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Kaldorian Assumptions and Endogenous
Fluctuations in the Dynamic Fixed-Price
IS-LM Model

Giovanni Bella, Paolo Mattana and Beatrice Venturi

Abstract With the aim of better understanding the conditions which determine
endogenous fluctuations at business cycle frequencies, recent literature has revived
interest in the Schinasi’s variant of the dynamic, intermediate-run, IS-LM model
(Schinasi 1981, 1982). Results, however, remain confined to Kaldorian-type econo-
mies, namely to those economieswhichpresent a greater-than-unitymarginal propen-
sity to spend out of income. This paper contributes to the debate by showing that, in
the case of a negative interest rate sensitivity of savings, stable endogenous cycles
can actually emerge as equilibrium solutions of the model also in the case of non
Kaldorian-type economies. To this end, we combine the instruments of the global
analysis, specifically the homoclinic bifurcation Theorem of Kopell and Howard
(1975), with numerical methods.

Keywords Multiple steady states · Homoclinic bifurcation · Oscillating solutions
JEL classification C61 · C62 · E32

Introduction

Fixed-price, dynamic IS-LM models of Schinasi’s type (1981, 1982) have recently
re-gained centrality in the literature regarding deterministic fluctuations at business
cycle frequencies. A strand of contributions is using the imposition of time-delayed
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feedbacks in the tax collection function to obtain or suppress endogenous fluctuations
(cf inter al., Cai 2005; de Cesare and Sportelli 2005; Fanti and Mandredi 2007;
Neantu, Opris and Chilarescu 2007). Other scholars (cf, inter al., Gandolfo 1997;
Makovinyiova 2011; Neri and Venturi 2007, Sasakura 1994; Zimka 1999) remain
more in line with the original structure of the model, and look for the existence of
oscillating solutions in specific regions of the parameters space mainly by the use
of the Hopf bifurcation Theorem. In general terms, it is important to point out that
the interest for the model is largely undermined by the severe functional restrictions
needed to generate the required oscillating behavior of the variables. In particular,
a Kaldorian S-shaped investment function, in turn implying the possibility of an
upward sloping IS curve, is appealed by this literature to show that the model can
originate endogenous fluctuations.

This paper contributes to the debate by showing that, provided that the interest
elasticity of savings is negative, stable endogenous cycles can emerge as equilibrium
solutions of the model also in the case of non Kaldorian-type economies. To prove
this, we combine the instruments of the global analysis, specifically the homoclinic
bifurcation Theorem of Kopell andHoward, 1975,1 with numerical methods, to show
that a trajectory, starting in the vicinity of a saddle steady state (where the economy
is of non Kaldorian-type) can approach from outside a limit cycle enclosing a non
saddle steady state (where the economy is of Kaldorian-type).

The paper develops as follows. The second section introduces the model and stud-
ies the long-run equilibrium. The third section establishes some stability properties
of the long-run equilibrium from the perspective of the local analysis. In particular,
we provide here confirmation that stable limit cycles can only emerge if the economy
is of a Kaldorian type. The fourth section shows that the more powerful instruments
of the global analysis allow us to prove the possibility of stable limit cycles also for a
non-Kaldorian economy. The fifth section discusses an example. A brief conclusive
section reassesses the main findings of the paper. All necessary proofs are provided
in a specific Appendix.

The Model

Schinasi, in a series of different papers, revises "classical" Kaldor’s (1940) business
cycle model by replacing the capital stock with the interest rate and taking into
account financial markets and a Government budget constraint in which both money
and bond financing are alternative means of financing budget gaps. A non linearity
in the income variable is assumed in the investment function. The shape of the
investment function, crucial for the derivation of feasible oscillating solutions, is

1 The Theorem is largely used in mathematics, physics and biology, but has found a surprisingly
limited application in economics: to the best of our knowledge, the only applications in R

2 planar
systems is in Benhabib et al. (2001) for a Taylor-rule monetary model, and in Benhabib et al. (2008)
for a growth model. An application in the R3 dimension is in Mattana et al. (2009).
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originally postulated by Kaldor (1940) as a way to model a non-linear reaction of
investors to changes in market conditions such as excess demand and excess supply.
More formally, Kaldor’s view assumes that

IY > 0; IY Y

{
> 0, for Y < Y ∗
< 0, for Y > Y ∗

}

where I is investment and Y income. IY and IY Y represents first and second-order
partial derivatives of the investment function with regard to income, respectively.
Finally, Y ∗ is the "normal" level of output.2 What is crucial for us is that:

Remark 1 Since the investment function is not constrained to be linear, the IS curve
needs not be linear too.

In a formal perspective, let S(R, Y D) represent savings as a function of the interest
rate and disposable income, with Y D = Y − T (Y ) where T (Y ) is the tax collection
function.Given the non-linearity in the investment function, as output increases above
expected levels, firms will increase investment but less than they would have in a
linearmodel, since they expect Government to be "active" in stabilizing economic ac-
tivity. Therefore, it could be the case that the crucial quantity IY −[

S′(1 − T ′) − T ′]
be negative. Notice that, as it will become clearer below, the quantity above presented
connected with the slope of the IS curve in a (R, Y ) space, with regard to which
presents an opposite sign (cf. Schinasi 1981, for a detailed discussion).

After this preparatory discussion, we are ready to present the system of differential
equations originated by Schinasi’s variant of the IS-LMmodel. Referring to Sasakura
(1994) for a detailed derivation, in the case of an instantaneous adjustment in the
money market, the following planar system of first order differential equations is
implied

Ṙ = G−T (Y )
L R(R,Y )

− α LY (R,Y )
L R(R,Y )

[
I (R, Y ) − S(R, Y D) + G − T (Y )

]
(M)

Ẏ = α
[

I (R, Y ) − S(R, Y D) + G − T (Y )
]

where Ṙ = d R/dt and Ẏ = dY/dt . It is assumed that all functions are contin-
uously differentiable at a suitable order. L (·) is the liquidity preference function,
relating the demand for money to R, the (real) interest rate, and Y , the income level.
It follows that LY (R, Y ) and L R(R, Y ) are partial derivatives of the liquidity prefer-
ence function with respect to income and the interest rate, respectively. I (R, Y ) is the
investment function which is assumed to depend on income and on the interest rate.
Finally G > 0 is the (constant) government expenditure and α is a scale parameter.
Notice that system M is a crucially extended variant of standard Schinasi’s model

2 The idea has been derived from a dynamic theory of the firm in which agents expect aggregate
demand to fluctuate around a trend and believe Government attempts to stabilize output around the
trend.
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(1981) and (1982) where the S (·) function takes into account the interest rate as
a further argument (cf., inter al., Cai 2005; and Makovinyiova 2011, for similarly
augmented models).

For the sake of a simple representation, we shall assume that the tax raising
function is linear in Y , so that we have T (Y ) = τY . Thus Y D = Y − T (Y ) =
(1 − τ ) Y is disposable income. The signs of the derivatives are crucial for the scopes
of the paper. Consider first the liquidity preference and the tax raising functions, for
which the literature assumes

LY (·) > 0; L R (·) < 0

Less clear is the case of the investment and savings functions; whereas there is no
theoretical and empirical disagreement on the following

IR (·) < 0; IY (·) > 0; SY (·) > 0

the sign of SR (·) remains ambiguous (cf. inter al. Abrar 1989). Basic economic
courses show that the interest elasticity of saving can be decomposed into a (positive)
“substitution” effect and an “income” effect, which works in opposite directions.
Which effect prevails depends on the specificmodel and/or parameter configurations.
We shall assume, in the rest of the paper, that it is possible for the savings interest
rate sensitivity SR (·) to be negative.

Steady State

We obtain now some information on the long-run properties of system M. Let
(R∗, Y ∗) be values of (R, Y ) such that Ṙ = Ẏ = 0. To simplify notation, and
considering Y D = (1 − τ ) Y , we define the following

H(R, Y ) = I (R, Y ) − S(R, Y )

Simple algebra shows that, at the steady-state, we have

Y ∗ = G

τ
(2.1)

H(R∗, Y ∗) = 0 (2.2)

We now study conditions for existence and uniqueness of the steady state. Let
φ → R be defined as:

φ(R) = H(R, Y ∗) (2.3)
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with φ conveniently smooth in all its arguments. Let also φ′(R) and φ′′(R) be the
first and second-order derivative of φ(R) with respect to R. If φ′(R) is negative
(positive) in the domain D = {(R) : R > 0}, the function φ(R) monotonically
decreases (increases) with the interest rate and we can only have one intersection
with the R-axis (one steady state). Conversely, if it changes sign, for specific values
of the interest rate, it can have multiple intersections with the R-axis (multiple steady
states). To simplify the analysis, without loosing generality, consider the following
regularity condition

Assumption 1 φ′′(R) does not change sign in the domain D = {(R) : R > 0}.
Assumption 1 implies that, if φ′(R) changes sign in D, φ(R) is unimodal, and the
maximum number of possible intersections with the R-axis is limited to two. Let
now ω ∈ � represent the set of all parameters. Let also �̄ ≡ {ω ∈ � := R∗ ∈ D}.
Then

Lemma 1 Recall Assumption 1. Let �̂ ≡ {ω ∈ �̄ := φ′(R) is positive or negative}
and, complementarily, �̌ ≡ {ω ∈ �̄ := φ′(R) changes sign at R = R̂} = �̄ − �̂.
Then, if ω ∈ �̂, the steady state is always unique. Consider now ω ∈ �̌ and assume
φ′′(R) > 0. Then, if

φ(R̂) < 0 there are two steady states, one with a low interest rate
(
R∗−, Y ∗) and

one with a high interest rate
(
R∗+, Y ∗) ;

φ(R̂) = 0 there is one steady state;
φ(R̂) > 0 there are no steady states.

The statements are inverted if φ′′(R) < 0.

Proof Let ω ∈ �̂. Since, by assumption, the first derivative does not vanish in D,
the function φ(R) is always monotonically decreasing/increasing in D and only one
steady state is possible. Let now ω ∈ �̌. Then φ(R) is unimodal. Assume first
φ′′(R) > 0. Assume, furthermore, there is a (generic) parameter with the properties
in Proposition. Then, the three intersection possibilities with the φ(R) = 0 axis must
apply. Inverse statements apply in the case of φ′′(R) < 0.

Some numerical applications will be provided in Section“Some Numerical Sim-
ulations”, for specific functional forms.3

Local Stability Analysis

Consider trajectories in which R and Y remain bounded in a small neighborhood
of the steady state. In Appendix A, we show that the linearization matrix associated
with system M evaluated at the steady state, is

3 Notice that Lemma 1 is also of notable interest for related fields. For instance, the possibility of
conceputalizing via multiple steady states some paradoxical features of real world time series is
of considerable importance in the monetary economics literature (cf., inter al., Bullard and Russel
1999; Bullard 2009).
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J∗
M =

[
−α

L∗
Y

L∗
R

H∗
R −α

L∗
Y

L∗
R

H∗
Y +

(
α

L∗
Y

L∗
R

− 1
L∗

R

)
τ

αH∗
R α(H∗

Y − τ )

]
(2.4)

where, for the sake of a simple notation, the arguments of the partial derivatives have
been dropped. Consider the characteristic polynomial associated with J∗

M

Det
(
λI − J∗

M
) = λ2 − Tr(J∗

M)λ + Det(J∗
M) (2.5)

where I is the identity matrix. Tr(J∗
M) and Det(J∗

M) are Trace and Determinant of
J∗
M, respectively. In Appendix A, they are shown to be

Det(J∗
M) = α

τ

L∗
R

H∗
R

Tr(J∗
M) = α

(
H∗

Y − L∗
Y

L∗
R

H∗
R − τ

)

To study the stability properties in a planar system from the local analysis per-
spective, it is crucial to establish the signs of Det(J∗

M) and Tr(J∗
M). Simple algebra

shows that necessary conditions for the birth of attracting orbits, from the perspective
of the local analysis, are the following

H∗
R < 0 (2.6)

H∗
Y − L∗

Y

L∗
R

H∗
R − τ > 0 (2.7)

which guarantee that the steady state is an unstable node or focus. More precisely

Proposition 1 Recall Lemma 1. Let ω ∈ �̂ and first assume H∗
R < 0. Then, the

(unique) steady state is an unstable node or focus if (2.7) is satisfied. Conversely, if
H∗

R > 0, the steady state is a saddle.
Let now ω ∈ �̌ and assume first φ′′(R) > 0. As shown in Lemma 1, we can either

have a dual steady state, one steady state or no steady states at all. In the former
case, at

(
R∗−, Y ∗), H∗

R < 0, so that the low interest rate equilibrium is an unstable
node or focus if (2.7) is satisfied. The other steady state

(
R∗+, Y ∗) has H∗

R > 0 and
is therefore a saddle. The low interest rate steady state and the high interest rate
steady state interchange their stability properties if φ′′(R) < 0.

Proof To exclude a saddle we need Det(J∗
M) > 0, which happens if (2.6) applies.

Furthermore if (2.7) is satisfied, Tr (J∗
M) > 0 and the steady state is an unstable

node or focus.

Recall that
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Remark 2 Conditions in (2.6), imply an upwards sloping IS curve. As above dis-
cussed, this property can be justified in a Kaldorian perspective, namely with the
assumption of an S-shaped investment function.

We find it useful, for a clear presentation of the main results of the paper, to give
the following

Definition 1 Let an economy (not) satisfying conditions in (2.6) be called a (non)
Kaldorian-type economy.

Thus

Corollary 1 Recall Lemma 1. Then, from the perspective of the local analysis, only
a Kaldorian-type economy can give rise to stable deterministic cycles.

Proof From the local analysis point of view, only in the neighborhood of the non-
saddle steady state we can have oscillating solutions. Therefore the case H∗

R > 0
must be discarded. We are only left therefore with the H∗

R < 0 possibility. In this

case, since L∗
R < 0, Tr (J∗

M) = H∗
Y − L∗

Y
L∗

R
H∗

R − τ is positive only if H∗
Y − τ > 0.

As above discussed this implies a positively sloping IS curve which, in turn, can be
justified with an S-shaped Investment function.

Remarkably, it is interesting to point out here that a negative interest elasticity
of savings is also crucial for the emergence of endogenous cycles in discrete-time
overlapping generations models (cf. inter al. Azariadis and Guesnerie 1986; and
Grandmond 1985).

Global Analysis

In contrast with the conclusion of Section. “Steady State”, the global bifurcation
analysis will allow us to prove that, when systemM admits a dual steady state, a non
Kaldorian-type economy can undergo endogenous fluctuations. What we actually do
is to show that there exist trajectories originating in the neighborhood of the saddle
steady state (the one at which the economy is of a non-Kaldorian type) which are
bound to converge to a limit cycle around the non-saddle steady state (the one at
which the economy is of a Kaldorian type). To obtain this result, we make use of the
homoclinic bifurcation Theorem of Kopell-Howard, 1975, which allows to locate
the regions in the parameter space implying the existence of a closed orbit or of a
saddle connection. The application of the Theorem is not trivial and requires several
steps to be accomplished (cf Appendix C).

In any case, before proceeding, we need first to assume some specific functional
forms. Therefore, with regard to the original systemM:

1. the liquidity preference function L(R, Y ) is assumed linear in its two arguments
(cf. Cai, 2005, for a similar approach). Therefore, L(R, Y ) = −βR +γY where
(γ,β) > 0 measure the sensitivity of L (·) to the interest rate and income,
respectively;
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2. a convenient explicit form for the H (·) = I (·)− S (·) function is harder to pro-
pose. InMakovinyiova (2011) the investment and savings functions are assumed
to have the following form

I = ε1
√

Y 3 − ε2R

S = ε3

(
Y D

)2 + ε4R + ε5

tomatch the characteristics of theSlovakian economy,where (ε1, ε2, ε3, ε4, ε5)∈
R

++ and R (the real interest rate) is expressed in percentage terms. However, to
account for a dual steady state,4 we need the H (·) function to be non-linear in
R. Therefore, we propose the following generalization of the H (·) function

H (R, Y ) = ε1
√

Y 3 − ε2R − ε3

(
Y D

)2 − ε4R − ε5 − δ Y
R (2.8)

with δ > 0. Notice that we can interpret the factor Y/R as a proxy for wealth.
This makes it easier to introduce a negative savings sensitivity to the interest
rate. It is useful to point out that parameters lie in the �̌ set and that Assumption
1 is satisfied; consequently, recalling Lemma 1, system S can give rise to two
steady states.

With Eq. (2.8), and recalling Y D = (1 − τ )Y , systemM becomes

Ṙ = − 1−γα
β (G − τY ) + γα

β

[
ε1

√
Y 3 − ε2R − ε3(1 − τ )2Y 2 − ε4R − ε5 − δ Y

R

]

Ẏ = α
[
ε1

√
Y 3 − ε2R − ε3(1 − τ )2Y 2 − ε4R − ε5 − δY

R + G − τY
]

(S)

As shown in Appendix B, the linearization matrix associated with system S is

J∗
S=

[
γα
β H∗

R
γα
β H∗

Y − γα−1
β τ

αH∗
R α(H∗

Y − τ )

]

where

H∗
R = −(ε2 + ε4) + δ

Y ∗

R∗2 (2.9)

H∗
Y = 3

2
ε1

√
G

τ
− 2ε3(1 − τ )2

G

τ
− δ

R∗ (2.10)

Simple algebra leads to the following

4 Recall that we need φ′′(R) �= 0 to account for multiple steady states.
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Det(J∗
S) = −ατ H∗

R
β

Tr(J∗
S) = α

(
H∗

Y + γ
β H∗

R − τ
)

Afirst requirement of the Kopell Howard Theorem is that there exist regions in the
parameter space at which the linearizationmatrix J∗

S has a double-zero eigenvalue. In
the two-dimensional case, this happens if Det(J∗

S) and Tr(J∗
S) vanish simultaneously.

Taking δ and τ as bifurcation parameters, we can state the following

Lemma 2 Let
(
R̄∗, Ȳ ∗) be the levels of the interest rate at the bifurcation point.

Let furthermore δ̄ and τ̄ be the values of δ and τ which solve Det(J∗
S) = 0 and

Tr(J∗
S) = 0, respectively. Then, if δ = δ̄ and τ = τ̄ , J∗

S has a zero eigenvalue of
multiplicity 2. Considering (2.9) and (2.10), simple algebra shows

δ̄ = (ε2 + ε4)R̄∗2

G
τ̄

and
3

2
ε1

√
G

τ̄
− 2ε3(1 − τ̄ )2

G

τ̄
− δ̄

R̄∗ − τ̄ = 0.

where

R̄∗ =
ε1

√
( G

τ )3 − ε3(1 − τ )2( G
τ )2 − ε5

2δ̄

Proof To have a linearization matrix with a zero eigenvalue with multiplicity 2 at
the bifurcation, we need to make sure that the determinant and the trace vanish
simultaneously. Since Det(J∗

S) and Tr(J∗
S) vanish, respectively, when δ = δ̄ and

τ = τ̄ the statement in Lemma 2 is implied.

We are now ready to prove the main proposition.

Proposition 2 Recall Lemma 2. Assume H(R, Y ) be approximated by the expres-
sion in (2.8). Then, for δ and τ close to the bifurcation values (δ̄, τ̄ ), there exist
trajectories originating in a close neighborhood of the saddle steady state which
either spiral towards the non-saddle steady state or converge to a limit cycle around
it. By Proposition 1, the saddle steady state is

(
R∗−, Y ∗) whereas the non-saddle

steady state is
(
R∗+, Y ∗).

Proof To prove the Proposition, we show in Appendix C that system S satisfies, for
specific parameter values, the Kopell-Howard’s homoclinic bifurcation Theorem.
Since in our case φ′′(R) = −2δ Y ∗

R∗3 < 0, by Proposition 1,
(
R∗−, Y ∗) is a saddle

while
(
R∗+, Y ∗) is non-saddle. In the case of a saddle connection, spiralling towards

the non-saddle steady state requires Tr(J∗
S)|(R∗+,Y ∗) < 0. Convergence of trajectories

starting in the neighborhood of the saddle steady state to a limit cycle requires the
orbit to be attractive. We will show in the next section, by means of numerical
simulations, that this ordinarily happens for system S.
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Table 2.1 Baseline
parameter

α β γ G ε1 ε2 ε3 ε4 ε5

0.1 0.8 0.1 0.78 0.06̄ 0.04 0.00132 0.03 0.381773̄

Proposition 2 immediately implies the following

Corollary 2 Recall Definition 1. Then, a non Kaldorian-type economy can give rise
to stable deterministic fluctuations.

Proof Since there exist trajectories originating in the neighborhood of the saddle
steady state (where conditions in 2.6 and 2.7 do not apply) which approach a limit
cycle, then non-Kaldorian type economies can exhibit deterministic fluctuations (also
cf Definition 1).

Interestingly, a negative interest elasticity of savings is also crucial for the emer-
gence of endogenous cycles in discrete-time overlapping generations models (cf.
inter al. Azariadis and Guesnerie 1986; and Grandmond 1985). We conjecture that
the result is also likely to arise in models with alternative specifications of the non
linearity in the interest rate in both the investment and savings functions.

Although the existence of a limit cycle approached by trajectories originating
in the neighborhood of the saddle steady state is our main result, it must not be
underestimated the possibility of a saddle connection between the two steady states
which, in the case of a low decay factor, is not inconsistent with the observation of
a fluctuating behavior of real economies.

In Section“Some Numerical Simulations” we provide an extensive simulation
study based on system S.

Some Numerical Simulations

Let now �̌M ≡ (α,β, γ, G, ε1, ε2, ε3, ε4, ε5) be set as in Table 2.1.5

At thebifurcation, there is a unique steady state such that
(
R̄∗, Ȳ ∗) ≈ (1.36,4.39).6

The parameter values are essentially taken from Makovinyiova with some crucial
differences. First of all, to obtain a reasonable amplitude of the cycle, in the case of
an economy starting close to the saddle steady state (in the case of a large distance
between the two steady state values of the interest rate), we found it necessary to
lower the parameter α to 0.1. Furthermore, γ, the elasticity of the demand for money

5 Notice that, for system S, since φ′ (R) can change sign in the domain D, the parameters lie in the
�̌ sub-sector.
6 Notice that, with these parameter values, the saving sensitivity to the interest rate equals, at the
bifurcation

S∗
R = ε4 − δ̄

Y ∗

R̄∗2 = −0.040733821

which is consistent with the simulations in Abrar (1989).
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Fig. 2.1 A non-Kaldorian type economy (slowly) converging to a cycle

with respect to Y , is set to 0.1 instead of 0.2. Finally ε3 is set to 0.00132 instead of
0.001. These further changes are necessary to allow for a positive Tr(J∗

S)|(R∗+,Y ∗),
and therefore for the most interesting case of an attracting orbit to be obtained.

The implied critical values of the bifurcation parameters in the baseline simulation
are respectively

(
δ̄, τ̄

) ≈ (0.03787, 0.17732). Notice that the critical value of the
tax rate is very close to the value of the tax rate reported in Makovinyiova for the
Slovakian economy in 2007.

Consider now the following example. Set �̌M as in Table2.1. Assume further-
more δ = 0.03 < δ̄ and τ = 0.1801 > τ̄ . Then, a dual steady state emerges.
We have (R∗−, Y ∗) ≈ (0.9613, 4.331) and (R∗+, Y ∗) ≈ (1.9309, 4.331). We also
obtain Det(J∗

S)|(R∗−,Y ∗) > 0, Det(J∗
S |)(R∗+,Y ∗) < 0, Tr(J∗

S)|(R∗−,Y ∗) < 0 and
T r(J∗

S)|(R∗+,Y ∗) > 0. Therefore, the low interest rate steady state is a saddle and
the high interest rate steady state is a source.

The following Fig. 2.1 shows, for the above reported parameter values, the con-
vergence to a limit cycle of a non Kaldorian-type economy starting at (1.2,4.33). It
is interesting to observe that for these parameter values, the high interest rate steady
state is virtually a center, since the trajectory approaches the orbit from outside at a
very slow speed.
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Fig. 2.2 Solution trajectories for varying parameters

We have also conducted a sensitivity analysis by changing some crucial parame-
ters. As it appears clear in Fig. 2.2, what we find is that raising (decreasing) β and
γ with respect to their baseline values stabilizes (destabilizes) the non saddle steady
state. Moreover, we find that small variations of G, measuring the "size" of public
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expenditure, cause the double steady state to disappear. In Fig. 2.2, therefore, we
report trajectories obtained for very small variations of G with respect to its baseline
value.

Conclusions

This paper innovates the literature regarding dynamic IS-LM models of Schinasi’s
type (1981) and (1982). First of all, we find that, if the interest rate sensitivity of
savings is negative, the model admits a dual steady state, characterized by the same
long-run level of income but by different interest rates. One of these steady states is
a saddle and the other is a non-saddle equilibrium. From the local analysis perspec-
tive, our results remain in line with the “Kaldorian tradition”, namely endogenous
fluctuation can only arise if the IS curve is upward sloping.

However, the global analysis provides a different perspective. By means of the
homoclinic bifurcation Theorem of Kopell and Howard (1975) we are able to prove
that (for specific functional forms and parameter configurations) there exist trajecto-
ries originating in the neighborhood of the non-Kaldorian steady state which spiral
towards the other steady state, or to a limit cycle around it. This implies that an
economy not satisfying the Kaldorian assumptions can start, at some point in time,
to exhibit oscillating behavior.

We conclude the paper by proposing the results of an extensive sensitivity analysis.

Appendix A

Linearization matrix associated with system M.
As shown in the text, Schinasi’s model (1981) and (1982) gives rise to the follow-

ing system of first-order differential equations

Ṙ = G−τY
L R(R,Y )

− α LY (R,Y )
L R(R,Y )

[H(R, Y ) + G − τY ]

Ẏ = α [H(R, Y ) + G − τY ] (M)

Let J∗
M be the Jacobian of the right hand side of system M evaluated at the steady

state. The single elements of J∗
M are

j∗11 =∂ Ṙ/∂R|ss = −α
L∗

Y

L∗
R

H∗
R

j∗12 =∂ Ṙ/∂Y |ss = −α
L∗

Y

L∗
R

H∗
Y + αL∗

Y −1
L∗

R
τ

j∗21 =∂Ẏ/∂R|ss = αH∗
R
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j∗22 =∂Ẏ/∂Y |ss = α(H∗
Y − τ )

where, for the sake of a simple representation, the arguments of the functions have
been dropped. Therefore, we have

J∗
M=

[
−α

L∗
Y

L∗
R

H∗
R −α

L∗
Y

L∗
R

H∗
Y + αL∗

Y −1
L∗

R
τ

αH∗
R α(H∗

Y − τ )

]
(A.1)

The eigenvalues of (A.1) are the solutions of the characteristic equation

det
(
λI − J∗

M
) = λ2 − Tr(J∗

M)λ + Det(J∗
M)

where I is the identity matrix. Tr(J∗
M) and Det(J∗

M) are Trace and Determinant of
J∗
M, respectively. We obtain

Tr(J∗
M) = α

(
H∗

Y − τ − L∗
Y

L∗
R

H∗
R

)

Det(J∗
M) = ατ

H∗
R

L∗
R

Appendix B

Linearization matrix associated with system S.
Consider now system S in the text

Ṙ = − 1−γα
β (G − τY ) + γα

β

[
ε1

√
Y 3 − ε2R − ε3(1 − τ )2Y 2 − ε4R − ε5 − δY

R

]

(S)

Ẏ = α
[
ε1

√
Y 3 − ε2R − ε3(1 − τ )2Y 2 − ε4R − ε5 − δY

R + G − τY
]

Let J∗
S be the Jacobian of the right hand side of system S evaluated at the steady

state. The single elements of J∗
S are the following

j∗11 =∂ Ṙ/∂R|ss = − γα
β

(
−ε2 − ε4 + δ

R∗2
)

j∗12 =∂ Ṙ/∂Y |ss = − γα
β

(
3

2
ε1

√
G
τ − 2ε3(1 − τ )2 G

τ

)
− γα−1

β τ

j∗21 =∂Ẏ/∂R|ss = α
[
−ε2 − ε4 + δ

R∗2
]
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j∗22 =∂Ẏ/∂Y |ss = α

(
3

2
ε1

√
G
τ − 2ε3(1 − τ )2

G

τ
− τ

)

where, for the sake of a simple representation, the arguments of the functions have
been dropped. Therefore, we have

J∗
S=

[
γα
β H∗

R
γα
β H∗

Y − γα−1
β τ

αH∗
R α(H∗

Y − τ )

]
(B.1)

where H∗
R = −ε2 − ε4 + δY ∗

R∗2 and H∗
Y = 3

2ε1

√
G
τ − 2ε3(1 − τ )2 G

τ − τ . Therefore,

Tr(J∗
S ) = α(H∗

Y − τ ) + γα
β H∗

R

Det(J∗
S ) = −ατ H∗

R
β

Appendix C

For the sake of a simple discussion, we shall refer to the original version of the two-
parameter homoclinic bifurcation Theorem in Kopell and Howard (1975) (Theorem
7.1, p. 334).

Let (δ, τ ) be our control parameters. Posit μ = δ − δ̄ and ν = τ − τ̄ where δ̄
and τ̄ be the critical values of our bifurcation parameters. Let also R̄∗ and Ȳ ∗ be the
particular steady state values of the interest rate and income implied by μ = ν = 0.

Preliminarily, we translate our system of differential equation to the origin and
provide a second-order Taylor expansion.

Let R̃ = R − R̄∗ and Ỹ = Y − Ȳ ∗. We have, from system S
·
R̃ = γα

β H̃
(
(Ȳ ∗ + Ỹ ), (R̄∗ + R̃), (δ̄ + v), (τ̄ + μ)

)
(C.1)

+ γα−1
β

[
G − (τ̄ + μ)(Ȳ ∗ + Ỹ )

]
·
Ỹ = αH̃

(
(Ȳ ∗ + Ỹ ), (R̄∗ + R̃), (δ̄ + v), (τ̄ + μ)

)
+ α[G − (τ̄ + μ)(Ȳ ∗ + Ỹ ))]

where

H̃ = ε1

√
(Ȳ ∗ + Ỹ )3 − ε2(R̄∗ + R̃) − ε3(1 − τ̄ − μ)2

(
Ȳ ∗ + Ỹ

)2

− ε4(R̄∗ + R̃) − ε5 −
(
δ̄+v

)(
Ȳ ∗+Ỹ

)
(R̄∗+R̃)
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System C.1 corresponds to the generic two-parameter family of ordinary differential
equations Ẋ = Fμ,v (X) in Kopell-Howard’s original Theorem. We present now, in
sequence, the computation necessary to apply the homoclinic bifurcation Theorem
7.1 in Kopell and Howard to system C.1.

1. Computation of d Fμ,ν (0). We obtain

d Fμ,ν (0) =
[

2αγ
β ε3(1 − τ̄ − μ)Ȳ ∗2 − αγ−1

β Ȳ ∗ −αγ
β

Ȳ ∗
R̄∗

2αε3(1 − τ̄ − μ)Ȳ ∗2 − αȲ ∗ −αȲ ∗
R̄∗

]
(C.2)

Simple algebra gives

T r d Fμ,v(0) = 2αγ
β ε3(1 − τ̄ − μ)Ȳ ∗2 − αγ−1

β Ȳ ∗ − αȲ ∗
R̄∗

det d Fμ,v(0) = −αȲ ∗2
β R̄∗

At (μ, v) = (0, 0) (C.2) becomes

d F0,0(0) =
[

2γα
β ε3(1 − τ̄ )Ȳ ∗2 − γα−1

β Ȳ ∗ − γα
β

Ȳ ∗
R̄∗

2αε3(1 − τ̄ )Ȳ ∗2 − αȲ ∗ −αȲ ∗
R̄∗

]

Since d F0,0(0) has a double zero eigenvalue, the first requirement of the Theorem
is satisfied.

2. Computation of the mapping (μ, v) → (
det d Fμ,v(0), Tr d Fμ,v(0)

)
.

We have [
∂
∂μ det d Fμv(0) ∂

∂v
det d Fμv(0)

∂
∂μTrd Fμv(0) ∂

∂v
Trd Fμv(0)

]

which reduces to [
0 0

−2αγ
β ε3Ȳ ∗2 0

]
�= 0

Therefore the second requirement of the Theorem is satisfied.

H̃ = ε1

√
(Ȳ ∗ + Ỹ )3 − ε2(R̄∗ + R̃) − ε3(1 − τ̄ − μ)2

(
Ȳ ∗ + Ỹ

)2

− ε4(R̄∗ + R̃) − ε5 −
(
δ̄+v

)(
Ȳ ∗+Ỹ

)
R̄∗+R̃

3. Computation of the Q(e, e) matrix.

Let Pi , i = 1, 2 be the matrices of the second order derivatives of system C.1
evaluated at (μ, v) = (0, 0). We have
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P1 = αγ
β

⎡
⎣− 2δ̄Ȳ ∗

R̄∗3
δ̄

R̄∗2
δ̄

R̄∗2 ε1
3
4

1√
Ȳ ∗ − 2ε3(1 − τ̄ )2

⎤
⎦

P2 = α

⎡
⎣− 2δ̄Ȳ ∗

R̄∗3
δ̄

R̄∗2
δ̄

R̄∗2
3ε1
4

1√
Ȳ ∗ − 2ε3(1 − τ̄ )2

⎤
⎦

Let us now compute the right eigenvector e = (e1, e2)T of J∗
S . A possible can-

didate is

e =
[

e1
e2

]
=

⎡
⎢⎣−

αγ
β

(
3
2 ε1

√
Ȳ ∗−2ε3(1−τ )2Ȳ ∗− δ

R̄∗
)
− αγ−1

β τ̄

γα
β

(
−(ε2+ε4)+δ Ȳ∗

R̄∗2
)

1

⎤
⎥⎦

Therefore

Q(e, e) = 1

2

(
eT P1e
eT P2e

)
= α

2

⎛
⎜⎝−

(
j∗12
j∗11

)2
γ
β
2δ̄Ȳ ∗
R̄∗3 + γ

β

(
3ε1
4

1√
Ȳ ∗ − 2ε3(1 − τ̄ )2

)

−
(

j∗12
j∗11

)2
2δ̄Ȳ ∗
R̄∗3 + 3ε1

4
1√
Ȳ ∗ − 2ε3(1 − τ̄ )2

⎞
⎟⎠

Finally

[
d F0,0(0), Q(e, e)

] =

⎡
⎢⎢⎢⎢⎢⎢⎣

2αγ
β ε3(1 − τ̄ )Ȳ ∗2 − αγ−1

β Ȳ ∗ −
(

j∗12
j∗11

)2
γ
β
2δ̄Ȳ ∗
R̄∗3

+ γ
β

(
3ε1
4

1√
Ȳ ∗ − 2ε3(1 − τ̄ )2

)

2αε3(1 − τ̄ )Ȳ ∗2 − αȲ ∗ −
(

j∗12
j∗11

)2
2δ̄Ȳ ∗
R̄∗3

+ε1
3
4

1√
Ȳ ∗ − 2ε3(1 − τ̄ )2

⎤
⎥⎥⎥⎥⎥⎥⎦

(C.3)

where j∗11 = γα
β

(
−(ε2 + ε4) + δ Ȳ ∗

R̄∗2
)
and j∗12 = γα

β

(
3
2ε1

√
Ȳ ∗ − 2ε3(1 − τ )2Ȳ ∗

− δ
R̄∗

)
− αγ−1

β τ . Since (C.3) has rank 2, the third requirement of the Theorem is

satisfied.
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