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Abstract. The article summarises author’s experience in two problems
related to the use of queueing models in performance evaluation of com-
puter networks: modelling transient states of queues and computations
for queueing network models having large number of nodes. Both issues
are not well represented in classical queueing theory, yet important to
applications, because the observed traffic is time dependant and net-
work topologies that should be considered become larger and larger. The
article discusses two approaches: diffusion approximation and fluid-flow
approximation that can cope with much larger models that are attainable
with the use of Markov chains.

1 Introduction

Queueing models are frequently used in modelling and evaluation of computer
networks. Queueing theory, introduced a century ago to model telephone
exchanges was successfully adapted to the needs of computer science but new
problems arise following the constant development of computer networks. The
problems are mainly related to computational aspects of queueing models and
more precisely to the need of taking into account very large topologies, corre-
sponding to real ones encountered in computer networks and the necessity to
analyse transient behaviour of queues, as the intensity of traffic flows gener-
ated by users, e.g. internet applications is permanently changing. The quality
of transmission services depends on current load of links and not on its aver-
age value. Also modelling and understanding the performance of traffic control
mechanisms, control stability and its impact on quality of service needs transient
state analysis, e.g. [27].

The use of analytical models known in classical queueing theory is limited to
single M/M/1 and M/M/1/N stations and even there the transient state solu-
tions are quite complex. Moreover, the results refer to transient states but it
is assumed that the model parameters, the input rate in particular, are con-
stant. Therefore, they do not fit well the problem of modelling IP routers, where
the incoming streams of packets are not Poisson and the size of packets is not
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exponentially distributed. We need models describing constantly changing non-
Poisson flows and considering general distributions of service times. We need
also the possibility to include in these models the description of self-similarity
of flows. The models should also be scalable to meet very large topologies char-
acteristic to the Internet.

In sections that follow we describe our experience and present simple numer-
ical examples referring diffusion approximation, and fluid-flow approximation –
the approaches we think are most suitable to this purposes.

2 Diffusion Approximation of a Single Queue

This approach is merging states of the considered queueing system and thus
needs much less computations than the Markov models. We present here the
principles of the method following [9] where steady-state solution of a single
G/G/1/N model was given and then extended to the network of queues in [10].
We supplemented these results with semi-analytical, semi-numerical transient
state solution [3] given for constant model parameters but it could be applied
also in case of time-dependent parameters if we only make them constant within
small intervals.

Let A(x), B(x) denote the interarrival and service time distributions at a
service station and a(x) and b(x) be their density functions. The distributions
are general but not specified, the method requires only the knowledge of their
two first moments. The means are denoted as E[A] = 1/λ, E[B] = 1/μ and
variances are Var[A] = σ2

A, Var[B] = σ2
B. Denote also squared coefficients of

variation C2
A = σ2

Aλ2, C2
B = σ2

Bμ2. N(t) represents the number of customers
present in the system at time t.

Diffusion approximation, replaces the process N(t) by a continuous diffu-
sion process X(t), the incremental changes dX(t) = X(t + dt) − X(t) of which
are normally distributed with the mean βdt and variance αdt, where β, α are
coefficients of the diffusion equation

∂f(x, t;x0)
∂t

=
α

2
∂2f(x, t;x0)

∂x2
− β

∂f(x, t;x0)
∂x

. (1)

This equation defines the conditional pdf of X(t):

f(x, t;x0)dx = P [x ≤ X(t) < x + dx | X(0) = x0].

The both processes X(t) and N(t) have normally distributed changes; the
choice β = λ−μ, α = σ2

Aλ3+σ2
Bμ3 = C2

Aλ+C2
Bμ ensures that the parameters of

these distributions increase at the same rate with the length of the observation
period. In the case of G/G/1/N station, the process evolves between barriers
placed at x = 0 and x = N where barriers with instantaneous jumps are placed,
[9]. When the diffusion process comes to x = 0, it remains there for a time
exponentially distributed with a parameter λ0 and then it returns to x = 1. The
time when the process is at x = 0 corresponds to the idle time of the system.
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When the process comes to the barrier at x = N , it stays there for a time which
is exponentially distributed with a parameter μ0 which corresponds to the time
when the system is full and do not accept new customers (the completion time of
current service from the moment when the queue becomes full). The assumption
on exponential sojourn times in barriers will be dropped below where transient
model is presented. Diffusion equation becomes and is supplemented by balance
equations for probabilities p0(t) and pN (t) of being at the barriers

∂f(x, t;x0)
∂t

=
α

2
∂2f(x, t;x0)

∂x2
− β

∂f(x, t;x0)
∂x

+

+ λ0p0(t)δ(x − 1) + λNpN (t)δ(x − N + 1) ,

dp0(t)
dt

= lim
x→0

[
α

2
∂f(x, t;x0)

∂x
− βf(x, t;x0)] − λ0p0(t) ,

dpN (t)
dt

= lim
x→N

[−α

2
∂f(x, t;x0)

∂x
+ βf(x, t;x0)] − λNpN (t) , (2)

where δ(x) is Dirac delta function.
Our solution of these equations is based on the representation of the density

function f(x, t;x0) of the diffusion process with barriers with jumps by a super-
position of the density functions φ(x, t;x0) of diffusion processes with absorbing
barriers at x = 0 and x = N , which has the following form

φ(x, t;x0) =

⎧
⎪⎪⎨

⎪⎪⎩

δ(x − x0) for t = 0
1√

2Παt

∑∞
n=−∞

{
exp

[
βx′

n

α − (x−x0−x′
n−βt)2

2αt

]

− exp
[

βx′′
n

α − (x−x0−x′′
n−βt)2

2αt

]}
for t > 0 ,

(3)

where x′
n = 2nN , x′′

n = −2x0 − x′
n . If the initial condition is defined by a

function ψ(x), x ∈ (0, N), limx→0 ψ(x) = limx→N ψ(x) = 0, then the pdf of the
process has the form φ(x, t;ψ) =

∫ N

0
φ(x, t; ξ)ψ(ξ)dξ.

The probability density function f(x, t;ψ) of the diffusion process with ele-
mentary returns is composed of the function φ(x, t;ψ) which represents the
influence of the initial conditions and of a spectrum of functions φ(x, t − τ ; 1),
φ(x, t − τ ;N − 1) which are pd functions of diffusion processes with absorbing
barriers at x = 0 and x = N , started at time τ < t at points x = 1 and x = N −1
with densities g1(τ) and gN−1(τ):

f(x, t;ψ) = φ(x, t;ψ)+
∫ t

0

g1(τ)φ(x, t−τ ; 1)dτ +
∫ t

0

gN−1(τ)φ(x, t−τ ;N −1)dτ .

(4)

Densities γ0(t), γN (t) of probability that at time t the process enters to x = 0
or x = N are
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γ0(t) = p0(0)δ(t) + [1 − p0(0) − pN (0)]γψ,0(t) +
∫ t

0

g1(τ)γ1,0(t − τ)dτ

+
∫ t

0

gN−1(τ)γN−1,0(t − τ)dτ ,

γN (t) = pN (0)δ(t) + [1 − p0(0) − pN (0)]γψ,N (t) +
∫ t

0

g1(τ)γ1,N (t − τ)dτ

+
∫ t

0

gN−1(τ)γN−1,N (t − τ)dτ , (5)

where γ1,0(t), γ1,N (t), γN−1,0(t), γN−1,N (t) are densities of the first passage time
between corresponding points, e.g.

γ1,0(t) = lim
x→0

[
α

2
∂φ(x, t; 1)

∂x
− βφ(x, t; 1)] . (6)

For absorbing barriers

lim
x→0

φ(x, t;x0) = lim
x→N

φ(x, t;x0) = 0 ,

hence γ1,0(t) = limx→0
α
2

∂φ(x,t;1)
∂x . The functions γψ,0(t), γψ,N (t) denote densities

of probabilities that the initial process, started at t = 0 at the point ξ with
density ψ(ξ) will end at time t by entering respectively x = 0 or x = N .

Finally, we may express g1(t) and gN (t) with the use of functions γ0(t) and
γN (t):

g1(τ) =
∫ τ

0

γ0(t)l0(τ − t)dt , gN−1(τ) =
∫ τ

0

γN (t)lN (τ − t)dt , (7)

where l0(x), lN (x) are the densities of sojourn times in x = 0 and x = N ; the
distributions of these times are not restricted to exponential ones as it is in Eq. (2).

The above equations are transformed by the Laplace transform, and the
transform of f(x, t, x0) is obtained analytically and then its original is computed
numerically using e.g. Stehfest algorithm [22].

In case of unlimited queue of G/G/1 type we just remove the barrier at
x = N and related to it terms and equations.

3 Open Network of G/G/1, G/G/1/N Queues, One
Class, Steady State and Transient Solution

The steady-state open networks models of G/G/1 queues were studied in [10].
Let M be the number of stations and suppose at the beginning that there is one
class of customers. The throughput of station i is, as usual, obtained from traffic
equations

λi = λ0i +
M∑

j=1

λjrji , i = 1, . . . ,M, (8)
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where rji is routing probability between station j and station i; λ0i is external
flow of customers coming from outside of network.

Second moment of interarrival time distribution is obtained from two systems
of equations; the first defines C2

Di as a function of C2
Ai and C2

Bi; the second defines
C2

Aj as another function of C2
D1, . . . , C2

DM :
(1) The formula (9) is exact for M/G/1, M/G/1/N stations and is approxi-

mate in the case of non-Poisson input [1]

di(t) = ibi(t) + (1 − i)ai(t) ∗ bi(t) , i = 1, . . . ,M, (9)

where * denotes the convolution operation. From (9) we get

C2
Di = 2i C

2
Bi + C2

Ai(1 − i) + i(1 − i) . (10)

(2) Customers leaving station i according to the distribution Di(x) choose
station j with probability rij : intervals between customers passing this way has
pdf dij(x)

dij(x) = di(x)rij +di(x)∗di(x)(1− rij)rij +di(x)∗di(x)∗di(x)(1− rij)2rij + · · ·
(11)

hence
E[Dij ] =

1
λirij

, C2
Dij = rij(C2

Di − 1) + 1 . (12)

E[Dij ], C2
Dij refer to interdeparture times; the number of customers passing

from station i to j in a time interval t has approximately normal distribution
with mean λirijt and variation C2

Dijλirijt. The sum of streams entering station
j has normal distribution with mean

λjt = [
M∑

i=1

λirij + λ0j ] t and variance σ2
Ajt = {

M∑

i=1

C2
Dijλirij + C2

0jλ0j}t ,

hence

C2
Aj =

1
λj

M∑

i=1

rijλi[(C2
Di − 1)rij + 1] +

C2
0jλ0j

λj
. (13)

Parameters λ0j , C2
0j represent the external stream of customers. For K classes

od customers with routing probabilities r
(k)
ij (let us assume for simplicity that

the customers do not change their classes) we have

λ
(k)
i = λ

(k)
0i +

M∑

j=1

λ
(k)
j r

(k)
ji , i = 1, . . . , M ; k = 1, . . . , K, (14)

and

C2
Di = λi

K∑

k=1

λ
(k)
i

μ
(k)
i

2 [C(k)
Bi

2
+ 1] + 2i(1 − i) + (C2

Ai + 1)(1 − i) − 1 . (15)



Modelling Transient States in Queueing Models of Computer Networks 63

A customer in the stream leaving station i belongs to class k with probability

λ
(k)
i /λi and we can determine C

(k)
Di

2
in the similar way as it has been done in

Eqs. (11–12), replacing rij by λ
(k)
i /λi:

C
(k)
Di

2
=

λ
(k)
i

λi
(C2

Di − 1) + 1 ; (16)

then

C2
Aj =

1
λj

K∑

l=1

K∑

k=1

r
(k)
ij λi

[(
λ
(k)
i

λi
(C2

Di − 1)

)

r
(k)
ij + 1

]

+
K∑

k=1

C
(k)
0j

2
λ
(k)
0j

λj
. (17)

Equations (10), (13) or (15), (17) form a linear system of equations and allow
us to determine C2

Ai and, in consequence, parameters βi, αi for each station.
In our approach to transient analysis, the time axis is divided into small

intervals (equal e.g. to the smallest mean service time) and at the beginning of
each interval the Eqs. (8), (10), (13) are used to determine the input parameters
of each station based on the values of i(t) obtained at the end of the precedent
interval. As the values of parameters are changed at each interval, also external
flows λ

(k)
0j (t) may be modelled following any, possibly self-similar process.

Numerical example 1. The considered exemplary network topology is pre-
sented in Fig. 1. It was generated by aSHIIP generator [29] allowing generation
of hierarchical networks, typical for Internet - this sample network consists of
6 levels. The same topology was used in an example referring to the fluid flow
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41
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Fig. 1. Topology of the network considered in numerical examples.
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Table 1. Generated flows λi, i = 8, 9, 19, as a function of time

time units 0–20 20–25 25–65 65–70 70–75 75–100
node 8 0.8 1.7 1.7 1.7 1.7 1.3
node 9 1.8 1.8 1.5 1.0 1.0 1.0
node 19 1.0 1.0 2.5 2.5 2.5 1. 5

approximation presented in the next section. We do not compare the results, as
diffusion model does not incorporate the TCP congestion window mechanism
(although it is possible) and the loads of networks are different in both exam-
ples. The examples demonstrate rather the possibilities of both approaches. Here,
flows are generated by nodes 8, 9, 19 and their intensity is piecewise, given in
Table 1, the routing of flows is indicated in the figure. All nodes have the same
service intensity μ = 3, the queue capacity is N = 20, and the squared coefficient
of variation for all flaws and stations are: C2

A = C2
B = 1. The propagation time

between nodes is null (it is easy to compute knowing the length o the links and
the speed of light in nodes).

In Figs. 2, 3 the time evolution of mean queues in a few chosen nodes, pre-
dicted by diffusion approximation and simulation (we treat simulation results as
almost exact) are compared, giving the idea of the errors of the approach. The
model naturally gives not only these mean values but also the distributions of
queues. Figure 4 compares the time-dependant flow intensities at certain nodes
obtained via diffusion approximation and simulation. With our software we may
we may generate and solve numerically much larger models, having hundreds
of thousands or millions nodes and flows. It seems that our solver concerning
transient diffusion models is the unique existing one.
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Mean Queue Node 9 Dif
Mean Queue Node 9 Sim
Mean Queue Node 10 Dif
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Fig. 2. Mean queue lengths at nodes 9 and 10, diffusion approximation and simulation
results
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Fig. 3. Mean queue lengths at nodes 9 and 10, diffusion approximation and simulation
results
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Fig. 4. Flow intensities at nodes 8, 9, and 19, diffusion approximation and simulation
results

4 Fluid-Flow Approximation

Fluid-flow approximation is a well-known approach of modelling transient behav-
iour where only mean values of traffic intensity and service times are considered.
Compared to the diffusion approximation, mathematical side of the model is
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simple: instead of partial differential equations of second order, the first-order
ordinary linear differential equations are used. Due to its simplicity, it gained
much interest in the analysis of transient states in Internet and in investiga-
tion of TCP-IP connections stability [4,31]. Some solvers already exist [6,7] but
we have developed our own to have a better inside to its functionalities and to
optimise its performance.

Fluid approximation gives larger methodological errors than the diffusion
approximation which is a second-order approximation and considers not only
the mean values but also the variance of flow changes. We have also observed it
our tests [5].

Here we present the method in a form proposed in [11,14], already adapted
to TCP congestion window mechanism and RED algorithm in routers, hence in
an easy way incorporating some essential details of Internet transmissions.

Let the modelled network V be composed of routers. The fluid approximation
computes the average values of the queues at the routers while the implemented
RED mechanism requires the instantaneous values of them to estimate discard
probability. Hence, the instantaneous and average queue lengths in the network
are noted by the vectors q and x. The values of the routers’ discard probabilities
depend on the instantaneous queue length and are recorded in vector p(x) which
depends for the router v ∈ V only on xv. The network structure is represented by
binary matrix A. Its rows correspond to TCP flows and the columns represent
network nodes. If a flow i traverses a node k, the value of the element aik is
determined as “one”, otherwise the element is set to “zero”. The matrix A and
vector p(x) are used to define a new matrix B: the rows of the matrix B are
formed by multiplying the corresponding element of p and a row of A, such
that Bij = Aij · pj(xj). The B matrix is used to calculate the total packet loss
probability on the path of the entire flow. Each row of the matrix stores the
probabilities for routers on the route. To determine the total loss probability, it
is necessary to calculate all possible combinations of packet drop probabilities
on the path from source to destination. The way to do it is to calculate the
success probability (the successful packet arrival traverse through all nodes on
the path). The dynamics of the congestion window Wi(t) at a connection i is:

dW i(t)
dt

=
1

Ri(q(t))
− Wi(t)

2
· Wi(t − τ)

Ri(q(t − τ))
·

·
⎛

⎝1 −
∏

j∈V

(1 − Bij)

⎞

⎠ . (18)

The other equations concern the mean queue length qv of router v at this instant,
the average queue xv and delays Ri.

The router’s AQM packet discard probability p(x(t)), Eq. 20, included in the
above formula is determined with the use of the weighted average queue length:

xv(kδ) = (1 − γv) · xv((k − 1)δ) + γvqv(kδ) (19)

where:
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δ – queue sampling parameter,
γ – weight parameter, specifying the percentage of current queue q taken in

the moving average,
k – iteration step,

pv(xv) =

⎧
⎨

⎩

0, 0 � xv < tminv
xv − tminv

tmaxv−tminv
pmaxv

, tminv
� xv < tmaxv

1, tmaxv
� xv � Bv

(20)

xv(t), qv(t) are respectively the average and instantaneous queue lengths in
router v. With the transmission capacity Cv the time change of qv is

dqv(t)
dt

=
K∑

i=1

Wi(t)
Ri(q(t))

− 1(qv(t) > 0) · Cv , (21)

Cv is transmission capacity of the router v. A router allows reception of traffic
from K TCP flows (K � N). Each flow i(i = 1, ..., N) is determined by time
varying congestion window size Wi, measured in packets and constant propaga-
tion delay Tpi throughout flow route. Total packet delay for flow i (Round Trip
Time) consists of queue delay and propagation delay.

Ri(q(t)) =
M∑

j=1

qj(t)
Cj

+ Tpi . (22)

Numerical example 2. The topology of the considered network is the same as
in Example 1 and generated by aSHIIP. The flows, propagation times, and buffer
sizes at routers were also generated randomly. Table 2 illustrates the network
parameters: B - maximum buffer capacity; C - service intensity; Q0 - initial
queue length; γ, tmin, tmax, pmax - weight, thresholds and maximum probability
for RED algorithm. On the whole structure, we ran our algorithm for selecting
the pair of border routers as a flow endpoints and searched for the shortest paths
from the sender to the receiver using the Dijkstra algorithm. Table 3 shows the
flow parameters: W0 - starting window size; Tp - total propagation delay that is
the sum of the link delays on the route.

Table 2. Router parameters
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Table 3. Flow parameters

Few results are displayed, e.g. the RTT as a function of time for flow classes,
Fig. 5. The value of RTT specifies the time needed to propagate an information
through the network after which a sender may react on losses. The first overload
occurs roughly at t = 300 time units (t.u.) and the RTT time of classes 3–5 at
that moment ranges between [260, 325], therefore the expected moment when
the sender reduces the transmitted traffic is after about 300 t.u. It is visible in
Fig. 6 – the window sizes of class 3–5 are reduced at a time close to t = 600 t.u.
For other classes the losses are so small that the continuous increase of window
sizes is observed.

The reduction of window sizes contributed to an immediate decrease of queue
length of congested nodes (Fig. 7). The queue in 17th and 18th node started to
empty after 600th time unit because of exceeding the RED maximum thresh-
old by average queue around 300th t.u. and rejecting new packets since then.
However, the queues did not reach the maximum buffer sizes that were set respec-
tively on 18 and 17 packets.
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Fig. 5. The RTT time Ri in each flow class
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Fig. 6. The congestion window sizes Wi in each flow class
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Fig. 7. The queue lengths Qi in each node

Figure 8 displays the throughputs of flow classes. Each class has different
characteristic, however the classes with a shared overloaded part of the route
had similar behaviour. The flows that traversed through shared non-congested
network fragments have different throughputs – as it is seen for class 1 and 2.
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Fig. 8. The throughputs Ti in each flow class

5 Conclusions

We believe that diffusion and fluid approximations are useful approaches that
are complementary to Markov models. The size and complexity of models which
may be analysed by diffusion and fluid flow approximations are much larger
than in case of traditional Markovian models. We have developed our own tools
for the both methods and we are testing their possibilities. They are able to
treat very large (up to millions of nodes) networks giving a software test bed
to consider modifications of protocols or the choice of network topologies. The
models based on Markov chains are still essential in performance evaluation
and supporting the design of new communication protocols, mechanisms for
regulation of the intensity of Internet transmissions and mechanisms to ensure
the quality of transmission services. Their principal constraint is the number of
states growing very rapidly with the complexity of an object being modelled;
as each state of the Markov chain corresponds to one state of the system, it
is necessary to construct and solve very large systems of equations linking the
states probabilities. The existing solvers as e.g. XMARCA [28], PEPS [20], or
PRISM [21] consider only steady state Markov chains.

We are developing our own Markovian package Olymp [19]. It is a library for
generating transition matrices of continuous time Markov chains, and solve the
resulting model. Olymp uses Java language to define network nodes and their
interactions - that gives a lot of flexibility in defining a network structure and
functions.



Modelling Transient States in Queueing Models of Computer Networks 71

At the moment we are able to generate and solve Markov chains of the
150 million of states. The main method of solution is one of projection methods
based on Krylov subspace with Arnoldi process, e.g. [23,26,28]. We plan to
increase the size of tractable Markov chains by several orders through the use of
a GPU-CPU (graphical processing unit) and a better design of computational
algorithms for parallel computing and optimization of memory usage, [17].

An alternative to analytical models is discrete event simulation – also used
here to evaluate diffusion approximation results. We have developed an exten-
sion of OMNET++ (a popular simulation tool written in C++, [18]) allowing
simulation of transient state models. In this case a simulation run should be
repeated a sufficient number of times (e.g. 500 thousands in our examples) and
the results for a fixed time should be averaged. That makes transient simulation
models time-consuming.

Acknowledgments. This work was supported by Polish project NCN nr
4796/B/T02/2011/40 “Models for transmissions dynamics, congestion control and
quality of service in Internet” and the European Union from the European Social
Fund (grant agreement number: UDA-POKL.04.01.01-00-106/09).

References

1. Burke, P.J.: The output of a queueing system. Oper. Res. 4(6), 699–704 (1956)
2. Carrasco, J.A.: Transient analysis of some rewarded markov models using random-

ization with quasistationarity detection. IEEE Trans. Comput. 53(9), 1106–1120
(2004)
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72 T. Czachórski et al.

12. Kleinrock, L.: Queueing Systems. Volume I: Theory. Wiley, New York (1975)
13. Kleinrock, L.: Queueing Systems. Volume II: Computer Applications. Wiley, New

York (1976)
14. Liu, Y., Lo Presti, F., Misra, V., Gu, Y.: Fluid models and solutions for large-scale

IP networks. In: ACM/SigMetrics (2003)
15. Liu, J.: Packet-level integration of fluid TCP models in real-time network simu-

lation. In: Proceedings of the 38th Conference on Winter Simulation, Monterey,
California, 03–06 December , pp. 2162 - 2169 (2006)

16. Misra, V., Gong, W., Towsley, D.: A fluid-based analysis of a network of AQM
routers supporting TCP flows with an application to RED. In: Proceedings of the
Conference on Applications, Technologies, Architectures and Protocols for Com-
puter Communication (SIGCOMM 2000), pp. 151–160 (2000)

17. Numerical computation for Markov chains on GPU: building chains and bounds,
algorithms and applications. Project POLONIUM 2012–2013, bilateral cooperation
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