMEM library operations cannot continue after
the call returns. Semantics for both the calls are as follows:

1. shmem finalize()
(a) It is the last OpenSHMEM call by any PE.
(b) All pending OpenSHMEM operations will have completed when the call

returns.
(c) TheOpenSHMEM environment can be re-initialized by calling start pes()

after finalize.
(d) Any OpenSHMEM calls after shmem finalize and before the start pes()

will lead to undefined behavior.

2. shmem abort()
(a) Any PE can call shmem abort() to the program execution. After any PE

calls the shmem abort() call, the behavior of the program is undefined.
(b) Any OpenSHMEM operation after any PE calls shmem abort() will lead

to undefined behavior.
(c) After exiting the OpenSHMEM environment, a process may or may not

terminate depending on the library implementation.

OpenSHMEM Extensions and a Vision for Its Future Direction 159

4 A Vision for OpenSHMEM’s Future

OpenSHMEM-NG is a vision for the next big leap in the evolution of Open-
SHMEM . Here we propose new ideas: changes are not incremental, and not
necessarily backward compatible with OpenSHMEM 1.0. In order to address
the need for backward compatibility, we plan to develop source-to-source trans-
lation tools that will help to update legacy applications to a new standard.

4.1 Adding Memory Context to Active Sets

In the current OpenSHMEM Specification 1.0, all symmetric memory allocations
have to be made across all the PEs in an application. However, with the intro-
duction of explicit active sets (Section 3), the active set opaque handle may be
reused for multiple collective operations. This provides more control and flexibil-
ity to the user when decomposing the work within an OpenSHMEM application.
Adding a memory context to the active set, where memory context is a symme-
tric memory space available only to the members of the active set, is the next
logical step. The memory context will provide an efficient medium for memory
management without incurring the cost of memory allocation across all PEs.
Moreover, this will also help address the issue of isolation, where applications
and multiple libraries using OpenSHMEM can safely co-exist independently of
each other. Introducing memory context to active sets can also address the issue
of locality, where logical sets of PEs and memory spaces can be used to define
locality and be mapped to cores and memory that are close to each other.

4.2 Error Model

In OpenSHMEM-NG, error reporting will be an important aspect. As the com-
plexity of the hardware and programming environment increases, it becomes
increasingly important to be able to identify errors and provide meaningful in-
formation to the programmer. This also paves the path towards fault tolerance
and resilience. Other than programming errors there exist a plethora of error
conditions related to memory, network, and communication failures. Extending
the OpenSHMEM API with error handlers and defined error states will enable
proper error handling on the application level.

4.3 OpenSHMEM I/O

The OpenSHMEM I/O extensions will be aimed at providing interfaces with
parallel I/O capabilities for OpenSHMEM applications. The interfaces will be
geared towards facilitating and co-ordinating concurrent I/O access among the
OpenSHMEM PEs, and abstracting the semantics provided by parallel file sys-
tems to match the needs of applications.

160 S. Poole et al.

5 Related Work

Process groups is a concept that has been around in programming models such as
MPI. It has also been proposed as an extension to existing PGAS languages such
as CAF 2.0 and Titanium. The concept of locales in Chapel and places in X10
is tied to process affinity and locality, where the programmer can map compu-
tations or data to specific locales or places. The concept of groups has been used
to define communication contexts that can be used in coupled applications that
perform communication and computation in subsets and independently from
each other, such as an application and library using the same communication
library independently of each other.

Co-array Fortran 2.0 introduced the concept of teams [11], ordered sequences
of process images that represent a subset of an existing team. All process images
start as members of a global team known as team world. New teams can be
created from existing teams by splitting based on a common ”color” or merging
two teams to produce the union of them. Additionally, a topology can also be
applied to a team to abstract the layout and access patterns of the processes
involved in an operation. Titanium also uses a similar concept where teams of
threads are defined as objects that have methods to split into sub teams.

Similarly, communicators in MPI are arbitrary sets of processes used for per-
forming communication on them selectively as independent functional units.
Initially, all processes are part of a single global communicator, after which sub-
communicators may be created from it either by splitting or by specifying a sub-
set of parent processes to either include or exclude [12]. While this approach can
provide a lot of flexibility, the communicator creation process imposes implicit
synchronization, which might be undesirable for other programming models.

The incremental change to OpenSHMEM Specification 1.0 will include explicit
handles to active sets. At this juncture, however, there is no communication
context associated with it. This is due to the desired separation between active
set definitions and memory spaces and handling, as described in Section 3.2.1.
For OpenSHMEM-NG, having a concept similar to communicators in MPI with
isolated communication contexts may be useful.

CAF 2.0 incorporated asynchronous point-to-point and collective operations
[13] and detailed the benefits that such operations could provide by providing a
higher degree of communication to computation overlap. Hiding the latency of
communication has been employed in other places before CAF 2.0. For exam-
ple, MPI showed that adding non-blocking collectives to MPI-2 allowed them to
provide a 99% overlap between communication and computation along with an
approximate performance gain between 13 to 15% (depending on the underlying
network) for the 3D-FFT application [14]. Even before that, asynchronous collec-
tive operations like broadcast in MPI [15] [16] and barrier [17] have been studied
to enable hiding of communication latency and barrier duration of barrier re-
gions. Other PGAS languages like X10 support asynchronous activities via the
async statement, and use phaser accumulators for increasing communication-
computation overlap for reduction operations [18]. Both UPC [19] and MPI
have varying degrees of support for a global exit of all threads and processes

OpenSHMEM Extensions and a Vision for Its Future Direction 161

respectively. This allows for the executing process elements to do a collective
exit when some explicit execution requirement is not met (abort) or do a clean
exit at the end of the program (release resources and do other sanity checks).
The obvious benefit of these concepts has prompted these proposed extensions
to OpenSHMEM 1.0.

6 Conclusions

In this paper, we described a series of extensions to the OpenSHMEM API that
strive to maintain backward compatibility with the current OpenSHMEM API,
and aim to improve programmer productivity as well as the performance and
scalability of OpenSHMEM applications. The extensions include 1) Explicit ac-
tive sets 2) Non-blocking operations 3) Library shutdown, and 4) Multi-threading
support.

We made a case for a series of extensions that is far-reaching and geared more
towards the needs of exascale era applications and hardware. The extensions in
this category include 1) Isolation 2) Locality 3) Error model, and 4) Parallel
I/O.

Acknowledgments. This work is supported by the United States Department
of Defense and used resources of the Extreme Scale Systems Center located at
the Oak Ridge National Laboratory.

References

1. OpenSHMEM Org.: OpenSHMEM specification (2011)
2. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., Smith, L.:

Introducing OpenSHMEM: SHMEM for the PGAS community. In: Proceedings of
the Fourth Conference on Partitioned Global Address Space Programming Model,
PGAS 2010, New York, NY, USA (2010)

3. Poole, S.W., Hernandez, O., Kuehn, J.A., Shipman, G.M., Curtis, A., Feind, K.:
OpenSHMEM - Toward a Unified RMA Model. In: Encyclopedia of Parallel Com-
puting, pp. 1379–1391 (2011)

4. Pophale, S., Nanjegowda, R., Curtis, T., Chapman, B., Jin, H., Poole, S., Kuehn,
J.: Openshmem performance and potential: A npb experimental study (2012)

5. Pophale, S.S.: SRC: OpenSHMEM library development. In: Lowenthal, D.K., de
Supinski, B.R., McKee, S.A. (eds.) ICS, p. 374. ACM (2011)

6. Shamis, P., Venkata, M.G., Kuehn, J.A., Poole, S.W., Graham, R.L.: Universal
common communication substrate (uccs) specification. version 0.1. Tech Report
ORNL/TM-2012/339, Oak Ridge National Laboratory, ORNL (2012)

7. Graham, R.L., Shamis, P., Kuehn, J.A., Poole, S.W.: Communication middle-
ware overview. Tech Report ORNL/TM-2012/120, Oak Ridge National Labora-
tory, ORNL (2012)

8. Lawry, W., Wilson, C., Maccabe, A.B., Brightwell, R.: Comb: A portable bench-
mark suite for assessing mpi overlap. In: IEEE Cluster, pp. 23–26 (2002)

9. Quadrics Supercomputers World Ltd.: SHMEM Programming Manual (2001)

162 S. Poole et al.

10. CRAY: Thread-safe shmem extensions (2012)
11. Mellor-Crummey, J., Adhianto, L., Scherer III, W.N., Jin, G.: A new vision for

coarray fortran. In: Proceedings of the Third Conference on Partitioned Global
Address Space Programing Models, PGAS 2009, pp. 5:1–5:9. ACM, New York
(2009)

12. Walker, D.W., Dongarra, J.J.: Mpi: A standard message passing interface. Super-
computer 12, 56–68 (1996)

13. Scherer III, W.N., Adhianto, L., Jin, G., Mellor-Crummey, J., Yang, C.: Hiding
latency in coarray fortran 2.0. In: Proceedings of the Fourth Conference on Par-
titioned Global Address Space Programming Model, PGAS 2010, pp. 14:1–14:9.
ACM, New York (2010)

14. Hoefler, T., Kambadur, P., Graham, R.L., Shipman, G., Lumsdaine, A.: A case for
standard non-blocking collective operations. In: Cappello, F., Herault, T., Don-
garra, J. (eds.) EuroPVM/MPI 2007. LNCS, vol. 4757, pp. 125–134. Springer,
Heidelberg (2007)

15. Almási, G., Heidelberger, P., Archer, C.J., Martorell, X., Erway, C.C., Moreira,
J.E., Steinmacher-Burow, B., Zheng, Y.: Optimization of mpi collective commu-
nication on bluegene/l systems. In: Proceedings of the 19th Annual International
Conference on Supercomputing, ICS 2005, pp. 253–262. ACM, New York (2005)

16. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous
broadcast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–
541. Springer, Heidelberg (2001)

17. Gupta, R.: The fuzzy barrier: a mechanism for high speed synchronization of pro-
cessors. In: Proceedings of the Third International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS III, pp.
54–63. ACM, New York (1989)

18. Shirako, J., Peixotto, D.M., Sarkar, V., Scherer, W.: Phaser accumulators: A new
reduction construct for dynamic parallelism. In: IEEE International Symposium
on Parallel Distributed Processing, IPDPS 2009, pp. 1–12 (2009)

19. UPC Consortium: Upc language specifications, v1.2. Tech Report LBNL-59208,
Lawrence Berkeley National Lab (2005)

Reducing Synchronization Overhead
Through Bundled Communication

James Dinan, Clement Cole, Gabriele Jost, Stan Smith, Keith Underwood,
and Robert W. Wisniewski

Intel Corp.
{james.dinan,clement.t.cole,gabriele.jost,stan.smith,

keith.d.underwood,robert.w.wisniewski}@intel.com

Abstract. OpenSHMEM provides a one-sided communication interface
that allows for asynchronous, one-sided communication operations on
data stored in a partitioned global address space. While communication
in this model is efficient, synchronizations must currently be achieved
through collective barriers or one-sided updates of sentinel locations in
the global address space. These synchronization mechanisms can over-
synchronize, or require additional communication operations, respec-
tively, leading to high overheads. We propose a SHMEM extension that
utilizes capabilities present in most high performance interconnects (e.g.
communication events) to bundle synchronization information together
with communication operations. Using this approach, we improve ping-
pong latency for small messages by a factor of two, and demonstrate
significant improvement to synchronization-heavy communication pat-
terns, including all-to-all and pipelined parallel stencil communication.

SHMEM is a popular partitioned global address space (PGAS) parallel pro-
gramming model, and it has been in use for over two decades [4]. Recently,
the SHMEM library has been codified as an open, community standard in the
OpenSHMEM 1.0 specification [19]. SHMEM provides a global address space
that spans the memory of the system and allows the programmer to create sym-
metric objects, which are present at all processing elements (PEs). These objects
can be read and updated using one-sided get and put operations.

While SHMEM provides high-performance one-sided data movement oper-
ations, it includes few primitives for synchronizing between PEs. In the cur-
rent Open SHMEM standard, synchronization can be achieved using a collective
barrier, or by polling or waiting on a flag that will be remotely updated us-
ing a one-sided operation. While these synchronization primitives are sufficient
for achieving point-to-point and global synchronization, they are not able to
fully utilize capabilities provided by modern high performance interconnects. In
particular, barrier synchronization can generate more synchronization than is
needed by the algorithm, and its performance can be negatively impacted by
system noise and imbalance. In addition, point-to-point synchronization using
counting or boolean flag locations in the global address space requires additional
communication when updating the flag.

S. Poole, O. Hernandez, and P. Shamis (Eds.): OpenSHMEM 2014, LNCS 8356, pp. 163–177, 2014.
c© Springer International Publishing Switzerland 2014

164 J. Dinan et al.

Modern networks used in high performance computing systems provide a va-
riety of mechanisms that can be used to bundle synchronization and communi-
cation. One such example is communication events, which notify the recipient
that a one-sided communication operation has arrived and is complete.

We present a new synchronization extension to OpenSHMEM, called count-
ing puts, that utilizes network-level events to provide efficient point-to-point
synchronization. Counting puts can utilize communication completion events to
inform a PE that it has been the target of a one-sided communication opera-
tion, and that the data written is available to read. Counting puts effectively
enables receiver-side synchronization. In contrast, existing point-to-point syn-
chronization in SHMEM is sender-side, and requires additional communication
to update flag locations at the target PE.

We describe the counting puts interface and its implementation in an open
source SHMEM implementation for the low-level Portals networking API [6]. We
demonstrate that bundling communication for a Portals network reduces com-
munication latency by half for small messages, and that it significantly improves
the bandwidth achieved to the synchronization-heavy all-to-all communication
algorithm. We further demonstrate the performance impact of counting puts on
a pipelined parallel stencil computation, that relies heavily on point-to-point
synchronization. While our evaluation focuses on a Portals implementation, we
describe several methods for creating efficient receiver-side implementations of
counting puts that can achieve the demonstrated performance improvements on
a variety of networks.

1 Overview

The SHMEM parallel programming model provides a global address space,
shown in Figure 1, where the memory of each processing element (PE), or
SHMEM process, is partitioned into private and shared segments. Data in the
private segment is accessible locally, while data in the shared segment is acces-
sible both locally and remotely, through SHMEM library routines. The shared
segment contains both a shared heap, for dynamically allocated shared objects,
and a shared data segment, which allows statically declared objects to be ac-
cessed by remote PEs.

Objects in a shared segment are symmetric, meaning that an instance of the
object is accessible at every PE, and that the object can be accessed using the
address of the corresponding symmetric object in the local PE’s address space.
Thus, when accessing data in the global address space, the target address is the
pair containing the destination PE rank and the symmetric address. Remote
accesses are performed using one-sided get and put data copy operations, that
transfer data between local and remote buffers. In addition SHMEM provides a
variety of collective and atomic, one-sided communication routines.

Reducing Synchronization Overhead Through Bundled Communication 165

Symmetric
Data Segment

Symmetric
Heap

Private
Memory

PE 0 PE 1 PE 2 PE 3

Put Get

Fig. 1. SHMEM communication model, showing shared and private memory areas, and
one-sided get and put communication operations

1.1 Portals

In this work, we demonstrate the counting puts interface using the open source
OpenSHMEM implementation for the low-level Portals networking API [1,5].
The Portals interface exposes sections of a process’ address space for one-sided
remote access using read, write, and atomic operations. Accesses to exposed
memory regions can be guarded through matching criteria that are used when
implementing matched, or two-sided, communication operations. For one-sided
communication, a non-matching interface is provided that allows all operations
targeting the process to access the given memory region.

The ordering of operations is an important component in synchronization for
one-sided communication models. Portals presents the programmer with an un-
ordered network model, where data is not guaranteed to arrive at the target in the
order in which it was sent. This delivery model enables dynamic message routing,
and also ensures reliable delivery. As data arrives at the target, acknowledgement
messages are returned to the sender.Thus,when a processwaits for communication
operations to complete, it waits for acknowledgement messages from the target.

1.2 Synchronization in OpenSHMEM

The OpenSHMEM standard provides both collective and point-to-point synchro-
nization primitives. SHMEM barriers are collective synchronization operations
that can include all PEs, or a regular subset that includes PEs whose ranks are a
multiple of a power of two. In addition to synchronizing the involved PEs, before
returning, SHMEM barriers also ensure that all preceding writes to symmetric
objects have completed.

Point-to-point synchronization is achieved through symmetric flag variables
that are acted upon using one-sided operations. These flags can be updated
using one-sided writes, when a single PE updates the flag, or atomic operations,
when multiple PEs update the flag. A PE can wait for the value of the flag
to satisfy a certain condition by using one of the waiting routines provided in
the OpenSHMEM API. In addition, some applications also poll flag locations
directly, which can require the use of additional system-specific memory fences
to ensure data consistency.

166 J. Dinan et al.

1 for (pe = 0; pe < NPES; pe++)
shmem_putmem(& data_recv[pe], &data_send[pe], data_size , pe);

3

shmem_barrier_all();

Listing 1.1. All-to-all with barrier synchronization

for (pe = 0; pe < NPES; pe++)
2 shmem_putmem(& data_recv[pe], &data_send[pe], data_size , pe);

4 shmem_fence();

6 for (pe = 0; pe < NPES; pe++)
shmem_int_add(&flag , -1, pe);

8
shmem_int_wait_until(&flag , SHMEM_CMP_EQ , 0);

Listing 1.2. All-to-all with point-to-point synchronization

For point-to-point synchronization, data consistency is achieved using either
fence or quiet operations. A SHMEM fence operation provides ordering, by en-
suring that any operations performed by the calling PE to a particular remote
PE will be completed before any subsequent operations issued by the calling PE
to the same remote PE. A SHMEM quiet operation provides a stronger ordering
semantic, and ensures that all put operations performed by the calling PE will
be remotely completed and visible to all PEs when the call to quiet returns

We illustrate these two synchronization mechanisms with a simple all-to-all
communication example, similar to the type of communication that is performed
in a fast Fourier transform or parallel sort. In this data exchange, each PE
must wait until all data has arrived before proceeding with the next phase of
the computation. Listing 1.1 shows this communication pattern when a barrier
synchronization is used, and Listing 1.2 shows this communication pattern when
point-to-point synchronization is used.

In comparison with barrier synchronization, point-to-point synchronization
can be performed more efficiently, because a PE does not need to wait for all
other PEs to receive data. However, the flag update operation requires an ad-
ditional communication and, depending on the underlying network, a fence or
quiet operation can require additional communication to ensure ordering or re-
mote completion, respectively. Overhead from these operations can outweigh
the benefits from relaxed synchronization. For example, on ordered networks, a
fence is a no-op, but a quiet operation requires sending a round-trip message to
all other PEs that the calling PE has communicated with, to flush the ordered
communication channels. In comparison, on unordered networks, both fence and
quiet operations require waiting for point-to-point remote completion with each
other PE. In the case of a fence, the calling PE must only wait before perform-
ing additional communication operations, whereas a quiet requires waiting for
communication with all other PEs to complete before returning. When using
the Portals communication API, communication operations are completed by

Reducing Synchronization Overhead Through Bundled Communication 167

1 void shmem_ct_create (shmem_ct_t ∗ ct) ;
void shmem_ct_free (shmem_ct_t ∗ ct) ;

3 long shmem_ct_get (shmem_ct_t ct) ;
void shmem_ct_set(shmem_ct_t ct , long value) ;

5 void shmem_ct_wait (shmem_ct_t ct , long wait_for) ;
void shmem_putmem_ct (shmem_ct_t ct , void ∗ trg , void ∗ src , s i ze_t bytes , int pe) ;

Listing 1.3. Counting puts API extension

waiting for acknowledgement messages to be returned from the target PE to the
source PE for each operation.

2 Bundling Communication and Synchronization

We propose an extension to OpenSHMEM that bundles communication and syn-
chronization. A variety of bundled communication interfaces are possible, based
on the operations that will be bundled and the interface that will be used to
access notification information. For example, the ARMCI one-sided communi-
cation library [18] provides the ARMCI_Put_flag operation that bundles two put
operations, where a notification flag in the target process’ address space is up-
dated after the main data payload has been delivered. While it is easy to use,
this interface requires distinct flags for each PE that will perform a put-and-
notify operation. For all-to-all communication, this can result in O(NPEs) flags
at every PE.

Our proposed interface is shown in Listing 1.3. This interface bundles an
atomic increment operation with the communication operation, allowing the flag
to be shared by multiple communicate-and-notify operations. We use an opaque
shmem_ct_t representation for the counter, to enable a broader variety of effi-
cient implementations. When network events are used to signal completions, the
SHMEM implementation or networking layer can locally increment the counter
as operations are performed, rather than requiring the remote PE to perform
the update. Our discussion of this interface focuses on providing support for a
put-and-notify operation; however, the proposed interface and implementation
can also be utilized to provide a get-and-notify operation to support producer-
consumer computational patterns.

The proposed interface provides functions that can be used to create and
free an event counter (CT); get and set the counter’s value; and wait for the
counter to reach a particular value [20]. New communication functions are also
provided that add a CT parameter that should be updated when the operation
has completed. An example all-to-all communication using the new interface
is shown in Listing 1.4. In comparison with Listing 1.1, this example achieves
point-to-point synchronization, and in comparison with Listing 1.2, this example
can eliminate overheads associated with the fence operation and flag updates.

168 J. Dinan et al.

shmem_ct_create(&ct);
2

for (pe = 0; pe < NPES; pe++)
4 shmem_putmem_ct(ct, &data_recv[pe], &data_send[pe], data_size , pe);

6 shmem_ct_wait(ct, NPES);

Listing 1.4. All-to-all with counting puts synchronization

Network
Interface

Portal Table
Data

LE

Heap
LE

Data
LE

Heap
LE

Heap
Seg.

ct1_heap

ct1_data
heap
data

CT
Event

put_ct(ct1,)

Initiating PE Target PE Data
Seg.

Fig. 2. Portals implementation of the counting puts interface

2.1 Implementation of the Counting Puts Interface

A variety of implementation strategies are possible for the counting puts in-
terface; we chose an opaque representation of the CT object to provide more
flexibility in the implementation. For example, in addition to enabling imple-
mentations that use low-level network counting events, the opaque CT object
enables an implementation on top of the existing SHMEM interface. In such an
implementation, a symmetric counter location is allocated at each PE during CT
creation, and counted put operations perform a put, fence, and atomic increment
using the functions provided in the SHMEM API.

Most networks provide mechanisms that can be utilized to implement these
operations more efficiently by bundling communication and synchronization. On
networks that are programmable, or on-load communication to the processor
(e.g. sockets or PSM), CT information can be embedded in message headers
enabling a receiver-side implementation to perform bookkeeping. Many networks
report low-level communication events when one-sided operations complete in
a given PE’s memory. As these events are consumed in the SHMEM runtime
system, the corresponding counter can be incremented.

We implement the CT interface in the open source Portals 4 [6] implemen-
tation of SHMEM [5]. We utilize Portals 4 counting communication events to
achieve an efficient receiver-side implementation of counting puts. A high-level
schematic of our implementation is shown in Figure 2. This example shows the
Portals objects that are components in the implementation of the CT interface,
and the flow of control when processing a counted put operation.

Reducing Synchronization Overhead Through Bundled Communication 169

As shown in Figure 2 our implementation utilizes Portals lightweight counting
events, that are incremented when each counted operation is completed at the
target PE. Full events utilizing an event queue that can be attached to each
portal table entry (not shown in Figure 2, for clarity) can also be used, resulting
in an implementation similar to one that uses InfiniBand event queues. In such
an implementation, CT query and wait routines would need to search this queue
for operations affecting the counter. Counting events provide a more efficient
implementation vehicle, as they use a fixed amount of memory and do not incur
queue processing overheads.

Individual event counters are distinguished using distinct portal table entries
that act as separate communication contexts. Communication operations in Por-
tals specify the target network interface, portal table entry, and offset relative
to the beginning of the memory portal. When the system can provide identical
segment base addresses, a single portal table entry can be used to expose mem-
ory for one-sided access. On most clusters, separate portal table entries must be
created for the static data and dynamic heap segments, because these segments
can be disjoint in memory and located at different starting addresses across
PEs. Prior to performing communication, the corresponding portal table entry
is identified by comparing the symmetric address with the local addresses of the
heap and data segments. The symmetric address is then converted to an offset
relative to the beginning of the corresponding memory segment, and the offset
and portal table entry are passed to the desired communication routine. Distinct
heap and data segment portal table entries are created for each counter, allow-
ing the implementation to identify which counter should be incremented when a
counted put arrives. Non-matching list entries that describe the complete heap
and data memory segments are attached to the respective portal table entries,
and a counting event is registered with each list entry.

We note that the proposed interface does not guarantee any ordering or con-
sistency beyond the completion of the counted communication operation. This
targeted completion rule allows for greater concurrency and performance poten-
tial. Thus, we do not enforce any additional ordering in our implementation. If
the algorithm requires ordering of non-counted operations, or ordering across
different counted operations targeting the same PE, existing OpenSHMEM syn-
chronization operations must be used.

3 Experimental Evaluation

We extended the Portals OpenSHMEM implementation [5] with the counting
puts interface, and utilize the Portals 4 InfiniBand reference implementation [2]
to provide Portals support. While this is not a native implementation of the Por-
tals interface, it utilizes InfiniBand network events to implement Portals counting
events, which allows us to demonstrate the relative performance improvement
of the receiver-side counting puts protocol. This protocol eliminates additional
messages that are generated when synchronizing through shared flag variables.

We utilize a 15-node cluster with a Mellanox QDR InfiniBand interconnect for
experimentation. Each node in this cluster is configured with 24GB of memory

170 J. Dinan et al.

and two Intel Xeon X5680 processors, for a total of 12 cores per node, each sup-
porting two hyperthreads, for a total of 24 hardware threads per node. We demon-
strate the impact of the proposed CT interface on communication efficiency using
ping-pong and all-to-allmicrobenchmarks. In addition, we demonstrate significant
performance improvement for a pipelined parallel stencil computation, that relies
heavily on point-to-point synchronization.

3.1 Ping-Pong Latency

We measured ping-pong latency using a simple benchmark with two PEs. In each
iteration of the benchmark, one PE is the sender and one is the receiver. After
each iteration, sender and receiver roles are reversed. For the baseline implemen-
tation using the operations available in the current OpenSHMEM specification,
the sender performs the following sequence of operations.

shmem_putmem(rcv_buf , snd_buf , msg_length , target);
shmem_fence();
shmem_int_inc(&flag , target);

The receiver performs the following sequence of operations.

shmem_int_wait(&flag , 0);
flag = 0;

For the CT implementation of the benchmark, the sender performs the following
operation.

shmem_putmem_ct(ct, rcv_buf , snd_buf , msg_length , target);

The receiver performs the following sequence of operations.

shmem_ct_wait(ct, 1);
shmem_ct_set(ct, 0);

The half round-trip latency is shown in Figure 3 for baseline and CT imple-
mentations. From this data, we see that the latency is approximately halved for
small messages. For larger message sizes, the cost associated with the fence and
flag update operations is amortized over a larger message transfer and results in
a decreasing speedup from the CT extension.

3.2 All-to-All Bandwidth

We measure the bandwidth achieved using a simple all-to-all communication
benchmark, where every PE sends a message to every other PE and waits for
messages to arrive. For the baseline version of this benchmark, each PE per-
forms the sequence of operations shown in Listing 1.5. For the CT version of
the benchmark, the fence is omitted, and flags are replaced with a CT object,
using the same approach as in the ping-pong algorithm. For the CT and flags
versions of the benchmark, a pair of synchronization constructs is created and
alternated across loop iterations to eliminate the race that arises in resetting
the value of the counter or flag. In addition, a barrier synchronization version
was created that replaces the fence and all flag operations with a single call to

Reducing Synchronization Overhead Through Bundled Communication 171

 4

 8

 16

 32

 64

 128

 256

1 4 16 64 256 1k 4k 16k 64k 256k

H
al

f R
ou

nd
-T

rip
 L

at
en

cy
 (

us
)

Message Size (Bytes)

Fence+Flag
Counting Puts

Fig. 3. Half round-trip latency for the ping-pong benchmark on the InfiniBand cluster

/* Initially , flag = num_pes */
2

pe = me;
4 do {

shmem_putmem(& target_buf[me], &src_buf [pe], msg_size , pe);
6 pe = (pe + 1) % num_pes ;

} while (pe != me);
8

shmem_fence();
10

pe = me;
12 do {

shmem_int_add(&flag , -1, pe);
14 pe = (pe + 1) % num_pes ;

} while (pe != me);
16

shmem_int_wait_until(&flag , SHMEM_CMP_EQ , 0);

Listing 1.5. Baseline implementation of the all-to-all communication benchmark

shmem_barrier_all(), which synchronizes all processes and ensures that all com-
munication has been completed. Communication operations are staggered across
PEs to spread out communication. While more sophisticated algorithms for all-
to-all exist [10,21], this algorithm captures the approach that would be taken in
a loosely synchronized or pipelined application.

The bandwidth achieved per node, when one PE is run per core, for each ver-
sion of the all-to-all benchmark is shown in Figure 4. The barrier implementation
achieves the lowest bandwidth because of the overhead from global synchroniza-
tion. The fence implementation provides increased network efficiency, but incurs
overhead from O(NPEs) additional communications per PE that are required to
update the flag variables. By eliminating these operations, the CT version of the
benchmarkprovides the best performance.As was the casewith ping-pong latency,

172 J. Dinan et al.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 64 128 256 512 1024 2048 4096 8192 16384

B
an

dw
id

th
 p

er
 N

od
e

(M
B

/s
)

Message Size (Bytes)

Counting Puts
Fence+Flags

Barrier All

Fig. 4. All-to-all bandwidth achieved per node on the InfiniBand cluster

the cost of the additional synchronization communications is amortized over long
transfer times, and the relative impact of increased communication is reduced.

The bandwidth we report in Figure 4 is significantly lower than the theoretical
peak of 40 Gb/sec for our QDR InfiniBand network. This is caused by overhead
incurred in simulating Portals communication on top of InfiniBand. However,
these results still capture the performance improvement from eliminating addi-
tional messages needed to update flag locations at every PE.

3.3 Pipelined Parallel Stencil Kernel

Next, we investigate the performance impact of counting puts on a fine-grain
pipelined parallel stencil computation. This type of computation has strong data
dependencies across units of work, requiring frequent point-to-point synchro-
nization. Pipelined parallel stencils are encountered in a variety of numerical
methods, including the Lower-Upper Symmetric Gauss-Seidel (LU) NAS Paral-
lel Benchmark [23] and wavefront-parallel algorithms. We utilize the Synch_p2p
kernel, provided in the Intel Parallel Research Kernels (PRK) [16] to investigate
the performance impact on this class of algorithms. The PRK suite consists of
a set of common low level operations, and it has recently been released as open
source [16]. PRK provides serial, OpenMP, and MPI implementations; for the
purpose of this study we ported the MPI version of the Synch_p2p kernel to the
OpenSHMEM programming model.

Synch_p2p implements a one-dimensional softwarepipeline.Atwo-dimensional
array A of size n ×m is distributed in vertical strips among the PEs. The matrix
elements are updated through the stencil operation,A(i, j) = A(i−1, j)+A(i, j−
1)−A(i−1, j−1).This operation carries dependences in each of the spatial dimen-
sions and is, therefore, not parallelizable in a straightforward manner. Parallelism
is achieved by setting up pipelined execution. The first PE computes one partial

Reducing Synchronization Overhead Through Bundled Communication 173

1 /∗ Let vector be an array tha t hold s the gri d va lues . ∗/
/∗ We def ine the ARRAY macro to s imp l i f y index ing with halo e lements . ∗/

3 #define ARRAY(i , j) ve ctor [i+1 + (j)∗ (segment_size+1)]

5 for (j = 1 ; j < n ; j++) {
/∗ I am not at the l e f t boundary ; wait f o r my l e f t neighbor to send data ∗/

7 i f (PE > 0) {
shmem_ct_wait (ct , j) ;

9 ARRAY(s t a r t [PE]−1 , j) = dst [j] ;
}

11
for (i = s t a r t [PE] ; i <= end [PE] ; i++) {

13 ARRAY(i , j) = ARRAY(i −1, j) + ARRAY(i , j −1) − ARRAY(i −1, j −1);
}

15
/∗ I am not on the r i g h t boundary ; send data to my r i g h t neighbor ∗/

17 i f (PE != NPES−1) {
s r c [j] = ARRAY(end [PE] , j) ;

19 shmem_putmem_ct (ct , &dst [j] , &s r c [j] , 1 ∗ s i zeo f (double) , PE+1);
}

Listing 1.6. Pipelined parallel stencil kernel, using counting puts for point-to-point
synchronization

row (fixed j) of updated elements. It then synchronizes with its right neighbor and
proceeds to the second row.The neighboring process can now startwith the update
of its segment of the first row. Once the pipeline is filled, all PEs will be working in
parallel. A code listing of the kernel using counting puts is shown in Listing 1.6.

In Figure 5, we show results from a strong scaling experiment, comparing the
counting puts implementation with an implementation that uses explicit flags.
For this experiment, we use a fixed matrix size of 12800 × 1280 and utilize 4
PEs per node to reduce noise generate by per-PE communication helper threads
created by the Portals-on-InfiniBand runtime system. Threads are also pinned
to cores to further reduce system noise. Results are reported in terms of the
giga-FLOPs (floating point operations) per second achieved by the benchmark.

The total number of synchronizations required for each iteration of the
Sync_p2p kernel increases with an increasing number of PEs while the computa-
tional work between synchronization points decreases. Because of this, synchro-
nization cost is a significant factor in performance. From the results in Figure 5,
we can see that the cost of synchronization when explicit flags are used is high,
resulting in poor scaling. Counting puts eliminate the overhead of synchroniza-
tion, significantly improving the parallel efficiency.

3.4 Impact of Problem Size on Performance Improvement

We now consider a fixed number of PEs and report the performance when the
problem size is varied. To vary the problem size, we fix the length of the m
dimension and vary the length of the n dimension. Figure 6 compares the per-
formance for each problem size when counting puts and explicit flags are used.
Experiments were run on 48 PEs, with 4 PEs per node. We note that the per-
formance difference between the two implementations decreases with an increase
in problem size. This is expected, as the number of synchronizations required
per iteration depends only on the length of the second dimension. It is there-
fore the same for all sizes under consideration. The computational workload,

174 J. Dinan et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50

G
F

LO
P

S

Number of PEs

Fence+Flags
Counting Puts

Fig. 5. Synch_p2p performance in GFLOPs/sec, for a strong scaling experiment with
problem size of 12800 × 1280 and 4 PEs per node

however, increases, reducing the impact of synchronization cost. We note that
the granularity of the algorithm could be increased by grouping rows together.

4 Related Work

Unified Parallel C (UPC) [22] is another PGAS parallel programming model,
that provides capabilities similar to SHMEM. The current UPC language pro-
vides similar synchronization routines as SHMEM, with the addition of split-
phase barriers and locks. A proposal to extend UPC with semaphores has been
presented [9]. Semaphores would add a similar signaling capability to UPC put
operations, and the authors demonstrated significant performance improvements
across several platforms. An implementation of this extension is provided with
Berkeley UPC [7]. UPC semaphores are implemented using carefully optimized
active message and one-sided operations. The implementation approach we have
presented utilizes receiver-side communication events to further reduce synchro-
nization overheads.

Split-C [12] also provided signaling store operation through the :- assignment
operation. A process that is the target of a signaling store operation can wait
for a programmer defined number of bytes to arrive, but cannot distinguish
among different update operations. Both the SHMEM counting puts and UPC
semaphore extension allow this distinction by providing distinct synchronization
objects. The Tera MTA [3], Cray XMT [14], and the Chapel programming lan-
guage [11] also provide signaling store operations through full/empty bits that
are associated with each word in memory, in the case of the MTA and XMT
architectures, and distinct objects in the case of Chapel.

The ARMCI [18] one-sided communication library also provides a put-with-
flag operation, that bundles a flag variable update with data movement.

Reducing Synchronization Overhead Through Bundled Communication 175

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 20000 40000 60000 80000 100000 120000

G
F

LO
P

S

Problem Size (N x 12800)

Fence+Flags
Counting Puts

Fig. 6. Synch_p2p performance for various problem sizes with increasing first dimen-
sion N on 48 PEs, 4 PEs per node

Similarly, the GASPI [15] PGAS library provides a write-and-notify operation,
that bundles an event notification with data movement. In both cases, the noti-
fication is performed by a write, rather than an atomic update. Thus, for algo-
rithms that require many synchronizations, many flag and event variables would
be needed. Depending on the number of variables needed, checking for comple-
tion can become costly and has the potential to negatively impact application
data residency in the processor cache.

The Message Passing Interface (MPI) [17] provides both one-sided and two-
sided messaging. Two-sided messaging effectively couples synchronization and
data movement, since both sender and receiver participate in the communica-
tion operation. By bundling these two operations, two-sided messaging does not
require additional operations for synchronization. However, in comparison with
one-sided messaging, two-sided messaging incurs additional protocol overheads
from the matching of send and receive operations. In addition, if the sender
performs its send operation before the receiver performs its receive operation,
the MPI library must buffer the unexpected message or delay data transmis-
sion. In contrast, PGAS programming models do not require message matching,
buffering, or rendezvous protocols because remotely accessible memory in the
global address space is necessarily posted before communication can occur and
the sending process determines all communication parameters.

Active messages [8,13] provide a general-purpose mechanism for asynchronous
operations that access memory at the target process. One-sided communication,
can be implemented using active messages [8], and such an implementation can also
notify the target process that the operationhas been performed.Hardware support
forRDMAhasmade it possible to implement one-sided operations directly in hard-
ware without a target-side software agent. In this paper, we observe that hardware

176 J. Dinan et al.

support for communication completion events also makes it possible to implement
bundled one-sided communication and notification in hardware efficiently.

4.1 Concluding Discussion

We have presented a counting puts extension to OpenSHMEM, and discussed
efficient implementations on a variety of networks, focusing on an implementa-
tion on top of the Portals network API. Experimental results indicate that the
counting puts extension maps to an efficient implementation in Portals, and that
it can offer a significant reduction in the overhead associated with point-to-point
synchronization in SHMEM.

The proposed synchronization extension addresses an important need for
SHMEM users, and it should be considered for inclusion in the OpenSHMEM
standard. However, other synchronization mechanisms should also be considered,
to provide a more flexible and efficient interface to users. Overlapping communi-
cation and computation is an important performance optimization, that can be
used to hide communication costs. Counting puts can enable the user to achieve
this overlap by periodically polling for data arrival. For some algorithms, global
synchronization is needed. Non-blocking global synchronization is an increas-
ingly popular primitive that is provided by several popular parallel programming
models, including UPC [22] and MPI 3.0 [17]. The addition of a non-blocking,
or split-phase barrier primitive could also help to address the synchronization
needs of such applications.

Acknowledgements. We thank Tim Mattson and Rob van der Wijngaart of
Intel Coporation, who developed the Parallel Research Kernels benchmark suite,
and assisted us in porting the Sync_p2p benchmark to SHMEM.

References

1. OpenSHMEM implementation using portals 4. Website,
http://code.google.com/p/portals-shmem/

2. Portals 4 open source implementation for InfiniBand. Website,
http://code.google.com/p/portals4/

3. Alverson, R., Callahan, D., Cummings, D., Koblenz, B., Porterfield, A., Smith, B.:
The Tera computer system. In: Proc. ACM Intl. Conf. on Supercomputing, ICS
(June 1990)

4. Bariuso, R., Knies, A.: SHMEM user’s guide. Tech. Rep. SN-2516, Cray Research,
Inc. (1994)

5. Barrett, B.W., Brightwell, R., Hemmert, K.S., Pedretti, K.T., Wheeler, K.B., Un-
derwood, K.D.: Enhanced support for OpenSHMEM communication in Portals.
In: Hot Interconnects, pp. 61–69. IEEE (2011)

6. Barrett, B.W., Brightwell, R., Hemmert, S., Pedretti, K., Wheeler, K., Underwood,
K., Riesen, R., Maccabe, A.B., Hudson, T.: The portals 4.0.1 network programming
interface. Tech. Rep. SAND2013-3181, Sandia National Laboratories (April 2013)

http://code.google.com/p/portals-shmem/
http://code.google.com/p/portals4/

Reducing Synchronization Overhead Through Bundled Communication 177

7. Berkeley UPC: Berkeley UPC user’s guide version 2.16.0. Tech. rep., U.C. Berkeley
and LBNL (2013)

8. Bonachea, D.: GASNet specification, v1.1. Tech. Rep. UCB/CSD-02-1207, U.C.
Berkeley (2002)

9. Bonachea, D., Nishtala, R., Hargrove, P., Yelick, K.: Efficient point-to-point syn-
chronization in UPC. In: 2nd Conf. on Partitioned Global Address Space Program-
ming Models, PGAS 2006 (October 2006)

10. Bruck, J., Ho, C.T., Upfal, E., Kipnis, S., Weathersby, D.: Efficient algorithms
for all-to-all communications in multiport message-passing systems. IEEE Trans.
Parallel Distrib. Syst. 8(11), 1143–1156 (1997)

11. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the Chapel
language. Intl. J. High Performance Computing Applications (IJHPCA) 21(3),
291–312 (2007)

12. Culler, D., Dusseau, A., Goldstein, S., Krishnamurthy, A., Lumetta, S., von Eicken,
T., Yelick, K.: Parallel programming in Split-C. In: Proc., Supercomputing 1993,
pp. 262–273 (1993)

13. von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E.: Active messages: a
mechanism for integrated communication and computation. In: Proc. 19th Intl.
Symp. on Computer Architecture, ISCA 1992, pp. 256–266 (1992)

14. Feo, J., Harper, D., Kahan, S., Konecny, P.: ELDORADO. In: Proc. 2nd Conf. on
Computing Frontiers, CF 2005 (2005)

15. GASPI Consortium: GASPI: Global address space programming interface specifi-
cation of a PGAS API for communication. Version 1.00 (June 2013)

16. Mattson, T., van der Wijngaart, R.: Parallel research kernels. Website (2013),
https://github.com/ParRes/Kernels

17. MPI Forum: MPI: A message-passing interface standard version 3.0. Tech. rep.,
University of Tennessee, Knoxville (September 2012)

18. Nieplocha, J., Carpenter, B.: ARMCI: A portable remote memory copy library
for distributed array libraries and compiler run-time systems. In: Rolim, J., et al.
(eds.) IPPS-WS 1999 and SPDP-WS 1999. LNCS, vol. 1586, pp. 533–546. Springer,
Heidelberg (1999)

19. OpenSHMEM Consortium: OpenSHMEM application programming interface, ver-
sion 1.0 (January 2012)

20. Reed, D., Kanodia, R.: Synchronization with event counts and sequences. Commu-
nications of the ACM 22(2), 115–123 (1979)

21. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communica-
tion operations in MPICH. International Journal of High Performance Computing
Applications (IJHPCA) 19(1), 49–66 (2005)

22. UPC Consortium: UPC language specifications, v1.2. Tech. Rep. LBNL-59208,
Lawrence Berkeley National Lab (2005)

23. Yarrow, M., van der Wijngaart, R.: Communication improvement for the LU NAS
parallel benchmark: A model for efficient parallel relaxation schemes. Tech. Rep.
NAS-97-032, NASA Ames Research Center (1997)

https://github.com/ParRes/Kernels

Thread-Safe SHMEM Extensions

Monika ten Bruggencate, Duncan Roweth, and Steve Oyanagi

Cray Inc.

Abstract. This paper is intended to serve as a proposal for thread safety
extensions to the OpenSHMEM specification and at the same time de-
scribes planned support for thread-safety for Cray SHMEM on Cray XE
and XC systems.

1 Introduction

The original impetus for implementing thread-safe Cray SHMEM and proposing
thread safety extensions to OpenSHMEM were requests from SHMEM customers
for thread safety support. Subsequent discussions with some SHMEM customers
and review of the MPI specification [1] led to the proposal detailed in this pa-
per. The paper describes basic thread safety support for Cray SHMEM. The
thread safety support is basic in that it imposes policies on SHMEM applications
and contains minimal extensions to the Cray SHMEM and OpenSHMEM APIs.
However, it does enable processes to issue small Puts, small Gets, and AMOs at
higher aggregate rates than is possible in a single-threaded environment, which
can lead to better performance for certain multi-threaded applications. As much
as possible, this proposal was guided by the thread safety extensions to the MPI
standard and by customer input, in an effort to facilitate acceptance by the
OpenSHMEM community. Note that what is known in a single-threaded envi-
ronment as a processing element (PE) or rank corresponds to a process, not a
thread, in a multi-threaded environment. The remainder of the paper will discuss
the proposed thread safety extensions to OpenSHMEM, including assumptions
and new functions.

2 Assumptions

As mentioned above, reviewing the MPI specification and discussions with
some SHMEM customers led to this proposal, including several agreed-upon
assumptions.

1. Initialization and finalization routines are restricted to being called by one
thread per process. A new initialization routine, shmem init thread(), en-
ables the user to specify that support for thread safety is desired.

2. Thread safety support is required for Put, Get and AMO operations so
that an application with multiple threads per process can make one-sided
SHMEM calls from multiple threads.

S. Poole, O. Hernandez, and P. Shamis (Eds.): OpenSHMEM 2014, LNCS 8356, pp. 178–185, 2014.
c© Springer International Publishing Switzerland 2014

Thread-Safe SHMEM Extensions 179

3. Not necessarily all threads make SHMEM calls. It may be that only a subset
of the threads of a process make SHMEM calls.

4. The pool of threads that make SHMEM calls may be static or may be dy-
namic.

5. SHMEM collectives operate on sets of processes and the use of SHMEM
collective calls with multiple threads per process can be problematic. For
instance, in the OpenSHMEM specification 1.0 [2], in some cases collective
operations are defined not only in terms of PE synchronization, but also
memory consistency. The semantics of operations like shmem barrier() would
either need to be redefined for the proposed thread-safety extensions, or
new SHMEM collective functions would need to be defined which would
address these memory consistency issues. Either effort is beyond the scope
of this initial proposal and should be coordinated with future proposals for
modernizing the collective operations component of the SHMEM API. Thus,
for the purpose of this paper, SHMEM collective calls are subject to the
following restrictions:
(a) A collective operation can be called from only one thread per process at

a time and several threads per process cannot simultaneously participate
in different collective operations.

(b) Where anapplicationmakesSHMEMcollective calls frommultiple threads
per process, it is the responsibility of the application to ensure that calls are
made in the same order in each participating process.

6. The symmetric heap management functions shmalloc(), shfree(), and
shrealloc(), and shfree() are all defined to call shmem barrier all()

before they return and thus must be treated as collective operations.
7. The lock functions shmem clear lock(), shmem set lock(), and

shmem test lock() are restricted such that multiple threads on the same
process cannot access the same lock at the same time. Note that this restric-
tion does permit two different threads on the same process to access two
different locks at the same time.

8. Cray is proposing the thread safety extensions described in this paper to the
OpenSHMEM committee for inclusion in the OpenSHMEM standard.

3 Precautions

Programmers using thread-safe SHMEM should be mindful of the following
caveats.

1. It is the applications responsibility to ensure that collectives are called in the
right order, no matter whether the application is single-threaded or multi-
threaded. The SHMEM programming model does not recognize individual
threads. Any SHMEM operation initiated by a thread is considered an action
of the process as a whole. In particular, note that:
(a) shmem quiet() and shmem fence() affect the entire process, not just the

calling thread.While a thread is callingshmem quiet() or shmem fence(),
no other thread should be able to make calls who’s behavior is affected by

180 M. ten Bruggencate, D. Roweth, and S. Oyanagi

shmem quiet()/shmem fence(). Further, a call to shmem quiet() by one
thread should affect all threads in that the callwill wait for completion of all
outstanding Puts and non-blocking Gets issued by the process. Similarly,
a call to shmem fence() by one thread should affect all threads.

(b) The symmetric heap is a per process resource. A thread making a
shmalloc(), shrealloc(), or shfree() call affects the entire process.
The existing requirement that the same symmetric heap operations must
be executed by all processes in the same order also applies in a multi-
threaded environment.

2. When using multiple threads and SHMEM, be mindful of the order of ac-
cess and race conditions. For example, if one thread of a process is issuing
Puts and another thread of the same process is calling shmem quiet(), it
is the programmer’s responsibility to ensure the correct ordering of those
operations.

3. Thread safety should not be activated unless needed. Activating thread
safety causes additional overhead even if no additional threads are created
or used.

4 SHMEM Thread Safety Extensions

Where appropriate, SHMEM thread safety extensions have been modeled after
the existing MPI thread safety interface. The following naming convention ap-
plies: functions which relate to the level of thread safety activated are named
shmem <action> thread(). Functions which apply to a specific thread only
are named shmem thread <action>(). Return types of new functions are cho-
sen to follow the OpenSHMEM model of being void or returning a result. This
differs from the MPI model where functions return a success or failure code and
results are passed via output parameters.

4.1 shmem init thread()

A new function, shmem init thread(), allows a user to indicate that thread
safety support is desired. The function initializes SHMEM in the same way that
shmem init() or start pes() does. In addition, it performs thread safety spe-
cific initialization. This function is used in place of shmem init() either before
additional threads are created or by only one thread per process. The thread
which calls shmem init thread() is known as the main/primary thread. The
syntax of the function is as follows:

int shmem init thread(int required, int max num threads)

Following the MPI standard, there could be four levels of threading support.
Note that these levels are hierarchical. The higher levels should support any
lower levels.

1. SHMEM THREAD SINGLE – no threading/one thread per process. SHMEM im-
plementers can assume there is no threading.

Thread-Safe SHMEM Extensions 181

2. SHMEM THREAD FUNNELED – processes may have multiple threads but only one
of the threads can make SHMEM calls. (All functions are funneled through
one thread.) It is the user’s responsibility to make certain all SHMEM calls
by a process are executed by the same thread.
Cray does not provide support for this level. It is unclear whether this level
should be included in the OpenSHMEM spec.

3. SHMEM THREAD SERIALIZED – processes may have multiple threads. Any
thread may issue SHMEM calls, but only one SHMEM call per process can
be active at any given time. Simultaneous calls from two threads belonging
to the same process are not allowed. It is the user’s responsibility to make
certain that SHMEM calls by a process are not concurrent.
Cray does not provide support for this level. It is unclear whether this level
should be included in the OpenSHMEM spec.

4. SHMEM THREAD MULTIPLE – processes may have multiple threads. Any thread
may issue a SHMEM call at any time, subject to the restrictions and policies
described earlier.

To specify which level of threading support is desired, use the
shmem init thread()’s required argument to pass in one of the above symbols,
specifying which level of threading support is desired. The return value of the
function is the level of threading support that the SHMEM library can provide.
If possible, the function returns the required value. If that is not possible, the
library returns the lowest threading support level that can be supported that is
greater than required. If that is not possible, the function returns the highest
threading support level SHMEM can provide. The user is responsible for check-
ing the return value to make certain that the available thread-safety level is
suitable for their program. All processes in a SHMEM application must request
the same level of threading support.

The input parameter max num threads allows a user to specify the maximum
number of threads per process that will make SHMEM calls. If the maximum
number is not known, a negative number (or appropriate macro) indicates that
no upper limit exists. Knowing the maximum number allows lower level software
to optimize use of hardware and minimize startup and teardown overhead.

Additional input parameters may be added to shmem init thread() as our
implementation progresses. Calls to the standard SHMEM initialization routines,
shmem init() and start pes(), are considered to request the threading support
level SHMEM THREAD SINGLE.

4.2 shmem query thread()

A new query function, shmem query thread(), enables SHMEM application de-
velopers to query the current level of thread safety support. When invoked, it re-
turns the same thread safety level that was returned when shmem init thread()

was called. The syntax is as follows:

int shmem query thread(void)

182 M. ten Bruggencate, D. Roweth, and S. Oyanagi

4.3 shmem thread register()

After shmem init thread() has been called by the primary thread, any other
thread that wishes to make SHMEM calls must call shmem thread register()

before making any other SHMEM calls. The primary thread which called
shmem init thread() does not have to call shmem thread register(). Intro-
ducing a function which explicitly registers threads has several advantages.

– It allows optimized use of hardware, for instance by initializing thread safe
storage to allow dedicated use of hardware components by a thread.

– It minimizes overhead of pt2pt operations since such operations don’t have to
check a thread-private registration variable and, if necessary, perform thread
registration under the cover.

– It allows dynamic creation and destruction of threads throughout a program
run while not wasting hardware resources. For instance, if a thread is de-
stroyed in the middle of a program run and calls shmem thread unregister()

prior to that event, the hardware resources which were dedicated to that
thread can be reassigned to another thread which calls
shmem thread register() later in the program run.

An error may be returned if the maximum level of concurrency is exceeded, i.e. if
more threads are attempting to register than was specified via the
max num threads input parameter to shmem init thread(). The syntax is as
follows:

int shmem thread register(void)

4.4 shmem thread unregister()

Any thread that previously called shmem thread register() must call
shmem thread unregister() before exiting. The thread that called
shmem init thread() does not have to call shmem thread unregister. The
syntax is as follows:

int shmem thread unregister(void)

The following pseudo code illustrates a sample call sequence of a multi-threaded
SHMEM program.

if (primary) {

shmem_init_thread()

pthread create loop

shmem calls

pthread join loop

shmem_finalize()

}

if (non-primary)

{

shmem_thread_register()

shmem calls

shmem_thread_unregister()

}

Thread-Safe SHMEM Extensions 183

4.5 shmem thread quiet()

This is the thread specific version of the shmem quiet() function. It allows an
individual thread to wait for completion of Puts and non-blocking Gets which it
previously issued. There is no requirement on the implementation to only com-
plete operations issued by the calling thread. The syntax is as follows:

void shmem thread quiet(void)

4.6 shmem thread fence()

This is the thread specific version of the shmem fence() function. It allows an
individual thread to ensure ordering of Puts and non-blocking Gets which it
previously issued. There is no requirement on the implementation to only order
operations issued by the calling thread. The syntax is as follows:

void shmem thread fence(void)

4.7 shmem thread barrier()

This function performs an efficient local barrier among the threads that have
registered themselves by calling shmem thread register(). Decisions regarding
return type and input/output parameters remain to be made. The syntax is as
follows:

void shmem thread barrier(void)

4.8 shmem thread is registered()

This function determines whether a thread can make SHMEM calls. It will re-
turn TRUE if the thread has previously called shmem thread register() or is
the main thread. It will return FALSE otherwise. The syntax is as follows:

int shmem thread is registered(void)

4.9 Sample Pseudo Code

The following pseudo code illustrates a possible code flow and usage of the new
API functions. It is not related to any real world example.

184 M. ten Bruggencate, D. Roweth, and S. Oyanagi

#include <stdio.h>

#include <omp.h>

#include <mpp/shmem.h>

int

main (int argc, char *argv[])

{

int nthreads, /* number of threads */

tid, /* thread id */

rc; /* return value */

Initialization phase;

rc = shmem_init_thread(SHMEM_THREAD_MULTIPLE, 8);

#pragma omp parallel private(tid) /* fork threads whith each having a private tid */

{

if (tid != 0)

shmem_thread_register(); /* additional threads must register */

shmem_int_get_nb(...); /* all threads transfer data */

Computation phase by each thread;

if (tid == 1)

shmem_thread_quiet(); /* thread 1 waits for own transfer completion */

Computation phase by each thread;

if (tid == 0)

shmem_quiet(); /* wait for transfers of all threads to complete */

Computation phase by each thread;

shmem_thread_barrier(); /* synchronize all threads of the rank */

if (tid == 2)

shmem_barrier(...); /* one thread participates in a collective */

if (tid != 0)

shmem_thread_unregister(); /* additional threads unregister */

} /* all threads join master thread and terminate */

shmem_finalize();

}

5 Performance Considerations

The original impetus for supporting thread-safe Cray SHMEM came from cus-
tomer requests,where requests focused onpoint-to-point operations and on perfor-
mance. Thus, one goal when implementing the described thread safety extensions
on Cray XE and XC systems is to increase the per process, aggregate issue rate for
Puts, Gets and AMOs. At the time of the publication of this paper, the implemen-
tation of the thread safety extensions in Cray SHMEMhas not been completed and
we are not able to present performance data at the SHMEM level.

Thread-Safe SHMEM Extensions 185

In our software stack, Cray SHMEM is implemented on top of DMAPP, a
network library supporting one-sided program models. The majority of the work
to support thread safety in a well-performing manner needed to occur in DMAPP
and has been completed. DMAPP was modified to use NIC resources effectively
in the presence of threads. Specifically, registering a thread with DMAPP allows
the thread to use a dedicated NIC resource, thereby eliminating bottlenecks
when accessing hardware resources. This approach also allowed us to eliminate
the use of a global lock in DMAPP. We carried out preliminary performance
experiments at the DMAPP level, comparing the older implementation where
a thread did not use a dedicated NIC resource and which used a global lock,
with the new, better-performing implementation. Preliminary performance data
on XE shows an increase in per-process aggregate issue rate by a factor of 4
to 5 for non-blocking 8 byte Puts using 8 threads per process. More thorough
performance analysis will be done at the DMAPP level and, once the work has
been completed in Cray SHMEM, at the SHMEM level. We will then use the
performance analysis to guide further improvements in our software stack.

6 Future Work

The proposed thread safety extensions are modeled after the MPI standard for
thread safety, as it is hoped that by following a well-known and well-defined in-
terface, the proposed extensions will be more readily accepted. The thread-safe
SHMEM interface could be expanded beyond the minimum required should this
be desired by SHMEM users. Some of the policies imposed on SHMEM applica-
tions may be lifted over time. In particular, we plan to work with the community
to determine whether and how policies on the use of collective operations in a
multi-threaded environment should be loosened over time.

References

1. Message Passing Interface Forum: MPI: A Message-Passing Standard Version 3.0
(2012)

2. OpenSHMEM: OpenSHMEM Specification v1.0 (2012)

S. Poole, O. Hernandez, and P. Shamis (Eds.): OpenSHMEM 2014, LNCS 8356, pp. 186–190, 2014.
© Springer International Publishing Switzerland 2014

Implementing Split-Mode Barriers in OpenSHMEM

Michael A. Raymond

Silicon Graphics International
mraymond@sgi.com

Abstract. Barriers synchronize the state of many processing elements working
in parallel. No worker may leave a barrier before all the others have arrived.
High performance applications hide latency by keeping a large number of oper-
ations in progress asynchronously. Since barriers synchronize all these opera-
tions, maximum performance requires that barriers have as little overhead as
possible. When some workers arrive at a barrier much later than others, the ear-
ly arrivers must sit idle waiting for them. Split-mode barriers provide barrier
semantics while also allowing the early arrivers to make progress on other
tasks. In this paper we describe the process and several challenges in develop-
ing split-mode barriers in the OpenSHMEM programming environment.

Keywords: OpenSHMEM, barrier, split-mode.

1 Introduction

Barriers are a common construct in parallel programming environments. They allow
multiple processing elements (PEs) to synchronize their progress. When a PE arrives
at a barrier it waits for all the other PEs to arrive before they can all leave. Barriers let
PEs know that all the others have arrived at a known point in their execution. Barriers
are an important part of the OpenSHMEM [1], MPI [2], and UPC [3] environments.

Like other collective operations, the performance of barriers may be critical to ap-
plication performance. Barriers may involve many PEs operating on different nodes,
and so they must be scalable. PEs waiting at a barrier for other PEs to arrive cannot
make progress on any other tasks, and thus any time spent in a barrier can be consi-
dered overhead.

While several designs for barriers have been proposed in the past to increase scala-
bility while minimizing time and space consumption [4], split-mode barriers address
the issue of PEs arriving at different times. When a PE arrives at a synchronization
point it signals to the barrier that it has arrived. This sends out a notification to the
other PEs. The PE is then free to perform other work. From time to time it checks the
status of the barrier to see if every other PE has arrived. When every PE has signaled
arrival, the barrier can be considered complete and all PEs may move past the syn-
chronization point. Split-mode barriers were added to MPI as part of version 3.0 [5].

The OpenSHMEM programming environment models symmetric memory across
parallel PEs that perform memory puts, gets, and atomic memory operations (AMOs)
to it. OpenSHMEM also includes collective operations such as reductions, gather

 Implementing Split-Mode Barriers in OpenSHMEM 187

operations, and synchronous barriers. The OpenSHMEM 1.0 standard does not in-
clude split-mode barriers.

This paper describes the process of an experimental addition of split-mode barriers
to the SGI implementation of OpenSHMEM. SGI SHMEM ships as part of the SGI
MPI product [6] and both make use of the SGI MPT high performance communica-
tions middleware. We modified an existing synchronous barrier implementation in
SGI SHMEM to operate as a split-mode barrier and then made numerous optimiza-
tions to improve performance.

2 Experimental Environment

2.1 Target Benchmark

The experimental environment was largely motivated by a paper by Hoefler, Siebert,
and Lumsdaine on the dynamic sparse data exchange problem [7]. They describe a
common communication pattern where PEs must periodically exchange data with a
sparse and dynamic set of neighbors. Challenges include how to notify a changing set
of neighbors that PEs have data for them, and how to efficiently verify that all the
data has been exchanged. Hoefler et al. described a variety of implementation possi-
bilities and a microbenchmark for studying just the communication phase of similar
applications.

We propose a microbenchmark similar to that done by Hoefler et al. As in theirs, it
performs 1000 loops where each PE randomly identifies a sparse set of neighbors,
then randomly sends 1 to 1024 bytes of data to them. In its communication routine
(see figure 1), the benchmark does a 20-byte shmem_putmem() to the identified
neighbors to notify them that it has data for them, then starts a split-mode barrier. The
PE then loops checking for notification of available incoming data, doing a
shmem_getmem() to receive the data, and checking for completion of the split-
mode barrier. The split-mode barrier lets each PE know that it has received all the
incoming notices of data. When the split-mode barrier is complete, a synchronous
barrier is performed to let each PE know that all the data has been read from its out-
going buffers and it is now safe to reuse them. We do not claim that this routine is
optimal, only that it may represent one possible pattern used by real applications.

This research makes a number of assumptions about how the split-mode barrier in-
teracts with other parts of the program. Since the microbenchmark involves all PEs in
the application, the split-mode barrier is also assumed to be application-wide. An
alternative approach would allow only designated subsets of the PEs to participate.
This implementation also assumes that the split-mode barrier should force all preced-
ing RMAs to complete when barrier_start() is called. An alternative approach
might delay RMA completion until barrier_check() returned success. Intuitive-
ly, this alternative better fits the semantics of the barrier and allows more overlapping
of work, but we feel that it would also add cost and complexity. We feel that most
implementers would put the RMA flush in the barrier_start() anyway.

188 M.A. Raymond

communicate(int num, msg_t * msgs)
{
 int done = 0;
 send_notices(num, msgs);
 barrier_start();
 do {
 msg_t msg;
 done = barrier_check();
 while (msg_probe(&msg)) {msg_receive(&msg);}
 } while (!done);
 shmem_barrier_all();
}

Fig. 1. Distributed Sparse Data Exchange using OpenSHMEM

2.2 Experimental Setup

All performance experiments were run on an SGI ICE-X cluster. Each cluster node
had two 2.70 Ghz Intel IvyBridge sockets with 12 cores each. Each node had 96 GB
of memory and a Mellanox ConnectX-3 InfiniBand HCA using a single InfiniBand
plane operating at FDR speed. All runs were done with 764 SHMEM PEs split across
32 cluster nodes. Each PE sent data to log(#PEs) = 64 other PEs each iteration of the
benchmark.

3 Split-Mode Barrier Design

One of the synchronous barrier implementations used in SGI SHMEM is based on
dissemination barriers [4]. Over a series of steps, each PE signals and waits for a sig-
nal from a PE twice as far away from itself as in the previous step. There are log(# of
PEs) steps. Additional similar code exists to support situations with a non-power-of-2
number of PEs. The SGI implementation uses AMOs on 32-bit integers. The primary
benefit is that it only needs a tiny amount of space, log(# of PEs), and can safely han-
dle the arrival of a PE back at the barrier while another PE is still in the process of
leaving it.

We initially implemented the benchmark using the MPI 3.0 MPI_Ibarrier()
split-mode barrier interface. This provided a control to compare OpenSHMEM im-
plementations against. SGI MPT allows applications to use both MPI and OpenSH-
MEM safely at the safe time. Excluding application launch and shut down, the
benchmark ran in 0.551 seconds.

We copied the SGI SHMEM dissemination barrier and turned it into a split-mode
barrier. During the starting call the PE does its first signal operation and then imme-
diately returns. Every later call to check on the barrier's status has the PE check the
current step’s local variable to see if it has been altered. If not, the PE returns indicat-
ing that the barrier is not complete. If it was altered, the PE advances to the next step
of the barrier and signals the step's partner PE. When all the steps are completed, the

 Implementing Split-Mode Barriers in OpenSHMEM 189

PE safely reinitializes the barrier and returns indicating that the barrier is complete.
This initial OpenSHMEM trial ran in 1.463 seconds.

For the next evolution, we switched the barrier data structure from using 32-bit in-
tegers to 64-bit integers. AMOs done over Mellanox InfiniBand HCAs are not cohe-
rent with CPU memory operations. To preserve coherency during runs across multiple
cluster nodes in SGI SHMEM, all AMOs are done through InfiniBand. This does not
protect CPU loads and stores to the same 64-bit word that a 32-bit atomic variable
resides in, and so the OpenSHMEM implementation must take extra steps. The end
result is that 32-bit AMOs are slower than 64-bit AMOs. By switching to using 64-bit
AMOs the run time dropped to 0.663 seconds.

We noticed that in the barrier code, the local PE does not require any result from
AMOs to other PEs’ memories. That is, for some AMOs like fetch-and-add and com-
pare-and-swap, the AMO returns a value that was in the target PE’s memory and the
AMO caller uses the value for later computation. For the AMOs used in the barrier
implementation, shmem_long_inc() and shmem_long_add(), the AMOs
return void. In the SGI SHMEM implementation those interfaces were built upon the
same code as AMOs with return values. Those interfaces waited for the return values
from the lower code but did not return them to the caller. We modified the SHMEM
implementation to allow those two AMOs to proceed asynchronously. This reduced
the performance to 0.688 seconds.

Since the split-mode barrier implementation could do several AMOs in succession,
we experimented with a modification to the SHMEM library that could keep multiple
AMOs going at once. We verified that in the benchmark and the split-mode barrier
implementation, the possibility of AMOs completing out of order would not affect
correctness. Trials with allowing two and four AMOs at once resulted in 0.678 and
0.671 seconds respectively.

We reasoned that since changes to how AMOs were being used or implemented
had stopped showing any further performance improvements, experimentation should
be done on not using AMOs. The split-mode barrier code was modified to use only
shmem_long_put(). For purposes of safely allowing one barrier synchronization
to end while the next was starting, we doubled the size of the data structure involved.
Synchronization points iterated between using different halves of the data structure to
prevent interfering with each other. While this did slightly increase the amount of
space used, it resulted in a drop in time to 0.485 seconds.

Finally, we observed that while the application was looping calling
msg_probe() and msg_receive() to read in data, no progress was being made
on the split-mode barrier. In the control implementation using MPI_Ibarrier(),
SGI MPT's internal progress engine ensured regular updates of the barrier every time
that a communication routine was called. Because the experimental spilt-mode barrier
existed entirely inside the application, it was not seeing the same benefit. A high qual-
ity productization would include complete internal support for split-mode barriers, but
for this research project we changed the application to visit the barrier_check()
code more often. This resulted in an insignificant drop to 0.484 seconds. This sug-
gests that the benchmark had already been checking barrier progress frequently
enough.

190 M.A. Raymond

Table 1. Summary of Results

Split-Mode Barrier Implementation Run Time (seconds)
MPI_Ibarrier() 0.551
AMOs on 32-bit integers 1.463
AMOs on 64-bit integers 0.663
Non-blocking AMO 0.688
2 AMOs in progress 0.678
4 AMOs in progress 0.671
Puts to 64-bit integers 0.485
More frequent status checks 0.484

4 Conclusions

We showed that a split-mode barrier using OpenSHMEM primitives can be competi-
tive with a tuned split-mode barrier using message passing. We explored the perfor-
mance implications of using different operations and data type sizes in OpenSHMEM
on an InfiniBand cluster. Future research will explore basing the barrier implementa-
tion on designs other than dissemination barriers, and on benchmarking their
performance on other kinds of computing platforms, such as SGI’s UV CC-NUMA
machines. As the OpenSHMEM community explores releasing a revision to its stan-
dard, split-mode barriers have been shown to be feasible and useful to OpenSHMEM
applications.

Acknowledgements. We thank SGI engineers James Custer and John Baron for their
critiques of this paper.

References

1. OpenSHMEM, http://www.openshmem.org/
2. MPI Forum: MPI: A Message Passing Interface. In: Proceedings of Supercomputing (1993)
3. UPC Consortium, UPC Language Specifications, v1.2. Lawrence Berkeley National Lab,

Tech. Rep. LBNL-59208 (2005)
4. Hengsen, D., Finkel, R., Manber, U.: Two Algorithms for Barrier Synchronization. Interna-

tional Journal of Parallel Programming 17, 1–17 (1988)
5. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 3.0

(2012)
6. SGI MPI, http://www.sgi.com/products/software/sps.html
7. Hoefler, T., Siebert, C., Lumsdaine, A.: Scalable Communication Protocols for Dynamic

Sparse Data Exchange. In: Principles and Practice of Parallel Programming. ACM (2010)

Author Index

Agrawal, Ravi 29

Baker, Matthew 74
Barboza, Ajay 29
Bernholdt, David E. 120

Chapman, Barbara M. 44, 59, 134
Cole, Clement 163
Curtis, Tony 1, 149

Dinan, James 163

George, Alan D. 29
Ghosh, Sayan 44

Hammond, Jeff R. 44
Hernandez, Oscar 59, 74, 120, 134, 149
Hsu, Chung-Hsing 59, 149

Ilsche, Thomas 90

Jana, Siddhartha 59
Jin, Haoqiang 74
Jose, Jithin 14
Jost, Gabriele 163

Knüpfer, Andreas 90
Koenig, Gregory 149

Lam, Bryant C. 29
Lam, Herman 29
Linford, John 105

Malony, Allen D. 105
Mintz, Tiffany M. 120

Oeste, Sebastian 90
Oyanagi, Steve 178

Panda, Dhabaleswar K. (DK) 14
Poole, Stephen 1, 59, 134, 149
Pophale, Swaroop 74, 134, 149
Potluri, Sreeram 14

Raymond, Michael A. 186
Roweth, Duncan 178

Shamis, Pavel 1, 149
Shende, Sameer 105
Simon, Tyler A. 105
Smith, Stan 163

ten Bruggencate, Monika 178

Underwood, Keith 163

Vasnier, Jean-Charles 74
Venkata, Manjunath Gorentla 1, 149
Venkatesh, Akshay 14

Welch, Aaron 1, 149
Wisniewski, Robert W. 163

Zhang, Jie 14

	Preface
	Organization
	Table of Contents
	OpenSHMEM Implementations and Evaluations
	Designing a High Performance OpenSHMEMImplementation Using UniversalCommon Communication Substrateas a Communication Middleware
	1 Introduction
	2 Background
	2.1 OpenSHMEM
	2.2 UCCS

	3 Related Work
	4 Design
	4.1 OpenSHMEM Communication Layer
	4.2 UCCS API
	4.3 UCCS and OpenSHMEM Integration

	5 Results
	6 Conclusion and Future Work
	References

	A Comprehensive Performance Evaluationof OpenSHMEM Librarieson InfiniBand Clusters�
	1 Introduction and Motivation
	2 Background
	2.1 PGAS Models and OpenSHMEM
	2.2 OpenSHMEM Communication Operations
	2.3 Overview of OpenSHMEM Libraries for InfiniBand Clusters

	3 Evaluation Methodology
	4 Experimental Evaluation
	4.1 Experiment Setup
	4.2 Data Movement Operation Performance
	4.3 Atomic Operation Performance
	4.4 Collectives Performance
	4.5 Memory Scalability
	4.6 Application Performance

	5 Discussion of Performance Results
	6 Conclusion
	References

	Benchmarking Parallel Performance on Many-Core Processors
	1 Introduction
	2 Background
	2.1 SHMEM and OpenSHMEM
	2.2 GASNet and the OpenSHMEM Reference Implementation
	2.3 TSHMEM for Tilera Many-Core Processors
	2.4 OpenMP
	2.5 Tilera TILE-Gx
	2.6 Intel Xeon Phi

	3 SHMEM and OpenMP Performance Studies
	3.1 Experimental Setup
	3.2 SHMEM and OpenMP Applications
	3.3 SHMEM-only Applications
	3.4 Observational Experiences with SHMEM and OpenMP

	4 Conclusions
	References

	Implementing OpenSHMEMUsing MPI-3 One-Sided Communication�
	1 Introduction
	2 Background
	2.1 SHMEM
	2.2 MPI-3

	3 Implementation Design
	4 Results
	4.1 OpenSHMEM versus MPI-3 – Implementation Effects
	4.2 Latency and Message-Rate Evaluation
	4.3 SHMEM Barrier Performance
	4.4 Solving 2D Heat Equation

	5 Observations
	6 Related Work
	7 Conclusions and Future Work
	References

	Analyzing the Energy and Power Consumptionof Remote Memory Accessesin the OpenSHMEM Model
	1 Introduction
	2 Notes on Experimental Setup
	2.1 Setup for Monitoring Energy and Power Consumption
	2.2 Reducing Noise in Readings Due to the OS and Background Processes

	3 Effects of Synchronization Barriers
	3.1 A Note on Implementation of Barriers

	4 Effects of Remote Data Transfers
	4.1 Energy Consumption Observations
	4.2 Power Consumption Observations

	5 Related Work
	6 Conclusion
	References

	Applications
	Hybrid Programming Using OpenSHMEMand OpenACC
	1 Introduction
	2 Related Work
	3 Background
	3.1 OpenSHMEM
	3.2 OpenACC
	3.3 Hybrid Programming with OpenSHMEM and OpenACC
	3.4 BT Multizone Benchmark

	4 Implementation
	4.1 Inter Process Communication Using OpenSHMEM
	4.2 Targeting Hybrid Architectures with OpenACC Directives

	5 Results
	5.1 Platform
	5.2 Timing and Scalability

	6 Conclusions and Future Work
	References

	Tools
	Towards Parallel Performance Analysis Toolsfor the OpenSHMEM Standard
	1 Introduction
	2 Parallel Performance Analysis Tools
	2.1 Instrumentation
	2.2 Sampling
	2.3 Profiling
	2.4 Event Tracing
	2.5 Existing Tools and Related Work

	3 Concept of a Tracing Infrastructure for OpenSHMEM
	3.1 Modeling and Recording PGAS Activities
	3.2 Communication on Lower Level Layers
	3.3 Internal Communication Inside the Monitoring System

	4 A Demonstration for Cray-SHMEM with VampirTrace
	5 Outlook to Native OpenSHMEM Support and Summary
	References

	Profiling Non-numeric OpenSHMEMApplications with the TAU Performance System
	1 Introduction
	2 Background
	2.1 The TAU Performance System
	2.2 Minimum Spanning Tree Algorithm

	3 Related Work
	3.1 Performance Analysis

	4 Analysis of Prim’s and Kruskal’s MST Algorithms
	4.1 Prim’s Algorithm
	4.2 Kruskal’s Algorithm

	5 OpenSHMEM Performance Analysis
	6 Conclusions and Future Work
	References

	A Global View Programming Abstraction forTransitioning MPI Codes to PGAS Languages
	1 Introduction
	2 Implementations of the PGAS Model
	3 Enabling a Global Perspective
	3.1 Data Distributions
	3.2 Processor Groups and Arrangements
	3.3 Data Movement

	4 Preliminary Experiments
	4.1 2D Jacobi Iterative Solver
	4.2 Matrix-Matrix Multiply

	5 Conclusion
	References

	Extending the OpenSHMEM Analyzerto Perform Synchronizationand Multi-valued Analysis
	1 Introduction
	2 Motivation
	3 OpenSHMEM Library
	3.1 Synchronization Semantics

	4 Methodology
	4.1 OSA Infrastructure

	5 Results
	6 Related Work
	7 Conclusions and Future Work
	References

	OpenSHMEM Extensions and Future Directions
	OpenSHMEM Extensions and a Visionfor Its Future Direction
	1 Introduction
	2 Motivation for the Incremental Extensions
	3 Proposed Extensions
	3.1 Explicit Active Sets
	3.2 Non-blocking Operations
	3.3 Thread Safety
	3.4 Abort and Exit Support

	4 A Vision for OpenSHMEM’s Future
	4.1 Adding Memory Context to Active Sets
	4.2 Error Model
	4.3 OpenSHMEM I/O

	5 Related Work
	6 Conclusions
	References

	Reducing Synchronization Overhead Through Bundled Communication
	1 Overview
	2 Bundling Communication and Synchronization
	3 Experimental Evaluation
	4 Related Work
	References

	Thread-Safe SHMEM Extensions
	1 Introduction
	2 Assumptions
	3 Precautions
	4 SHMEM Thread Safety Extensions
	4.1 shmem init thread()
	4.2 shmem query thread()
	4.3 shmem thread register()
	4.4 shmem thread unregister()
	4.5 shmem thread quiet()
	4.6 shmem thread fence()
	4.7 shmem thread barrier()
	4.8 shmem thread is registered()
	4.9 Sample Pseudo Code

	5 Performance Considerations
	6 Future Work
	References

	Implementing Split-Mode Barriers in OpenSHMEM
	1 Introduction
	2 Experimental Environment
	2.1 Target Benchmark
	2.2 Experimental Setup

	3 Split-Mode Barrier Design
	4 Conclusions
	References

	Author Index

