
Chapter 4
Arrow and the Aggregation of Fuzzy Preferences

Abstract. This chapter builds off of chapter 3 by examining the aggregation of fuzzy
weak preference relations in order to determine how a social preference relation
emerges. Specifically, this chapter focuses on Arrow’s theorem which employs a
deductive analysis of aggregation rules and establishes five necessary conditions for
an ideal aggregation rule. When Arrow’s theorem is applied with fuzzy preferences,
not only do serious complications arise when conceiving the fuzzy definitions of
an ideal aggregation rule, but there exist specific combinations of conditions that
allow for a fuzzy aggregation rule to satisfy all of the fuzzy counterparts of Arrow’s
conditions. Moreover, this chapter shows that a fuzzy aggregation rule exists which
satisfies all five Arrowian conditions including non-dictatorship.

Introduction

Chapter 3 detailed the underlying structure of FWPRs and the complications that
arise when trying to incorporate the logic of exact preferences into the fuzzy frame-
work. Essentially, there is no obvious one-to-one procedure that fuzzifies the un-
derlying assumptions of a rational preference relation. Among these complications,
there exist several methods for extracting a fuzzy choice set, and there is little guar-
antee that these methods will return equivalent results. However, a proper speci-
fication of the fuzzy maximal set, along with other characteristics of an FWPR,
identifies obvious best outcomes that should emerge given a preference relation of
an individual or a collective body. Yet in the case of social preference relations, it
is very unlikely that one will be specified a priori, without the use of some social
welfare function relating individual preferences, i.e. those belonging to voters, com-
mittee members or legislators, to those of a social relation. Even if such an example
exists, the applications of the various fuzzy maximal sets can be done without com-
plication. Thus, it is worthwhile to consider situations where individual FWPRs are
aggregated to form a fuzzy social preference relation.

The goal of this chapter is to examine aggregation of FWPRs in order to deter-
mine how a social preference relation emerges. In doing so, it focuses on a clas-
sic result in social choice theory: Arrow’s Theorem (1951). Because the number
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of aggregation rules is quite large and considering each aggregation individually
can become quite tedious, Arrow employs a deductive analysis of aggregation rules
and establishes five requiste conditions of an ideal rule that possess inherit trade
offs. More simply, if an aggregation rule posssesses four of the five coniditions, it
must violate the fifth, thereby demonstating the impossibility of an ideal aggrega-
tion rule. Nonetheless, these traditional results rely on exact preferences. When the
formal logic of Arrow’s theorem is extended into the fuzzy framework, not only do
serious complications arise when conceiving the fuzzy definitions of an ideal aggre-
gation rule, but there exist specific combinations of conditions that allow for a fuzzy
aggregation rule to satisfy all of the fuzzy counterparts of Arrow’s conditions.

The chapter is organized as follows. The first section introduces the classic results
of Arrow’s theorem and then proposes several fuzzifications of the original five
conditions. Next, Section 2 presents the formal proof of fuzzy Arrow’s theorem
and demonstrates under what conditions a fuzzy aggregation rule will satisfy the
five criteria proposed in Section 1. Finally, Section 3 concludes the chapter with a
discussion on the empirical applications of fuzzy aggregation.

4.1 Fuzzifying Arrow’s Conditions

This section lays out the preliminary definitions used in Arrow’s formal consid-
erations of aggregation rules. To do so, we use the following notation. Let N =
{1, . . . ,n} be a finite set of individuals where n ≥ 2. As in Chapter 3, X is a finite
set of alternatives such that 3 ≤ |X |. Throughout the chapter, each individual i is
assumed to possess an FWPR, ρi ∈F (X2), such that ρi is reflexive and complete.
In this case, we call ρi a fuzzy weak order.1

Let FR denote the set of all fuzzy weak orders on X . Then a preference pro-
file is an n-tuple of fuzzy weak orders, ρ̄ = (ρ1, . . . ,ρn) ∈FRn and describes the
fuzzy preferences of all individuals. Throughout, we manipulate the consistency
conditions concerning the weak orders of individuals. When doing so, we will write
“assume ρ̄ satisfies a particular consistency condition” or “suppose ρi is max-∗ tran-
sitive for all i ∈ N.” Finally, our definitions related to FPAR’s are written generally
(that is, with domain FRn), but our results often assume that these definitions re-
flect the transitivity restrictions when appropriate.

For any non-empty S ⊆ X , let ρ̄�S = (ρ1|S×S, . . . ,ρn|S×S). In words, ρ̄�S denotes
the restriction of the preference profile to the subset S × S and, accordingly, ρ̄�S

describes only ρ(x,y) and ρ(y,x) for x,y ∈ S and every i ∈ N. In addition, for any
FWPR ρ and all α ∈ [0,1], ρα = {(x,y) ∈ X ×X | ρ(x,y)≥ α}. Often, ρα is called
the α-cut of ρ .

Finally, for all ρ̄ ∈FRn and x,y ∈ X ,

R(x,y; ρ̄) = {i ∈ N | ρi(x,y)> 0}
1 Fuzzy weak orders usually possess some consistency or transitivity condition. However,

throughout this chapter, we vary these types of assumptions. The more general definition
given here permits us to do so.
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and
P(x,y; ρ̄) = {i ∈ N | πi(x,y)> 0} .

In words, R(x,y; ρ̄) denotes the collection of individuals who view x as at least as
good as y to some degree and P(x,y; ρ̄) the collection of individuals who strictly
prefer x to y to some degree.

Definition 4.1. A function f̃ :FRn →FR is called a fuzzy preference aggregation
rule.

Hence, a fuzzy preference aggregation rule (FPAR) relates a ρ̄ ∈FRn to a social
preference relation f̃ (ρ̄) ∈FR. When this occurs, f̃ (ρ̄)(x,y) represents the degree
to which society, or more specifically the set of N actors, views x as at least as good
as y. Obviously, this encompasses the exact case where f̃ (ρ̄)(x,y)∈{0,1}. At times,
we suppress the f̃ (ρ̄) and let ρ denote the social preference relation. In this manner,
we can derive ρ’s components ι and π , which correspond to the social fuzzy indif-
ference and social fuzzy strict preference relations, respectively. Furthermore, we
will at times restrict FPAR’s to particular domains of fuzzy weak orders that satisfy
consistency conditions. For example, we may assume ρi is weakly transitive for all
i ∈ N. Then we analyze f̃ : Dn

w →FR, where Dw is the set of all weakly transitive
fuzzy weak orders. While this may appear to be an unnecessary technical compli-
cation, the intent is to illustrate the consequences of various types of consistency
conditions without needless notation to redefine FPAR’s in every case. With this
in mind, we assume that any FPAR has an unrestricted domain. That is, an FPAR
must assign a social preference relation to every fuzzy preference profile with the
consistency condition under consideration regardless of the specific combination of
the indvidual ρis. Unrestricted domain is fairly innocuous because the assumption
allows individuals to choose any fuzzy weak order in FR. In democratic terms,
the aggregation rule does not require individuals to possess certain types of opin-
ions about the possible alternatives. The understanding of an FPAR in Definition 4.1
allows for a greater variety of aggregation rules than that of exact rules.

Example 4.2. Let ρ̄ ∈FRn. Then the following are examples of fuzzy preference
aggregation rules:

(1) For all x,y ∈ X ,

ρ(x,y) =
1
n

n

∑
i=1

ρi(x,y) ,

(2) For all x,y ∈ X and any β ∈ (0,1),

ρ(x,y) =
{

1 if ρi(x,y)≥ ρi(y,x), ∀i ∈ N,
β otherwise,

(3) For all x,y ∈ X ,
ρ(x,y) = max

i∈N
{ρi(x,y)} .
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It is easily verified that ρ is complete and reflexive in all three cases.2

Arrow’s seminal work lays out five requisite and incompatible conditions for pref-
erence aggregation. The original conditions are

• universal admissibility,
• non-negative monotonicity,
• independence of irrelevant alternatives,
• non-imposition and
• non-dictatorship.

Efforts to dismiss the relevance of the theorem outright (Little, 1952) were fol-
lowed by attempts to replace certain original conditions. For example, some studies
eliminated non-negative monotonicity (Blau, 1972; Inada, 1955) while others re-
placed it with positive responsiveness (Black, 1969; Fishburn, 1974; May, 1952).
The ultimate result of these reinterpreations was a simpler form of Arrow’s theorm
by Blau (1972) that is generally accepted by contemporary scholars (Austen-Smith
and Banks, 1999). In this form, any preference aggregation rule that is transitive,
weakly Paretian and independent of irrelevant alternatives must be dictatorial. In
the remainder of this section we discuss these terms further and provide several
definitions of their fuzzy counterparts.

4.1.1 Transitivity

There are several fuzzy consistency conditions that correspond to transitivity in
the traditional sense of determing how FWPRs behave across pairwise compar-
ions. In the fuzzy Arrow literature, the most pervasive approach is the use of
some specific form of max-star transitivity. The definition can be used to derive
an infinite number of transitivity conditions and few tudies consider the general
condition of max-star transitivity (Duddy et al., 2011; Fono and Andjiga, 2005;
Fono et al., 2009). However, the most common definitions make use of the Gödel
(minimum) and Łukasiewicz t-norm (Banerjee, 1994; Dutta, 1987; Ovchinnikov,
1991; Richardson, 1998). In these two cases, for all x,y,z ∈ X and ρ ∈ F (X2),
ρ(x,z) ≥ min{ρ(x,y),ρ(y,z)} or ρ(x,z) ≥ ρ(x,y) + ρ(y,z)− 1, respectively. As
Duddy, Perote-Peña and Piggins (2007) demonstrate, designating a specific t-norm
for max-star transitivity has important consequences on whether Arrow’s conclu-
sions hold in the fuzzy frame work. Hence, it is important to consider a variety of
consistency defintions. In one of the first applications of fuzzy sets to Arrow’s the-
orem, Barrett, Pattanaik and Salles (1992) propose the following for asymmetric
preferences.

Definition 4.3. Let ρ be a complete and reflexive FWPR and let π be its asymmetric
component.

2 Example 4.2(1) was first proposed by Skala (1978) and is now standard in the fuzzy social
choice literature, 4.2(2) comes from Dutta (1987), and 4.2(3)’s first application to Arrow’s
theorem can be found in Fung and Fu (1975).
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(1) (partially transitive) ρ is said to be partially transitive if, for all x,y,z ∈ X ,
ρ(x,y)> 0 and ρ(y,z)> 0 implies ρ(x,z)> 0,

(2) (partially quasi-transitive) ρ is said to be partially quasi-transitive if, for all
x,y,z ∈ X , π(x,y)> 0 and π(y,z)> 0 implies π(x,z)> 0.

The relationship in Definition 4.3(1) relates to a special case of max-∗ transitivitiy
where ∗ has no zero divisors. In this case, for three alternatives x,y,z ∈X , ρ(x,y)> 0
and ρ(y,z)> 0 implies ρ(x,y)∗ρ(y,z)> 0. In addition, Definition 4.3(2) strengthens
the condition of acyclicity in Definition (3). Specifically, partial quasi-transitivity
requires not only π(z,x) = 0, as in acyclicity, but also π(x,z) > 0 when π(x,y) >
0 and π(y,z) > 0 for all x,y,z ∈ X . An application of partial quasi-transitivity can
also be found in Dasgupta and Deb (1999). In a similar manner, we can define
consistency conditions of fuzzy aggregation rules, which, like FWPRs, possess more
or less strictness.

Definition 4.4. Let f̃ be an FPAR.

(1) (max-star transitive) f̃ is said to be max-∗ transitive if, for all ρ̄ ∈FRn, f̃ (ρ̄)
is max-∗ transitive,

(2) (weakly transitive) f̃ is said to be weakly transitive if, for all ρ̄ ∈FRn, f̃ (ρ̄)
is weakly transitive,

(3) (partially quasi-transitive) f̃ is said to be partially quasi-transitive if, for all
ρ̄ ∈FRn, f̃ (ρ̄) is partially quasi-transitive,

(4) (partially acyclic) f̃ is said to be partially acyclic if, for all ρ̄ ∈FRn, f̃ (ρ̄) is
partially acyclic.

Definition 4.4 presents the consistency conditions of fuzzy aggregations rules used
in this text, but there are other consistency conditions previously explored in the
fuzzy Arrow literature, which we will not focus on because they have already been
explicated in the existing literature. These other conditions include minimal transi-
tivity, i.e. min{ρ(x,y),ρ(y,x)}= 1 implies ρ(x,z) = 1 for all x,y,z ∈X , and negative
transitivity, i.e. π(x,y) > 0 implies max{π(x,z),π(z,y)} > 0 for all x,y,z ∈ X , the
contrapositive of which is called positive transitivity Fono et al. (2009); Fung and
Fu (1975); Richardson (1998).

4.1.2 Weak Paretianism

Weak Paretianism, as the name suggests, determines how an FPAR will behave
when every actor in society holds a certain preference between two alternatives.
In the exact case, an aggregation rule is weakly Paretian if, for two possible alterna-
tives x and y, every i ∈ N strictly prefers x to y then the social preference must prefer
x to y (Austen-Smith and Banks, 1999; Blau, 1972). In this sense, weak Paretian-
ism has little to say about the final social preferences if all actors possess the same
weak preferences between two alternatives or if all actors in N\{i} strictly prefer x
to y, but individual i is indifferent between the two. Weak Paretianism in the fuzzy
context, often called the “Pareto Condition”, has a fairly uniform definition across
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the fuzzy literature (Banerjee, 1994; Barrett et al., 1992; Dasgupta and Deb, 1999;
Dutta, 1987; Fono et al., 2009; Fung and Fu, 1975; Richardson, 1998).

Definition 4.5 (Pareto Condition). Let f̃ be an FPAR. Then f̃ is said to satisfy the
Pareto Condition if, for all ρ̄ ∈FRn and x,y ∈ X , π(x,y)≥ min

i∈N
{πi(x,y)}.

Of course, derivations from Definition 4.5 exist in the fuzzy literature. Examples in-
clude the strict Pareto Condition where min

i∈N
{πi(x,y)}= 1 implies π(x,y) = 1 for all

x,y ∈ X (Ovchinnikov, 1991) and unanimity, which, for all x,y ∈ X and t ∈ [0,1], re-
quires ρ(x,y) = t if ρi(x,y) = t for all i∈N (Duddy et al., 2011; García-Lapresta and
Llamazares, 2000). In addition, when formal arguments do not require constructing
a fuzzy strict preference relation, Definition 4.5 can be applied to FWPRs (Duddy
et al., 2011; Perote-Peña and Piggins, 2007). To better explicate fuzzy Arrow’s the-
orem, we also consider a weaker assumption than the Pareto Condition that was first
proposed by Mordeson and Clark (2009).

Definition 4.6 (weakly Paretian). Let f̃ be an FPAR. Then f̃ is said to be weakly
Paretian if, for all ρ̄ ∈FRn and x,y ∈ X , min

i∈N
{πi(x,y)} > 0 implies π(x,y)> 0.

Obviously, Definition 4.6 relaxes Definition 4.5 because Definition 4.6 no longer
restricts the social strict preference between the two alternatives to a more specific
alpha level. Nonetheless, both definitions correspond to weak Paretianism in the
exact case because min{πi(x,y)} > 0 implies min{πi(x,y)} = 1, which, under a
weakly Paretian aggregation rule, implies π(x,y) = 1 ≥ min{πi(x,y)}, i ∈ N. It is
still important to distinguish between these two definitions because, as discussed in
a subsequent section, there is an important relationship between these conditions
and the types of FPARs that satisfy all Arrowian conditions. Example 4.7 illustrates
some basic differences between the conditions.

Example 4.7. Let f̃ be an FPAR and X = {a,b}. Suppose ρ̄ is reflexive and defined
as follows:

ρi(a,b) = .5

ρi(b,a) = .3

πi(a,b) = .2

for all i ∈ N. If f̃ is unanimous, then the social weak preference, ρ , will be ρ(a,b) =
.5 and ρ(b,a) = .3. If f̃ satisfies the Pareto Condition, the social strict preference
relation, π , will be π(a,b)≥ .2. Finally, if f̃ is weakly Paretian, π(a,b)> 0. Notice
the Pareto Condition and weak Paretianism do not guarantee any specific value of
ρ(a,b) or ρ(b,a); however, assuming that the social strict preference relation is
regular, all three conditions ensure that ρ(a,b)> ρ(b,a).

4.1.3 Independence of Irrelevant Alternatives

Unlike some of the other Arrowian conditions, independence of irrelevant alter-
natives is less normatively democratic, i.e. where the FPAR responds to some
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conditions of the preference profile, and more technically desirable. In theory, an
aggregation rule satisfies the independence of irrelevant alternatives conditions if
the social preference between x and y is solely determined by individuals’ prefer-
ences between x and y. According to Austen-Smith and Banks (1999), the traditional
independence criterion implies two requirements:

(1) the social preference between two alternatives is specifically determined by in-
dividual preferences between two alternatives and

(2) cardinal and relative information contained in indivdual preferences is unrelated
to the societal preference.

In other words, these requirements stipulate that each individual can produce a
ranked list of the alternatives, including ties, and that the aggregation rule only con-
siders the ordinal relationship between x and y when determining the social prefer-
ence. Information such as x is four alternatives higher in the preference ranking than
y or x is 2.5 times more preferred than y becomes trivial. In the fuzzy framework,
the literature has most frequently relied on one definition for independence of irrel-
evant alternatives Banerjee (1994); Barrett et al. (1992); Duddy et al. (2011); Fono
and Andjiga (2005); Fono et al. (2009); García-Lapresta and Llamazares (2000);
Ovchinnikov (1991); Richardson (1998).

Definition 4.8 (IIA-1). Let f̃ be an FPAR. Then f̃ is said to be independent of
irrelevant alternatives, type 1 (IIA-1), if for all ρ̄, ρ̄ ′ ∈ FRn and all x,y ∈ X ,
ρi(x,y) = ρ ′

i (x,y) for all i ∈ N implies f̃ (ρ̄)(x,y) = f̃ (ρ̄ ′)(x,y).

In terms of the two previously discussed criteria, Definition 4.8 certainly satisfies
the first condition where f̃ (ρ̄)(x,y) is only related to ρ̄�{x,y} because the values of
ρ(w,z) are left undefined for all w �= x and z �= y. However, IIA-1 does not faith-
fully reproduce the second condition of ordinality where the strength of an actor’s
preference for one alternative over another becomes arbitrary.

One recent effort to reconsider a fuzzy version of the independence condition ap-
pears in Mordeson and Clark (2009) where the support of fuzzy preference relations
is used.

Definition 4.9 (IIA-2). Let f̃ be an FPAR. Then f̃ is said to be independent
of irrelevant alternatives, type 2 (IIA-2), if for all ρ̄, ρ̄ ′ ∈ FRn and x,y ∈
X , Supp(ρi�{x,y}) = Supp(ρ ′

i�{x,y}) for all i ∈ N imples Supp( f̃ (ρi)�{x,y}) =

Supp( f̃ (ρ ′
i )�{x,y}).

Definition 4.9 certainly captures some aspects of the ordinal quality of the crisp
independence condition. In words, if there exist two profiles ρ̄ , ρ̄ ′ ∈FRn such that,
when restricted to two alternatives x and y, the supports of the individual fuzzy weak
orders in ρ̄ are identical to those in ρ̄ ′, then the support of the two social preference
relations generated by an IIA-2 FPAR should be identical as well, regardless of
the relationship between the other alternatives and regardless of the specific values
for ρi(x,y) and ρi(y,x). However, constructing the independence condition in this
manner offers no guarantee that the relationship between f̃ (ρ̄)(x,y) and f̃ (ρ̄)(y,x)
will be preserved in the fuzzy social preference relation generated by f̃ (ρ̄ ′). This can
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have important consequences when constructing a social strict preference relation
as the following example demonstrates.

Example 4.10. Let X = {x,y} and let ρ̄ , ρ̄ ′ ∈FRn. Suppose the fuzzy social pref-
erence relations derived from ρ̄ and ρ̄ ′, denoted ρ and ρ ′, respectively, are derived
as follows:

ρ(x,y) = ρ ′(y,x) = .5,

ρ(y,x) = ρ ′(x,y) = .2.

Obviously, Supp(ρ) = Supp(ρ ′). However, if we were to construct a fuzzy social
strict preference relation by assuming that social strict preference relations, π and
π ′, are regular, then π(x,y)> 0 and π ′(y,x) > 0.

Example 4.10 begs the question: How truly similar are two preferences relations
when their supports are identical? If we are also interested in creating a social strict
preference, then we may want to consider an independence condition that main-
tains the ordinal relationships between two FWPRs. Such a definition is proposed
by Billot (1992), which has remained largely overlooked in the literature. Before
proceeding, we need the following definition.

Definition 4.11 (equivalent). Let ρ ,ρ ′ ∈F (X2) and let Im(ρ) = {s1, . . . ,sm} and
Im(ρ ′) = {t1, . . . , tn} be such that s1 < .. . < sm and t1 < .. . < tn. We then say ρ and
ρ ′ are equivalent, written ρ ∼ ρ ′, if and only if

(1) s1 = 0 ⇐⇒ t1 = 0,
(2) n = m,
(3) ρ si = ρ ′ti , for all i = 1, . . . ,m.

Using this concept of analogous preference relations, we can model a third variant
of the independence condition in the manner of Billot (1992).

Definition 4.12 (IIA-3). Let f̃ be an FPAR. Then f̃ is said to be independent of
irrelevant alternatives, type 3 (IIA-3), if for all ρ̄, ρ̄ ′ ∈FRn and x,y ∈ X , ρi�{x,y} ∼
ρ ′

i�{x,y} for all i ∈ N implies f̃ (ρ̄)�{x,y} ∼ f̃ (ρ̄ ′)�{x,y}.

Proposition 4.13 demonstrates that the binary relation ∼ preserves the ordinal rela-
tionship between ρ(x,y) and ρ(y,x) across analogous preference relations.

Proposition 4.13. Let ρ and ρ ′ be FWPRs on X where x,y ∈ X. Suppose ρ ∼ ρ ′.
Then ρ(x,y)> ρ(y,x) ⇐⇒ ρ ′(x,y)> ρ ′(y,x).

Proof. Suppose ρ(x,y) > ρ(y,x) and ρ(x,y) = si. Then si > ρ(y,x) and ρ(y,x) �∈
ρ si . Thus, ρ(y,x) �∈ ρ ′ti . Now (x,y) ∈ ρ si implies (x,y) ∈ ρ ′ti . Hence ρ ′(x,y)≥ ti >
ρ ′(y,x). ��
Proposition 4.13 helps us to interpret IIA-3. For some fuzzy preference profile ρ̄ ,
suppose there exists another profile ρ̄ ′ such that ρi(x,y) > ρ(y,x) if and only if
ρ ′

i (x,y)> ρ ′
i (y,x) for all i ∈ N. Then an IIA-3 FPAR will associate equivalent social
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preferences over x and y to ρ̄ and ρ̄ ′, where f̃ (ρ̄)(x,y) > f̃ (ρ̄)(y,x) if and only if
f̃ (ρ̄ ′)(x,y) > f̃ (ρ̄ ′)(y,x). Hence, IIA-3 preserves the ordinal relationship between
the social preference over (x,y) and over (y,x) without considering the specific val-
ues of social preference, thereby satifying the conditions presented earlier in this
subsection.

4.1.4 Dictatorship

In contrast to the other fuzzy Arrow conditions, dictatorship or a dictatorial aggre-
gation rule exhibits very little variation over definitions throughout the literature
(Banerjee, 1994; Barrett et al., 1992; Duddy et al., 2011; Fono and Andjiga, 2005;
Fono et al., 2009; Mordeson and Clark, 2009; Richardson, 1998; Salles, 1998).

Definition 4.14 (dictatorial). Let f̃ be an FPAR. Then f̃ is said to be dictatorial if
there exists an i ∈ N such that for all ρ̄ ∈FRn and x,y ∈ X , πi(x,y) > 0 implies
π(x,y)> 0.

Definition 4.14 is standard in the literature. Obviously a dictatorship over an FPAR
corresponds neatly to a dictatorship in the case of exact preferences, where society
striclty prefers one alternative to another if the dictator does as well. As discussed
previously, some scholars have chosen to avoid fuzzy strict preference relation and
rely on another definition of dictatorship (Billot, 1992; Duddy et al., 2011).

Definition 4.15 (strongly dictatorial). Let f̃ be an FPAR. Then f̃ is said to be
strongly dictatorial if there exists an i ∈ N such that for all ρ̄ ∈FRn and x,y ∈ X

ρi(x,y) = f̃ (ρ̄)(x,y) .

A strong dictatorship implies a dictatorship assuming that π is regular on both the
individual and social levels.

4.2 Making and Breaking Arrow’s Theorem

The traditional proofs of Arrow’s theorem use exact preference relations. This sec-
tion demonstrates the conditions under which Arrow’s conclusion holds in the fuzzy
framework discussed in the previous section. Further, we also detail under what con-
ditions there exists an FPAR that satisfies certain combinations of fuzzy Arrowian
conditions. To prove our main results, we make use of the following definition.

Definition 4.16. Let f̃ be an FPAR, let (x,y) ∈ X ×X and let λ be a fuzzy subset
of N.

(1) (semidecisive) λ is called semidecisive for x against y, written xD̃λ y, if for
every ρ̄ ∈FRn,

πi(x,y)> 0 for all i ∈ Supp(λ ) and π j(y,x) > 0 for all j �∈ Supp(λ )

implies π(x,y)> 0.
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(2) (decisive) λ is called decisive for x against y, written xDλ y, if for every ρ̄ ∈
FRn,

πi(x,y)> 0 for all i ∈ Supp(λ )

implies π(x,y)> 0.

In words, we call λ a fuzzy coalition when |Supp(λ )| ≥ 1. In addition we say a
coalition λ is semidecisive or decisive if it is semidecisive or decisive for all ordered
pairs of alternatives.

There are two comments worth making about Definition 4.16 before proceed-
ing to the formal arguments of fuzzy Arrow’s theorem. First, the fuzzy definition
of (semi)decisiveness introduces another application of fuzzy sets to social choice
theory. Here we use a fuzzy subset of the actors rather than a traditional crisp case.
Such a nuance is necessary when actors possess varied levels of influences within a
coalition. These situations can arise in informal committees where the preferences
of a more senior member may have more influence on the group’s final preferences
than those of a more junior member. Second, it is important to emphasize how very
little semidecisiveness implies about a specific coalition λ . Obviously, decisiveness
implies semidecisiveness, but the converse does not hold because semidecisiveness
incorporates the preferences of individuals not in Supp(λ ). Hence, if there exists a
j ∈ Supp(λ ) such that π j(y,x) = 0, we cannot conclude that λ is semidecisive for x
against y, and we know very little about the social preference between x and y. Given
these restrictions on semidecisiveness, the following lemma is quite remarkable in
the fact that additional structure on the FPAR implies a semidecisive coalition over
an ordered pair is actually a decisive coalition over all pairs of alternatives.

Lemma 4.17. Let λ be a fuzzy subset of N. Let f̃ be a partially quasi-transitive
FPAR that is weakly Paretian and IIA-3 where π is regular. If λ is semidecisive for
x against y, then for all (v,w) ∈ X ×X, λ is decisive for v against w.

Proof. Suppose λ is semidecisive for x against y. Let ρ̄ be a preference profile such
that πi(x,z)> 0, for all i∈Supp(λ ) and all z∈X\{x,y}. Let ρ̄ ′ be a fuzzy preference
profile such that

ρ ′
i (x,z) = ρi(x,z) and ρ ′

i (z,x) = ρi(z,x),∀i ∈ N (4.1)

π ′
i (x,y) > 0,∀i ∈ Supp(λ )

π ′
j(y,x) > 0,∀i ∈ N\Supp(λ )

π ′
i (y,z) > 0,∀i ∈ N.

Since πi(x,z)> 0 for all i ∈ Supp(λ ), π ′
i (x,z)> 0 for all i ∈ Supp(λ ) by the def-

inition of ρ̄ ′. Since xD̃λ y, π ′(x,y) > 0 by hypothesis. Since f̃ is weakly Paretian,
π ′(y,z) > 0. Since f̃ is partially quasi-transitive, π ′(x,z) > 0 and ρ ′(x,z)> ρ ′(z,x).
Since ρi�{x,z} = ρ ′

i�{x,z} for all i ∈ N and f̃ is IIA-3, ρ�{x,z} ∼ ρ ′�{x,z} implies
ρ(x,z) > ρ(z,x). Hence π(x,z) > 0. Since ρ̄ is arbitrary, xDλ z. Since z was arbi-
trary in X\{x,y},

xD̃λ y =⇒ xDλ z,∀z ∈ X\{x,y}. (4.2)
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Since λ is decisive for x against z implies λ is semidecisive for x against z, inter-
changing y and z in Eq. (4.2) implies λ is decisive for x against y.

Now let ρ̄∗ be another profile such that π∗
i (y,z) > 0 for all i ∈ Supp(λ ) and let

ρ̄+ be such that

ρ+
i (y,z) = ρ∗

i (y,z) and ρ+
i (z,y) = ρ∗

i (z,y),∀i ∈ N

π+
i (y,x) > 0,∀i ∈ N

π+
i (x,z) > 0,∀i ∈ Supp(λ )

π+
j (z,x) > 0,∀ j ∈ N\Supp(λ ).

Then π+
i (y,z) > 0 for all i ∈ Supp(λ ). Since xDλ z, π+(x,z) > 0. Since f̃ is

weakly Paretian, π+(y,x) > 0. Since f̃ is partially quasi-transitive, π+(y,z) > 0.
Since ρ∗

i �{y,z} = ρ+
i �{y,z} for all i ∈ N and f̃ is IIA-3, ρ∗�{y,z} ∼ ρ+�{y,z} , and so

ρ∗(y,z) > ρ∗(z,y). Thus, π∗(y,z) > 0 and so yDλ z because ρ̄∗ is arbitrary. Because
z is arbitrary in X\{x,y},

xD̃y =⇒ yDλ z,∀z �∈ {x,y}. (4.3)

Now because λ is decisive for y against z, λ is semidecisive for y against z. Thus
by 4.13, λ is decisive for y against x. To summarize, we have, for all (v,w) ∈ X ×X ,

xD̃λ y =⇒ xDλ v (by 4.13) =⇒ xD̃v =⇒ vDλ w

by Eq. (4.3). ��
Lemma 4.17 lays out the formal argument in the fuzzy framework of what Sen
(1976) labels the “Paretian epidemic”, where a coalition that is semidecisive over an
ordered pair becomes globally decisive after adopting the Arrowian conditions. An
important aspect of Lemma 4.17 is the generalization of strict preference to a regular
fuzzy strict preference relation, which as Chapter 3 illustrated, imposes minimal
assumptions on the structure of FWPRs. Nonetheless, the argument still holds for
certain non-regular strict preference relations but requires a new specification of IIA.
The following definition and proposition explores this relationship formally using
the cosupport of a fuzzy subset U of X . That is, Cosupp(U) = {x ∈ X |U(x)< 1}.

Definition 4.18 (IIA-4). Let f̃ be an FPAR. Then f̃ is said to be independent of
irrelevant alternatives, type 4 (IIA-4), if for all ρ̄, ρ̄ ′ ∈FRn and x,y ∈ X ,

Cosupp(ρ̄i�{x,y}) = Cosupp(ρ̄ ′
i�{x,y})

for all i ∈ N implies

Cosupp( f̃ (ρ̄i)�{x,y}) = Cosupp( f̃ (ρ̄ ′
i )�{x,y}) .

It is easily verified that π(2)(x,y) = 1−ρ(y,x) and
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π(4)(x,y) =

{
ρ(x,y) if ρ(y,x) = 0,

0 otherwise,

are not regular when there is no further structure placed on ρ besides completeness
and reflexivity.

Lemma 4.19. Let λ be a fuzzy subset of N. Let f̃ be a partially quasi-transitive
FPAR that is weakly Paretian and IIA-2 when π = π(4) and IIA-4 when π = π(2).
If λ is semidecisive for x against y, then for all (v,w) ∈ X ×X, λ is decisive for v
against w.

Proof. Suppose λ is semidecisive for x against y. Consider a profile ρ̄ ∈FRn such
that πi(x,z)> 0, for all i∈ Supp(λ ). Let ρ̄ ′ be the fuzzy preference profile as defined
in Lemma 4.17. By an identical argument, we know π ′

i (x,z)> 0 for all i ∈ Supp(λ )
and π ′(x,y) > 0. Likewise, π ′(y,z) > 0, because f̃ is weakly Paretian. Since f̃ is
partially quasi-transitive, π ′(x,z)> 0.

For π = π(4), π ′
(4)(x,z)> 0 implies ρ ′(x,z) > 0 and ρ ′(z,x) = 0. Since

Supp(ρi�{x,z}) = Supp(ρ ′
i�{x,z})

for all i ∈ N and f̃ is IIA-2,

Supp(ρ�{x,z}) = Supp(ρ ′�{x,z}) .

Thus, ρ(x,z) > 0 and ρ(z,x) = 0, which implies π(4)(x,z) > 0 by the definition of
π(4).

For π = π(2), π ′
(2)(x,z)> 0 implies ρ ′(z,x) < 1. Since

Cosupp(ρi�{x,z}) = Cosupp(ρ ′
i�{x,z})

for all i ∈ N and f̃ is IIA-4,

Cosupp(ρ�{x,z}) = Cosupp(ρ ′�{x,z}) .

Thus, ρ ′(z,x) < 1, which implies π(2)(x,z)> 0 by definition of π(2).
Because π(x,z) > 0 and ρ̄ ∈FRn and z ∈ X\{x,y} are arbitrary, we obtain the

following result:
xD̃λ y =⇒ xDλ z,∀z ∈ X\{x,y}.

The remainder of the proof follows easily from a similar argument using Lemma
4.17.

Before presenting the main results, we prove the following proposition.

Proposition 4.20. Let ρ be an FWPR on X. Then the following properties are equiv-
alent:

(1) ρ is weakly transitive.
(2) For all x,y,z ∈ X, ρ(x,y) ≥ ρ(y,x) and ρ(y,z) ≥ ρ(z,y) with a strict equality

holding at least once, then ρ(x,z)> ρ(z,x).
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Proof. Suppose 4.20(1). Assume that ρ(x,y) ≥ ρ(y,x) and ρ(y,z) > ρ(z,y). Then
ρ(x,z)≥ ρ(z,x). Suppose ρ(z,x)≥ ρ(x,z). Then ρ(z,y)≥ ρ(y,z) by 4.20(1), a con-
tradiction. Hence, ρ(x,z)> ρ(z,x). A similar argument shows that ρ(x,y)> ρ(y,x)
and ρ(y,z)≥ ρ(z,y) implies ρ(x,z)> ρ(z,x).

Suppose 4.20(2). Let x,y,z ∈ X . Suppose ρ(x,y) ≥ ρ(y,x) and ρ(y,z) ≥ ρ(z,y).
Suppose ρ(z,x)> ρ(x,z). Then by (2), ρ(z,x)> ρ(x,z) and ρ(x,y)≥ ρ(y,x) imply
ρ(z,y)> ρ(y,z), a contradiction. Hence, ρ(x,z)≥ ρ(z,x). ��
Corollary 4.21. Let ρ be an FWPR on X. If ρ is weakly transitive, then ρ is partially
quasi-transitive.

As Proposition 4.20 and Corollary 4.21 show, weak transitivity is more restrictive
than partial quasi-transitivity. This added assumption, when paired with the condi-
tions of independence and weak Paretianism, implies a dictatorial FPAR. To illus-
trate this formally, the results in Lemmas 4.17 and 4.19 make it sufficient to show
that Supp(λ ) = {i}, where λ is any semidecisive coalition under the Arrowian con-
ditions. In such a case, πi(x,y)> 0 implies π(x,y)> 0 for all ρ̄ ∈FRn and x,y ∈X ,
and λ is a dictator rather than a coalition.

Theorem 4.22 (Fuzzy Arrow’s Theorem). Let f̃ : Dn
w → FR be a fuzzy aggre-

gation rule. Suppose π is regular, and f̃ is weakly Paretian, weakly transitive and
IIA-3. Then f̃ is dictatorial.

Proof. Since f̃ is weakly Paretian, there exists a decisive λ for any pair of alterna-
tives, namely, Supp(λ ) = N. For all (u,v) ∈ X ×X , let m(u,v) denote the size of the
smallest |Supp(λ )| for a λ semidecisive for u against v. Let m =∧{m(u,v) | (u,v)∈
X ×X}. Without loss of generality, suppose λ is semidecisive for x against y where
|Supp(λ )| = m. If m = 1, the proof is complete. Suppose m > 1. Let i ∈ Supp(λ ),
and let z ∈ X\{x,y}. Consider any fuzzy profile ρ̄ such that

πi(x,y)> 0,πi(y,z) > 0 and πi(x,z) > 0

π j(z,x) > 0,π j(x,y)> 0 and π j(z,y) > 0,∀ j ∈ Supp(λ )\{i}
πk(z,x)> 0,πk(x,y)> 0 and πk(z,y)> 0,∀k �∈ Supp(λ ).

Since λ is semidecisive for x against y and π j(x,y) > 0 for all j ∈ Supp(λ ),
π(x,y) > 0. Since |Supp(λ )| = m, it is not the case that π(z,y) > 0, or otherwise
λ ′ is semidecisive for z against y, where Supp(λ ′) = Supp(λ )\{i}. However, this
contradicts the minimality of m since |Supp(λ ′)| = m− 1. Because π is regular,
π(z,y) = 0 implies ρ(y,z) ≥ ρ(z,y). Since ρ(x,y) > ρ(y,z), ρ(x,z) > ρ(z,x) by
weak transitivity and Proposition 4.20. Hence π(x,z) > 0. By IIA-3, λ ∗ is semide-
cisive for x against z, where Supp(λ ∗) = {i}. However, this contradicts the fact the
m > 1. ��
The added assumption of weak transitivity, rather than partial quasi-transitivity, in
Theorem 4.22 allows Arrow’s results to hold in the fuzzy framework with a general
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strict preference relation without putting added assumptions on individual prefer-
ences such as those in Fono and Andjiga (2005) and Mordeson and Clark (2009).
However, we can relax the transitivity condition of the FPAR and still obtain sim-
ilar results by specifying a strict preference relation. To do so, we make use of the
following proposition.

Proposition 4.23. Let ρ be an FWPR on X. If ρ is partially transitive, then ρ is
partially quasi-transitive with respect to π = π(4).

Proof. Let x,y,z ∈ X . Suppose π(x,y) > 0 and π(y,z) > 0. Then ρ(x,y) > 0,
ρ(y,x) = 0, ρ(y,z) > 0, and ρ(z,y) = 0. Hence, ρ(x,z) > 0. Suppose π(x,z) = 0.
Then ρ(z,x)> 0. However, ρ(y,z)> 0 and ρ(z,x)> 0 implies ρ(y,x)> 0, a contra-
diction. Hence π(x,z)> 0. ��
Using this proposition, we can relax the transitivity condition on f̃ to partial transi-
tivity when π = π(4).
Let Dpdenote the set of all partially transitive fuzzy weak orders.

Theorem 4.24 (Fuzzy Arrow’s Theorem 2). Let f̃ : Dn
p →FR be an FPAR. Sup-

pose π = π(4). Let f̃ be weakly Paretian, partially transitive, and IIA-2. Then f̃ is
dictatorial.

Proof. Since f̃ is partially transitive and π = π(4), f̃ is partially quasi-transitive by
Proposition 4.23. Further, because f̃ is weakly Paretian, there exists a decisive λ for
any pair of alternatives. Let m(u,v) denote the size of the smallest |Supp(λ )| for a
λ semidecisive for u against v in X . Let m = ∧{m(u,v) | (u,v) ∈ X ×X}. Likewise,
suppose λ is semidecisive for x against y where |Supp(λ )|= m, and suppose m > 1.
Now consider a ρ̄ ∈FRn such that ρ̄ is identical to ρ̄ in Theorem 4.24.

Then π(x,y)> 0 because λ is semidecisive for x against y and π j(x,y)> 0 for all
j ∈ Supp(λ )\{i}. In addition, π(z,y) = 0, else λ ′ is semidecisive for z against y, a
contradition of the minimality of m. Thus, ρ(y,z)> 0. Since f̃ is partially transitive,
ρ(x,y)> 0 and ρ(y,z)> 0 imply ρ(x,z)> 0. Suppose π(x,z) = 0. Then ρ(z,x)> 0
by definition of π(4). However, ρ(y,z) > 0 and ρ(z,x) > 0 imply ρ(y,x)> 0 by the
partial transitivity of f̃ . This contradicts π(x,y) > 0. Hence π(x,z) > 0. By IIA-2,
λ ∗ is semidecisive for x against y, where Supp(λ ∗) = {i}. However, this contradicts
m > 1. ��
Theorems 4.22 and 4.24 lay out the consequences of two specific combinations of
assumptions on fuzzy aggregation rules. Given an FPAR that satisfies these defini-
tions of transitivity, weak Paretianism and independence of irrelevant alternatives,
the FPAR must be dictatorial under a variety of social strict preference relations.
However, the implication of dictatatorship cannot be generalized over all derivations
of fuzzy Arrowian conditions. Thus, we now consider under what circumstances a
nondictatorial FPAR can satisfy fuzzy Arrowian conditions. The key to these series
of formal arguments lies in the concept of neutrality.

Definition 4.25 (neutral). Let f̃ be an FPAR. Then f̃ is said to be neutral if, for
all ρ̄ , ρ̄ ′ ∈ FRn and all w,x,y,z ∈ X , ρ ′

i (x,y) = ρ ′
i (w,z), for all i ∈ N, implies

f̃ (ρ̄)(x,y) = f̃ (ρ̄ ′)(w,z).
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In words, neutrality guarantees that an aggregation rule treats every pair of alterna-
tives in a similar manner across preference profiles, i.e., the labeling of alternatives
is arbitrary and does not affect the aggregation of preferences. In the exact case, neu-
trality has an important part in May’s (1952) theorem characterizing the importance
of majority rule as the only anonymous, neutral, and monotone choice function if
there are two alternatives. In Arrowian context, Blau (1972) first noticed the logic
of neutrality plays an important part in the formal arguments; however, he is unable
to use neutrality to prove Arrow’s theorem. Ubeda Ubeda (2003) first showed that
IIA and weak Paretianism imply neutrality and that neutrality can be used in a more
direct proof of Arrow’s theorem. In the fuzzy case, this relationship no longer holds.
This occurs because the concept of weak Paretianism is ordinal: for any two alter-
natives x and y, ρi(x,y)> ρi(y,x) for all i ∈ N implies ρ(x,y)> ρ(y,x) in the social
preference relation when π is regular. Yet neutrality, as defined in Definition 4.25, is
cardinal in conception and weak Paretianism is insufficient to imply neutrality even
when paired with IIA. Thus, we consider another characteristic of FPARs.

Definition 4.26 (unanimous in acceptance). Let f̃ be an FPAR. Then f̃ is said to
be unanimous in acceptance if, for all ρ̄ ∈FRn, ρi(x,y) = 1 for all i ∈ N implies
f̃ (ρ̄)(x,y) = 1 Duddy et al. (2011).

Unanimity in acceptance is significantly less restrictive than unanimity (see Sec-
tion 4.1.2) and requires the social preference to take a specific value only when all
individuals definitely view one alternative as at least as good as another. Further,
Definition 4.26 has no implications for a fuzzy aggregation rule when there exist
some x,y ∈ X and ρ̄ ∈FRn such that ρi(x,y) = c for all i ∈ N and c ∈ [0,1). This
seemingly insubstantial condition allows Duddy et al. (2011) to obtain the following
relationship.

Let FR∗ denote the set of all max-∗ transitive fuzzy weak orders.

Proposition 4.27. Let f̃ : FR∗n →FR be an FPAR. Suppose f̃ is max−∗ transi-
tive, IIA-1 and unanimous in acceptance. Then f̃ is neutral.

Proof. The proof, which comes from Duddy et al. (2011), demonstrates that f̃ is
neutral by considering all combinations of (x,y), (w,z) ∈ X ×X .

Case 1: (x,y) = (w,z). The proof follows immediately from the IIA-1 definition.
Case 2: (x,y),(x,z) ∈ X ×X . Let ρ̄ ∈FR∗n be such that ρi(y,z) = ρi(z,y) = 1

for all i ∈ N. Then, by max-∗ transitivity of all individ-
ual weak orders, ρi(x,y) ≥ ρi(x,z) ∗ ρi(z,y) = ρi(x,z) and
ρi(x,z) ≥ ρi(x,y) ∗ ρi(y,z) = ρi(x,y). Next, ρi(x,y) ≥ ρi(x,z) and
ρi(x,z) ≥ ρi(x,y) imply ρi(x,y) = ρi(x,z) for all i ∈ N. Similarly,
by max-∗ transitivity, ρi(y,x) ≥ ρi(y,z) ∗ ρi(z,x) = ρi(z,x) and
ρi(z,x) ≥ ρi(z,y) ∗ ρi(y,x) = ρi(y,x); and ρi(y,x) = ρi(z,x), for all
i ∈ N. Because ρi(y,z) = ρi(z,y) = 1 for all i ∈ N, ρ(y,z) = ρ(z,y) = 1.
Hence, by the previous arguments, ρ(x,y) ≥ ρ(x,z), ρ(x,z) ≥ ρ(x,y),
ρ(y,x) ≥ ρ(z,x), and ρ(z,x) ≥ ρ(y,x). Thus, ρ(x,y) = ρ(x,z) and
ρ(y,x) = ρ(z,x) for the social preference as well.
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The above arguments apply to all ρ̄ ∈ FR∗n such that ρi(y,z) =
ρi(z,y) = 1 for all i ∈ N. Let G n denote the set of all such profiles. Be-
cause the individual preferences between y and z are “irrelevant” so to
speak, the proof now uses IIA-1 to prove the conclusion.

Case 3: Now for any profile ρ̄ ∈FR∗n such that ρi(x,y) = ρi(x,z) for all i ∈ N,
there exists a ρ̄ ′ ∈ G n such that ρi(x,y) = ρ ′

i (x,y) = ρ ′
i (x,z) = ρi(z,x).

IIA-1 implies ρ(x,y) = ρ(y,x) = ρ ′(y,x) = ρ ′(x,y). For two distinct pro-
files ρ̄, ρ̄ ′ ∈ FRn such that ρi(x,y) = ρ ′

i (x,z) for all i ∈ N, there also
exists a profie ρ̄∗ ∈ G n such that ρi(x,y) = ρ∗

i (x,y) = ρ∗
i (x,z) = ρ ′

i (x,z).
By IIA-1, ρ(x,y) = ρ∗(x,y) = ρ∗(x,z) = ρ ′(x,z).

Case 4: (x,y),(w,y) ∈ X ×X . The same conclusions can be proved using sym-
metric logic in Case 2. The first step is to assume ρi(x,w) = ρi(w,x) = 1
for all i ∈ N.

Case 5: (x,y),(w,z) ∈ X × X . Let ρ̄ ∈ FR∗n such that ρi(y,z) = ρi(z,y) =
ρi(x,w) = ρi(w,x) = 1 for all i ∈ N. Because ρi is max-∗ transitive,
ρi(x,y) ≥ ρi(x,z) and ρi(x,z) ≥ ρi(x,y), and thus ρi(x,y) = ρi(x,z),
for all i ∈ N. Because f̃ satisfies max-∗ transitivity and unanimity in
acceptance, ρ(x,y) = ρ(x,z). Further, ρi(x,z) ≥ ρi(x,w) ∗ ρi(w,z) and
ρi(w,z) ≥ ρi(w,x) ∗ ρi(x,z) imply ρi(x,z) = ρi(w,z), for all i ∈ N. To
summarize, ρi(x,y) = ρi(x,z) = ρi(w,z) for all i ∈ N. And because the
conditions of unanimity in acceptance and max-∗ transitivity have been
met, an identical argument applies to the social preference relation and
ρ(x,y) = ρ(x,z) = ρ(w,z).

The above arguments apply to all ρi that are max-∗ transitive such that
ρi(y,z) = ρi(z,y) = ρi(x,w) = ρi(w,x) = 1 for all i ∈ N. Let G n denote
the set of all such profiles. Because the individual preferences between
y and z and between x and w are “irrelevant” so to speak, the proof now
uses IIA-1 to prove the conclusion.

Case 6: Now for any profile ρ̄ ∈FR∗n such that ρi(x,y) = ρi(w,z) for all i ∈ N,
there exists a ρ̄ ′ ∈ G n such that ρi(x,y) = ρ ′

i (x,y) = ρ ′
i (w,z) = ρi(w,z).

IIA-1 implies ρ(x,y) = ρ(w,z) = ρ ′(w,z) = ρ ′(x,y). For two distinct
profiles ρ̄ , ρ̄ ′ ∈ FRn such that ρi(x,y) = ρ ′

i (w,z) for all i ∈ N. Then
there exists a profile ρ̄∗ ∈ G n such that ρi(x,y) = ρ∗

i (x,y) = ρ∗
i (w,z) =

ρ ′
i (w,z). By IIA-1, ρ(x,y) = ρ∗(x,y) = ρ∗(w,z) = ρ ′(w,z).

Case 7: (x,y),(w,z) ∈ X ×X where x = z or y = w. (This case is similar to Cases
2 and 3.) Let a denote an arbitrary alternative that is distinct from x
and w. One exists because |X | ≥ 3. Take any profile ρ̄ ∈ FR∗n where
ρi(a,y) = ρi(y,a) = ρi(x,w) = ρi(w,x) = ρi(z,a) = ρi(a,z) = 1. Cases
2 and 3 imply ρi(x,y) = ρi(x,a) = ρi(w,a) = ρi(w,z) and ρ(x,y) =
ρ(x,a) = ρ(w,a) = ρ(w,z) by unanimity in acceptance and max-∗ tran-
sitivity.

Let W ndenote the set of all such profiles. Let (r1, . . . ,rn)∈ FR∗n be such that
r j(x,y) = r j(z,w) for all j ∈ N. Then there exists (r

′
1, . . . ,r

′
n) ∈ W n such that
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r j(x,y) = r j(z,w) = r
′
j(x,y,) = r

′
j(z,w) for all j ∈ N. IIA-1 implies that f̃ (ρ̄)(x,y) =

f̃ (ρ̄)(z,w) = f̃ (ρ̄ ′)(x,y) = f̃ (ρ̄ ′)(z,w) where ρ̄ = (r1, . . . ,rn) and ρ̄ ′ = (r
′
1, . . . ,r

′
n).

Take any pair of distinct profiles ρ̄ ′′ = (r
′′
1 , . . . ,r

′′
n) and ρ̄∗ = (r∗1 , . . . ,r

∗
n) in FR∗n

such that r
′′
j (x,y) = r∗j (z,w) for all j ∈ N. Then there exists (r∗∗1 , . . . ,r∗∗n ) ∈ W n

such that r
′′
j (x,y) = r

′′
j (z,w) = r∗∗j (x,y,) = r∗∗j (z,w) for all j ∈ N. IIA-1 implies

f̃ (ρ̄ ′′
)(x,y) = f̃ (ρ̄ ′′

)(z,w) = f̃ (ρ̄∗∗(x,y) = f̃ (ρ̄∗∗)(z,w) ��
While we do not use Proposition 4.25 to establish further results, it does illustrate
that neutrality is not necessarily a strong restriction to place on an aggregation rule.
As Proposition 4.27 demonstrates, neutrality arises naturally from the combination
of max-∗ transitivity, IIA-1, and unanimity in acceptance. We have already dis-
cussed the importance of max-∗ transitivity and IIA-1; if one can justify Definition
4.26 and its application to fuzzy aggregation rules, neutrality is the natural conclu-
sion. With a few more assumptions, we can use neutrality to derive a specific fuzzy
aggregation rule.

In what follows, we show how neutrality can be used to classify a wide range of
FPARs and determine whether these FPARs satisfy fuzzy Arrowian conditions. To
do this, we need the following lemma.

Lemma 4.28. Let f̃ be an FPAR. Then the following conditions are equivalent.

(1) f̃ is neutral;
(2) There exists a unique function fn : [0,1]n → [0,1] such that, for all x,y ∈ X and

all ρ̄ ∈FRn, fn(ρ1(x,y), . . . ,ρn(x,y)) = f̃ (ρ̄)(x,y).

Proof. (1) =⇒ (2): Let x,y ∈ X . Let (a1, . . . ,an) ∈ [0,1]n. Then there exists ρ̄ ∈
FRn such that ρi(x,y) = ai for all i= 1, . . . ,n. Define fn : [0,1]n → [0,1] as follows:

fn((a1, . . . ,an)) = f̃ (ρ̄)(x,y).

It remains to be shown that fn is single-valued. Let w,z ∈ X . Then there exists a
ρ̄ ′ ∈ FRn such that ρ ′

i (w,z) = ai for all i = 1, . . . ,n. Thus, ρi(x,y) = ρ ′
i (w,z) for

all i ∈ N. Since f̃ is neutral, f̃ (ρ̄)(x,y) = f̃ (ρ̄ ′)(w,z). Thus, fn is single-valued. In
addition, uniqueness of fn is guaranteed by construction.

(2) =⇒ (1): Let ρ̄, ρ̄ ′ ∈FRn and w,x,y,z ∈ X . Suppose ρi(x,y) = ρ ′
i (w,z) for

all i ∈ N. Then,

f̃ (ρ̄)(x,y) = fn(ρ1(x,y), . . . ,ρn(x,y)) = fn(ρ ′
1(w,z), . . . ,ρ

′
n(w,z))

= f̃ (ρ̄)(w,z) .

Thus, f̃ is neutral. ��
In words, fn is the auxillary function associated with a specific FPAR f̃ , and ai

can be interpreted as the weak preference intensity of player i for one alternative
over another. By itself, Lemma 4.28 may seem unremarkable, but the lemma is
an important step in examining the implications of neutrality on fuzzy aggregation
rules. To derive a unique aggregation rule, we need one more definition.
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Definition 4.29. Let f̃ be a neutral FPAR, and let fn be an auxillary function asso-
ciated with f̃ . Then f̃ is said to be

(1) linearly decomposable if, for all (a1, . . . ,an) ∈ [0,1]n, fn(a1, . . . ,an) =
a1 fn(1,0, . . . ,0)+ . . .+ an fn(0, , . . . ,0,1);

(2) additive if, for all (a1, . . . ,an),(b1, . . . ,bn) ∈ [0,1]n such that ai + bi ∈ [0,1],
i = 1, . . . ,n, fn((a1, . . . ,an)+(b1, . . . ,bn)) = fn((a1, . . . ,an))+ fn((b1, . . . ,bn)).

Linear decomposability implies two criteria. First, the condition requires that the
collective preference between two alternatives is the sum of the n collective pref-
erences when only one individual preference is considered at a time by the FPAR.
Second, the specific individual preference intensity (ai) can be “removed” from the
individual preference relation (ρi), and “reapplied” directly to the FPAR that only
considers the preference of individual i. The stronger assumption of additivity re-
quires that given a preference profile, the collective preference for one alternative
over another can be created by first decomposing the preference intensities of the
individuals, then applying the FPAR to those two profiles of preference intensities,
and finally adding the two collective preferences.

The followinig lemma states the relationship between the conditions in Definition
4.29.

Lemma 4.30. Let f̃ be a neutral FPAR. If f̃ is linearly decomposable, then f̃ is
additive.

Proof. Because f̃ is neutral, there exits an auxillary function fn associated with f̃
such that fn((a1, . . . ,an)) = f̃ (ρ̄)(x,y) for all ρ̄ ∈FRn, x,y ∈ X , and (a1, . . . ,an) ∈
[0,1]n. Let (a1, . . . ,an),(b1, . . . ,bn) ∈ [0,1]n be such that ai + bi ∈ [0,1] for all i =
1, . . . ,n. Then,

fn((a1, . . . ,an)+ (b1, . . . ,bn)) = fn((a1 + b1, . . . ,an + bn))

= (a1 + b1) fn((1,0, . . . ,0))+ . . .

+(an + bn) fn(0, . . .0,1)

= a1 fn((1,0, . . . ,0)+ . . .

+an fn((1,0, . . . ,0))+ b1 fn((1,0, . . . ,0)

+ . . .+ bn fn((1,0, . . . ,0))

= fn((a1, . . . ,a2))+ fn((b1, . . . ,bn)

as desired. ��
Finally, Theorem 4.31 and Corollary 4.32, which are simplified generalizations of
García-Lapresesta and Llamazares (2000), illustrate the effects of a neutral and lin-
ear decomposable FPAR. To do so, it introduces the concept of restricting an auxil-
lary function between the interval [0,1], denoted f̂n|[0,1]n , because, under additivity,
there is no guarantee that the sum of two n-tuples of preferences intensities will have
components less than or equal to one. The restriction places no added assumptions
on FPARs or individual preferences, but it allows us to obtain the following result.
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Theorem 4.31. Let f̃ be a neutral fuzzy aggregation rule. If f̃ is linearly decom-
posable, then there exists a unique linear transformation f̃n of Rn into R such that
f̂ |[0,1]n = fn.

Proof. Because f̃ is neutral, there exits an auxillary function fn associated with f̃
such that fn((a1, . . . ,an)) = f̃ (ρ̄)(x,y) for all ρ̄ ∈FRn, x,y ∈ X , and (a1, . . . ,an) ∈
[0,1]n. For i = 1, . . . ,n, let 1̄i = (u1, . . . ,un), where ui = 1 and u j = 0 for j �= i. Then
there exists a unique linear transformation f̃ of R

n into R such that f̂ (1̄i) = wi,
where wi = fn(1̄i) for all i ∈ N. Since fn is additive by the previous lemma,

n

∑
i=1

wi =
n

∑
i=1

fn(1̄i)

= fn((1, . . . ,1))≤ 1 .

Now,

f̂n(
n

∑
i=1

ci1̄i) =
n

∑
i=1

ci f̂n(1̄i) .

Thus if ci ∈ [0,1], for i ∈ N, then

fn(
n

∑
i=1

ci1̄i) =
n

∑
i=1

ci fn(1̄i) ∈ [0,1]

because
n
∑

i=1
wi ≤ 1. Let ((a1, . . . ,an)) ∈ [0,1]n. Then

f̂n|[0,1]n((a1, . . . ,an)) = f̂n((a1, . . . ,an))

= =
n

∑
i=1

ai f̂n(1̄i)

= fn((a1, . . . ,an))

since f̃ is linearly decomposable. ��
Corollary 4.32. Let f̃ be a neutral FPAR. If f̃ is linearly decomposable, then, for
all ρ̄ ∈FRn and all x,y ∈ X,

f̃ (ρ̄)(x,y) =
n

∑
i=1

wiρi(x,y) ,

wi = fn(1̄i) for all i ∈ N.

According to Theorem 4.31 and Corollary 4.32, a neutral and linearly decompos-
able aggregation rule must be a weighted mean aggregation rule. A weighted mean
FPAR is a generalization of Example 4.2(1). Such a generalization emphasizes two
important distinctions between exact and fuzzy aggregation rules. First, there is a
difference between the possible rules modeled under exact preferences and those
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modeled under the fuzzy framework. Corollary 4.32 allows scholars to consider
committee or other voting bodies where individuals do not contribute equally to
the social preference. In other words, some opinions are more relevant to the final
collective preference than others. These situations can arise on any committee that
produces a social fuzzy preference, which affected by seniority, professional rank,
or any number of other social factors could influence the group’s final decision.
However, this rule is not necessarily anonymous, i.e. the labeling of the individuals
does matter, because each individual has a preassigned weight to his or her prefer-
ence. If the weighted mean is anonymous, then it is easily verified that wi =

1
n for

all i ∈ N.
Second and more importantly, neutrality does not imply a dictatorship. Unlike

the findings in Ubeda (2003), fuzzy neutrality, when paired with linear decompos-
ability, does not guarantee a non-dictatorial FPAR. This brings us one step closer to
identifying conditions under which fuzzy social choice permits FPARs to satsify all
Arrowian conditions.

Definition 4.33 (weighted mean rule). Let f̃ be an FPAR. Then f̃ is said to be the
weighted mean rule if, for all ρ̄ ∈FRn and all x,y ∈ X ,

f̃ (ρ̄)(x,y) =
n

∑
i=1

wi ·ρi(x,y),

where
n
∑

i=1
wi = 1 and wi > 0 for all i ∈ N.

Obviously, the weighted mean is non-dictatorial and independent of irrelevant alter-
natives under IIA-1. What remains to be shown is whether the FPAR satisfies weak
Paretianism and max-∗ transitivity, which we now consider.

Proposition 4.34. Let f̃ be an FPAR as defined in Definition 4.33. If π is regular,
then f̃ is weakly Paretian.

Proof. Let x,y ∈ X . Suppose πi(x,y) > 0 for all i ∈ N. Because π is assumed to be
regular, πi(x,y)> 0 implies ρi(x,y)> ρi(y,x). Further, wi ·ρi(x,y)> wi ·ρ(y,x) for
all i ∈ N because wi ∈ (0,1]. Hence,

n

∑
i=1

wi ·ρi(x,y)>
n

∑
i=1

wi ·ρi(y,x) .

Thus, f̃ (ρ̄)(x,y) > f̃ (ρ̄)(y,x), and by regularity of the social strict preference,
π(x,y)> 0. Hence, f̃ is weakly Paretian. ��
As a result of Proposition 4.34, the weighted mean is weakly Paretian. Further, it
satisfies stronger Paretian conceptualizations as well.

Definition 4.35 (positive responsiveness). Let f̃ be an FPAR and let π be the
social strict preference with respect to f̃ (ρ̄), where ρ̄ ∈ FRn. Then f̃ satisfies
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positive responsiveness with respect to π if, for all ρ̄, ρ̄ ′ ∈ FRn and all x,y ∈ X ,
f̃ (ρ̄)(x,y) = f̃ (ρ̄)(y,x) and there exists a j ∈ N such that ρi = ρ ′

i for all i �= j and
(π j(x,y) = 0 and π ′

j(x,y)> 0 or π j(y,x) > 0 and π ′
j(y,x) = 0) imply π ′(x,y)> 0.

In other words, positive responsiveness requires that given a preference profile in
which there is no social strict preference between two alternatives x and y, if one
individual who has no strict preference for x over y acquires such a preference or
who has a strict preference for y over x and loses such a preference, then the FPAR
should “respond” and exhibit a social strict preference for x over y. To show that
the weighted mean satisfies positive responsiveness, we make use of the following
proposition.

Proposition 4.36. Let ρ ∈ FR and let π and π(∗) be two different types of strict
preference with respect to ρ such that for all x,y ∈ X, π(x,y) > 0 if and only if
π(∗)(x,y) > 0. Let f̃ be an FPAR and ρ̄ ∈ FRn. Then f̃ satisfies positive respon-
siveness with respect to π if and only if f̃ satisfies positive responsiveness with
respect to π(∗).

Proof. Suppose f̃ satisfies positive responsiveness with respect to π . Suppose for
all ρ̄ , ρ̄ ′ ∈ FRn and all x,y ∈ X , f̃ (ρ̄)(x,y) = f̃ (ρ̄)(y,x) and there exists a j ∈ N
such that ρi = ρ ′

i for all i �= j and (π j(x,y) = 0 and π ′
j(x,y) > 0 or π j(y,x) > 0

and π ′
j(y,x) = 0). Because π(x,y)> 0 if and only if π(∗)(x,y) > 0 and π ′(x,y) > 0

if and only if π ′
(∗)(x,y) > 0 for all x,y ∈ X , for all ρ̄ , ρ̄ ′ ∈ FRn and all x,y ∈ X ,

f̃ (ρ̄)(x,y) = f̃ (ρ̄)(y,x) and there exists a j ∈ N such that ρi = ρ ′
i for all i �= j

and (π(∗) j(x,y) = 0 and π ′
(∗)(x,y) > 0 or π(∗) j(y,x) > 0 and π ′

(∗) j(y,x) = 0). Then

π(x,y) > 0 since f̃ satisfies positive responsiveness with respect to π . Thus,
π(∗)(x,y)> 0 by hypothesis. Hence, f̃ satisfies positive responsiveness with respect
to π(∗).

Using Proposition 4.36, we can characterize the weighted mean as satisfying posi-
tiveness responsiveness with respect to any regular π .

Proposition 4.37. Let f̃ be an FPAR as defined in Definition 4.35. Then f̃ satisfies
positive responsiveness with respect to any regular π .

Proof. By Proposition 4.36, it suffices to show that the weighted mean rule satisfies
positive responsiveness with respect to π(3), where π(3)(x,y) = max{0,(ρ(x,y)−
ρ(y,x))}. Let ρ̄ , ρ̄ ′ ∈FRn and x,y ∈ X . Suppose f̃ (ρ̄)(x,y) = f̃ (ρ̄)(y,x) and ρi =
ρ ′

i for all i ∈ N\{ j}. In addition, suppose either

Proof. π j(x,y) = 0 and π ′
j(x,y)> 0 or

π j(y,x) > 0 and π ′
j(y,x) = 0, ��

where strict reference is of type 3. Then π ′(x,y) = max{0,ρ ′(x,y)−ρ ′(y,x)}, and
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ρ ′(x,y)−ρ ′(y,x) =
n

∑
i=1

(wi ·ρ ′
i (x,y)−wi ·ρ ′

i (y,x))

=
n−1

∑
i=1,i�= j

(wi ·ρi(x,y)−wi ·ρi(y,x))

+wj ·ρ ′
j(x,y)−wj ·ρ ′

j(y,x)

=
n

∑
i=1

(wi ·ρi(x,y)−wi ·ρi(y,x))−wj · (ρ j(x,y)−ρ j(y,x))

+wj · (ρ ′
j(x,y)−ρ ′

j(y,x))

= −wj · (ρ j(x,y)−ρ j(y,x))+wj · (ρ ′
j(x,y)−ρ ′

j(y,x))

> 0,

where the inequality holds if either (1) or (2) hold. Hence, the weighted mean sat-
isfies positive responsiveness with respect to π(3). The desired result now follows
from the definition of regularity and Proposition 4.36. ��
The weighted mean also satsifies the Pareto Condition under specific definitions of
strict preference.

Proposition 4.38. Let f̃ be an FPAR as defined in Definition 4.35. Then f̃ satisifies
the Pareto Condition with respect to π = π(1) and π = π(3).

Proof. Let x,y ∈ X . Let mx,y = min
i∈N

{πi(x,y)}. There is no loss in generality is as-

suming mx,y = π1(x,y). If mx,y = 0, the proof is complete. Suppose otherwise. Then,

1 ≤ w1 + . . .+wn +w2(
π2(x,y)

mx,y
− 1)+ . . .+wn(

πn(x,y)
mx,y

− 1)

= w1 · π1(x,y)
mx,y

+ . . .+wn · πn(x,y)
mx,y

.

Thus,

π1(x,y) = mx,y ≤ w1 ·π1(x,y)+ . . .+wn ·πn(x,y). (4.4)

Because mx,y > 0, πi(x,y) > 0 for all i ∈ N. Thus, ρi(x,y) > ρi(y,x) for all i ∈ N.
Hence,

n

∑
i=1

wi ·ρi(x,y)>
n

∑
i=1

wi ·ρi(y,x) .

Suppose π = π(1). By (3.3), ρ1(x,y)≤
n
∑

i=1
wi ·ρi(x,y), or mx,y ≤ π(x,y) = ρ(x,y).

Hence f̃ satisfies the Pareto Condition with respect to π(1).
Suppose π = π(3). Similarly by (3.3),
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ρ1(x,y)−ρ1(y,x) ≤
n

∑
i=1

wi · [ρi(x,y)−ρi(y,x)] =
n

∑
i=1

wi ·ρi(x,y)−
n

∑
i=1

wi ·ρi(y,x),

or mx,y ≤ ρ(x,y)− ρ(y,x) = π(x,y). Hence f̃ satisfies the Pareto Condition with
respect to π(3). ��
Unlike Positive Responsiveness, the relationship between the weighted mean and
the Pareto Condition in Proposition 4.38 cannot be generalized to the case of any
regular strict preference relation. The reason for this is the lack of some type of
behavioral assumptions on the relationship between the strict and weak preference
relationship, such as monotonicity or ρ = ι ∪π for a specified t-conorm ∪. The
following example presents a case where the weighted mean aggregation rule does
not satisfy the Pareto Condition with respect to a regular strict preference rule.

Example 4.39. Let X = {x,y}, N = {1,2} and f̃ be an FPAR as defined in Definition
4.35, where wi =

1
2 for all i ∈ N. Suppose the strict preference relation is defined as

follows:

π(x,y) =

⎧
⎪⎨

⎪⎩

.3 if ρ(x,y) = .6 and ρ(y,x) = .4,

0 if ρ(y,x)> ρ(x,y),
1 otherwise.

.

It is obvious that π is regular. Now consider a profle ρ̄ ∈ FR2 such that
ρ1(x,y) = .5, ρ2(x,y) = .7, and ρ1(y,x) = ρ2(y,x) = .4. For this profile, the social
preference relation is ρ(x,y) = .6 and ρ(y,x) = .4 because f̃ is the weighted mean.
Then the individual and social strict preference relations are as follows:

π1(x,y) = 1,

π2(x,y) = 1,

π(x,y) = .3,

and the weighted mean does not satsify the Pareto Condition with respect to π al-
though π is regular.

Currently, the only Arrowian condition unaccounted for is max-∗ transitivity.
Because the assumption max-∗ transitivity is unusually general in the fuzzy frame-
work, the weighted mean does not lend itself to developing one single formal argu-
ment detailing whether the FPAR satisfies the condition. Nonetheless, we can use
the concept of a zero divsor to determine what type of transitivity conditions to
consider.

Example 4.40. Let f̃ be an FPAR that is defined in 4.35. Let N = {1,2}, X = {x,y,z}
and wi =

1
2 for all i ∈ N. Suppose ρ̄ ∈FR2 is defined as follows:

ρ1(x,z) = ρ2(x,z) = 0,

ρ1(x,y) = ρ2(y,z) = 1,

ρ1(y,z) = ρ2(x,y) = 0,

ρi(z,x) = ρi(y,x) = ρi(z,y) = 1,
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for all i ∈ N. It is easily verified that ρi is max-∗ transitive under all t-norms using
the boundary conditions. Then the social preference relation, f̃ (ρ̄), is, by Definition
4.35, as follows:

ρ(x,z) = 0,

ρ(x,y) = ρ(y,z) = .5,

ρ(z,x) = ρ(y,x) = ρ(z,y) = 1.

If the social preference relation is to be max-∗, then ρ(x,z)≥ ρ(x,y)∗ρ(y,z) for
all x,y,z ∈ X . If ∗ has no zero divisors, ρ(x,y)∗ρ(y,z)> 0. However, ρ(x,z) = 0 �≥
ρ(x,y)∗ρ(y,z), a contradiction. Thus, f̃ cannot be max-∗ transitive when ∗ has no
zero divisors.

Example 4.40 suggests that when considering max-∗ transitivity conditions for the
weighted mean rule, we should consider definitions in which ∗ has a zero divisor.
If not, it is obvious then that the weighted mean will not satisfy the fuzzy Arrowian
condition of transitivity. However, the converse of this relationship is not necessarily
true as shown in the following example.

Example 4.41. Suppose a ∗ b =

{
min{a,b} if a+ b > 1,

0 otherwise.
.

In this case, ∗ is the nilpotent minimum, and ∗ has a zero divisor. Let X = {x,y,z}
and N = {1,2}. Suppose ρ̄ = {ρ1,ρ2} ∈FR2 and is defined as follows:

ρ1(x,y) = .8

ρ1(a,b) = .3,∀(a,b) ∈ X ×X\{(x,y)}, where a �= b

ρ2(x,z) = .4; ρ2(y,z) = .8

ρ2(a,b) = .5,∀(a,b) ∈ X ×X\{(x,z),(y,z)}, where a �= b.

Suppose f̃ is an FPAR defined in Definition 4.35 and wi =
1
2 for all i ∈ N. Then

f̃ (ρ̄)(x,z) = .35, f̃ (ρ̄)(x,y) = .65, and f̃ (ρ̄)(y,z) = .55. However, .35 �≥ .65∗ .55=
.55. Hence, f̃ is not max-∗ trasitive when ∗ is the nilpotent minimum.

Given this relationship, we illustrate two transitivity conditions that use a t-norm
with zero divisors.

Proposition 4.42. Let f̃ be a fuzzy aggregation ruled defined in Definition 4.35, and
let ρ̄ ∈FRn be max-∗ transitive. Then f̃ is max-∗ transitive if, for all a,b ∈ [0,1],
∗ is defined as follows for all a,b ∈ [0,1]:

(1) a ∗ b = max{a+ b− 1,0}
or

(2) a ∗ b =

⎧
⎪⎨

⎪⎩

a if b = 1,

b if a = 1,

0 otherwise.
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Proof. (1) Let x,y,z ∈ X . Then by max-∗ transitivity of ρi and the definition of ∗,
ρi(x,z)≥ ρi(x,y)+ρi(y,z)− 1 for all i ∈ N. By definition of f̃ ,

n

∑
i=1

wi ·ρi(x,z) ≥
n

∑
i=1

wi ·ρi(x,y)+
n

∑
i=1

wi ·ρi(y,z)−
n

∑
i=1

wi

ρ(x,z) ≥ ρ(x,y)+ρ(y,z)− 1.

(2) Let x,y,z ∈ X . Suppose ρ(x,y) ∗ρ(y,z) = 0. Then the proof is complete. Sup-
pose ρ(x,y)∗ρ(y,z)> 0. Then there are two cases to consider.

a. First, suppose ρ(x,y) = 1 and ρ(y,z) > 0. Then, ρi(x,y) = 1 for all i ∈
N, by the definition of f̃ . Further, by max-∗ transitivity of ρi, ρi(x,z) ≥
ρi(x,y)∗ρi(y,z) and ρi(x,z)≥ ρi(y,z) for all i ∈ N. Hence,

n
∑

i=1
wi ·ρi(x,z)≥

n
∑

i=1
wi ·ρi(y,z). Thus, ρ(x,y)∗ρ(y,z) = ρ(y,z)≤ ρ(x,z).

b. Second, a similar argument can be made for the case when ρ(y,z) = 1 and
ρ(x,y)> 0. Hence, ρ(x,z)≥ ρ(x,y)∗ρ(y,z). ��

Proposition 4.42 provides two examples of t-norms under which the weighted mean
is max-∗ transitive. Proposition 4.42(1) uses the Łukasiewicz t-norm, and Propo-
sition 4.42(2) uses the drastic t-norm. Let HL,HD ⊂ FR be such that HL and
HD contain all the fuzzy preference relations that are max-∗ transitive under the
Łukasiewicz and drastic t-norm, respectively. We are now able to state two possibil-
ity results in the fuzzy Arrowian context.

Theorem 4.43. Let strict preference be regular. Then there exists a nondictatorial
f̃ : Hn

L → HL or f̃ : Hn
D → HD and satisfying IIA-1, Positive Responsiveness and

weak Paretianism.

Proof. Let f̃ be an FPAR as defined in 4.35. The result follows from Propositions
4.36, 4.37 and 4.42, and the immediacy of IIA-1 from the definition of the weighted
mean.

By specifying a strict preference relation we can obtain another possibility result
that includes an FPAR satsifying the Pareto Condition. ��
Theorem 4.44. Let strict preference be π(1) or π(3). Then there exists a nondicta-
torial f̃ : Hn

L → HL or f̃ : Hn
D → HD and satisfying IIA-1, Positive Responsiveness,

weak Paretianism and the Pareto Condition.

Proof. Let f̃ be an FPAR as defined in Definition 4.35. The result follows from
Theorem 4.43 and Proposition 4.42. ��
The transitivity conditions in Theorems 4.43 and 4.44 are quite restrictive and can
be relaxed given another FPAR.

Definition 4.45. Define the fuzzy aggregation rule f̃ : FRn →FR as follows. For
all ρ̄ ∈FRn , all x,y ∈ X and all τ : FRn → (0,1),
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f̃ (ρ̄)(x,y) =

⎧
⎪⎨

⎪⎩

1 if x = y,

1 if πi(x,y)> 0,∀i ∈ N

τ(ρ̄) otherwise.

,

In words, Definition 4.45 is similar to a fuzzy Pareto rule, where the social strict
preference for one alternative x over another y is positive if every individual strictly
prefers x to y and the social strict preference is regular. The FPAR in Definition 4.45
is clearly reflexive, complete, weakly Paretian and IIA-1. It also satisfies IIA-3. To
see that Definition 4.45 satisfies IIA-3 consider the following proposition.

Proposition 4.46. Let strict preference be regular. Let f̃ be a fuzzy aggregation rule
defined in Definition 4.45. Then f̃ is IIA-3.

Proof. Let ρ̄ , ρ̄ ′ ∈FRn and x,y ∈ X . Suppose ρi�{x,y} ∼ ρ ′
i�{x,y} for all i ∈ N. Then

by Proposition 3.13, ρi(x,y)> ρi(y,x) if and only if ρ ′
i (x,y)> ρ ′

i (x,y) for all i ∈ N.
By the definition of f̃ , f̃ (ρ̄)(x,y) = 1 if and only if f̃ (ρ̄ ′)(x,y) = 1, and f̃ (ρ̄)(y,x) =
τ(ρ̄) if and only if f̃ (ρ̄ ′)(y,x) = τ(ρ̄). Hence, f̃ (ρ̄)�{x,y} ∼ f̃ (ρ̄ ′)�{x,y}. ��

To see that see when f̃ (ρ̄) in Definition 4.45 is max-∗ transitive, we use a series
of propositions that first consider max-min transitivity and then generalize to an
arbitrary t-norm.

Proposition 4.47. Let π = π(1) and ρ ∈FR . If ρ is max-min transitive, then π is
max-min transitive.

Proof. Let ρ ∈FR be such that ρ is max-min transitive, i.e.

ρ(x,z)≥ min{ρ(x,y),ρ(y,z)}

for all x,y,z ∈ X . This proof will show that

π(x,z)≥ min{π(x,y),π(y,z)} .

To do so, suppose contrary. Then there exists an x,y,z ∈ Z such that

ρ(x,z)≥ min{ρ(x,y),ρ(y,z)} (4.5)

and
π(x,z)< min{π(x,y),π(y,z)}. (4.6)

Then
0 < π(x,y) = ρ(x,y)> ρ(y,x) (4.7)

and
0 < π(y,z) = ρ(y,z)> ρ(z,y). (4.8)
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By Eqs. (4.7) and (4.8), ρ(x,y) > 0 and ρ(y,z) > 0, which implies ρ(x,z) > 0
by Eq. (4.5). Suppose π(x,z) > 0. Then by definition of π(1), π(x,z) = ρ(x,z) ≥
min{ρ(x,y),ρ(y,z)}= min{π(x,y),π(y,z)}, where the latter equality holds by Eqs.
(4.7) and (4.5). Since this contradicts Eq. (4.6), π(x,z) = 0. Hence,

ρ(z,x)≥ ρ(x,z). (4.9)

There are now two cases to consider.

Proof. Suppose min{ρ(x,y),ρ(y,z)} = ρ(x,y). Then ρ(y,z) ≥ ρ(x,y). Hence, by
transitivity,

ρ(x,z)≥ ρ(x,y). (4.10)

By transitivity, ρ(y,x) ≥ min{ρ(y,z),ρ(z,x)}. Because ρ(y,z) ≥ ρ(x,y) and Eq.
(3.8), min{ρ(y,z),ρ(z,x)} ≥ min{ρ(x,y),ρ(x,z)}= ρ(x,y). Then ρ(y,x)≥ ρ(x,y);
however, this contradicts Eq. (4.7).

Suppose min{ρ(x,y),ρ(y,z)}= ρ(y,z), which implies ρ(x,y)≥ ρ(y,z). Then by
transitivity,

ρ(x,z)≥ ρ(y,z) (4.11)

By transitivity, ρ(z,y) ≥ min{ρ(z,x),ρ(x,y)}; and ρ(z,y) ≥ ρ(z,x), or ρ(z,y) ≥
ρ(x,y). If ρ(z,y) ≥ ρ(z,x), then ρ(z,y) ≥ ρ(z,x) ≥ ρ(x,z) ≥ ρ(y,z) by Eqs. (4.9)
and (4.11). However, this contradicts Eq. (4.8). If ρ(z,y) ≥ ρ(x,y), then ρ(z,y) ≥
ρ(x,y) ≥ ρ(y,z) by the assumption of ρ(x,y) ≥ ρ(y,z). However, this also con-
tradicts Eq. (4.8). Thus, π(x,z) ≥ min{π(x,y),π(y,z)}, and π is also max-min
transitive. ��

��
Proposition 4.47 demonstrates that when strict preference is of type one, max-min
transitivity of an FWPR ρ implies max-min transitivity of the strict preference re-
lation derived from ρ . Like Proposition 4.38 and Example 4.39, this relationship
between the max-min transitivity of ρ and π(1) cannot be generalized to the case
of all regular strict relations because the ordinal concept of strict preference is in-
sufficient for the cardinal concept of max-min transitivity. Nonetheless, assuming
that strict preference is of type one allows us to show the max-min transitivity of
individual preference relations and obtain the following result.

Proposition 4.48. Let π = π(1), ρ̄ ∈FRn and f̃ be an FPAR defined in Definition
(4.45). Suppose ρi is max-min transitive for all i ∈ N. Then f̃ is max-min transitive.

Proof. Let x,y,z ∈ X . Suppose ρ̄ ∈ FR be such that ρi is max-min transitive for
all i ∈ N. If min{ f̃ (ρ̄)(x,y), f̃ (ρ̄)(y,z)} = τ(ρ̄), then the proof is complete. Sup-
pose the contrary. Then min{ f̃ (ρ̄)(x,y), f̃ (ρ̄)(y,z)} = 1. By the definition of f̃ ,
πi(x,y) > 0 and πi(y,z) > 0 for all i ∈ N. By Proposition 4.47, we have πi(x,z) ≥
min{πi(x,y),πi(y,z)} for all i∈N. Thus, πi(x,z)> 0 for all i∈N and f̃ (ρ̄)(x,z) = 1.
Hence, f̃ is max-min transitive. ��
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To see when f̃ (ρ̄) in Definition 4.45 is max-∗ transitive under any specified t-norm,
consider the following proposition, which uses the boundary condition to prove the
result.

Proposition 4.49. Let ρ ∈ FR be such that ρ is max-min transitive. Let ∗ be an
arbitrary t-norm. Then ρ is max-∗ transitive.

Proof. For any a,b ∈ [0,1], a ∗ b ≤ a ∗ 1 = a and a ∗ b ≤ 1 ∗ b = b by the boundary
condition of ∗. Because a ∗ b ≤ a and a ∗ b ≤ b, a ∗ b ≤ min{a,b}. Let x,y,z ∈ X .
By transitivity of ρ , ρ(x,z) ≥ min{ρ(x,y),ρ(y,z)} ≥ ρ(x,y) ∗ ρ(y,z). Hence, ρ is
max-∗ transitive. ��
We can now state another possibility result with less restrictive transitivity condi-
tions.

Theorem 4.50. Let π = π(1). Then there exists a nondictatorial f̃ : FR∗n →FR∗

satisfying IIA-1, IIA-3, weak Paretianism and the Pareto Condition.

Proof. Let f̃ be defined by Definition 4.45. Clearly, f̃ is reflexive and complete, and
it satisfies IIA-1, weak Paretianism and the Pareto Condition. By Proposition 4.46,
f̃ is IIA-3, and Proposition 4.49 generalizes Propositions 4.47 and 4.48. Thus, f̃ is
max-∗ transitive. ��
Theorem 4.50 achieves a more general possibility result, but using Definition (4.45)
has two important consequences. First, individual and social preferences must
be max-∗ transitive under the same t-norm definition. For example, given some
ρ̄ ∈ FRn, it is impossible to guarantee the max-min transitivity of f̃ (ρ̄) when ρ̄
is only max-∗ transitive under the drastic t-norm. Second, as illustrated by Dutta
(1987), adding the requirement of positive responsiveness to Theorem 4.50 will void
the possibility results. This occurs because, when f̃ (ρ̄)(x,y) = f̃ (ρ̄)(y,x) for some
x,y ∈ X , an individual i ∈ N switching from complete indifference between x and
y (ρi(x,y) = ρi(y,x)) to some strict preference between the two (ρi(x,y) �= ρi(y,x))
does not necessarily imply that the social preference will exhibit strict preference as
well ( f̃ (ρ̄)(x,y) �= f̃ (ρ̄)(y,x)).

Even with these two considerations, the importance of Theorems 4.43, 4.44, and
4.50 remains: the fuzzy Arrowian framework allows for the nondictatorial aggrega-
tion of fuzzy preferences in a manner that satisfies normative democratic criteria.
Further, as Theorem 4.31 demonstrates, the concept of a neutral FPAR can be used
to derive an aggregation rule that is unique and not necessarily dictatorial when, in
the exact case, neutrality implies dictatorship. Not only do the results in the fuzzy
preference framework reveal substantive conclusions that are distinct from previous
approaches using exact preferences, but also they suggest that the traditional, neg-
ative results of social choice theory are unsubstantiated when groups possess fuzzy
preferences.



4.3 Empirical Application II: The Spatial Model and Fuzzy Aggregation 81

4.3 Empirical Application II: The Spatial Model and Fuzzy
Aggregation

Section (4.2) discussed the difficulty that arises when using FWPRs in empirical
analyses. Most often, researchers will not have the necessary data to create indi-
vidual FWPRs for every member in a group of political actors. However, fuzzy
numbers can be used to represent the degree to which an actor views an alternative
as ideal i.e., the σ function, and an FWPR can be estimated using such a function.
This section further extends the analysis in Section (4.2) by illustrating how a fuzzy
preference aggregation rule can be used to predict policy decisons of a group of
actors.

In the spatial model, alternatives can be represented by k-dimensional Euclidean
space or R

k. When k = 1, σ is identical to the fuzzy numbers presented in the
previous empirical example, where, for some x ∈ X , σ(x) denotes the degree to
which x is ideal. In this case, σi : R1 → [0,1] for all i ∈ N. It is often assumed that σ
is normal, which requires there exists x ∈ X such that σ(x) = 1. In words, normality
ensures that every actor views at least one alternative as ideal. Let FN (X) denote
all the fuzy subsets of X such that the fuzzy subset is normal. When N is the set of
actors, it is assumed each actor prossesses a preference function, preference function
profile can be written as σ̄ = (σ1, . . . ,σn).

Table 4.1 Sigma Values of Four Alternatives

σ1(·) σ2(·) σ3(·)
w = .1 0 0 0
x = .5 0.33 1.0 0
y = .57 0.1 1.0 0.1
z = .68 0 0.2 0.65

Let N = {1,2,3} and let X = [0,1]⊂ R
1. Figure 4.1 presents a fairly traditional

profile of preference functions over the set of alternatives where no actor possesses
more than three areas of discrete indifference. For example, player 1 is indifferent
between all alternatives in the intervals [0, .1] and [.6,1] (σ1(x) = 0) and between all
alternatives in the interval [.35, .5] (σ1(x) = .33). The fuzzy numbers presented in
Figure 4.1 are sufficient to characterize the degree to which any alternative in X is
ideal for all three actors. Table 4.1 provides the sigma values of four alternatives in
X . Here, w ∈ X is outside the support of ideal alternatives for all three players, and
y ∈ X is in the support of ideal alternatives for all three players. In addition, y is in
the core of player two’s set of ideal alternatives.

Given the fuzzy preference functions in Figure 4.1, we can create preference
relations based on the degree to which each alternative is ideal. Section (4.2) gave
two examples of such procedures. First, for all x,y ∈ X and all σ ∈FN (X),

ρ(G)(x,y) = ∨{t ∈ [0,1] | σ(y)∗ t ≤ σ(x)},
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Fig. 4.1 Example of a Three Player Fuzzy Spatial Model

which can be simplified to the following if ∗= min:

ρ(G)(x,y) =

{
1 if σ(x)≥ σ(y),

σ(x) otherwise.

We have already shown that ρ(G) is reflexive, strongly connected and max-min tran-
sitive. Table 4.2 presents the preference profile ρ̄(G) over the four alternatives se-
lected in Table 4.1.

Table 4.2 Inferred FWPRs Using ρ(G)

i = 1 w x y z

w 1 0 0 1
x 1 1 1 1
y 1 .1 1 1
z 1 0 0 1

i = 2 w x y z

w 1 0 0 0
x 1 1 1 1
y 1 1 1 1
z 1 .2 .2 1

i = 3 w x y z

w 1 1 0 0
x 1 1 0 0
y 1 1 1 .1
z 1 1 1 1
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A second procudure used for inferring an FWPR from a preference function is

ρ(M)(x,y) =

⎧
⎨

⎩

1 if x = y,
(σ(x)−σ(y)+ c)∧1 if σ(x)≥ σ(y),

1− [σ(y)−σ(x)+ 1− c)∧1] otherwise.

where c ∈ [0,1] for all x,y ∈ X and σ ∈FN (X). It is obvious that ρ(M) is reflexive
and complete when c > 0.We also know ρ(M) is weakly transitive (see Proposition
(4.20)). If we set c to a specific value, we can infer another preference profile as well.
Let c = .5; Table 4.3 illustrates the preference profile ρ̄(M) in this case. In contrast to
ρ̄(G), the image of ρ̄(M) contains more elements for each actor than image of ρ̄(G).

Table 4.3 Inferred FWPRs Using ρ(M) when c = .5

i = 1 w x y z

w 1 .17 .4 .5
x .83 1 .73 .83
y .6 .27 1 .6
z .5 .17 .4 1

i = 2 w x y z

w 1 0 0 .3
x 1 1 .5 1
y 1 .5 1 1
z .7 0 0 1

i = 3 w x y z

w 1 .5 .4 0
x .5 1 .4 0
y .6 .6 1 0
z 1 1 1 1

We can now apply an FPAR f̃ to the preference profiles ρ̄(G) and ρ̄(M). When f̃

is the weighted mean rule from Definition (4.33), assume wi =
1
3 for all i ∈ N. Then

Table 4.4 illustrates f̃ (ρ̄(G)) and f̃ (ρ̄(M)) over the four alternatives {w,x,y,z}. When
f̃ is the fuzzy Pareto rule from Definition (4.45), assume τ(ρ̄(G)) = (ρ̄(M)) = .5, and
Table 4.5 reports the results of the fuzzy Pareto rule over the same four alternatives.

Table 4.4 The Weighted Mean Rule Using ρ̄(G) and ρ̄(M) when wi =
1
3

f̃ (ρ̄(G)) w x y z

w 1 .33 0 .33
x 1 1 .67 .67
y 1 .7 1 .7
z 1 .4 .4 1

f̃ (ρ̄(M)) w x y z

w 1 .22 .27 .27
x .78 1 .54 .61
y .73 .46 1 .53
z .73 .39 .47 1

Tables 4.4 and 4.5 reveal an important distinction between the weighted mean and
fuzzy Pareto rule. The weighted mean is more susceptible to the specific procedure
chosen to infer fuzzy preference relations than the fuzzy Pareto rule. While the fuzzy
Pareto rule returns two identical social preference relations regardless of how the
inidividual preference relations were created, the weighted mean exhibits significant
differences between the social preference relation from ρ̄(G) and the one from ρ̄(M).

We can also calculate the maximal sets from the four newly aggregated social
preference relations. In Section (4.2), the fuzzy maximal set is defined as follows:
for all x ∈ X ,
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Table 4.5 The Fuzzy Pareto Rule Using ρ̄(G) and ρ̄(M) when τ(ρ̄) = .5

f̃ (ρ̄(G)) w x y z

w 1 .5 .5 .5
x .5 1 .5 .5
y 1 .5 1 .5
z .5 .5 .5 1

f̃ (ρ̄(M)) w x y z

w 1 .5 .5 .5
x .5 1 .5 .5
y 1 .5 1 .5
z .5 .5 .5 1

M(ρ ,μ)(x)= μ(x)∗(�(∨{t ∈ [0,1] | μ(w)∗ρ(w,x)∗t ≤ ρ(x,w), ∀w∈Supp(μ)})),

where μ ∈F (X). M(ρ ,μ) can be simplified by assuming that μ(x) = 1 for all x ∈X
and ∗ = � = min. The first assumption acknowleges that all alternatives are fully
possible. The second merely specifies a t-nrom. With these two assumptions, the
maximal set can be written as

M(ρ ,X)(x) = (∧(∨{t ∈ [0,1] | ρ(w,x)∧ t ≤ ρ(x,w), ∀w ∈ X})).

As before, M(ρ ,X)(x) signifies the degree to which x ∈ X is a maximal alternative
given the FWPR ρ . Let S = {w,x,y,z} ⊆ X . Then Table 4.6 shows the final calcula-
tions for M( f̃ (ρ̄(G),S) and M( f̃ (ρ̄(M),S) where f̃ is either the weighted mean rule or
the fuzzy Pareto rule. Furthermore, Figure 4.2 plots the four maximal sets over the
entire set of alternatives. As before, the fuzzy Pareto rule returns identical results
regardless of the specific profile, and the core of the fuzzy Pareto’s maximal set is
the support all three players’ preference functions. In these cases (Figures 4.2(c)
and 4.2(d)), the researcher could predict almost any alternative to be selected by
the group of players. In contrast, the core of the weighted mean rule differs from
ρ̄(G) and ρ̄(M), which lead to different predictions about what alternative would be
selected. In Figure 4.2(a), the core of f̃ (ρ̄(G)) is the alternative where all three play-
ers’ fuzzy preference functions intersect at the maximum degree. In Figure 4.2(b),
however, the core of f̃ (ρ̄(M)) is the maximum intersection between players 2 and
3, which is the maximum intersection for any two players in the example. Hence,
f̃ (ρ̄(G)) appears to be more collegial and consensus-driven than f̃ (ρ̄(M)) when f̃ is
the wieghted mean rule.

Table 4.6 Results for M( f̃ (ρ̄(G),S) and M( f̃ (ρ̄(M),S)

Weighted Mean Fuzzy Pareto
M( f̃ (ρ̄(G),S) M( f̃ (ρ̄(M),S) M( f̃ (ρ̄(G),S) M( f̃ (ρ̄(M),S)

w 0 .22 .5 .5
x 0.67 1.0 1 1
y 1.0 .46 1 1
z 0.4 .39 1 1
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(a) Weighted Mean: ρ(G)
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(b) Weighted-Mean: ρ(M)
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(c) Fuzzy Pareto: ρ(G)
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(d) Fuzzy Pareto: ρ(M)

Fig. 4.2 Maximal Set

Using either FPAR, the procedures described in the definitions of ρ(G) and ρ(M)

allow for easy estimation of individual FWPRs without requiring researchers to
gather data concerning the degree to which an individual prefers every alternative
over every other alternative. When aggregating the individual preference relations,
the researcher can choose any number of FPARs, and the maximal set can clearly
relate the social preference relation back to individual preference functions. In the
example presented in this section, the weighted mean rule generates a maximal set
with one alternative in its core while the fuzzy Pareto rule results in a maximal set
whose core spans the support of the individual preference function.

References

Arrow, K.: Social Choice and Individual Values. Wiley, New York (1951)
Austen-Smith, D., Banks, J.S.: Positive Political Theory I: Collective Preference. University

of Michigan Press, Ann Arbor (1999)



86 References

Banerjee, A.: Fuzzy preferences and Arrow-type problems. Social Choice and Welfare 11,
121–130 (1994)

Barrett, C.R., Pattanaik, P.K., Salles, M.: Rationality and aggregation of preferences in an
ordinally fuzzy framework. Fuzzy Sets and Systems 49, 9–13 (1992)

Billot, A.: Economic theory of fuzzy equilibria: an axiomatic analysis. Lecture notes in eco-
nomics and mathematical systems. Springer (1992),
http://books.google.com/books?id=ml-7AAAAIAAJ

Black, D.: On Arrow’s impossibility theorem. Journal of Law and Economics 12(2), 227–248
(1969), http://EconPapers.repec.org/RePEc:ucp:jlawec:v:12:y:
1969:i:2:p:227-48

Blau, J.H.: A direct proof of Arrow’s theorem. Econometrica 40(1), 61–67 (1972),
http://EconPapers.repec.org/RePEc:ecm:emetrp:v:40:y:1972:i:
1:p:61-67

Dasgupta, M., Deb, R.: An impossibility theorem with fuzzy preferences. In: Logic, Game
Theory and Social Choice: Proceedings of the International Conference, LGS, vol. 99,
pp. 13–16 (1999)

Duddy, C., Perote-Peña, J., Piggins, A.: Arrow’s theorem and max-star transitivity. Social
Choice and Welfare 36(1), 25–34 (2011),
http://dx.doi.org/10.1007/s00355-010-0461-x

Dutta, B.: Fuzzy preferences and social choice. Mathematical Social Sciences 13(3), 215–229
(1987)

Fishburn, P.C.: On collective rationality and a generalized impossibility theorem. Review of
Economic Studies 41(4), 445–457 (1974),
http://ideas.repec.org/a/bla/restud/v41y1974i4p445-57.html

Fono, L.A., Andjiga, N.G.: Fuzzy strict preference and social choice. Fuzzy Sets Syst. 155,
372–389 (2005), http://dx.doi.org/10.1016/j.fss.2005.05.001

Fono, L.A., Donfack-Kommogne, V., Andjiga, N.G.: Fuzzy Arrow-type results without the
pareto principle based on fuzzy pre-orders. Fuzzy Sets and Systems 160(18), 2658–2672
(2009)

Fung, L.W., Fu, K.S.: An axiomatic approach to rational decision making in a fuzzy envi-
ronment. In: Zadah, L.A., Fu, K.S., Tanaka, K., Shimura, M. (eds.) Fuzzy Sets and Their
Applications to Cognitive and Decision Processes, ch. 10, pp. 227–256. Academic Pub-
lishers, New York (1975)

García-Lapresta, J.L., Llamazares, B.: Aggregation of fuzzy preferences: Some rules of the
mean. Social Choice and Welfare 17(4), 673–690 (2000),
http://dx.doi.org/10.1007/s003550000048

Inada, K.I.: Alternative incompatible conditions for a social welfare function. Economet-
rica 23(4), 396–399 (1955)

Little, I.M.D.: Social choice and individual values. Journal of Political Economy 60, 422
(1952)

May, K.O.: A set of independent necessary and sufficient conditions for simple majority
decision. Econometrica 20(4), 680–684 (1952),
http://dx.doi.org/10.2307/1907651

Mordeson, J.N., Clark, T.D.: Fuzzy Arrow’s theorem. New Mathematics and Natural Com-
putation 05(02), 371–383 (2009),
http://www.worldscientific.com/doi/abs/10.1142/
S1793005709001362

Ovchinnikov, S.: Social choice and łukasiewicz logic. Fuzzy Sets and Systems 43(3), 275–
289 (1991), Aggregation and Best Choices of Imprecise Opinions

http://books.google.com/books?id=ml-7AAAAIAAJ
http://EconPapers.repec.org/RePEc:ucp:jlawec:v:12:y:1969:i:2:p:227-48
http://EconPapers.repec.org/RePEc:ucp:jlawec:v:12:y:1969:i:2:p:227-48
http://EconPapers.repec.org/RePEc:ecm:emetrp:v:40:y:1972:i:1:p:61-67
http://EconPapers.repec.org/RePEc:ecm:emetrp:v:40:y:1972:i:1:p:61-67
http://dx.doi.org/10.1007/s00355-010-0461-x
http://ideas.repec.org/a/bla/restud/v41y1974i4p445-57.html
http://dx.doi.org/10.1016/j.fss.2005.05.001
http://dx.doi.org/10.1007/s003550000048
http://dx.doi.org/10.2307/1907651
http://www.worldscientific.com/doi/abs/10.1142/S1793005709001362
http://www.worldscientific.com/doi/abs/10.1142/S1793005709001362


References 87

Perote-Peña, J., Piggins, A.: Strategy-proof fuzzy aggregation rules. Journal of Mathematical
Economics 43(5), 564–580 (2007)

Richardson, G.: The structure of fuzzy preferences: Social choice implications. Social Choice
and Welfare 15, 359–369 (1998)

Salles, M.: Fuzzy utility. In: Handbook of Utility Theory: vol. 1: Principles, p. 321. Springer
(1998)

Sen, A.K.: Liberty, unanimity and rights. Economica 43(171), 217–245 (1976),
http://dx.doi.org/10.2307/2553122

Skala, H.: Arrow’s impossibility theorem: Some new aspects. In: Gottinger, H., Leinfellner,
W. (eds.) Decision Theory and Social Ethics, Theory and Decision Library, vol. 17, pp.
215–225. Springer, Netherlands (1978),
http://dx.doi.org/10.1007/978-94-009-9838-4_11

Ubeda, L.: Neutrality in arrow and other impossibility theorems. Economic Theory 23(1),
195–204 (2004), http://dx.doi.org/10.1007/s00199-002-0353-0

http://dx.doi.org/10.2307/2553122
http://dx.doi.org/10.1007/978-94-009-9838-4_11
http://dx.doi.org/10.1007/s00199-002-0353-0

	Arrow and the Aggregation of Fuzzy Preferences
	4.1Fuzzifying Arrow's Conditions
	4.1.1Transitivity
	4.1.2Weak Paretianism
	4.1.3Independence of Irrelevant Alternatives
	4.1.4Dictatorship

	4.2Making and Breaking Arrow's Theorem
	4.3Empirical Application II: The Spatial Model and Fuzzy Aggregation
	References




