
Chapter 1
Applications of Methods and Algorithms
of Nonlinear Dynamics in Economics
and Finance

Abdol S. Soofi, Andreas Galka, Zhe Li, Yuqin Zhang and Xiaofeng Hui

Abstract The traditional financial econometric studies presume the underlying data
generating processes (DGP) of the time series observations to be linear and stochastic.
These assumptions were taken face value for a long time; however, recent advances
in dynamical systems theory and algorithms have enabled researchers to observe
complicated dynamics of time series data, and test for validity of these assumptions.
These developments include theory of time delay embedding and state space recon-
struction of the dynamical system from a scalar time series, methods in detecting
chaotic dynamics by computation of invariants such as Lyapunov exponents and cor-
relation dimension, surrogate data analysis as well as the other methods of testing
for nonlinearity, and mutual prediction as a method of testing for synchronization
of oscillating systems. In this chapter, we will discuss the methods, and review the
empirical results of the studies the authors of this chapter have undertaken over
the last decade and half. Given the methodological and computational advances
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of the recent decades, the authors of this chapter have explored the possibility of
detecting nonlinear, deterministic dynamics in the data generating processes of the
financial time series that were examined. We have conjectured that the presence of
nonlinear deterministic dynamics may have been blurred by strong noise in the time
series, which could give the appearance of the randomness of the series. Accord-
ingly, by using methods of nonlinear dynamics, we have aimed to tackle a set of
lingering problems that the traditional linear, stochastic time series approaches to
financial econometrics were unable to address successfully. We believe our methods
have successfully addressed some, if not all, such lingering issues. We present our
methods and empirical results of many of our studies in this chapter.

Keywords Nonlinear deterministic dynamics · Financial integration · Nonlinear
prediction · Synchronization of stock markets · Correlation dimension · Time-delay
embedding

Introduction

The traditional empirical financial and economic studies presume the underlying data
generating processes (DGP) of the time series observations to be linear and stochas-
tic. However, recent advances in statistical physics, probability theory, and ergodic
theory, which are summarized under the rubric of dynamical systems theory and
algorithms have enabled researchers to observe complicated dynamics of time series
data, and test for validity of these assumptions. These developments include theory of
time delay embedding and state space reconstruction of the dynamical system from
a scalar time series (Takens 1981; Sauer et al. 1991), methods in detecting chaotic
dynamics by computation of invariants such as Lyapunov exponents (Pesin 1977;
Wolf et al. 1985) and correlation dimension (Grassberger and Procaccia 1983), sur-
rogate data analysis (Schreiber and Schmitz 1996) and the other methods of testing
for nonlinearity (McLeod and Li 1983; Tsay 1986; Brock et al. 1996), and mutual
prediction as a method of testing for synchronization of oscillating systems (Fujisaka
and Yamada 1983; Afraimovich et al. 1986; Pecora and Carroll 1990).

Traditionally, the numerical algorithms of nonlinear dynamical systems aremostly
used in analyses of experimental data of physics and other physical and natural
sciences; however, over the last two decades, these methods and algorithms have
found extensive use in finance and economics also (Scheinkman and LeBaron 1989;
Soofi and Cao 2002a; Soofi and Galka 2003; Das and Das 2007; Zhang et al. 2011;
Soofi et al. 2012).

These advances have opened up possibilities of gaining further insights into the
dynamics of financial/economic data. Even though from a theoretical point of view
these methods are as applicable to economic data as they are to financial data, in
practice one observes more frequent applications of these methods to financial data
compared to economic data. The reason for this mismatch in applications is low
frequency nature of most economic time series data (most economic time series
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observations are monthly, quarterly, or annual), which leads to limited observations.
The algorithms of nonlinear dynamical systems require very large set of time series
observations. The financial time series with adequate number of observations for use
in nonlinear dynamical analysis could be obtained from the financial markets.

At the outset, we should point out that applicability of these methods and algo-
rithms and the validity of the empirical results hinge on nonlinearity of time series
observations. The name nonlinear deterministic dynamics, which is known chaos
theory also, should make this requirement absolutely clear. Accordingly, tests for
nonlinearity of the series under investigation assume a paramount importance in
nonlinear data analyses, and are an absolute requirement before applying any of
the above mentioned methods to the data. Nonlinearity is a necessary condition for
nonlinear deterministic (chaotic) as well as nonlinear stochastic dynamics.

In this chapter, we will discuss the methods, and review the empirical results of
the studies the authors of this chapter have undertaken over the last decade and half.
Given the methodological and computational advances of the recent decades, the
authors of this chapter have explored the possibility of detecting nonlinear, deter-
ministic dynamics in the data generating processes of the financial time series that
were examined. We have conjectured that the presence of nonlinear deterministic
dynamics may have been blurred by strong noise in the time series, which could give
the appearance of the randomness of the series. Accordingly, by using methods of
nonlinear dynamics, we have aimed to tackle a set of lingering problems that the
traditional linear, stochastic time series approaches to financial econometrics were
unable to address successfully. We believe our methods have successfully addressed
some, if not all, such lingering issues. We present our methods and empirical results
of many of our studies in this chapter and leave the judgment of how successful we
have been in resolving the lingering issues in the financial econometrics to reader.

Specifically, section “Defining Chaotic or Nonlinear Deterministic Dynamics”
gives an overview of concepts and definitions of nonlinear dynamical systems. In
section “Surrogate Data Analysis and Testing for Nonlinearity”, we discuss surro-
gate data analysis as a test for nonlinearity. Section “Determining Time Delay and
Embedding Dimension” reviews time-delay and embedding dimension methods that
are used in phase space reconstruction of nonlinear dynamical systems from a single
set of observations of the dynamics. In section “Nonlinear Prediction”, we discuss
the use of nonlinear deterministic method in predictions of the financial time series.
Section “Discriminate Statistics for Hypothesis Testing in Surrogate Data Analysis”
discusses discriminate statistics that are often used in surrogate data analysis and in
tests for detection of chaotic systems. Section “Nonlinear Predictions of Financial
Time Series: The Empirical Results” reviews the empirical results of nonlinear pre-
diction of financial time series. In section “Noise Reduction and Increased Prediction
Accuracy” the effect of noise reduction on prediction accuracy is examined. Section
“Mutual Prediction as aTest for Integration of the FinancialMarkets” reviewsmethod
of mutual prediction as a test for integration of financial markets. Finally, section
“Summary and Conclusion” concludes the chapter.
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Defining Chaotic or Nonlinear Deterministic Dynamics

It is useful for our subsequent analyses to start with concise definitions of some of the
terminologies of nonlinear dynamical systems theory. However, before giving formal
definitions of these terms, we give a general description of nonlinear dynamical
systems.

Economies (andfinancialmarkets), like population biology and statistical physics,
consist of large numbers of agents (elements), which are organized into dynamic,
volatile, complex, and adaptive systems. These systems are sensitive to the environ-
mental constraints and evolve according to their internal structures that are generated
by the relationships among the individual members of the systems. Of course, each
of these disciplines has its own peculiarities, the knowledge of which necessitates
development of expertise in the respective discipline. However, synthetic microan-
alytic approach to study the systems is their common characteristic. This implies
that one could aim to understand the behavior of the system as a whole by relating
the system’s behavior to the conducts of its constituent parts on one hand, and by
considering interactions among the parts on the other.

For example, in finance one might be interested in learning how trading by thou-
sands of investors in the stock market determines the daily fluctuations in the stock
indexes; or in physics, one might be interested to explain how interactions among
countless number of atoms result in transformation of a liquid into solid.

Given the evolutionary nature of economic (financial) systems, dynamical sys-
tems theory is the method of choice in studying these complex, adaptive systems.
A dynamical system is a system whose state evolves over time according to some
dynamical laws. The evolution of the system is in accord with working of a determin-
istic evolution operator. The evolution operator, which can assume a differential or a
difference equation form, a matrix form, or a graph form provides a correspondence
between the initial state of the system and a unique state at each subsequent period.
In real dynamical systems random events are present, however, in modeling these
real systems the random events are neglected.

Let the state of the dynamical system be described by a set of d state variables,
such that each state of the system corresponds to a point ξ ∈ M, where M is a
compact, differentiable d-dimensional manifold. M is called the true state space and
d is called the true state space dimension.

The states of dynamical systems change over time, hence the state is a function
of time, i.e., ξ(t).

In continuous cases a curve or a trajectory depicts the evolutionary path of ξ(t).
If the current state of system ξ(0), where one arbitrarily defines the current time
t = 0, uniquely determines the future states ξ(t), t > 0, the system is a deterministic
dynamical system. If such unique correspondence between the current state and the
future states does not exist, the system is called a stochastic dynamical system. The
completely uncorrelated states are called white noise.

In practice, it is not feasible to observe ξ(t), the true states of the dynamical
systems. However, measurement of one or several components of the system might
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be possible. Therefore, using a measurement function h : Rd → Rd ′
on the true

state ξ, we measure a time series x(t) = h(ξ(t))+ η(t), where η(t) is measurement
error (noise) and d ′ < d.

The properties of the evolution operator define the characteristics of the system.
A dynamical system is linear if its evolution operator is linear; otherwise the system
is nonlinear.

We need to define attractor of a dynamical system before further discussions of
the possible forms of behavior of the dynamical systems. To do so, we start with a
formal re-statement of deterministic dynamical systems.

Start with a system in the initial state of ξ(0). If the system is deterministic, a
unique function f t maps the state at time 0 to state at time t : ξ(t) = f t (ξ(0)).
We assume the f t to be differentiable function, which has a smooth inverse. Such a
function is a diffeomorphism.

Depending on the structure of f t , the behavior of ξ(t) for t → ∞ (after the
transient states) varies. In a dissipative dynamical system,where energy of the system
is not conserved, all volumes in the state space shrink over time and evolve into a
reduced set A called attractor. Accordingly, we define an attractor as a set of points
in the state space which are invariant to flows of f t . The transient state is the state in
which the process of convergence of the neighboring trajectories to a set of points A
of attractor is taking place.

Four types of attractors are observed, which are defined below.

• Fixed points
The initial state converges into a single point. The time series of such system is
given by x(t) = x(0), implying a constant set of observations.

• Limit cycles
The initial state converges to a set of states, which are visited periodically. The
time series corresponding to limit cycles is defined by x(t) = x(t + T ), where T
is the period of periodicity.

• Limit tori
A limit torus is the limit cycle with more than one incommensurable frequency in
the periodic trajectory.

• Strange attractors
Strange attractors are characterized by the property of attracting initial stateswithin
a certain basin of attraction, while at the same time neighboring initial states on
the attractor itself are propagated on the attractor in a way such that their distance
will, initially, grow exponentially. When the distance approaches the size of the
attractor, this growth will stop due to back-folding effects.
The time series representing the dynamical systems with strange attractors appear
to be stochastic, even though they are completely deterministic. These dynamical
systems are called chaotic or nonlinear deterministic dynamics.

We defined nonlinear systems in the context of evolution operators above. How-
ever, an intuitive way to gain an understanding of the difference between linear and
nonlinear systems is described below.
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Perturb the system by x1 and record its response y1. Next perturb the system by
x2 and record its response y2. Then perturb the system by (x1 + x2) and record its
response y3. Finally compare (y1 + y2) and y3. If they are equal for any x1 and x2
then the system is linear. Otherwise it is nonlinear (Balanov et al. 2009).

Many models depicting chaotic behavior have been developed. Among these
models we name the most widely used ones such as the Lorenz attractor (Lorenz
1963), Henon map (Henon 1976), tent map (Devany 1989), and logistic map
(May 1976).

Surrogate Data Analysis and Testing for Nonlinearity

As stated above, an extensive literature dealing with different methods for testing
for nonlinearity in time series observations has evolved over the last two decades.
These methods were used in a number of studies that point to possible nonlinearity
in certain financial and economic time series1 (e.g. Scheinkman and LeBaron 1989;
Hsieh 1991; Yang and Brorsen 1993; Kohzadi and Boyd 1995; Soofi andGalka 2003;
Zhang et al. 2011; Soofi et al. 2012).

The dynamics of short, noisy financial and economic time series could be the
outcome of working of nonlinear determinism in its varieties (periodic, limit tori, and
chaotic), stochastic linearity and nonlinearity, and randomnoise emerging fromeither
or both the dynamics itself and from measurement. Accordingly, in applications of
methods and algorithms of nonlinear dynamical systems the first task is to delineate
and disentangle all these influences on the observed data set. Given the daunting
task of accounting for above listed influences, in practice most analysts focus on
determining the role nonlinearity plays in the observed series.

One of the most popular methods of testing for nonlinearity of time series is the
surrogate data technique (Theiler et al. 1992). In the surrogate data method of testing
for nonlinearity of the series one postulates the null hypothesis that the data are
linearly correlated in the temporal domain, but are random otherwise. Among the
most popular test statistics for hypothesis testing we mention correlation dimension
and somemeasures of prediction accuracy. We have used both correlation dimension
as well as root mean square errors as test statistics for hypothesis testing within the
framework of surrogate data analysis on a number of exchange rates and stockmarket
time series studies. We will discuss these quantities below in section “Discriminate
Statistics for Hypothesis Testing in Surrogate Data Analysis” after introduction of
the method of phase space reconstruction by time-delay embedding.

Presence of noise in the data and insufficient number of observations may point to
nonlinearity of a stochastic time series even though the series might be linear (see for
example, Osborne and Provencale 1989). To exclude the possibility of receiving such

1 As it will become clear in the discussion of surrogate analysis below, nonlinearity is not a property
of a series; it is the absence of the property of linearity that is often detected. However, it is more
straightforward, even though less accurate, to speak of presence of nonlinearity in a series throughout
this chapter.
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misleading signals, surrogate data analysis is often used for testing for nonlinearity
of a series. One of the methods used in surrogate data analysis generates a number
of surrogates for the original series by preserving all the linear correlations within
the original data while destroying any nonlinear structure by randomizing the phases
of the Fourier transform of the data. Alternatively one might wish to describe the
linear correlations within the original data by generating the linear surrogates from
an autoregressive model of order p model, AR(p), and then using the surrogates for
estimation of the autocorrelation function (see Galka 2000).

In many practical cases of data analysis, one is faced with a single set of short,
noisy, and often non-stationary observations. In such cases, the application of the
nonlinear dynamical methods leads to point estimates leaving the analyst without
measures of statistical certainty regarding the estimated statistics. One approach to
overcome this problem is artificial generation of many time series which by design
contain the relevant properties of the original time series, which are obtained through
the estimated statistics.

The strategy in surrogate data analysis is to take a contrarian view. The analyst
should choose a null hypothesis that contradicts his/her intuition about the nature
of the time series under investigation. For example, if one is testing for presence
of nonlinear deterministic dynamics in the series, one should select a model that
directly contradicts these properties and use a linear, stochastic model to generate
the surrogate data, which are different realizations of the hypothesized linear model.
Using the surrogate, the quantity of interest, for example, correlation dimension
as a discriminating statistics, is estimated for each realization. The next step in
this strategy is formation of a distribution using the estimates of the discriminating
statistics from the surrogates. The resulting distribution is then used in a statistical
test, which might show that the observed data are highly unlikely to have been
generated by a linear process.

By estimating the test statistics for both the original series and the surrogates, the
null hypothesis that the original time series was linear is tested. If the null is true,
then procedure for generating the surrogates will not affect measures of suspected
nonlinearity. However, if the measure of nonlinearity is significantly changed by the
procedure, then the null of linearity of the original series is rejected.

An alternative approach in determining the unknown probability distribution of
measures of nonlinearity is the parametric bootstrap method (Efron 1982), which
aims to extract explicit parametricmodels from the data. The validity of this approach
hinges on successful extraction of the models from the data. The main shortcoming
of parametric bootstrap methods is that one cannot be sure about the true processes
underlying the data. The surrogate data method, which can been characterized as
a constrained realization method, overcomes the weakness of parametric bootstrap
method, which can be characterized as a typical realization method, by directly
imposing the desired structure onto the randomized time series.

To avoid spurious results it is essential that the correct structure (according to
the null hypothesis) is imposed on the original series. One approach in ensuring
validity of statistical test is determining the most likely linear model that might have
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generated the data, fitting the model, and then testing for the null hypothesis that the
data have been generated by the specified model (Screiber 1999, pp. 42–43).

The number of surrogates to be generated depends on the rate of false rejections
of the null hypothesis one is willing to accept (i.e., on the size of the test). In most
practical applications generating 35 surrogate data series should suffice. A set of
values of the discriminating statistics q1, q2, . . . q35, is then computed from the
surrogates.

Rejection of the null hypothesis may be based either on rank ordering or signif-
icance testing. Rank ordering involves deciding whether q0 of the original series
appears as the first or last item in the sorted list of all values of the discriminating
statistics q0, q1, q2, . . . q35.

If the qs are fairly normally distributed we may use significance testing. Under
this method rejection of the null requires a t value of about 2, at the 95% confidence
level, where t is defined as:

t = |q0 − 〈q〉|
σq

(1.1)

where 〈q〉 and σq are the mean and standard deviation, respectively, of the series
q1, q2, . . . q35 (for an in-depth discussion of surrogate data analysis see Kugiumtzis
2002 and Theiler et al. 1992).

Note that a software for generating phase-randomization surrogate data, fftsurr
(fast Fourier transform surrogates) has been made available by Kaplan (2004); it is
written in MATLAB. Phase-randomized surrogate data generated by fftsurr have the
same spectral density function as the original time series. A further improvement
of phase-randomization surrogates can be achieved by creating improved amplitude-
adjusted phase-randomization (IAAPR) surrogates (sometimes also known as
polished surrogates). These surrogates have a distribution of amplitudes which is
identical to that of the original data, in addition to the preservation of the spectral
density function. This is achieved by reordering the original series in a way such that
the power spectrum of the surrogates and the original series are (almost) identical.

For data with non-Gaussian distribution, phase-randomized surrogates without
amplitude adjustment may result in spurious rejection of the null hypothesis. This
result is due to difference between the distributions of the surrogates and the original
series. To remedy this problem one should distort the original data so that it is
transformed to a series with Gaussian distribution. Then from the distorted original
series, now a Gaussian series, a set of surrogates is created by phase-randomization.
Finally, the surrogates are transformed back to the same non-Gaussian distribution
as the original data (for further details see Galka 2000, Chap.11).

Soofi and Galka (2003) employed the algorithm of Schreiber and Schmitz (1996)
for the generation of IAAPR surrogates in the context of the estimation of the cor-
relation dimension of the dollar/pound and dollar/yen exchange rates. They found
evidence of presence of nonlinear structure in the dollar/pound rate, however, no
such evidence was found for dollar/yen exchange rate.

Zhang et al. (2011) using the IAAPR algorithm generated 30 surrogate series for
4 daily dollar exchange rates data including Japanese yen, Malaysian ringgit, Thai
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baht, and British pound for testing for presence of nonlinear structure in the exchange
rate series. They found evidence of nonlinear structure in dollar/pound rate. However,
it was observed that all the exchange rate series go through periods of linearity and
nonlinearity intermittently, a characteristic that was not observed for the simulated
data generated from the chaotic Lorenz system.

Testing for nonlinearity of the Chinese stock markets data (Soofi et al. 2012) used
algorithms that generate phase-randomization surrogates and amplitude-adjusted sur-
rogates (Kaplan 2004), and found evidence of nonlinearity in all three stock market
indices in China: Hong Kong stock Index (HSI), Shanghai Stock Index (SSI), and
Shenzhen Stock Index (SZI).

Determining Time Delay and Embedding Dimension

Advances in mathematical theory of time-delay embedding by Takens (1981) and
later by Sauer et al. (1991) allow understanding of the dynamics of the nonlinear
system through observed time series. These algorithms have had a large number
of applications in detecting nonlinear determinism from observed time series, e.g.,
economic and financial time series (Soofi and Galka 2003; Soofi and Cao 2002a;
Cao and Soofi 1999; Bajo-Rubio et al. 1992; Larsen and Lam 1992) .

Given the significance of methods of time-delay embedding and phase space
reconstruction in nonlinear dynamical time series analyses, we will discuss these
techniques in detail below.

Choosing Optimal Model Dimension

Before a discussion of method of determining the optimal embedding dimension,
let us define the dimension of a set of points. Geometrically speaking a point has
no dimension, a line or a smooth curve has a single dimension, planes and smooth
surfaces have two dimensions, and solids are three-dimensional. However, a con-
cise, institutive definition is given by Strogatz (1994, p. 404) who stated that “...the
dimension is the minimum number of coordinates needed to describe every point in
the set.”

Given a scalar time series, x1, x2, . . . , xN , one can make a time-delay reconstruc-
tion of the phase-space with the reconstructed vectors:

Vn = (xn, xn−τ , . . . , xn−(d−1)τ ), (1.2)

where τ is time-delay, d is embedding dimension, and n = (d − 1)τ + 1, . . . , N .
d represents the dimension of the state space in which to view the dynam-

ics of the underlying system. The time-delay (time lag), τ , represents the time
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interval between the successively sampled observations used in constructing the
d-dimensional embedding vectors.2

According to the embedding theorems (Takens 1981; Sauer et al. 1991) if the time
series is generated by a deterministic system, then there generically exists a function
(a map) F : Rd �→ Rd such that

Vn+1 = F(Vn), (1.3)

if the observation function of the time series is smooth, has a differentiable inverse,
and d is sufficiently large. The mapping has the same dynamic behavior as that of
the original unknown system in the sense of topological equivalence.

In practical applications, we usually use a scalar mapping rather than the mapping
in (1.3), that is,

xn+1 = f (Vn), (1.4)

which is equivalent to (1.3).
In reconstructing the phase space, the remaining problem is how to select the τ

and d, i.e., time-delay and embedding dimension, in a way that guarantees existence
of the above mapping. But in practice, because we have only a finite number of
observations with finite measurement precision, a good choice of τ is important in
phase space reconstructions. Moreover, determining a good embedding dimension d
depends on a judicious choice of τ . The importance of choosing a good time-delay is
that it could make minimal embedding dimension possible. This implies that optimal
determination of embedding-dimension and time-delay are mutually interdependent.

There are several methods to choose a time delay τ from a scalar time series,
such as mutual information (Fraser and Swinney 1986) and autocorrelation function
methods.

The more interesting issue is the choice of the embedding dimension from a
time series. Generally there are three basic methods used in the literature, which
include computing some invariant (e.g., correlation dimension, Lyapunov exponents)
on the attractor (e.g., Grassberger and Procaccia 1983), singular value decomposi-
tion (Broomhead and King 1986; Vautard and Ghil 1989), and the method of false
neighbors (Kennel et al. 1992). However, all these methods contain some subjective
parameters or need subjective judgment to choose the embedding dimension.

Dealing with the problem of subjective choice of embedding dimension Cao
(1997) modified the method of false neighbors and developed a method of the aver-
aged false neighbors, which does not contain any subjective parameter provided the
time-delay has been chosen. Amore general method based on zero-order approxima-
tions has been developed by Cao and Mees (1998), which can be used to determine
the embedding dimension from any dimensional time series including scalar and
multivariate time series.

2 For details, see an excellent introductory book by Hilborn (1994).
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For an unfolding of a time series into a representative state space of a dynamical
system, optimal embedding dimension d and time delay τ are required. The meth-
ods of computing embedding dimension and time delay, however, presuppose prior
knowledge of one parameter before estimation of the other. Accordingly, calculating
one parameter requires exogenous determination of the other.

Soofi et al. (2012) adopted the method of simultaneous estimation of embedding
dimensions and time delays.3 They selected that combination of the embedding
dimension and time delay in generation of the dynamics that would lead to the
minimum prediction error using nonlinear prediction method.

Specifically, let ζi = f (d j , τk, ηi ), [i = 1, . . . , N ; j = k = 1, . . . , M], where
ζi , d j , τk , and ηi are the ith prediction error, the jth embedding dimension, the kth
time delay, and the ith nearest neighbors, respectively. Then one would search for
that combination of d j , τk , and ηi that minimizes ζi .

Below we briefly describe the Cao method. Note that the method takes τ as
given, however, the method estimates an embedding dimension that minimizes the
prediction error.

For a given dimension d, we can get a series of delay vectors Vn defined in (1.2).
For each Vn we find its nearest neighbor Vη(n), i.e.,

Vη(n) = argmin{||Vn − V j || : j = (d − 1)τ + 1, . . . , N , j 	= n} (1.5)

Note, η(n) is an integer such that

||Vη(n) − Vn|| = min{||Vn − V j || : j = (d − 1)τ + 1, . . . , N , j 	= n}

where the norm

||Vn − V j || = ||(xn, xn−τ , . . . , xn−(d−1)τ ) − (x j , x j−τ , . . . , x j−(d−1)τ )||

= [
d−1∑

i=0

(xn−iτ − x j−iτ )
2]1/2.

Then we define:

E(d) = 1

N − J0

N−1∑

n=J0

|xn+1 − xη(n)+1|, J0 = (d − 1)τ + 1. (1.6)

where E(d) is the average absolute prediction error of a zero-order approximation
predictor for a given d. Note that a zero order predictor f is x̂n+1 = f (Vn) and
x̂n+1 = xη(n)+1, where η(n) is an integer such that Vη(n) is the nearest neighbor of
Vn . Furthermore, note that the N in (1.6) represents only the number of available

3 The method was suggested by Liangyue Cao.
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data points for fitting, which does not include the data points for out-of-sample
forecasting.

To choose the embedding dimension de, we simply minimize the E ,
i.e.,

de = argmin{E(d) : d ∈ Z and d ≥ 1}. (1.7)

The embedding dimension de we choose gives the minimum prediction error if
we use a zero-order approximation predictor. It is reasonable to infer that this de will
also give good predictions if we use a high-order (e.g., local-linear) approximation
predictor, since a high-order predictor is more efficient than a zero-order predictor
when making out-of-sample predictions.

In practical computations, it is certainly impossible to minimize the E over all
positive integers. So in real calculations we replace (1.7) with

de = argmin{E(d) : 1 ≤ d ≤ Dmax}, (1.8)

where Dmax is the maximum dimension with which one would like to search the
minimum value of E(d).

In summary, the above method is to find the embedding dimension by minimizing
the 1-step prediction errors using a zero-order approximation predictive model. For
details about this method, see Cao et al. (1998a).

Nonlinear Prediction

Reconstruction of phase space from a scalar time series allows prediction of the
series. The reconstructed phase space allows approximation of a function represent-
ing the dynamics that could be used for prediction. Below we discuss the local-linear
prediction method as one of the methods used in function approximation.

Local-Linear Prediction

Having solved the problem of choosing embedding dimension and time-delay for
the vectors Vn defined in (1.2) we now use model (1.4) for prediction.

The next problem is how to approximate function f . Several approximation tech-
niques, such as local-linear approximation, polynomial approximation, neural net-
works, radial basis function, and wavelet decomposition are available. One of the
more straight forward method is local-linear approximation, because it requires a
lower computational time.

Suppose we have N f samples of time series data available for fitting the function,
i.e., we have x1, x2, . . . , xN f .

Therefore we have time-delay vectors Vn, n = J0, J0 + 1, . . . , N f
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and J0 = (d − 1)τ + 1. We want to predict xN f +1.

Steps in the local-linear approximation method are listed below:

1. Impose a metric on the delay-vector space, denoted by || ||. An example is the
root-square norm, i.e, ||a|| = ||(a1, a2, . . . , ad)|| = (

∑d
i=1 a2

i )
1/2.

2. Find the l nearest neighbors of VN f , denote them by V j1 ,V j2 , . . . ,V jl , J0 ≤
jk < N f , (k = 1, 2, . . . , l), then for any k = 1, 2, . . . , l, ||V jk − VN f || ≤
||Vn − VN f || (J0 ≤ n < N f and n 	= jk for any k = 1, . . . , l).

3. Construct a local-linear predictor, regarding each neighbor V jk as a point in the
domain and x jk+1 as the corresponding point in the range. That is, fitting a linear
function to the l pairs (V jk , x jk+1) (k = 1, 2, . . . , l).
We use the least-squares method to fit this linear function. Denote it by F̂ , then
we have

∑
k |x jk+1 − F̂(V jk )| minimized.

4. The predicted value of xN f +1 is F̂(VN f ), i.e.,

x̂N f +1 = F̂(VN f ).

Discriminate Statistics for Hypothesis Testing in Surrogate
Data Analysis

In this section we will discuss two quantities that we have used in various empirical
studies as a discriminating statistics in hypothesis testing for nonlinearity of the
financial data that were under consideration.

Correlation Sum and Correlation Dimension

One could select from a set of measures as the test statistics in surrogate data analysis
as the first step in determining the behavior of the time series. One of themore popular
discriminating statistics in nonlinear dynamical system analysis is correlation dimen-
sion. Moreover, in addition to being used as a discriminating statistics in hypothesis
testing for presence of nonlinearity in the data, correlation dimension may point to
the chaotic nature of the nonlinear dynamical system. This is due to the observation
that stochastic processes always use all available dimensions of the state space, while
deterministic processes may evolve on a manifold of much lower dimension. This
results in the observation that the fractal dimensions are substantially smaller than
d-degree of freedom of the dynamical system leading to the evidence of determinism.
Below, we give a formal definition of correlation dimension.

Starting with a scalar time series, x1, x2, . . . , xN ,which might describe the states
of a system or may be the result of a time delay embedding of a univariate time series
described by
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xi = (x1, xi−τ , xi−2τ , . . . , xi−(d−1)τ ), (1.9)

where τ and d are the time delay and the embedding dimension, respectively.
From these vectors the correlation sum4 is defined by:

C(r) =
(

n

2

)−1 n−1∑

i=1

n∑

j=i+1

I (r − ‖xi − x j‖), (1.10)

where I (.) is an indicator function, such that I (x) = 1 for positive x and I (x) = 0
otherwise. ‖.‖ denotes maximum norm, though other norms could also be employed.
C(r) estimates the probability of finding two vectors in the set which are separated
by a distance not larger than a radius r (in d-dimensional state space).

To avoid spurious results due to unwanted dynamic correlations in the set of
vectors xi it is advisable to omit all those distances ‖xi − x j‖ from the correlation
sum for which xi and x j are too close together in time, i. e. for which i − j < W
with a fixed integer parameter W (Theiler 1986). The absence of this correction
corresponds to W = 1. The choice of W is not critical, provided a sufficiently large
value is chosen.

For sufficiently small radius r the correlation sum is expected to display a scaling

C(r) = a rdc (1.11)

a is a constant. Hence the correlation dimension dc can be obtained by

dc = lim
r→0

dc(r) = lim
r→0

∂ logC(r)

∂ log r
. (1.12)

The derivative is carried out numerically and yields a dimension estimate dc(r,m),
which still depends on radius r and embedding dimension m.

An Information Theoretic Approach in Estimating a Test Statistics

Anumber of existingmethods for direct testing of nonlinearity such as highly popular
residual-basedmethods, andbispectrum (Hinich1982) exists.However, noneof these
methods provide an efficient test statistics that is based on a discrete parametric
model. The discrete parametric modeling or information theoretic method of testing
for nonlinearity provides such an efficient test statistics (Galka and Ozaki 2001).

Given a time series xi , i = 1, . . . , N , with zero mean and unit variance (this can
be realized by simple linear transformation), we can get an autoregressive model

xi = f (xi−1, . . . , xi−p) + ηi , (1.13)

4 We use the term correlation sum because we are dealing with discrete time series. In cases that
deal with continuous time series, the term correlation integral is used.
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where p is the model order and ηi is the dynamical noise. Take f (·) to be a linear
function, we get an AR(p) model

xi =
p∑

j=1

a j xi− j + ηi =: x̂i + εi , (1.14)

where x̂i is the prediction value or conditional mean of xi .
An exponential autoregressive (ExpAR) model is defined as follows:

xi =
q∑

j=1

(a j + b jexp(
−x2i−1

h
))xi− j + ηi =: x̂i + ηi , (1.15)

where the bandwidth h for each time series can be estimated by

h = −max x2i−1

log c
, (1.16)

and c is a small number selected in advance. The choice is based on the idea of
selection of a bandwidth, h, such that the exponential term becomes essentially
zero for large amplitude. Since the exponential function is always positive it never
becomes exactly zero. Therefore, wemust assign a very small positive number for the
exponential term and we call this small constant c. If we choose log(c) = −30, this
corresponds to c = 9.3576e − 014. This is a number close to the machine precision
of computers.

Based on the two models represented in Eqs. (1.2) and (1.3), the test statistic is
constructed as follows:

δ(p) := 1

N
(AIC(AR(p)) − AIC(ExpAR(q))) (1.17)

where AIC is the Akaike Information Criterion (Akaike 1974) and is defined as

AIC = N log[ 1

N − p

N∑

i=p+1

(xi − x̂i )
2] + 2(P + 1) (1.18)

where p is model order, and P denotes the number of the parameters ai and b j in
the model.

Model (1.17) uses AIC as a measure of the quality of fitted model. Note that the
smaller the value of AIC, the better the selected model for the data that is being
modeled. Accordingly, δ > 0 implies that the nonlinear ExpAR(p) model is a better
model compared to the linear AR(p) in fitting the data. For δ < 0, the models reverse
role.
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The Empirical Results Based on the Information Theoretic Model
Using the Exchange Rates

Zhang et al. (2011) tested for nonlinearity of the daily dollar exchange rates time
series. They used the discrete parametric modeling approach (Galka andOzaki 2001)
to compute an efficient test statistic for nonlinearity of daily dollar exchange rates
for 3 Asian currencies and British pound series.

To explore whether the underlying dynamics of Asian financial systems went
through changes during the Asian Crisis of 1997–1998, they examined the non-
linear properties of currencies of Thailand and Malaysia before, during, and after
Asian financial crises, and obtain highly interesting results. They performed the same
analysis using yen and pound rates also. They used yen as the currency of an Asian
industrialized country that was immune to the Asian Contagion. They used the pound
rate because of observed nonlinear structure in the series by other researchers (Soofi
and Galka 2003) as a non-Asian currency for the purpose of a control time series in
the study.

According to the results of nonlinearity test, Thai baht shows a nonlinear struc-
ture for pre-crisis period. However, the nonlinearity is totally absent for crisis and
post crisis periods. For Malaysian ringgit, they observe a mild nonlinearity which
corresponds to a period of time close to the early July of 1997, when the monetary
authorities in Thailand abandoned the pegging of baht to the dollar this may imply
cross-country contagion effect. Again, the data support no nonlinearity of the cur-
rency during and after the crisis periods. For Japanese yen, they find no evidence of
nonlinearity for any period under study here. Finally, for British pound, they observe
a very mild nonlinearity in pre-crisis period, observe no evidence of non-linearity
during the crisis period, and detect evidence of a very weak nonlinearity immediately
after the first post-crisis period. For the remaining post-crisis periods no evidence of
nonlinearity is present. Based on these observations one may conclude that a period
of high nonlinearity of the exchange rate may be a prelude to a major financial crisis.
Constant monitoring of the behavior of an exchange rate using the present method
may be a highly effective early warning system for financial crisis and collapse of
currency value.

Nonlinear Predictions of Financial Time Series: The Empirical
Results

Soofi and Cao in several works (1999, 2002a) used the nonlinear prediction (local
linear approximation) method discussed in section“Nonlinear Prediction” for out-
of-sample forecasting of several foreign exchange rates. In all of these prediction
exercises the nonlinear prediction method out-performed the competing predictors.

Specifically Cao and Soofi (1999) predicted five daily dollar exchange rates time
series:Canadian dollar (Ca$),British pound,Germanmark, Japanese yen, andFrench
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franc, from October 1, 1993 to October 3, 1997. In that study they found evidence
that the exchange rate data tested have some deterministic dynamics. In fact, from
the theoretical patterns of embedding dimensions for different systems showed that it
is very unlikely that the above exchange rate return data are generated by purely ran-
dom processes. They may be generated by high dimensional systems contaminated
by (measurement) noise or nonlinear deterministic systems with stochastic driving
forces, i.e., dynamic noise and measurement noise.

Furthermore they tested out-of-sample prediction of the above five exchange rate
return time series using the local linear method. They evaluated the prediction by
local-linear method with mean value predictor, and calculated the root-mean-square
error. The results showed their predictions outperform the mean value predictor for
the pound/dollar and the yen/dollar rate returns, but not for the three remaining
exchange rate returns.

Soofi and Cao (2002a) used the same prediction method in prediction of monthly
black market renminbi/dollar (Feb. 1955–June-1989), monthly black market
rial/dollar (Jan. 1957–May 1988), and daily fixed renminbi/dollar (4 Jan. 1993–29
Dec. 2000) exchange rates. They found that in all cases the nonlinear prediction
method out-performed the benchmark mean predictor.

Finally, Soofi and Cao (1999) performed out-of-sample predictions on daily
peseta/dollar spot exchange rates using a simple nonlinear deterministic technique of
local linear predictor. They compared the predictions based on local-linear method
with those by two simple benchmark predictors: randomwalkmodel andmean-value
predictor. The results on the differenced time series indicate that their predictions are
better than those by the random walk model, and marginally better than the results
from the mean-value predictor.

Noise Reduction and Increased Prediction Accuracy

It is well known that noise can seriously limit the performance of prediction tech-
niques on time series. Effective methods are currently still lacking on noisy time
series forecasting. The main difficulty is the absence of prior knowledge on what is
noise and what is determinism in real time series, especially when the noise takes
part in dynamical evolution of the systems, that is, so-called dynamic noise.

There are obviously two possible approaches to predict noisy time series. One
is, ignoring the presence of noise, to fit a predictive model directly from noisy data
with the faith on possibility to extract the underlying deterministic dynamics from
the noisy data. It seems that the technique of neural networks is helpful in doing such
kind of fitting (e.g., Albano et al. (1992)). The other is, filtering the noise beforehand,
to fit a predictivemodel from the filtered or noise-reduced data of the noisy time series
with the hope that the noise level in the noisy time series has been reduced. We may
need to mention that the latter approach should be more effective than the former
one at least in the case of short-term predictions (e.g., see Cao et al. (1998b)).

Suppose a noisy time series {xn} is generated in the following way:
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xn = h(yn) + ηn,

yn = f(yn−1),
(1.19)

where h is a measurement function (observable); ηn is additive noise; yn and the
iterative equation(s) defined by the function f are the unknown underlying dynamic
variable(s) and dynamic equation(s), respectively.

In the former approach, one should fit a predictive model,

xn+1 = G(xn, xn−τ , . . . , xn−(d−1)τ ) (1.20)

basedon theobserved time series data using some techniques such as neural networks,
where d and τ are the so-called embedding dimension and time-delay, respectively.

Obviously the function G in (1.20) changes the additive noise contained in
xn, xn−τ , . . . , xn−(d−1)τ to dynamic noise. In this sense the predictions must be
inaccurate if the noise level is relatively high, as the dynamic noise destroys the
determinism of the future dynamic behavior completely.

In the latter approach, on the other hand, one should first obtain the noise-reduced
data from the observed noisy time series. Assume the noise-reduced time series
having been obtained by some noise reduction method, e.g., local projective and
singular value decomposition methods (Grassberger et al. 1993), and denote it by
z1, z2, . . . , zn, . . . . So,

xn = zn + ϕn, n = 1, 2, . . . , (1.21)

where the term ϕn is the noise which was removed by the noise reduction method.
The ideal result of noise reduction is zn = h(yn) or ηn = ϕn for each n, see (1.19)
for how the {xn} was generated.

Then a predictive model is fitted based on the noise-reduced time series, that is,

zn+1 = H(zn, zn−τ , . . . , zn−(d−1)τ ). (1.22)

Using this predictive model, the future zn+1 can be predicted, and the value predicted
can then be regarded as the predicted value of the future xn+1, i.e, the actual data to
be observed. In fact, the predicted value ẑn+1 at the time n +1 should be the optimal
predicted value of xn+1 because the noise term ϕn+1 can never be predicted, see
(1.21). If the noise has been significantly reduced in the noisy time series, then the
latter approach is expected to give much better predictions than the former one.

Given that most financial time series contain noise: measurement noise, dynamic
noise or both of them together, prediction of financial time series is certainly very
challenging. It has attracted much attention on development of methods to improve
the predictions. Besides traditional linear methods such as autoregression method,
some nonlinear methods have also been applied to forecast financial time series (e.g.,
Cao et al. 1996; Lisi and Medio 1997; Cao and Soofi 1999). These studies are based
on Takens’ embedding theorem (Takens 1981). In these applications of nonlinear
methods or linear methods, however, the predictive models were generally fitted
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directly from the original noisy data, i.e., the first approach on prediction of noisy
time series mentioned above, see the Eq. (1.20). Not much work has been done using
the second approach (see the Eq. (1.22) in prediction of financial time series, although
it is expected that the second approach should provide better prediction than the first
approach in forecasting of noisy time series as explained earlier.

In Soofi and Cao (2002a) both approaches are applied and compared on pre-
dicting two real financial time series- daily mark/dollar exchange rate and monthly
U.S. Consumer Price Index(CPI), to see how the noise reduction could improve the
predictions.

Nonlinear Noise Reduction

Power spectrum is traditionally used in separating noise with a flat or broad band
spectrum from the periodic or quasi-periodic signals with sharp spectral lines. This
method, however, has been shown inapplicable in dealingwith noise in nonlinear time
series, particularly chaotic time series, because the method is unable to differentiate
between broad-band spectra from signals of chaotic systems and from signals of
purely random noise (Grassberger et al. 1993). Therefore, some newly nonlinear
noise reduction methods should be used when dealing with noisy nonlinear time
series or noisy chaotic time series; for a review of nonlinear noise reductionmethods,
see e.g., Kantz and Schreiber (1997) and Ott et al. (1994).

The methods of local projective (LP), singular value decomposition (SVD)
(Grassberger et al. 1993), and ‘simple’ nonlinear noise reduction (SNL) (Schreiber
1993) were adopted by Soofi and Cao (Soofi and Cao 2002a) to reduce the noise in
the time series tested in the study.

The LP method rests on the hypothesis that the deterministic part of a noisy
time series lies on a low-dimensional manifold in a high-dimensional state space
reconstructed by the time-delay embedding, while the effect of noise is to distribute
the data in the immediate surroundings of the manifold. The method is designed
to identify the low-dimensional manifold and project the time series data onto it.
Interested readers are referred to Schreiber (1998) for a detailed description of the
method and relevant discussions.

Applying SVD to a time series tends to optimize the signal to noise ratio. In
filtering data with SVD, the singular vectors of the covariance matrix of the time
series are first computed; then the reconstructed m dimensional vectors are projected
to a q dimensional space, where q (< m) is the number of singular values computed
(see Grassberger et al. (1993) for details).

The idea of the ‘simple’ nonlinear noise reduction method is to locally approxi-
mate the dynamics of the underlying system. Unlike the LP and the SVD methods,
this method does not require to project the system to a lower dimensional system.
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Mark-Dollar Exchange Rates

Soofi and Cao (2002a) used daily mark-dollar exchange rate time series, for sample
observations for the period from October 1, 1993 to October 3, 1997.

Non-filtered data
Prediction test is first conducted on the time series without filtering. That is, no

noise reduction is made on the differenced-log time series of mark/dollar exchange
rates. This test was done in our earlier work (Cao and Soofi 1999). The RMSE
between the out-of-sample predicted and the actual data was 1.08.

The finding that RMSE in the prediction was greater than 1 implies that the
prediction by the local linear method is not better than the prediction by a mean
value predictor. This negative result was actually expected because the behavior of
exchange rates is so complicated that any deterministic predictions may not lead to
better performance than the prediction by a simple mean value predictor. High level
of noise in the exchange rate time series is also commonly regarded as one of the
reasons for the failure of nonlinear deterministic prediction.

Filtered data
Given that one noise reduction methodmay work well in some cases, while it may

not in the others , three sets of filtered data were generated using the simple nonlinear
noise reduction (SNL), local projective (LP), and the SVD methods. The last two
methods require a prior projection dimension (q). This q is generally not known for
real time series (interested readers may consult the literature in noise reduction, e.g.,
Grassberger et al. (1993), for the selection of q).

The RMSE for the case with LP method for mark/dollar exchange rate was less
than1,which implies that the prediction by the local linearmethodwas better than that
by amean value predictor. Thismeans that noise reduction improves prediction of the
exchange rate time series provided that an appropriate noise reductionmethod aswell
as suitable parameter values for the method is used. At this stage, the improvement is
not statistically significant based on the statistic provided by Harvey et al. (1997) at
a 10% nominal level; however, the improvement is statistically significant at a 20%
nominal level.

U.S. Consumer Price Index

Monthly US consumer price index (CPI) time series was also used by Soofi and Cao
(2002b) for out-of-sample prediction exercises. The reason they chose the CPI time
serieswas that it is believed deterministic dynamics should be stronger in theCPI time
series than that in the exchange rate time series. Therefore, nonlinear deterministic
techniques should have a better chance to provide good prediction on the CPI time
series than on the exchange rate time series.

Following the same procedures as for the exchange rate time series, the results for
the CPI time series showed that the RMSE (=0.87) for the non-filtered data was less
than 1, which means that the local linear deterministic prediction is better than the
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mean value prediction. Comparing with the corresponding results of the exchange
rate time series, the much smaller RMSE for the CPI time series indicates that the
deterministic dynamics in the CPI time series should be stronger than that in the
exchange rate time series as we mentioned earlier.

For all other cases, the predictions with noise reduction are even worse than
the prediction without noise reduction. This means that noise reduction may have
distorted the deterministic dynamics in the CPI time series, therefore, the prediction
on the filtered data becomes evenmore difficult. This could be often the case given it is
not knownwhat is the noise andwhat is the determinism in a real time series.However,
this should not be taken as discouragement to use noise reduction in prediction of
real time series. It implies that one should carefully select which noise reduction
method as well as its related parameter values should be used for a particular time
series, because a noise reduction method may work better in some cases, while it
may not in other cases.

Mutual Prediction as a Test for integration of the Financial
Markets

Another application of themethods of nonlinear dynamics is in testing for integration
of economies and financial markets. There exists a vast literature on the subject
of financial integration, which uses terms such as integration, globalization, and
interdependence interchangeably. However, none of these terms is given a concise,
quantitative definition. Soofi et al. (2012), however, using methods from science of
nonlinear dynamical systems provided an exact quantitative definition of financial
integration and treated terms such as financial integration and interdependence of
financial markets synonymously.

The basis for the quantitative definition is the notion that interdependence of two
or more financial markets implies that the observed time series of these systems
originate from the different parts of the same dynamical system. The rational for
this argument is that the equity markets are the subsystems of the global economic
or financial system. Specifically, presence of dynamical interdependence among the
subsystems (the individual equity markets) implies that:

1. The subsystems communicate, that is, they are coupled together and information
flows between them (news arrival in the financial markets), and/or

2. They are coupled to a common driver, where in the case of the stock markets the
driving force is profit motive.

It should be noted that even for coupled, but otherwise independent dynamical
systems, it is possible that their temporal evolutionsmight become “synchronized" as
one adjusts the coupling strength between them, even though their temporal evolution
might not be identical.

The study of dynamical interdependence of nonlinear systems, commonly known
as synchronization in physics literature, has its origin in the works of Fujisaka and
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Yamada (1983), Afraimovich et al. (1986) and Pecora and Carroll (1990). A variety
of approaches to synchronization studies, including system-subsystem synchroniza-
tion, synchronization in unidirectional and bidirectional coupled systems, anti-phase
synchronization, partial synchronization, pulse-coupled synchronization, and gener-
alized synchronization have been developed.

Oscillating systems evolve along their attractors. In certain situations where
the oscillators are asymmetrically coupled, there may exist a one-to-one mapping
between each attractor. In presence of suchmapping, it is possible to predict behavior
of one system given the attractor of another one.

Dynamical interdependence, as described in Rulkov et al. (1995), which adopts
a generalized synchronization approach, implies predictability of the response sys-
tem’s behavior by the driving system. This is the starting point for testing for inter-
dependence of two systems which assumes existence of function φ that projects
values from the trajectories of the driving system D space into the trajectories in the
response system R space. In practice, however, when the degrees and directions of
the coupling between the systems are unknown, one aims to reconstruct the dynamics
of the two systems by time-delay embedding method, and then estimates statistics
for testing for dynamical interdependence between the reconstructed systems. This
is the basis for the mutual prediction method for testing for interdependence of two
dynamical systems (Pecora and Carroll 1990; Schiff et al. 1996; Breakspear and
Terry 2002), a method used by Soofi et al. (2012).

Mutual prediction is a method for testing for synchronization of completely inde-
pendent, but coupled oscillating systems. Examples of synchronization of completely
independent, yet coupled, oscillating systems from biological and physical realms
include synchronized intermittent emissions of light by tens of thousand fireflies to
random openings of ion channels in cell membranes, to organ pipes, just to name
a few. In short, synchronization is interaction among different systems or subsys-
tems, which at the times before or after synchronization, operate independently
from each other. This means that these coupled, different, and independent sys-
tems or subsystems adjust the time scales of their oscillations due to the interaction
(Balanov et al. 2009).

We search for evidence of coupling between these markets by considering their
dynamics that are represented by the following differential equations:

dX
dt

= f (X(t) + f̄ (X) ξ1(t)) (1.23)

dY
dt

= g[(Y(t) + ḡ(Y)ξ2), hc(X(t) + f̄ (X)ξ1(t),Y(t) + ḡ(Y)ξ2)] (1.24)

where functions f and g generate local dynamics, function h transmits the influ-
ence of X(t) to Y(t), and constant c measures the strength of coupling. Moreover,
ξ1(t) and ξ2(t) are random dynamical noise reflecting random decisions of traders
in the two markets. These random terms, not to be confused by the measurement
noise of equations (1.25) and (1.26) below, may induce oscillatory dynamics in the
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model, opening up the possibility that the markets meet the self-sustaining oscilla-
tions requirement for synchronization.

Let X and Y be two potentially coupled dynamical systems with the time series
observations of xi and yi (i = 1, . . . , N ), respectively. Often, in practice, the state
variables are not directly observable, and one has no a priori knowledge of their
individual dynamics or their dynamical interdependence. Instead, their evolutions
are measured by the scalar variables

xi (t) = h(X(t)) + η1(t) (1.25)

yi (t) = k(Y(t)) + η2(t) (1.26)

where h and k are the measurement functions (possibly nonlinear), and η1 and η2
are the error terms representing noise in the data.

On many occasions one might have to analyze time series data that have values
in a wide range. In such cases one should standardize the series by the following
transformations:

x̂i = xi − x̄

σx
(1.27)

ŷi = yi − ȳ

σy
(1.28)

where x̄ , ȳ, σx , and σy are the mean and standard deviation of the xi and yi series,
respectively.

Next using the time-delay embedding of section“Determining Time Delay and
Embedding Dimension” we would reconstruct the phase spaces for both X and Y.

Surrogate data analysis is the method of choice in physics and nonlinear dynam-
ical systems analysis. Hence, the mutual prediction method of test for nonlinear
interdependence uses this approach also. See section“Surrogate Data Analysis and
Testing for Nonlinearity” above for a discussion of this method.

The algorithm of computing the time delay τ with mutual information technique
in Soofi et al. (2012) is Shannon’s entropy method, and consists of first constructing
a histogram for the probability distribution of the data. For details see Soofi et al.
(2012).

Algorithm for Mutual Prediction Method

One starts with a possible functional relationship between X and Y as

Y ?= φ(X) (1.29)

and aims at empirically verifying existence of the functional relationship φ between
the two reconstructed systems X and Y. If such a relationship exists, then two close
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states in the phase space of the X system correspond to two close states in the phase
space of the Y system.

It does not matter which state variable we choose as autonomous or response
variable. For measuring nonlinear interdependence what counts is hc function, and
coupling strength coefficient c. Existence of a continuous, differentiable map φ,
where in presence of synchronization creates a one-to-one correspondence between
the orbits of X onto the orbits of Y in case of Y = φ(X), and maps Y onto X in case
of X = φ(Y) is the important consideration.

Select an arbitrary point x0 in the X space. Suppose the nearest neighbor of x0 has
a time index of nnnd . Then if function φ exists, that is, if the two systems are coupled,
then point y0 in theY space will have point ynnnd as a close neighbor also. This means
that the nearest neighbors of both points x0 and y0 share the same time indexes.5 For
example, if the nearest neighbor of point x0 is a three-dimensional vector with time
indexes (1, 5, 8), then the vector that is the nearest neighbor of point y0 has the same
time indexes (1, 5, 8).

In implementing themutual predictionmethod of testing for nonlinear interdepen-
dence of Chinese stock markets, Soofi et al. (2012) followed the method discussed
by Breakspear and Terry (2002) which is a modified, improved version of Schiff et
al. (1996) as discussed below.

• Construct in X a simplex around an arbitrary selected point x(ti ) in time t = ti
with 2dx

1 vertices each consisting of another vector in X. dx
1 is the embedding

dimension of X.
• Choose these embedding vectors (vertices) such that the size of the simplex is
minimized.

• Denote the points satisfying the criteria of being a vertex in the minimized simplex
as x j (ti j ), j = 1, . . . , 2dx

1 . Also denote the time indices of the vertices as ti j ,
j = 1, . . . , 2dx

1 .• Use the time indices ti j of x j (ti j ) to construct a simplex in the state space Y with
vertices y(ti j ), j = 1, . . . , 2dx

1 .• Take the weighted average of the vertices in y(ti j ) to locate the vector y(ti j ) that
was predicted by the vector x(ti )

ypred.(ti ) =
∑2dx

1
k=1 ωik y(tik)
∑2dx

1
k=1 ωik

(1.30)

where the weighting factors ωik , are determined by the distances of the vertices in
X from x(ti ), giving

ωik = (|x(tik) − x(ti )|)−1. (1.31)

• To calculate the mutual prediction error, take the difference of the predicted vector
and the actual vector

5 Note that we have unfolded the time series into d-dimensional space.
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εy(x) = |ypred(ti ) − y(ti )|. (1.32)

• To compare the prediction error εy(x) with a prediction error based on a randomly
selected element of the time series observations calculate

εrand = |yrand − y(ti )|, (1.33)

where yrand is calculated using the same procedure used in prediction of ypred.(ti ),
except that the simplex in X is a random combination of points on the orbit X
weighted with respect to another randomly selected point. This corresponds to the
null hypothesis of no interdependence between the markets.

• The normalized predicted y, ∇y(x), as predicted by x , is calculated by

∇y(x) = 〈εy(x)〉rms

〈εrand〉rms
(1.34)

where 〈〉rms is the root mean square.
∇y(x) = 1 implies no interdependence (no synchronization). ∇y(x) = 0 implies
complete synchronization.

• Calculate the vertices of simplex in Y as above and then iterate them H -step ahead
on their respective orbits to obtain the vertices y(ti j + H), j = 1, . . . , 2d y

i
• Compare the weighted predicted vector ypred.(ti + H), j = 1, . . . , 2y

i to the actual
forward iterate y(ti + H) to obtain future prediction errors.

• Normalize the H -step ahead prediction errors by a vector generated from random
vertices in X to yield the normalized future prediction error:

∇H
y(x) = 〈εH

y(x)〉rms

〈εrand〉rms
(1.35)

∇H
y(x) = 1 implies no interdependence between the systems at H-step prediction.

Note that in presence of generalized synchronization the error grows at a rate
determined by the Lyapunov exponents, and is less than one for some time steps into
the future.

After generating a number of surrogates,which share the spectral density functions
with the original time series use one-step ahead mutual prediction method described
above, and conduct H forecasts of the original time series and the surrogate time
series separately. If the one-step ahead nonlinear prediction errors of the original
series are smaller than those for any of the surrogates, predictions are significant.

A plot of H prediction errors as well as prediction interval for the original and
surrogate series based on the above mentioned algorithm would aid in determining
nonlinear interdependence of the markets.
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The deterministic interdependence is detected if the graph of the cross-prediction
errors of the original series is below the graphs of cross-prediction errors for the
surrogate sets, but above the lower bound of the 95% confidence interval.

Synchronization of Chinese Stock Markets

Soofi et al. (2012) considered threeChinese stockmarkets: Shanghai (SSI), Shenzhen
(SZI) andHongKong (HSI), as nonlinear dynamical oscillating systems. They further
considered two indexes at a time for testing and took X(t) as the driver system and
Y(t) as the response system. Furthermore, they reconstructed the phase space of
each stock market as a dynamical system using time series observations of the daily
average stock prices.

We note that synchronization can be bi-directional or unidirectional. In a forced
synchronization one system influences the second one without being influenced by it.
One has bidirectional synchronization where both systems are mutually interacting
and influencing each other. Hence, in the forced synchronization case, if X is not
influencing Y, it does not necessarily mean that Y is not influencing X. (for excellent
discussions of synchronization, see Balanov et al. (2009)).

They constructed 19 bivariate surrogate data with the same amplitude distribution,
auto correlation function, and cross-spectral density function as the original data.
However, non-linear structure contained within and between the surrogate series are
destroyed. Thus the surrogate algorithm allows testing of the null hypothesis that the
time series are produced by a cross-correlated stochastic system.

The results of Soofi et al. (2012) show that there is nonlinear mutual (bidirec-
tional) predictability between SSI and SZI. Moreover, there exists unidirectional
predictability from SSI to HSI and from SZI to HSI. However, the results don’t
provide statistically significant evidence that Hong Kong market predicts the stock
markets in mainland China.

In sum, the study concluded that Shanghai, Shenzhen, and Hong Kong stock mar-
ket data are nonlinear, and are nonlinearly dependent on each other. This implies that
the stock index observations of the three stock markets are originated from different
parts of the same dynamical system, and hence the markets are well integrated.

Comparing the Results with the Results Based on a Traditional
Linear Method

Comparing the results for synchronization of the Chinese stock markets based on
mutual predictionmethodwith the results based on a linearmethod of testing for inte-
gration of financial markets, Soofi et al. (2012) used results from Zhu et al. (2003).
Zhu et al. (2003) have used cointegration, fractional cointegration, and Granger
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causality methods in testing for integration of Chinese stock markets. The tests in
Zhu et al. (2003) show no evidence of cointegration (either integrated or fractionally
integrated) among the stock markets. They could not find any evidence for presence
of causality among the markets either. Hence, the mutual prediction method of test-
ing for interdependence of Chinese stock markets data shows completely different
results from those obtained by the traditional linear stochastic methods used in Zhu
et al. (2003) study. The evidence pointing to nonlinearity of the stock markets as
dynamical systems, should support the conclusion that the linear models have failed
to detect interdependence, while the mutual prediction method succeeded in finding
the evidence of dynamical interdependence between the markets.

Summary and Conclusion

Advances in nonlinear dynamical system theories and methods have opened up new
possibilities for applying them in finance and economics. The authors of the present
chapter have applied a number of these methods in testing for nonlinearity, pre-
dictions, and calculation of invariants such as correlation dimension of the some
exchange rate data. They have used these methods in testing for synchronization
(interdependence) of the stock markets also.

Even though tests uniformly show presence of nonlinearity in many financial
data that were analyzed, determination of whether the data generating processes are
deterministic is inconclusive because of the short sample observations and presence
of noise in the observed data. Further advances in theory of nonlinear stochastic
dynamical systems in the last decades promises to be useful in further applications
on the financial data. Applications of these methods, specially mutual prediction
method as warning system for imminent emergence of financial contagion is very
promising also. Hitherto, the methods of nonlinear dynamic systems unravel the
dynamics in many financial time series observations that could not be detected by
the tradition linear stochastic methods.
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