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Preface

For almost a decade, three of the authors of this book (John N. Mordeson [Math-
ematics], Mark J. Wierman [Computer Science], and Terry D. Clark [Political Sci-
ence]) have engaged in an extensive research agenda applying fuzzy set logic to
social choice theory. That collaboration has been rewarding on a number of dimen-
sions. Among the most rewarding aspects has been the students who have joined
us in that collaboration. Michael Gibilisco, the primary author of this book, is one
of those students. Like Michael, many of our students have discovered the joys of
research and subsequently gone on to pursue the Ph.D. Even among those who have
not, the intellectual commitment and rigor that the effort has demanded has assisted
d virtually all of them in discovering their life’s vocation.

Of course, the discoveries that we have made along the way have been reward-
ing as well. While our research agenda has its genesis in the desire to apply formal
models to empirical problems, the theoretical work has necessarily consumed a sub-
stantial degree of our effort and attention. This book is in many ways a summary of
what we have discovered about theory. Nonetheless, at the conclusion of each of the
chapters that follow we make a conscious effort to discuss empirical applications.

The social choice issues that we address are those that one familiar with the re-
search agenda would expect. We give consideration to the effects of applying fuzzy
logic to Arrow’s Impossibility Theorem, Black’s Median Voter Theorem, and the
Gibbard-Sattherthwaite Theorem. Along the way we consider varying definitions
of key concepts in social choice theory. As the chapters demonstrate, a fuzzy ap-
proach admits of a good deal more variation in these definitions than the customary
approach allows. It is therefore not surprising that many of the theorems no longer
hold under certain conditions. What is even more surprising, however, is how re-
silient the major social choice theorems are. While they no longer hold under certain
fuzzy definitions, they hold under most of them.

We admit that this is contrary to what we expected when we began our effort
almost a decade ago. At that time, it seemed to us that the problems that empiricists
were having with applying social choice theory to their work owed to the perverse
outcomes rooted in a mathematics that assumed too much precision in human think-
ing. The fuzzy approach intuitively seemed to offer a possible solution by modeling
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less precision and clarity in human thinking on preferences and preference orders.
While this has turned out to be the case in a number of instances, thereby permitting
a marginal decrease in the estimation error on the part of fuzzy counterparts to fa-
miliar models in the comparative politics literature, the estimated outcome are still
not what we might like them to be. But we will hold that conversation for a subse-
quence volume on our empirical applications. In this volume, we focus on mostly
on our theoretical conclusions.

The volume’s primary author, Michael B. Gibilisco, is currently pursuing the
Ph.D. in political science at the University of Rochester. Michael wishes to ac-
knowledge that his work benefitted from the faculty and students in the Fuzzy
Mathematics Research Colloquium throughout the years. In particular, he is grate-
ful to Carly Goodman for her patience when reading drafts and listening to the
rough beginnings of ideas. Michael also extends his thanks to Creighton University’s
Graduate School, specifically, the International Relations department, for research
support. John N. Mordeson dedicates this book to his grandparents Katherine and
John Niece and Mary Ellen and Nels Mordeson. Mark J. Wierman dedicates this
book to Mary K. Dobransky. Annie Gowen thanks her co-authors, whose guidance
and patience made her work possible. She dedicates her contribution to her dearest
friend, Matthew Cockerill, for his unfailing encouragement. Karen Albert, who in-
tends to pursue the Ph.D. in political science, would like to dedicate her work in this
book to her parents, James and Carol Albert. Terry D. Clark dedicates his work in
this book to his wife of thirty-seven years, whom he adores, Marnie.

Creighton University, John N. Mordeson
Omaha, NE, Mark J. Wierman
December, 2013 Terry D. Clark
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Chapter 1
Fuzzy Social Choice

Abstract. This chapter presents general concepts and definitions which will be used
throughout this book. A fuzzy subset is defined as a collection of values between 0
and 1 which represents a degree of membership of each element in the set. When
comparing two elements from two sets and the degree of preference for one element
to the other, we call this a fuzzy relation.

1.1 The Purpose and Plan of the Book

There is a growing literature extending fuzzy set mathematics to traditional social
choice theory. Fuzzy social choice articles have been published in a number of the
best journals in both economics and fuzzy mathematics. However, this literature is
marked by a wide degree of variation in assumptions and definitions. Even the non-
specialist would fail to note the lack of a standard model for fuzzy social choice.
Moreover, the literature fails to draw connections between the major theorems, treat-
ing them in isolation from one another. The goal of this book is to present a com-
prehensive analysis of fuzzy set theoretic models of social choice. We address four
major areas with which scholars have concerned themselves:

• the existence of a Maximal Set,
• Arrow’s Theorem,
• the Gibbard-Sattherthwaite Theorem, and
• the Median Voter Theorem.

Our aim in addressing each of these problems is to contribute to the development
of fuzzy social choice theory. Toward that end, we review the past literature, its
assumptions, and the relationship between these assumptions. We then extend that
literature while endeavoring to illustrate the relationships between these four major
research concerns. Finally, our motive in considering these issues is not only to
contribute to theory but to encourage empirical research using fuzzy approaches.
Toward the latter end, we present applications of fuzzy social choice that we believe
will be conducive to empirical research.

M.B. Gibilisco et al., Fuzzy Social Choice Theory, 1
Studies in Fuzziness and Soft Computing 315,
DOI: 10.1007/978-3-319-05176-5_1, © Springer International Publishing Switzerland 2014



2 1 Fuzzy Social Choice

The book is organized as follows. In chapter two, we consider the existence of a
maximal set for fuzzy preference relations. We demonstrate that a non-empty maxi-
mal set is guaranteed to exist for fuzzy preference relations under conditions that are
considerably less restrictive than those required in the conventional model. More-
over, a non-empty maximal set may exist even in the absence of these conditions.
In chapter three, we consider Arrow’s Theorem. We find that under certain condi-
tions a fuzzy aggregation rule will satisfy all five Arrowian conditions, to include
non-dictatorship. The fact that Arrow’s result no longer holds under these conditions
is an important conclusion that should encourage further theoretical and empirical
work. In chapter four, we turn our attention to the Gibbard-Sattherthwaite (G-S)
Theorem which is closely tied in the conventional social choice literature to Ar-
row’s Impossibility Theorem. Past considerations of the G-S Theorem have focused
on fuzzy individual preferences. Chapter four argues that when both individuals
and groups can choose alternatives to various degrees, social choice can be both
strategy-proof and non-dictatorial. In chapter five, we consider the Median Voter
Theorem. When preferences are single-peaked and fuzzy strict preferences satisfy
certain properties (that they are both partial and regular), we demonstrate the condi-
tions under which a non-empty fuzzy maximal set is guaranteed. Moreover, we find
that Black’s Median Voter Theorem holds when fuzzy preferences are strict, but it
no longer does so when fuzzy preferences are weak. We conclude and address is-
sues that remain to be considered in chapter six. Before proceeding, we give a brief
consideration to the general concepts that provide the baseline assumptions for our
treatment of fuzzy social choice.

1.2 General Concepts

1.2.1 Sets

Let S be a set and let A and B be subsets of S. We use the notation A∪B and A∩B to
denote the union and intersection of A and B, respectively. We also let B\A denote
the relative complement of A in B. The (relative) complement of A in S, S \ A, is
sometimes denoted by Ac when S is understood. It is easily verified that

(A∪B)c = Ac ∩Bc

and

(A∩B)c = Ac ∪Bc.

These equations are known as DeMorgan’s Laws.
Let x be an element of S. If x is an element of A, we write x ∈ A, otherwise we

write x /∈ A. We use the notation A ⊆ B or B ⊇ A to denote that A is a subset of
B. If A ⊆ B and there exists x ∈ B such that x /∈ A, then we write A ⊂ B or B ⊃ A
and we say that A is a proper subset of B. The cardinality of A is denoted by |A|.
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The power set of A, written P(A), is defined to be the set of all subsets of A, i.e.,
P(A) = {B | B ⊆ A}.

Let A be a subset of a set S. Define 1A : S → {0,1} by ∀x ∈ S, 1A(x) = 1 if x ∈ A
and 1A(x) = 0 otherwise. Then 1A is called the characteristic function of A in S.

We shall use the following conventions to represent some standard sets:

N the set of positive integers,
Z the set of integers,
Q the set of rational numbers, and
R the set of real numbers.

Let X and Y be sets. If x ∈ X and y ∈ Y , then (x,y) denotes the ordered pair
of x with y. The Cartesian cross product of X with Y is defined to be the set
{(x,y) | x ∈ X , y ∈ Y} and is denoted by X ×Y . At times we write X2 for X × X .
In fact, for n ∈ N, we let Xn denote the set of all ordered n-tuples of elements from
X . A relation R of X into Y is a subset of X ×Y . Let R be such a relation. Then the
domain of R, written Dom(R), is

Dom(R) = {x ∈ X | ∃y ∈ Y such that(x,y) ∈ R}

and the image of R, written Im(R), is

Im(R) = {y ∈ Y | ∃x ∈ X such that (x,y) ∈ R} .

If (x,y) ∈ R, we sometimes write xRy or R(x) = y. If R is a relation from X into X ,
we say that R is a relation on X .

Definition 1.1. A relation R on X is called:

(i) reflexive if ∀x ∈ X , (x,x) ∈ R;
(ii) symmetric if ∀x,y ∈ X , (x,y) ∈ R implies (y,x) ∈ R;

(iii) transitive if ∀ x,y,z ∈ X , (x,y), (y,z) ∈ R implies (x,z) ∈ R.
(iv) antisymmetric If ∀x,y ∈ X , (x,y) ∈ R and (y,x) ∈ R implies x = y.
(v) complete If ∀x,y ∈ X , (x,y) ∈ R or (y,x) ∈ R or both.

Definition 1.2. If R is a reflexive, antisymmetric and transitive relation on X , then R
is called a partial order on X and X is said to be partially ordered by R.

Example 1.3. Let A be the set {a,b,c}. The subsets of A are partially ordered under
the relation “subset-of”. Thus {a,b}⊆ {a,b,c} but the relation is not complete since
{a,b} and {b,c} are not comparable. Neither is a subset of the other.

Definition 1.4. If R is a reflexive, complete, and transitive, then R is a weak order.

Example 1.5. Suppose we have four football teams α , β , γ and δ in a division and
the standings are R = (δ ,γ,α,β ). Implicitly this means δ Rγ Rα Rβ . Then δ leads
the division, but it is possible that δ and α are tied. In fact they all the teams could
be tied. However we cannot have that β has a better record than δ . This is a weak
order.
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Definition 1.6. If, in addition to being reflexive, antisymmetric and transitive, R is
complete then R is a total order which is also called a linear order.

Example 1.7. The Natural numbers under “less than or equal” are totally ordered.

Definition 1.8. Let R be a relation of X into Y , and T a relation of Y into a set
Z. Then the composition of R with T , written T ◦ R, is defined to be the relation
{(x,z) ∈ X ×Z | ∃y ∈ Y such that (x,y) ∈ R and (y,z) ∈ T }.

If f is a relation of X into Y such that Dom( f ) = X and ∀x, x′ ∈ X , x = x′ implies
f (x) = f (x′), then f is called a function of X into Y and we write f : X → Y . Let
f be a function of X into Y . Then f is sometimes called a mapping of X into Y . If
∀y ∈ Y, ∃x ∈ X such that f (x) = y, then f is said to be onto Y or to map X onto
Y . If ∀x, x′ ∈ X , f (x) = f (x′) implies x = x′, then f is said to be one-to-one and f
is called an injection. If f is a one-to-one function of X onto Y , then f is called a
bijection. If g is a function of Y into a set Z, then the composition of f with g, g◦ f ,
is a function of X into Z which is one-to-one if f and g are one-to-one and which is
onto if f onto Y and g is onto Z.

Definition 1.9. If Im( f ) is finite, then f is called finite-valued. We say that an infi-
nite set X is countable if there exists a one-to-one function of N onto X , otherwise
X is called uncountable.

We use the notation
∨

to denote maximum or supremum and
∧

to denote minimum
or infimum. For a function f whose domain is X ×X , we sometimes write f �A for
the restriction of f to A×A, where A is a subset of X .

1.2.2 Fuzzy Subsets

Fuzzy set theory holds that many things in life are matters of degree (Zadeh,
1965; Klir and Yuan, 1995). Let S be a set and let [0,1] denote the closed inter-
val {x ∈R | 0 ≤ x ≤ 1}. A fuzzy subset μ of S is a function μ : S → [0,1]. We think
of μ as assigning to each element x ∈ S a degree of membership 0 ≤ μ(x) ≤ 1. We
call μ a membership function.

Example 1.10. Let S = {a,b,c,d} and define the fuzzy set μ as follows, set μ(a) =
1.0, μ(b) = 0.7, μ(c) = 0.0, and μ(d) = 0.3. Thus a is completely compatible with
the concept μ while b is only very compatible. On the other hand c is incompatible
with the notion conceptualized by μ and d is somewhat incompatible.

Let μ be a fuzzy subset of S. We let μ t= {x ∈ S | μ(x)≥ t} for all t ∈ [0,1]. The set
μ t is called a level set or t-level set. We let Supp(μ) = {x ∈ S | μ(x) > 0}. We call
Supp(μ) the support of μ .

The set of all fuzzy subsets of S is denoted by F (S) and is called the fuzzy power
set of S.

Definition 1.11 (null set). We let θ denote the fuzzy subset of S defined by θ (x) = 0
for all x ∈ S, this null set is the equivalent of the crsip empty set.
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Example 1.12. Let μ be as in example 1.10 then μ0.5 = {a,b} and Supp(μ) =
{a,b,d}.

For any a,b ∈ [0,1] we denote a ∧ b = min(a,b) and a ∨ b = max(a,b) . More
generally, for any {ai}i∈I ⊆ [0,1] we denote

∧
i∈I ai = inf{ai | i ∈ I} and

∨
i∈I ai =

sup{ai | i ∈ I} .

Definition 1.13. Let μ and ν be fuzzy subsets of S. Then we write:

(i) μ ⊆ ν if μ(x) ≤ ν(x) for all x ∈ S;
(ii) μ ⊂ ν if μ⊆ ν and ∃x ∈ S such that μ(x)< ν(x);

(iii) μ = ν if μ⊆ ν and ν⊆ μ.
Definition 1.14. Let μ and ν be fuzzy subsets of S. Then;

(i) the union of μ and ν is defined to be the fuzzy subset μ ∪ ν of S such that
μ ∪ν(x) = μ(x)∨ν(x) for all x ∈ S;

(ii) the intersection of μ and ν is defined to be the fuzzy subset of μ ∩ν of S such
that μ ∩ν(x) = μ(x)∧ν(x) for all x ∈ S.

Table 1.1 Union, Intersection and Compliments of Fuzzy Sets

S μ ν μ ∪ν μ ∩ν μc

a 1.0 0.8 1.0 0.8 0.0
b 0.7 0.5 0.7 0.5 0.3
c 0.0 0.1 .01 0.0 1.0
d 0.3 1.0 1.0 0.3 0.7

Definition 1.15. Let μ be a fuzzy subset of S. The complement of μ in S, written
μc, is defined by μc(x) = 1− μ(x) for all x ∈ S.

1.2.3 Fuzzy Relations

Definition 1.16. Let S and T be sets. A fuzzy relation ρ of S into T is a function
ρ : S × T → [0,1]. If ρ is a fuzzy relation of S into S, we say that ρ is a fuzzy
relation on S.

Definition 1.17. Let ρ be a fuzzy relation of S into T and σ� a fuzzy relation of T
into a set U . Define ρ ◦σ : S×U → [0,1] by ∀(x,z) ∈ S×U ,

ρ ◦σ(x,z) =
∨

y∈T

ρ(x,y)∧σ(y,z) .

The fuzzy relation ρ ◦σ is called the composition of ρ with σ .
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Example 1.18. A simple example of a binary fuzzy relation ρ on S= {1,2,3}, called
“approximately equal” can be defined as

ρ(1,1) = ρ(2,2) = ρ(3,3) = 1, (1.1)

ρ(1,2) = ρ(2,1) = ρ(2,3) = ρ(3,2) = 0.6, (1.2)

ρ(1,3) = ρ(3,1) = 0.2 . (1.3)

In other words, ρ(x,y) = 1 if x = y, 0.6 if |x− y| = 1, 0.2 if |x− y| = 2. In matrix
notation the relation ρ can be represented as

ρ 1 2 3

1 1.0 0.7 0.4
2 0.7 1.0 0.7
3 0.4 0.7 1.0

.

Definition 1.19. Let ρ be a fuzzy relation on S. Then ρ is called:

(i) reflexive if ρ(x,x) = 1 for all x ∈ S;
(ii) symmetric if ρ(x,y) = ρ(y,x) for all x,y ∈ S;

(iii) max-min transitive if ρ(x,z) ≥ ∨
y∈S ρ(x,y)∧ρ(y,z) for all x,z ∈ S.

Example 1.20. Let S = {a,b}, T = {1,2,3}, U = {g,h}, and let ρ : S × T → [0,1]
and σ : T ×U → [0,1] be given by the following tables

ρ 1 2 3

a 0.8 0.1 0.3
b 1.0 0.7 0.5

σ g h

1 0.2 0.3
2 1.0 1.0
3 0.5 0.1

(1.4)

then the sup–min composition of ρ and σ , ρ ◦σ , is given by the table
ρ ◦σ g h

a 0.3 0.3
b 0.7 0.7

.

1.2.4 Fuzzy Intersection and Union

Occasionally we will need types of fuzzy intersections and fuzzy unions other than
minimum and maximum, respectively. These can be expressed as binary operations
on the unit interval [0,1].

Definition 1.21. A t-norm i is a binary operation on the unit interval [0,1] that sat-
isfies the following conditions: ∀a,b,c ∈ [0,1],

(1) i(a,1) = a (boundary condition);
(2) b ≤ c implies i(a,b)≤ i(a,c) (monotonicity);
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(3) i(a,b) = i(b,a) (commutativity);
(4) i(a, i(b, c)) = i(i(a,b), c) (associativity).

The following are examples of some t-norms that are frequently used as fuzzy in-
tersections. . In each case, we have for ∀a,b ∈ [0,1]:

Standard intersection: i(a,b) = a∧b.
Algebraic product: i(a,b) = ab.
Bounded difference: i(a,b) = 0∨ (a+ b− 1).
Drastic intersection:

i(a,b) =

⎧
⎪⎨

⎪⎩

a if b = 1,

b if a = 1,

0 otherwise.

Definition 1.22. A t-conorm is a binary operation u on the unit interval [0,1] that
satisfies the following conditions: ∀a,b,c ∈ [0,1],

(1) u(a,0) = a (boundary condition)
(2) b ≤ c implies u(a,b)≤ u(a,c) (monotonicity)
(3) u(a,b) = u(b,a) (commutativity)
(4) u(a, u(b, c)) = u(u(a,b), c) (associativity)

The following are examples of some t-conorms that are frequently used as fuzzy
unions. In each case, we have for ∀a,b ∈ [0,1]:

Standard union: u(a,b) = a∨b.
Algebraic sum: u(a,b) = a+ b− ab.
Bounded sum: u(a,b) = 1∧ (a+ b).
Drastic union:

u(a,b) =

⎧
⎪⎨

⎪⎩

a if b = 0,

b if a = 0,

1 otherwise.

1.2.5 Residuum

We now define a new binary operation → on [0,1], called implication or residuation.

Definition 1.23 (standard residuum). For all a,b ∈ [0,1] the standard residuum is
defined as

a → b =
∨

{t ∈ [0,1] | a∧ t ≤ b} .

For any t–norm i we can define a corresponding residuum operator via the fol-
lowing definition.
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[residuum] For any continuous t–norm i and for all a,b ∈ [0,1] the residuum is
defined as

a →i b =
∨

{t ∈ [0,1] | i(a, t)≤ b} .

The following are examples of residuum operators corresponding to some t-
norms that are frequently used as fuzzy intersections. In each case, we have for
∀a,b ∈ [0,1]:

Standard intersection residuum: i(a,b) = a∧b and a simple calculation yields the
standard residuum

a → b =

{
1 if a ≤ b

b if a > b
.

Algebraic product residuum: i(a,b) = ab yields

a → b =

{
1 if a ≤ b

b if a > b
.

Bounded difference residuum: i(a,b) = 0∨ (a+ b− 1)

a → b =

{
1 if a ≤ b

b if a > b
.

The following two lemmas collect some basic properties of the residuum and its
interaction with the max and min operators.

Lemma 1.24. Klement et al. (2000); Turunen (1999) For any a,b,c ∈ [0,1] the fol-
lowing properties hold:

(1) i(a,b)≤ c iff a ≤ b → c;
(2) i(a,a → b) = i(a,b);
(3) a ≤ b iff a → b = 1;
(4) a = 1 → a;
(5) 1 = a → a;
(6) a → (b → c) = i(a,b)→ c = b → (a → c)

Lemma 1.25. Klement et al. (2000); Turunen (1999) For any {ai}i∈ ⊆ [0,1] and
a ∈ [0,1] the following properties hold:

(1) (
∨

i∈I ai)∧a =
∨

i∈I (ai ∧a)
(2) a → (

∨
i∈I ai) =

∨
i∈I (a → ai)

(3) (
∨

i∈I ai) → a =
∨

i∈I (ai → a)
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Chapter 2
Classical Social Choice Theorems

with John F. Zimmer V.

Abstract. This chapter presents the classical versions of Arrow’s Theorem, the
Gibbard-Sattherthwaite Theorem, the Median Voter Theorem and the maximal set.
By presenting the classical versions of these theorems, this chapter sets up the fuzzy
versions presented in later chapters.

Introduction

Here we present informal proofs of the classical versions of three theorems that are
the focus of the rest of this book.

2.1 Arrows Theorem

Let X be a set of alternatives and N = {1,2, . . . ,n} a set of actors. We will always
assume that |X |= m and that m ≥ 3.

Each actor i has a preference profile Ri ∈ P(X × X) and if (x,y) ∈ Ri we write
xRi y and say that actor i prefers x to y. We assume that the relation Ri is reflexive,
complete, and transitive, i.e., it is a weak order.

Definition 2.1. Given the binary relation, R, ∀x,y ∈ X , P is the asymmetric deriva-
tion of R, where xPy ⇔ (xRy and ¬(xRy) and I is the symmetric derivation of R,
where xI y ⇔ (xRy and yRx).

Definition 2.2 (strict preference). A preference relation that is asymetric is called
a strict preference relation.

We note that the asymmetric derivation of a preference relation R is always a
strict preference P.

A preference profile R̄ is an n–tuple of preference relations so that

R̄ = (R1,R2, . . . ,Rn) .

Let R designate the set of all weak orders on X and Rn the set of all preferece
profiles.

M.B. Gibilisco et al., Fuzzy Social Choice Theory, 11
Studies in Fuzziness and Soft Computing 315,
DOI: 10.1007/978-3-319-05176-5_2, © Springer International Publishing Switzerland 2014
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Definition 2.3 (restriction). Let S be a non-empty subset of Xand R an element of
R. We write R�S as shorthand for R�S×S, i.e., for R̄ = (R1,R2, . . . ,Rn) ∈ Rn by R̄�S

we mean R̄�S = (R1�S×S, . . . ,Rn�S×S). Thus, R̄�S is the restriction of the preference
profile R̄ to the subset S× S.

Definition 2.4 (preference aggregation rule). A function f : Rn → R is called a
preference aggregation rule.

Hence, a preference aggregation rule (PAR) relates a R̄ ∈ Rn to a social preference
relation f (R̄) ∈R. For x,y ∈ X , x f (R̄)y represents that society, or more specifically
the set N of actors, views x as at least as good as y.

A PAR, f , can have any of the following properties.

Definition 2.5 (universal admissibility). All conceivable combinations of order-
ings on X are admissible as rankings of the choices.

Definition 2.6 (monotonicity). If an actor in a preference profile increases the po-
sition of x in their ranking then x can not decrease in the ranking produced by the
PAR.

Definition 2.7 (independence of irrelevant alternatives (IIA)). The ranking of x
and y by the PAR depends only on the rankings of x and y by the actors. Specifically,
the relative position of z is irrelevant. If we have two preference profiles R̄ and R̄′
then R̄�{x,y} = R̄′�{x,y} implies f (R̄)�{x,y} = f (R̄′)�{x,y}.

Definition 2.8 (non-imposition). The PAR profile is not independent of the actors
profiles. That is, we cannot have xRy for some distinct x,y ∈ X for all preference
profiles R̄ where R = f (R̄).

Definition 2.9 (non-dictatorship). There does not exist a k ∈ N such that ∀x,y ∈
X xRky ⇒ xRy or, equivalently, Rk = f (R̄).

Definition 2.10 (weakly Paretian). If everyone agrees on x over y, then it must be
so for the PAR, ∀i ∈ N xRiy ⇒ xRy. This is also called unanimity.

Each preference profile Ri corresponds to an ordering of the elements of X such
that if x appears in the ordered m–tuple Li = (xi1,xi2, . . . ,xim) before y then xRi y. We
will use the interchangeability of the m–tuple and the relation in the proofs below.
When we say that (a,b,c) is a preference profile we mean that a Rb Rc (note that
a Rc is also true by transitivity).

The following Lemma will make the proof clearer.

Lemma 2.11 (Extremal). Choose an arbitrary element b from X. Let R̄ be a prefer-
ence profile where for every actor alternative b is either the first or the last element
of the weak order. Let f be an aggregation rule and let R be f (R̄). Suppose f sat-
isfies IIA and unanimity. Then b must be the first or last element of the weak order
induced by R.
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Table 2.1 The Stairstep Method

Profile
Actor

1 2 3 · · · n-1 n PAR

Q0 = R̄ R1 R2 R3 · · · Rn−1 Rn f (Q̄0) = b
Q1 R′

1 R2 R3 · · · Rn−1 Rn f (Q̄1) =?
Q2 R′

1 R′
2 R3 · · · Rn−1 Rn f (Q̄2) =?

Q3 R′
1 R′

2 R′
3 · · · Rn−1 Rn f (Q̄3) =?

...
...

...
...

. . .
...

...
Qn−1 R′

1 R′
2 R′

3 · · · R′
n−1 Rn f (Q̄n−1) =?

Qn = R̄′ R′
1 R′

2 R′
3 · · · R′

n−1 R′
n f (Q̄n) = a

Proof. For each Ri in R̄ let its associated weak order produce the m–tuple Li =
(xi1,xi2, . . . ,xim). What happens if b is not at the extremes of R? Then there must be
alternatives a and c such that in R aRb and bRc. For each Ri in R̄ if a comes before
c in the corresponding m–tuple then switch their positions. For this mutated prefer-
ence profile R̄′ we still have that aggregation will produce aR′b and bR′c because
IIA says we can ignore the rankings of a versus c. Transitivity of R′ says that aR′c
since aR′b and bR′c; but by unanimity we would also have cR′a a contradiction,
proving the lemma. ��
Theorem 2.12 (Arrow). A PAR that satisfies unanimity, IIA, and non-dictatorship
is impossible.

Proof. Let a,b,c ∈ X be three distinct elements of X . First we show that there is an
actor that dictates the choice between a and b. Second we show this actor Dictates
the choice between a and c. Finally we show this actor Dictates the choice between
b and c.

(1) Let R̄ be a preference profile where every actor detest b. Thus in R̄ we have for
every i ∈ N that actor i ranks b as the last element of its associated m–tuple. Let
R̄′ be a preference profile where every actor adores b. Thus in R̄′ we have for
every i ∈ N that actor i ranks b as the last element of its associated m–tuple. For
x �= b both R̄ and R̄′ are identical. .

Construct the sequence of profiles R̄0 = R̄, R̄1 , R̄2, . . . , R̄n = R̄′ where
in each profile R̄i actor i switches from detesting b to adoring b so that b is
now the first element of the associated m–tuple. This procedure is illustrated in
Table 2.1.

By unanimity R0 = f (R̄0) has b last and Rn = f (R̄n) has b first. Note also
that aR0 b since b is last in R0 and that that bRn a since b is first in Rn. By the
Extremal Lemma f (R̄i) always puts b first or last. Let k be the first actor in the
sequence of preference profiles where b switches from last to first. We note that,
by monotonicity, once b is put first it will stay first.

actor k is called the Pivotal actor.
For the next step actors 1, . . . ,k − 1, will constitute Block I and actors

k+ 1, . . .n will constitute Block II.
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We note that by IIA, as long as all the voters in Block I and the Pivot have b
before a and all the actors in block II have a before b then the aggregation will
have a over b. When Blocks I or II are empty, the Pivot gets their preference
between options a and b even though all other actors disagree.

(2) Construct Q̄ as follows
(i) Block I ranks b above c and c above a.
(ii) Pivot actor ranks a above b and b above c.
(iii) Block II ranks a above b and b above c.
and let Q = f (Q̄). Since all players have kept the relative positions of a and b
the same as in profile R̄k−1 of step (1), by IIA aQb. By unanimity bQc. Finally,
by transitivity aQc. If Block II is empty this is still true even though the pivot is
the only one who prefers a over c.

(3) Now construct a new Q̄′ as follows
(i) Block I ranks c above b and b above a.
(ii) Pivot actor ranks b above a and a above c.
(iii) Block II ranks a above c and c above b.

and let Q′ = f (Q̄′). Since all players have kept the relative positions of a and
b the same as in profile R̄k of step (1), by IIA bQa. By unanimity cQb. Finally,
by transitivity cQa. If Block I is empty this is still true even though the Pivot is
the only one who prefers a over c.

The Pivot thus always gets its choice when a and c are considered. ��

2.2 Discussion

Arrow’s original presentation introduced five contradictory assumptions. It turned
out that not all of the assumptions were neccesary (Inada, 1955; Blau, 1972).

Proposition 2.13. Monotonicity and non-imposition imply weak Paretianism
(Unanimity).

Proof. Assume monotonicity and non-imposition. By non-imposition there must be
a preference profile R̄ such that xRy. Use the stairstep method to produce profiles R̄i

where at each step Rii switches (if neccesary) to prefering x to y. By monotonicity
we have for all i ∈ N that Ri = f (R̄i) has xRiy. But R̄n is unanimous prefernce for
for x over y and we have weak Paretianism. ��
Following the simplification of Arrow’s conditions (Blau, 1972), scholars generally
attempted a different approach to the theorem. It was Arrow who first suggested
relaxing the restrictions of the theorem in order to circumvent its unpleasant im-
plications for social choice (Arrow, 1951). Subsequently, scholars have attempted
to weaken individual conditions of the theorem, with varying levels of success. We
examine each of these in turn. Many arguments regarding the admissibility of in-
dividual preferences are preempted by Arrow’s discussion of welfare economics.
Attempts to reduce the minimally required domain from the universe to some finite
number have resulted in only a stronger theorem (Border, 1984, 2002; Quesada,
2002).
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Other endeavors regarding universal admissibility do not directly relate to the
relaxation of this restriction. Campbell and Kelly, for instance, experiment with the
domain of social welfare functions in order to explore the logical relation between
various impossibility theorems (Campbell and Kelly, 2000, 2003). The attempts to
relax the condition of universal admissibility fail in circumventing the paradox of
Arrow’s Theorem.

Independence of irrelevant alternatives (henceforth IIA) was actually the condi-
tion first targeted in the literature as being too restrictive. Hansson argues that the
independence condition is completely inconsistent with democratic methods of ag-
gregation (Hansson, 1969). His findings, however, lack empirical support and are
based on theoretical concepts completely exogenous to Arrow’s Theorem. These
arguments have not had lasting impacts. A more interesting development in regard
to the independence condition was introduced by Murakami (1968), and was for-
malized by Blau prior to her reformation of the General Possibility Theorem. Blau
argues for a weakened independence condition by presenting the concept of m–
ary independence, as opposed to binary independence (IIA). The concept of m–ary
independence increases the subset of alternatives on which a preference must be
dependent from two to some finite number. Just as IIA calls for an individual’s
preference between two alternatives to be based solely upon those two alternatives,
Blau’s concept calls for a preference relation between three (or some larger finite
number) alternatives to be based solely upon those three (or larger finite number)
alternatives. For some numbers of alternatives, Blau finds that m-ary independence
implies IIA. For others, m-ary independence does not imply IIA, but the conclusion
of Arrow’s Theorem holds.

Campbell and Kelly (2007) introduce the concept of independence of some al-
ternatives (ISA), weaker version of m-ary independence. This concept requires that
a social preference over two alternatives be based solely upon the preference rela-
tion over a larger subset of the universe of alternatives. This number can vary, but
must be larger than two. Coban builds upon this work, exploring the relationship
between weakening unanimity and IIA (2009). The results of these works are in-
teresting, as they have varying levels of success. The General Theorem, however,
remains largely intact. Unanimity, also referred to by the literature as weak Pare-
tianism, has been shown to have a natural tradeoff with other Arrovian conditions.
A version of Arrow’s Theorem which excludes unanimity has been proved by sev-
eral scholars (Wilson, 1972; Kelsey, 1984; Campbell and Kelly, 1997). In general,
these results are not promising. Any attempt to relax or remove unanimity as an
Arrovian condition results in a weakened transitivity over preference relations. In
addition to relaxing each Arrovian condition, scholars have attempted to relax the
axiomatic assumptions of the theorem. An approach by contemporary scholars has
been to relax the degree to which preferences are rational. Quasi-transitivity was in-
troduced shortly following the introduction of Arrow’s Theorem (Sen, 1969; Salles,
1976), but was found to have no substantial impact on the results of the theorem.

Acyclicity, an even weaker assumption of rationality, was then introduced (Blair
and Pollak, 1982; Kelsey, 1984; Austen-Smith and Banks, 1999). The weakening of
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rationality has resulted in some intriguing findings. As scholars weaken the rational-
ity requirement, the condition of dictatorship is generally weakened, as well. As ra-
tionality is weakened from transitivity to quasi-transitivity and acyclicity, however,
a dictatorship, of sorts, still exists. Scholars have consistently shown that a dictator-
ship, oligarchy, or collegium will result, depending upon the level to which rational-
ity is relaxed. (Blair and Pollak, 1982; Weymark, 1984; Kelsey, 1984; Austen-Smith
and Banks, 1999). The literature has succeeded in providing academia with a sim-
pler, generally accepted form of the theorem. The findings of the theorem, however,
have continued to remain intact, despite nearly sixty years of scholarly criticism.
The continual failure of conventional approaches has caused some to look for new
solutions, namely fuzzy mathematical approaches.

2.3 Gibbard-Sattherthwaite Theorem

Let X be a set of alternatives and N = {1,2, . . . ,n} a set of actors. We will always
assume that |X |= m and that m ≥ 3.

Most proofs of the Gibbard-Sattherthwaite Theorem rely upon utility functions
and the minus sign notation. We will also assume in this section that each Actor’s
preference relation is strict.

A utility function u maps each element of X to a real number, thus u : X →
R. Now each strict preference profile P corresponds to a utility function u in the
following way: given a utility function u we create a preference P by having uPy if
u(x)> u(y). In terms of the ordered m–tuple L = (x1,x2, . . . ,xm) that corresponds to
the preference relation R we have that u(x1) > u(x2) > .. . > u(xm). Thus we can
present an actor i’s preference simply as the result of a utility function ui.

We can thus think of a preference profile as an element in U = Un, so that a
preference profile is ū = (u1,u2, . . . ,un). The minus sign notation just divides a
preference profile into us, ui, and them, u−i , which is all of the other n − i util-
ity/preferences. Thus ū = (ui, ū−i).

Table 2.2 The Stairstep Method with Utility Notation

Profile
Actor

1 2 3 · · · n-1 n PAR

w0 = ū u1 u2 u3 · · · un−1 un f (w̄0) = a
w1 v1 u2 u3 · · · un−1 un f (w̄1) =?
w2 v1 v2 u3 · · · un−1 un f (w̄2) =?
w3 v1 v2 v3 · · · un−1 un f (w̄3) =?
...

...
...

...
. . .

...
...

wn−1 v1 v2 v3 · · · vn−1 un f (w̄n−1) =?
wn = v̄ v1 v2 v3 · · · vn−1 vn f (w̄n) = b
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Definition 2.14 (voting rule). A voting rule is a mapping f from U the set of all
utility functions to X .

In this situation we assume that f produces a unique best choice. Like presidential
elections, someone must eventually be chosen.

A voting rule is manipulatable if there is some actor i who can get an outcome he
prefers by altering his utility function from ui to u′

i. Mathematically this is expressed
by ui ( f ((u′

i, ū−i))) > ui ( f (ū)). If a voting rule is not manipulatable, it is called
strategy-proof.

In terms of a voting rule, a dictator should get a result that is among his highest
utility choices. This can be expressed as ui ( f (ū)) ≥ ui(x) for ∀x ∈ X .

Lemma 2.15 (Strategy proof => Monotonicity). Suppose that a voting rule f is
strategy-proof, that ū ∈ U and that f (ū)=a. Then f (v̄) = a for all utility profiles
v̄ ∈ U where ∀x ∈ X and i ∈ N we have that

vi(a) ≥ vi(x) if ui(a)≥ ui(x) . (2.1)

Proof. Suppose that there is a utility profile v̄ that satisfies Eq. 2.1. Remember that
ū = (u1,u2, . . . ,un) and ū = (v1,v2, . . . ,vn).

Let w̄0 = ū and construct w̄1 by changing the utility of the first actor from u1 to v1

so that the new utility profile looks like w̄1 = (v1, ū−1), see Table 2.2. If f (w̄1) = b
then, by strategy proofness, it follows that v1(a) ≤ v1(b), or else actor one could
strategically promote a favored a by substituting preference v1 for u1 in ū. Strategy-
proofness also dictates that v1(b) ≤ v1(a), or else actor one could strategically pro-
mote a favored b by substituting preference u1 for v1 in w̄1. Since we are dealing
with strict preference a = b.

We now construct w̄2 from w̄1 by changing the utility of the second actor from
u2 to v2 so that the new utility profile looks like w̄2 = (v2, w̄1−1) . If f (w̄2) = b then,
we repeat the argument for actor one above for actor two to show that b = a.

Continuing this argument until we reach wn we arrive at the truth of the
lemma. ��
Lemma 2.16 (Strategy proof => Unanimity). Suppose that a voting rule f is
strategy-proof and onto. If ū ∈ U and there are distinct a,b ∈ X such that ui(a) >
ui(b) for all actors i ∈ N, then f (ū) �= b.

Proof. Suppose that f (ū) = b. Since f is onto there is some profile that produces
a, let us call it v̄. Create the preference profile w̄ where for every actor i ∈ N we
have wi(x) = ui(x) for x ∈ X \{a,b} and assign a and b large utility so that for each
x ∈ X \ {a,b}

wi(a)> wi(b)> wi(x) .

We again build a sequence of profiles starting from w̄0 = w̄ where actor i switches
from ui(x) to vi(x) for x ∈ X \ {a,b}. By the Monotonicity Lemma 2.15 it fol-
lows that b = f (ū) = f (w̄0) and that a = f (v̄) = f (w̄n). The Pivot actor k, where
f changes from b to a or some x distinct from b can now apply strategy since
wk(a)> wk(b)> wk(x). ��
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Independence of irrelevant alternatives can be restated for voting rules thusly. If
f (ū) = a and the utility of only alternative b is changed in v̄, that is ū�X\{b} =
v̄�X\{b}, then f (v̄) must be either a or b. That is, c �= a,b is irrelevant in the change
from ū to v̄ and cannot be the choice.

Lemma 2.17 (Strategy proof => IIA). Suppose that a voting rule f is strategy-
proof and onto. Then f is independent of irrelevant alternatives.

Proof. Suppose that f (ū) = a. Let some actor i, decreases its utility for choice z.
By monotonicity, a must remain the result of the voting rule. On the other hand,
suppose actor i increases its utility for z from ui(z) to vi(z)? Suppose that the winning
candidate is b when actor i uses preference v. Let wi(b) = min [ui(b),vi(b)]. Under
the ū preference scheme a is chosen, so by monotonicity a is still selected when
the profile is (wi, ū−i). However, under the (vi, ū−i) system b is elected, and by
monotonicity b is elected in (wi, ū−i). This is a contradiction. Thus, both system
must elect the same candidate. ��
Theorem 2.18 (Gibbard-Satterthwaite Theorem). [Gibbard (1973); Satterth-
waite (1975); Austen-Smith and Banks II (2005)] A voting rule that is onto, and
strategy proof is dictatorial.

Proof. We have shown that such a rule is IIA, monotonic and satisfies unanimity.
Thus Arrow’s theorem applies. ��

2.4 The Median Voter Theorem

For the median voter theorem we must move to spatial models. Let X =R be the real
number line and assume that each actor i ∈ N has a preference profile that is single
peaked. This means that there is a utility function ui : X → R which is maximal at
some ideal point xi ∈ X and monotonically non-increasing as we move away from
the ideal point.

A majority voting rule chooses a over b if over half the actors prefer a to b or,
f (ū�{a,b}) = a if |{i ∈ N | ui(a)> ui(b)}|> n

2 .

Definition 2.19 (Condorcet winner). A Condorcet winner is a policy point x ∈ X
that is the winner versus any other feasible policy point in a pairwise vote.

Theorem 2.20 (The Median Voter Theorem). Suppose that |N| is an odd num-
ber, that individuals vote “truthfully” rather than strategically and that we use a
majority voting rule.

Then, a Condorcet winner always exists and coincides with the median-ranked
ideal point, xm.

Proof. Order the set N according to the ideal points xi of each actor and label the
median-ranked ideal point by xm. Here the assumption that N has an odd number of
actors ensures pm is unique and well defined. Let y be a point in X such that y < xm.
By the assumption of single peakedness every actor to the right of the median voter
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has ui(y)< ui(pm) and if we add the median voter to the voters to his right then they
will choose xm over y by majority vote. If instead we pick a z > xm then the voters
to left of the median voter together with the median voter will form a majority the
will prefer xm to z. ��

2.5 The Maximal Set

The maximal set under exact preferences R is

M(R,X) = {x ∈ X | xRy, ∀y ∈ X},
Imagine a group consisting of three individuals, N = {1,2,3}, and three choices

X = {a,b,c}.
Suppose that the preferences are R1 = (a,b,c), R2 = (b,c,a) and R3 = (c,a,b).

If f is majority rule then R = f (R̄) gives aRb since the subset of individuals who
prefer a to b, {1,3}, consists of two out of three actors, a majority. We also have the
f (R̄) giving bRc since the subset of individuals who prefer b to c, {1,2}, consists
of two out of three actors. Finally we have f (R̄) giving cRa since the subset of indi-
viduals who prefer c to a, {2,3}. consists of two out of three actors. This introduces
a cycle and there is no maximal set in this case. This is the Condorcet paradox.

The maximal set represent the optimal choices produced by a preference rule. We
see here that this set can be empty. In this case there is no best choice.
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Chapter 3
Rationality of Fuzzy Preferences

Abstract. Abstract Social choice theory is built upon the presupposition of rational-
ity. At an individual level, rationality requires completeness and transitivity. Com-
pleteness refers to a preference where an individual either prefers x to y, y to x or
is indifferent between the two options. Transitivity means that if there are three op-
tions and an individual prefers x to y and y to z, then they must also prefer x to z.
This chapter considers how these two conditions work under fuzzy preferences to
present a unified approach to the rationalization of fuzzy preferences. Specifically,
fuzzy weak preference relations are shown to provide social scientists with greater
flexibility when applying fuzzy social choice to empirical examples.

Introduction

Social choice theory presupposes a basic idea of rationality. At a fundamental level,
two criteria define a rational individual. First, when presented with two options, x
and y, an individual will either prefer x to y, prefer y to x, or be indifferent between
the two. This first criterion is called completeness. Second, if an individual hap-
pens to prefer x to y and prefers y to another alternative z, then the same individual
must prefer x to z. The second criterion is called transitivity. With the assumptions
of completeness and transitivity, it is a fairly straightforward process to construct a
binary preference relation R, in which xRy means x is at least as good as y, and to de-
marcate R into two components, a strict preference relation (P) and an indifference
relation (I). Using these constructions, social choice scholars restrict preferences in
such a way as to replicate the supposed thought process and behavior of a rational
individual.1

This parsimony is not retained when generalizing R with a fuzzy binary rela-
tion, which allows individuals to possess varying degrees of preferences. When
the relations R, P and I are fuzzy subsets and their elements possess degrees of

1 For a review of the traditional conceptualizations of rational preference relations, McCarty
and Meirowitz’s (2007) chapter one provides an introductory text and Austen-Smith and
Banks (1999) offer a more technical approach.

M.B. Gibilisco et al., Fuzzy Social Choice Theory, 21
Studies in Fuzziness and Soft Computing 315,
DOI: 10.1007/978-3-319-05176-5_3, © Springer International Publishing Switzerland 2014



22 3 Rationality of Fuzzy Preferences

membership, there are no immediate fuzzy counterparts to the previous definitions
of completeness and transitivity. Furthermore, there does not exist a single necessary
relationship between the relations. The purpose of this chapter is to flush out these
complexities of fuzzy preferences and present a unified approach to the rationaliza-
tion of fuzzy preferences. To do so, we divide the the chapter into three sections. The
first section considers how individuals compare one alternative to another. We pro-
pose several restrictions on fuzzy preferences, illustrate the consequences of these
restrictions, and define fuzzy binary preferences used in the rest of the book. The
second section then details how fuzzy preferences behave across pairwise compar-
isons. The section then reviews consistency conditions and demonstrates how the
conditions apply to the existence of the maximal set. The third section concludes
the chapter with a discussion of a fuzzy utility that is empirically applicable and its
relation to the fuzzy preferences described in previous sections.

3.1 The Structure of Fuzzy Preference Relations

Let X be a finite set of alternatives, where |X | ≥ 2. These are the only restrictions
placed on X in this section. Later in the book, we will show how our results apply
to cases in which |X | is infinite.

Definition 3.1 (FWPR). A fuzzy weak preference relation (FWPR) is a function
ρ : X ×X → [0,1].

For a FWPR, ρ(x,y) is the degree to which x is as good as y. We can interpret
ρ(x,y) = 1 as expressing that x is definitely at least as good as y and ρ(x,y) = 0 as
expressing that x is definitely not at least as good as y. Let F (X2) denote the set of
all fuzzy relations on X . We call ρ exact if ρ : X × X → {0,1}. In the exact case,
ρ represents the characteristic function of a traditional binary preference relation.
Finally, we use a concept called the support of ρ , written Supp(ρ) which picks out
all the elements of ρ with non-zero membership grades:

Supp(ρ) = {(x,y) ∈ X ×X | ρ(x,y)> 0} .

We wish to begin restricting ρ in such a way as to faithfully replicate the ra-
tionality criterion of completeness. By doing so, we can begin to see necessary
relationships between the relations. When considering how individuals compare
two alternatives, we need to define and discuss two independent ideas: reflexivity
and completeness. Reflexivity of ρ has a uniform definition across the fuzzy social
choice literature.2 It is given in Definition 1.19and repeated for sake of clarity in
Definition 3.2.

Definition 3.2. [reflexive] An FWPR ρ is reflexive if for all x ∈ X , ρ(x,x) = 1.

2 Of course, significant exceptions exist (see Billot (1992) and Ponsard (1990) for the most
prominent examples). However, in these cases ρ(x,y) refers to the preference for x over y,
and ρ(x,x) refers to the intrinsic value of x and varies between 0 and 1. This interpretation
makes it quite difficult to dissemble ρ into indifference and strict preference relations.
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Reflexivity of ρ allows us to say that every alternative is definitely equally as good as
itself. Furthermore, with the assumption, we can now dissemble ρ into its symmetric
and asymmetric components.

Definition 3.3 (symmetric). The fuzzy binary relation ι is symmetric if, for all
x,y ∈ X , ι(x,y) = ι(y,x); and the fuzzy binary strict preference relation π(x,y) is
asymmetric if, for all x,y ∈ X , π(x,y)> 0 =⇒ π(y,x) = 0.

In Chapter 1 we introduce t–conorms which model the union operation of fuzzy
sets. We denoted an arbitrary t–conorm as u(a,b) but in this Chapter we will denote
an arbitrary t–conorm as ∪ and write μ ∪ν as the result of applying the t–conorm
component-wise to the fuzzy sets μ and ν .

Definition 3.4 (components). We say ι,π ∈F (X2) are components of an FWPR ρ
if there exists some t–conorm ∪ : [0,1]× [0,1]→ [0,1] such that ρ = ι ∪π . In theory,
ι and π respectively represent the indifference and strict preference relations of ρ .

In contrast, the fuzzy counterpart of completeness varies across the social choice
literature and the following definitions are more or less traditional representations
of completeness.

Definition 3.5 (connected). A FWPR ρ is

(1) strongly connected if, for all x,y ∈ X , max{ρ(x,y), ρ(y,x)} = 1;
(2) connected if, for all x,y ∈ X , ρ(x,y)+ρ(y,x)≥ 1;
(3) complete if, for all x,y ∈ X , max{ρ(x,y), ρ(y,x)} > 0.

Dutta (1987) implicitly assumes strong connectedness; Richardson (1998) and Fono
and Andjiga (2005) use connectedness; and Barrett et al. (1986) proposes complete-
ness in the context of fuzzy strict preference relations. A more specific form of con-
nectedness is reciprocalness, which requires ρ(x,y)+ρ(y,x) = 1. All definitions are
equivalent when ρ is exact. Obviously, 3.5(1) implies 3.5(2) implies3.5(3), but the
converses are not necessarily true as the next example illustrates.

Example 3.6. Let X = {a,b,c}. Let ρ1, ρ2, ρ3 be reflexive FWPRs and defined as
follows:

(1) ρ1(a,b) = ρ1(a,c) = ρ1(c,b) = 1,
(2) ρ2(a,b) = ρ2(a,c) = ρ2(c,b) = .8,
(3) ρ3(a,b) = ρ3(a,c) = ρ3(c,b) = .4,
(4) ρk(b,a) = ρk(c,a) = ρk(b,c) = .3 for all k ∈ {1,2,3}, and
(5) ρk(a,a) = ρk(b,b) = ρk(c,c) = 1 for all k ∈ {1,2,3}.

Then ρ1 is strongly connected, connected and complete, compared to ρ2, which is
connected and complete but not strongly connected. Finally, ρ3 is complete but not
strongly connected and not connected.

Connectedness places more restrictions on FWPRs than completeness. Under con-
nectedness, if ρ(x,y) = 0, then it must be true that ρ(y,x) = 1. The fuzzy complete-
ness condition represents the strongest break away from traditional social choice
approach, with minimal requirements on fuzzy preferences.
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Throughout the subsequent sections, we will make use of all three definitions
to better detail the structure of fuzzy preferences. However, for the time being, we
assume that ρ is complete and reflexive. Without putting any other restrictions on
ρ , ι and π , we observe several relationships among the fuzzy relations.

Proposition 3.7. Let ρ , ι and π be fuzzy relations such that

(i) Supp(ρ) = Supp(ι)∪Supp(π),
(ii) ι is symmetric, and

(iii) π is asymmetric.

Then the following properties hold:

(1) For all x,y ∈ X, π(x,y)> 0 and ι(x,y) = 0 if and only if ρ(x,y)> 0 and ρ(y,x)=
0.

(2) For all x,y, ι(x,y)> 0 if and only if ρ(x,y)> 0 and ρ(y,x)> 0.

Proof

(1) Suppose π(x,y)> 0 and ι(x,y) = ι(y,x) = 0. Then (x,y)∈ Supp(ρ) by (i). Since
(iii) implies π(y,x) = 0, ρ(y,x) = 0 by (i). Conversely, suppose ρ(x,y)> 0 and
ρ(y,x) = 0. Then (x,y) ∈ Supp(ι)∪ Supp(π) and (y,x) �∈ Supp(ι)∪ Supp(π).
Thus, ι(x,y) = ι(y,x) = 0 and so π(x,y)> 0.

(2) Suppose ι(x,y)> 0, then ι(x,y) = ι(y,x)> 0, by (ii). Then, by (i), (x,y),(y,x) ∈
Supp(ρ). Conversely, suppose ρ(x,y) > 0 and ρ(y,x) > 0. Then (x,y), (y,x) ∈
Supp(ι) ∪ Supp(π). Because (iii) implies either (x,y) /∈ Supp(π) or (y,x) /∈
Supp(π), it follows that (x,y),(y,x) ∈ Supp(ι). ��

Proposition 3.7 represents the “bare essentials” of fuzzy preferences that must be
true with very minimal assumptions. Condition (1) of the proposition tells us that x
is strictly preferred to y to some degree and the two alternatives possess no degree
of indifference to each other only when x is at least as good as y to some degree but
y is definitely not at least as good to x. Condition (2) then stipulates x and y share
some degree of indifference if and only if x is at least as good as y, and vice versa,
to some degree.

Proposition 3.8. Let ρ , ι and π be fuzzy relations such that

(i) Supp(ρ) = Supp(ι)∪Supp(π),
(ii) ι is symmetric, and

(iii) π is asymmetric.

Then (1) if and only if (2) and (2) implies (3).

(1) Supp(ι)∩Supp(π) = /0.
(2) For all x,y ∈ X, π(x,y)> 0 implies ρ(x,y)> 0 and ρ(y,x) = 0.
(3) For all x,y ∈ X, ρ(x,y) = ρ(y,x) implies π(x,y) = π(y,x) = 0.
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Proof

(1) =⇒ (2): Let x,y ∈ X . Suppose π(x,y) > 0. Since Supp(ι) ∩ Supp(π) = /0,
ι(x,y) = ι(y,x) = 0. By (i), ρ(x,y) > 0. Suppose ρ(y,x) > 0. Then by (i),
π(y,x)> 0, but by (iii), this is impossible. Thus, ρ(x,y)> 0 and ρ(y,x) = 0.

(2) =⇒ (1): Contrary to the hypothesis, suppose there exists (x,y) ∈ Supp(ι)∩
Supp(π). Then π(x,y)> 0 and ι(x,y) = ι(y,x) > 0. By (2), π(x,y)> 0 implies
ρ(x,y) > 0 and ρ(y,x) = 0. However, ρ(y,x) = 0 and ι(y,x) > 0 is impossible
by (1). Thus, there does not exist (x,y) ∈ Supp(ι)∩Supp(π), and accordingly,
Supp(ι)∩Supp(π) = /0.

(2) =⇒ (3): Suppose ρ(x,y) = ρ(y,x). If either π(x,y)> 0 or π(y,x)> 0, then by
(2), ρ(x,y) �= ρ(y,x). Hence, π(x,y) = π(y,x) = 0. ��

Proposition 3.8 demonstrates the implications of a fairly inconspicuous assumption
of the empty intersection between the indifference and strict preference relation,
which naturally holds for exact preference relations. If the intersection is indeed
empty (Proposition 3.8, condition 1), then x is strictly preferred to y to some degree
when y is definitely not as least as good as x. In addition, the proposition shows that
there can be no strict preference of x over y or y over x if condition 1 holds and
ρ(x,y) = ρ(y,x).

More importantly, Proposition 3.8, condition 2 illustrates the mutual exclusive-
ness of ι and π under the assumption that Supp(ι)∩Supp(π) = /0. Formally, if (1)
holds, then it is easily verified that ι(x,y) = ι(y,x)> 0 implies π(x,y) = π(y,x) = 0.
The condition of Supp(ι)∩Supp(π) = /0 has significant consequences for the men-
tality of a political actor. If he possess even the slightest degree of strict preference
of x over y, then he does not feel any degree of indifference between the two. The
problem occurs when the actor’s preference is extremely minimal, as in the case
when ι(x,y) = ι(y,x) = 0 even though π(x,y) = .001. Likewise, if he possesses the
slightest degree of indifference between the two alternatives, there is no possibil-
ity that he will also possess strict preference over the two as well. Thus, while the
first and third relationships in Proposition 3.8, seem like fairly natural fuzzifications
of the traditional preference relations, the fact that ι and π are mutually exclusive
under Supp(ι)∩Supp(π) = /0, regardless of their specific values, suggests that the
transformation is too rigid.

Before we can consider properties of ρ , ι and π , we need to assume further
structure on ρ .

Definition 3.9 (union axioms). Let A, B, C, and D be fuzzy subsets of S. Let ∪ :
[0,1]× [0,1]→ [0,1]. Then, ∪ satisfies the Union Axioms if the following hold:

Boundary Condition

B(x) = 0 =⇒ (A∪B)(x) = A(x);

Monotonicity

A(x)≥ B(x) & C(x) ≥ D(x) =⇒ (A∪C)(x)≥ (B∪D)(x) .
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The Union Axioms are quite general and represent the basics of any type of fuzzy
union Klir and Yuan (1995). For instance, if we also assume that ∪ is associative
((A ∪ B)∪C = A ∪ (B ∪C)) and commutative (A ∪ B = B ∪ A) then ∪ can be any
triangular co-norm.3 In addition, Fono and Andjiga (2005) define quasi-subtraction
of ∪, denoted ∪, as

A(x)∪B(x) =
∧

{t ∈ [0,1] | A(x)∪ t ≥ B(x)} .

For the time being, we do not place any further assumptions on ∪ besides conditions
1 and 2 in Definition 3.9. Doing so allows Richardson (1998) and Fono and Andjiga
(2005) to make the following observations.

Proposition 3.10. Let ρ be an FWPR on X such that

(i) ρ = ι ∪π ,
(ii) ι is symmetric, and

(iii) π is asymmetric.

Then ι(x,y) = min{ρ(x,y), ρ(y,x)}.

Proof. Let x,y ∈ X . Using the Union Axioms (Definition 3.9) and (i), we know
ρ(x,y) ≥ ι(x,y) and ρ(y,x) ≥ ι(y,x). Since ι is symmetric we know that

ι(x,y) = ι(y,x) ≤ min{ρ(x,y), ρ(y,x)} .

Since π is asymmetric either π(x,y) = 0 or π(y,x) = 0. Suppose π(y,x) = 0. Then
ι(y,x) = ρ(y,x). Hence, ι(x,y) = min{ρ(x,y), ρ(y,x)}. The argument is symmetric
when π(x,y) = 0. ��
It is important that we are able to obtain a unique operator of ι(x,y) under very
minimal assumptions. Indeed, if there is a theoretical reason not to have ι(x,y) =
min{ρ(x,y), ρ(y,x)}, one would need to violate either the monotonicty of ∪ or one
of the (i-iii) criteria in Proposition 3.10, which are essential axioms of traditional
social choice theory. In addition, if we would like to begin constructing a unique
function for π , we must adopt another characteristic of π , which is commonly as-
sumed in the literature Banerjee (1994); Dutta (1987); Ponsard (1990).

Definition 3.11 (simple). Let ρ be an FWPR. Then its asymmetric counter part π is
simple if, for all x,y ∈ X , ρ(x,y) = ρ(y,x) implies π(x,y) = π(y,x).

It is easy to extrapolate that, because π is asymmetric, simplicity implies π(x,y) =
π(y,x) = 0 when ρ(x,y) = ρ(y,x). Note that simplicity is identical to condition (3)
in Proposition 3.10. Simplicity merely allows us to retain this property without the
more stringent assumption of Supp(ι)∩ Supp(π) = /0. In addition, the simplicity
assumption creates the following relationship between ρ and π .

3 For a thorough discussion on triangular norms and co-norms see Klement, Mesiar and Pap
(2000).



3.1 The Structure of Fuzzy Preference Relations 27

Proposition 3.12. Let ρ be an FWPR on X such that

(i) ρ = ι ∪π ,
(ii) ι is symmetric, and

(iii) π is asymmetric.

If π is simple, then for all x,y ∈ X, the following hold:

(1) ρ(y,x) ≤ ρ(x,y) ⇐⇒ π(y,x) = 0.4

(2) ρ(x,y)> ρ(y,x) ⇐⇒ π(x,y)> 0.

Proof

(1) Suppose there exist x,y ∈ X such that ρ(y,x) ≤ ρ(x,y) and contrary to the
hypothesis, π(y,x) > 0. Then π(x,y) = 0 by (iii). Since π(y,x) > π(x,y) and
ι(x,y) = ι(y,x), ρ(y,x)≥ ρ(x,y) by the Union Axioms. Thus, ρ(x,y) = ρ(y,x).
Because π is simple, π(x,y)= π(y,x), which establishes a contradiction. Hence,
π(y,x) = 0. Conversely, suppose π(y,x) = 0. Then by the Union Axioms and
Proposition 3.10, ρ(y,x) = ι(y,x) = min{ρ(x,y), ρ(y,x)} and so ρ(y,x) ≤
ρ(x,y).

(2) The desired result follows from the proof of (1) because ρ(x,y)> ρ(y,x) ⇐⇒
π(x,y)> 0 is the contrapositive of ρ(y,x) ≤ ρ(x,y) ⇐⇒ π(y,x) = 0. ��

The relationships derived in Proposition 3.12 create the basis for a regular strict
preference relation.

Definition 3.13 (regular). Let ρ be an FWPR. Then its asymmetric counterpart π
is regular if π(x,y)> 0 if and only if ρ(x,y)> ρ(y,x).

In fact, we can combine Propositions 3.10 and 3.12 to obtain the converse relation-
ships between the structure on ρ and the relationships among the fuzzy relations.

Corollary 3.14. Suppose

(i) ι(x,y) = min{ρ(x,y), ρ(y,x)},
(ii) π is regular and

(iii) ρ(x,y)> ρ(y,x) implies ρ(x,y) = ι(x,y)∪π(x,y) where ∪ satisfies the Union
Axioms.

Then the following hold:

(1) ρ(x,y) = ι(x,y)∪π(x,y),
(2) ι is symmetric,
(3) π is asymmetric,
(4) π is simple.

4 Richardson (1998) demonstrates the necessity of this condition. Here the proof is strength-
ened to show sufficiency as well.
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Proof. By (i), ι is symmetric. By (ii), π is asymmetric. Suppose ρ(x,y) = ρ(y,x),
then π(x,y) = 0 = π(y,x) by (ii). Thus, π is simple.

Suppose ρ(y,x)≥ ρ(x,y). Then ι(x,y)∪π(x,y) = ρ(x,y)∪0 = ρ(x,y) by (i) and
(ii). Now suppose ρ(x,y)> ρ(y,x). Then, ρ(x,y) = ι(x,y)∪π(x,y) by (iii). ��
We are unable to establish a unique function for π(x,y) even when assuming reg-
ularity. The problem derives from the lack of structure on ∪, even while assuming
the Union Axioms. For instance, we assume that ρ(x,y) = ι(x,y)∪π(x,y) and that
π is regular. By Corollary 3.14, we know ρ(x,y) = min{ρ(x,y), ρ(y,x)}∪π(x,y).
If ρ(x,y) ≤ ρ(y,x), then we have a trivial case where ρ(x,y) = ι(x,y) = ρ(x,y) be-
cause π(x,y) = 0 by regularity. When ρ(x,y)> ρ(y,x), we have ρ(x,y) = ρ(y,x)∪
π(x,y). To solve for π(x,y), we must consider specific operations of the set union
of two fuzzy sets.

Definition 3.15 (unions 1-4). Let A and B be fuzzy subsets. Then, ∪1, ∪2, ∪3 and
∪4 are defined as follows:

(1) Gödel union ∪1

(A∪1 B)(x) = max{A(x), B(x)} ,
(2) Łukasiewicz union ∪2

(A∪2 B)(x) = min{1, A(x)+B(x)} ,

(3) Strict union ∪3

(A∪3 B)(x) =

⎧
⎨

⎩

B(x) if A(x) = 0
A(x) if B(x) = 0

1 otherwise,

(4) Algebraic union ∪4

(A∪4 B)(x) = A(x)+B(x)−A(x)B(x) .

∪1, ∪2, ∪3 and ∪4 are three t-conorms, among many, for taking the set union of two
fuzzy sets. In fact, Fono and Andjiga (2005) use the Intermediate Value Theorem to
show that we can derive an operation for π when ∪ is any continuous t-conorm. We
consider ∪1 and ∪2, the Gödel and Łukasiewicz t-conorms, respectively, because
they are common to the literature (Banerjee, 1993; Barrett et al., 1986; Richardson,
1998) and are the most intuitive. We consider ∪3 because, for any t-conorm ∪,

(A∪1 B)(x) ≤ (A∪B)(x)≤ (A∪3 B)(x)

(Fodor and Roubens, 1994). Finally, ∪4 is the algebraic sum t-conorm and expresses
the union of two independent events in probability theory. Using Definition 3.15, we
can now derive a unique derivation of π .
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Proposition 3.16. Let ρ be an FWPR on X such that

(i) ρ = ι ∪1 π ,
(ii) ι is symmetric, and

(iii) π is asymmetric.

Then π is simple if and only if the following equation holds:5

π(x,y) =
{

ρ(x,y) if ρ(x,y)> ρ(y,x) ,
0 otherwise.

Proof. Assume π is simple. Let x,y ∈ X . By (i), ρ(x,y) ≥ π(x,y). We have two
cases to consider. First, suppose ρ(x,y) > ρ(y,x). Assume ρ(x,y) > π(x,y). Then
ρ(x,y) = ι(x,y) = ι(y,x) = ρ(y,x) by Definition 3.15 and Proposition 3.10. How-
ever, this contradicts ρ(x,y) > ρ(y,x), and thus, ρ(x,y) = π(x,y). Second, suppose
ρ(x,y) ≤ ρ(y,x). If ρ(x,y) = ρ(y,x), then π(x,y) = π(y,x) = 0, by simplicity and
(iii). If ρ(x,y) < ρ(y,x), then, by the previous argument, π(y,x) = ρ(y,x) > 0.
Hence, π(x,y) = 0, by (iii).

Conversely, suppose

π(x,y) =
{

ρ(x,y) if ρ(x,y)> ρ(y,x),
0 otherwise.

Then ρ(x,y) = ρ(y,x) implies π(x,y) = π(y,x) = 0. Hence, π is simple. ��
The unique π derived in Proposition 3.16 is not a new derivation. In fact, Ovchin-
nikov (1981) first proposed the definition of π , and Dutta (1987) used Proposition
3.16 to describe the dictatorial results of fuzzy aggregation rules, a subject consid-
ered in detail in Chapter 4. However, the definition was subsequently rejected in
Banerjee (1994); Richardson (1998) as an illogical conception because it ignores
the value of ρ(y,x). The following example demonstrates the concern.

Example 3.17. Let X = {a,b} and let ρ1 and ρ2 be reflexive FWPRs. Suppose the
following values for ρ1 and ρ2.

(1) ρ1(a,b) = 1 and ρ1(b,a) = .99;
(2) ρ2(a,b) = 1 and ρ2(b,a) = .01.

Then π1(a,b) = π2(a,b) = 1, where π1 and π2 are the asymmetric components of
ρ1 and ρ2, respectively.

Thus, if we use the definition of fuzzy strict preference derived in Proposition 3.16,
then the difference between ρ(x,y) and ρ(y,x) is irrelevant to the value of π(x,y).

In response, Banerjee (1994) suggests using the definition of ∪2; however, ∪2 is
insufficient to derive a unique π operation with the conditions presented in Proposi-
tion 3.16. Consequently, he suggests two more conditions for consideration:

5 Necessity was first shown in Dutta (1987), but we strengthen the relationship here to in-
clude sufficiency.



30 3 Rationality of Fuzzy Preferences

(1) ι(x,y)+π(x,y)≤ 1, for all x,y ∈ X , and
(2) ρ(x,y)< 1 implies π(y,x)> 0.

In effect, condition (1) constrains the degree of strict preference and indifference.
Thus, if an individual possesses some degree of strict preference of x over y, then this
degree of strict preference allows the same individual to possess a limited amount
of indifference. For example, if π(x,y) = .6, then ι(x,y)≤ .4. The second condition
is less intuitive. It requires that if an individual is not completely confident that
x is at least as good as y, then the individual must possess some degree of strict
preference for alternative y over x. In doing so, the second condition imposes strong
connectedness on ρ because of the asymmetry of π . Under this condition, it is easily
verified that ρ(x,y) = 1 or ρ(y,x) = 1 because π(x,y) or π(y,x) must equal zero.
Under these conditions, Banerjee (1994) proves the following proposition:

Proposition 3.18. Let x,y ∈ X. Let ρ be an FWPR on X such that

(i) ρ = ι ∪2 π ,
(ii) ι is symmetric,

(iii) π is asymmetric,
(iv) ι(x,y)+π(x,y)≤ 1, and
(v) ρ(x,y)< 1 implies π(y,x)> 0.

Then the following equation holds:

π(x,y) = 1−ρ(y,x).

Proof. By (i) and (iv), ρ(x,y) = π(x,y)+ ι(x,y). There are two cases to consider.
First, suppose, ρ(y,x) = 1. Then ρ(x,y) ≤ ρ(y,x). By Proposition 3.16, π(x,y) = 0
and ρ(x,y) = ι(x,y). Thus, ρ(x,y) = ι(x,y) and π(x,y) = 1−ρ(y,x).

Second, suppose ρ(y,x)< 1. Then by (v), π(x,y)> 0, and π(y,x) = 0 by (iii). By
(v), ρ(x,y) = 1. Because ρ(x,y)> ρ(y,x), ι(x,y) = ρ(y,x). Thus,

1 = ρ(x,y)
= π(x,y)+ ι(x,y)
= π(x,y)+ρ(y,x) .

Hence, π(x,y) = 1−ρ(y,x). ��
Like Proposition 3.16, the derivation of π in Proposition 3.18 has its own logical
inconsistencies for two reasons (Richardson, 1998). First, π(x,y) is completely in-
dependent of ρ(x,y). However, this reason is minor because under the conditions of
Proposition 3.18, π(x,y)> 0 implies ρ(x,y) = 1 across all alternatives. Second, this
definition of strict preference only applies to strongly connected fuzzy preferences.
Due to reasons discussed earlier in the section, Richardson (1998) drops condition
(v) from this proposition and still obtains a unique operation for π .6

6 Richardson (1998) demonstrates necessity. Here Proposition 2.16 is strengthened to show
sufficiency as well.
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Proposition 3.19. Let ρ be an FWPR on X such that

(i) ρ = ι ∪2 π ,
(ii) ι is symmetric and

(iii) π is asymmetric.

Then ι(x,y)+π(x,y)≤ 1 if and only if the following equation holds:

π(x,y) = max{0, ρ(x,y)−ρ(y,x)}.
Proof. Suppose ι(x,y)+π(x,y)≤ 1. Then, by (i),

ρ(x,y) = (π ∪2 ι)(x,y)
= min{1, ι(x,y)+π(x,y)} .

By hypothesis, we obtain

π(x,y) = ρ(x,y)− ι(x,y)
= ρ(x,y)−min{ρ(x,y), ρ(y,x)}
= max{(ρ(x,y)−ρ(x,y)), (ρ(x,y)−ρ(y,x)}
= max{0, ρ(x,y)−ρ(y,x)}.

Conversely, suppose π(x,y) = max{0, ρ(x,y)−ρ(y,x)}. By Proposition 3.10,

π(x,y)+ ι(x,y) = max{0, ρ(x,y)−ρ(y,x)}+min{ρ(x,y),ρ(y,x)}
=

{
ρ(x,y)−ρ(y,x)+ρ(y,x) if ρ(x,y)> ρ(y,x),

0+ρ(x,y) if ρ(x,y) ≤ ρ(y,x).

=

{
ρ(x,y) if ρ(x,y)> ρ(y,x),
ρ(x,y) if ρ(x,y) ≤ ρ(y,x).

Hence, ι(x,y)+π(x,y)≤ 1. ��
Richardson (1998) settles for the π operation in Proposition 3.19 because it incor-
porates both ρ(x,y) and ρ(y,x) and does not require preferences to be connected
or strongly connected. However, this conceptualization of strict preference is com-
pletely relative and tells us little about the values of ρ across cases, as the next
example illustrates.

Example 3.20. Let X = {a,b}, and let ρ1, ρ2, and ρ3 be reflexive FWPRs. Suppose
the following values for ρ1, ρ2, and ρ3.

(1) ρ1(a,b) = .1 and ρ1(b,a) = 0,
(2) ρ2(a,b) = .55 and ρ1(b,a) = .45, and
(3) ρ3(a,b) = 1 and ρ3(b,a) = .9.

Then π1(a,b) = π2(a,b) = π3(a,b) = .1, where π1, π2 and π3 are the asymmetric
components of ρ1, ρ2 and ρ3, respectively.
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Even though the derivations of π presented in Propositions 3.16, 3.18 and 3.19 are
the definitions most common in the fuzzy social choice literature, still other opera-
tions emerge for π when we use the fuzzy set unions ∪3 and ∪4.

Proposition 3.21. Let ρ be an FWPR on X such that

(i) ρ = ι ∪3 π ,
(ii) ι is symmetric and

(iii) π is asymmetric.

Then the following holds for all x,y ∈ X:

π(x,y) =
{

ρ(x,y) if ρ(y,x) = 0,
0 otherwise.

Proof. Suppose ρ(x,y)> ρ(y,x) and ρ(y,x)> 0. Then

∧
{t ∈ [0,1] | ρ(y,x)∪3 t ≥ ρ(x,y)}

does not exist since for all t > 0, ρ(y,x)∪3 t = 1 and when t = 0, ρ(y,x)∪3 t =
ρ(y,x)< ρ(x,y). Thus,

∧
{t ∈ [0,1] | ρ(y,x)∪3 t ≥ ρ(x,y)}

exists and equals ρ(x,y) if and only if ρ(y,x) = 0. Hence,

π(x,y) =
{

ρ(x,y) if ρ(y,x) = 0,
0 otherwise.

as desired. ��
The π derived in Proposition 3.21 has been used in fuzzy revealed preference theory
(Georgescu, 2007a). When ρ = ι ∪4 π , we have the following.

Proposition 3.22. Let ρ be an FWPR on X such that

(i) ρ = ι ∪4 π ,
(ii) ι is symmetric and

(iii) π is asymmetric.

Then the following holds for all x,y ∈ X:

π(x,y) =

{
ρ(x,y)−ρ(y,x)

1−ρ(y,x) if ρ(x,y)> ρ(y,x),
0 otherwise.

Proof. Suppose ρ(x,y) > ρ(y,x). Then, by Proposition 3.16 and (i), ρ(x,y) =
ρ(y,x)∪4 π(x,y). By the definition of ∪4,

ρ(x,y) = ρ(y,x)+π(x,y)−ρ(y,x)π(x,y) .
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Simplifying this expression yields

ρ(x,y)−ρ(y,x) = π(x,y)(1−ρ(y,x)) .

The desired result now follows. ��
Propositions 3.21 and 3.22 conclude our unique derivations for π considered in the
book. We summarize them here because, as later chapters will show, their construc-
tions significantly impact the social choice implications of fuzzy sets.

Corollary 3.23 (π 1-5). Let ρ be an FWPR on X such that

(i) ρ = ι ∪π ,
(ii) ι is symmetric, and

(iii) π is asymmetric.

Proposition 3.24. Then we list the following results.

(1) If ∪= ∪1, where Gödel union ∪1 is given by

(A∪1 B)(x) = max{A(x), B(x)} ,

then π = π(1) where

π(1)(x,y) =

{
ρ(x,y) if ρ(x,y)> ρ(y,x),

0 otherwise.

(2) If ∪= ∪2, where Łukasiewicz union ∪2 is given by

(A∪2 B)(x) = min{1, A(x)+B(x)} ,

and conditions (iv) and (v) from Proposition 3.18 hold, then π = π(2) where

π(2)(x,y) = 1−ρ(y,x).

(3) If ∪= ∪2, then π = π(3) where

π(3)(x,y) = max{0, ρ(x,y)−ρ(y,x)}.

(4) If ∪= ∪3, where strict union ∪3 is given by

(A∪3 B)(x) =

⎧
⎨

⎩

B(x) if A(x) = 0
A(x) if B(x) = 0

1 otherwise,

then π = π(4) where

π(4)(x,y)=

{
ρ(x,y) if ρ(y,x) = 0,

0 otherwise.
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(5) If ∪= ∪4, where algebraic union ∪4 is given by

(A∪4 B)(x) = A(x)+B(x)−A(x)B(x)

then π = π(5) where

π(5)(x,y) =

{
ρ(x,y)−ρ(y,x)

1−ρ(y,x) if ρ(x,y)> ρ(y,x),
0 otherwise.

Even though this section has restricted an FWPR ρ to being reflexive and complete
and has derived various forms of π to best reflect traditional understandings of strict
preference, we are not able to guarantee that an individual is necessarily rational.
This stems from the fact that we have not yet considered the condition of transitiv-
ity of fuzzy preference relations, which restricts the behavior of FWPRs across all
pairwise comparisons of alternatives. Example 2.21 demonstrates this problem.

Example 3.25. Let X = {a,b,c}, let ρ be a reflexive and complete FWPR and let
π = π(3). Suppose ρ is defined as follows:

(1) ρ(a,b) = .7 and ρ(b,a) = .2,
(2) ρ(b,c) = .6 and ρ(c,b) = .4, and
(3) ρ(a,c) = .1 and ρ(c,a) = .7.

Now π(x,y) = ρ(x,y)−ρ(y,x) when ρ(x,y)≥ ρ(y,x) and π(x,y) = 0, otherwise. In
this case, π(a,b) = .5, π(b,c) = .2 and π(c,a) = .6. Thus, a is strictly preferred to b
to some degree, b is strictly preferred to c to some degree, and c is strictly preferred
to a to some degree. Hence, a political actor possessing ρ has no clear method to
vote for or nominate an alternative in X .

Obviously, the preferences presented in Example 3.25 do not immediately corre-
spond to our conception of rationality. If an actor with such preferences were to
be presented with a choice between alternatives a, b, and c, the actor could choose
an alternative; but it remains unclear as to how this choice would relate to the ac-
tor’s preferences. Because the model we have presented thus far does not provide
another tool that can explain the behavior of individuals besides preferences, we
not only consider what an individual best alternative set could like like under fuzzy
preferences but also we also restrict ρ in such a way as to ensure such a “maximal”
choice set always exists. It is to this issue that we now turn.

3.2 Consistency of Fuzzy Preferences and the Fuzzy Maximal
Set

In the preceding section, we considered how an FWPR ρ can be dissected into its
symmetric, ι, and asymmetric, π , components. In addition, we proposed the restric-
tions of reflexivity and completeness on ρ to model the basic tenet of rational pref-
erence given two alternatives. However, the section concluded that there is no clear



3.2 Consistency of Fuzzy Preferences and the Fuzzy Maximal Set 35

method for an individual to identify an alternative as a maximal one when there
are more than three alternatives. When every alternative in an individual’s choice
set is strictly preferred by another alternative, the individual is said to have cyclic
preferences (1999).

This section is concerned with restricting how FWPRs behave across pairwise
comparisons, a task involving more than two alternatives. More specifically, we
wish to guarantee the existence of a maximal set. Formally, the maximal set under
exact preferences is

M(R,X) = {x ∈ X | xRy, ∀y ∈ X},
where R is an exact preference relation and X is a set of alternatives (1999). In
words, an alternative x is in the maximal set if it is at least as good all other alterna-
tives. When fuzzifying the maximal set, we must consider the fuzzy counterparts of
R and X . Section 3.1 detailed the transformation of an exact preference relation into
a fuzzy one. In this section, we also allow the set of alternatives to be a fuzzy subset,
μ : X → [0,1]. For our purposes, μ(x) denotes the degree to which x is in a fuzzy
subset of X , and F (X) denotes the set of all fuzzy subsets of X not equal to the null
set θ (Definition 1.11). In words, μ(x) represents the degree to which x is a feasi-
ble alternative. This is an important addition to modeling political preferences. For
instance, a legislator may prefer alternative x over alternative y; but she also knows
that y is more feasible than x in terms of state capacity, bureaucratic performance,
and other factors. The function μ allows these realities to be incorporated into the
legislator’s decision-making calculus.

In the first attempts to fuzzify the maximal set, Orlovsky (1980) and later
Kołodziejczyk (1986) and Montero and Tejada (1988) conceptualize maximal al-
ternatives as those that are never dominated. To do so, they use fuzzy strict pref-
erence relations to obtain the degree to which x ∈ X is not dominated: nd(x) =
1−max

y∈X
{π(y,x)}. When π(y,x) = 0 for all y ∈ X , nd(x) = 1. When this occurs, the

set of non-dominated solutions, ND(π ,X) = {x ∈ X | nd(x) = 1}, is non-empty.

Definition 3.26 (degree of non-domination). The degree of non-domination of x is

nd(x) = 1−max
y∈X

{π(y,x)} .

Definition 3.27 (non-dominated set). The non dominated set is

ND(π ,X) = {x ∈ X | nd(x) = 1} .

It is readily verified that Example 3.25 demonstrates a case where ND(π ,X) = ∅.
For μ a fuzzy subset of X , we define the fuzzy subset nd(μ) of X by ∀x ∈ X ,

nd(μ)(x) = 1−max{π(x,y) | y ∈ Supp(μ)} .
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For S, a subset of X , we define

ND(π ,S) = {x ∈ S | nd(x) = 1} .

Using ND(π ,X) as a maximal set raises two significant problems. First, as Sec-
tion 3.1 illustrated, constructing a fuzzy strict preference relation can be excessively
complicated and requires significant restrictions on FWPRs. Second, the definition
does not make full use of fuzzy set theory, as it still views alternatives as either in
or out of the set of alternatives and the set of nondominated alternatives. For these
reasons, we also consider the fuzzy maximal set proposed by Georgescu (2007b),
which is similar to the one found in Dasgupta and Deb (1996):

M(ρ ,μ)(x) = μ(x)∗
⊙

w∈Supp(μ)

∨
{t ∈ [0,1] | μ(w)∗ρ(w,x)∗ t ≤ ρ(x,w)}

= μ(x)∗
⊙

w∈Supp(μ)
μ(w)∗ρ(w,x)→∗ ρ(x,w) ,

where ∗ and � are arbitrary t-norms and t ∈ [0,1].7 Recall that a t-norm, i.e. triangu-
lar norm, is a function t : [0,1]× [0,1]→ [0,1] that is also associative, commutative
and monotonic. The minimum function, for example, is a t-norm. For a more thor-
ough discussion on t-norms see Klement et al. (2000). For our purposes, we do
not specify a t-norm in this section. Throughout, we assume that ∗ and � have no
zero divisors; specifically, a �= 0 and b �= 0 imply a ∗ b �= 0. This assumption elimi-
nates perverse cases where, for some x ∈ X such that μ(x) > 0 and some t ∈ (0,1],
M(ρ ,μ)(x) = μ(x) ∗ t = 0. Then M(ρ ,μ) is the fuzzy maximal subset associated
with ρ and μ , and M(ρ ,μ)(x) denotes the degree to which x is maximal.

Example 3.28. Let X = {a,b,c}. Let μ ∈ F (X) be such that μ(a) = 0, μ(b) =
.25 and μ(c) = .5. Let ρ be a reflexive FWPR defined as ρ(a,b) = .25, ρ(b,c) = .1,
ρ(a,c) = .75, and ρ(_,_) = 0 otherwise.

Since μ(a) = 0, it is immediate that M(ρ ,μ)(a) = 0. Now

M(ρ ,μ)(b) = μ(b)∗
[(∨

{t ∈ [0,1] | μ(b)∗ρ(b,b)∗ t ≤ ρ(b,b)}
)

�
(∨

{t ∈ [0,1] | μ(c)∗ρ(c,b)∗ t ≤ ρ(b,c)}
)]

= .25 ∗ (1� 1)

= .25

7 The purpose of the t-norm differentiation between ∗ and � is a generalization of the fuzzy
maximal set considered by Georgescu (2007a) in which � is assumed to be the minimum
function.
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and

M(ρ ,μ)(c) = μ(c)∗
[(∨

{t ∈ [0,1] | μ(c)∗ρ(c,c)∗ t ≤ ρ(c,c)}
)

�
(∨

{t ∈ [0,1] | μ(b)∗ρ(b,c)∗ t ≤ ρ(c,b)}
)]

= .5 ∗ (1� 0)

= 0

The fuzzy maximal set presented here enables a much more nuanced considera-
tion of solution sets than those under exact preference relations. Not only does the
fuzzy maximal set M(ρ ,μ) utilize an FWPR and a fuzzy set of alternatives; for each
pairwise comparison between x and y, the equation accounts for μ(x), μ(y), ρ(x,y)
and ρ(y,x). Furthermore, unlike ND(π ,X), M(ρ ,μ) considers the weak preference
relation, which incorporates the fuzzy indifference and strict preference relations,
instead of just the fuzzy strict preference relations. Hence, M(ρ ,μ) accounts for
much more information. Later in the section, we show how this implies x is in
Supp(M(ρ ,μ)) if it is in ND(π ,X) (see Proposition 3.39), but the converse is not
necessarily true. The latter claim is demonstrated by the following example.

Example 3.29. Let X = {a,b,c}, and let ρ be a reflexive and complete FWPR. As-
sume μ(x) = 1 for all x ∈ X . Suppose π is regular and suppose ρ is defined in the
same manner as Example 3.28. By Proposition 3.21 we can calculate nd(x) for all
x ∈ X as follows:

nd(a) = 1−π(c,a) because π(b,a) = 0,
nd(b) = 1−π(a,b) because π(c,b) = 0,
nd(c) = 1−π(b,c) because π(a,c) = 0.
Hence, ND(π ,X) = ∅ because nd(x) < 1 for all x ∈ X . To see that M(ρ ,μ) is

nonempty, consider

M(ρ ,μ)(a) = μ(a)∗
[(∨

{t ∈ [0,1] | μ(a)∗ρ(a,a)∗ t ≤ ρ(a,a)}
)

�
(∨

{t ∈ [0,1] | μ(b)∗ρ(b,a)∗ t ≤ ρ(a,b)}
)

�
(∨

{t ∈ [0,1] | μ(c)∗ρ(c,a)∗ t ≤ ρ(a,c)}
)]

= 1 ∗
[(∨

{t ∈ [0,1] | 1 ∗ 1 ∗ t ≤ 1}
)

�
(∨

{t ∈ [0,1] | 1 ∗ .2 ∗ t ≤ .7}
)

�
(∨

{t ∈ [0,1] | 1 ∗ .7 ∗ t ≤ .1}
)]

This implies
M(ρ ,μ)(a)> 0

since ∗ and � have no zero divisors.
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The difference between ND(π ,X) and M(ρ ,μ) stems from the fuzzification of
M(R,S) and the different criteria that determine whether x ∈ X is maximal. Propo-
sition 3.30 demonstrates the logic behind M(ρ ,μ).

Proposition 3.30. Let μ ∈ F (X), x ∈ Supp(μ) and ρ be a reflexive and complete
FWPR. Then M(ρ ,μ)(x) = 0 if and only if there exits a w ∈ Supp(μ) such that
ρ(x,w) = 0.

Proof. Suppose x ∈ Supp(μ) and M(ρ ,μ)(x) = 0. Then there exists w ∈ Supp(μ)
such that ∨

{t ∈ [0,1] | μ(w)∗ρ(w,x)∗ t ≤ ρ(x,w)} = 0

because μ(x)> 0. This implies ρ(x,w) = 0.
Conversely, suppose x ∈ Supp(μ) and there exists a w ∈ Supp(μ) such that

ρ(x,w) = 0. Then we have the following:

M(ρ ,μ)(x) = μ(x)∗
[∨

{t ∈ [0,1] | μ(w)∗ρ(w,x)∗ t ≤ ρ(x,w)}

�
∨

{t ∈ [0,1] | μ(v)∗ρ(v,x)∗ t ≤ ρ(x,v),∀v ∈ Supp(μ) �= w}
]

Substituting, we have

M(ρ ,μ)(x) = μ(x)∗
[∨

{t ∈ [0,1] | μ(w)∗ρ(w,x)∗ t ≤ 0}

�
∨

{t ∈ [0,1] | μ(v)∗ρ(v,x)∗ t ≤ ρ(x,v),∀v ∈ Supp(μ) �= w}
]

= μ(x)∗ 0� t2 � ...� tn
= 0 .

Hence, M(ρ ,μ)(x) = 0 if and only if there exists a w ∈ Supp(μ) such that
ρ(x,w) = 0. ��
Thus, an alternative x ∈ X is in Supp(M(ρ ,μ)) if x is at least as good as all other
alternatives in Supp(μ) to some degree.8 In contrast, x ∈ X is in ND(π ,X) if there
does not exist another alternative y ∈ X that is strictly preferred to x to any degree.
In the exact case, these definitions would be equivalent because xRy implies not
yPx. However, as Example 3.29 and Proposition 3.30 illustrate, this relationship no
longer holds under fuzzy preferences. Obviously, if x is in ND(π ,X) then x is in
Supp(M(ρ ,μ)) to some degree, but the converse is not necessarily true.9

Before we consider what restrictions on ρ guarantee M(ρ ,μ) �= θ , we need to
verify that the fuzzy maximal set includes the exact case, a task which Billot Billot
(1992) calls the “credo” of fuzzy social choice scholars.

8 The maximal set proposed by Dasgupta and Deb (1991), M′(ρ,μ)(x) =min
y∈X

{ρ(x,y)}, also

shares this logic.
9 This finding reflects those in the revealed preference literature where, for an exact pref-

erence relation R, there is a difference between R − maximality (x ∈ ND(π,X)) and
R−greatness (x ∈ Supp(M(ρ,μ))).
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Proposition 3.31. Suppose R is a reflexive relation on X and let S be a nonempty
subset of X. Then the following holds if and only if R is complete:

M(1R,1S)(x) =

{
1 if x ∈ S and (x,w) ∈ R, ∀w ∈ S,
0 otherwise.

.

Proof. First, suppose R is complete. Clearly, M(1R,1S)(x) = 1 if x ∈ S and (x,w)∈ R
for all w ∈ S. Now suppose x �∈ S. Then, M(1R,1S)(x) = 0. Now suppose (x,w) �∈ R
for some w ∈ S. Then, 1R(x,w) = 0. In this case, 1S(w) ∗ 1R(w,x) �= 0 because
R is complete and ∗ has no zero divisors. Thus,

∨{t ∈ [0,1] | 1S(w)∗ 1R(w,x)∗ t ≤
1R(x,w)} = 0. Thus, M(1R,1S)(x) = 0.

To prove the converse, suppose R is not complete. Then there exists x,y ∈ X such
that (x,y) �∈ R and (y,x) �∈ R. Let S = {x,y}. Since 1R(y,x) = 0 and 1S(z) = 0 for all
z ∈ X\{x,y},

M(1S,1R)(x) = 1S(x)∗
[∨

{t ∈ [0,1] | 1S(x)∗ 1R(x,x)∗ t ≤ 1R(x,x)}

�
∨

{t ∈ [0,1] | 1S(y)∗ 1R(y,x)∗ t ≤ 1R(x,y)}
]

= 1 ∗ (1� 1)

= 1.

It is not the case that (x,w) ∈ R for all w ∈ S. ��
Once we know that M(ρ ,μ) extends the logic of the exact maximal set to fuzzy
preferences, we can now restrict ρ in such a ways as to guarantee a non-empty
fuzzy maximal set, i.e. M(ρ ,μ) �= θ . This ensures that given any set of alternatives,
an individual will be able to identify at least one alternative that is a best choice to
some degree. To do so requires considering assumptions that designate the behavior
of ρ across pairwise comparisons.

Definition 3.32. A FWPR ρ on X is

(1) max-star transitive if, for all x,y,z ∈ X , ρ(x,z) ≥ ρ(x,y)∗ρ(y,z);
(2) weakly transitive if, for all x,y,z ∈ X , ρ(x,y) ≥ ρ(y,x) and ρ(y,z) ≥ ρ(z,y)

imply ρ(x,z) ≥ ρ(z,x);
(3) acyclic if, for all {x1, x2, x3, ...,xn−1, xn} ⊆ X , π(x1,x2) ∗ π(x2,x3) ∗ ... ∗

π(xn−1,xn)> 0 implies π(xn,x1) = 0;
(4) partially acyclic if, for all {x1, x2, x3, ...,xn−1, xn} ⊆ X , π(x1,x2) ∗ π(x2,x3) ∗

...∗π(xn−1,xn)> 0 implies ρ(x1,xn)> 0.

Definition 3.32(1) was first proposed by Zadeh (1971) and Orlovsky (1978) and
is now standard among fuzzy social choice papers (Banerjee, 1993, 1994; Dutta,
1987; Kołodziejczyk, 1986; Orlovsky, 1980; Richardson, 1998). Throughout, we
use max-star and max-∗ interchangeably. Weak transitivity has appeared in Luo
(1986), Banerjee (1994), Georgescu (2007a) under different names and in various
forms. Billot (1992) also selects Definition 3.32(2) as the basis of fuzzy rational-
ity. The form of acyclicity in Definition 3.32(3) is similar to Richardson’s (1998)
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concept of “negative transitivity” and is almost identical to acyclicity of exact pref-
erence relations (Austen-Smith and Banks, 1999). In addition when π is regular,
acyclicity corresponds to Wang’s (1997) ω-transitivity. Finally, partial acyclicity,
the weakest of the four conditions, is our own creation; but the definition is quite
important to guaranteeing the existence of the fuzzy maximal set using specific types
of fuzzy strict preference. Certainly there exist numerous other definitions that place
consistency restrictions on ρ ; however, we highlight the four in Definition 3.32 be-
cause either they are standards in the literature (Definitions 3.32(1) and (2)) or they
guarantee a non-empty maximal set (Definitions 3.32(3) and (4)). Proposition 3.33
lays out the relationships between the consistency requirements in Definition 3.32
when π is regular. For a more complete review, see Wang (1997) and Dasgupta and
Deb (1996).

Proposition 3.33. Let ρ be a reflexive and complete FWPR. Suppose π is regular.
Then the following relationships hold:

(1) weak transitivity implies acyclicity and
(2) acyclicity implies partial acyclicity.

Proof

(1) Suppose ρ is weakly transitive. Further, suppose there exists an order-
ing of alternatives {x1, x2, x3, ...,xk−1, xk} ⊆ X , where 3 ≤ k ≤ n, such
that π(x1,x2) ∗ π(x2,x3) ∗ ... ∗ π(xk−1,xk) > 0. First, by the hypothesis,
π(xi,xi+1)> 0 for all xi,xi+1 ∈ {x1, x2, x3, ...,xk−1, xk}. Second, by the regular-
ity assumption, ρ(xi,xi+1)> ρ(xi+1,xi) ≥ 0.
Now by weak transitivity, ρ(x1,x3) ≥ ρ(x3,x1) because ρ(x1,x2) > ρ(x2,x1)
and ρ(x2,x3) > ρ(x3,x2). Similarly, ρ(x1,x4) ≥ ρ(x4,x1) because ρ(x1,x3) ≥
ρ(x3,x1) and ρ(x3,x4) > ρ(x4,x3). It can now be shown that ρ(x1,xi) ≥
ρ(xi,x1) by repeating the previous argument i − 2 times. Thus,
ρ(x1,xk) ≥ ρ(xk,x1). Hence π(xk,x1) = 0, and ρ is acyclic.

(2) Suppose now that ρ is acrylic and that there exists an ordering of alternatives
{x1,x2,x3, . . . ,xk−1,xk} ⊆ X , where 3 ≤ k ≤ n, such that π(x1,x2) ∗ π(x2,x3) ∗
...∗π(xk−1,xk)> 0. Then we know π(xk,x1) = 0 by hypothesis. Then regularity
of π implies ρ(x1,xk) ≥ ρ(xk,x1). By completeness, ρ(x1,xk)> 0. Hence, ρ is
partially acyclic. ��

For parsimony, it would be beneficial to assert some type of relationship between
max-∗ transitivity and weak transitivity; however, the following example demon-
strates that the former does not imply the latter.

Definition 3.34 (quasi–transitive). Let ρ be a FWPR on X and π its asymmetric
component. Then ρ is said to be quasi–transitive with respect to a t–norm ∗ if

π(x,y)∗π(y,z)≤ π(x,z)

for ∀x,y,z ∈ X .
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Example 3.35. Let X = {x1,x2,x3}. Define the fuzzy preference relation ρ on X as
follows:

ρ(x1,x1) = ρ(x2,x2) = ρ(x3,x3) = 1,

ρ(x1,x3) = ρ(x1,x2) = ρ(x2,x3) = 1/2,

ρ(x3,x1) = 5/8,

ρ(x2,x1) = 3/8,

ρ(x3,x2) = 3/8.

We first show that ρ is max-∗ transitive, where ∗ denotes product. We have

ρ(x3,x2) = 3/8 ≥ 5/8 ·1/2

= ρ(x3,x1)∗ρ(x3,x2),

ρ(x2,x1) = 3/8 ≥ 5/8 ·1/2

= ρ(x2,x3)∗ρ(x3,x1).

The remaining inequalities are easily established. For π regular, we have
π(x1,x2) > 0, π(x2,x3) > 0, π(x1,x3) = 0, and π(x3,x1) > 0. Hence we see that
ρ is not max-product quasi-transitive and not acyclic. If also follows that ρ is not
weakly transitive.

Example 3.36. Let X = {a,b,c} and let ρ be a reflexive FWPR over X defined as
follows.

ρ(a,b) = ρ(b,a) = ρ(b,c) = ρ(c,b) = .3,

ρ(a,c) = .4,

ρ(c,a) = .6.

It is easily verified that ρ satisfies max−∗ transitivity for any ∗. To see that ρ vio-
lates weak transitivity, consider that ρ(a,b) ≥ ρ(b,a) and ρ(b,c) ≥ ρ(c,b). How-
ever, ρ(a,c) �≥ ρ(c,a).

Once the relationships between the consistency definitions are clear, we can present
our main result on the existence of a non-empty fuzzy maximal set.

Theorem 3.37. Let ρ be a reflexive and complete FWPR and let π be regular. If ρ
is partially acyclic, then

M(ρ ,μ) �= θ

for all μ ∈ F (X).

Proof. Suppose ρ is partially acyclic. Let μ ∈ F (X). Then Supp(μ) �= ∅. Let
x1 ∈ Supp(μ). If ρ(x1,w) > 0 for all w ∈ Supp(μ), then, by Proposition 3.33
M(ρ ,μ)(x1)> 0, and so M(ρ ,μ) �= θ . Suppose there exists an x2 ∈ Supp(μ)\{x1}
such that ρ(x1,x2) = 0. By completeness, ρ(x2,x1) > 0. Thus, π(x2,x1) > 0 be-
cause ρ(x2,x1) > ρ(x1,x2) and π is regular. If ρ(x2,w) > 0∀w ∈ Supp(μ), then
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M(ρ ,μ)(x2)> 0. Suppose there exists x1, ...,xk ∈ Supp(μ) such that π(xi,xi−1)> 0
for all i = 2, ...,k. If ρ(xk,w) > 0 for all w ∈ Supp(μ), then M(ρ ,μ)(xk) �= 0. Sup-
pose this is not the case and there exists xk+1 ∈ Supp(μ)\{x1, ...,xk} such that
ρ(xk,xk+1) = 0. Then ρ(xk+1,xk)> 0 by completeness.

By induction, either there exists an x ∈ Supp(μ) such that ρ(x,w) > 0 for all
w ∈ Supp(μ), in which case M(ρ ,μ) �= θ , or since Supp(μ) is finite, Supp(μ) =
{x1, ...,xn} is such that π(xi,xi−1) > 0 for i = 2, ...,n. Since ρ is partially acyclic
and ρ is reflexive, ρ(xn,xi) > 0 for i = 1, ...,n. Hence, M(ρ ,μ)(xn) > 0 and
M(ρ ,μ) �= θ . ��
Theorem 3.37 demonstrates that under the very weak condition of partial acyclicity,
M(ρ ,μ) will not equal θ . Unlike the exact case (see Austen-Smith and Banks (1999)
for reference), cyclic behavior in fuzzy strict preference relation does not render the
maximal set empty. Indeed, when π(x1,x2)> 0, π(x2,x3)> 0, and π(x3,x1)> 0, x1

can still be in the maximal set if ρ(x1,x3) > 0. A further departure from the exact
case occurs because the relationship in Theorem 3.37 cannot be strengthened to
include the converse. A non-empty maximal set does not necessarily imply partial
acyclicity of ρ ; the following proposition lays this out in greater detail.

Example 3.38. Let X = {x1,x2,x3}. Define the FWPR ρ as follows: ρ(x,x) =
1∀x ∈ X ,

ρ(x1,x2) > 0 ,

ρ(x2,x3) > 0 ,

ρ(x3,x1)> ρ(x1,x3) > 0 .

Let π be regular. Then ρ is not acyclic, yet M(ρ ,1{x})(x1)> 0.
As Example 3.38 demonstrates, we know very little about the consistency of

ρ when M(ρ ,μ) �= θ ; it may not even be partially acyclic. M(ρ ,μ) �= θ merely
implies there exists a x ∈ Supp(μ) where ρ(x,w)> 0 for all w in X . Because of this,
it may be useful to consider the consistency property that guarantees a non-empty
ND(π ,X), which imposes more structure on ρ . In an attempt to fuzzify ND(π ,X)
we write it as

ND(π ,μ)(x) =
{

μ(x) if x ∈ ND(π ,Supp(μ)),
0 otherwise.

.

As the following proposition explains, this is an intuitive fuzzification of ND(π ,X)
because if x is undominated then M(ρ ,μ)(x) = μ(x).

Proposition 3.39. Suppose ρ is a reflexive and complete FWPR and π is regular. If
x ∈ ND(π ,X), then M(ρ ,μ)(x) = μ(x) for all μ ∈ F (X).

Proof. Let μ ∈F (X). Then there exists x ∈ Supp(μ). Now suppose x ∈ ND(π ,X).
By definition, nd(x) = 1. Therefore, max

y∈X
{π(y,x)} = 0. It follows that π(y,x) = 0

for all y ∈ X .



3.2 Consistency of Fuzzy Preferences and the Fuzzy Maximal Set 43

By regularity, we know π(y,x)> 0 if and only if ρ(y,x)> ρ(x,y). Thus, ρ(x,y)≥
ρ(y,x) for all y ∈ X . Hence, ρ(x,y) > 0 for all y ∈ X . Because there does not exist
a w ∈ X such that ρ(x,w) = 0, x ∈ Supp(M(ρ ,μ)). Further,

∨{t ∈ [0,1] | μ(y) ∗
ρ(y,x)∗t ≤ ρ(x,y)}= 1 for all y ∈ X because ρ(x,y)≥ ρ(y,x). Hence M(ρ ,μ)(x) =
μ(x)∗ 1� ...� 1= μ(x). ��
Hence, ND(π ,μ)(x) = M(ρ ,μ)(x) = μ(x) if x ∈ ND(π ,X) and ND(π ,μ)(x) = 0
otherwise. In words, Proposition 3.39 provides support for the fuzzification of
ND(π ,X). Now we can proceed with this section’s second major result that guaran-
tees the non-emptiness of ND(π ,μ).

Theorem 3.40. Let ρ be a reflexive and complete FWPR and suppose π is regular.
Then ρ is acyclic if and only if ND(π ,μ) �= θ for all μ ∈ F (X).

Proof. Suppose ρ is acyclic. Let μ ∈F (X). Then Supp(μ) �=∅. Let x1 ∈ Supp(μ).
If ρ(x1,w) ≥ ρ(w,x1) for all w ∈ Supp(μ), then π(w,x1) = 0 for all w ∈ Supp(μ)
by regularity. Hence ND(π ,μ)(x1)> 0 and so ND(π ,μ) �= θ .

Suppose there exists x2 ∈ Supp(μ)\{x1} such that ρ(x2,x1) > ρ(x1,x2). Then
π(x2,x1) > 0 and ND(π ,μ)(x1) = 0. Suppose there exist x1, ...,xk ∈ Supp(μ)
such that ρ(xi,xi−1) > ρ(xi−1,xi) for i = 2, ...,k. If ρ(xk,w) ≥ ρ(w,xk) for
all w ∈ Supp(μ), then ND(π ,μ) �= θ as above. If not, there exists xk+1 ∈
Supp(μ)\{x1, ...,xk} such that ρ(xk+1,xk) > ρ(xk,xk+1). Then π(xk+1,xk) > 0 by
regularity.

By induction, either there exists x ∈ Supp(μ) such that ρ(x,w) ≥ ρ(w,x) for all
w ∈ Supp(μ), in which case ND(π ,μ) �= θ , or since Supp(μ) is finite, Supp(μ) =
{x1, ...,xn} is such that π(xi,xi−1)> 0 for i = 2, ...,n. Since ρ is partially acyclic and
reflexive, π(xi,xn)= 0 for i= 2, ...,n. Thus, ρ(xn,xi)≥ ρ(xi,xn) and ρ(xn,xi)> 0 for
i = 1, ...,n. By Proposition 3.39, ND(π ,μ)(xn)> 0 and accordingly, ND(π ,μ) �= θ .

Conversely, suppose ND(π ,μ) �= θ for all μ ∈ F (X). Let μ ∈ F (X). Suppose
x1, ...,xn ∈ Supp(μ) are such that π(xi,xi+1)> 0 for all i= 1, ...,n−1. We must show
that π(xn,x1) = 0. Let S = {x1, ...,xn}. Then ND(π ,1S) �= /0. Since π(xi,xi+1) > 0
for all i = 1, ...,n−1, ND(π ,1S)(xi) = 0 for all i = 2, ...,n. Thus, ND(π ,1S)(x1)> 0
and so nd(x1) = 1. Therefore, π(y,x1) = 0∀y ∈ X . Thus π(xn,y1) = 0. Hence, ρ is
acyclic. ��
Theorem 3.40 can be found in its original form in Montero and Tejada (1988), in
which the crisp set ND(π ,X) is considered. In contrast to Theorem 3.37, ND(π ,μ)
allows us to infer a considerable amount of information about the consistency of
ρ . More specifically, ρ is acyclic if and only if ND(π ,μ) is non-empty. Generally,
Supp(ND(π ,μ))⊆ Supp(M(ρ ,μ)), but under certain conditions, Supp (M(ρ ,μ)) =
Supp (ND(π ,μ)) for all ρ ∈ F (X2). This occurs when using a specific derivation
for strict preference as the following proposition demonstrates.

Proposition 3.41. Suppose ρ is a reflexive and complete FWPR. Then

Supp(M(ρ ,μ)) = Supp(ND(π ,μ))

for all μ ∈ F (X) if and only if π is of type π(4).
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Proof. Suppose π is of type π(4). Let μ ∈ F (X). Let x ∈ Supp (M(ρ ,μ)}. Then
ρ(x,w) > 0 for all w ∈ Supp(μ) by Proposition 3.30. Thus π(w,x) = 0 ∀w ∈
Supp (μ) since π is of type π(4). Hence nd(μ)(x) = 1 and so x ∈ ND(π ,Supp (μ)) =
Supp (ND(π ,μ)). Thus, Supp(M(ρ ,μ)) ⊆ Supp(ND(π ,u)).

Conversely, suppose π is not of type π(4). Then there exist x,y ∈ X such
that π(x,y) > 0 and ρ(y,x) > 0. Since π(x,y) > 0, nd(y) < 1. Let μ∗ ∈ F (X)
be such that Supp(μ∗) = {x,y}. Since ρ(y,x) > 0, M(ρ ,μ∗)(y) > 0. Thus,
Supp(ND(π ,μ∗))⊂ Supp(M(ρ ,μ∗)) since ND(π ,μ∗)(y) = 0.

Because the various consistency definitions in Definition 3.32 represent more or
less rational behavior in ρ , the least restrictive condition of partial acyclicity en-
sures a non-empty M(ρ ,μ), and the slightly stronger condition of acyclicity ensures
a non-empty ND(π ,μ), hence the reason for the relationship in Proposition 3.39.
Thus, when considering other social choice problems such as the aggregation of
individual preferences or the specification of a collective choice, we should, at the
very least, consider consistency conditions that guarantee a non-empty M(ρ ,μ).
This standard eliminates some transitivity definitions found in other fuzzy social
choice studies, as the following example illustrates.

Example 3.42. Let X = {a,b,c} and μ(x) = 1 for all x ∈ X . Let ρ be a reflexive and
complete FWPR and π , ρ’s asymmetric component, be regular. Suppose ρ defined
as follows:

ρ(a,b) = ρ(b,c) = ρ(c,a) = 0,

ρ(b,a) = ρ(c,b) = ρ(a,c) = .5.

In this case, it is easily verified that ρ is what fuzzy social choice scholars call
T2–transitive, i.e. ρ(x,z) ≥ ρ(x,y)+ρ(y,z)− 1 for all x,y,x ∈ X . T2-transitivity is
widely used concerning the aggregation of fuzzy preferences (Dutta, 1987; Nurmi,
1981; Richardson, 1998), where authors relax max-∗ transitivity to accommodate an
aggregation rule that does not follow the reverse conclusions of Arrow’s (1951) the-
orem. The definition can also be found under various names in hierarchical studies
on fuzzy consistency relations (Bezdek and Harris, 1978; Dasgupta and Deb, 1996).
In this previous research, ρ is often assumed to be connected or strongly connected.
However, when relaxing the assumption to completeness, T2-transitivity no longer
guarantees that a political actor will be able to identify a maximal alternative. To
see this, first consider ND(π ,μ) of the FWPR defined above. Because π is regular,
we know for every x ∈ X there exists a w ∈ X such that π(w,x) > 0. Accordingly,
nd(x)< 1 for all x ∈ X , and ND(π ,μ) = θ .

Second, consider the the implications of Proposition 3.31. In this example, for
every x ∈ X there exists a w ∈ X such that ρ(x,w) = 0. Likewise, we can conclude
that M(ρ ,μ)(x) = 0 for all x ∈ X . Thus, M(ρ ,μ)(x) = θ . Also, ρ is not partially
acyclic because π(b,a)∧π(a,c)> 0 does not imply that ρ(b,c)> 0. Hence, under
the conditions presented in this chapter, we may not want to consider T2-transitivity
as a consistency condition on ρ because it does not meet the minimal conditions of
rationality when assuming completeness.
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As Example 3.42 demonstrates, ND(π ,μ) and M(ρ ,μ) provide the social choice
scholar with tools to assess the rationality of an FWPR under various conditions.
Of course, as stated previously in this section, a given FWPR may have an empty
maximal set. In which case, it becomes exceedingly difficult to establish what an
individual or a collective choice outcome would be without applying another sort
of assumption that “forces” a choice to emerge from ρ . Such assumptions include a
time horizon in which a choice must be made or an enforcement of consequences if
such a choice is not made. Thus, we can now proceed with a very basic idea of the
structure of ρ when the FWPR is broken down into its symmetric and antisymmetric
components and restricted in such a way as to guarantee a non-empty choice set.

3.3 Empirical Application I: Deriving an FWPR from a Fuzzy
Preference Function

The previous two sections have made use of FWPRs requiring an actor to specify the
degree to which an alternative x is at least as good as alternative y, and vice versa.
In theory, this seems like an intuitive application of fuzzy sets because traditional
preference relations, where xRy or yRx, appear unnecessarily restrictive. However,
in practice, social scientists will have great difficultly in collecting data where every
individual must assign values to ρ(x,y) and ρ(y,x) for all alternatives. This prob-
lem is exasperated by Euclidean space or other infinite sets of alternatives. Even
in the exact case, social scientists are concerned when a preference can be sum-
marized or “represented” by a simpler function (see Debreu (1954) for the seminal
work). For this reason, the purpose of this section is two fold. First, we present a
conceptualization of a fuzzy preference function that incorporates some properties
of the ambiguity discussed above. Second, we propose two methods for extracting
an underlying FWPR one corresponds to max-∗ transitivity and the other to weak
transitivity.

In response to this potential problem in the application of fuzzy social choice the-
ory, Clark, Larson, Mordeson, Potter, and Wierman (2008) propose a new method
for modeling individual preferences with fuzzy sets. They apply Nurmi’s (1981)
construct and assume that a political actor possess vague assessments as to whether
an alternative is more or less ideal. Formally, this is modeled with a fuzzy sub-
set when σ ∈ F (X) represents the actors preference function, where for x ∈ X ,
σ(x) = 1 signifies alternatives that are fully ideal and σ(x) = 0 signifies those that
are completely unacceptable. Further, it is assumed that σ ∈ F (X) is normal, i.e.
there exists x ∈ X such that σ(x) = 1. This assumption guarantees that the political
actor possesses an ideal alternative.

One obvious benefit from conceptualizing individual preferences in this way
comes from the flexibility of σ , which, thus far, only has one assumption of an
ideal alternative. This allows σ to easily fit the data or the demands of the mod-
eler. The flexibility is best displayed when the set of alternatives is represented by
Euclidean space. Figure 1(a) demonstrates a natural first extension of σ to a one-
dimensional space, with fuzzy preference profile with an ideal position at the peak
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of the function, where σ�(x) = 1. While this depiction may seem identical to the tra-
ditional single-peaked utility functions, the fuzzy profile introduces the concept of
a policy horizon, past which, an actor is unwilling to accept any policy. Essentially,
the policy horizon is Supp(σ), and the actor will consider all alternatives outside of
this range as equally unacceptable.

Figures 3.1a and 3.1b demonstrate further departures from the traditional con-
cept of spatial preferences. Figure 3.1b shows a σ with significant areas of indiffer-
ence over discrete areas in space. Not only does the preference function incorporate
single-plateau preferences, where actors have an ideal policy range rather than a
ideal point (see Ching and Serizawa (1998) and Massó and Neme (2001) for for-
mal applications); but it also includes discrete areas of indifference throughout the
policy space, which are similar to the preferences modeled by Sloss (1973), Tovey
(2010) and Koehler (2001). In this case, Im(σ) = {0, .25, .5, .75,1}, and the ac-
tor’s preferences are similar to those of a Likert scale. Finally, Figure 3.2 shows
a σ ∈ F (X) where X is two-dimensional Euclidean space. Obviously, fuzzy sets
allow preferences to manifest very irregular shapes, suggesting a complex relation-
ship between the two policy dimensions. This can be done without specifying a
Euclidean-distance utility function, i.e u(y) =−(y−x)A(y−x)T , where x is an ideal
point, y is a point in two-dimensional space, T denotes transpose, and A is a 2 × 2
matrix.10 In addition, there is no assumption requiring σ to be convex or pseudo-
convex; and fuzzy profiles can model actors with two ideal regions. Such situations
can arise when a collective actor, a political party for example, contains polarized
factions, or another dimension, irrelevant to the policy space, induces a trade-off
between two ideal alternatives.

Applications of fuzzy sets in this manner have only used σ to derive exact pref-
erences relations (Clark et al., 2008; Nurmi, 1981; Mordeson et al., 2011). Hence,
ρ(x,y) = 1 if and only if σ(x)≥ σ(y) and ρ(x,y) = 0 otherwise. However, this need
not be the case. Drawing on revealed preference theory, Georgescu (2005; 2007a)
proposes an operation for fuzzy revealed preferences that can be applied to the con-
text discussed here. For any x,y ∈ X and σ ∈ F (X), ρ1 can be defined as follows:

ρ1(x,y) =
∨

{t ∈ [0,1] | σ(y)∗ t ≤ σ(x)}.

Further, when ∗ is the minimum t-norm, ρ1 can be written as

ρ1(x,y) =

{
1 if σ(x) ≥ σ(y),

σ(x) otherwise.

Obviously, because σ(x) ≥ σ(y) or σ(y) ≥ σ(x), ρ1 is not only complete and re-
flexive but strongly connected as well. In addition, the following proposition reveals
that ρ1 is max-∗ transitive.

Proposition 3.43. Let σ ∈ F (X). Suppose ρ1(x,y) =

{
1 if σ(x) ≥ σ(y),

σ(x) otherwise.
Then ρ1 is max-∗ transitive over X for any ∗.

10 In k-dimensional Euclidean space, A would be a k×k matrix.
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(a) Simple Discrete Fuzzy Preference

(b) Discrete Fuzzy Preference Function

Fig. 3.1 Examples of Fuzzy Preference Functions
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Fig. 3.2 Discrete Fuzzy Preference Relation

Proof. Suppose {x,y,z} ∈ X . First, if ρ(x,z) = 1, then the relationship ρ(x,z) ≥
ρ(x,y)∗ρ(y,z) holds. If ρ(x,z)< 1, then σ(x)< σ(z) and ρ(x,z) = σ(x). There are
two cases to consider.

(1) σ(y) ≤ σ(x)< σ(z). Then, ρ(x,y) = 1 and ρ(y,z) = σ(y). Because 1∗σ(y) =
σ(y) and σ(x) ≥ σ(y), ρ(x,z) = σ(x) ≥ 1 ∗σ(y) = σ(y).

(2) σ(x)< σ(y). Then ρ(x,y) = σ(x)< σ(z). In any case, ρ(x,z) = σ(x)≥ σ(x)∗
ρ(y,z). ��

The operation for an FWPR proposed in ρ1 may not be an ideal definition for several
reasons. First, ρ1 is, at most, half fuzzy because of strong connectedness. Second,
the operation offers the researcher little opportunity to adjust the FWPR to a particu-
lar type of actor. For example, suppose x,y ∈ X and σ(x) = .3 and σ(y) = .29. Even
though x is more ideal that y, it would be unreasonable to expect all actors across
a varieties of situation to assert that x is definitely just as good as y (ρ(x,y) = 1),
especially when x is only .01 degrees more ideal. Third, several social choice schol-
ars have criticized max-∗ transitivity because it uses a cardinal conception of con-
sistency in which the values of ρ(x,y) and ρ(y,z) determine the value of ρ(x,z)
rather than an ordinal conception in which the ordinality between ρ(x,y) and ρ(y,x)
and between ρ(y,z) and ρ(z,y) determine the ordinality between ρ(x,z) and ρ(z,x)
(Ponsard, 1988, 1990). Thus, it may be beneficial to consider an FWPR that allows
variation in its calculations. One such operation, ρ2, can be defined as follows for
all x,y ∈ X :

ρ2(x,y) =

⎧
⎨

⎩

1 if x = y,
(σ(x)−σ(y)+ c)∧1 if σ(x) ≥ σ(y),

1− [(σ(y)−σ(x)+ 1− c)∧1] otherwise,



3.3 Empirical Application I: Deriving an FWPR from a Fuzzy Preference Function 49

where c ∈ [0,1] and σ ∈ F (X). Obviously, ρ2 is reflexive. Further, when c = 1, ρ2

is strongly connected; and when c > 0, ρ2 is complete. In addition, the definition
of ρ2 allows for greater substantive interpretations of the FWPR. First, the variable
c could account for the degree of certainty in ρ . If c = 0, an individual will prefer
one alternative to another less strongly than when c = 1. For example, if c = 0,
σ(x) = .75 and σ�(y) = .25, then ρ(x,y) = .5 and ρ(y,x) = 0. In contrast, if c = 1,
then ρ(x,y) = 1 and ρ(y,x) = .5. While the difference between ρ(x,y) and ρ(y,x)
remains unchanged in these two examples, the actor becomes more certain that x
is at least as good as y as c approaches one. In addition, c could also be used to
denote types of fuzzy weak preference. Examples include ρ(x,y) when c ∈ (0.5]
denoting the degree to which x is strongly at least as good as y and ρ(x,y) when
c ∈ (.5.1] denoting the degree to which x is weakly at least as good as y. In addition,
ρ2 induces a weakly transitive FWPR rather than a max-∗ one as the following
proposition demonstrates.

Proposition 3.44. Let σ ∈ F (X). Suppose ρ2 is defined as discussed above. Then
ρ2 is weakly transitive over X.

Proof. Suppose {x,y,z} ∈ X . Further, suppose ρ2(x,y) ≥ ρ2(y,x) and ρ2(y,z) ≥
ρ2(z,y). This proof will show that ρ2(x,z) ≥ ρ2(z,x).

First, ρ2(x,y) ≥ ρ2(y,x) implies σ(x) ≥ σ(y). To see this, suppose the contrary.
Then ρ2(y,x) = (σ(y)−σ(x)+ c)∧1 and

ρ2(x,y) = 1− [(σ(y)−σ(x)+ 1− c)∧1]

= (1−σ(y)+σ(x)− 1+ c)∨0

= (−σ(y)+σ(x)+ c)∨0 .

Because σ(y)> σ(x),

(−σ(y)+σ(x)+ c)∨0< (σ(y)−σ(x)+ c)∧1

and ρ2(y,x) > ρ2(x,y), a contradiction. Thus, ρ2(x,y) ≥ ρ2(y,x) implies σ(x) ≥
σ(y). Hence, σ(x) ≥ σ(y) ≥ σ(z).

Second, to see that σ(x) ≥ σ(z) implies ρ2(x,z) ≥ ρ2(z,x), consider the case
where σ(x)> σ(z). Then,

ρ2(x,z) = (σ(x)−σ(z)+ c)∧1

and
ρ2(z,x) = (−σ(x)+σ(z)+ c)∨0 .

Because σ(x)> σ(z),

(σ(x)−σ(y)+ c)∧1 > (−σ(x)+σ(z)+ c)∨0 .

Second, consider the case σ(x) = σ(z). Then, ρ2(x,z) = ρ2(z,x) = c by definition.
Hence, ρ2(x,z) ≥ ρ2(z,x), and ρ2 is accordingly weakly transitive. ��
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The two operations ρ1 and ρ2 are only two procedures that extract an FWPR from a
preference function. Example 2.37 better illustrates their differences.

Example 3.45. Let x,y,z ∈ X and suppose σ(x) = .7, σ(y) = 1 and σ(z) = .2. Obvi-
ously, ρ1(w,w) = 1 and ρ2(w,w) = 1 for all w ∈ X . The remainder of ρ1 is defined
as follows:

ρ1(y,x) = ρ1(y,z) = ρ1(x,z) = 1

ρ1(x,y) = .7

ρ1(z,y) = ρ1(z,x) = .2.

In contrast, ρ2 is defined as follows:

ρ2(x,y) = (−.3+ c)∨0

ρ2(x,z) = (.5+ c)∧1

ρ2(y,x) = (.3+ c)∧1

ρ2(y,z) = (.8+ c)∧1

ρ2(z,x) = (−.5+ c)∨0

ρ2(z,y) = (−.8+ c)∨0.

In sum, deriving FWPRs from individual preference functions, which denote the
degree to which an alternative is ideal, provides the social scientist with greater
flexibility when applying fuzzy social choice to empirical examples. Essentially,
there is no need to intensively gather data on an actor’s true FWPR, which requires
knowledge about the degree to which an actor views x at least as good as y, and
vice versa, for all pairwise comparisons. Further, as Clark et al. (2008) suggest,
if σ(x) > 0 represents all acceptable policy positions, then the analysis of group
decision-making reduces down to analyzing the alternatives which are acceptable to
at least one actor, thereby restricting the policy space.
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Chapter 4
Arrow and the Aggregation of Fuzzy Preferences

Abstract. This chapter builds off of chapter 3 by examining the aggregation of fuzzy
weak preference relations in order to determine how a social preference relation
emerges. Specifically, this chapter focuses on Arrow’s theorem which employs a
deductive analysis of aggregation rules and establishes five necessary conditions for
an ideal aggregation rule. When Arrow’s theorem is applied with fuzzy preferences,
not only do serious complications arise when conceiving the fuzzy definitions of
an ideal aggregation rule, but there exist specific combinations of conditions that
allow for a fuzzy aggregation rule to satisfy all of the fuzzy counterparts of Arrow’s
conditions. Moreover, this chapter shows that a fuzzy aggregation rule exists which
satisfies all five Arrowian conditions including non-dictatorship.

Introduction

Chapter 3 detailed the underlying structure of FWPRs and the complications that
arise when trying to incorporate the logic of exact preferences into the fuzzy frame-
work. Essentially, there is no obvious one-to-one procedure that fuzzifies the un-
derlying assumptions of a rational preference relation. Among these complications,
there exist several methods for extracting a fuzzy choice set, and there is little guar-
antee that these methods will return equivalent results. However, a proper speci-
fication of the fuzzy maximal set, along with other characteristics of an FWPR,
identifies obvious best outcomes that should emerge given a preference relation of
an individual or a collective body. Yet in the case of social preference relations, it
is very unlikely that one will be specified a priori, without the use of some social
welfare function relating individual preferences, i.e. those belonging to voters, com-
mittee members or legislators, to those of a social relation. Even if such an example
exists, the applications of the various fuzzy maximal sets can be done without com-
plication. Thus, it is worthwhile to consider situations where individual FWPRs are
aggregated to form a fuzzy social preference relation.

The goal of this chapter is to examine aggregation of FWPRs in order to deter-
mine how a social preference relation emerges. In doing so, it focuses on a clas-
sic result in social choice theory: Arrow’s Theorem (1951). Because the number
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of aggregation rules is quite large and considering each aggregation individually
can become quite tedious, Arrow employs a deductive analysis of aggregation rules
and establishes five requiste conditions of an ideal rule that possess inherit trade
offs. More simply, if an aggregation rule posssesses four of the five coniditions, it
must violate the fifth, thereby demonstating the impossibility of an ideal aggrega-
tion rule. Nonetheless, these traditional results rely on exact preferences. When the
formal logic of Arrow’s theorem is extended into the fuzzy framework, not only do
serious complications arise when conceiving the fuzzy definitions of an ideal aggre-
gation rule, but there exist specific combinations of conditions that allow for a fuzzy
aggregation rule to satisfy all of the fuzzy counterparts of Arrow’s conditions.

The chapter is organized as follows. The first section introduces the classic results
of Arrow’s theorem and then proposes several fuzzifications of the original five
conditions. Next, Section 2 presents the formal proof of fuzzy Arrow’s theorem
and demonstrates under what conditions a fuzzy aggregation rule will satisfy the
five criteria proposed in Section 1. Finally, Section 3 concludes the chapter with a
discussion on the empirical applications of fuzzy aggregation.

4.1 Fuzzifying Arrow’s Conditions

This section lays out the preliminary definitions used in Arrow’s formal consid-
erations of aggregation rules. To do so, we use the following notation. Let N =
{1, . . . ,n} be a finite set of individuals where n ≥ 2. As in Chapter 3, X is a finite
set of alternatives such that 3 ≤ |X |. Throughout the chapter, each individual i is
assumed to possess an FWPR, ρi ∈ F (X2), such that ρi is reflexive and complete.
In this case, we call ρi a fuzzy weak order.1

Let FR denote the set of all fuzzy weak orders on X . Then a preference pro-
file is an n-tuple of fuzzy weak orders, ρ̄ = (ρ1, . . . ,ρn) ∈ FRn and describes the
fuzzy preferences of all individuals. Throughout, we manipulate the consistency
conditions concerning the weak orders of individuals. When doing so, we will write
“assume ρ̄ satisfies a particular consistency condition” or “suppose ρi is max-∗ tran-
sitive for all i ∈ N.” Finally, our definitions related to FPAR’s are written generally
(that is, with domain FRn), but our results often assume that these definitions re-
flect the transitivity restrictions when appropriate.

For any non-empty S ⊆ X , let ρ̄�S = (ρ1|S×S, . . . ,ρn|S×S). In words, ρ̄�S denotes
the restriction of the preference profile to the subset S × S and, accordingly, ρ̄�S

describes only ρ(x,y) and ρ(y,x) for x,y ∈ S and every i ∈ N. In addition, for any
FWPR ρ and all α ∈ [0,1], ρα = {(x,y) ∈ X ×X | ρ(x,y)≥ α}. Often, ρα is called
the α-cut of ρ .

Finally, for all ρ̄ ∈ FRn and x,y ∈ X ,

R(x,y; ρ̄) = {i ∈ N | ρi(x,y)> 0}
1 Fuzzy weak orders usually possess some consistency or transitivity condition. However,

throughout this chapter, we vary these types of assumptions. The more general definition
given here permits us to do so.
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and
P(x,y; ρ̄) = {i ∈ N | πi(x,y)> 0} .

In words, R(x,y; ρ̄) denotes the collection of individuals who view x as at least as
good as y to some degree and P(x,y; ρ̄) the collection of individuals who strictly
prefer x to y to some degree.

Definition 4.1. A function f̃ :FRn →FR is called a fuzzy preference aggregation
rule.

Hence, a fuzzy preference aggregation rule (FPAR) relates a ρ̄ ∈ FRn to a social
preference relation f̃ (ρ̄) ∈FR. When this occurs, f̃ (ρ̄)(x,y) represents the degree
to which society, or more specifically the set of N actors, views x as at least as good
as y. Obviously, this encompasses the exact case where f̃ (ρ̄)(x,y)∈{0,1}. At times,
we suppress the f̃ (ρ̄) and let ρ denote the social preference relation. In this manner,
we can derive ρ’s components ι and π , which correspond to the social fuzzy indif-
ference and social fuzzy strict preference relations, respectively. Furthermore, we
will at times restrict FPAR’s to particular domains of fuzzy weak orders that satisfy
consistency conditions. For example, we may assume ρi is weakly transitive for all
i ∈ N. Then we analyze f̃ : Dn

w →FR, where Dw is the set of all weakly transitive
fuzzy weak orders. While this may appear to be an unnecessary technical compli-
cation, the intent is to illustrate the consequences of various types of consistency
conditions without needless notation to redefine FPAR’s in every case. With this
in mind, we assume that any FPAR has an unrestricted domain. That is, an FPAR
must assign a social preference relation to every fuzzy preference profile with the
consistency condition under consideration regardless of the specific combination of
the indvidual ρis. Unrestricted domain is fairly innocuous because the assumption
allows individuals to choose any fuzzy weak order in FR. In democratic terms,
the aggregation rule does not require individuals to possess certain types of opin-
ions about the possible alternatives. The understanding of an FPAR in Definition 4.1
allows for a greater variety of aggregation rules than that of exact rules.

Example 4.2. Let ρ̄ ∈ FRn. Then the following are examples of fuzzy preference
aggregation rules:

(1) For all x,y ∈ X ,

ρ(x,y) =
1
n

n

∑
i=1

ρi(x,y) ,

(2) For all x,y ∈ X and any β ∈ (0,1),

ρ(x,y) =
{

1 if ρi(x,y) ≥ ρi(y,x), ∀i ∈ N,
β otherwise,

(3) For all x,y ∈ X ,
ρ(x,y) = max

i∈N
{ρi(x,y)} .
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It is easily verified that ρ is complete and reflexive in all three cases.2

Arrow’s seminal work lays out five requisite and incompatible conditions for pref-
erence aggregation. The original conditions are

• universal admissibility,
• non-negative monotonicity,
• independence of irrelevant alternatives,
• non-imposition and
• non-dictatorship.

Efforts to dismiss the relevance of the theorem outright (Little, 1952) were fol-
lowed by attempts to replace certain original conditions. For example, some studies
eliminated non-negative monotonicity (Blau, 1972; Inada, 1955) while others re-
placed it with positive responsiveness (Black, 1969; Fishburn, 1974; May, 1952).
The ultimate result of these reinterpreations was a simpler form of Arrow’s theorm
by Blau (1972) that is generally accepted by contemporary scholars (Austen-Smith
and Banks, 1999). In this form, any preference aggregation rule that is transitive,
weakly Paretian and independent of irrelevant alternatives must be dictatorial. In
the remainder of this section we discuss these terms further and provide several
definitions of their fuzzy counterparts.

4.1.1 Transitivity

There are several fuzzy consistency conditions that correspond to transitivity in
the traditional sense of determing how FWPRs behave across pairwise compar-
ions. In the fuzzy Arrow literature, the most pervasive approach is the use of
some specific form of max-star transitivity. The definition can be used to derive
an infinite number of transitivity conditions and few tudies consider the general
condition of max-star transitivity (Duddy et al., 2011; Fono and Andjiga, 2005;
Fono et al., 2009). However, the most common definitions make use of the Gödel
(minimum) and Łukasiewicz t-norm (Banerjee, 1994; Dutta, 1987; Ovchinnikov,
1991; Richardson, 1998). In these two cases, for all x,y,z ∈ X and ρ ∈ F (X2),
ρ(x,z) ≥ min{ρ(x,y),ρ(y,z)} or ρ(x,z) ≥ ρ(x,y) + ρ(y,z)− 1, respectively. As
Duddy, Perote-Peña and Piggins (2007) demonstrate, designating a specific t-norm
for max-star transitivity has important consequences on whether Arrow’s conclu-
sions hold in the fuzzy frame work. Hence, it is important to consider a variety of
consistency defintions. In one of the first applications of fuzzy sets to Arrow’s the-
orem, Barrett, Pattanaik and Salles (1992) propose the following for asymmetric
preferences.

Definition 4.3. Let ρ be a complete and reflexive FWPR and let π be its asymmetric
component.

2 Example 4.2(1) was first proposed by Skala (1978) and is now standard in the fuzzy social
choice literature, 4.2(2) comes from Dutta (1987), and 4.2(3)’s first application to Arrow’s
theorem can be found in Fung and Fu (1975).
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(1) (partially transitive) ρ is said to be partially transitive if, for all x,y,z ∈ X ,
ρ(x,y)> 0 and ρ(y,z)> 0 implies ρ(x,z)> 0,

(2) (partially quasi-transitive) ρ is said to be partially quasi-transitive if, for all
x,y,z ∈ X , π(x,y)> 0 and π(y,z)> 0 implies π(x,z)> 0.

The relationship in Definition 4.3(1) relates to a special case of max-∗ transitivitiy
where ∗ has no zero divisors. In this case, for three alternatives x,y,z ∈ X , ρ(x,y)> 0
and ρ(y,z)> 0 implies ρ(x,y)∗ρ(y,z)> 0. In addition, Definition 4.3(2) strengthens
the condition of acyclicity in Definition (3). Specifically, partial quasi-transitivity
requires not only π(z,x) = 0, as in acyclicity, but also π(x,z) > 0 when π(x,y) >
0 and π(y,z) > 0 for all x,y,z ∈ X . An application of partial quasi-transitivity can
also be found in Dasgupta and Deb (1999). In a similar manner, we can define
consistency conditions of fuzzy aggregation rules, which, like FWPRs, possess more
or less strictness.

Definition 4.4. Let f̃ be an FPAR.

(1) (max-star transitive) f̃ is said to be max-∗ transitive if, for all ρ̄ ∈FRn, f̃ (ρ̄)
is max-∗ transitive,

(2) (weakly transitive) f̃ is said to be weakly transitive if, for all ρ̄ ∈FRn, f̃ (ρ̄)
is weakly transitive,

(3) (partially quasi-transitive) f̃ is said to be partially quasi-transitive if, for all
ρ̄ ∈ FRn, f̃ (ρ̄) is partially quasi-transitive,

(4) (partially acyclic) f̃ is said to be partially acyclic if, for all ρ̄ ∈ FRn, f̃ (ρ̄) is
partially acyclic.

Definition 4.4 presents the consistency conditions of fuzzy aggregations rules used
in this text, but there are other consistency conditions previously explored in the
fuzzy Arrow literature, which we will not focus on because they have already been
explicated in the existing literature. These other conditions include minimal transi-
tivity, i.e. min{ρ(x,y),ρ(y,x)}= 1 implies ρ(x,z) = 1 for all x,y,z ∈ X , and negative
transitivity, i.e. π(x,y) > 0 implies max{π(x,z),π(z,y)} > 0 for all x,y,z ∈ X , the
contrapositive of which is called positive transitivity Fono et al. (2009); Fung and
Fu (1975); Richardson (1998).

4.1.2 Weak Paretianism

Weak Paretianism, as the name suggests, determines how an FPAR will behave
when every actor in society holds a certain preference between two alternatives.
In the exact case, an aggregation rule is weakly Paretian if, for two possible alterna-
tives x and y, every i ∈ N strictly prefers x to y then the social preference must prefer
x to y (Austen-Smith and Banks, 1999; Blau, 1972). In this sense, weak Paretian-
ism has little to say about the final social preferences if all actors possess the same
weak preferences between two alternatives or if all actors in N\{i} strictly prefer x
to y, but individual i is indifferent between the two. Weak Paretianism in the fuzzy
context, often called the “Pareto Condition”, has a fairly uniform definition across
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the fuzzy literature (Banerjee, 1994; Barrett et al., 1992; Dasgupta and Deb, 1999;
Dutta, 1987; Fono et al., 2009; Fung and Fu, 1975; Richardson, 1998).

Definition 4.5 (Pareto Condition). Let f̃ be an FPAR. Then f̃ is said to satisfy the
Pareto Condition if, for all ρ̄ ∈ FRn and x,y ∈ X , π(x,y) ≥ min

i∈N
{πi(x,y)}.

Of course, derivations from Definition 4.5 exist in the fuzzy literature. Examples in-
clude the strict Pareto Condition where min

i∈N
{πi(x,y)}= 1 implies π(x,y) = 1 for all

x,y ∈ X (Ovchinnikov, 1991) and unanimity, which, for all x,y ∈ X and t ∈ [0,1], re-
quires ρ(x,y) = t if ρi(x,y) = t for all i ∈ N (Duddy et al., 2011; García-Lapresta and
Llamazares, 2000). In addition, when formal arguments do not require constructing
a fuzzy strict preference relation, Definition 4.5 can be applied to FWPRs (Duddy
et al., 2011; Perote-Peña and Piggins, 2007). To better explicate fuzzy Arrow’s the-
orem, we also consider a weaker assumption than the Pareto Condition that was first
proposed by Mordeson and Clark (2009).

Definition 4.6 (weakly Paretian). Let f̃ be an FPAR. Then f̃ is said to be weakly
Paretian if, for all ρ̄ ∈ FRn and x,y ∈ X , min

i∈N
{πi(x,y)} > 0 implies π(x,y)> 0.

Obviously, Definition 4.6 relaxes Definition 4.5 because Definition 4.6 no longer
restricts the social strict preference between the two alternatives to a more specific
alpha level. Nonetheless, both definitions correspond to weak Paretianism in the
exact case because min{πi(x,y)} > 0 implies min{πi(x,y)} = 1, which, under a
weakly Paretian aggregation rule, implies π(x,y) = 1 ≥ min{πi(x,y)}, i ∈ N. It is
still important to distinguish between these two definitions because, as discussed in
a subsequent section, there is an important relationship between these conditions
and the types of FPARs that satisfy all Arrowian conditions. Example 4.7 illustrates
some basic differences between the conditions.

Example 4.7. Let f̃ be an FPAR and X = {a,b}. Suppose ρ̄ is reflexive and defined
as follows:

ρi(a,b) = .5

ρi(b,a) = .3

πi(a,b) = .2

for all i ∈ N. If f̃ is unanimous, then the social weak preference, ρ , will be ρ(a,b) =
.5 and ρ(b,a) = .3. If f̃ satisfies the Pareto Condition, the social strict preference
relation, π , will be π(a,b)≥ .2. Finally, if f̃ is weakly Paretian, π(a,b)> 0. Notice
the Pareto Condition and weak Paretianism do not guarantee any specific value of
ρ(a,b) or ρ(b,a); however, assuming that the social strict preference relation is
regular, all three conditions ensure that ρ(a,b)> ρ(b,a).

4.1.3 Independence of Irrelevant Alternatives

Unlike some of the other Arrowian conditions, independence of irrelevant alter-
natives is less normatively democratic, i.e. where the FPAR responds to some



4.1 Fuzzifying Arrow’s Conditions 59

conditions of the preference profile, and more technically desirable. In theory, an
aggregation rule satisfies the independence of irrelevant alternatives conditions if
the social preference between x and y is solely determined by individuals’ prefer-
ences between x and y. According to Austen-Smith and Banks (1999), the traditional
independence criterion implies two requirements:

(1) the social preference between two alternatives is specifically determined by in-
dividual preferences between two alternatives and

(2) cardinal and relative information contained in indivdual preferences is unrelated
to the societal preference.

In other words, these requirements stipulate that each individual can produce a
ranked list of the alternatives, including ties, and that the aggregation rule only con-
siders the ordinal relationship between x and y when determining the social prefer-
ence. Information such as x is four alternatives higher in the preference ranking than
y or x is 2.5 times more preferred than y becomes trivial. In the fuzzy framework,
the literature has most frequently relied on one definition for independence of irrel-
evant alternatives Banerjee (1994); Barrett et al. (1992); Duddy et al. (2011); Fono
and Andjiga (2005); Fono et al. (2009); García-Lapresta and Llamazares (2000);
Ovchinnikov (1991); Richardson (1998).

Definition 4.8 (IIA-1). Let f̃ be an FPAR. Then f̃ is said to be independent of
irrelevant alternatives, type 1 (IIA-1), if for all ρ̄, ρ̄ ′ ∈ FRn and all x,y ∈ X ,
ρi(x,y) = ρ ′

i (x,y) for all i ∈ N implies f̃ (ρ̄)(x,y) = f̃ (ρ̄ ′)(x,y).

In terms of the two previously discussed criteria, Definition 4.8 certainly satisfies
the first condition where f̃ (ρ̄)(x,y) is only related to ρ̄�{x,y} because the values of
ρ(w,z) are left undefined for all w �= x and z �= y. However, IIA-1 does not faith-
fully reproduce the second condition of ordinality where the strength of an actor’s
preference for one alternative over another becomes arbitrary.

One recent effort to reconsider a fuzzy version of the independence condition ap-
pears in Mordeson and Clark (2009) where the support of fuzzy preference relations
is used.

Definition 4.9 (IIA-2). Let f̃ be an FPAR. Then f̃ is said to be independent
of irrelevant alternatives, type 2 (IIA-2), if for all ρ̄, ρ̄ ′ ∈ FRn and x,y ∈
X , Supp(ρi�{x,y}) = Supp(ρ ′

i�{x,y}) for all i ∈ N imples Supp( f̃ (ρi)�{x,y}) =

Supp( f̃ (ρ ′
i )�{x,y}).

Definition 4.9 certainly captures some aspects of the ordinal quality of the crisp
independence condition. In words, if there exist two profiles ρ̄ , ρ̄ ′ ∈FRn such that,
when restricted to two alternatives x and y, the supports of the individual fuzzy weak
orders in ρ̄ are identical to those in ρ̄ ′, then the support of the two social preference
relations generated by an IIA-2 FPAR should be identical as well, regardless of
the relationship between the other alternatives and regardless of the specific values
for ρi(x,y) and ρi(y,x). However, constructing the independence condition in this
manner offers no guarantee that the relationship between f̃ (ρ̄)(x,y) and f̃ (ρ̄)(y,x)
will be preserved in the fuzzy social preference relation generated by f̃ (ρ̄ ′). This can
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have important consequences when constructing a social strict preference relation
as the following example demonstrates.

Example 4.10. Let X = {x,y} and let ρ̄ , ρ̄ ′ ∈ FRn. Suppose the fuzzy social pref-
erence relations derived from ρ̄ and ρ̄ ′, denoted ρ and ρ ′, respectively, are derived
as follows:

ρ(x,y) = ρ ′(y,x) = .5,

ρ(y,x) = ρ ′(x,y) = .2.

Obviously, Supp(ρ) = Supp(ρ ′). However, if we were to construct a fuzzy social
strict preference relation by assuming that social strict preference relations, π and
π ′, are regular, then π(x,y)> 0 and π ′(y,x) > 0.

Example 4.10 begs the question: How truly similar are two preferences relations
when their supports are identical? If we are also interested in creating a social strict
preference, then we may want to consider an independence condition that main-
tains the ordinal relationships between two FWPRs. Such a definition is proposed
by Billot (1992), which has remained largely overlooked in the literature. Before
proceeding, we need the following definition.

Definition 4.11 (equivalent). Let ρ ,ρ ′ ∈ F (X2) and let Im(ρ) = {s1, . . . ,sm} and
Im(ρ ′) = {t1, . . . , tn} be such that s1 < .. . < sm and t1 < .. . < tn. We then say ρ and
ρ ′ are equivalent, written ρ ∼ ρ ′, if and only if

(1) s1 = 0 ⇐⇒ t1 = 0,
(2) n = m,
(3) ρ si = ρ ′ti , for all i = 1, . . . ,m.

Using this concept of analogous preference relations, we can model a third variant
of the independence condition in the manner of Billot (1992).

Definition 4.12 (IIA-3). Let f̃ be an FPAR. Then f̃ is said to be independent of
irrelevant alternatives, type 3 (IIA-3), if for all ρ̄, ρ̄ ′ ∈FRn and x,y ∈ X , ρi�{x,y} ∼
ρ ′

i�{x,y} for all i ∈ N implies f̃ (ρ̄)�{x,y} ∼ f̃ (ρ̄ ′)�{x,y}.

Proposition 4.13 demonstrates that the binary relation ∼ preserves the ordinal rela-
tionship between ρ(x,y) and ρ(y,x) across analogous preference relations.

Proposition 4.13. Let ρ and ρ ′ be FWPRs on X where x,y ∈ X. Suppose ρ ∼ ρ ′.
Then ρ(x,y)> ρ(y,x) ⇐⇒ ρ ′(x,y)> ρ ′(y,x).

Proof. Suppose ρ(x,y) > ρ(y,x) and ρ(x,y) = si. Then si > ρ(y,x) and ρ(y,x) �∈
ρ si . Thus, ρ(y,x) �∈ ρ ′ti . Now (x,y) ∈ ρ si implies (x,y) ∈ ρ ′ti . Hence ρ ′(x,y) ≥ ti >
ρ ′(y,x). ��
Proposition 4.13 helps us to interpret IIA-3. For some fuzzy preference profile ρ̄ ,
suppose there exists another profile ρ̄ ′ such that ρi(x,y) > ρ(y,x) if and only if
ρ ′

i (x,y)> ρ ′
i (y,x) for all i ∈ N. Then an IIA-3 FPAR will associate equivalent social
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preferences over x and y to ρ̄ and ρ̄ ′, where f̃ (ρ̄)(x,y) > f̃ (ρ̄)(y,x) if and only if
f̃ (ρ̄ ′)(x,y) > f̃ (ρ̄ ′)(y,x). Hence, IIA-3 preserves the ordinal relationship between
the social preference over (x,y) and over (y,x) without considering the specific val-
ues of social preference, thereby satifying the conditions presented earlier in this
subsection.

4.1.4 Dictatorship

In contrast to the other fuzzy Arrow conditions, dictatorship or a dictatorial aggre-
gation rule exhibits very little variation over definitions throughout the literature
(Banerjee, 1994; Barrett et al., 1992; Duddy et al., 2011; Fono and Andjiga, 2005;
Fono et al., 2009; Mordeson and Clark, 2009; Richardson, 1998; Salles, 1998).

Definition 4.14 (dictatorial). Let f̃ be an FPAR. Then f̃ is said to be dictatorial if
there exists an i ∈ N such that for all ρ̄ ∈ FRn and x,y ∈ X , πi(x,y) > 0 implies
π(x,y)> 0.

Definition 4.14 is standard in the literature. Obviously a dictatorship over an FPAR
corresponds neatly to a dictatorship in the case of exact preferences, where society
striclty prefers one alternative to another if the dictator does as well. As discussed
previously, some scholars have chosen to avoid fuzzy strict preference relation and
rely on another definition of dictatorship (Billot, 1992; Duddy et al., 2011).

Definition 4.15 (strongly dictatorial). Let f̃ be an FPAR. Then f̃ is said to be
strongly dictatorial if there exists an i ∈ N such that for all ρ̄ ∈ FRn and x,y ∈ X

ρi(x,y) = f̃ (ρ̄)(x,y) .

A strong dictatorship implies a dictatorship assuming that π is regular on both the
individual and social levels.

4.2 Making and Breaking Arrow’s Theorem

The traditional proofs of Arrow’s theorem use exact preference relations. This sec-
tion demonstrates the conditions under which Arrow’s conclusion holds in the fuzzy
framework discussed in the previous section. Further, we also detail under what con-
ditions there exists an FPAR that satisfies certain combinations of fuzzy Arrowian
conditions. To prove our main results, we make use of the following definition.

Definition 4.16. Let f̃ be an FPAR, let (x,y) ∈ X × X and let λ be a fuzzy subset
of N.

(1) (semidecisive) λ is called semidecisive for x against y, written xD̃λ y, if for
every ρ̄ ∈ FRn,

πi(x,y)> 0 for all i ∈ Supp(λ ) and π j(y,x) > 0 for all j �∈ Supp(λ )

implies π(x,y)> 0.
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(2) (decisive) λ is called decisive for x against y, written xDλ y, if for every ρ̄ ∈
FRn,

πi(x,y)> 0 for all i ∈ Supp(λ )

implies π(x,y)> 0.

In words, we call λ a fuzzy coalition when |Supp(λ )| ≥ 1. In addition we say a
coalition λ is semidecisive or decisive if it is semidecisive or decisive for all ordered
pairs of alternatives.

There are two comments worth making about Definition 4.16 before proceed-
ing to the formal arguments of fuzzy Arrow’s theorem. First, the fuzzy definition
of (semi)decisiveness introduces another application of fuzzy sets to social choice
theory. Here we use a fuzzy subset of the actors rather than a traditional crisp case.
Such a nuance is necessary when actors possess varied levels of influences within a
coalition. These situations can arise in informal committees where the preferences
of a more senior member may have more influence on the group’s final preferences
than those of a more junior member. Second, it is important to emphasize how very
little semidecisiveness implies about a specific coalition λ . Obviously, decisiveness
implies semidecisiveness, but the converse does not hold because semidecisiveness
incorporates the preferences of individuals not in Supp(λ ). Hence, if there exists a
j ∈ Supp(λ ) such that π j(y,x) = 0, we cannot conclude that λ is semidecisive for x
against y, and we know very little about the social preference between x and y. Given
these restrictions on semidecisiveness, the following lemma is quite remarkable in
the fact that additional structure on the FPAR implies a semidecisive coalition over
an ordered pair is actually a decisive coalition over all pairs of alternatives.

Lemma 4.17. Let λ be a fuzzy subset of N. Let f̃ be a partially quasi-transitive
FPAR that is weakly Paretian and IIA-3 where π is regular. If λ is semidecisive for
x against y, then for all (v,w) ∈ X ×X, λ is decisive for v against w.

Proof. Suppose λ is semidecisive for x against y. Let ρ̄ be a preference profile such
that πi(x,z)> 0, for all i ∈ Supp(λ ) and all z ∈ X\{x,y}. Let ρ̄ ′ be a fuzzy preference
profile such that

ρ ′
i (x,z) = ρi(x,z) and ρ ′

i (z,x) = ρi(z,x),∀i ∈ N (4.1)

π ′
i (x,y) > 0,∀i ∈ Supp(λ )

π ′
j(y,x) > 0,∀i ∈ N\Supp(λ )

π ′
i (y,z) > 0,∀i ∈ N.

Since πi(x,z)> 0 for all i ∈ Supp(λ ), π ′
i (x,z)> 0 for all i ∈ Supp(λ ) by the def-

inition of ρ̄ ′. Since xD̃λ y, π ′(x,y) > 0 by hypothesis. Since f̃ is weakly Paretian,
π ′(y,z) > 0. Since f̃ is partially quasi-transitive, π ′(x,z) > 0 and ρ ′(x,z)> ρ ′(z,x).
Since ρi�{x,z} = ρ ′

i�{x,z} for all i ∈ N and f̃ is IIA-3, ρ�{x,z} ∼ ρ ′�{x,z} implies
ρ(x,z) > ρ(z,x). Hence π(x,z) > 0. Since ρ̄ is arbitrary, xDλ z. Since z was arbi-
trary in X\{x,y},

xD̃λ y =⇒ xDλ z,∀z ∈ X\{x,y}. (4.2)
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Since λ is decisive for x against z implies λ is semidecisive for x against z, inter-
changing y and z in Eq. (4.2) implies λ is decisive for x against y.

Now let ρ̄∗ be another profile such that π∗
i (y,z) > 0 for all i ∈ Supp(λ ) and let

ρ̄+ be such that

ρ+
i (y,z) = ρ∗

i (y,z) and ρ+
i (z,y) = ρ∗

i (z,y),∀i ∈ N

π+
i (y,x) > 0,∀i ∈ N

π+
i (x,z) > 0,∀i ∈ Supp(λ )

π+
j (z,x) > 0,∀ j ∈ N\Supp(λ ).

Then π+
i (y,z) > 0 for all i ∈ Supp(λ ). Since xDλ z, π+(x,z) > 0. Since f̃ is

weakly Paretian, π+(y,x) > 0. Since f̃ is partially quasi-transitive, π+(y,z) > 0.
Since ρ∗

i �{y,z} = ρ+
i �{y,z} for all i ∈ N and f̃ is IIA-3, ρ∗�{y,z} ∼ ρ+�{y,z} , and so

ρ∗(y,z) > ρ∗(z,y). Thus, π∗(y,z) > 0 and so yDλ z because ρ̄∗ is arbitrary. Because
z is arbitrary in X\{x,y},

xD̃y =⇒ yDλ z,∀z �∈ {x,y}. (4.3)

Now because λ is decisive for y against z, λ is semidecisive for y against z. Thus
by 4.13, λ is decisive for y against x. To summarize, we have, for all (v,w) ∈ X ×X ,

xD̃λ y =⇒ xDλ v (by 4.13) =⇒ xD̃v =⇒ vDλ w

by Eq. (4.3). ��
Lemma 4.17 lays out the formal argument in the fuzzy framework of what Sen
(1976) labels the “Paretian epidemic”, where a coalition that is semidecisive over an
ordered pair becomes globally decisive after adopting the Arrowian conditions. An
important aspect of Lemma 4.17 is the generalization of strict preference to a regular
fuzzy strict preference relation, which as Chapter 3 illustrated, imposes minimal
assumptions on the structure of FWPRs. Nonetheless, the argument still holds for
certain non-regular strict preference relations but requires a new specification of IIA.
The following definition and proposition explores this relationship formally using
the cosupport of a fuzzy subset U of X . That is, Cosupp(U) = {x ∈ X | U(x)< 1}.

Definition 4.18 (IIA-4). Let f̃ be an FPAR. Then f̃ is said to be independent of
irrelevant alternatives, type 4 (IIA-4), if for all ρ̄, ρ̄ ′ ∈ FRn and x,y ∈ X ,

Cosupp(ρ̄i�{x,y}) = Cosupp(ρ̄ ′
i�{x,y})

for all i ∈ N implies

Cosupp( f̃ (ρ̄i)�{x,y}) = Cosupp( f̃ (ρ̄ ′
i )�{x,y}) .

It is easily verified that π(2)(x,y) = 1−ρ(y,x) and
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π(4)(x,y) =

{
ρ(x,y) if ρ(y,x) = 0,

0 otherwise,

are not regular when there is no further structure placed on ρ besides completeness
and reflexivity.

Lemma 4.19. Let λ be a fuzzy subset of N. Let f̃ be a partially quasi-transitive
FPAR that is weakly Paretian and IIA-2 when π = π(4) and IIA-4 when π = π(2).
If λ is semidecisive for x against y, then for all (v,w) ∈ X × X, λ is decisive for v
against w.

Proof. Suppose λ is semidecisive for x against y. Consider a profile ρ̄ ∈FRn such
that πi(x,z)> 0, for all i ∈ Supp(λ ). Let ρ̄ ′ be the fuzzy preference profile as defined
in Lemma 4.17. By an identical argument, we know π ′

i (x,z)> 0 for all i ∈ Supp(λ )
and π ′(x,y) > 0. Likewise, π ′(y,z) > 0, because f̃ is weakly Paretian. Since f̃ is
partially quasi-transitive, π ′(x,z)> 0.

For π = π(4), π ′
(4)(x,z)> 0 implies ρ ′(x,z) > 0 and ρ ′(z,x) = 0. Since

Supp(ρi�{x,z}) = Supp(ρ ′
i�{x,z})

for all i ∈ N and f̃ is IIA-2,

Supp(ρ�{x,z}) = Supp(ρ ′�{x,z}) .

Thus, ρ(x,z) > 0 and ρ(z,x) = 0, which implies π(4)(x,z) > 0 by the definition of
π(4).

For π = π(2), π ′
(2)(x,z)> 0 implies ρ ′(z,x) < 1. Since

Cosupp(ρi�{x,z}) = Cosupp(ρ ′
i�{x,z})

for all i ∈ N and f̃ is IIA-4,

Cosupp(ρ�{x,z}) = Cosupp(ρ ′�{x,z}) .

Thus, ρ ′(z,x) < 1, which implies π(2)(x,z)> 0 by definition of π(2).
Because π(x,z) > 0 and ρ̄ ∈ FRn and z ∈ X\{x,y} are arbitrary, we obtain the

following result:
xD̃λ y =⇒ xDλ z,∀z ∈ X\{x,y}.

The remainder of the proof follows easily from a similar argument using Lemma
4.17.

Before presenting the main results, we prove the following proposition.

Proposition 4.20. Let ρ be an FWPR on X. Then the following properties are equiv-
alent:

(1) ρ is weakly transitive.
(2) For all x,y,z ∈ X, ρ(x,y) ≥ ρ(y,x) and ρ(y,z) ≥ ρ(z,y) with a strict equality

holding at least once, then ρ(x,z)> ρ(z,x).



4.2 Making and Breaking Arrow’s Theorem 65

Proof. Suppose 4.20(1). Assume that ρ(x,y) ≥ ρ(y,x) and ρ(y,z) > ρ(z,y). Then
ρ(x,z)≥ ρ(z,x). Suppose ρ(z,x)≥ ρ(x,z). Then ρ(z,y)≥ ρ(y,z) by 4.20(1), a con-
tradiction. Hence, ρ(x,z)> ρ(z,x). A similar argument shows that ρ(x,y)> ρ(y,x)
and ρ(y,z) ≥ ρ(z,y) implies ρ(x,z)> ρ(z,x).

Suppose 4.20(2). Let x,y,z ∈ X . Suppose ρ(x,y) ≥ ρ(y,x) and ρ(y,z) ≥ ρ(z,y).
Suppose ρ(z,x)> ρ(x,z). Then by (2), ρ(z,x)> ρ(x,z) and ρ(x,y)≥ ρ(y,x) imply
ρ(z,y)> ρ(y,z), a contradiction. Hence, ρ(x,z) ≥ ρ(z,x). ��
Corollary 4.21. Let ρ be an FWPR on X. If ρ is weakly transitive, then ρ is partially
quasi-transitive.

As Proposition 4.20 and Corollary 4.21 show, weak transitivity is more restrictive
than partial quasi-transitivity. This added assumption, when paired with the condi-
tions of independence and weak Paretianism, implies a dictatorial FPAR. To illus-
trate this formally, the results in Lemmas 4.17 and 4.19 make it sufficient to show
that Supp(λ ) = {i}, where λ is any semidecisive coalition under the Arrowian con-
ditions. In such a case, πi(x,y)> 0 implies π(x,y)> 0 for all ρ̄ ∈FRn and x,y ∈ X ,
and λ is a dictator rather than a coalition.

Theorem 4.22 (Fuzzy Arrow’s Theorem). Let f̃ : Dn
w → FR be a fuzzy aggre-

gation rule. Suppose π is regular, and f̃ is weakly Paretian, weakly transitive and
IIA-3. Then f̃ is dictatorial.

Proof. Since f̃ is weakly Paretian, there exists a decisive λ for any pair of alterna-
tives, namely, Supp(λ ) = N. For all (u,v) ∈ X ×X , let m(u,v) denote the size of the
smallest |Supp(λ )| for a λ semidecisive for u against v. Let m =∧{m(u,v) | (u,v)∈
X ×X}. Without loss of generality, suppose λ is semidecisive for x against y where
|Supp(λ )| = m. If m = 1, the proof is complete. Suppose m > 1. Let i ∈ Supp(λ ),
and let z ∈ X\{x,y}. Consider any fuzzy profile ρ̄ such that

πi(x,y)> 0,πi(y,z) > 0 and πi(x,z) > 0

π j(z,x) > 0,π j(x,y)> 0 and π j(z,y) > 0,∀ j ∈ Supp(λ )\{i}
πk(z,x)> 0,πk(x,y)> 0 and πk(z,y)> 0,∀k �∈ Supp(λ ).

Since λ is semidecisive for x against y and π j(x,y) > 0 for all j ∈ Supp(λ ),
π(x,y) > 0. Since |Supp(λ )| = m, it is not the case that π(z,y) > 0, or otherwise
λ ′ is semidecisive for z against y, where Supp(λ ′) = Supp(λ )\{i}. However, this
contradicts the minimality of m since |Supp(λ ′)| = m − 1. Because π is regular,
π(z,y) = 0 implies ρ(y,z) ≥ ρ(z,y). Since ρ(x,y) > ρ(y,z), ρ(x,z) > ρ(z,x) by
weak transitivity and Proposition 4.20. Hence π(x,z) > 0. By IIA-3, λ ∗ is semide-
cisive for x against z, where Supp(λ ∗) = {i}. However, this contradicts the fact the
m > 1. ��
The added assumption of weak transitivity, rather than partial quasi-transitivity, in
Theorem 4.22 allows Arrow’s results to hold in the fuzzy framework with a general
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strict preference relation without putting added assumptions on individual prefer-
ences such as those in Fono and Andjiga (2005) and Mordeson and Clark (2009).
However, we can relax the transitivity condition of the FPAR and still obtain sim-
ilar results by specifying a strict preference relation. To do so, we make use of the
following proposition.

Proposition 4.23. Let ρ be an FWPR on X. If ρ is partially transitive, then ρ is
partially quasi-transitive with respect to π = π(4).

Proof. Let x,y,z ∈ X . Suppose π(x,y) > 0 and π(y,z) > 0. Then ρ(x,y) > 0,
ρ(y,x) = 0, ρ(y,z) > 0, and ρ(z,y) = 0. Hence, ρ(x,z) > 0. Suppose π(x,z) = 0.
Then ρ(z,x)> 0. However, ρ(y,z)> 0 and ρ(z,x)> 0 implies ρ(y,x)> 0, a contra-
diction. Hence π(x,z)> 0. ��
Using this proposition, we can relax the transitivity condition on f̃ to partial transi-
tivity when π = π(4).
Let Dpdenote the set of all partially transitive fuzzy weak orders.

Theorem 4.24 (Fuzzy Arrow’s Theorem 2). Let f̃ : Dn
p →FR be an FPAR. Sup-

pose π = π(4). Let f̃ be weakly Paretian, partially transitive, and IIA-2. Then f̃ is
dictatorial.

Proof. Since f̃ is partially transitive and π = π(4), f̃ is partially quasi-transitive by
Proposition 4.23. Further, because f̃ is weakly Paretian, there exists a decisive λ for
any pair of alternatives. Let m(u,v) denote the size of the smallest |Supp(λ )| for a
λ semidecisive for u against v in X . Let m = ∧{m(u,v) | (u,v) ∈ X ×X}. Likewise,
suppose λ is semidecisive for x against y where |Supp(λ )|= m, and suppose m > 1.
Now consider a ρ̄ ∈FRn such that ρ̄ is identical to ρ̄ in Theorem 4.24.

Then π(x,y)> 0 because λ is semidecisive for x against y and π j(x,y)> 0 for all
j ∈ Supp(λ )\{i}. In addition, π(z,y) = 0, else λ ′ is semidecisive for z against y, a
contradition of the minimality of m. Thus, ρ(y,z)> 0. Since f̃ is partially transitive,
ρ(x,y)> 0 and ρ(y,z)> 0 imply ρ(x,z)> 0. Suppose π(x,z) = 0. Then ρ(z,x)> 0
by definition of π(4). However, ρ(y,z) > 0 and ρ(z,x) > 0 imply ρ(y,x)> 0 by the
partial transitivity of f̃ . This contradicts π(x,y) > 0. Hence π(x,z) > 0. By IIA-2,
λ ∗ is semidecisive for x against y, where Supp(λ ∗) = {i}. However, this contradicts
m > 1. ��
Theorems 4.22 and 4.24 lay out the consequences of two specific combinations of
assumptions on fuzzy aggregation rules. Given an FPAR that satisfies these defini-
tions of transitivity, weak Paretianism and independence of irrelevant alternatives,
the FPAR must be dictatorial under a variety of social strict preference relations.
However, the implication of dictatatorship cannot be generalized over all derivations
of fuzzy Arrowian conditions. Thus, we now consider under what circumstances a
nondictatorial FPAR can satisfy fuzzy Arrowian conditions. The key to these series
of formal arguments lies in the concept of neutrality.

Definition 4.25 (neutral). Let f̃ be an FPAR. Then f̃ is said to be neutral if, for
all ρ̄ , ρ̄ ′ ∈ FRn and all w,x,y,z ∈ X , ρ ′

i (x,y) = ρ ′
i (w,z), for all i ∈ N, implies

f̃ (ρ̄)(x,y) = f̃ (ρ̄ ′)(w,z).
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In words, neutrality guarantees that an aggregation rule treats every pair of alterna-
tives in a similar manner across preference profiles, i.e., the labeling of alternatives
is arbitrary and does not affect the aggregation of preferences. In the exact case, neu-
trality has an important part in May’s (1952) theorem characterizing the importance
of majority rule as the only anonymous, neutral, and monotone choice function if
there are two alternatives. In Arrowian context, Blau (1972) first noticed the logic
of neutrality plays an important part in the formal arguments; however, he is unable
to use neutrality to prove Arrow’s theorem. Ubeda Ubeda (2003) first showed that
IIA and weak Paretianism imply neutrality and that neutrality can be used in a more
direct proof of Arrow’s theorem. In the fuzzy case, this relationship no longer holds.
This occurs because the concept of weak Paretianism is ordinal: for any two alter-
natives x and y, ρi(x,y)> ρi(y,x) for all i ∈ N implies ρ(x,y)> ρ(y,x) in the social
preference relation when π is regular. Yet neutrality, as defined in Definition 4.25, is
cardinal in conception and weak Paretianism is insufficient to imply neutrality even
when paired with IIA. Thus, we consider another characteristic of FPARs.

Definition 4.26 (unanimous in acceptance). Let f̃ be an FPAR. Then f̃ is said to
be unanimous in acceptance if, for all ρ̄ ∈ FRn, ρi(x,y) = 1 for all i ∈ N implies
f̃ (ρ̄)(x,y) = 1 Duddy et al. (2011).

Unanimity in acceptance is significantly less restrictive than unanimity (see Sec-
tion 4.1.2) and requires the social preference to take a specific value only when all
individuals definitely view one alternative as at least as good as another. Further,
Definition 4.26 has no implications for a fuzzy aggregation rule when there exist
some x,y ∈ X and ρ̄ ∈ FRn such that ρi(x,y) = c for all i ∈ N and c ∈ [0,1). This
seemingly insubstantial condition allows Duddy et al. (2011) to obtain the following
relationship.

Let FR∗ denote the set of all max-∗ transitive fuzzy weak orders.

Proposition 4.27. Let f̃ : FR∗n →FR be an FPAR. Suppose f̃ is max−∗ transi-
tive, IIA-1 and unanimous in acceptance. Then f̃ is neutral.

Proof. The proof, which comes from Duddy et al. (2011), demonstrates that f̃ is
neutral by considering all combinations of (x,y), (w,z) ∈ X ×X .

Case 1: (x,y) = (w,z). The proof follows immediately from the IIA-1 definition.
Case 2: (x,y),(x,z) ∈ X × X . Let ρ̄ ∈ FR∗n be such that ρi(y,z) = ρi(z,y) = 1

for all i ∈ N. Then, by max-∗ transitivity of all individ-
ual weak orders, ρi(x,y) ≥ ρi(x,z) ∗ ρi(z,y) = ρi(x,z) and
ρi(x,z) ≥ ρi(x,y) ∗ ρi(y,z) = ρi(x,y). Next, ρi(x,y) ≥ ρi(x,z) and
ρi(x,z) ≥ ρi(x,y) imply ρi(x,y) = ρi(x,z) for all i ∈ N. Similarly,
by max-∗ transitivity, ρi(y,x) ≥ ρi(y,z) ∗ ρi(z,x) = ρi(z,x) and
ρi(z,x) ≥ ρi(z,y) ∗ ρi(y,x) = ρi(y,x); and ρi(y,x) = ρi(z,x), for all
i ∈ N. Because ρi(y,z) = ρi(z,y) = 1 for all i ∈ N, ρ(y,z) = ρ(z,y) = 1.
Hence, by the previous arguments, ρ(x,y) ≥ ρ(x,z), ρ(x,z) ≥ ρ(x,y),
ρ(y,x) ≥ ρ(z,x), and ρ(z,x) ≥ ρ(y,x). Thus, ρ(x,y) = ρ(x,z) and
ρ(y,x) = ρ(z,x) for the social preference as well.
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The above arguments apply to all ρ̄ ∈ FR∗n such that ρi(y,z) =
ρi(z,y) = 1 for all i ∈ N. Let G n denote the set of all such profiles. Be-
cause the individual preferences between y and z are “irrelevant” so to
speak, the proof now uses IIA-1 to prove the conclusion.

Case 3: Now for any profile ρ̄ ∈ FR∗n such that ρi(x,y) = ρi(x,z) for all i ∈ N,
there exists a ρ̄ ′ ∈ G n such that ρi(x,y) = ρ ′

i (x,y) = ρ ′
i (x,z) = ρi(z,x).

IIA-1 implies ρ(x,y) = ρ(y,x) = ρ ′(y,x) = ρ ′(x,y). For two distinct pro-
files ρ̄, ρ̄ ′ ∈ FRn such that ρi(x,y) = ρ ′

i (x,z) for all i ∈ N, there also
exists a profie ρ̄∗ ∈ G n such that ρi(x,y) = ρ∗

i (x,y) = ρ∗
i (x,z) = ρ ′

i (x,z).
By IIA-1, ρ(x,y) = ρ∗(x,y) = ρ∗(x,z) = ρ ′(x,z).

Case 4: (x,y),(w,y) ∈ X × X . The same conclusions can be proved using sym-
metric logic in Case 2. The first step is to assume ρi(x,w) = ρi(w,x) = 1
for all i ∈ N.

Case 5: (x,y),(w,z) ∈ X × X . Let ρ̄ ∈ FR∗n such that ρi(y,z) = ρi(z,y) =
ρi(x,w) = ρi(w,x) = 1 for all i ∈ N. Because ρi is max-∗ transitive,
ρi(x,y) ≥ ρi(x,z) and ρi(x,z) ≥ ρi(x,y), and thus ρi(x,y) = ρi(x,z),
for all i ∈ N. Because f̃ satisfies max-∗ transitivity and unanimity in
acceptance, ρ(x,y) = ρ(x,z). Further, ρi(x,z) ≥ ρi(x,w) ∗ ρi(w,z) and
ρi(w,z) ≥ ρi(w,x) ∗ ρi(x,z) imply ρi(x,z) = ρi(w,z), for all i ∈ N. To
summarize, ρi(x,y) = ρi(x,z) = ρi(w,z) for all i ∈ N. And because the
conditions of unanimity in acceptance and max-∗ transitivity have been
met, an identical argument applies to the social preference relation and
ρ(x,y) = ρ(x,z) = ρ(w,z).

The above arguments apply to all ρi that are max-∗ transitive such that
ρi(y,z) = ρi(z,y) = ρi(x,w) = ρi(w,x) = 1 for all i ∈ N. Let G n denote
the set of all such profiles. Because the individual preferences between
y and z and between x and w are “irrelevant” so to speak, the proof now
uses IIA-1 to prove the conclusion.

Case 6: Now for any profile ρ̄ ∈FR∗n such that ρi(x,y) = ρi(w,z) for all i ∈ N,
there exists a ρ̄ ′ ∈ G n such that ρi(x,y) = ρ ′

i (x,y) = ρ ′
i (w,z) = ρi(w,z).

IIA-1 implies ρ(x,y) = ρ(w,z) = ρ ′(w,z) = ρ ′(x,y). For two distinct
profiles ρ̄ , ρ̄ ′ ∈ FRn such that ρi(x,y) = ρ ′

i (w,z) for all i ∈ N. Then
there exists a profile ρ̄∗ ∈ G n such that ρi(x,y) = ρ∗

i (x,y) = ρ∗
i (w,z) =

ρ ′
i (w,z). By IIA-1, ρ(x,y) = ρ∗(x,y) = ρ∗(w,z) = ρ ′(w,z).

Case 7: (x,y),(w,z) ∈ X ×X where x = z or y = w. (This case is similar to Cases
2 and 3.) Let a denote an arbitrary alternative that is distinct from x
and w. One exists because |X | ≥ 3. Take any profile ρ̄ ∈ FR∗n where
ρi(a,y) = ρi(y,a) = ρi(x,w) = ρi(w,x) = ρi(z,a) = ρi(a,z) = 1. Cases
2 and 3 imply ρi(x,y) = ρi(x,a) = ρi(w,a) = ρi(w,z) and ρ(x,y) =
ρ(x,a) = ρ(w,a) = ρ(w,z) by unanimity in acceptance and max-∗ tran-
sitivity.

Let W ndenote the set of all such profiles. Let (r1, . . . ,rn)∈ FR∗n be such that
r j(x,y) = r j(z,w) for all j ∈ N. Then there exists (r

′
1, . . . ,r

′
n) ∈ W n such that
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r j(x,y) = r j(z,w) = r
′
j(x,y,) = r

′
j(z,w) for all j ∈ N. IIA-1 implies that f̃ (ρ̄)(x,y) =

f̃ (ρ̄)(z,w) = f̃ (ρ̄ ′)(x,y) = f̃ (ρ̄ ′)(z,w) where ρ̄ = (r1, . . . ,rn) and ρ̄ ′ = (r
′
1, . . . ,r

′
n).

Take any pair of distinct profiles ρ̄ ′′ = (r
′′
1 , . . . ,r

′′
n) and ρ̄∗ = (r∗1 , . . . ,r

∗
n) in FR∗n

such that r
′′
j (x,y) = r∗j (z,w) for all j ∈ N. Then there exists (r∗∗1 , . . . ,r∗∗n ) ∈ W n

such that r
′′
j (x,y) = r

′′
j (z,w) = r∗∗j (x,y,) = r∗∗j (z,w) for all j ∈ N. IIA-1 implies

f̃ (ρ̄ ′′
)(x,y) = f̃ (ρ̄ ′′

)(z,w) = f̃ (ρ̄∗∗(x,y) = f̃ (ρ̄∗∗)(z,w) ��
While we do not use Proposition 4.25 to establish further results, it does illustrate
that neutrality is not necessarily a strong restriction to place on an aggregation rule.
As Proposition 4.27 demonstrates, neutrality arises naturally from the combination
of max-∗ transitivity, IIA-1, and unanimity in acceptance. We have already dis-
cussed the importance of max-∗ transitivity and IIA-1; if one can justify Definition
4.26 and its application to fuzzy aggregation rules, neutrality is the natural conclu-
sion. With a few more assumptions, we can use neutrality to derive a specific fuzzy
aggregation rule.

In what follows, we show how neutrality can be used to classify a wide range of
FPARs and determine whether these FPARs satisfy fuzzy Arrowian conditions. To
do this, we need the following lemma.

Lemma 4.28. Let f̃ be an FPAR. Then the following conditions are equivalent.

(1) f̃ is neutral;
(2) There exists a unique function fn : [0,1]n → [0,1] such that, for all x,y ∈ X and

all ρ̄ ∈ FRn, fn(ρ1(x,y), . . . ,ρn(x,y)) = f̃ (ρ̄)(x,y).

Proof. (1) =⇒ (2): Let x,y ∈ X . Let (a1, . . . ,an) ∈ [0,1]n. Then there exists ρ̄ ∈
FRn such that ρi(x,y) = ai for all i= 1, . . . ,n. Define fn : [0,1]n → [0,1] as follows:

fn((a1, . . . ,an)) = f̃ (ρ̄)(x,y).

It remains to be shown that fn is single-valued. Let w,z ∈ X . Then there exists a
ρ̄ ′ ∈ FRn such that ρ ′

i (w,z) = ai for all i = 1, . . . ,n. Thus, ρi(x,y) = ρ ′
i (w,z) for

all i ∈ N. Since f̃ is neutral, f̃ (ρ̄)(x,y) = f̃ (ρ̄ ′)(w,z). Thus, fn is single-valued. In
addition, uniqueness of fn is guaranteed by construction.

(2) =⇒ (1): Let ρ̄, ρ̄ ′ ∈ FRn and w,x,y,z ∈ X . Suppose ρi(x,y) = ρ ′
i (w,z) for

all i ∈ N. Then,

f̃ (ρ̄)(x,y) = fn(ρ1(x,y), . . . ,ρn(x,y)) = fn(ρ ′
1(w,z), . . . ,ρ

′
n(w,z))

= f̃ (ρ̄)(w,z) .

Thus, f̃ is neutral. ��
In words, fn is the auxillary function associated with a specific FPAR f̃ , and ai

can be interpreted as the weak preference intensity of player i for one alternative
over another. By itself, Lemma 4.28 may seem unremarkable, but the lemma is
an important step in examining the implications of neutrality on fuzzy aggregation
rules. To derive a unique aggregation rule, we need one more definition.
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Definition 4.29. Let f̃ be a neutral FPAR, and let fn be an auxillary function asso-
ciated with f̃ . Then f̃ is said to be

(1) linearly decomposable if, for all (a1, . . . ,an) ∈ [0,1]n, fn(a1, . . . ,an) =
a1 fn(1,0, . . . ,0)+ . . .+ an fn(0, , . . . ,0,1);

(2) additive if, for all (a1, . . . ,an),(b1, . . . ,bn) ∈ [0,1]n such that ai + bi ∈ [0,1],
i = 1, . . . ,n, fn((a1, . . . ,an)+(b1, . . . ,bn)) = fn((a1, . . . ,an))+ fn((b1, . . . ,bn)).

Linear decomposability implies two criteria. First, the condition requires that the
collective preference between two alternatives is the sum of the n collective pref-
erences when only one individual preference is considered at a time by the FPAR.
Second, the specific individual preference intensity (ai) can be “removed” from the
individual preference relation (ρi), and “reapplied” directly to the FPAR that only
considers the preference of individual i. The stronger assumption of additivity re-
quires that given a preference profile, the collective preference for one alternative
over another can be created by first decomposing the preference intensities of the
individuals, then applying the FPAR to those two profiles of preference intensities,
and finally adding the two collective preferences.

The followinig lemma states the relationship between the conditions in Definition
4.29.

Lemma 4.30. Let f̃ be a neutral FPAR. If f̃ is linearly decomposable, then f̃ is
additive.

Proof. Because f̃ is neutral, there exits an auxillary function fn associated with f̃
such that fn((a1, . . . ,an)) = f̃ (ρ̄)(x,y) for all ρ̄ ∈FRn, x,y ∈ X , and (a1, . . . ,an) ∈
[0,1]n. Let (a1, . . . ,an),(b1, . . . ,bn) ∈ [0,1]n be such that ai + bi ∈ [0,1] for all i =
1, . . . ,n. Then,

fn((a1, . . . ,an)+ (b1, . . . ,bn)) = fn((a1 + b1, . . . ,an + bn))

= (a1 + b1) fn((1,0, . . . ,0))+ . . .

+(an + bn) fn(0, . . .0,1)

= a1 fn((1,0, . . . ,0)+ . . .

+an fn((1,0, . . . ,0))+ b1 fn((1,0, . . . ,0)

+ . . .+ bn fn((1,0, . . . ,0))

= fn((a1, . . . ,a2))+ fn((b1, . . . ,bn)

as desired. ��
Finally, Theorem 4.31 and Corollary 4.32, which are simplified generalizations of
García-Lapresesta and Llamazares (2000), illustrate the effects of a neutral and lin-
ear decomposable FPAR. To do so, it introduces the concept of restricting an auxil-
lary function between the interval [0,1], denoted f̂n|[0,1]n , because, under additivity,
there is no guarantee that the sum of two n-tuples of preferences intensities will have
components less than or equal to one. The restriction places no added assumptions
on FPARs or individual preferences, but it allows us to obtain the following result.



4.2 Making and Breaking Arrow’s Theorem 71

Theorem 4.31. Let f̃ be a neutral fuzzy aggregation rule. If f̃ is linearly decom-
posable, then there exists a unique linear transformation f̃n of Rn into R such that
f̂ |[0,1]n = fn.

Proof. Because f̃ is neutral, there exits an auxillary function fn associated with f̃
such that fn((a1, . . . ,an)) = f̃ (ρ̄)(x,y) for all ρ̄ ∈FRn, x,y ∈ X , and (a1, . . . ,an) ∈
[0,1]n. For i = 1, . . . ,n, let 1̄i = (u1, . . . ,un), where ui = 1 and u j = 0 for j �= i. Then
there exists a unique linear transformation f̃ of R

n into R such that f̂ (1̄i) = wi,
where wi = fn(1̄i) for all i ∈ N. Since fn is additive by the previous lemma,

n

∑
i=1

wi =
n

∑
i=1

fn(1̄i)

= fn((1, . . . ,1)) ≤ 1 .

Now,

f̂n(
n

∑
i=1

ci1̄i) =
n

∑
i=1

ci f̂n(1̄i) .

Thus if ci ∈ [0,1], for i ∈ N, then

fn(
n

∑
i=1

ci1̄i) =
n

∑
i=1

ci fn(1̄i) ∈ [0,1]

because
n
∑

i=1
wi ≤ 1. Let ((a1, . . . ,an)) ∈ [0,1]n. Then

f̂n|[0,1]n((a1, . . . ,an)) = f̂n((a1, . . . ,an))

= =
n

∑
i=1

ai f̂n(1̄i)

= fn((a1, . . . ,an))

since f̃ is linearly decomposable. ��
Corollary 4.32. Let f̃ be a neutral FPAR. If f̃ is linearly decomposable, then, for
all ρ̄ ∈ FRn and all x,y ∈ X,

f̃ (ρ̄)(x,y) =
n

∑
i=1

wiρi(x,y) ,

wi = fn(1̄i) for all i ∈ N.

According to Theorem 4.31 and Corollary 4.32, a neutral and linearly decompos-
able aggregation rule must be a weighted mean aggregation rule. A weighted mean
FPAR is a generalization of Example 4.2(1). Such a generalization emphasizes two
important distinctions between exact and fuzzy aggregation rules. First, there is a
difference between the possible rules modeled under exact preferences and those
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modeled under the fuzzy framework. Corollary 4.32 allows scholars to consider
committee or other voting bodies where individuals do not contribute equally to
the social preference. In other words, some opinions are more relevant to the final
collective preference than others. These situations can arise on any committee that
produces a social fuzzy preference, which affected by seniority, professional rank,
or any number of other social factors could influence the group’s final decision.
However, this rule is not necessarily anonymous, i.e. the labeling of the individuals
does matter, because each individual has a preassigned weight to his or her prefer-
ence. If the weighted mean is anonymous, then it is easily verified that wi =

1
n for

all i ∈ N.
Second and more importantly, neutrality does not imply a dictatorship. Unlike

the findings in Ubeda (2003), fuzzy neutrality, when paired with linear decompos-
ability, does not guarantee a non-dictatorial FPAR. This brings us one step closer to
identifying conditions under which fuzzy social choice permits FPARs to satsify all
Arrowian conditions.

Definition 4.33 (weighted mean rule). Let f̃ be an FPAR. Then f̃ is said to be the
weighted mean rule if, for all ρ̄ ∈ FRn and all x,y ∈ X ,

f̃ (ρ̄)(x,y) =
n

∑
i=1

wi ·ρi(x,y),

where
n
∑

i=1
wi = 1 and wi > 0 for all i ∈ N.

Obviously, the weighted mean is non-dictatorial and independent of irrelevant alter-
natives under IIA-1. What remains to be shown is whether the FPAR satisfies weak
Paretianism and max-∗ transitivity, which we now consider.

Proposition 4.34. Let f̃ be an FPAR as defined in Definition 4.33. If π is regular,
then f̃ is weakly Paretian.

Proof. Let x,y ∈ X . Suppose πi(x,y) > 0 for all i ∈ N. Because π is assumed to be
regular, πi(x,y)> 0 implies ρi(x,y)> ρi(y,x). Further, wi ·ρi(x,y)> wi ·ρ(y,x) for
all i ∈ N because wi ∈ (0,1]. Hence,

n

∑
i=1

wi ·ρi(x,y)>
n

∑
i=1

wi ·ρi(y,x) .

Thus, f̃ (ρ̄)(x,y) > f̃ (ρ̄)(y,x), and by regularity of the social strict preference,
π(x,y)> 0. Hence, f̃ is weakly Paretian. ��
As a result of Proposition 4.34, the weighted mean is weakly Paretian. Further, it
satisfies stronger Paretian conceptualizations as well.

Definition 4.35 (positive responsiveness). Let f̃ be an FPAR and let π be the
social strict preference with respect to f̃ (ρ̄), where ρ̄ ∈ FRn. Then f̃ satisfies
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positive responsiveness with respect to π if, for all ρ̄, ρ̄ ′ ∈ FRn and all x,y ∈ X ,
f̃ (ρ̄)(x,y) = f̃ (ρ̄)(y,x) and there exists a j ∈ N such that ρi = ρ ′

i for all i �= j and
(π j(x,y) = 0 and π ′

j(x,y)> 0 or π j(y,x) > 0 and π ′
j(y,x) = 0) imply π ′(x,y)> 0.

In other words, positive responsiveness requires that given a preference profile in
which there is no social strict preference between two alternatives x and y, if one
individual who has no strict preference for x over y acquires such a preference or
who has a strict preference for y over x and loses such a preference, then the FPAR
should “respond” and exhibit a social strict preference for x over y. To show that
the weighted mean satisfies positive responsiveness, we make use of the following
proposition.

Proposition 4.36. Let ρ ∈ FR and let π and π(∗) be two different types of strict
preference with respect to ρ such that for all x,y ∈ X, π(x,y) > 0 if and only if
π(∗)(x,y) > 0. Let f̃ be an FPAR and ρ̄ ∈ FRn. Then f̃ satisfies positive respon-
siveness with respect to π if and only if f̃ satisfies positive responsiveness with
respect to π(∗).

Proof. Suppose f̃ satisfies positive responsiveness with respect to π . Suppose for
all ρ̄ , ρ̄ ′ ∈ FRn and all x,y ∈ X , f̃ (ρ̄)(x,y) = f̃ (ρ̄)(y,x) and there exists a j ∈ N
such that ρi = ρ ′

i for all i �= j and (π j(x,y) = 0 and π ′
j(x,y) > 0 or π j(y,x) > 0

and π ′
j(y,x) = 0). Because π(x,y)> 0 if and only if π(∗)(x,y) > 0 and π ′(x,y) > 0

if and only if π ′
(∗)(x,y) > 0 for all x,y ∈ X , for all ρ̄ , ρ̄ ′ ∈ FRn and all x,y ∈ X ,

f̃ (ρ̄)(x,y) = f̃ (ρ̄)(y,x) and there exists a j ∈ N such that ρi = ρ ′
i for all i �= j

and (π(∗) j(x,y) = 0 and π ′
(∗)(x,y) > 0 or π(∗) j(y,x) > 0 and π ′

(∗) j(y,x) = 0). Then

π(x,y) > 0 since f̃ satisfies positive responsiveness with respect to π . Thus,
π(∗)(x,y)> 0 by hypothesis. Hence, f̃ satisfies positive responsiveness with respect
to π(∗).

Using Proposition 4.36, we can characterize the weighted mean as satisfying posi-
tiveness responsiveness with respect to any regular π .

Proposition 4.37. Let f̃ be an FPAR as defined in Definition 4.35. Then f̃ satisfies
positive responsiveness with respect to any regular π .

Proof. By Proposition 4.36, it suffices to show that the weighted mean rule satisfies
positive responsiveness with respect to π(3), where π(3)(x,y) = max{0,(ρ(x,y)−
ρ(y,x))}. Let ρ̄ , ρ̄ ′ ∈ FRn and x,y ∈ X . Suppose f̃ (ρ̄)(x,y) = f̃ (ρ̄)(y,x) and ρi =
ρ ′

i for all i ∈ N\{ j}. In addition, suppose either

Proof. π j(x,y) = 0 and π ′
j(x,y)> 0 or

π j(y,x) > 0 and π ′
j(y,x) = 0, ��

where strict reference is of type 3. Then π ′(x,y) = max{0,ρ ′(x,y)−ρ ′(y,x)}, and
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ρ ′(x,y)−ρ ′(y,x) =
n

∑
i=1

(wi ·ρ ′
i (x,y)−wi ·ρ ′

i (y,x))

=
n−1

∑
i=1,i�= j

(wi ·ρi(x,y)−wi ·ρi(y,x))

+wj ·ρ ′
j(x,y)−wj ·ρ ′

j(y,x)

=
n

∑
i=1

(wi ·ρi(x,y)−wi ·ρi(y,x))−wj · (ρ j(x,y)−ρ j(y,x))

+wj · (ρ ′
j(x,y)−ρ ′

j(y,x))

= −wj · (ρ j(x,y)−ρ j(y,x))+wj · (ρ ′
j(x,y)−ρ ′

j(y,x))

> 0,

where the inequality holds if either (1) or (2) hold. Hence, the weighted mean sat-
isfies positive responsiveness with respect to π(3). The desired result now follows
from the definition of regularity and Proposition 4.36. ��
The weighted mean also satsifies the Pareto Condition under specific definitions of
strict preference.

Proposition 4.38. Let f̃ be an FPAR as defined in Definition 4.35. Then f̃ satisifies
the Pareto Condition with respect to π = π(1) and π = π(3).

Proof. Let x,y ∈ X . Let mx,y = min
i∈N

{πi(x,y)}. There is no loss in generality is as-

suming mx,y = π1(x,y). If mx,y = 0, the proof is complete. Suppose otherwise. Then,

1 ≤ w1 + . . .+wn +w2(
π2(x,y)

mx,y
− 1)+ . . .+wn(

πn(x,y)
mx,y

− 1)

= w1 · π1(x,y)
mx,y

+ . . .+wn · πn(x,y)
mx,y

.

Thus,

π1(x,y) = mx,y ≤ w1 ·π1(x,y)+ . . .+wn ·πn(x,y). (4.4)

Because mx,y > 0, πi(x,y) > 0 for all i ∈ N. Thus, ρi(x,y) > ρi(y,x) for all i ∈ N.
Hence,

n

∑
i=1

wi ·ρi(x,y)>
n

∑
i=1

wi ·ρi(y,x) .

Suppose π = π(1). By (3.3), ρ1(x,y)≤
n
∑

i=1
wi ·ρi(x,y), or mx,y ≤ π(x,y) = ρ(x,y).

Hence f̃ satisfies the Pareto Condition with respect to π(1).
Suppose π = π(3). Similarly by (3.3),
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ρ1(x,y)−ρ1(y,x) ≤
n

∑
i=1

wi · [ρi(x,y)−ρi(y,x)] =
n

∑
i=1

wi ·ρi(x,y)−
n

∑
i=1

wi ·ρi(y,x),

or mx,y ≤ ρ(x,y)− ρ(y,x) = π(x,y). Hence f̃ satisfies the Pareto Condition with
respect to π(3). ��
Unlike Positive Responsiveness, the relationship between the weighted mean and
the Pareto Condition in Proposition 4.38 cannot be generalized to the case of any
regular strict preference relation. The reason for this is the lack of some type of
behavioral assumptions on the relationship between the strict and weak preference
relationship, such as monotonicity or ρ = ι ∪π for a specified t-conorm ∪. The
following example presents a case where the weighted mean aggregation rule does
not satisfy the Pareto Condition with respect to a regular strict preference rule.

Example 4.39. Let X = {x,y}, N = {1,2} and f̃ be an FPAR as defined in Definition
4.35, where wi =

1
2 for all i ∈ N. Suppose the strict preference relation is defined as

follows:

π(x,y) =

⎧
⎪⎨

⎪⎩

.3 if ρ(x,y) = .6 and ρ(y,x) = .4,

0 if ρ(y,x)> ρ(x,y),
1 otherwise.

.

It is obvious that π is regular. Now consider a profle ρ̄ ∈ FR2 such that
ρ1(x,y) = .5, ρ2(x,y) = .7, and ρ1(y,x) = ρ2(y,x) = .4. For this profile, the social
preference relation is ρ(x,y) = .6 and ρ(y,x) = .4 because f̃ is the weighted mean.
Then the individual and social strict preference relations are as follows:

π1(x,y) = 1,

π2(x,y) = 1,

π(x,y) = .3,

and the weighted mean does not satsify the Pareto Condition with respect to π al-
though π is regular.

Currently, the only Arrowian condition unaccounted for is max-∗ transitivity.
Because the assumption max-∗ transitivity is unusually general in the fuzzy frame-
work, the weighted mean does not lend itself to developing one single formal argu-
ment detailing whether the FPAR satisfies the condition. Nonetheless, we can use
the concept of a zero divsor to determine what type of transitivity conditions to
consider.

Example 4.40. Let f̃ be an FPAR that is defined in 4.35. Let N = {1,2}, X = {x,y,z}
and wi =

1
2 for all i ∈ N. Suppose ρ̄ ∈FR2 is defined as follows:

ρ1(x,z) = ρ2(x,z) = 0,

ρ1(x,y) = ρ2(y,z) = 1,

ρ1(y,z) = ρ2(x,y) = 0,

ρi(z,x) = ρi(y,x) = ρi(z,y) = 1,
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for all i ∈ N. It is easily verified that ρi is max-∗ transitive under all t-norms using
the boundary conditions. Then the social preference relation, f̃ (ρ̄), is, by Definition
4.35, as follows:

ρ(x,z) = 0,

ρ(x,y) = ρ(y,z) = .5,

ρ(z,x) = ρ(y,x) = ρ(z,y) = 1.

If the social preference relation is to be max-∗, then ρ(x,z)≥ ρ(x,y)∗ρ(y,z) for
all x,y,z ∈ X . If ∗ has no zero divisors, ρ(x,y)∗ρ(y,z)> 0. However, ρ(x,z) = 0 �≥
ρ(x,y)∗ρ(y,z), a contradiction. Thus, f̃ cannot be max-∗ transitive when ∗ has no
zero divisors.

Example 4.40 suggests that when considering max-∗ transitivity conditions for the
weighted mean rule, we should consider definitions in which ∗ has a zero divisor.
If not, it is obvious then that the weighted mean will not satisfy the fuzzy Arrowian
condition of transitivity. However, the converse of this relationship is not necessarily
true as shown in the following example.

Example 4.41. Suppose a ∗ b =

{
min{a,b} if a+ b > 1,

0 otherwise.
.

In this case, ∗ is the nilpotent minimum, and ∗ has a zero divisor. Let X = {x,y,z}
and N = {1,2}. Suppose ρ̄ = {ρ1,ρ2} ∈FR2 and is defined as follows:

ρ1(x,y) = .8

ρ1(a,b) = .3,∀(a,b) ∈ X ×X\{(x,y)}, where a �= b

ρ2(x,z) = .4; ρ2(y,z) = .8

ρ2(a,b) = .5,∀(a,b) ∈ X ×X\{(x,z),(y,z)}, where a �= b.

Suppose f̃ is an FPAR defined in Definition 4.35 and wi =
1
2 for all i ∈ N. Then

f̃ (ρ̄)(x,z) = .35, f̃ (ρ̄)(x,y) = .65, and f̃ (ρ̄)(y,z) = .55. However, .35 �≥ .65∗ .55=
.55. Hence, f̃ is not max-∗ trasitive when ∗ is the nilpotent minimum.

Given this relationship, we illustrate two transitivity conditions that use a t-norm
with zero divisors.

Proposition 4.42. Let f̃ be a fuzzy aggregation ruled defined in Definition 4.35, and
let ρ̄ ∈ FRn be max-∗ transitive. Then f̃ is max-∗ transitive if, for all a,b ∈ [0,1],
∗ is defined as follows for all a,b ∈ [0,1]:

(1) a ∗ b = max{a+ b− 1,0}
or

(2) a ∗ b =

⎧
⎪⎨

⎪⎩

a if b = 1,

b if a = 1,

0 otherwise.
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Proof. (1) Let x,y,z ∈ X . Then by max-∗ transitivity of ρi and the definition of ∗,
ρi(x,z) ≥ ρi(x,y)+ρi(y,z)− 1 for all i ∈ N. By definition of f̃ ,

n

∑
i=1

wi ·ρi(x,z) ≥
n

∑
i=1

wi ·ρi(x,y)+
n

∑
i=1

wi ·ρi(y,z)−
n

∑
i=1

wi

ρ(x,z) ≥ ρ(x,y)+ρ(y,z)− 1.

(2) Let x,y,z ∈ X . Suppose ρ(x,y) ∗ ρ(y,z) = 0. Then the proof is complete. Sup-
pose ρ(x,y)∗ρ(y,z)> 0. Then there are two cases to consider.

a. First, suppose ρ(x,y) = 1 and ρ(y,z) > 0. Then, ρi(x,y) = 1 for all i ∈
N, by the definition of f̃ . Further, by max-∗ transitivity of ρi, ρi(x,z) ≥
ρi(x,y)∗ρi(y,z) and ρi(x,z)≥ ρi(y,z) for all i ∈ N. Hence,

n
∑

i=1
wi ·ρi(x,z)≥

n
∑

i=1
wi ·ρi(y,z). Thus, ρ(x,y)∗ρ(y,z) = ρ(y,z) ≤ ρ(x,z).

b. Second, a similar argument can be made for the case when ρ(y,z) = 1 and
ρ(x,y)> 0. Hence, ρ(x,z) ≥ ρ(x,y)∗ρ(y,z). ��

Proposition 4.42 provides two examples of t-norms under which the weighted mean
is max-∗ transitive. Proposition 4.42(1) uses the Łukasiewicz t-norm, and Propo-
sition 4.42(2) uses the drastic t-norm. Let HL,HD ⊂ FR be such that HL and
HD contain all the fuzzy preference relations that are max-∗ transitive under the
Łukasiewicz and drastic t-norm, respectively. We are now able to state two possibil-
ity results in the fuzzy Arrowian context.

Theorem 4.43. Let strict preference be regular. Then there exists a nondictatorial
f̃ : Hn

L → HL or f̃ : Hn
D → HD and satisfying IIA-1, Positive Responsiveness and

weak Paretianism.

Proof. Let f̃ be an FPAR as defined in 4.35. The result follows from Propositions
4.36, 4.37 and 4.42, and the immediacy of IIA-1 from the definition of the weighted
mean.

By specifying a strict preference relation we can obtain another possibility result
that includes an FPAR satsifying the Pareto Condition. ��
Theorem 4.44. Let strict preference be π(1) or π(3). Then there exists a nondicta-
torial f̃ : Hn

L → HL or f̃ : Hn
D → HD and satisfying IIA-1, Positive Responsiveness,

weak Paretianism and the Pareto Condition.

Proof. Let f̃ be an FPAR as defined in Definition 4.35. The result follows from
Theorem 4.43 and Proposition 4.42. ��
The transitivity conditions in Theorems 4.43 and 4.44 are quite restrictive and can
be relaxed given another FPAR.

Definition 4.45. Define the fuzzy aggregation rule f̃ : FRn →FR as follows. For
all ρ̄ ∈FRn , all x,y ∈ X and all τ : FRn → (0,1),
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f̃ (ρ̄)(x,y) =

⎧
⎪⎨

⎪⎩

1 if x = y,

1 if πi(x,y)> 0,∀i ∈ N

τ(ρ̄) otherwise.

,

In words, Definition 4.45 is similar to a fuzzy Pareto rule, where the social strict
preference for one alternative x over another y is positive if every individual strictly
prefers x to y and the social strict preference is regular. The FPAR in Definition 4.45
is clearly reflexive, complete, weakly Paretian and IIA-1. It also satisfies IIA-3. To
see that Definition 4.45 satisfies IIA-3 consider the following proposition.

Proposition 4.46. Let strict preference be regular. Let f̃ be a fuzzy aggregation rule
defined in Definition 4.45. Then f̃ is IIA-3.

Proof. Let ρ̄ , ρ̄ ′ ∈FRn and x,y ∈ X . Suppose ρi�{x,y} ∼ ρ ′
i�{x,y} for all i ∈ N. Then

by Proposition 3.13, ρi(x,y)> ρi(y,x) if and only if ρ ′
i (x,y)> ρ ′

i (x,y) for all i ∈ N.
By the definition of f̃ , f̃ (ρ̄)(x,y) = 1 if and only if f̃ (ρ̄ ′)(x,y) = 1, and f̃ (ρ̄)(y,x) =
τ(ρ̄) if and only if f̃ (ρ̄ ′)(y,x) = τ(ρ̄). Hence, f̃ (ρ̄)�{x,y} ∼ f̃ (ρ̄ ′)�{x,y}. ��

To see that see when f̃ (ρ̄) in Definition 4.45 is max-∗ transitive, we use a series
of propositions that first consider max-min transitivity and then generalize to an
arbitrary t-norm.

Proposition 4.47. Let π = π(1) and ρ ∈ FR . If ρ is max-min transitive, then π is
max-min transitive.

Proof. Let ρ ∈FR be such that ρ is max-min transitive, i.e.

ρ(x,z) ≥ min{ρ(x,y),ρ(y,z)}

for all x,y,z ∈ X . This proof will show that

π(x,z) ≥ min{π(x,y),π(y,z)} .

To do so, suppose contrary. Then there exists an x,y,z ∈ Z such that

ρ(x,z) ≥ min{ρ(x,y),ρ(y,z)} (4.5)

and
π(x,z)< min{π(x,y),π(y,z)}. (4.6)

Then
0 < π(x,y) = ρ(x,y)> ρ(y,x) (4.7)

and
0 < π(y,z) = ρ(y,z)> ρ(z,y). (4.8)
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By Eqs. (4.7) and (4.8), ρ(x,y) > 0 and ρ(y,z) > 0, which implies ρ(x,z) > 0
by Eq. (4.5). Suppose π(x,z) > 0. Then by definition of π(1), π(x,z) = ρ(x,z) ≥
min{ρ(x,y),ρ(y,z)}= min{π(x,y),π(y,z)}, where the latter equality holds by Eqs.
(4.7) and (4.5). Since this contradicts Eq. (4.6), π(x,z) = 0. Hence,

ρ(z,x) ≥ ρ(x,z). (4.9)

There are now two cases to consider.

Proof. Suppose min{ρ(x,y),ρ(y,z)} = ρ(x,y). Then ρ(y,z) ≥ ρ(x,y). Hence, by
transitivity,

ρ(x,z) ≥ ρ(x,y). (4.10)

By transitivity, ρ(y,x) ≥ min{ρ(y,z),ρ(z,x)}. Because ρ(y,z) ≥ ρ(x,y) and Eq.
(3.8), min{ρ(y,z),ρ(z,x)} ≥ min{ρ(x,y),ρ(x,z)}= ρ(x,y). Then ρ(y,x)≥ ρ(x,y);
however, this contradicts Eq. (4.7).

Suppose min{ρ(x,y),ρ(y,z)} = ρ(y,z), which implies ρ(x,y)≥ ρ(y,z). Then by
transitivity,

ρ(x,z) ≥ ρ(y,z) (4.11)

By transitivity, ρ(z,y) ≥ min{ρ(z,x),ρ(x,y)}; and ρ(z,y) ≥ ρ(z,x), or ρ(z,y) ≥
ρ(x,y). If ρ(z,y) ≥ ρ(z,x), then ρ(z,y) ≥ ρ(z,x) ≥ ρ(x,z) ≥ ρ(y,z) by Eqs. (4.9)
and (4.11). However, this contradicts Eq. (4.8). If ρ(z,y) ≥ ρ(x,y), then ρ(z,y) ≥
ρ(x,y) ≥ ρ(y,z) by the assumption of ρ(x,y) ≥ ρ(y,z). However, this also con-
tradicts Eq. (4.8). Thus, π(x,z) ≥ min{π(x,y),π(y,z)}, and π is also max-min
transitive. ��

��
Proposition 4.47 demonstrates that when strict preference is of type one, max-min
transitivity of an FWPR ρ implies max-min transitivity of the strict preference re-
lation derived from ρ . Like Proposition 4.38 and Example 4.39, this relationship
between the max-min transitivity of ρ and π(1) cannot be generalized to the case
of all regular strict relations because the ordinal concept of strict preference is in-
sufficient for the cardinal concept of max-min transitivity. Nonetheless, assuming
that strict preference is of type one allows us to show the max-min transitivity of
individual preference relations and obtain the following result.

Proposition 4.48. Let π = π(1), ρ̄ ∈ FRn and f̃ be an FPAR defined in Definition
(4.45). Suppose ρi is max-min transitive for all i ∈ N. Then f̃ is max-min transitive.

Proof. Let x,y,z ∈ X . Suppose ρ̄ ∈ FR be such that ρi is max-min transitive for
all i ∈ N. If min{ f̃ (ρ̄)(x,y), f̃ (ρ̄)(y,z)} = τ(ρ̄), then the proof is complete. Sup-
pose the contrary. Then min{ f̃ (ρ̄)(x,y), f̃ (ρ̄)(y,z)} = 1. By the definition of f̃ ,
πi(x,y) > 0 and πi(y,z) > 0 for all i ∈ N. By Proposition 4.47, we have πi(x,z) ≥
min{πi(x,y),πi(y,z)} for all i ∈ N. Thus, πi(x,z)> 0 for all i ∈ N and f̃ (ρ̄)(x,z) = 1.
Hence, f̃ is max-min transitive. ��
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To see when f̃ (ρ̄) in Definition 4.45 is max-∗ transitive under any specified t-norm,
consider the following proposition, which uses the boundary condition to prove the
result.

Proposition 4.49. Let ρ ∈ FR be such that ρ is max-min transitive. Let ∗ be an
arbitrary t-norm. Then ρ is max-∗ transitive.

Proof. For any a,b ∈ [0,1], a ∗ b ≤ a ∗ 1 = a and a ∗ b ≤ 1 ∗ b = b by the boundary
condition of ∗. Because a ∗ b ≤ a and a ∗ b ≤ b, a ∗ b ≤ min{a,b}. Let x,y,z ∈ X .
By transitivity of ρ , ρ(x,z) ≥ min{ρ(x,y),ρ(y,z)} ≥ ρ(x,y) ∗ ρ(y,z). Hence, ρ is
max-∗ transitive. ��
We can now state another possibility result with less restrictive transitivity condi-
tions.

Theorem 4.50. Let π = π(1). Then there exists a nondictatorial f̃ : FR∗n →FR∗

satisfying IIA-1, IIA-3, weak Paretianism and the Pareto Condition.

Proof. Let f̃ be defined by Definition 4.45. Clearly, f̃ is reflexive and complete, and
it satisfies IIA-1, weak Paretianism and the Pareto Condition. By Proposition 4.46,
f̃ is IIA-3, and Proposition 4.49 generalizes Propositions 4.47 and 4.48. Thus, f̃ is
max-∗ transitive. ��
Theorem 4.50 achieves a more general possibility result, but using Definition (4.45)
has two important consequences. First, individual and social preferences must
be max-∗ transitive under the same t-norm definition. For example, given some
ρ̄ ∈ FRn, it is impossible to guarantee the max-min transitivity of f̃ (ρ̄) when ρ̄
is only max-∗ transitive under the drastic t-norm. Second, as illustrated by Dutta
(1987), adding the requirement of positive responsiveness to Theorem 4.50 will void
the possibility results. This occurs because, when f̃ (ρ̄)(x,y) = f̃ (ρ̄)(y,x) for some
x,y ∈ X , an individual i ∈ N switching from complete indifference between x and
y (ρi(x,y) = ρi(y,x)) to some strict preference between the two (ρi(x,y) �= ρi(y,x))
does not necessarily imply that the social preference will exhibit strict preference as
well ( f̃ (ρ̄)(x,y) �= f̃ (ρ̄)(y,x)).

Even with these two considerations, the importance of Theorems 4.43, 4.44, and
4.50 remains: the fuzzy Arrowian framework allows for the nondictatorial aggrega-
tion of fuzzy preferences in a manner that satisfies normative democratic criteria.
Further, as Theorem 4.31 demonstrates, the concept of a neutral FPAR can be used
to derive an aggregation rule that is unique and not necessarily dictatorial when, in
the exact case, neutrality implies dictatorship. Not only do the results in the fuzzy
preference framework reveal substantive conclusions that are distinct from previous
approaches using exact preferences, but also they suggest that the traditional, neg-
ative results of social choice theory are unsubstantiated when groups possess fuzzy
preferences.
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4.3 Empirical Application II: The Spatial Model and Fuzzy
Aggregation

Section (4.2) discussed the difficulty that arises when using FWPRs in empirical
analyses. Most often, researchers will not have the necessary data to create indi-
vidual FWPRs for every member in a group of political actors. However, fuzzy
numbers can be used to represent the degree to which an actor views an alternative
as ideal i.e., the σ function, and an FWPR can be estimated using such a function.
This section further extends the analysis in Section (4.2) by illustrating how a fuzzy
preference aggregation rule can be used to predict policy decisons of a group of
actors.

In the spatial model, alternatives can be represented by k-dimensional Euclidean
space or R

k. When k = 1, σ is identical to the fuzzy numbers presented in the
previous empirical example, where, for some x ∈ X , σ(x) denotes the degree to
which x is ideal. In this case, σi : R1 → [0,1] for all i ∈ N. It is often assumed that σ
is normal, which requires there exists x ∈ X such that σ(x) = 1. In words, normality
ensures that every actor views at least one alternative as ideal. Let FN (X) denote
all the fuzy subsets of X such that the fuzzy subset is normal. When N is the set of
actors, it is assumed each actor prossesses a preference function, preference function
profile can be written as σ̄ = (σ1, . . . ,σn).

Table 4.1 Sigma Values of Four Alternatives

σ1(·) σ2(·) σ3(·)
w = .1 0 0 0
x = .5 0.33 1.0 0
y = .57 0.1 1.0 0.1
z = .68 0 0.2 0.65

Let N = {1,2,3} and let X = [0,1] ⊂ R
1. Figure 4.1 presents a fairly traditional

profile of preference functions over the set of alternatives where no actor possesses
more than three areas of discrete indifference. For example, player 1 is indifferent
between all alternatives in the intervals [0, .1] and [.6,1] (σ1(x) = 0) and between all
alternatives in the interval [.35, .5] (σ1(x) = .33). The fuzzy numbers presented in
Figure 4.1 are sufficient to characterize the degree to which any alternative in X is
ideal for all three actors. Table 4.1 provides the sigma values of four alternatives in
X . Here, w ∈ X is outside the support of ideal alternatives for all three players, and
y ∈ X is in the support of ideal alternatives for all three players. In addition, y is in
the core of player two’s set of ideal alternatives.

Given the fuzzy preference functions in Figure 4.1, we can create preference
relations based on the degree to which each alternative is ideal. Section (4.2) gave
two examples of such procedures. First, for all x,y ∈ X and all σ ∈FN (X),

ρ(G)(x,y) = ∨{t ∈ [0,1] | σ(y)∗ t ≤ σ(x)},
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Fig. 4.1 Example of a Three Player Fuzzy Spatial Model

which can be simplified to the following if ∗ = min:

ρ(G)(x,y) =

{
1 if σ(x) ≥ σ(y),

σ(x) otherwise.

We have already shown that ρ(G) is reflexive, strongly connected and max-min tran-
sitive. Table 4.2 presents the preference profile ρ̄(G) over the four alternatives se-
lected in Table 4.1.

Table 4.2 Inferred FWPRs Using ρ(G)

i = 1 w x y z

w 1 0 0 1
x 1 1 1 1
y 1 .1 1 1
z 1 0 0 1

i = 2 w x y z

w 1 0 0 0
x 1 1 1 1
y 1 1 1 1
z 1 .2 .2 1

i = 3 w x y z

w 1 1 0 0
x 1 1 0 0
y 1 1 1 .1
z 1 1 1 1
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A second procudure used for inferring an FWPR from a preference function is

ρ(M)(x,y) =

⎧
⎨

⎩

1 if x = y,
(σ(x)−σ(y)+ c)∧1 if σ(x) ≥ σ(y),

1− [σ(y)−σ(x)+ 1− c)∧1] otherwise.

where c ∈ [0,1] for all x,y ∈ X and σ ∈FN (X). It is obvious that ρ(M) is reflexive
and complete when c > 0.We also know ρ(M) is weakly transitive (see Proposition
(4.20)). If we set c to a specific value, we can infer another preference profile as well.
Let c = .5; Table 4.3 illustrates the preference profile ρ̄(M) in this case. In contrast to
ρ̄(G), the image of ρ̄(M) contains more elements for each actor than image of ρ̄(G).

Table 4.3 Inferred FWPRs Using ρ(M) when c = .5

i = 1 w x y z

w 1 .17 .4 .5
x .83 1 .73 .83
y .6 .27 1 .6
z .5 .17 .4 1

i = 2 w x y z

w 1 0 0 .3
x 1 1 .5 1
y 1 .5 1 1
z .7 0 0 1

i = 3 w x y z

w 1 .5 .4 0
x .5 1 .4 0
y .6 .6 1 0
z 1 1 1 1

We can now apply an FPAR f̃ to the preference profiles ρ̄(G) and ρ̄(M). When f̃

is the weighted mean rule from Definition (4.33), assume wi =
1
3 for all i ∈ N. Then

Table 4.4 illustrates f̃ (ρ̄(G)) and f̃ (ρ̄(M)) over the four alternatives {w,x,y,z}. When
f̃ is the fuzzy Pareto rule from Definition (4.45), assume τ(ρ̄(G)) = (ρ̄(M)) = .5, and
Table 4.5 reports the results of the fuzzy Pareto rule over the same four alternatives.

Table 4.4 The Weighted Mean Rule Using ρ̄(G) and ρ̄(M) when wi =
1
3

f̃ (ρ̄(G)) w x y z

w 1 .33 0 .33
x 1 1 .67 .67
y 1 .7 1 .7
z 1 .4 .4 1

f̃ (ρ̄(M)) w x y z

w 1 .22 .27 .27
x .78 1 .54 .61
y .73 .46 1 .53
z .73 .39 .47 1

Tables 4.4 and 4.5 reveal an important distinction between the weighted mean and
fuzzy Pareto rule. The weighted mean is more susceptible to the specific procedure
chosen to infer fuzzy preference relations than the fuzzy Pareto rule. While the fuzzy
Pareto rule returns two identical social preference relations regardless of how the
inidividual preference relations were created, the weighted mean exhibits significant
differences between the social preference relation from ρ̄(G) and the one from ρ̄(M).

We can also calculate the maximal sets from the four newly aggregated social
preference relations. In Section (4.2), the fuzzy maximal set is defined as follows:
for all x ∈ X ,



84 4 Arrow and the Aggregation of Fuzzy Preferences

Table 4.5 The Fuzzy Pareto Rule Using ρ̄(G) and ρ̄(M) when τ(ρ̄) = .5

f̃ (ρ̄(G)) w x y z

w 1 .5 .5 .5
x .5 1 .5 .5
y 1 .5 1 .5
z .5 .5 .5 1

f̃ (ρ̄(M)) w x y z

w 1 .5 .5 .5
x .5 1 .5 .5
y 1 .5 1 .5
z .5 .5 .5 1

M(ρ ,μ)(x)= μ(x)∗(�(∨{t ∈ [0,1] | μ(w)∗ρ(w,x)∗t ≤ ρ(x,w), ∀w ∈ Supp(μ)})),

where μ ∈F (X). M(ρ ,μ) can be simplified by assuming that μ(x) = 1 for all x ∈ X
and ∗ = � = min. The first assumption acknowleges that all alternatives are fully
possible. The second merely specifies a t-nrom. With these two assumptions, the
maximal set can be written as

M(ρ ,X)(x) = (∧(∨{t ∈ [0,1] | ρ(w,x)∧ t ≤ ρ(x,w), ∀w ∈ X})).

As before, M(ρ ,X)(x) signifies the degree to which x ∈ X is a maximal alternative
given the FWPR ρ . Let S = {w,x,y,z} ⊆ X . Then Table 4.6 shows the final calcula-
tions for M( f̃ (ρ̄(G),S) and M( f̃ (ρ̄(M),S) where f̃ is either the weighted mean rule or
the fuzzy Pareto rule. Furthermore, Figure 4.2 plots the four maximal sets over the
entire set of alternatives. As before, the fuzzy Pareto rule returns identical results
regardless of the specific profile, and the core of the fuzzy Pareto’s maximal set is
the support all three players’ preference functions. In these cases (Figures 4.2(c)
and 4.2(d)), the researcher could predict almost any alternative to be selected by
the group of players. In contrast, the core of the weighted mean rule differs from
ρ̄(G) and ρ̄(M), which lead to different predictions about what alternative would be
selected. In Figure 4.2(a), the core of f̃ (ρ̄(G)) is the alternative where all three play-
ers’ fuzzy preference functions intersect at the maximum degree. In Figure 4.2(b),
however, the core of f̃ (ρ̄(M)) is the maximum intersection between players 2 and
3, which is the maximum intersection for any two players in the example. Hence,
f̃ (ρ̄(G)) appears to be more collegial and consensus-driven than f̃ (ρ̄(M)) when f̃ is
the wieghted mean rule.

Table 4.6 Results for M( f̃ (ρ̄(G),S) and M( f̃ (ρ̄(M),S)

Weighted Mean Fuzzy Pareto
M( f̃ (ρ̄(G),S) M( f̃ (ρ̄(M),S) M( f̃ (ρ̄(G),S) M( f̃ (ρ̄(M),S)

w 0 .22 .5 .5
x 0.67 1.0 1 1
y 1.0 .46 1 1
z 0.4 .39 1 1
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(a) Weighted Mean: ρ(G)
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(b) Weighted-Mean: ρ(M)
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(c) Fuzzy Pareto: ρ(G)
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(d) Fuzzy Pareto: ρ(M)

Fig. 4.2 Maximal Set

Using either FPAR, the procedures described in the definitions of ρ(G) and ρ(M)

allow for easy estimation of individual FWPRs without requiring researchers to
gather data concerning the degree to which an individual prefers every alternative
over every other alternative. When aggregating the individual preference relations,
the researcher can choose any number of FPARs, and the maximal set can clearly
relate the social preference relation back to individual preference functions. In the
example presented in this section, the weighted mean rule generates a maximal set
with one alternative in its core while the fuzzy Pareto rule results in a maximal set
whose core spans the support of the individual preference function.
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Chapter 5
Characteristics of Strategy-Proof Fuzzy Social
Choice

Abstract. The Gibbard-Satterthwaite theorem, which states that a social choice
function over three or more alternatives that does not incentivize individuals to mis-
represent their sincere preferences must be dictatorial, under a fuzzy framework
requires the specification of a fuzzy social choice function that selects some type of
outcome. This chapter considers the strategic manipulation of fuzzy social choice
functions where both individuals and groups can choose alternatives to various de-
grees and shows that with minimal assumptions on individual preferences, strategy-
proof fuzzy social choice functions satisfy fuzzy versions of peak-only, weak
Paretianism, and monotonicity. Furthermore, strategy-proofness is necessary and
sufficient for the augmented median voter rule which is considered in chapter 6.

Introduction

The Gibbard-Satterthwaite Theorem (G-S in what follows) states that a social choice
function over three or more alternatives that does not incentivize individuals to mis-
represent their sincere preferences must be dictatorial (Gibbard, 1973; Satterthwaite,
1975). It follows that voters in collective choice institutions will manipulate the vot-
ing procedure to obtain a more preferred social outcome by reporting insincere pref-
erences. Hence, designers of democratic institutions must accept that the system’s
rules will encourage dishonesty in the voting population. Social choice scholars
have tried to avoid this conclusion by relaxing several of the original assumptions
of the G-S Theorem. One approach restricts the domain of individual preferences
to single-peaked profiles. Under single-peaked profiles there exists a strict ordering
of all possible alternatives, individuals possess a single ideal alternative, and strict
preference decreases monotonically in both directions from the ideal point. Under
this assumption, the augmented median voter rule emerges as a non-manipulable
and non-dictatorial choice function Barberá (2001); Ching (1997); Moulin (1980);
Sprumont (1991).

While some scholars Dryzek and List (2003); Mackie (2003) hold that this re-
striction voids the normatively negative results of the G-S Theorem, Penn, Patty,
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and Gailmard and Patty (2011) extend the G-S results to a general case by demon-
strating that even though individuals possess single-peaked preferences, there ex-
ist opportunities to manipulate the social choice when individuals report insincere
preferences that violate the natural ordering of the alternatives. The crux of their
argument rests on the empirical observation that no real-world voting rule actually
has a ballot restriction that forces individuals to submit single-peaked preferences
to the social choice function; hence, individuals will submit insincere, non-single-
peaked preferences when it manipulates the social choice. Under these assumptions,
a strategy-proof rule must be dictatorial.

What has remained absent from the discussion is the effect of fuzzy preferences
and fuzzy social choice on the conclusion of the G-S Theorem. In the fuzzy frame-
work, individuals can prefer one alternative over another to a certain degree in-
stead of only possessing strict preference or indifference between the two Banerjee
(1995); Orlovsky (1978). The addition of fuzzy preferences then requires the spec-
ification of a fuzzy social choice function that selects some type of outcome. Past
efforts, that have explored situations where actors have fuzzy preferences but, as
a group, must select one alternative unequivocally, have only confirmed the G-S
conclusion Abdelaziz et al. (2008); CÃŽrte-Real (2007); Tang (1994). The strategic
manipulation of truly fuzzy social choice functions, where society chooses alterna-
tives to varying degrees, has yet to be considered.

This chapter addresses this lacuna in the manipulation literature. We consider the
strategic manipulation of fuzzy social choice functions where both individuals and
groups can choose alternatives to various degrees. We demonstrate that with very
minimal assumptions on individual preferences, strategy-proof fuzzy social choice
functions satisfy fuzzy versions of peak-only, weak Paretianism, and monotonicity.
Moreover, strategy-proofness is necessary and sufficient for the augmented median
voter rule. We also illustrate the implications of this framework in the spatial model.

The results of this chapter are relevant to the strategic manipulation literature,
which remains divided as to whether choice functions can be both non-manipulable
and non-dictatorial when restricting individual preferences to a single-peaked do-
main Mackie (2003); Penn et al. (2011). They suggest that social choice can be
both strategy-proof and non-dictatorial if alternatives are chosen to various degrees.
Nonetheless, the findings require that an individual’s choice intensity for one alter-
native is independent of her choice intensity for all other alternatives. The chapter
proceeds as follows. Section one reviews the literature discussing fuzzy manipula-
tion. Section two presents the main concepts and definitions of fuzzy social choice.
Section three details the main findings of the chapter. Section four offers a discus-
sion and a critique of the social choice model in the context of the spatial model,
and section five summarizes the chapter’s conclusions.

5.1 Fuzzy Choice and Manipulation

Most efforts incorporating fuzzy mathematics into social choice functions start with
a fuzzy preference relation, which is a function ρ : X × X → [0,1], where X is the
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set of alternatives. In words, ρ(x,y) refers to the degree to which x is at least as
good as y. If ρ(x,y) = 1, then alternative x is said to be definitely at least as good
as alternative y; if ρ(x,y) = 0, then x is said to be definitely not at least as good
as y. When ρ(x,y) ∈ (0,1), the weak preference for x over y is said to be vague or
ambiguous.1 For a set of n actors, N, previous definitions of fuzzy choice functions
(Definition 5.20) maps an n-tuple of fuzzy preference relations to one alternative in
X Abdelaziz et al. (2008); CÃŽrte-Real (2007); Orlovsky (1978); Tang (1994).

Because a fuzzy preference relation is not directly comparable to a subset of alter-
natives, scholars have considered various mechanisms to aggregate individual pref-
erence relations into a social choice (see Chapter 3 for a more thorough discussion
of these mechanisms). Initial studies assumed that individuals possess fuzzy pref-
erences but must make “crisp” individual choices over the set of alternatives, and
the choice function associates a set of alternatives to these crisp choices CÃŽrte-
Real (2007); Orlovsky (1978). Such situations arise when actors, who possess fuzzy
preference relations, must vote “yes” or “no” for an amendment or select only one
candidate among many. Later research examined choice functions that aggregate a
collection of individual fuzzy preference relations into a social preference relation
and then associate an alternative with the fuzzy social preference Abdelaziz et al.
(2008). These models depict situations where sets of actors, such as political parties
or groups of states, do not need to produce a transitive ranking of alternatives and,
instead, produce a set of vague opinions about policy, such as a platform or a treaty.
The following example illustrates the difference between the two approaches.

Example 5.1. Let X = {a,b} and N = {1,2,3}. Suppose ρ1(a,b) = .4, ρ2(a,b) = .4,
and ρ3(a,b) = .9. In words, ρi is the fuzzy individual preference relation associated
with i ∈ N. Furthermore, suppose there is reciprocity in preferences, and accord-
ingly, ρi(b,a) = 1−ρi(a,b). Under this set up, three players have preferences over
two alternatives and must decide as a group what alternative to select.

Orlovsky Rule. The Orlovsky (1978) rule demonstrates the first approach to fuzzy
choice, where each actor must make a crisp decision. The Orlovsky rule—or
a variation of it—is an individual choice function (IC) that, given a specified
n-tuple of preference relations, maps a set of two alternatives into the set {0,1},
formally, ICi : X2 → {0,1} for i = 1, . . . ,n. More specifically, let x,y ∈ X and
the Orlovsky rule be defined as follows:

ICi(ρi)(x,y) =

{
1 if ρi(x,y)> ρi(y,x),
0 else.

In words, individual i votes for or chooses x over y if and only if ICi(ρi)(x,y) = 1
and ICi(ρi)(y,x) = 0. Considering the above example,

1 For a more thorough review of fuzzy preferences and how they relate to tradition prefer-
ences see Orlovsky (1978), Dutta (1987), Richardson (1998) and Llamazares (2005).
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IC(a,b) = = (IC1(ρ1)(a,b), IC2(ρ2)(a,b), IC3(ρ3)(a,b))

= (0, 0, 1)

IC(b,a) = IC(b,a) = (IC1(ρ1)(b,a), IC2(ρ2)(b,a), IC3(ρ3)(b,a))

= (1, 1, 0) ,

because actors 1 and 2 choose b and actor 3 chooses a. We can apply various
voting rules, but under majority rule b is the outcome.

Example 5.2. Mean Aggregation Rule. The mean aggregation rule is a fuzzy ag-
gregation rule and demonstrates the second type of fuzzy choice function, where
actors need not make crisp decisions because fuzzy individual preference relations
are aggregated into a social one, denoted ρS. The mean aggregation rule is defined
as follows:

ρS(x,y) =
1
n

n

∑
i=1

ρi(x,y).

Using the mean aggregation rule, we can specify the social fuzzy preference rela-
tion, which is ρS(a,b) = .567 and ρS(b,a) = .433. When we use the Orlovsky rule
on ρS, the social choice becomes a because ρS(a,b)> ρS(b,a).

In both conceptualizations, the group only selects one alternative even though the
choice functions are said to be “fuzzy.” Further, they both return identical results
to the G-S theorem where a choice function is non-manipulable if and only if it
is dictatorial Abdelaziz et al. (2008); Tang (1994). Côrte-Real (2007) demonstrates
the Orlovsky rule is strategy-proof but considers the case of only two alternatives.
Nonetheless, new results may be obtained when considering the fuzzy choice func-
tions proposed by Dasgupta and Deb (1991) and Banerjee (1995). Under their
framework, choice is represented as a fuzzy subset of the set of alternatives, i.e.
β : X → [0,1]. For any alternative x ∈ X , β (x) denotes the degree to which x is
chosen. A fuzzy social choice function, as used in this book, associates a fuzzy sub-
set of the set of alternatives with a collection of individuals and their preferences.
While the conceptualization of fuzzy choice has received a great deal of attention in
revealed preference theory Georgescu (2005, 2007), the possibility of manipulating
these types of choice functions has yet to be considered.

Informally, a social choice function is manipulable by an actor if the actor can
unilaterally change the social choice in her favor by submitting an insincere or false
preference. To address this formally, it follows that there exists some mechanism to
compare the social choice with an individual’s preferences. In the exact case, each
individual possesses a transitive ranking of the alternatives, and a choice is manipu-
lable if there exists an individual who can unilaterally move the social choice further
up her ranking. In the fuzzy case, this mechanism relating individual preferences to
the social choice is more complicated. When comparing individual fuzzy preference
relations and an exact social choice, Abdelaziz, Figueira and Meddeb (2008) utilize
four different procedures that determine whether an individual prefers one alterna-
tive over another, hence four definitions of manipulability. In contrast, Côrte-Real
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(2007) first assumes that individuals make exact choices between pairs of alterna-
tives, which are easily compared to an exact social choice, thus simplifying the
analysis. Perote-Peña and Piggins (2007) offer another solution to the problem by
considering the manipulation of fuzzy aggregation rules, where an n-tuple of fuzzy
preference relations are aggregated into a single social preference relation. While
this setup has only confirmed the G-S theorem in the fuzzy framework (Duddy
et al., 2011; Perote-Peña and Piggins, 2007), modeling individual preferences as
fuzzy subsets of the set of alternatives rather than fuzzy preferences relations sim-
plifies the analysis.

Further, representing individuals in this manner is not completely divorced from
fuzzy preference relations. Dasgupta and Deb (1991) and Georgescu (2007) illus-
trate how fuzzy subsets can be related to fuzzy preference relations using concepts
similar to the R-maximality and R-greatness concepts in revealed preference the-
ory (Sen, 1971; Suzumura, 1976). In addition, Clark, Larson, Mordeson, Potter and
Wierman (2008) discuss several substantive interpretations of fuzzy subsets of the
set of alternatives as representations of individual preference. For example, let β be
a fuzzy subset of X and x ∈ X . When β (x) refers to the degree to which x is ideal,
actors are uncertain how ideal each alternative is; however, they are quite certain
whether x is better, or preferred to, another alternative y ∈ X , β (x) > β (y) in this
case.

5.2 Fuzzy Social Choice: Definitions and Concepts

This section details the fuzzy social choice framework and introduces the concepts
of strategy-proofness used in this chapter. Let X be a finite set of alternatives such
that |X | ≥ 3, and N = {1, . . . ,n} be a set of n actors, where n ≥ 2. A fuzzy preference
relation, ρ , is a function ρ : X ×X → [0,1]. It is assumed throughout that each i ∈ N
possesses a fuzzy preference relation, ρi, that is reflexive, i.e. ρi(x,x) = 1, and com-
plete, i.e. ρi(x,y) = 0 implies ρi(y,x) > 0. Recall that we call ρi a fuzzy weak order
and FR denotes the set of all fuzzy weak orders. Then a preference profile is an
n-tuple of fuzzy weak orders, ρ̄ = (ρ1, . . . ,ρn)∈FRn and describes the fuzzy pref-
erences of all individuals. For any non-empty S ⊆ X , let ρ̄�S = (ρ1|S×S, . . . ,ρn|S×S).
In words, ρ̄�S denotes the restriction of the preference profile to the subset S and,
accordingly, ρ̄�S describes only ρ(x,y) and ρ(y,x) for x,y ∈ S and every i ∈ N. In
addition, for any FWPR ρ and all α ∈ [0,1], ρα = {(x,y) ∈ X × X | ρ(x,y) ≥ α}.
Often, ρα is called the α-cut of ρ .

The reader will recall Definition 3.13, which we restate here for clarity.

Definition 5.3 (regular). Let ρ be an FWPR. Then π , the asymmetric relation with
respect to ρ , is said to be regular if for all x,y ∈ X ,

π(x,y)> 0 ⇐⇒ ρ(x,y)> ρ(y,x).
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We assume π is regular throughout the remainder of the chapter. Given any ρ̄ ∈
FRn, define P̃, R̃ :X ×X →F (N) for all x,y ∈ X and i ∈ N, by the formulas

P̃(x,y; ρ̄)(i) =

{
πi(x,y) if πi(x,y)> 0

0 otherwise,

R̃(x,y; ρ̄)(i) =

{
ρi(x,y) if πi(y,x) = 0

0 otherwise.

Definition 5.4. An FWPR ρ on X is

(1) (consistent) (also called weakly transitive) if, for all x,y,z ∈ X ,

ρ(x,y) ≥ ρ(y,x) and ρ(y,z) ≥ ρ(z,y) imply ρ(x,z) ≥ ρ(z,x),

(2) (partially quasi-transitive) if, for all x,y,z ∈ X ,

π(x,y)∧π(y,z)> 0 implies π(x,z)> 0.

We use the notationFCR = {ρ ∈FR | ρ is consistent} for the set of all consistent
preference relation (also termed consistent weak orders).

Definition 5.5. A function C : FCRn → X is called a fuzzy social choice function
(FSCF).

Throughout, we assume that any fuzzy social choice function C satisfies full range
(i.e., for any x ∈ X there exists a ρ̄ ∈ FCRn such that C (ρ̄) = x). Such an FSCF
must also be nontrivial (i.e., it is not the case that C is a constant function). For any
ρ̄ ∈ FRn and any i ∈ N, ρ̄−i = ρ̄N\{i} = (ρ1, . . . ,ρi−1,ρi+1, . . . ,ρn). In words, ρ̄−i

denotes the removal of ρi from ρ̄ .

Definition 5.6 (dictatorial). Let C be a fuzzy choice function. Then C is dictatorial
if there exists an i ∈ N such that for all ρ̄ ∈ FCRn and all x ∈ X ,

πi(x,C (ρ̄)) = 0 .

Definition 5.7 (manipulable). Let ρ̄ ∈ FRn. A fuzzy social choice function C is
manipulable at ρ̄ if there exists i ∈ N, ρi ∈ FR, ρ ′

i ∈ FR such that

πi(C(ρ̄−i,ρ ′
i ),C(ρ))> 0 .

Definition 5.8 (strategy-proof). A fuzzy social choice function C is strategy-proof
if it is not manipulable.

Theorem 5.9. Let C be a fuzzy social choice function. Then C is strategy-proof if
and only if it is dictatorial.
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We conclude this section with two proofs of the G-S Theorem in the fuzzy
preference framework.

The first proof fuzzifies the logic found in Austen-Smith and Banks (2005),
and the second proof uses the logic presented in Abdelaziz, Figueira and Med-
deb (2008). Both are semi-novel efforts. The proof in Austen-Smith and Banks
has not been extended to the fuzzy case, and our framework would relax the
completeness in Abdelaziz et al. (2008) while also covering the case of weakly
transitive fuzzy pre-orders. Abdelaziz et al. (2008) assume max-min transi-
tivity, and our results demonstrate that there is no relationship between the
max-min and weakly transitive conditions.

5.2.1 Fuzzifying ASB II

Definition 5.10 (monotonic). Let C be an FSCF. Then C is monotonic if, for all
x,y ∈ X and all ρ̄ , ρ̄ ′ ∈FCRn,

[Supp(P̃(x,y; ρ̄))⊆ Supp(P̃(x,y; ρ̄ ′)) and C (ρ̄) = x] =⇒ C (ρ̄ ′) �= y.

A function f̃ : FCRn → FCR is called a fuzzy preference aggregation rule
(FPAR).

In what follows, let FCRπ denote the set of consistent fuzzy weak orders where,
for all x,y ∈ X such that x �= y, π(x,y) > 0 or π(y,x) > 0. Hence, individuals who
possess preference relations in FW Rπ are never indifferent between two alterna-
tives, i.e., there does not exist x,y ∈ X such that x �= y and ρ(x,y) = ρ(y,x) when
ρ ∈ FW Rπ . The goal of the following argument is show that a strategy-proof
FSCF with a range of FW Rπ is dictatorial, and that this result implies that a
strategy-proof FSCF with a range of FW R is dictatorial as well.

Lemma 5.11. Let C be an FSCF such that C : FCRn
π → X. Let ρ̄ ∈FW Rn and

non-empty S ⊂ X be such that for all (x,y) ∈ S× (X\S), πi(x,y)> 0 for all i ∈ N. If
C is strategy-proof, then C (ρ̄) ∈ S.

Proof. Suppose C is strategy-proof and, contrary to the hypothesis, C (ρ̄) /∈ S. Be-
cause C satisfies full range, there exists a ρ̄ ′ ∈ FCRn

π such that C (ρ̄ ′) ∈ S. Now
construct the sequence of profiles {z̄0, z̄1, . . . , z̄n} such that

z̄0 = (ρ1, . . . ,ρi, . . . ,ρn)

z̄1 = (ρ ′
1, . . . ,ρi, . . . ,ρn)

...

z̄i = (ρ ′
1, . . . ,ρ

′
i , . . . ,ρn)

...

z̄n = (ρ ′
1, . . . ,ρ

′
i , . . . ,ρ

′
n).
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In words z̄i signifies the profile where the ith individual has switched from ρi to
ρ ′

i from z̄i−1. In the argument that follows, let z̄ j,k signify ρk in profile z̄ j, and z̄ j\k
denotes the removal of ρk from z̄ j. By construction, C (z̄0) /∈ S and C (z̄n) ∈ S. Thus,
there exists z̄i−1 and z̄i such that C (z̄i−1) /∈ S and C (z̄i) ∈ S. However, in the profile
z̄i−1, i has a sincere preference of πi(C (z̄i),C (z̄i−1))> 0 since C(z̄i ∈ S. Thus, i ∈ N
can manipulate C at z̄i−1 by submitting z̄i,i instead of z̄i−1,i because z̄i = (z̄i−1\i, z̄i,i).
However, this contradicts the strategy-proofness of C . Hence, C (ρ̄) ∈ S. ��
Lemma 5.12. Let C be an FSCF such that C : FCRn

π → X. If C is strategy-proof,
then there exists a weakly Paretian fuzzy preference aggregation rule f̃ :FW Rn

π →
FW Rπ such that f̃ is independent of irrelevant of alternatives IIA-3.

Proof. Throughout the proof, let α,β ∈ [0,1] be such that α > β . [Note: α and β
can vary across ρ̄ , not within ρ̄ .] Suppose C is strategy proof. For any ρ̄ ∈FCRn

π
and x,y ∈ X , define the new profile ρ̄ (x,y) = (ρ (x,y)

1 , . . . ,ρ (x,y)
n ) as follows, for all

i ∈ N:

ρ (x,y)
i (x,w) = ρ (x,y)

i (y,w) = α, ∀w ∈ X\{x,y};

ρ (x,y)
i (w,x) = ρ (x,y)

i (w,y) = β , ∀w ∈ X\{x,y};

ρ (x,y)
i (x,y) = ρi(x,y) and ρ (x,y)

i (y,x) = ρi(y,x);

ρ (x,y)
i (w,z) = ρi(w,z), ∀w,z ∈ X\{x,y}; and

ρ (x,y)
i (w,w) = 1,∀w ∈ X .

By the regularity of π and the definition of ρ̄ (x,y), it follows that π (x,y)
i (x,w)> 0 and

π (x,y)
i (y,w)> 0 for all w ∈ X\{x,y} and all i ∈ N. Further, π (x,y)

i (x,y)> 0 if and only

if ρi(x,y)> ρi(y,x) for all i ∈ N, and π (x,y)
i (w,z)> 0 if and only if ρi(w,z)> ρi(z,w)

for all w,z ∈ X\{x,y} and all i ∈ N. Now define the fuzzy preference aggregation
rule f̃C as, for all x,y ∈ X and all ρ̄ ∈FCRn,

f̃C (ρ̄)(x,y) =

⎧
⎪⎨

⎪⎩

1 if x = y,

α if C (ρ̄ (x,y)) = x and x �= y,

β if C (ρ̄ (x,y)) = y and x �= y.

By Lemma 5.11, f̃C is weakly Paretian.
To see that f̃C is IIA-3, suppose that there exist ρ̄ , ρ̄ ′ ∈FCRn

π and x,y ∈ X such
that ρi�{x,y} ∼ ρ ′

i�{x,y} for all i ∈ N and

f̃C (ρ̄)�{x,y} �∼ f̃C (ρ̄ ′)�{x,y} .

By construction, Im( f̃C (ρ̄)) = {1,α,β} = Im( f̃C (ρ̄ ′)). It follows that there ex-
ists x,y ∈ X such that π(x,y) > 0 and π ′(y,x) > 0. Then by the definition of
f̃C , C (ρ̄ (x,y)) = x and C (ρ̄ ′(x,y)) = y. Now construct a sequence of profiles
{z̄0, z̄1, . . . , z̄n} such that
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z̄0 = (ρ (x,y)
1 , . . . ,ρ (x,y)

i , . . . ,ρ (x,y)
n )

z̄1 = (ρ ′(x,y)
1 , . . . ,ρ (x,y)

i , . . . ,ρ (x,y)
n )

...

z̄i = (ρ ′(x,y)
1 , . . . ,ρ ′(x,y)

i , . . . ,ρ (x,y)
n )

...

z̄n = (ρ ′(x,y)
1 , . . . ,ρ ′(x,y)

i , . . . ,ρ ′(x,y)
n ),

where z̄ j,k signifies ρk in profile z̄ j, and z̄ j−k denotes the removal of ρk from z̄ j. By
construction,C (z̄0) = x and C (z̄n) = y. Thus, there must exist a z̄i−1 and z̄i such that
C (z̄i−1) = x and C (z̄i) �= x. There are two cases to consider.

Case 1: Suppose π (x,y)
i (C (z̄i),x) > 0. Thus, i ∈ N can manipulate C at z̄i−1 by

submitting z̄i,i rather than z̄i−1,i. (Note z̄i = (z̄i−1\i, z̄i,i).)

Case 2: Suppose π (x,y)
i (x,C (z̄i))> 0. By the assumption,

ρi�{x,y} ∼ ρ ′
i�{x,y}

for all i ∈ N, this implies π
′(x,y)
i (x,C (z̄i))> 0. Thus, i ∈ N can manipulate

C at z̄i by submitting z̄i−1,i rather than z̄i,i. (Note z̄i−1 = (z̄i\i, z̄i−1,i).) In
both cases, a contradiction emerges. Thus, f̃C is IIA-3.

What remains to be shown is that f̃C (ρ̄) ∈FCRπ for all ρ̄ ∈FCRn
π . To see this,

first note that by definition f̃ (ρ̄) must be complete and reflexive for all ρ̄ ∈FW Rn
π .

Let x,y ∈ X be such that x �= y and ρ̄ ∈FCRn
π . Because C satisfies the relationship

in Lemma 5.11, C (ρ̄ (x,y)) = x or C (ρ̄ (x,y)) = y. Thus,

f̃C (ρ̄)(x,y)> f̃C (ρ̄)(y,x)

or
f̃C (ρ̄)(y,x) > f̃C (ρ̄)(x,y) ,

and, by the regularity of π , π(x,y)> 0 or π(y,x)> 0.
Finally, we must show f̃C (ρ̄) is consistent for all ρ̄ ∈ FCRn

π .
To do so, suppose that there exist x,y,z ∈ X and ρ̄ ∈FCRn

π such that

f̃C (ρ̄)(x,y)> f̃C (ρ̄(y,x) ,

f̃C (ρ̄)(y,z) > f̃C (ρ̄(z,y) ,

and
f̃C (ρ̄)(z,x) > f̃C (ρ̄)(x,z) .

(Note f̃C (ρ̄)(z,x) �= f̃C (ρ̄)(x,z) unless x = z.) The proof now demonstrates this
leads to a contradiction. Let ρ̄ (a,b,c) ∈ FCRn

π be defined in the same manner as
above. Specifically, for all i ∈ N,
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∀(a,b) ∈ {x,y,z}×X\{x,y,z}, ρ (x,y,z)
i (a,b) = α;

∀(b,a) ∈ X\{x,y,z}×{x,y,z}, ρ (x,y,z)
i (b,a) = β ;

∀(a,b) ∈ {x,y,z}×{x,y,z}, ρ (x,y,z)
i (a,b) = ρi(a,b);

∀(a,b) ∈ X\{x,y,z}×X\{x,y,z}, ρ (x,y,z)
i (a,b) = ρi(a,b); and

∀a ∈ X , ρ (x,y,z)
i (a,a) = 1.

By Lemma 5.11, C (ρ̄ (x,y,z)) ∈ {x,y,z}. Thus, consider the three possible cases.

Case 1: Suppose C (ρ̄ (x,y,z)) = x. Now define the profile ρ̄ (x,y,z)(x,z) in the above
manner from the profile ρ̄ (x,y,z). Therefore,

ρ (x,y,z)(x,z)
i �{x,z} ∼ ρ (x,z)

i �{x,z}

for all i ∈ N. Because f̃C is IIA-3 and because we have assumed
f̃C (ρ̄)(z,x)> f̃C (ρ̄(x,z), then

f̃C (ρ̄ (x,y,z)(x,z))(z,x) > f̃C (ρ̄ (x,y,z)(x,z))(x,z) ,

which implies C (ρ̄ (x,y,z}(x,z)) = z. Now construct a sequence of profiles
{z̄0, z̄1, . . . , z̄n} such that

z̄0 = (ρ (x,y,z)
1 , . . . ,ρ (x,y,z)

i , . . . ,ρ (x,y,z)
n )

z̄1 = (ρ1
(x,y,z)(x,z), . . . ,ρ (x,y,z)

i , . . . ,ρ (x,y,z)
n )

...

z̄i = (ρ1
(x,y,z)(x,z), . . . ,ρ (x,y,z)(x,z)

i , . . . ,ρ (x,y,z)
n )

...

z̄n = (ρ1
(x,y,z)(x,z), . . . ,ρ (x,y,z)(x,z)

i , . . . ,ρ (x,y,z)(x,z)
n ),

where z̄ j,k signifies ρk in profile z̄ j, and z̄ j−k denotes the removal of ρk

from z̄ j. By construction, C (z̄0) = x and C (z̄n) = z. Thus, there exist
some z̄i−1 and z̄i such that C (z̄i−1) = x and C (z̄i) �= x. Then by Lemma

5.11, C (z̄i) ∈ {y,z}. Suppose C (z̄i) = y. Because π (x,y,z)(x,z)
i (x,y) > 0,

i ∈ N can manipulate C (z̄i) by submitting z̄i−1,i rather than z̄i,i. (Remem-

ber, π (x,y,z)(x,z)
i (x,y)> 0 is i’s sincere preference under z̄i by the construc-

tion of ρ̄ (x,y,z}(x,z).) Suppose C (z̄i) = z. Suppose π (x,y,z)
i (z,x) > 0. Then

i ∈ N can manipulate C at z̄i−1 by submitting z̄i,i rather than z̄i−1,i. Sup-

pose π (x,y,z)
i (x,z) > 0. Because
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ρ (x,y,z)(x,z)
i �{x,z} ∼ ρ (x,y,z)

i �{x,z}

for all i ∈ N, π (x,y,z)(x,z)
i (x,z) > 0. Then i ∈ N can manipulate C at z̄i by

submitting z̄i−1,i rather than z̄i,i.
Case 2: Suppose C (ρ̄ (x,y,z)) = y. Now define the profile ρ̄ (x,y,z)(x,y) in the above

manner from the profile ρ̄ (x,y,z). Therefore,

ρ (x,y,z)(x,y)
i �{x,y} ∼ ρ (x,y)

i �{x,y}

for all i ∈ N. Because f̃C is IIA-3 and because we have assumed
f̃C (ρ̄)(x,y)> f̃C (ρ̄(y,x),

f̃C (ρ̄ (x,y,z)(x,y))(x,y)> f̃C (ρ̄ (x,y,z)(x,y))(y,x) ,

which implies C (ρ̄ (x,y,z)(x,y)) = x. The fact that this leads to a contradic-
tion is evident from the previous case.

Case 3: Suppose C (ρ̄ (x,y,z)) = z. Now define the profile ρ̄ (x,y,z}(y,z) in the above
manner from the profile ρ̄ (x,y,z). Therefore,

ρ (x,y,z)(y,z)
i �{y,z} ∼ ρ (y,z)

i �{y,z}

for all i ∈ N. Because f̃C is IIA-3 and because we have assumed
f̃C (ρ̄)(y,z) > f̃C (ρ̄(z,y),

f̃C (ρ̄ (x,y,z)(x,y))(y,z) > f̃C (ρ̄ (x,y,z)(x,y))(z,y),

which implies C (ρ̄ (x,y,z)(x,y)) = y. The fact that this leads to a contra-
diction is evident from the previous cases. In all three cases, there exist
some i ∈ N who can manipulate C , which contradicts the assumption
that C is strategy-proof. Thus, not f̃C (ρ̄)(z,x) > f̃C (ρ̄)(x,z). By previ-
ous argument, f̃C (ρ̄)(x,z) > f̃C (ρ̄)(z,x), and the consistency condition
is established. ��

Lemma 5.13. Let C be an FSCF. If C is dictatorial when C : FCRn
π → X , then

C is dictatorial when C : FCRn → X.

Proof. Let j ∈ N be the dictator when C : FCRn
π → X . Now suppose j ∈ N is

not a dictator when C : FCRn → X . Then there must exist a profile ρ̄ ∈ FCRn

and x,y ∈ X such that C (ρ̄) = y and π j(x,y) > 0. Let J ⊂ X be such that J = {x ∈
X | π j(y,x) = 0,∀y ∈ X}. Consider some ρ̄ ′ ∈ FCRn

π such that, for all x ∈ J and
y ∈ X\J, π ′

j(x,y) > 0 and π ′
i (y,x) > 0, where i �= j. Now construct the sequence of

profiles {z̄0, z̄1, . . . , z̄n} such that
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z̄0 = (ρ1, . . . ,ρi, . . . ,ρn)

z̄1 = (ρ ′
1, . . . ,ρi, . . . ,ρn)

...

z̄i = (ρ ′
1, . . . ,ρ

′
i , . . . ,ρn)

...

z̄n = (ρ ′
1, . . . ,ρ ′

i , . . . ,ρ ′
n),

where z̄ j,k signifies ρk in profile z̄ j, and z̄ j−k denotes the removal of ρk from z̄ j.
Because C is dictatorial when C : FCRn

π → X , C (z̄n)∈ J. Because C (z̄0) = y �/∈ J,
there exist some l ∈ N such that C (z̄l−1) /∈ J and C (z̄l) ∈ J.

If l = j, first note that π j(C (z̄ j−1),C (z̄ j)) = 0. Also, because C (z̄ j−1) /∈ J, there
exists w ∈ J such that π j(w,C (z̄ j−1))> 0, i.e. ρ j(w,C (z̄ j−1))> ρ j(C (z̄ j−1),w). Be-
cause ρi(C (z̄ j),w) = ρi(w,C (z̄ j)), consistency then implies π j(C (z̄ j),C (z̄ j−1)) >
0. However, because π j(C (z̄l),C (z̄l−1)) > 0 is j’s sincere preference at z̄ j−1, j can
can manipulate C at z̄ j−1 by submitting z̄ j, j rather than z̄ j−1, j.

If l �= j, then l can manipulate C at z̄l by submitting z̄l−1,l rather than z̄l,l be-
cause π ′

l (C (z̄l−1),C (z̄l)) > 0 by construction. Either case contradicts the strategy-
proofness of C . ��

Proof of Fuzzy Gibbard-Satterthwaite 5.9. First, note that any FSCF C that
is dictatorial must be strategy-proof. Second, suppose C is an FSCF. Note
that Lemma 5.11, Lemma 5.12, and Fuzzy Arrow’s Theorem imply that C
is dictatorial on the domain FCRn

π . Lemma 5.13 then implies C must be
dictatorial on the full domain FW Rn.

5.2.2 Relaxing the Conditions of Abdelaziz et. al.

Here we assume that G-S holds for the crisp case and show that it holds for the fuzzy
case.

Definition 5.14. Let CR be the set of all ρ ∈ FR such that

(1) (crisp) for all x,y ∈ X , ρ(x,y) ∈ {0,1};
(2) (reflexive) for all x ∈ X , ρ(x,x) = 1;
(3) (crisp complete) for all x,y ∈ X , ρ(x,y) = 1 or ρ(y,x) = 1;
(4) (transitive) for all x,y,z ∈ X , ρ(x,y) = 1 and ρ(y,z) = 1 implies ρ(x,z) = 1.

Lemma 5.15. CR ⊂ FCR.

Proof. Suppose ρ ∈ CR. We must show that ρ is reflexive, complete and weakly
transitive. First, reflexivity follows immediately from Definition 5.14(2). Second,
completeness follows from Definition 5.14(3). Third, let x,y,z ∈ X be such that
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ρ(x,y) ≥ ρ(y,x) and ρ(y,z) ≥ ρ(z,y). Then, by Definition 5.14(1) and Definition
5.14(2), ρ(x,y) = 1 and ρ(y,z) = 1. (If not, then ρ(x,y) = 0, and Definition 5.14(3)
implies ρ(y,x) = 1, a contradiction.) By Definition 5.14(4), ρ(x,z) = 1, which im-
plies ρ(x,z) ≥ ρ(z,x). ��
Theorem 5.16. [Gibbard (1973); Satterthwaite (1975); Austen-Smith and Banks II
(2005)] Suppose C : CR → X. Then C is strategy-proof if and only if it is dictato-
rial. (See Section 2.3).

Definition 5.17 (non-dominated set). For any x ∈ X , define nd : X → [0,1] as
nd(x) = 1−max

y∈X
{π(y,x)}. Then define ND(π ,X) = {x ∈ X | nd(x) = 1}.

Lemma 5.18. Let A,D ⊆ X such that A �= /0, and let ρ : D×D →{0,1}. If ρ satisfies
conditions

(1) ρ ∈ CR when D = A,
(2) ρ ∈ CR when D = X\A,
(3) π(x,y)> 0 for any (x,y) ∈ A× (X\A),

then ρ ∈ CR when D = X and ND(π ,X) ⊆ A, where π is the strict preference
relation with respect to ρ when D = X.

Proof. First, the proof shows that ρ ∈ CR when D = X . To do so, we consider the
four criteria in Definition 5.14.

Crisp This condition holds by definition of ρ : D×D → {0,1}.
Reflexive For any x ∈ A, ρ(x,x) = 1 by condition (1). For any x ∈ X\A, ρ(x,x) = 1

by condition (1).
Crisp Complete For any x,y ∈ A, ρ(x,y) = 1 or ρ(y,x) = 1 . For any x ∈ A and

y ∈ X\A, ρ(x,y) = 1. For any x,y ∈ X\A , ρ(x,y) = 1 or ρ(y,x) = 1.
Transitive Suppose ρ(x,y) = 1 and ρ(y,z) = 1 and consider the following member-

ships of x,y,z ∈ X .

(i) Suppose x,y,z ∈ A or x,y,z ∈ X\A. Then ρ(x,z) = 1 because ρ is transitive
over A and X\A, respectively.

(ii) Suppose x ∈ A and z ∈ X\A . Then by condition (3), π(x,z) > 0. The regu-
larity of π then implies ρ(x,z) ≥ ρ(z,x), which guarantees ρ(x,z) = 1 by the
completeness and definition of ρ , regardless of whether y ∈ A or y ∈ X\A.

(iii) Suppose y ∈ X\A and z ∈ A. Then π(z,y)> 0, which contradicts the assump-
tion ρ(y,z) = 1 by the regularity of π , regardless x ∈ A or x ∈ X\A.

(iv) Suppose x ∈ X\A and y ∈ A. Then π(y,x)> 0, which contradicts the assump-
tion ρ(x,y) = 1 by the regularity of π , regardless of z ∈ A or z ∈ X\A.

Thus, ρ ∈CR. Now take an x ∈ ND(π ,X), and suppose, contrary to the hypothesis,
that x /∈ A. Because A is nonempty, there exist y ∈ A. By condition (3), π(y,x)> 0.
Thus, x /∈ ND(π ,X), a contradiction. Hence, the conclusion is now established. ��
Theorem 5.19. Suppose C : FCRn → X. Then C is strategy-proof if and only if it
is dictatorial.
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Proof. First, note that any FSCF C that is dictatorial must be strategy-proof. Sup-
pose C is strategy-proof. Then let C ′ : CRn → X be such that for all ρ̄ ∈ CRn,
C ′(ρ̄) = C (ρ̄). Thus, C ′ is strategy-proof because C is strategy-proof on a larger
domain. According to Theorem 5.16, C ′ is dictatorial. Let h ∈ N be the dictator for
C ′. The goal of the proof is to show that h ∈ N is a dictator for C . Now suppose h
is not a dictator when C : FCRn → X . Then there must exist a profile ρ̄ ∈FCRn

such that, for some x,y ∈ X , C (ρ̄) = y and πh(x,y) > 0. Let H ⊂ X be such that
H = {x ∈ X | πh(y,x) = 0,∀y ∈ X}. Consider some ρ̄ ′ ∈ CRn that, for all x ∈ H and
y ∈ X\H, π ′

h(x,y)> 0 and π ′
j(y,x)> 0 where h �= j. (Lemma 5.18 verifies that such

a profile exists.) Now construct the sequence of profiles {z̄0, z̄1, . . . , z̄n} such that

z̄0 = (ρ1, . . . ,ρi, . . . ,ρn)

z̄1 = (ρ ′
1, . . . ,ρi, . . . ,ρn)

...

z̄i = (ρ ′
1, . . . ,ρ

′
i , . . . ,ρn)

...

z̄n = (ρ ′
1, . . . ,ρ

′
i , . . . ,ρ

′
n),

z̄ j,k signifies ρk in profile z̄ j , and z̄ j−k denotes the removal of ρk from z̄ j. Because C
is dictatorial when C : CRn → X , C (z̄n) ∈ H. Because C (z̄0) = y �/∈ J, there exists
some i ∈ N such that C (z̄i−1) /∈ J and C (z̄i) ∈ J.

If i = h, first note that πh(C (z̄h−1),C (z̄h)) = 0. Also, because C (z̄h−1) /∈
J, there exists w ∈ J such that πh(w,C (z̄h−1)) > 0, i.e. ρh(w,C (z̄h−1)) >
ρh(C (z̄h−1),w). Because ρh(C (z̄h),w) = ρh(w,C (z̄h)), consistency then implies
πh(C (z̄h),C (z̄h−1)) > 0. However, because πh(C (z̄h),C (z̄h−1)) > 0 is h’s sincere
preference at z̄h−1, h can can manipulate C at z̄h−1 by submitting z̄h,h rather than
z̄h−1,h.

If i �= h, then i can manipulate C at z̄i by submitting z̄i−1,i rather than z̄i,i be-
cause π ′

i (C (z̄i−1),C (z̄i)) > 0 by construction. Either case contradicts the strategy-
proofness of C . ��

5.3 Findings

To this point, we have used a definition of a fuzzy social choice function that per-
mits a mapping of n-tuples of fuzzy preferences into a crisp set of alternatives. In
this section, we change the definition of a fuzzy social choice function to permit a
mapping of fuzzy subsets into a fuzzy subset of alternatives. We then consider a new
definition of manipulation.

As we are using it, (σN\i, σ ′
i ) represents the profile of individual preference func-

tions where (σN\i, σ ′
i )= (σ1, σ2, . . . , σ ′

i , . . . , σn) and (σN\i(x), σi(x)) is the profile’s
restriction to some x ∈ X . Essentially, (σN\i, σ ′

i ) formally represents the case where
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i ∈ N submits an insincere choice intensity σ ′
i to the fuzzy choice function rather

than the sincere preference σi.

Definition 5.20 (fuzzy choice function). A function C : F (X)n →F (X) is called
a fuzzy choice function.

Definition 5.21 (manipulable). A fuzzy choice function C is manipulable if there
exists x ∈ X , σ ∈ F (X)n, i ∈ N and σ ′

i ∈F (X) such that

(1) C (σ)(x) < σi(x) and C (σ)(x) < C (σN\i, σ ′
i )(x),

or

(2) C (σ)(x) > σi(x) and C(σ)(x) > C (σN\i, σ ′
i )(x).

In words, we sometimes say i ∈ N can manipulate C at profile ρ̄ by submitting the
insincere preference ρ ′

i instead of the sincere preference ρi.
According to Definition 5.21, a fuzzy choice function is manipulable if an in-

dividual i ∈ N is able to move the degree of social choice for an alternative in the
direction of her sincere choice intensity by submitting an insincere choice inten-
sity for the same alternative. In other words, any change in an individual’s fuzzy
individual choice intensities will be to her detriment or will not have any effect on
the final social choice intensity, and, identically, there is no benefit to submitting an
insincere choice intensity. It is important to note that Definition 5.21 assumes that
i ∈ N manipulates the social choice intensity for one alternative even though it may
adversely affect the social choice intensity of another alternative. Hence, the model
assumes that an individual’s choice intensities are separable. Because it is quite pos-
sible that an individual’s choice intensity for x depends on his social choice intensity
for y (for example politicians may choose some economic policies when the coun-
try engages in war and other polices in times of peace), the separability assumption
may not be ideal. Nonetheless, Le Breton and Sen (1999) suggest that some degree
of separability is necessary for any model of social choice to be strategy-proof and
non-dictatorial.

Definition 5.22 (strategy-proof). (Strategy-Proof (SP)). A fuzzy social choice
function C is said to be strategy-proof if it is not manipulable.

Example 5.23. Let σ ∈ F (X)n and let C be a fuzzy choice function. Suppose for
some x ∈ X there exists an i ∈ N such that σi(x) = .4. Suppose C (σ)(x) = .3 and
for some σ ′

i ∈ F (X), C (σN\i,σ ′
i )(x) = .9. Hence, according to Definition 5.21, i

can manipulate C at σ by submitting σ ′
i even though |σi(x)−C (σ)(x)| < |σi(x)−

C (σN\i,σ ′
i )(x)|.

Definition 5.24 (weakly Paretian). A fuzzy choice function C is said to be weakly
Paretian if for all σ ∈ F (X)n and all x ∈ X ,

max
i∈N

{σi(x)} ≥ C (σ)(x) ≥ min
i∈N

{σi(x)}.



104 5 Characteristics of Strategy-Proof Fuzzy Social Choice

In words, weak Paretianism guarantees that the degree to which a fuzzy choice func-
tion selects an alternative is (1) not greater than the choice intensity of the individ-
ual who chooses the alternative to the most intense degree and (2) not less than the
choice intensity of the individual who chooses the alternative to the least intense
degree.

Definition 5.25 (σ -only). A fuzzy choice function C is said to satisfy the σ -only
condition if, for all σ , σ ′ ∈ F (X)n and all x ∈ X ,

σi(x) = σ ′
i (x),∀i ∈ N =⇒ C (σ)(x) = C (σ ′)(x).

In words, the σ -only condition guarantees for all x ∈ X that the degree to which a
fuzzy choice function chooses x is independent of the choice intensities assigned to
the other alternatives in X .

Definition 5.26 (monotonic). A fuzzy choice function C is said to be monotonic if,
for all x ∈ X , and all σ ,σ ′ ∈ F (X)n,

σi(x) ≤ σ ′
i (x),∀i ∈ N =⇒ C (σ)(x) ≤ C (σ ′)(x)

Monotonicity requires that increasing the degree to which individuals choose a spe-
cific alternative will not decrease the degree of choice for that alternative.

To characterize the properties of fuzzy choice functions, the following formal
arguments utilize several reinterpretations of the pivotal voter theorem presented in
Reny (2001).

Proposition 5.27. If a fuzzy choice function C is strategy-proof, then it satisfies the
σ -only condition.

Proof. Assume C is SP. Now supposeC is not σ -only. This proof will show that this
leads to a contradiction. Because C is not σ -only, there must exists σ , σ ′ ∈F (X)n

and an x ∈ X such that σi(x) = σ ′
i (x)∀i ∈ N and C (σ)(x) �= C (σ ′)(x).

Now construct the following sequence of profiles Z = {z0, z1, . . . , zi, . . . , zn}
such that the following hold:

z0 = (σ1, . . . , σi, . . . , σn)

z1 = (σ ′
1, . . . , σi, . . . , σn)

...

zi = (σ ′
1, . . . , σ ′

i , . . . , σn)

...

zn = (σ ′
1, . . . , σ ′

i , . . . , σ ′
n).
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In words zi signifies the profile where the ith individual has switch from σi to σ ′
i

from zi−1. In the argument that follows let z j,k signify σk in profile z j and z j\k de-
notes the removal of σk from z j.

By construction z0 = σ and zn = σ ′. By assumption, C (σ)(x) �= C (σ ′)(x) so
C (z0)(x) �= C (zn)(x). Thus, it is apparent that there exist some zi−1,zi ∈ Z such that
C (zi−1)(x) = C (σ)(x) and C (zi)(x) �= C (σ)(x). This proof will show that i can
manipulate C at zi−1 and zi. Now there are two cases to consider.

Case 1: C (zi−1)(x) < C (zi)(x). First, suppose σi(x)< C (zi)(x). Here,

C (zi)(x) > C (zi\i,zi−1,i) = C (zi)(x) .

Thus, i can manipulate C at zi by submitting zi−1,i rather than zi,i. Sec-
ond, suppose σi(x) ≥ C (zi)(x). Because C (zi−1)(x) < C (zi)(x), then
σi(x)> C (zi−1)(x). However,

C (zi−1)(x)< C (zi−1\i,zi,i) = C (zi)(x) .

Again i can manipulate C at zi−1 by submitting zi,i rather than zi−1,i.
This is a contradiction. Hence, C (zi−1)(x) ≥ C (zi)(x).

Case 2: C (zi−1)(x) > C (zi)(x). First, suppose σi(x)< C (zi−1)(x). Here,

C (zi−1)(x)> C (zi−1\i.zi,i) = C (zi)(x) .

Thus, i can manipulate C at zi−1 by submitting zi,i rather than zi−1,i.
Second, suppose σi(x) ≥ C (zi−1)(x). Because C (zi−1)(x) > C (zi)(x),
then σi(x)> C (zi)(x). However,

C (zi)(x)< C (zi\i,zi−1,i)(x) = C (zi)(x) ,

which is another contradiction. Hence, C (zi−1)(x) = C (zi)(x).

Thus, for any zi,z j ∈ Z, C (zi)(x) = C (z j)(x). Accordingly, C (σ)(x) = C (z0)(x) =
C (zn)(x) = C (σ ′)(x). Hence, C satisfies the σ -only condition. ��
Proposition 5.28. If a fuzzy choice function C is strategy-proof, then it is weakly
Paretian.

Proof. Assume C is SP. Now, suppose C is not weakly Paretian. This proof will
show that this leads to a contradiction. There are two cases for consideration.

Case 1: Suppose there exists x ∈ X and σ ∈ F (X)n such that C (σ)(x) <
min
i∈N

{σi(x)}. By full range, we know there also exists a σ ′ ∈ F (X)n

such that C (σ ′)(x) ≥ min
i∈N

{σ ′
i (x)}. Now construct a sequence of profiles

Z = {z0, z1, . . . , zi, . . . , zn} such that
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z0 = (σ1(x), . . . , σi(x), . . . , σn(x))

z1 = (σ ′
1(x), . . . , σi(x), . . . , σn(x))

...

zi = (σ ′
1(x), . . . , σ ′

i (x), . . . , σn(x))
...

zn = (σ ′
1(x), . . . , σ ′

i (x), . . . , σ ′
n(x)),

where z j,k signifies σk in profile z j and z j\k denotes the removal of σk

from z j. By construction z0 = σ and zn =σ ′. By assumption, C (σ)(x)<
C (σ ′)(x) so C (z0)(x) < C (zn)(x). Then it is obvious there exists
zi−1,zi ∈ Z such that C (zi−1)(x) < C (zi)(x). Suppose σi(x) >
C (zi−1)(x). Then

C (zi−1)(x)< C (zi−1\i,zi,i)(x) = C (zi)(x) .

Thus, i can manipulation C at zi−1 by submitting zi,i rather than zi−1,i.
Now suppose σi(x) ≤ C (zi−1)(x), then σi(x)< C (zi)(x). However,

C (zi)(x) > C (zi\i,zi−1,i)(x) = C (zi−1)(x) .

Thus, i can manipulate C at zi by submitting zi−1,i rather than zi,i. This
is a contradiction.

Case 2: Suppose there exists x ∈ X and σ ∈ F (X)n such that C (σ)(x) >
max
i∈N

{σi(x)}. By full range, we know there also exists a σ ′ ∈ F (X)n

such that C (σ ′)(x) ≤ max
i∈N

{σ ′
i (x)}. Now construct a sequence of pro-

files Z = {z0, z1, . . . , zi, . . . , zn} in a manner detailed above. By con-
struction z0 = σ and zn = σ ′. By assumption, C (σ)(x) > C (σ ′)(x) so
C (z0)(x) > C (zn)(x). Likewise, there must exist zi−1,zi ∈ Z such that
C (zi−1)(x) > C (zi)(x). Suppose σi(x)< C (zi−1)(x). Then

C (zi−1)(x)> C (zi−1\i,zi,i) = C (zi)(x) .

Thus, i can manipulate C at zi−1 by submitting zi,i rather than zi−1,i.
Now suppose σi(x) ≥ C (zi−1)(x), then σi(x) > C (zi)(x). However,
C (zi)(x)< C (zi\i,zi−1,i)(x) = C (zi−1)(x), another contradiction.

Hence, max
i∈N

{σi(x)} ≥ C (σ)(x) ≥ min
i∈N

{σi(x)}, and C is weakly Paretian. ��
Example 5.29. Let C be a fuzzy choice function such that C (σ)(x) = c for all x ∈ X
and all σ ∈ F (X)n, where c ∈ [0,1]. In this case, C is SP, i.e. C (σN\i,σ ′

i )(x) = c
for all i ∈ N and all σ ′

i ∈ F (X), but is not weakly Paretian if c < σi(x) for all i ∈ N
or c > σi(x) for all i ∈ N.

Hence, if a fuzzy choice function C is strategy-proof but does not satisfy full
range, then it does not satisfy weak Paretianism. Together, Proposition 5.28 and
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Example 5.29 demonstrate the equivalence of weak Paretianism and full range un-
der strategy-proof social choice functions. The next proposition and the subsequent
example highlight the relationship between strategy-proofness and monotonicity.

Proposition 5.30. If a fuzzy choice function C is strategy-proof, then it is
monotonic.

Proof. Assume C is SP. Now suppose C is not monotonic. This proof will illustrate
that this leads to a contradiction. Because C is not monotonic, there exists an x ∈ X
and σ , σ ′ ∈F (X)n such that σi(x)≤ σ ′

i (x), for all i ∈ N and C (σ)(x)> C (σ ′)(x).
Because C is σ -only, σ �= σ ′, so there exists at least one i ∈ N such that σi(x) <
σ ′

i (x). Now construct the following sequence of profiles Z = {z0, z1, . . . , zi, . . . , zn}
such that

z0 = (σ1(x), . . . , σi(x), . . . , σn(x))

z1 = (σ ′
1(x), . . . , σi(x), . . . , σn(x))

...

zi = (σ ′
1(x), . . . , σ ′

i (x), . . . , σn(x))
...

zn = (σ ′
1(x), . . . , σ ′

i (x), . . . , σ ′
n(x)),

where z j,k signifies σk in profile z j and z j\k denotes the removal of σk from z j . Be-
cause C is σ -only by Proposition 5.27, C (zi−1)(x) =C (zi)(x) if zi−1(x) = zi(x). By
the construction of Z, there exists i ∈ N such that zi,i(x) > zi−1,i(x) and C (zi)(x) <
C (zi−1)(x).

Suppose σi(x)>C (zi)(x). Then, C (zi)(x)<C (zi\i,zi−1,i), then i can manipulate
C at zi by submitting zi−1,i rather than zi,i. Second suppose σi(x) ≤ C (zi)(x). Then
by assumption, σi(x)<C (zi−1)(x), andC (zi−1)(x)>C (zi−1\i,zi,i). Thus, i can ma-
nipulate C at zi−1 by submitting zi,i rather than zi−1,i. Hence, C (σ)(x) ≤ C (σ ′)(x).

Proposition 5.30 demonstrates that strategy-proofness is sufficient for a monotonic
fuzzy choice function. However, previous research in crisp preference relations has
shown that strategy-proofness is necessary and sufficient for a monotonic condition
Muller and Satterthwaite (1977). This does not hold in the fuzzy framework as the
following example demonstrates.

Example 5.31. For all x ∈ X and all σ ∈ F (X)n, define C as C (σ)(x) =
( 1

n ) ∑
∀i∈N

σi(x). It is easy to verify that C is a monotonic choice function. Now let

x ∈ X . Suppose N = {1, 2, 3} and σ ∈ F (X)n is such that σ(x) = (.4, .1, .6). In
this case, C (σ)(x) = 1

3 (.4+ .1+ .6) = .367. Obviously, some i ∈ {1,3} could ma-
nipulate C with some σ ′

i (x) > σi(x). Also, i = 2 can manipulate C by submitting
some σ ′

3(x)> σ3(x) = .6.

The following definition is necessary to characterize the domain of strategy-proof
choice functions.
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Definition 5.32 (augmented median voter rule). Let M : F (X)n → F (X) be a
fuzzy choice function defined as follows:

M(σ)(x) = med{p1, . . . , pn−1, σ1(x), . . . ,σn(x)},
where pi ∈ [0,1], i = 1, . . . ,n− 1.2

Here {p1, . . . , pn−1} is a set of predefined “phantom” alternatives that serve two
purposes. First, it allows M(σ) to be generalized to any type of rank-selecting func-
tion such as minimum or maximum. Second, the set also ensures an odd number of
alternatives, so a median can always be selected. If not, the median becomes an av-
erage of two choice intensities, and this procedure is manipulable as demonstrated
in Example 5.31.

Lemma 5.33. M is a strategy-proof fuzzy choice function.

Proof. Assume M is defined as in Definition 5.32. Suppose M is not strategy-proof.
This leads to a contradiction.

Let x ∈ X , i ∈ N and σ ∈ F (X)n. The are two cases to consider. First, sup-
pose σi(x) < M(σ)(x). Then there exists a σ ′

i ∈ F (X) such that M(σ)(x) >
M(σN\i,σ ′

i )(x) by assumption. For clarity, let M(σ)(x) = a and M(σN\i,σ ′
i )(x) = b.

Obviously, a > b.
Note that a ∈ {p1, . . . , pn−1, σ1(x), . . . ,σi(x), . . . ,σn(x)}. Because σi(x) < a,

σ ′
i (x) �≤ σi(x), else

med{p1, . . . , pn−1, σ1(x), . . . ,σi(x), . . . ,σn(x)}
= med{p1, . . . , pn−1, σ1(x), . . . ,σi(x), . . . ,σn(x)} ,

Thus, σ ′
i (x)> σ(x). This implies then

b = med{p1, . . . , pn−1, σ1(x), . . . , σ ′
i (x), . . . , σn(x)}

≥ a ,

However, M(σN\i, σ ′
i )(x) = b and a > b. This is a contradiction.

Second, suppose σi(x) > M(σ)(x). Then there exists a σ ′
i ∈ F (X) such that

M(σ)(x) < M(σN\i,σ ′
i ). Again, let M(σ)(x) = a and M(σN\i,σ ′

i ) = b. Obviously,
a �= b and a < b. Because σi(x)> a, σ ′

i (x) �≥ σi(x), else

med{p1, . . . , pn−1, σ1(x), . . . ,σi(x), . . . ,σn(x)}
= med{p1, . . . , pn−1, σ1(x), . . . ,σ ′

i (x), . . . ,σn(x)} .

Thus, σ ′
i (x)< σi(x). However, as before,

2 Several studies characterize the augmented median voter rule using {p1, . . . , pn+1}
Austen-Smith and Banks (2005); Barberá (2001); Moulin (1980). In this case, however,
by setting p1 = 0 and pn+1 = 1, the rule can be more succinctly written using n−1 alter-
natives.
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b = med{p1, . . . , pn−1, σ1(x), . . . , σ ′
i (x), . . . , σn(x)}

≤ a ,

a contradiction. The desired result now follows.

In words, Lemma 5.33 demonstrates that if i ∈ N attempts to manipulate the value of
M(σ)(x) with σ ′

i , one of two events will happen. Either the new manipulated social
choice will be identical to the original social choice intensity or the new manipulated
social choice intensity will move further away from i’s sincere intensity for x ∈ X .
Hence, i ∈ N will not be better off by reporting any σ ′

i �= σi.
The chapter’s main theorem that C is strategy-proof if and only if C = M (Def-

inition 5.32) follows the logic in Ching and Serizawa (1998) and makes use of the
following lemma.

Lemma 5.34. Let σ̄i(x) = 1 and σ i(x) = 0 for all x ∈ X and some i ∈ N. A fuzzy
choice function C is strategy-proof if and only if, for all σ ∈ F (X)n, all x ∈ X and
all i ∈ N, the following holds:

C (σ)(x) = med{σi(x),C (σN\i,σ i)(x),C (σN\i, σ̄i)(x)}.

Proof. SupposeC is a strategy-proof fuzzy choice function. Let σ ∈F (X)n and x ∈
X . By monotonicty and Proposition 5.30, C (σN\i, σ̄i)(x) ≥ C (σN\i,σ i)(x). There
are three cases to consider to prove the relationship in the lemma.

Case 1: Suppose
σi(x) ∈ (C (σN\i,σ i)(x),C (σN\i, σ̄i)(x)) .

Further, suppose C (σ)(x)< σi(x), then i can submit σ̄i(x) where

C (σN\i, σ̄i)(x)> σi(x)> C (σ)(x) .

Thus, C (σ)(x)<C (σN\i, σ̄i)(x), and C is manipulable, a contradiction.
Now suppose C (σ)(x) > σi(x). Similarly,

C (σN\i,σ i)(x)< σi(x)< C (σ)(x) .

Because C (σN\i,σ i)(x) < C (σ)(x), C is manipulable, a contradiction.
Hence, C (σ)(x) = σi(x) when

σi(x) ∈ (C (σN\i,σ i)(x),C (σN\i, σ̄i)(x)) .

Case 2: Suppose σi(x)≤C (σN\i,σ i)(x). To see that C (σ)(x) = C (σN\i,σ i)(x),
suppose C (σ)(x) < C (σN\i,σ i)(x). Then

σ i(x) ≤ C (σ)(x)< C (σN\i,σ i)(x) .

In this case, i can manipulate C at (σN\i,σ i) by submitting σi rather than
σ i, a contradiction. Likewise, suppose
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C (σ)(x) > C (σN\i,σ i)(x) ≥ σi(x) .

Now, i can manipulate C at σ by submitting σ i rather than σi. Hence,
C (σ)(x) = C (σN\i,σ i)(x) when σi(x) ≤ C (σN\i,σ i)(x).

Case 3: Suppose σi(x) ≥ C (σN\i, σ̄i)(x) and C (σ)(x) > C (σN\i,σ i)(x). Then

σ̄i(x) ≥ C (σ)(x) > C (σN\i,σ i)(x) ,

where i can manipulate C at (σN\i,σ i) by submitting σi rather than σ̄i.
Now suppose C (σ)(x) < C (σN\i,σ i)(x). Then

C (σ)(x) < C (σN\i,σ i)(x) ≤ σi(x) ,

and i can manipulate C at σ by submitting σ̄i rather than σi. Hence,
C (σ)(x) = C (σN\i, σ̄i)(x) when σi(x) ≥ C (σN\i, σ̄i)(x).

The preceding arguments prove that if a fuzzy choice function C is strategy-proof,
then

C (σ)(x) = med
{

σi(x),C (σN\i,σ i)(x),C (σN\i, σ̄i)(x)
}
.

The fact that

C (σ)(x) = med
{

σi(x),C (σN\i,σ i)(x),C (σN\i, σ̄i)(x)
}

is strategy-proof for all σ ∈ F (X), all x ∈ X and all i ∈ N is easily obtained from
Lemma 5.33. ��
In words, the arguments in Lemma 5.34 demonstrate that if C is a strategy-proof
fuzzy social choice function, an individual i cannot move the social choice intensity
of an alternative in the direction of her sincere choice intensity by submitting either
of the extreme functions σ̄i or σ i. Similar to the logic in Lemma 5.34, submitting
one of these profiles will either have no effect on the social choice intensity or will
move the social intensity further from the individual’s sincere intensity. Because
strategy-proofness is monotonic and σ -only, individuals who are not able to manip-
ulate the fuzzy social choice with extreme profiles will not be able to manipulate the
social choice with less extreme profiles. Thus, the following result now emerges.

Theorem 5.35. Any fuzzy choice function C is strategy-proof if and only if it is a
fuzzy augmented median voter rule.

Proof. Once we have established that strategy-proofness implies σ -only (Proposi-
tion 5.27) and the relationship in Lemma 5.34, Ching (1997) shows that C must be
the augmented median voter rule defined in Definition 5.32. Lemma 5.33 demon-
strates the strategy-proofness of the fuzzy augmented median voter rule. ��

5.4 Implications for the Spatial Model

Definition 5.36 (coalition). A nonempty subset C of N is called a coalition if and
only if ∃x ∈ X such that σ�c(x) > 0,∀c ∈ C. Let Ĉ denote the set of all possible
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majority-supported coalitions. Then a subset K of N is called a collegium if every
member of K is in Ĉ.

Example 5.37. This example illustrates the problem of group decision making when
the selection process is based upon the preference functions described in Chapter 3.
This spatial model illustrates how, under the definition presented in Chapter 1, the
fuzzy maximal set can be manipulated by certain actors.

Consider Figure 5.1, where

PSN(R) = {(.25,1,0),(0, .75, .25),(0, .5, .5),(1,0,0),(0,0,1)} ,

and the shaded grey areas represent possible coalition formations. Currently, we
aggregate the above fuzzy preferences as follows:

1). Individual fuzzy preferences are aggregated into a fuzzy choice function,
MGi(σ�i,ρi)(x), which signifies the degree to which i ∈ N chooses alterna-
tive x. In the case of our previously defined binary preference relation, ρi,
MGi(σ�i,ρi)(x) = σ�i(x).

2). For every C ⊆ N, such that C controls a majority of legislative seats, we then
take the minimum of σ�i(x) for ∀i ∈ C and ∀x ∈ X .

3). Finally, for every C ⊆ N we take the maximum across the values calculated in
2. This final value refers to the degree to which each coalition is chosen. The
coalition with the highest choice score is predicted to form.

In Figure 5.1, we would compute the following coalitions to their respective degrees:
{1,2} at .25, {1,3} at 0, {2,3} at .5, {1,2,3} at 0. Since ∨{.25,0, .5,0} = .5, the
maximal set forms at {2,3}.

But, since actor 2 is a member of every decisive and possible coalition (i.e., a
collegium where K = 2), he can manipulate the fuzzy maximal set by advertising
an artificially narrow profile around his ideal region. For instance, it would be in
actor 2’s interests to advertise an insincere profile ending at x2, thus eliminating his
least-desirable possible outcome {0, .5, .5}. In doing this, actor 2 forces actor 3 to
coalesce around a region closer to actor 2’s ideal range (from σ�i = .5 to σ�i = .75).

Figure 5.1 illustrates the role of M(σ) in avoiding this manipulation.
Lemma 5.34 and Theorem 5.35 demonstrate that a fuzzy social choice function

is strategy-proof if and only if it is a form of the fuzzy augmented median voter
rule from Definition 5.32. Further, in contrast to previous results using traditional
preference relations, this relationship holds without restricting the domain of indi-
vidual preferences, F (X)n. While the representation of an individual’s preferences
with the σi function can be used to produce a transitive weak preference relations
Ri, where xRiy ⇐⇒ σi(x) ≥ σi(y), the use of the σi creates substantive differences
between the structure of traditional and fuzzy strategy-proof choice functions. The
reason these differences emerge is that the group of individuals no longer decides
what alternative to select but rather decides the degree to which the group chooses
each alternative.

To illustrate this difference, the model presented in this chapter is applied to the
spatial model, where the set of alternatives X becomes some subset of k-dimensional
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Euclidean space or R
k. When k = 1, σi can be presented by a traditional fuzzy

number, i.e. σi : R1 → [0,1] for i = 1, . . . ,n, which is a similar definition to that of
a fuzzy subset. Further, it is often assumed that σi is normal, which requires that
there exists x ∈ X such that σi(x) = 1, for i = 1, . . . ,n. In words, normality ensures
that every actor views at least one alternative as ideal. While the condition seems
innocuous and strongly related to the standard assumptions of spatial models, it is
not necessary to the framework presented here.

Figure 5.1 illustrates a three-player fuzzy preference profile where each σi is rep-
resented by a normal fuzzy number in one-dimensional space. It is obvious that the
fuzzy number representation allows for greater variation in individual choice than a
traditional single-peaked profile. In this example, not only are the fuzzy choice in-
tensities able to capture the single-plateau characteristics of concern to some schol-
ars Berga and Moreno (2009); Ching and Serizawa (1998); Massó and Neme (2001),
but they also allow for non-single-peaked preferences (player 2), which is one sub-
stantive difference between exact and fuzzy choice. Further, the shaded areas show
the social choice intensities induced by the fuzzy median rule.

To see that the social choice is indeed strategy-proof, even with non-single-
peaked preferences, consider x1 ∈ X . Here, σ1(x1)> 0, σ2(x1) = 0, and σ3(x1) = 0.
Regardless of any σ ′

1 ∈F (X) and any possible values of σ ′
1(x1), M(σ)(x1) = 0 be-

cause M(σ)(x1) = med{σ ′
1(x1),σ2(x1),σ3(x1)} = med{σ ′

1(x1),0,0}. In addition,
consider x2 ∈ X , where σ1(x2) < M(σ)(x2), σ2(x2) > M(σ)(x2), and σ3(x2) =
M(σ)(x2). Similarly, player 1 cannot manipulate the fuzzy choice for x2. For any
σ ′

1 ∈ F (X) and any specific value of σ ′
1(x2), M(σN\1,σ ′

1)(x2) ≥ M(σ)(x2). Thus,
player 1 can only move the degree of social choice further away from her sincere
choice intensity for x2.

When working in multidimensional space, the framework of the σi function re-
mains largely the same, where σi : Rk → [0,1]. When k = 2, we are interested in
fuzzy subsets where every point in the set σ−1

i ((0,1]) is in the interior or on the

Fig. 5.1 Three-player Example of the Fuzzy Median Rule in One-Dimensional Space
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boundary of a simple closed curve. A simple closed curve is a curve for which there
is a one-to-one continuous function from the unit circle onto it. In addition, a simple
closed curve has an interior that is bounded and an exterior, but there is no need for
the curve to be convex. Finally, we can restrict σi in a particular way such that, for
all t ∈ Im(σi)\{0}, {x ∈ X | σi(x) = t} forms a compact set.

Figure 5.2 presents a three-player fuzzy preference profile in two-dimensional
space, and the σi function becomes a third dimension perpendicular to both the X
and Y policy dimensions. In this case, Im(σi) = {0, .25, .5, .75,1.0}, where σi(x) =
1 can be represented by individual i’s inner-most indifference circle and σi(x) = 0
signifies the area outside i’s outer-most indifference circle. When the individual
fuzzy choice intensities are constructed in this manner, they are similar to a Likert
scale. As in the previous example, the shaded gray areas show the social choice
induced by the fuzzy median rule, and darker areas represent a more intense social
choice. Unlike the exact case, the fuzzy median rule remains strategy-proof in two-
dimensional space without using the dimension-by-dimension median rule. It is easy
to extrapolate that this result holds even if there exists a t ∈ Im(σi)\{0} such that
{x ∈ X | σi(x) = t} forms a concave set.

Fig. 5.2 Fuzzy Median Rule in Two-Dimensional Space

Finally, another substantive difference occurs when there does not exist an x ∈ X
such that σi(x)> 0 for all i ∈ S, where S ⊆ N such that |S|> 1. In this case, players
have non-intersecting Im(σi). Under this scenario, M(σ)(x) = 0 for all x ∈ X unless
the phantom alternatives are arranged such that M(σ)(x) = max

i∈N
{σi(x)}, and the



114 References

group of players rejects all possible alternatives. In this case, it is unclear as to what
the social choice is. In the traditional approach, a choice function associates an al-
ternative to all possible combination of individual preferences that are transitive and
complete relations. However, in the fuzzy case, when the social choice function is
designating a choice intensity to each alternative, it is possible that a strategy-proof
choice function assigns a zero intensity to all alternatives. This is not necessarily
a misrepresentation of the original intention of strategy-proof choice functions if
rejecting all alternatives is some type of social choice.

5.5 Conclusions

This chapter proposed a framework for characterizing strategy-proof fuzzy social
choice functions in which individual preferences and the social choice are repre-
sented by fuzzy subsets of the set of alternatives. Essentially, actors are deciding to
what degree the group chooses each alternative given an n-tuple of fuzzy individual
choice intensities rather than choosing a specific alternative, which is the approach
taken in previous studies of both exact and fuzzy social choice. Similar to previous
results, these findings require that individual choice intensities are separable across
alternatives, and strategy-proof fuzzy choice functions satisfy conditions of σ -only,
weak Paretianism and monotonicity. Moreover, Theorem 5.35 demonstrates a fuzzy
social choice function is strategy-proof if and only if it is the fuzzy augmented me-
dian voter theorem.

Unlike previous results, strategy-proof choice functions do not require any re-
strictions on the consistency of individual choice intensities or the dimensionality of
the alternative space. In fact, section 4 illustrates strategy-proof fuzzy social choice
when individuals have multi-peaked preferences on a single dimension of alterna-
tives and when the set of alternatives is multidimensional Euclidean space.

The results obtained in this chapter speak to debates about the possibility of
strategic manipulation of exact choice functions with single-peaked preferences.
They suggest that when social choice selects alternatives to various degrees there
exists strategy-proof choice functions that do not require restrictions on individuals’
preferences.
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Chapter 6
Fuzzy Black’s Median Voter Theorem

Abstract. This chapter focuses on Black’s Median Voter theorem which states that
the median voter’s ideal alternative will be the socially preferred to other alterna-
tives under majority rule when the following strict conditions hold: 1) all alternatives
can be strictly ordered; 2) each voter strictly prefers one alternative to all other al-
ternatives; and 3) each voter’s strict preferences decrease monotonically from that
alternative. This chapter shows that when fuzzy strict, rather than purely strict, pref-
erences are applied Black’s Median Voter theorem holds; but, it does not hold when
fuzzy weak preferences are applied. However, a potential problem arises when us-
ing fuzzy strict preferences in cases where the maximal set, while not empty, may
contain more alternatives than the median voter’s ideal alternative.

6.1 The Structure of Fuzzy Rules and Strict Preference

The social choice literature has given considerable attention to Black’s Median
Voter Theorem (1969). The Theorem states that the median voter’s ideal alterna-
tive will be socially preferred to other alternatives under majority rule when a set of
rather strict conditions holds. These conditions collectively define what is referred
to in the literature as single-peaked preference profiles. They are

(1) all alternatives can be strictly ordered,
(2) each voter strictly prefers one alternative to all other alternatives, and
(3) each voter’s strict preferences decrease monotonically from that alternative.

The theorem’s focus on voting rules that produce nonempty maximal sets and
thereby avoids the negative conclusions associated with both Arrow’s Theorem
(1951) and Gibbard-Satterthwaite’s Theorem (1973; 1975) has drawn substantial at-
tention from social choice scholars. Moreover, while it is difficult to find situations
in which political actors might have single-peaked preference profiles, the theorem
nonetheless results in testable hypotheses (Kiewiet and McCubbins, 1988; Romer
and Rosenthal, 1979).
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Despite the attention devoted by social choice scholars to Black’s Median Voter
Theorem, the fuzzy social choice literature thus far has devoted limited considera-
tion to the result. Among the exceptions are Gibilisco et al (2012) and Mordeson et
al (2010). Gibilisco et al. (2012) follows the lead of traditional preference relations
as presented in Austen-Smith and Banks (1999) and demonstrates the type of single-
peaked preferences that guarantee a non-empty fuzzy maximal set for fuzzy simple
rules and fuzzy voting rules under partial (Mordeson and Clark, (2009); Mordeson
et al, (2010)) and regular strict preferences (Fono and Andjiga, 2005). The paper’s
main results are that Black’s Median Voter Theorem holds for both partial and reg-
ular fuzzy strict preferences. However, the result no longer holds for fuzzy weak
preferences relations. Nonetheless, the problem emerges that while the maximal set
is no longer empty, it may contain more alternatives than the median voter’s ideal
alternative.

This chapter revises and extends the arguments in Gibilisco et al. (2012). The
results confirm those in Gibilisco et al. (2012): Black’s Median Voter Theorem does
not hold under all conceptualizations of the fuzzy maximal set. In what follows,
we repeat much of the argument in Gibilisco et al. (2012) for the sake of clarity.
The next section presents the basic notation and concepts behind fuzzy preference
relations, fuzzy aggregation rules, and decisive sets. Section three then introduces
a class of fuzzy simple rules and fuzzy voting rules that allow for regular strict
preference relations. Section four considers the types of single-peaked preferences
fuzzy voting and simple rules that produce a non-empty maximal set. Section five
then illustrates the conditions under which the Median Voter Theorem holds in the
fuzzy framework. Section six presents an empirical application, and Section seven
adds further considerations that we will visit in the next chapter.

6.2 Basic Definitions and Concepts

Social choice theorists frequently concern themselves with a strict preference rela-
tion π : X ×X → [0,1] defined with respect to a fuzzy weak preference relation ρ (a
FWPR, i.e., a function ρ : X ×X → [0,1]). The relation π is irreflexive (π(x,x) = 0
for all x ∈ X), antisymmetric (π(x,y)> 0 implies π(y,x) = 0 for all distinct x,y ∈ X),
and not necessarily complete.

The results in this chapter depend on the regularity of π . However, below we
present several generalized definitions from the literature in which this assumption is
not necessary Mordeson et al. (2010). Several of these definitions have been briefly
discussed in earlier chapters as well as in Gibilisco et al. (2012), but are repeated
here for the sake of clarity.

Definition 6.1 (partial strict). Let ρ be an FWPR. Then π , the strict preference
relation with respect to ρ , is said to be partial if, for all x,y ∈ X ,

π(x,y)> 0 ⇐⇒ ρ(y,x) = 0.

Given any ρ̄ ∈ FRn, define P̃, R̃ :X ×X → F (N) by for all x,y ∈ X and i ∈ N,
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P̃(x,y; ρ̄)(i) =

{
πi(x,y) if πi(x,y)> 0

0 otherwise,

R̃(x,y; ρ̄)(i) =

{
ρi(x,y) if π i(y,x) = 0

0 otherwise.

The reader is reminded that ρ̄ is the preference profiles for all individuals. Thus
P̃ and R̃ create two different kinds of fuzzy values; P̃ relates to to the set of strict
preferences and R̃ relates to the set of weak preference relations. In these definitions
of P̃ and R̃ the membership grade is focused on the actor i rather than on the fixed
alternatives x and y.

Definition 6.2 (regular). An FWPR ρ on X is regularly acyclic if, for
all {x1, x2, . . . , xn} ∈ X , π(x1,x2) ∧ π(x2,x3) ∧ . . . ∧ π(xn−1,xn) > 0 implies
π(xn,x1) = 0.

A definition for quasi-transitivity of a FWPR is given in Def 3.34 and partially
quasi-transitivity of a FWPR is given in 4.3.

Proposition 6.3. Let ρ be an FWPR. If π is regular, then the following properties
hold:

(1) ρ is max-min transitive implies ρ is partially quasi-transitive.
(2) ρ is weakly transitive implies ρ is partially quasi-transitive.
(3) ρ is partially quasi-transitive implies ρ is regularly acyclic.

Proof. (1) Let x,y,z ∈ X and suppose ρ is max-min transitive. Suppose π(x,y)> 0,
π(y,z)> 0, and, contrary to the hypothesis, π(x,z) = 0. Since π is regular,

ρ(x,y) > ρ(y,x) (6.1)

ρ(y,z) > ρ(z,y) (6.2)

ρ(z,x) ≥ ρ(x,z). (6.3)

Since ρ is max-min transitive,

ρ(x,z) ≥ ρ(x,y)∧ρ(y,z). (6.4)

There are two cases to consider.

a. First, suppose ρ(x,y) > ρ(y,z). Then ρ(x,z) ≥ ρ(y,z) by (6.4), and thus
ρ(z,x) ≥ ρ(y,z) by (6.3). By max-min transitivity, ρ(z,y) ≥ ρ(z,x) ∧
ρ(x,y). By (6.2), it follows that ρ(y,z) > ρ(z,x)∧ ρ(x,y). However, we
already have shown ρ(y,z) ≤ ρ(z,x) and ρ(y,z) < ρ(x,y), a contradiction.

b. Second, suppose ρ(y,z) ≥ ρ(x,y). Then ρ(x,z) ≥ ρ(x,y) by (6.4), and
ρ(z,x) ≥ ρ(x,y) by (6.3). By max-min transitivity, we have ρ(y,x) ≥
ρ(y,z) ∧ ρ(z,x). However, ρ(y,z) ≥ ρ(x,y) and ρ(z,x) ≥ ρ(x,y). Thus,
ρ(y,x) ≥ ρ(x,y), which contradicts (6.1).
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(2) Let x,y,z ∈ X and suppose ρ is weakly transitive. Suppose π(x,y)> 0, π(y,z)>
0, and, contrary to the hypothesis, π(x,z) = 0. Since π is regular, ρ(z,x) ≥
ρ(x,z). However, ρ(z,x)≥ ρ(x,z) and ρ(x,y)> ρ(y,x) implies ρ(z,y)≥ ρ(y,z)
which contradicts π(y,z)> 0.

(3) The result is immediate from Definition 6.2. ��
Since we are interested in how individual’s preferences ultimately result in a social
choice, we need to consider ways to transform a set o FWPRs for a group into an
aggregate preferene relation.

Definition 6.4 (FPAR). In this chapter, we call a function f̃ : FRn → FR a fuzzy
preference aggregation rule (FPAR).

Note 6.5. We will often suppress the notation f̃ (ρ̄) and let ρ denote the social pref-
erence relation. In this manner, we can derive ρ ’s components ι and π , which cor-
respond to the social fuzzy indifference and social fuzzy strict preference relations,
respectively.

Definition 6.6. Let f̃ be an FPAR. Then f̃ is

(1) (max-min transitive), if for all ρ̄ ∈FRn, f̃ (ρ̄) is max-min transitive;
(2) (regularly acyclic), if for all ρ̄ ∈ FRn, f̃ (ρ̄) is regularly acyclic.

It is also useful to identify some properties of coalitions. Fuzzy coalitions are de-
noted here by L and L is a subsets of the set of all fuzzy subsets of N, which is
denoted by F (N).

Definition 6.7. Let L ∈ F (N). Then

(1) (monotonic) L is said to be monotonic if, for all λ ∈ L and all λ ′ ∈ F (N),
Supp(λ )⊆ Supp(λ ′) implies λ ′ ∈L .

(2) (proper) L is said to be proper if, for all λ ∈L and all λ ′ ∈F (N), Supp(λ )∩
Supp(λ ′) = /0 implies λ ′ /∈ L .

The property of monotonicity indicates that if a set of coalitions, L , contains a
coalition λ that has positive membership for a group of actors then it contains all
coalitions that have positive membership for that group of actors. Proper means that
if a set of coalitions, L , contains a coalition λ that has positive membership for a
group of actors then it does not contain any coalitions that contain none of those
actors.

Definition 6.8 (decisive). Let f̃ be a FPAR and λ ∈ F (N). Then λ is decisive for
f̃ if ∀ρ̄ ∈ FRn, πi(x,y)> 0 ∀i ∈ Supp(λ ) implies π(x,y)> 0.

A decisive coalition decides the social choice. We are of course interested in all
decisive coalitions.

Definition 6.9 (decisive set). Let

L ( f̃ ) = {λ ∈ F (N) | λ is decisive for f̃ }.

Then L ( f̃ ) is the set of decisive coalitions for the fuzzy preference aggregation
rule f̃ .
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We will now show that the set of decisive coalitions is monotonic and proper.

Proposition 6.10. Let f̃ be an FPAR. Then

(1) L ( f̃ ) is monotonic;
(2) L ( f̃ ) is proper.

Proof. (1) Suppose λ ,λ ′ ∈F (N) are such that Supp(λ )⊂ Supp(λ ′). Suppose λ ′ is
not decisive for f̃ . Then there exists ρ̄ ∈FRn and x,y ∈ X such that πi(x,y)> 0
for all i ∈ Supp(λ ′), but not π(x,y) > 0. Thus πi(x,y) > 0 for all i ∈ Supp(λ ),
but not π(x,y)> 0. Hence λ is not decisive for f̃ .

(2) Let λ ∈L ( f̃ ). Let x,y ∈ X and ρ̄ ∈ FRn be such that πi(x,y) > 0 for all i ∈
Supp(λ ) and πi(y,x) > 0 for all i ∈ N \ Supp(λ ). Then π(x,y) > 0. Let λ ′ ∈
FP(N). Suppose that Supp(λ )∩Supp(λ ′) = Ø. If λ ′ ∈ L ( f̃ ), then π(y,x)>
0, a contradiction. Hence λ ′ is not decisive for f̃ for all λ ′ ∈ F (N) such that
Supp(λ ′)∩Supp(λ ) =∅. Thus L ( f̃ ) is proper. ��

6.3 New and Old Fuzzy Voting Rules

As we briefly discussed earlier, there are cases in which the social preference re-
lations for a given FPAR can be entirely characterized by its set of decisive coali-
tions. For instance, suppose we wish to determine whether an alternative x ∈ X is
strictly preferred to alternative y ∈ X by simple majority rule. Before we can con-
clude whether or not this is the case, we must determine if a set of individuals exists
that comprises more than n

2 individuals, each of whom strictly prefers x to y. The
preferences of individuals outside of this set are not relevant to the social prefer-
ence outcome since it is determined by simple majority rule. Similarly, social strict
preference within the framework of the Pareto extension rule requires that every ac-
tor strictly prefers one alternative over another. Otherwise, there is no strict social
preference for one alternative. We refer to aggregation rules that depend on deci-
sive sets as fuzzy simple rules. We now formally define these concepts in the fuzzy
framework.

For any relation R ⊆ X ×X , let Symm(R) denote the symmetric closure of R, i.e.
the smallest subset of X ×X that contains R and is symmetric.

We will now take family of coalitions, L , and a collection of preference pro-
files, ρ̄ , and define an FPAR, g̃L (ρ̄), which is essentially the coalitions indicated
preference.

Definition 6.11 (coalition preference). Let L ⊆ F (N). Let ρ̄ ∈ FRn and set

P̃(ρ̄) = {(x,y) ∈ X ×X | ∃λ ∈ L , πi(x,y)> 0, ∀i ∈ Supp(λ )} .

Define g̃L : FRn →FR by for all ρ̄ ∈ FRn and all x,y ∈ X ,
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g̃L (ρ̄)(x,y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if (x,y) /∈ Symm(P̃(ρ̄))
∨{∧{ρi(x,y) | i ∈ Supp(λ )} | λ ∈L and πi(x,y)> 0,∀i ∈ Supp(λ )}

if (x,y) ∈ P̃(ρ̄)
∧{∧{ρi(x,y) | i ∈ Supp(λ )} | λ ∈L and πi(y,x)> 0,∀i ∈ Supp(λ )}

if (x,y) ∈ Symm(P̃(ρ̄))\P̃(ρ̄).

The connection of the fuzzy aggregation rule g̃L in the above definition to the
crisp aggregation rule (Austen-Smith and Banks, 1999, p. 59)can be seen from
Example 6.13.

Proposition 6.12. If (x,y) ∈ P̃(ρ̄), then gL (ρ̄)(x,y) > gL (ρ̄)(y,x). If strict pref-
erences are partial (regular), then πL is partial (regular).

Proof. Since (x,y) ∈ P̃(ρ̄).

(y,x) ∈ Symm(P̃(ρ̄))\ P̃(ρ̄) .

Thus ∃λ ∈ L such that πi(x,y) > 0 for all i ∈ Supp(λ ). For all such λ ,ρi(x,y) >
ρi(y,x) for all i ∈ Supp(λ ). Hence

gL (ρ̄)(x,y)> gL (ρ̄)(y,x)

by the definition of gL . Thus if strict preferences are regular, πL is regular. If
strict preferences are partial, then ρi(y,x) = 0 for all i ∈ Supp(λ ) for λ ∈L . Hence
gL (ρ̄)(y,x) = 0 and so πL is partial. ��
Example 6.13. Let X = {x,y,z}, Δ(X) = {(x,x),(y,y),(z,z)}, and N = {1,2,3}. Let
L = {{1,2},{1,3},{2,3},X}. Define the (crisp) relations Ri, for i = 1,2,3 as fol-
lows:

R1 = ΔX ∪{(x,y),(y,x)}∪{(x,z),(y,z)},
R2 = ΔX ∪{(x,y),(y,x)}∪{(x,z),(z,y)},
R3 = ΔX ∪{(x,y),(y,x)}∪{(z,x),(y,z)}.

Then P1 = {(x,z),(y,z)}, P2 = {(x,z),(z,y)}, and P3 = {(z,x),(y,z)}. Let R =
(R1,R2,R3) and

P̃(R) = {(u,v) ∈ X ×X | ∃L ∈ L , (u,v) ∈ Pi ∀i ∈ L} .

Then P̃(R) = {(x,z),(y,z)}, where L = {1,2} for (x,z) and L = {1,3} for (y,z).
Now g̃L (R) = ΔX ∪{(x,y),(y,x)}∪{(x,z),(y,z)}.

Translating this to the fuzzy case where the mappings are into {0,1}, we would
have

g̃L (R)(u,v) =

⎧
⎨

⎩

1 if (u,v) ∈ ΔX ∪{(x,y),(y,x)}
1 if (u,v) ∈ {(x,z),(y,z)},

0 otherwise.
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(In the first case 1 is the indifference part while the second case 1 is the strict part
of g̃L (R)).

Now define ρi(u,v) = 1 if (u,v) ∈ ΔX ∪{(x,y),(y,x)}, i = 1,2,3 and

ρ1(x,z) =
1
4
, ρ1(z,x) = 0, ρ1(y,z) =

1
2
, ρ1(z,y) = 0,

ρ2(x,z) =
1
8
, ρ2(z,x) = 0, ρ2(y,z) = 0, ρ1(z,y) =

3
8
,

ρ3(x,z) = 0, ρ3(z,x) =
1
2
, ρ3(y,z) =

7
8
, ρ3(z,y) = 0.

Let L = {1{1,2},1{1,3},1{2,3},1X}. Let ρ = (ρ1,ρ2,ρ3) and

P̃(ρ) = {(u,v) ∈ X ×X | ∃λ ∈ L , πi(u,v)> 0∀i ∈ Supp(λ )} .

Then P̃(ρ) = {(x,z),(y,z)}. Using Definition 6.11, we have

g̃L (ρ)(u,v) =

⎧
⎨

⎩

1 if (u,v) ∈ ΔX ∪{(x,y),(y,x)},
1
8 if (u,v) = (x,z), 1

2 if (u,v) = (y,z),
0 otherwise.

Note that (x,x),(y,y),(z,z),(x,y),(y,x) are not in Symm(P̃(ρ)),(z,x),(z,y) are in
Symm(P̃(ρ)), but not in P̃(ρ). This works well for strict preferences of type π(0).
We now consider strict preferences that are regular. Define ρi(u,v) = 1 if (u,v) ∈
ΔX ∪{(x,y),(y,x)} for i = 1,2,3 and

ρ1(x,z) =
1
4
, ρ1(z,x) =

1
9
, ρ1(y,z) =

1
2
, ρ1(z,y) =

1
9
,

ρ2(x,z) =
1
8
, ρ2(z,x) =

1
9
, ρ2(y,z) =

1
9
, ρ1(z,y) =

3
8
,

ρ3(x,z) =
1
9
, ρ3(z,x) =

1
2
, ρ3(y,z) =

7
8
, ρ3(z,y) =

1
9
.

Then

g̃L (ρ)(u,v) =

⎧
⎨

⎩

1 if (u,v) ∈ ΔX ∪{(x,y),(y,x)},
1
8 if (u,v) = (x,z), 1

2 if (u,v) = (y,z),
1
9 otherwise.

Note that one could make things a little more complicated by having 0 <
ρi(x,y) = ρi(y,x)< 1, for i = 1,2,3. Then Definition 6.11 could be changed to take
this into account.

Definition 6.14 (partial fuzzy simple rule). Let f̃ be an FPAR. Then f̃ is called a
partial fuzzy simple rule if for all ρ̄ ∈ FRn and all x,y ∈ X ,

f̃ (ρ̄)(x,y) > 0 ⇐⇒ g̃L ( f̃ )(ρ̄)(x,y)> 0.
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The following are properties of fuzzy aggregation rules. See the Note 6.5 concerning
the notation.

Definition 6.15 (decisive). Let f̃ be a fuzzy aggregation rule. Then f̃ is called deci-
sive if for all ρ̄, ρ̄ ′ ∈ FRn and all x,y ∈ X ,

[Supp(P̃(x,y; ρ̄)) = Supp(P̃(x,y; ρ̄ ′))
and π(x,y)> 0] =⇒ π ′(x,y)> 0.

In words, an FPAR is decisive when the collection of fuzzy preferences preferring x
to y for all preference profiles means that strict preference is greater than zero.

Definition 6.16 (monotonic). Let f̃ be a fuzzy aggregation rule. Then f̃ is called
monotonic if, for all ρ̄, ρ̄ ′ ∈ FRn and all x,y ∈ X ,

[Supp(P̃(x,y; ρ̄)) ⊆ Supp(P̃(x,y; ρ̄ ′)),
Supp(R̃(x,y; ρ̄)) ⊆ Supp(R̃(x,y; ρ̄ ′)),

and π(x,y)> 0] =⇒ π ′(x,y)> 0.

Since Supp(P̃(x,y; ρ̄)) and Supp(R̃(x,y; ρ̄)) is the set of all individuals with a strict
preference, π(x,y), greater than zero, then an FPAR is monotonic when adding an
individual to the support of strict weak preferences yields a new set.

Definition 6.17 (neutral). Let f̃ be a fuzzy aggregation rule. Then f̃ is called neu-
tral if, for all ρ̄, ρ̄ ′ ∈FRn and all w,x,y,z ∈ X ,

[Supp(P̃(x,y; ρ̄)) = Supp(P̃(w,z; ρ̄ ′)) and Supp(P̃(y,x; ρ̄)) = Supp(P̃(z,w; ρ̄ ′))]
=⇒

π(x,y)> 0 ⇐⇒ π ′(w,z)> 0.

Neutral then, is a property of a FPAR where if a group of actors give positive support
to both x over y and w to z then the social choice for both pairs of alternatives
(x,y) an (w,z) must be zero or positive. Thus the aggregation rule cannot produce
significantly different results for similar preference profiles.

Theorem 6.18. Let f̃ be a fuzzy aggregation rule. Assume π is partial. Then f̃ is a
partial fuzzy simple rule if and only if f̃ is decisive, neutral, and monotonic.

Proof. Let x,y ∈ X and ρ̄ ∈FRn. Suppose πL ( f̃ )(x,y)> 0. Then ∃λ ∈L ( f̃ ) such

that ∀i ∈ Supp(λ ),πi(x,y) > 0 and so π(x,y) > 0. Suppose f̃ is decisive, neutral,
and monotonic. Let ρ̄ ∈ FRn. Suppose π(x,y)> 0. In order to show f̃ is a partial
fuzzy simple rule, it suffices to show P(x,y; ρ̄)∈L ( f̃ ) for then πL ( f̃ )(x,y)> 0. Let
a,b ∈ X . Let ρ̄∗ be any fuzzy preference profile such that ∀i∈ P(x,y; ρ̄), π∗

i (a,b)>
0. Let

L+ = P(a,b; ρ̄∗)\P(x,y; ¯ρ) .

Let ρ̄1 be a fuzzy preference profile such that
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P(a,b; ρ̄1) = P(x,y; ρ̄)

and
P(b,a; ρ̄1) = P(y,x; ρ̄) .

Since f̃ is neutral, π1(a,b)> 0. Let ρ̄2 ∈ FRn be defined by

ρ2
i �{a,b} = ρ∗

i �{a,b}if and only if i ∈ L+ ∪P(x,y; ρ̄)

and
ρ2

j �{a,b} = ρ1
j �{a,b} otherwise.

Thus individuals in ρ̄2 and ρ̄1 that differ from 0 on a,b must come from L+. Thus
π2(a,b)> 0 since f̃ is monotonic. Since P(a,b; ρ̄∗) = P(a,b; ρ̄2) and f̃ is decisive,
π∗(a,b) > 0. Hence since ρ̄ and a,b are arbitrary except for π∗

i (a,b) > 0 if i ∈
P(x,y; ρ̄) and π∗(a,b) > 0 it follows that λ ∈ L ( f̃ ) for any λ with Supp(λ ) =
P(x,y; ρ̄).

Conversely, suppose that f̃ is a partial fuzzy simple rule. Then f̃ is neutral since
L ( f̃ ) is defined without regard to alternatives. Monotonicity follows from Propo-
sition 6.10 and the definition of g̃L ( f̃ ). That f̃ is decisive follows directly from the

definitions of L ( f̃ ) and g̃L ( f̃ ). ��
Theorem 6.18 attains only if π is partial. The Theorem does not hold when π is
regular since monotonicity, neutrality, and decisiveness are defined with respect to
strict preference and no relationship necessarily exists between strict preference
relationships and regular strict preference relationships. The next three examples
illustrate this principle. Furthermore, they highlight the fact that no partial strict
preference can exist over two alternatives x,y ∈ X in a preference relation ρ ∈FR
when ρ(x,y)> 0 and ρ(y,x)> 0 even though ρ(x,y)> ρ(y,x) or ρ(y,x)> ρ(x,y).

Example 6.19. We show that there exists an FPAR that is monotonic and decisive,
but not neutral. Let X = {w,x,y,z} and N = {1,2}. Suppose that π is regular. Let �
be the lexicographical order of X , i.e. an alphabetical ordering. (Then � is irreflex-
ive, complete, and asymmetric.) Define the fuzzy aggregation rule f̃ : FRn →FR
by for all a,b ∈ X and all ρ̄ ∈ FRn,

f̃ (ρ̄)(a,b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if a = b or πi(a,b)> 0,∀i ∈ N,

β if a � b, not [πi(a,b)> 0,∀i ∈ N],

and not [πi(b,a)> 0,∀i ∈ N],

γ if a ≺ b, not [πi(a,b)> 0,∀i ∈ N],

and not [πi(b,a)> 0,∀i ∈ N],

0 if πi(b,a)> 0,∀i ∈ N,

where β ,γ ∈ (0,1) and β > γ . By Definition 6.14, f̃ is a partial fuzzy simple rule,
where L ( f̃ ) = {λ ∈F (N) | Supp(λ ) = N}. Consider the following ρ̄, ρ̄ ′ ∈ FR2:
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ρ2(x,y) = .4, ρ ′
2(z,w) = .7,

ρ2(y,x) = 0, ρ ′
2(w,z) = 0,

where ρi(a,b) = 1 and ρ ′
i (a,b) = 1 otherwise, for all a,b ∈ X , i = 1,2. Since π is

regular, π2(x,y) > 0, π2(z,w) > 0, and π1(a,b) = 0 for all a,b ∈ X . In this case,

Supp(P̃(x,y; ρ̄)) = {2}= Supp(P̃(z,w; ρ̄ ′)) ,

Supp(P̃(y,x; ρ̄)) = /0 = Supp(P̃(w,z; ρ̄ ′)) ,

and
f̃ (ρ̄)(x,y)> f̃ (ρ̄)(y,x)

because f̃ (ρ̄)(x,y) = β and f̃ (ρ̄)(y,x) = γ . Thus, π(x,y) > 0. If f̃ is neutral, we
would expect π ′(z,w) > 0. However, this is not the case; f̃ (ρ̄ ′)(w,z) > f̃ (ρ̄ ′)(z,w)
since f̃ (ρ̄ ′)(w,z) = β and f̃ (ρ̄ ′)(z,w) = γ . Hence, f̃ is not neutral.

We now show that f̃ is monotonic and decisive. To see that f̃ is monotonic,
let a,b ∈ X and ρ̄ ∈ FRn be such that f̃ (ρ̄)(a,b) > f̃ (ρ̄)(b,a). Then there are
two cases. Either a � b or Supp(P̃(a,b; ρ̄)) = N. Now for any ρ̄ ′ ∈ FRn such
that Supp(P̃(a,b; ρ̄))⊆ Supp(P̃(a,b; ρ̄ ′)) and Supp(R̃(a,b; ρ̄))⊆ Supp(R̃(a,b; ρ̄ ′)),
either a � b or Supp(P̃(a,b; ρ̄ ′)) = N. Thus, π ′(a,b)> 0 and f̃ is monotonic. To see
that f̃ is decisive, let a,b ∈ X and ρ̄ ∈ FRn be such that f̃ (ρ̄)(a,b) > f̃ (ρ̄)(b,a).
Then either a � b or Supp(P̃(a,b; ρ̄)) = N. Hence, for any ρ̄ ′ ∈ FRn such that
Supp(P̃(a,b; ρ̄)) = Supp(P̃(a,b; ρ̄ ′)), either a � b or Supp(P̃(a,b; ρ̄ ′)) = N. Thus,
π ′(a,b)> 0, and f̃ is decisive.

Example 6.20. We show that there exists an FPAR that is neutral and monotonic,
but not decisive. Let X = {x,y,z} and N = {1,2}. Suppose that π is regular. Define
the fuzzy preference aggregation rule f̃ : FRn → FR by for all a,b ∈ X and all
ρ̄ ∈ FRn,

f̃ (ρ̄)(a,b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if a = b or πi(a,b)> 0,∀i ∈ N

β if Supp(P̃(b,a; ρ̄)) = /0, not [πi(a,b)> 0,∀i ∈ N],

and not [πi(b,a)> 0,∀i ∈ N]

γ if Supp(P̃(b,a; ρ̄)) �= /0, not [πi(a,b)> 0,∀i ∈ N],

and not [πi(b,a)> 0,∀i ∈ N]

0 if πi(b,a)> 0,∀i ∈ N,

where β ,γ ∈ (0,1) and β > γ . By Definition 6.14, f̃ is a partial fuzzy simple rule,
where L ( f̃ ) = {λ ∈ F (N) | Supp(λ ) = N}. Consider the following ρ̄, ρ̄ ′ ∈ FR2

such that
ρ1(x,y) = .7, ρ ′

1(x,y) = 1.0,
ρ1(y,x) = .3, ρ ′

1(y,x) = .6,
ρ2(x,y) = .6, ρ ′

2(x,y) = 0,
ρ2(y,x) = .6, ρ ′

2(y,x) = .2,
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where ρi(a,b) = 1 otherwise, for all a,b ∈ X , i = 1,2. Then Supp(P̃(x,y; ρ̄)) = {1},
Supp(P̃(y,x; ρ̄)) = /0, Supp(P̃(x,y; ρ̄ ′)) = {1}, and Supp(P̃(y,x; ρ̄)) = {2} since π
is regular. However, f̃ (ρ̄)(x,y) = β and f̃ (ρ̄)(y,x) = f̃ (ρ̄ ′)(x,y) = f̃ (ρ̄ ′)(y,x) = γ .
Thus, π(x,y)> 0 and π ′(x,y) = 0 even though

Supp(P̃(x,y; ρ̄)) = {1}
= Supp(P̃(x,y; ρ̄ ′)) .

Hence, f̃ is not decisive.
We now show that f̃ is neutral and monotonic. To see that f̃ is neutral, consider

any a,b,c,d ∈ X and ρ̄ , ρ̄ ′ ∈ FRn such that Supp(P̃(a,b; ρ̄)) = Supp(P̃(c,d; ρ̄ ′))
and Supp(P̃(b,a; ρ̄)) = Supp(P̃(d,c; ρ̄ ′)). If π(a,b) > 0, Supp(P̃(a,b; ρ̄)) = N or
[Supp(P̃(b,a; ρ̄)) = /0 and Supp(P̃(a,b; ρ̄)) �= /0]. Hence, Supp(P̃(c,d; ρ̄ ′)) = N or
[Supp(P̃(d,c; ρ̄)) = /0 and Supp(P̃(c,d; ρ̄)) �= /0]. Thus, π ′(c,d) > 0. An identical
argument shows that π ′(c,d)> 0 implies π(a,b)> 0.

We next show that f̃ is monotonic, let a,b ∈ X and ρ̄ ∈ FRn be
such that π(a,b) > 0. Then Supp(P̃(a,b; ρ̄)) = N or [Supp(P̃(b,a; ρ̄)) = /0
and Supp(P̃(a,b; ρ̄)) �= /0]. For any ρ̄ ′ ∈ FRn such that Supp(P̃(a,b; ρ̄)) ⊆
Supp(P̃(a,b; ρ̄ ′)) and Supp(R̃(a,b; ρ̄)) ⊆ Supp(R̃(a,b; ρ̄ ′)), Supp(P̃(a,b; ρ̄)) = N
implies Supp(P̃(a,b; ρ̄ ′)) = N. By the construction of ρ̄ ′, Supp(P̃(b,a; ρ̄)) =
/0 and Supp(P̃(a,b; ρ̄)) �= /0 imply Supp(R̃(a,b; ρ̄ ′)) = N, which implies
Supp(P̃(b,a; ρ̄ ′)) = /0, and Supp(P̃(a,b; ρ̄ ′)) �= /0. Thus, π ′(a,b) > 0, and f̃ is
monotonic.

Example 6.21. We show that there exists an FPAR that is decisive and neutral, but
not monotonic. Let X = {x,y,z} and N = {1,2,3,4,5}. Assume π is regular. Define
the fuzzy preference aggregation rule f̃ : FRn → FR by for all a,b ∈ X and all
ρ̄ ∈ FRn,

f̃ (ρ̄)(a,b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if a = b or πi(a,b)> 0,∀i ∈ N,

β if |Supp(P̃(a,b; ρ̄))| ∈ ( n
2 ,n− 1), not [πi(a,b)> 0,∀i ∈ N]

and not [πi(b,a)> 0,∀i ∈ N],

γ if |Supp(P̃(a,b; ρ̄))| /∈ ( n
2 ,n− 1), not [πi(a,b)> 0,∀i ∈ N]

and not [πi(b,a)> 0,∀i ∈ N],

0 if πi(b,a)> 0,∀i ∈ N,

where β ,γ ∈ (0,1) and β > γ . By Definition 6.14, f̃ is a partial fuzzy simple rule,
where L ( f̃ ) = {λ ∈F (N) | Supp(λ ) = N}. Consider some ρ̄ , ρ̄ ′ ∈FR5 that gen-
erate the following individual strict preference relations

∀i ∈ {1,2,3}, πi(x,y)> 0 and π ′
i (x,y)> 0,

π4(x,y) = π4(y,x) = 0 and π ′
4(x,y)> 0,

π5(y,x)> 0 and π ′
5(y,x)> 0.
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Then we have that

Supp(P̃(x,y; ρ̄)) = {1,2,3},
Supp(P̃(x,y; ρ̄ ′)) = {1,2,3,4},
Supp(R̃(x,y; ρ̄)) = {1,2,3,4}, and

Supp(R̃(x,y; ρ̄ ′)) = {1,2,3,4}.

Thus,
Supp(P̃(x,y; ρ̄)) ⊆ Supp(P̃(x,y; ρ̄ ′))

and
Supp(R̃(x,y; ρ̄)) ⊆ Supp(R̃(x,y; ρ̄ ′)) .

Since f̃ (ρ̄)(x,y) = β and f̃ (ρ̄)(y,x) = γ , π(x,y)> 0. If f̃ were monotonic, we would
expect π ′(x,y)> 0. However,

|Supp(P̃(x,y; ρ̄ ′))|= 4 /∈ (
5
2
,4) .

Thus, f̃ (ρ̄ ′)(x,y) = γ , and f̃ (ρ̄ ′)(y,x) = γ since Supp(P̃(y,x; ρ̄ ′)) = {5}. Thus,
π ′(x,y) = 0, and f̃ is not monotonic.

We now show that f̃ is decisive and neutral. To see that f̃ is decisive, let a,b ∈ X
and ρ̄ ∈ X such that π(a,b)> 0. Then Supp(P̃(a,b; ρ̄)) = N or Supp(P̃(a,b; ρ̄)) ∈
( n

2 ,n− 1), which implies

Supp(P̃(b,a; ρ̄)) /∈ (
n
2
,n− 1) .

Let ρ̄ ′ be such that Supp(P̃(a,b; ρ̄)) = Supp(P̃(a,b; ρ̄ ′)). Then Supp(P̃(a,b; ρ̄ ′)) =
N or

Supp(P̃(a,b; ρ̄ ′)) ∈ (
n
2
,n− 1) ,

which implies

Supp(P̃(b,a; ρ̄ ′)) /∈ (
n
2
,n− 1) ,

and π ′(a,b)> 0. Thus f̃ is decisive.
To see that f̃ is neutral, let a,b,c,d ∈ X and ρ̄, ρ̄ ′ ∈ X be such that

Supp(P̃(a,b; ρ̄)) = Supp(P̃(c,d; ρ̄ ′)) and Supp(P̃(b,a; ρ̄)) = Supp(P̃(d,c; ρ̄ ′)). If
π(a,b)> 0, then Supp(P̃(a,b; ρ̄)) = N or Supp(P̃(a,b; ρ̄)) ∈ ( n

2 ,n−1). By assump-
tion, Supp(P̃(c,d; ρ̄ ′)) = N or Supp(P̃(c,d; ρ̄ ′)) ∈ ( n

2 ,n−1). Thus, π ′(c,d)> 0. An
identical argument shows that π ′(c,d)> 0 implies π(a,b)> 0.

The following Theorem demonstrates that Theorem 6.18 holds if and only if π is
partial.

Theorem 6.22. Let f̃ be a partial fuzzy simple rule. Then f̃ is decisive, monotonic
and neutral if and only if the social strict preference relation with respect to f̃ (ρ̄) is
partial for all ρ̄ ∈ FRn.



6.3 New and Old Fuzzy Voting Rules 129

Proof. Suppose f̃ is decisive, neutral and monotonic. The fact that f̃ (ρ̄)(y,x) = 0
implies π(x,y)> 0 for all x,y ∈ X and all ρ̄ ∈FRn is guaranteed by the complete-
ness of g̃L ( f̃ )(ρ̄), the definition of a partial fuzzy simple rule, and the regularity of
π . Let x,y ∈ X and ρ̄ ∈ FRn be such that π(x,y) > 0. The goal of this first part
of the proof is to show that P̃(x,y; ρ̄) ∈ L ( f̃ ). In doing so, Definition 6.11 and the
properness of L ( f̃ ) imply

g̃L ( f̃ )(ρ̄)(x,y) > 0

and
g̃L ( f̃ )(ρ̄)(y,x) = 0 .

Then by definition of a partial fuzzy simple rule, it follows that f̃ (ρ̄)(x,y) > 0 and
f̃ (ρ̄)(y,x) = 0.

Now consider two arbitrary alternatives a,b ∈ X . Let ρ̄∗ be such that π∗
i (a,b)> 0

for those i ∈ N such that P̃(x,y; ρ̄)(i) > 0. Let L̃∗ ∈ F (N) be such that L̃∗(i) =
π∗

i (a,b) if
i ∈ Supp(P̃(a,b; ρ̄∗))\Supp(P̃(x,y; ρ̄))

and L̃∗(i) = 0 otherwise. Let ρ̄1 ∈FRn be such that

Supp(P̃(a,b; ρ̄1)) = Supp(P̃(x,y; ρ̄))

and
Supp(P̃(b,a; ρ̄1)) = Supp(P̃(y,x; ρ̄)) .

Because, by assumption, π(x,y)> 0, neutrality implies π1(a,b)> 0. Let ρ̄2 ∈FRn

be such that

ρ2
i �{a,b} = ρ∗

i �{a,b} if i ∈ Supp(L̃∗)∪Supp(P̃(x,y; ρ̄))

and
ρ2

j �{a,b} = ρ1
j �{a,b} otherwise.

Thus, only i ∈ Supp(L̃∗) can have the preference combination of π2
i (a,b) > 0 and

π1
i (a,b) = 0. Since f̃ is monotonic, π2(a,b)> 0. Since

Supp(P̃(a,b; ρ̄∗)) = Supp(P̃(a,b; ρ̄2))

and f̃ is decisive, π∗(a,b)> 0. Since ρ̄ and a,b are arbitrary except for π∗
i (a,b)> 0

if i ∈ Supp(P̃(x,y; ρ̄)) and since π∗(a,b) > 0, it follows that λ ∈ L ( f̃ ) for any λ
with Supp(λ ) = P(x,y; ρ̄).

Conversely, suppose the social strict preference relation with respect to f̃ (ρ̄) is
partial for all ρ̄ ∈ FRn. Because f̃ is a partial fuzzy simple rule and π is partial, f̃
is decisive, neutral and monotonic by Theorem 6.18. ��
Dutta (1987) demonstrates the equivalence of Definition 6.11 to the definition of a
simple rule when ρ : X ×X → {0,1}. In order to model social strict preferences that
are regular, we introduce the following definitions.
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Definition 6.23 (regular fuzzy simple rule). Let f̃ be a fuzzy aggregation rule.
Then f̃ is called a regular fuzzy simple rule if for all ρ̄ ∈ FRn and all x,y ∈ X ,

f̃ (ρ̄)(x,y) > f̃ (ρ̄)(y,x) ⇐⇒ g̃L ( f̃ )(ρ̄)(x,y)> g̃L ( f̃ )(ρ̄)(y,x).

Example 6.24. Assume strict preferences are regular. Let X = {x,y,z}, N = {1,2,3}
and ρ̄ = (ρ1,ρ2,ρ3), where ρi(w,w) = 1 for all w ∈ X and i = 1,2,3, and

ρ1(x,y) =
3
4 , ρ1(x,z) =

1
4 , ρ1(y,z) =

1
3 ,

ρ2(x,y) = 4
5 , ρ2(x,z) = 2

3 , ρ2(z,y) = 1
4 ,

ρ3(y,x) =
3
4 , ρ3(z,x) =

1
2 , ρ3(y,z) =

2
3 .

Each ρi is defined to be 1/2 otherwise for i = 1,2,3. Let L = {λ ∈ F (N) |
|Supp(λ )| ≥ 2}. Thus,

π1(x,y)> 0, π1(z,x)> 0, π1(z,y)> 0,
π2(x,y)> 0, π2(x,z)> 0, π2(y,z) > 0,
π3(y,x) > 0, π3(z,x) = 0, π3(y,z) > 0,

where each πi is 0 otherwise for i = 1,2,3. Using the strict preference relations and
definition of L , we can now determine whether or not P̃(x,y; ρ̄) is in L for all
x,y ∈ X . We have that

Supp(P̃(x,y; ρ̄)) = {1,2},
Supp(P̃(y,z; ρ̄)) = {2,3}.

Since |Supp(P̃(x,y; ρ̄))| ≥ 2 and |Supp(P̃(y,z; ρ̄))| ≥ 2 we know that P̃(x,y; ρ̄) ∈
L ( f̃ ) and P̃(y,z; ρ̄) ∈ L ( f̃ ). Hence, P̃(ρ̄) = {(x,y),(y,z)} and consequently
Symm(P̃(ρ̄)) = {(x,y),(y,x),(y,z),(z,y)}. Thus, it follows that

g̃L (ρ̄)(x,y) = 3/4∨4/5= 4/5,

g̃L (ρ̄)(y,x) = 1/2∧1/2= 1/2

g̃L (ρ̄)(y,z) = 1/2∨2/3= 2/3

g̃L (ρ̄)(z,y) = 1/4∧1/2= 1/4.

It also follows that g̃L (ρ̄)(x,z) = g̃L (ρ̄)(z,x) = 1.
Let f̃ be a fuzzy aggregation rule such that L ( f̃ ) =L . Then by definition of a

regular fuzzy simple rule, we have that

f̃ (ρ̄)(x,y)> f̃ (ρ̄)(y,x),

f̃ (ρ̄)(y,z) > f̃ (ρ̄)(z,y)

and
f̃ (ρ̄)(x,z) = f̃ (ρ̄)(z,x) .

Thus, π(x,y)> 0, π(y,z)> 0 and π(x,z) = π(z,x) = 0 by the regularity of π .
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Definition 6.25 (regularly neutral). Let f̃ be a fuzzy aggregation rule. Then f̃ is
called regularly neutral if ∀ρ̄ , ρ̄ ′ ∈ FRn and ∀x,y,z,w ∈ X ,

[P(x,y; ρ̄) = P(z,w; ρ̄ ′) and P(y,x; ρ̄) = P(w,z; ρ̄ ′)]

imply
f̃ (ρ̄)(x,y) > f̃ (ρ̄)(y,x) ⇔ f̃ (ρ̄ ′)(z,w) > f̃ (ρ̄ ′)(w,z) .

Theorem 6.26. Let f̃ be an FPAR and suppose π is regular. Then f̃ is a regular
fuzzy simple rule if and only if f̃ is decisive, monotonic, and regularly neutral.

Proof. Let x,y ∈ X and ρ̄ ∈ FRn. Suppose πL ( f̃ )(x,y) > 0. Then there exists λ ∈
L ( f̃ ) such that ∀i ∈ Supp(λ ),πi(x,y)> 0, and since λ is decisive for f̃ ,π(x,y)> 0.

Suppose f̃ is decisive, neutral, and monotonic. Let ρ̃ ∈ FRn and x,y ∈ X . Sup-
pose π(x,y)> 0. It suffices to show πL ( f̃ )(x,y)> 0. Let a,b ∈ X . Let ρ̄∗ be a fuzzy
preference profile such that ∀i ∈ P(x,y; ρ̄), π∗

i (a,b)> 0. Let

L+ = P(a,b; ρ̄∗)\P(x,y; ρ̄) .

Let ρ̄1 be a fuzzy preference profile such that P(a,b; ρ̄1) = P(x,y; ρ̄) and
P(b,a; ρ̄1) = P(y,x; ρ̄). Since f̃ is regularly neutral, π(a,b) > 0. Let ρ̄2 ∈ FRn

be defined by

ρ2
i �{a,b} = ρ∗

i �{a,b} if and only if i ∈ L+ ∪P(x,y; ρ̄)

and
ρ2

j �{a,b} = ρ1
j �{a,b} otherwise.

Then individuals that ρ̄2 and ρ̄1 differ 0 on a,b must come from L+. Hence, we
have that

P(a,b; ρ̄1) ⊆ P(a,b; ρ̄2)

and
R(a,b; ρ̄1) ⊆ R(a,b; ρ̄2) .

Thus since f̃ is monotonic and π1(a,b)> 0,π2(a,b)> 0. Since

P(a,b; ρ̄∗) = P(a,b; ρ̄2)

and f̃ is decisive, π∗(a,b)> 0.
Since ρ̄ and a,b are arbitrary except for π∗

i (a,b) > 0 if i ∈ P(x,y;ρ̄) and
π∗(a,b) > 0, any λ with Supp(λ ) = P(x,y; ρ̄) is such that λ ∈ L ( f̃ ). [That is,
π∗

i (a,b)> 0 ∀i ∈ P(x,y; ρ̄) ⇒ π∗(a,b)> 0.] Hence (x,y) ∈ P̃(ρ̄). Thus

1 > g̃L ( f̃ )(ρ̄)(x,y)> 0

and so
πL ( f̃ )(x,y)> 0 .
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Conversely, suppose f̃ is a regular fuzzy simple rule. Let ρ̄, ρ̄ ′ ∈ FRn and
x,y,z,w ∈ X . Suppose P(x,y;ρ̄) = P(z,w; ρ̄ ′) and P(y,x; ρ̄) = P(w,z; ρ̄ ′). Since f̃
is a regular fuzzy simple rule,

(1)
f̃ (ρ̄)(x,y)> f̃ (ρ̄)(y,x) ⇔ (2)g̃L ( f̃ )(ρ̄)(x,y) > g̃L ( f̃ )(ρ̄)(y,x) and

(2)
f̃ (ρ̄ ′)(z,w) > f̃ (ρ̄ ′)(w,z) ⇔ (4)g̃L ( f̃ )(ρ̄

′)(z,w) > g̃L ( f̃ )(ρ̄
′)(w,z).

Now (x,y) /∈ Symm(P(ρ̄)) if and only if (y,x) /∈ Symm(P(ρ̄)). Thus if (2) holds,
(x,y) /∈ Symm(P(ρ̄)) and (y,x) /∈ Symm(P(ρ̄)). Assuming (2), (x,y) ∈ P(ρ̄)
since f̃ (ρ̄)(x,y)> 0. Now for λ ∈L ( f̃ ), Supp(λ )⊆ P(x,y; ρ̄) when (x,y)∈P(ρ̄).
Assuming (2), we have πL ( f̃ )(x,y) > 0 and so πL ( f̃ )(y,x) = 0. Now Supp(λ ) ⊆
P(z,w; ρ̄ ′). Since λ is decisive, πL ( f̃ )(z,w) > 0 so (4) holds. Hence (2) implies

(4). Similarly, (4) implies (2). Thus (1) and (3) are equivalent and so f̃ is regularly
neutral.

We next show f̃ is monotonic. Let ρ̄, ρ̄ ′ ∈FRn and x,y ∈ X . Suppose

P(x,y; ρ̄) ⊆ P(x,y; ρ̄ ′) and R(x,y; ρ̄)⊆ R(x,y; ρ̄ ′) and π(x,y)> 0 .

Since π(x,y)> 0, f̃ (ρ̄)(x,y)> f̃ (ρ̄)(y,x). Since f̃ is a regular fuzzy simple rule,

g̃L ( f̃ )(ρ̄)(x,y)> g̃L ( f̃ )(ρ̄)(y,x) .

Hence (x,y) ∈ P(ρ̄) so there exists λ ∈ L ( f̃ ), i.e., a λ which is decisive for f̃ .
Thus

Supp(λ ) ⊆ P(x,y; ρ̄) ⊆ P(x,y; ρ̄ ′) .

Thus πL ( f̃ )(ρ̄ ′)(x,y)> 0 and so

g̃L ( f̃ )(ρ̄
′)(x,y)> g̃L ( f̃ )(ρ̄

′)(y,x) .

Since f̃ is a regular fuzzy simple rule, f̃ (ρ̄ ′)(x,y) > f̃ (ρ̄ ′)(y,x). Thus f̃ is mono-
tonic.

We next show f̃ is decisive. Let ρ̄ , ρ̄ ′ ∈ FRn and x,y ∈ X . Suppose

P(x,y; ρ̄) = P(x,y; ρ̄ ′)and π(x,y)> 0 .

Since π(x,y)> 0, f̃ (ρ̄)(x,y)> f̃ (ρ̄)(y,x). Since f̃ is a regular fuzzy simple rule,

g̃L ( f̃ )(ρ̄)(x,y)> g̃L ( f̃ )(ρ̄)(y,x) .

Hence (x,y) ∈ P(ρ̄) so there exists λ ∈ L ( f̃ ), i.e., a λ which is decisive
for f̃ . Thus Supp(λ ) ⊆ P(x,y; ρ̄) = P(x,y; ρ̄ ′). Hence πL ( f̃ )(ρ̄ ′)(x,y) > 0 and

so g̃L ( f̃ )(ρ̄ ′)(x,y) > g̃L ( f̃ )(ρ̄ ′)(y,x). Since f̃ is a regular fuzzy simple rule,

f̃ (ρ̄ ′)(x,y) > f̃ (ρ̄ ′)(y,x). Thus π ′(x,y)> 0. Hence f̃ is decisive. ��
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Under some aggregation rules, the strict preferences of members in decisive coali-
tions are not sufficient to determine the social preference. For instance, under plu-
rality rule an alternative x is strictly preferred to alternative y if more individuals
strictly prefer x to y than strictly prefer y to x. Moreover, under plurality rule weak
preferences also help determine the social preference outcome. Under the regular
strict preference framework, we refer to these types of aggregation rules as fuzzy
voting rules. In Mordeson et al. (2010), partial fuzzy voting rules were defined and
it was illustrated that they are included in the traditional definitions.

We now move on to defining a decisive structure.

Definition 6.27 (decisive structure). Let f̃ be a fuzzy aggregation rule. The deci-
sive structure of f̃ , denoted D( f̃ ), is defined to be the set

D( f̃ ) = {(σ ,ω) ∈F (N)×F (N) | Supp(σ )⊆ Supp(ω)

and [∀x,y ∈ X ,∀ρ̄ ∈ FRn,πi(x,y) > 0 ∀i ∈ Supp(σ ) and ρ j(x,y) > 0 ∀ j ∈ Supp(ω)]

imply π(x,y)> 0} .

A decisive structure is the set of pairs of coalitions (σ ,ω) with the sets of individuals
in σ and ω preferring x to y deciding the aggregate preference π .

Definition 6.28 (coalition pair preference). . Let D ⊆F (N)×F (N) be such that
Supp(σ) ⊆ Supp(ω) for all (σ ,ω) ∈D . Let ρ̄ ∈ FRn and set

R̃(ρ̄) = {(x,y) ∈ X ×X | ∃(σ ,ω) ∈ D such that

πi(x,y)> 0 ∀i ∈ Supp(σ) and π j(y,x) = 0 ∀ j ∈ Supp(ω)
}

Define g̃D : FRn →FR by for all ρ̄ ∈ FRn and all x,y ∈ X ,

g̃D (ρ̄)(x,y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if (x,y) /∈ Symm(R̃(ρ̄))
∨{∧{ρ j(x,y) | j ∈ Supp(ω)} | (σ ,ω) ∈ D , πi(x,y) > 0 ∀i ∈ Supp(σ),

and π j(y,x) = 0 ∀ j ∈ Supp(ω)} if (x,y) ∈ R̃(ρ̄)
∧{∧{ρ j(x,y) | j ∈ Supp(ω)} | (σ ,ω) ∈ D , πi(y,x) > 0 ∀i ∈ Supp(σ),

and π j(x,y) = 0 ∀ j ∈ Supp(ω)} if (x,y) ∈ Symm(R̃(ρ̄))\R̃(ρ̄).

The intuition for the following definition is entirely similar to that for Definition
6.11 as illustrated by Example 6.13.

By a proof entirely similar to that of Proposition 6.12, we have the following
result.

Proposition 6.29. If (x,y) ∈ P̃(ρ̄), then gD(ρ̄)(x,y)> gD(ρ̄)(y,x). If strict prefer-
ences are partial (regular), then πD is partial (regular).

Definition 6.30. Let f̃ be a a fuzzy aggregation rule. Then, f̃ is called a regular
fuzzy voting rule if for all ρ̄ ∈ FRn and all x,y ∈ X ,

f̃ (ρ̄)(x,y) > f̃ (ρ̄)(y,x) ⇐⇒ g̃D( f̃ )(ρ̄)(x,y)> g̃D( f̃ )(ρ̄)(y,x),
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and f̃ is called a partial fuzzy voting rule if for all ρ̄ ∈ FRn and all x,y ∈ X ,

f̃ (ρ̄)(x,y)> 0 ⇐⇒ g̃D( f̃ )(ρ̄)(x,y)> 0.

Theorem 6.31. Suppose π is partial. An FPAR is a partial fuzzy voting rule if and
only if it is neutral and monotonic.

Proof. Suppose f̃ is a partial fuzzy voting rule. We show that f̃ is monotonic. We
first prove that D( f̃ ) is monotonic. Let (σ ,ω) ∈ D( f̃ ) and σ ′,ω ′ ∈ F (N) be such
that

Supp(σ) ⊆ Supp(σ ′) ⊆ Supp(ω ′)

and
Supp(σ) ⊆ Supp(ω) ⊆ Supp(ω ′) .

Since Supp(σ) ⊆ Supp(σ ′) and Supp(ω) ⊆ Supp(ω ′), we have (σ ′,ω ′) ∈ D( f̃ ).
Let ρ̄ , ρ̄ ′ ∈ FRn and x,y ∈ X be such that

P(x,y; ρ̄)⊆ P(x,y; ρ̄ ′) ,

R(x,y; ρ̄) ⊆ R(x,y; ρ̄ ′)

and
π(x,y)> 0 ,

By Definitions 6.28 and 6.30, we have that since π(x,y) > 0,∃(σ ,ω) ∈ D( f̃ ) such
that Supp(σ) ⊆ Supp(ω) and ∀x,y ∈ X ,∀ρ̄ ∈ FRn,πi(x,y) > 0∀i ∈ Supp(σ) and
ρ j(x,y)> 0∀ j ∈ Supp(ω). By hypothesis,

{i ∈ N | πi(x,y)> 0} ⊆ {i ∈ N | π ′
i (x,y)> 0},

{ j ∈ N | ρ j(x,y)> 0} ⊆ { j ∈ N | ρ ′
j(x,y)> 0}.

Since (σ ′,ω ′) ∈ D( f̃ ), we have thatπ ′(x,y) > 0.Thus f̃ is monotonic. We now
show f̃ is neutral. Let ρ̄, ρ̄ ′ ∈FRn and x,y,z,w ∈ X be such that

{i ∈ N | πi(x,y)> 0}= {i ∈ N | π ′
i (z,w) > 0},

{i ∈ N | πi(y,x)> 0} = {i ∈ N | π ′
i (w,z) > 0}.

Then it follows that πi(x,y)> 0 ⇔ π ′
i (z,w)> 0 for all i ∈ N. Suppose f̃ (ρ̄)(x,y)>

0. Then
(x,y) ∈ (X ×X \Symm(FPD ˜( f )(ρ̄))∪FPD ˜( f )(ρ̄)) ,

say (x,y) ∈ FPD ˜(f)(ρ̄). Thus, ∃(σ ,ω) ∈ D( f̃ ) such that ∀i ∈ Supp(σ),πi(x,y) >
0, ∀ j ∈ Supp(ω),ρi(x,y) > 0. By hypothesis, it follows that (z,w) ∈ FPD ˜( f )(ρ̄).
Hence f̃ (ρ̄ ′)(z,w) > 0 and in fact π ′(z,w) > 0. Suppose
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(x,y) ∈ X ×X \Symm(FPD ˜( f )(ρ̄)) .

By the argument just given, (z,w) /∈ FPD( f̃ )(ρ̄ ′) else (x,y) ∈ FPD( f̃ )(ρ̄). Thus

(z,w) ∈ X ×X \FPD (̃)(ρ̄ ′) .

Hence f̃ (ρ̄ ′)(z,w) > 0. Thus f̃ is neutral.
For the converse, we first show that πD( f̃ )(x,y)> 0 implies π(x,y)> 0.
Suppose g̃D( f̃)(ρ̄)(x,y)> 0 for ρ̄ ∈ FRn and x,y ∈ X . Then

(x,y) ∈ (X ×X \Symm(FPD ˜( f )(ρ̄))∪FPD ˜( f )(ρ̄)) ,

say (x,y)∈ FPD( f̃ )(ρ̄). Thus, ∃(σ ,ω) ∈ D( f̃ ) such that ∀i ∈ Supp(σ), πi(x,y)>

0, and ∀ j ∈ Supp(ω), ρi(x,y) > 0. Since (σ ,ω) ∈ D( f̃ ), we have f̃ (ρ̄)(x,y) > 0.
Suppose

(x,y) ∈ (X ×X \Symm(FPD (̃)(ρ̄)) .

Then (y,x) ∈ (X ×X)\Symm(FPD(̃)(ρ̄)) and so

g̃D( f̃ )(ρ̄)(y,x) = g̃D( f̃ )(ρ̄)(x,y) = 1 .

However, this contradicts the assumption that πD( f̃ )(x,y)> 0. Consequently,

(y,x) ∈ Symm(FPD( f̃ )(ρ̄))\FPD( f̃ )(ρ̄) .

Hence it follows that f̃ (ρ̄)(y,x) = 0. Now suppose that f̃ is neutral and monotonic.
Let x,y ∈ X and ρ̄ ∈ FRn. Suppose that π(x,y) > 0. Let (σ ,ω) ∈ FP(N)×
FP(N), Supp(σ) ⊆ Supp(ω), be such that Supp(σ) = S and Supp(ω) =W , where
S = P(x,y; ρ̄) and W = R(x,y; ρ̄). We wish to show (σ ,ω) ∈ D( f̃ ). Let z,w ∈ X .
Let ρ̄ ′ ∈ FR(N) be such that π ′

i (z,w) > 0 ⇔ i ∈ S and π ′
i (w,z) = 0 ⇔ i ∈ W ,

i.e., P(z,w; ρ̄ ′) = S and R(z,w; ρ̄ ′) = W . Since f̃ is neutral, π ′(z,w) > 0. Now let
ρ̄ ′′ ∈ FRn be such that

P(z,w; ρ̄ ′)⊆ P(z,w; ρ̄ ′′)

and
R(z,w; ρ̄ ′)⊆ R(z,w; ρ̄ ′′) .

Since f̃ is monotonic, π ′′(z,w) > 0. Thus we have that πi(z,w) > 0∀i ∈ S
and πi(w,z) = 0 ∀i ∈ W implies π(z,w) > 0. Hence (σ ,ω) ∈ D( f̃ ) and so
πD( f̃ )(x,y)> 0. ��

Theorem 6.32. Let f̃ be an FPAR and suppose π is regular. Then f̃ is a regular
fuzzy voting rule if and only if f̃ is monotonic and regularly neutral.

Proof. Suppose f̃ is a regal fuzzy voting rule. We show f̃ is monotonic. We fist
show that D( f̃ ) is monotonic. Let (σ ,ω) ∈ D( f̃ ) and σ ′,ω ′ ∈ FP(N) be such
that
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Supp(σ) ⊆ Supp(σ ′) ⊆ Supp(ω ′)

and
Supp(σ) ⊆ Supp(ω) ⊆ Supp(ω ′) .

Since Supp(σ) ⊆ Supp(σ ′) and Supp(ω) ⊆ Supp(ω ′), clearly (σ ′,ω ′) ∈ D( f̃ ).
Thus D( f̃ ) is monotonic. Let ρ̄, ρ̄ ′ ∈ FBn and x,y ∈ X be such that

P(x,y; ρ̄) ⊆ P(x,y; ρ̄ ′)

and
R(x,y; ρ̄) ⊆ R(x,y; ρ̄ ′)

and π(x,y)> 0. Since π(x,y)> 0 and f̃ is a regular fuzzy voting rule, we have that

g̃D( f̃ )(ρ̄)(x,y)> g̃D( f̃ )(ρ̄)(y,x) .

Hence πD( f̃ )(x,y) >0 and so by definition of g̃D( f̃ ), ∃(σ ,ω) ∈ D( f̃ ) such that
Supp(σ) ⊆ Supp(ω) and ∀x,y ∈ X ,∀ρ̄ ∈ FRn we have πi(x,y) > 0 ∀i ∈ Supp(σ)
and ρ j(x,y)> 0 ∀ j ∈ Supp(ω). Since (σ ′,ω ′) ∈ D( f̃ ) and

P(x,y; ρ̄) ⊆ P(x,y; ρ̄ ′)

and
R(x,y; p̄) ⊆ R(x,y; ρ̄ ′) ,

we have that π ′(x,y)> 0. Thus f̃ is monotonic.
We now show f̃ is regularly neutral. Let ρ̄, ρ̄ ′ ∈ D (̃ f ) and x,y,z,w ∈ X be such

that
P(x,y; ρ̄) = P(z,w; ρ̄ ′)

and
P(y,x; ρ̄) = P(w,z; ρ̄ ′) .

Then it follows easily that ∀i ∈ N,πi(x,y) > 0 if and only if π ′
i (z,w) > 0. Suppose

f̃ (ρ̄)(x,y) > f̃ (ρ̄)(y,x). Then

g̃D( f̃ )(ρ̄)(x,y)> g̃D( f̃ )(ρ̄)(y,x)

since f̃ is a regular fuzzy voting rule. Thus (x,y) ∈ FPD( f̃ )(ρ̄). Hence ∃(σ ,ω) ∈
D( f̃ ) such that ∀i ∈ Supp(σ),πi(x,y) > 0 and ∀ j ∈ Supp(ω),ρ j(x,y) > 0. By hy-
pothesis, it follows that (z,w) ∈ FPD( f̃ )(ρ̄ ′). Thus f̃ (ρ̄ ′)(z,w) > f̃ (ρ̄ ′)(w,z) and

π ′(z,w) > 0. Hence f̃ is regularly neutral.
Let ρ̄ ∈FRn and x,y ∈ X . We first show that πD( f̃ )(x,y)> 0 implies π(x,y)> 0.

Suppose πD( f̃ )(x,y) > 0. Then as previously discussed (x,y) ∈ FPD( f̃ )(ρ̄). Thus

∃(σ ,ω) ∈ D( f̃ ) such that Supp(σ) ⊆ Supp(ω), ∀x,y ∈ X ,∀ρ̄ ∈ FRn, πi(x,y) >
0∀i ∈ Supp(σ) and
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ρ j(z,x) > 0∀ j ∈ Supp(ω)⇒ π(x,y)> 0 .

Since (σ ,ω) ∈ D( f̃ ),π(x,y) > 0. We now show that π(x,y) > 0 implies
πD( f̃ )(x,y) > 0 under the assumption that f̃ is regularly neutral and monotonic.
Suppose that π(x,y)> 0. Let (σ ,ω) ∈ FP(N)×FP(N) be such that

Supp(σ) ⊆ Supp(ω),

Supp(σ) = P(x,y; ρ̄)

and
Supp(ω) = R(x,y; ρ̄) .

It suffices to show that (σ ,ω) ∈ D( f̃ ). Let z,w ∈ X . Let ρ̄ ′ ∈ FRn be such that
π ′

i (z,w) > 0 ⇔ i ∈ Supp(σ) and ρ ′
i (z,w) > 0 ⇔ i ∈ Supp(ω). Since f̃ is regularly

neutral, π ′(z,w) > 0. Now let ρ̄ ′′ ∈ FBn be such that P(z,w; ρ̄ ′) ⊆ P(z,w; ρ̄ ′′) and
R(z,w; ρ̄ ′) ⊆ R(z,w; ρ̄ ′′). Since f̃ is monotonic, π ′′(z,w) > 0. Hence we have that
πi(z,w) > 0∀i ∈ Supp(σ) and ρi(z,w) > 0∀i ∈ Supp(ω) implies that π(z,w) > 0.
Thus (σ ,ω) ∈D( f̃ ) and so πD( f̃ )(x,y)> 0. ��

6.4 Single-Peaked Preferences and the Maximal Set

In this section we consider several combinations of social preferences conditions
induced by fuzzy voting rules. We give particular attention to identifying those pref-
erence relations that allow for the existence of a non-empty maximal set. While we
have yet to consider fuzzy sets of alternatives, it is important to note that both the
fuzzy non-dominated set (denoted ND and defined in Def. 3.27 on page 35)and
the fuzzy maximal set are determined by the degree to which alternatives exist
in the alternative set. Hereafter, we use μ ∈ F (X) to denote an alternative’s degree
of set inclusion. We now consider the conditions under which fuzzy voting rules or
simple rules produce a social preference relation such that there exists a fuzzy non-
dominated set. Furthermore, we wish to ensure that such a social preference relation
also produces a non-empty fuzzy maximal set as described in Proposition 3.39.

First, however, we present several definitions of different types of preference
orderings. These definitions will be used later on to determine the conditions under
which a maximum set exists.

Definition 6.33 (single-peaked). Let μ ∈ F (X) be such that |Supp(μ)| = r. Sup-
pose Q is a strict ordering of the elements of Supp(μ) and label the elements of
Supp(μ) so that at+1Qat for all t = 1, . . . ,r − 1. Let ρ ∈ FR and π be the strict
preference relation with respect to ρ . Then ρ is called single-peaked on μ with
respect to Q if and only if there exists some t ∈ {1, . . . ,r} such that

π(at ,at+1)∧π(at+1,at+2)∧ . . .∧π(ar−1,ar)> 0

and
π(at ,at−1)∧π(at−1,at−2)∧ . . .∧π(a2,a1)> 0.
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Let FS denote the set of all single-peaked FWPRs. Note that Definition 6.33 en-
sures that, for some μ ∈ F (X), there exists x ∈ Supp(μ) such that π(x,y) > 0 for
all y ∈ Supp(μ) when ρ ∈ FS is partially quasi-transitive.

Definition 6.34 (weakly single-peaked). Let μ ∈F (X) be such that |Supp(μ)|= r.
Suppose Q is a strict ordering of the elements of Supp(μ) and label Supp(μ) so that
at+1Qat for all t = 1, . . . ,r−1. Let ρ ∈FR. Then ρ is called weakly single-peaked
on μ with respect to Q if and only if there exists some t ∈ {1, . . . ,r} such that

π(ar,ar−1)∨π(ar−1,ar−2)∨ . . .∨π(at+1,at) = 0

and
π(a1,a2)∨π(a2,a3)∨ . . .∨π(at−1,at) = 0.

Let FW denote the set of all preference relations that are weakly single-peaked,
reflexive and complete. In words, Definition 6.34 guarantees that there exists an
at ∈ X such that π(y,at)= 0 for all y ∈ X if ρ ∈FW is weakly transitive. To see this,
note that π(at+1,at) = 0 implies ρ(at ,at+1) ≥ ρ(at+1,at), and π(at+2,at+1) = 0
implies ρ(at+1,at+2) ≥ ρ(at+2,at+1). By the weak transitivity of ρ , ρ(at ,at+2) ≥
ρ(at+2,at). We can continue this argument until ρ(at ,as) ≥ ρ(as,at) for any s in
{t + 1, . . . ,r}. A similar argument holds to show ρ(at ,as) ≥ ρ(as,at) for any s in
{1, . . . , t − 1}. Thus π(y,at) = 0 for all y in X .

Definition 6.35 (single-peaked profile). A profile ρ̄ ∈ FRn is (weakly) single-
peaked on μ ∈ F (X) if there is a strict ordering Q of the elements of Supp(μ)
such that ρi is (weakly) single-peaked on μ with respect to Q for all i ∈ N.

Theorem 6.36. Let f̃ be a fuzzy simple rule such that f̃ is weakly Paretian. Assume
π is regular. Then, for all ρ̄ ∈FW and all μ ∈ F (X),

Supp(ND(π ,μ)) �= /0 ,

where π is the social strict preference relation with respect to f̃ (ρ̄) and ρi is weakly
transitive for all i ∈ N.

Proof. Let μ ∈ F (X) and let ρ̄ ∈ FW be such that ρi is weakly transitive for
all i ∈ N. Relabel the elements of Supp(μ) such that Supp(μ) = {a1, . . . ,ar} and
at+1Qat for all t = 1, . . . ,r − 1, where Q is a strict ordering of Supp(μ) such that ρi

is weakly single-peaked with respect to Q for all i ∈ N. Define xi ∈ Supp(μ) to be
such that πi(y,xi) = 0 for all y ∈ Supp(μ) and there does not exist an x′

i such that
x′

iQxi and πi(y,x′
i) = 0 for all y ∈ Supp(μ), for i = 1, . . . ,n. Define G̃(x) : X →F (N)

by for all x ∈ Supp(μ),

G̃(x)(i) =

{
ρi(xi,x) if xQxi or x = xi

0 otherwise.

By definition of xi, G̃(x) is well-defined for all x ∈ Supp(μ). Note that
Supp(G̃(at)) ⊆ Supp(G̃(at+1)) for all t = 1, . . . ,r−1. Further, if G̃(at)(i)> 0, then
by weak transitivity, πi(as,at) = 0 where s > t.
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Let x∗ ∈ {x ∈ Supp(μ) | G̃(x) ∈ L ( f̃ ) and �y ∈ X such that xQyand G̃(y) ∈
L ( f̃ )} .This set is non-empty because G̃(ar)∈L ( f̃ ) by weak Paretianism. We now
show that π(y,x∗) = 0 for all y ∈ Supp(μ) and, accordingly, ND(π ,μ)(x∗)> 0. To
see this, suppose the contrary. Then there exists a y ∈ Supp(μ) such that π(y,x∗)> 0.

There are two cases to consider.

Case 1: Suppose x∗Qy. Then there exists i ∈ Supp(G(x∗)) such that xiQy. It fol-
lows that Supp(G̃(y))⊂ Supp(G̃(x∗)). By definition of x∗, G̃(y) /∈L ( f̃ ).
However Supp(P̃(y,x∗; ρ̄)) ⊆ Supp(G̃(y)). By the definition of a fuzzy
simple rule, π(y,x∗) = 0, a contradiction.

Case 2: Suppose yQx∗. Then Supp(G̃(x∗)) ⊆ Supp(G̃(y)). Thus, πi(y,x∗) = 0
for those i ∈ N such that G̃(x∗)(i) > 0 by the previous argument. By
the properness of L ( f̃ ), G̃(x∗) ∈ L ( f ) implies P̃(y,x∗; ρ̄) �∈ L ( f )
since Supp(G(x∗)) ∩ Supp(P̃(y,x∗; ρ̄)) = /0. Hence, π(y,x∗) = 0, a
contradiction. ��

Corollary 6.37. Let f̃ be a fuzzy simple rule such that f̃ is weakly Paretian. Assume
π is regular. Then for all μ ∈ F (X) and ρ̄ ∈ FW such that ρi is weakly transitive
for all i ∈ N, Supp(M( f̃ (ρ̄),μ)) �= /0.

To determine under what conditions fuzzy voting rules produce social preference
relations with a non-empty non-dominated set, consider the following Lemma.

Lemma 6.38. [Corollary 1, p. 123-124 Montero and Tejada (1988)] Let ρ ∈ FR.
Assume π is regular. Then Supp(ND(π ,μ)) �= /0 for all μ ∈ F (X) if and only if ρ
is acyclic over Supp(μ).

Theorem 6.39. Let f̃ be a fuzzy voting rule and let μ ∈ F (X). Assume π is regu-
lar. Let ρ̄ ∈ FS n be such that ρi is partially quasi-transitive for all i ∈ N. Then
Supp(ND(π ,μ)) �= /0, where π is the social strict preference relation with respect to
f̃ (ρ̄).

Proof. Let μ ∈F (X) be such that x,y,z ∈ Supp(μ), and let ρ̄ ∈FS n be such that
ρi is partially quasi-transitive for all i ∈ N. Let Q be a strict ordering of the elements
of Supp(μ) such that ρi is single-peaked with respect to Q for all i ∈ N. Suppose,
without loss of generality, zQyQx. Then the following hold by quasi-transitivity and
single-peakedness of ρi:

(1) Supp(P̃(x,y; ρ̄)) ⊆ Supp(P̃(x,z; ρ̄))
and

Supp(P̃(z,x; ρ̄)) ⊆ Supp(P̃(y,x; ρ̄))
(2) Supp(P̃(z,y; ρ̄)) ⊆ Supp(P̃(z,x; ρ̄))

and

Supp(P̃(x,z; ρ̄)) ⊆ Supp(P̃(y,z; ρ̄)).
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There are six cases to consider.

Case 1: Suppose π(x,y)> 0. Then (P̃(x,y; ρ̄), R̃(x,y; ρ̄))∈D( f̃ ) by definition of
a fuzzy voting rule. Since D( f̃ ) is monotonic and f̃ is neutral, (1) implies
(P̃(x,z; ρ̄), R̃(x,z; ρ̄)) ∈ D( f̃ ). Thus, π(x,z)> 0. Hence, π(x,y)> 0 and
π(y,z)> 0 imply π(x,z)> 0.

Case 2: Suppose π(x,z) > 0. Then (P̃(x,z; ρ̄), R̃(x,z; ρ̄)) ∈ D( f̃ ). As in case
1, this implies (P̃(y,z; ρ̄), R̃(y,z; ρ̄)) ∈ D( f̃ ). Thus, π(y,z) > 0. Hence,
π(y,x)> 0 and π(x,z)> 0 imply π(y,z)> 0.

Case 3: Suppose π(z,x) > 0. Then (P̃(z,x; ρ̄), R̃(z,x; ρ̄)) ∈ D( f̃ ). By previ-
ous argument, (P̃(y,x; ρ̄), R̃(y,x; ρ̄)) ∈ D( f̃ ). Thus, π(y,x) > 0. Hence,
π(y,z)> 0 and π(z,x)> 0 imply π(y,x)> 0.

Case 4: Suppose π(z,y)> 0. Then (P̃(z,y; ρ̄), R̃(z,y; ρ̄))∈D( f̃ ). By previous ar-
guments again, (P̃(z,x; ρ̄), R̃(z,x; ρ̄)) ∈ D( f̃ ). Thus, π(z,x)> 0. Hence,
π(z,y)> 0 and π(y,x)> 0 imply π(z,x)> 0.

Case 5: Suppose π(x,z) > 0 and π(z,y) > 0. Then π(y,z) = 0. However, this
contradicts Case 2 because π(x,z)> 0 implies π(y,z)> 0.

Case 6: Suppose π(z,x) > 0 and π(x,y) > 0. Then π(y,x) = 0. However, this
contradicts Case 3 because π(z,x)> 0 implies π(y,x)> 0.

Thus, f̃ (ρ̄) is partially quasi-transitive. By Proposition 6.3, f̃ (ρ̄) is acyclic; and by
Lemma 6.38, Supp(ND(π ,μ)) �= /0. ��
Corollary 6.40. Let f̃ be a fuzzy voting rule and let μ ∈ F (X). Assume π
is regular. Suppose ρi is weakly transitive for all i ∈ N. If ρ̄ ∈ FS n, then
Supp(M( f̃ (ρ̄),μ)) �= /0.

In words, Theorem 6.36 shows that fuzzy simple rules will produce a non-empty
maximal set when individuals possess weakly single-peaked, weakly transitive pref-
erences. Theorem 6.39 demonstrates that this result also hold under fuzzy voting
rules if individuals possess single-peaked and partially quasi-transitive preferences.
However, Theorem 6.36 cannot be extended to fuzzy voting rules and Theorem 6.39
likewise cannot be extended to weakly single-peaked preferences as Example 6.41
demonstrates.

Example 6.41. Let N = {1,2,3,4,5} and let μ ∈ F (X) be such that Supp(μ) =
{x,y,z}. Assume π is regular. Let f̃ be a fuzzy voting rule such that D( f̃ ) =
{(σ ,ω) ∈F (N)×F (N) | Supp(σ )⊆Supp(ω) and |Supp(σ)| > |N\Supp(ω)|}. In
this case, f̃ is said to be a plurality rule. Let ρ̄ ∈FR5 be such that for all i ∈ {1,2},

ρi(x,y) = .9,ρi(z,x) = .4,ρi(y,z) = .5,

for individual 3,
ρ3(x,y) = .3,ρ3(x,z) = .6,ρ3(z,y) = 0,

for all j ∈ {4,5},

ρ j(y,x) = .8,ρ j(x,z) = .1,ρ j(y,z) = .2,
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where ρk(a,b) = .5 otherwise, k = 1,2,3,4,5 and all (a,b) ∈ Supp(μ)×Supp(μ).
Since π is regular, we can write the individual strict preference relations as follows:

πi(x,y)> 0, πi(x,z)> 0, πi(y,z) = 0,
π3(y,x)> 0, π3(x,z)> 0, π3(y,z)> 0,
π j(y,x) > 0, π j(z,x) > 0, π j(z,y)> 0,

for all i ∈ {1,2} and j ∈ {4,5}, where πk(a,b) = 0 otherwise, for k = 1,2,3,4,5 and
all (a,b) ∈ Supp(μ)×Supp(μ). In this case, ρk is weakly transitive for all k ∈ N by
Definition 6.2. Thus, by Proposition 6.3, ρk is partially quasi-transitive for all k ∈ N.
Relabel x = a1, y = a2 and z = a3, and let Q be a strict ordering on μ such that
a3Qa2Qa1. Now it is easily verified that ρ̄ ∈ FW , where, according to Definition
6.34, x = at for ρi, y = at for ρ3, and z = at for ρ j.

Consider some (σ ,ω) ∈ F (N)×F (N) such that

(Supp(σ),Supp(ω)) = ({1,2,3},{1,2,3}) .

Because (σ ,ω) ∈ D( f̃ ), πk(x,z) > 0 for all k ∈ Supp(σ), and πl(z,x) = 0 for all
l ∈ Supp(ω), (x,z)∈ R̃(ρ̄). Likewise, consider some (σ ′,ω ′)∈F (N)×F (N) such
that (Supp(σ ′),Supp(ω ′)) = ({4,5},{1,2,4,5}). Since (σ ′,ω ′) ∈D( f̃ ), πk(z,y)>
0 for all k ∈ Supp(σ ′), and πl(y,z) = 0 for all l ∈ Supp(ω ′), (z,y) ∈ R̃(ρ̄). Fi-
nally, consider some (σ ′′,ω ′′) ∈F (N)×F (N) such that (Supp(σ ′′),Supp(ω ′′)) =
({3,4,5},{3,4,5}). Since (σ ′′,ω ′′) ∈ D( f̃ ), πk(y,x) > 0 for all k ∈ Supp(σ ′′), and
πl(x,y) = 0 for all l ∈ Supp(ω ′′), (y,x) ∈ R̃(ρ̄). Using Definition 6.28, we can now
determine g̃D( f̃ ) as follows:

g̃D( f̃ )(x,y) = .3∧ .5∧ .5 = .3,

g̃D( f̃)(y,x) = .5∨ .8∨ .8 = .8,

g̃D( f̃)(x,z) = .5∨ .5∨ .6 = .6,

g̃D( f̃)(z,x) = .4∧ .4∧ .5 = .4,

g̃D( f̃ )(y,z) = .5∧ .5∧ .2∧ .2= .2,

g̃D( f̃ )(z,y) = .5∨ .5∨ .5∨ .5= .5,

and g̃D( f̃ )(a,a) = 1 for all a ∈ X . By definition of a fuzzy voting rule and the
regularity of π , we now have π(y,x) > 0, π(x,z) > 0 and π(z,y) > 0. Thus
Supp(ND(π ,μ)) = /0.

6.5 Extending Black’s Median Voter Theorem

Section 6.4 demonstrated that fuzzy simple rules produce a non-empty fuzzy non-
dominated set if individual preferences are weakly single-peaked. Moreover, fuzzy
voting rules produce a non-empty fuzzy non-dominated when individual preferences
are single-peaked. The fuzzy maximal set is non-empty in both cases. Building on
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these results, this section concerns itself with the application of Black’s Median
Voter Theorem to generate maximal elements in social preference relation. We as-
sume that ρi is partially quasi-transitive for all i ∈ N throughout.

Definition 6.42. Let μ ∈ F (X) and let ρ̄ ∈ FS n. Let Q be a strict ordering of the
elements of Supp(μ) such that ρi is single-peaked with respect to Q for all i ∈ N.
Define xi to be that element of X such that πi(xi,y) > 0 for all y ∈ Supp(μ)\{xi},
i = 1, . . . ,n. Define L̃−, L̃+ : Supp(μ)→F (N) by for all z ∈ Supp(μ) and all i ∈ N,

L̃−(z)(i) =

{
πi(xi,z) if zQxi,

0 otherwise,

L̃+(z)(i) =

{
πi(xi,z) if xiQz,

0 otherwise.

Definition 6.43 (f–median). Let f̃ be a fuzzy preference aggregation rule and let
ρ̄ ∈ FS n. Let Q be a strict ordering of the elements of Supp(μ) such that ρi is
weakly single-peaked with respect to Q for all i ∈ N. Then for some μ ∈ F (X), an
element z ∈ Supp(μ) is called an f̃ –median if L̃−(z) /∈ L ( f̃ ) and L̃+(z) /∈ L ( f̃ ).

Definition 6.44 (f–median set). Let μ ∈ F (X) and let f̃ be a fuzzy preference ag-
gregation rule. For all ρ̄ ∈ FS where Q is some strict ordering of the elements of
Supp(μ) such that ρi is weakly single-peaked with respect to Q for all i ∈ N, define
the fuzzy subset μ f̃ (ρ̄ ;Q) of Supp(μ), by for all z ∈ Supp(μ),

μ f̃ (ρ̄ ,Q)(z) =

{
μ(z) if z is an f̃ -median,

0 otherwise.

We say μ f̃ (ρ̄ ;Q) is the fuzzy subset of f̃ -medians given ρ̄ . When Q is understood,
we simplify the previous notation and write μ f̃ (ρ̄).

Theorem 6.45. Let μ ∈ F (X) and let f̃ be a fuzzy simple rule. If ρ̄ ∈ FS n, then
μ f̃ (ρ̄)(x) = ND(π ,μ)(x) for all x ∈ Supp(μ), where π is the strict preference rela-

tion with respect to f̃ (ρ̄).

Proof. Let ρ̄ ∈ FS n and let Q be a strict ordering of Supp(μ) such that ρi is
weakly single-peaked with respect to Q for all i ∈ N. Let x ∈ Supp(μ). Further,
suppose x is an f̃ -median and in Supp(ND(π ,μ)). In this case, μ f̃ (ρ̄)(x) = μ(x) =
ND(π ,μ)(x). Hence, it suffices to show Supp(μ f̃ (ρ̄)) = Supp(ND(π ,μ)). Since
Supp(μ) is finite, we relabel the elements of Supp(μ) such that at+1Qat for all
t ∈ {1, . . . , | Supp(μ)|− 1}. Then x = at for some t ≥ 1.

Let x ∈ Supp(ND(π ,1X )). Suppose μ f̃ (ρ̄)(x) = 0, i.e. x is not an f̃ -median. Be-
cause x is not an f̃ -median, either L̃−(x) ∈ L ( f̃ ) or L̃+(x) ∈ L ( f̃ ). First, assume
the former. Then, for all u,v ∈ Supp(μ), πi(u,v) > 0 for all i ∈ Supp(L̃−(x)) im-
plies π(u,v)> 0. Since ρ̄ is single-peaked, πi(at−1,at)> 0 for all i ∈ Supp(L̃−(x)).
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Since L̃−(x) is decisive, π(at−1,x) > 0; and ND(π ,μ)(x) = 0, a contradiction.
Second, assume L̃+(x) ∈ L ( f̃ ). Then, for all u,v ∈ Supp(μ), πi(u,v) > 0 for all
i ∈ Supp(L̃+(x)) implies π(u,v)> 0. Since ρ̄ is single-peaked, πi(at+1,at) > 0 for
all i ∈ Supp(L̃+(x)). Since L̃+(x) is decisive, π(at+1,x)> 0; and ND(π ,μ)(x) = 0.
Since both cases establish a contradiction, it follows that μ f̃ (ρ̄)(x) > 0. Hence, we
have

Supp(ND(π ,μ)) ⊆ Supp(μ f̃ (ρ̄)).

Now let x ∈ Supp(μ(ρ̄)) and suppose x /∈ Supp(ND(π ,μ)). Then there exists some
aτ ∈ Supp(μ) such that π(aτ ,x)> 0. Thus, P̃(aτ ,at ; ρ̄) ∈ L ( f̃ ). Since Q is a strict
ordering on X , either atQaτ or aτ Qat .

First, assume the former. Then Supp(P̃(aτ ,at ; ρ̄)) ⊆ Supp(L̃−(at)). However,
μ f̃ (ρ̄)(at)> 0 implies L̃−(at) /∈L ( f̃ ). This contradicts the monotonicity of L ( f̃ ).

Second, assume aτ Qat . Then Supp(P̃(aτ ,at ; ρ̄)) ⊆ Supp(L̃+(at)). However,
μ f̃ (ρ̄)(at)> 0 implies L̃+(at) /∈L ( f̃ ). Likewise, this contradicts the monotonicity

of L ( f̃ ).
Hence, at ∈ Supp(ND(π ,μ)) and x ∈ Supp(ND(π ,μ)). Thus,

Supp(ND(π ,μ)) = Supp(μ f̃ (ρ̄)). ��
Corollary 6.46. Let μ ∈F (X) and let f̃ be a fuzzy simple rule. Assume π is partial.
If ρ̄ ∈ FS n, then

Supp(μ f̃ (ρ̄)) = Supp(ND(π ,μ)) = Supp(M( f̃ (ρ̄),μ)),

where π is the strict preference relation with respect to f̃ (ρ̄).

Corollary 6.47. Let μ ∈F (X) and let f̃ be a fuzzy simple rule. Assume π is regular.
If ρ̄ ∈ FS n, then

Supp(μ f̃ (ρ̄)) = Supp(ND(π ,μ)) ⊆ Supp(M( f̃ (ρ̄),μ)),

where π is the strict preference relation with respect to f̃ (ρ̄).

Corollary 6.48. Let μ ∈F (X) and let f̃ be a fuzzy simple rule. Assume π is partial
and regular. If ρ̄ ∈FS n, then for all x ∈ X,

μ f̃ (ρ̄)(x) = ND(π ,μ)(x) = M( f̃ (ρ̄),μ)(x),

where π is the strict preference relation with respect to f̃ (ρ̄).

In words, Theorem 6.45 proves that Black’s Median Voter Theorem holds with re-
spect to the fuzzy non-dominated set regardless of any restrictions placed on the
strict preference relation. Corollary 6.46 demonstrates that these results also hold
with respect to the the fuzzy maximal set if the strict preference relation is partial.
As Corollaries 6.46 and 6.48 demonstrate, these results do not hold if strict prefer-
ences are regular but not partial. Example 6.49 below further illustrates this.
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6.6 An Application

The following example presents an application of Black’s Median Voter Theorem
with a “majority rules” voting rule and regular strict preferences.

Example 6.49. Let N = {1,2,3} and X = {x,y,z}. Let μ ∈ F (X) be such that
μ(x) = .9, μ(y) = .3, μ(z) = .6. Assume π is regular. Let ρ̄ ∈ FR3 be defined
as

ρ1(x,y) = .7, ρ1(x,z) = 1.0, ρ1(z,y) = .3,
ρ2(x,y) = 0, ρ2(z,x) = .6, ρ2(y,z) = .7,
ρ3(y,x) = .8, ρ3(x,z) = .2, ρ3(y,z) = .1,

where ρi(a,b) = .5 otherwise, for i = 1,2,3 and all (a,b) ∈ Supp(μ)× Supp(μ).
Because π is regular, we can write the individual strict preference relations as fol-
lows:

π1(x,y)> 0, π1(x,z)> 0, π1(y,z) > 0,
π2(y,x) > 0, π2(z,x)> 0, π2(y,z) > 0,
π3(y,x) > 0, π3(z,x)> 0, π3(z,y)> 0.

Using Definition 6.33, it can be verified that ρi is single-peaked with respect to some
ordering of Supp(μ). In this case, zQyQx or xQyQz, where at = x for ρ1, at = y for
ρ2, and at = z for ρ3. Suppose zQyQx. Let f̃ : FRn → FR be defined as follows:
for all ρ̄ ∈ FRn and all a,b ∈ X ,

f̃ (ρ̄)(a,b) =

⎧
⎪⎨

⎪⎩

1 if a = b,

1 if |Supp(P̃(a,b; ρ̄))| > n
2 ,

β otherwise,

where β ∈ (0,1). In the case of N = {1,2,3},

{Supp(λ ) | λ ∈ L ( f̃ )} = {{1,2},{1,3},{2,3},{1,2,3}} .

From the definition of f̃ , it follows that f̃ is monotonic, neutral and decisive. Thus,
f̃ is a fuzzy simple rule. Now, L̃− and L̃+ can be written as

L̃−(x)(1) = 0, L̃−(x)(2) = 0, L̃−(x)(3) = 0,
L̃−(y)(1)> 0, L̃−(y)(2) = 0, L̃−(y)(3) = 0,
L̃−(z)(1)> 0, L̃−(z)(2)> 0, L̃−(z)(3) = 0,

and

L̃+(x)(1) = 0, L̃+(x)(2)> 0, L̃+(x)(3)> 0,
L̃+(y)(1) = 0, L̃+(y)(2) = 0, L̃+(y)(3)> 0,
L̃+(z)(1) = 0, L̃+(y)(2) = 0, L̃+(y)(3) = 0.

By definition of f̃ and L ( f̃ ), L̃−(z) and L̃+(x) are decisive. Hence, x and
z are not f̃ -medians. Also, L̃−(y) and L̃+(y) are not decisive since
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|Supp(L̃−(y))| = |Supp(L̃+(y))| = 1. Thus, y is an f̃ -median. It follows that
μ f̃ (ρ̄ ,Q)(x) = 0, μ f̃ (ρ̄,Q)(y) = μ(y) = .3, and μ f̃ (ρ̄,Q)(z) = 0.

The social preference relation given ρ̄ defined above is

f̃ (ρ̄)(x,y) = β , f̃ (ρ̄)(x,z) = β ,
f̃ (ρ̄)(y,x) = 1, f̃ (ρ̄)(y,z) = 1,
f̃ (ρ̄)(z,x) = 1, f̃ (ρ̄)(z,y) = β ,

where f̃ (ρ̄)(a,a) = 1 for all a ∈ X . Since π is regular and β < 1, π(y,x) > 0,
π(y,z) > 0 and π(z,x) > 0. Since there does not exists an a ∈ Supp(μ) such that
π(a,y)> 0, then nd( f̃ (ρ̄)(y) = 0 and ND(π ,μ)(y) = μ(y) = .3. Because π(y,x)> 0
and π(y,z) > 0, ND(π ,μ)(x) = ND(π ,μ)(z) = 0. Thus, ND(π ,μ) = μ f̃ (ρ̄ ,Q).
However, M( f̃ (ρ̄),μ) is calculated as follows. Here we use the residuum oper-
ator (see Sec. 1.2.5) where a,b ∈ [0,1] and the standard residuum is defined as
a → b =

∨{t ∈ [0,1] | a∧ t ≤ b}.

M( f̃ (ρ̄),μ)(x) = μ(x)∧ (
∧

{ f̃ (ρ̄)(a,x) → f̃ (ρ̄)(x,a)} | a ∈ Supp(μ)})
= .9∧ ({ f̃ (ρ̄)(y,x) → f̃ (ρ̄)(x,y)}∧

{ f̃ (ρ̄)(z,x) → f̃ (ρ̄)(x,z)})
= .9∧ ({1 → β}}∧{1 → β}})
= .9∧ (β ∧β )
> 0.

M( f̃ (ρ̄),μ)(y) = μ(y)∧ (
∧

{ f̃ (ρ̄)(a,y) → f̃ (ρ̄)(y,a)} | a ∈ Supp(μ)})
= .3∧ ({ f̃ (ρ̄)(x,y) → f̃ (ρ̄)(y,x)}∧

{ f̃ (ρ̄)(z,y) → f̃ (ρ̄)(y,z)})
= .3∧ ({β → 1}∧{β → 1})
= .3∧ (1∧1)

= .3.

M( f̃ (ρ̄),μ)(z) = μ(z)∧ (
∧

{ f̃ (ρ̄)(a,z) → f̃ (ρ̄)(z,a)} | a ∈ Supp(μ)}})
= .3∧ ({ f̃ (ρ̄)(y,z) → f̃ (ρ̄)(z,y)}∧

{ f̃ (ρ̄)(x,z) → f̃ (ρ̄)(z,x)})
= .3∧ ({1 → β}}∧{β → 1})
= .3∧ (β ∧1)

> 0.

Hence, M( f̃ (ρ̄),μ) �= μ f̃ (ρ̄,Q) and Supp(M( f̃ (ρ̄),μ)) �= Supp(μ f̃ (ρ̄ ,Q)).
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6.7 Conclusions and Spatial Models

Our work in this chapter demonstrates that the definitions of the fuzzy maximal
set and fuzzy strict preference relations are critical in determining whether or not
Black’s Median Voter Theorem holds in the fuzzy framework. These results beg
the question as to whether fuzzy social choice models behave better or worse than
their conventional crisp set counterparts in multi-dimensional space. Specifically,
we wish to know the conditions under which the fuzzy spatial model produces a
non-empty maximal set. This question is the focus of the next chapter.

Before turning to this question in the next chapter, we present two final results.

Definition 6.50 (Property M). Let ρ be a fuzzy function on X . Then ρ is said
to have Property M if ∀x ∈ X ,∧{ρ(x,y)|y ∈ X} = 0 implies ∃y ∈ X such that
ρ(x,y) = 0.

Definition 6.51 (fuzzy core). Let f̃ be a fuzzy aggregation rule. ∀ρ̄ ∈FRn, define
Cf̃ (ρ̄) : X → [0,1] by ∀x ∈ X ,Cf̃ (ρ̄)(x) = M( f̃ (ρ̄),1x)(x). Then Cf̃ (ρ̄) is called the

fuzzy core of f̃ at ρ̄ .

Theorem 6.52. Suppose strict preferences are partial. Let f̃ be a partial fuzzy voting
rule. Let ρ̄ ∈ FRn. Suppose f̃ (ρ̄) and g̃L ( f̃ )(ρ̄) have property M. If ρ̄ is strictly
convex, then Supp(Cf̃ (ρ̄)) = Supp(Cg̃L ( f̃ )

(ρ̄)) .

Proof. We first note that

Supp(Cf̃ (ρ̄)) ⊆ Supp(Cg̃L ( f̃ )
(ρ̄)) .

Let x ∈ Supp(Cf̃ (ρ̄)) and suppose x /∈ Supp(Cg̃L ( f̃ )
(ρ̄)). Then ∃y ∈ X such that

g̃L ( f̃ )(ρ̄)(x,y) = 0 since g̃L ( f̃ ) has property M and so πL ( f̃ )(x,y) > 0. Thus
(y,x) ∈ P(ρ̄) and (x,y) ∈ Symm(P(ρ̄)) \P(ρ̄). Hence π(y,x) > 0. (πi(y,x) >
0 ∀i ∈ Supp(λ )⇒ π(y,x)> 0.) Since x ∈ Supp(Cf̃ (ρ̄)), we have that f̃ (ρ̄)(x,y)> 0,
a contradiction. Thus x ∈ Supp(Cg̃L ( f̃ )

(ρ̄)).
We now show

Supp(Cg̃L ( f̃ )
(ρ̄)) ⊆ Supp(Cf̃ (ρ̄)) .

Let x ∈ Supp(Cg̃
L (̃ f )

(ρ̄)) and suppose x /∈ Supp(Cf̃ (ρ̄)). Then ∃y ∈ X such that

f̃ (ρ̄)(x,y) = 0 since f̃ (ρ̄) has property M and so π(x,y) > 0. Hence by the proof
of Theorem 6.31, (σ ,ω) ∈ D( f̃ ), for any σ ,ω ∈ FP(N) such that Supp(σ) =
P(y,x; ρ̄) and Supp(ω) = R(y,x; ρ̄). For all i ∈ R(y,x; ρ̄),πi(z,x) > 0, where z =
ax+ (1 − a)y for some a ∈ (0,1) by the strict convexity of ρ̄ . Thus ω ∈ L ( f̃ ),
where Supp(ω) = R(y,x; ρ̄). Hence πL ( f̃ )(z,x)> 0 and so g̃L ( f̃ )(ρ̄)(x,z) = 0. Thus
x /∈ Supp(Cg̃L ( f̃ )

(ρ̄)). ��

We note that if a fuzzy relation ρ on X is such that |Im(ρ)| < ∞, then ρ has prop-
erty M. Fuzzy relations with property M may be of importance when considering
problems of thick indifference, an issue we consider in the next chapter.
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Theorem 6.53. Suppose strict preferences are regular. Let f̃ be a regular fuzzy vot-
ing rule. Let ρ̄ ∈FRn. Suppose f̃ (ρ̄) and g̃L ( f̃ )(ρ̄) have property M. If ρ̄ is strictly
convex, then Supp(Cf̃ (ρ̄)) = Supp(Cg̃L ( f̃ )

(ρ̄)) .

Proof. We first note that

Supp(Cf̃ (ρ̄)) ⊆ Supp(Cg̃L ( f̃ )
(ρ̄)) .

Let x ∈ Supp(Cf̃ (ρ̄)) and suppose x /∈ Supp(Cg̃L ( f̃ )
(ρ̄)). Then ∃y ∈ X such that

g̃L ( f̃ )(ρ̄)(x,y) = 0

since g̃L ( f̃ ) has property M and so πL ( f̃ )(y,x) > 0. Thus (y,x) ∈ P(ρ̄) and
(x,y) ∈ Symm(P(ρ̄)) \P(ρ̄). Hence π(y,x) > 0. (πi(y,x) > 0 ∀i ∈ Supp(λ ) ⇒
π(y,x) > 0.) Since x ∈ Supp(Cf̃ (ρ̄)), f̃ (ρ̄)(x,y) > 0, a contradiction. Thus x ∈
Supp(Cg̃L ( f̃ )

(ρ̄)).
We now show

Supp(Cg̃L ( f̃ )
(ρ̄)) ⊆ Supp(Cf̃ (ρ̄)) .

Let x ∈ Supp(Cg̃
L (̃ f )

(ρ̄)) and suppose x /∈ Supp(Cf̃ (ρ̄)). Then ∃y ∈ X such that

f̃ (ρ̄)(x,y) = 0 since f̃ (ρ̄) has property M and so π(y,x) > 0. Since f̃ is a regular
fuzzy voting rule, f̃ is neutral and monotonic by Theorem 6.32. Thus by the proof
of Theorem 6.32, (σ ,ω) ∈ D( f̃ ), for any σ ,ω ∈ FP(N) such that Supp(σ) =
P(y,x; ρ̄) and Supp(ω) = R(y,x; ρ̄). For all i ∈ R(y,x; ρ̄), πi(z,x) > 0, where

z = ax+(1− a)y

or some a ∈ (0,1) by the strict convexity of ρ̄ . Hence ω ∈ L ( f̃ ), where
Supp(ω) = R(y,x; ρ̄). Thus πL ( f̃ )(z,x) > 0 and so g̃L ( f̃ )(ρ̄)(x,z) = 0. Hence
x /∈ Supp(Cg̃L ( f̃ )

(ρ̄)), a contradiction. ��
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Chapter 7
Representing Thick Indifference in Spatial
Models

Abstract. This chapter demonstrates that a fuzzy approach to modeling thick indif-
ference can accommodate highly irregularly shaped indifference curves, even those
that are concave or multi-modal. Moreover, it permits the calculation of a majority
rule maximal set with relative ease under assumptions of non-separability. This ap-
proach relies on a homomorphism that permits a region of interest to be mapped to
a simpler region with a suitable and natural partial ordering where the results are
determined and then faithfully transferred back to the original region of interest.

7.1 Stability and Thick Indifference in Individual Preferences

It has been long known that the probability of a majority rule maximal set increases
in spatial models when actors possess thick indifference over individual preferences
(Bräuninger, 2007; Balke et al., 2006; Barberà and Ehlers, 2011; Gehrlein and Val-
ognes, 2001; Skog, 1994; Sloss, 1973; Tovey, 1991). Many of the studies in this genre
make use of Tovey’s (1991; 2010) concept of an epsilon-core (ε−core), a thresh-
old distance in Euclidean space that must be exceeded before players distinguish
between alternatives (Bräuninger, 2007; Koehler, 2001). Unless an alternative lies
outside of the region defined by the ε−core, a player is indifferent between it and the
core’s center. Essentially, actors have thick indifference curves Sloss (1973). Unfor-
tunately, applying the approach in empirical analyses is hampered by the complexity
of calculating the existence of a majority rule maximal set. It is even more problem-
atic when thick indifference introduces irregularly shaped preference curves.

This chapter demonstrates that a fuzzy approach to modeling thick indifference
can accommodate highly irregularly shaped indifference curves, even those that are
concave or multi-modal. Moreover, it permits the calculation of a majority rule max-
imal set with relative ease under assumptions of non-separability. Section 7.2 devel-
ops the approach, which relies on a homomorphism that permits a region of interest
(spatial model) to be mapped to a simpler region with a suitable and natural partial
ordering where the results are determined and then faithfully transferred back to the
original region of interest. Section 7.3 provides an empirical application of the ap-
proach. Section 7.4 then presents a proof of the homomorphism. Section 7.5 presents
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150 7 Representing Thick Indifference in Spatial Models

a formal that in all but a limited number of cases, spatial models of individuals with
thick indifference curves result in an empty majority rule maximal set if and only
if the Pareto set contains a union of cycles. The section also completely character-
izes the elements that constitute the exception for a three-person game based on the
general definition for n players. The substantive interpretation is that if the degree to
which a majority find a given alternative acceptable is relatively high, then a stable
outcome is assured under majority rule. Section 7.6 concludes with a consideration
of the theoretical implications of the approach and observations on its utility for
empirical studies.

7.2 Modeling Thick Indifference in Individual Preferences

The conventional approach to fuzzy spatial modeling, where X is the set of alter-
natives, makes use of fuzzy preference relations Bezdek et al. (1978, 1979); Blin
(1974); Kacprzyk and Fedrizzi (1988); Kacprzyk et al. (1992); Nurmi (1981a);
Orlovsky (1978). Arguing that most data available to social sciences do not measure
preference relations, Clark, Larson, Mordeson, Potter, and Wierman (2008) follow
the lead of Nurmi (1981b) and use fuzzy sets to denote individual preferences. We
gave consideration to individual preferences in Chapter 3.

Let N be the set of political actors and A be the set of alternatives. We assume
that A is a subset of an arbitrary universe of interest. Applied to spatial models,
A ⊆ R

k, where R is the set of real numbers and k is the number of dimensions in
Euclidean space. Let a function, σi, indicate the degree to which political actor i ∈ N
views a particular alternative in the policy space as more or less ideal. Thus, σi is
a function mapping A onto the closed interval [0,1], where σi(x) = 1 represents
all ideal policies and σi(x) = 0 represents all policies that are totally unacceptable
to player i. If σi is restricted to a discrete set, actors possess thick indifference. For
example, Im(σi} ⊆ T = {0, .25, .5, .75,1} would impose preferences similar to a
Likert scale, where Im(σi) denotes the image of σi. T denotes the granularity of
individual preferences, how discerning players are over alternatives. We can set T
to any finite scale. In essence, political actors partition A into a finite number of
classes, each class comprising an indifference set. While the boundaries between
each indifference set may be rather sharp, this problem can be resolved by increas-
ing the granularity in the region of a boundary. Doing so does not effect our results.
For ease of presentation and without loss of generalization, we consider coarse gran-
ularity at the boundaries of indifference sets in our examples.

Both the geometry representing spatial preferences and its corresponding relation
space can be mapped into a simpler, more appropriate set U . We assume that U is an
arbitrary set with a partial order, making it a lattice and allowing for a simpler anal-
ysis of the relation space. Nonetheless, we can specify U to be more intuitive. We
specify U = T n, where T n = {(a1, ...,an) | ai ∈ T, i= 1, ...,n} and n = |N|. The map-
ping of the relation space into T n permits the characterization of any policy space
in its entirety with n−tuples, (a1,a2, ...,an), which represent the specific σ−values
of a policy space. Essentially, T n is a lattice of n−tuples with entries from T under
this construction.
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Let R denote the set of all binary relations on U that are reflexive, complete, and
transitive and B the set of all reflexive and complete binary relations on U . Let
Ri ∈ R, i ∈ N. Then xPiy if and only if xRiy and not yRix. In such case, we say that
x is strictly preferred to y by player i. Let Rn = {ρ | ρ = (R1, ...,Rn),Ri ∈ R, i =
1, ...,n}, where |N| = n.

Definition 7.1 (simple majority rule). Let ρ ∈ Rn. Let f be an aggregation rule,
that is, a function from Rn into B. Let X ⊆ U . Define simple majority rule as
follows. For all (x,y) ∈ X2,

(x,y) ∈ f (ρ) if and only if |{i ∈ N | xRiy}|> n
2
.

Then (x,y) ∈ f (ρ) and not (y,x) ∈ f (ρ) if and only if |{i ∈ N | xRiy}| > n
2 and

|{i ∈ N | yRix}| ≤ n
2 if and only if |{i ∈ N | xPiy}|> n

2 .

Definition 7.2 (simple majority relation). Let ρ ∈ Rn. Define the binary relation
R on X by for all x,y ∈ X ,(x,y) ∈ R if and only if

|{i ∈ N | xRiy}| ≥ n
2
.

Define P ⊆ X ×X by for all x,y ∈ X ,(x,y)∈ P if and only if (x,y) ∈ R and (y,x) /∈ R.
Let R(x,y;ρ) = {i ∈ N | xRiy} and P(x,y;ρ) = {i ∈ N | xPiy}.
Note that R is a social preference, and ρ is an n-tuple of individual preference
relations.

Proposition 7.3. Let ρ and R be defined as in Definition 7.2. Let x,y ∈ X . Then
(x,y) ∈ P if and only if

|P(x,y;ρ)|> n
2
.

Proof. xPy if and only if xRy and not yRx if and only if

|{i ∈ N | xRiy}| ≥ n
2

and ∣
∣
{

j ∈ N | yR jx
}∣
∣<

n
2
.

Since each Ri is complete, R is complete. Hence xPy if and only if

|{i ∈ N | xPiy}| > n
2

by a simple counting procedure. Thus xPy if and only if

|P(x,y;ρ)|> n
2
. ��

Definition 7.4 (maximal set). (Austen-Smith and Banks (1999), p. 3) Let

M(R,X) = {x ∈ X | xRy for all y ∈ X} .
Then M(R,X) is called the maximal set of R.
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7.3 An Empirical Application

Figure 7.1 is a spatial model using fuzzy sets to define the individual preferences
of three political actors, A, B, and C, where T = {0, .25, .5, .75,1}. If X̃ is a fuzzy
subset of a set S, i.e., X̃ : S → [0,1], the t−level set of X̃ is the set X̃t = {s ∈ S |
X̃(s) ≥ t}, where t ∈ [0,1]. The inner-most region is the t = 1 level for each player.

Fig. 7.1 A Three-Player Fuzzy Spatial Model



7.4 Proof of the Homomorphism 153

The complete set of alternatives is numbered, and the corresponding three-tuple
t−levels (aA,aB,aC), the intersection of the t−levels for the three players, are noted
in braces.

We call a pair (A ,R) a relation space if R is a relation on the set A . The transfor-
mation of the universe from a relation space into another relation space is a homo-
morphism, or a function that maps an arbitrary relation R from one set into another
set while faithfully reproducing R. As a consequence, the calculation of the major-
ity rule maximal set using the partial ordering can be faithfully transferred back to
the spatial diagram. The results obtained can be applied to T n. The existence of the
homomorphism linking the spatial model to a natural partial ordering, where the re-
sults are determined, makes it possible for these models to deal with highly complex
preferences that would be difficult, if not impossible, for step-wise utility functions
of the sort proposed by Sloss (1973) and others to resolve. This greatly simplifies
the task of empirical testing of spatial models of thick indifference.

The set of options that are majority preferred (the winset) to each numbered al-
ternative are noted in brackets. In this case, there is no majority rule maximal set.
All points are majority preferred by at least one other point. However, alternatives
4,16, and 27 comprise an externally stable cycle. Alternative 4 is majority preferred
to alternative 16, which is majority preferred to alternative 27, which is majority
preferred to alternative 4. No alternative outside of this set is majority preferred to
any alternative within it, and all alternatives outside of it are majority preferred by
at least one point within it.

7.4 Proof of the Homomorphism

We now provide a proof of the homomorphism. We define an appropriate function
f ∗ from A onto X , where A denotes the region of interest (for example, a spatial
representation of fuzzy preferences) and X the region onto which A is mapped
by the homomorphism f ∗. We work in general in our theories. We let A be an
arbitrary set mapped onto X , where f ∗ : A → X ⊆ U . In our application, we work
in T n, the lattice, where A = R

2
+,U = T n, and R+ denotes the set of nonnegative

real numbers.. The following formal discussion shows that the results determined
in X concerning the maximal set and Pareto set can be transferred faithfully back
to A .

Definition 7.5 (homomorphism). Let (A , R̃) and (X ,R) be relation spaces. Let f ∗
be a function of A onto X . Then f ∗ is called a homomorphism of (A , R̃) into (X ,R)
if for all a,b ∈ A ,(a,b) ∈ R̃ if and only if ( f ∗(a), f ∗(b)) ∈ R. If f ∗ maps A onto
X , we say f ∗ maps (A , R̃) onto (X ,R). For all (a,b) ∈ R̃, we write f ∗((a,b)) =
( f ∗(a), f ∗(b)) and f ∗(R̃) = {( f ∗((a,b)) | (a,b) ∈ R̃}.

Thus if a,a′,b,b′ ∈ A and f ∗(a) = f ∗(a′), f ∗(b) = f ∗(b′), it is not possible that
(a,b) ∈ R̃ and (a′,b′) /∈ R̃.

Proposition 7.6. Let f ∗ be a homomorphism of (A , R̃) onto (X ,R). Then f ∗(R̃)=R.
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Proof. Clearly, f ∗(R̃) ⊆ R. Let (x,y) ∈ R. Since f ∗ maps A onto X , there ex-
ists a,b ∈ A such that f ∗(a) = x and f ∗(b) = y. Thus (x,y) = ( f ∗(a), f ∗(b)) =
f ∗((a,b)) ∈ f ∗(R̃). ��
Proposition 7.7. Let f ∗ be a homomorphism of (A , R̃) onto (X ,R). Then for all
a,b ∈A ,(a,b) ∈ P̃ if and only if ( f ∗(a), f ∗(b)) ∈ P.

Proof. Let a,b ∈A . Then

(a,b) ∈ P̃ ⇐⇒ (a,b) ∈ R̃,(b,a) /∈ R̃

⇐⇒ ( f ∗(a), f ∗(b) ∈ R, ( f ∗(a), f ∗(b)) /∈ R

⇐⇒ ( f ∗(a), f ∗(b)) ∈ P.

In the next result we show that not only does a homomorphism preserve the notion
of a maximal set, but furthermore the preimage of the maximal set is exactly the
maximal set in the domain. ��
Theorem 7.8. Let f ∗ be a homomorphism of (A , R̃) onto (X ,R). Then

f ∗(M(R̃,A )) = M(R,X) ,

where M(R̃,A ) denotes the maximal set of R̃ in A and M(R,X) denotes the maxi-
mal set of R in X. Furthermore,

f ∗−1(M(R,X)) = M(R̃,A )) ,

where f ∗−1(M(R,X)) denotes the preimage of M(R,X) in A .

Proof. a ∈ M(R̃,A ) ⇔ for all b ∈ A ,aR̃b ⇔ for all f ∗(b) ∈ X , f ∗(a)R f ∗(b) ⇔
f ∗(a) ∈ M(R,X), where the latter equivalence holds since f ∗ maps A onto X .
Thus if f ∗(a) ∈ f ∗(M(R̃,A )), then a ∈ M(R̃,A ). Hence f ∗(a) ∈ M(R,X). Thus
f ∗(M(R̃,A )) ⊆ M(R,X). Let x ∈ M(R,X). Then ∀y ∈ X ,xRy. Let a ∈ A be such
that f ∗(a) = x. Let b ∈ A . Then f ∗(a)R f ∗(b) since x = f ∗(a) and x ∈ M(R,X).
Hence aR̃b by Definition 7.5. Thus a ∈ M(R̃,A ) and so x = f ∗(a) ∈ f ∗(M(R̃,A )).
Thus, M(R,X)⊆ f ∗(M(R̃,A ).

Clearly, f ∗−1(M(R,X)) ⊇ M(R̃,A ). Let a ∈ f ∗−1(M(R,X)). Suppose there ex-
ists b ∈ A such that (a,b) /∈ R̃. Then ( f ∗(a),ρ∗(b)) /∈ R since f ∗ is a homo-
morphism. Thus, f ∗(a) /∈ M(R,X), a contradiction of a ∈ f ∗−1(M(R,X)). Hence,
(a,b) ∈ R̃∀b ∈A . Thus, a ∈ M(R̃,A ). Hence, f ∗−1(M(R,X)) ⊆ M(R̃,A ).

Let (A , R̃i) be a relation space, i= 1, ...,n. Let f ∗
i be a homomorphism of (A , R̃i)

onto (X ,Ri), i = 1, ...,n. Then Ri = f ∗
i (R̃i), i = 1, ...,n by Proposition 7.6. ��

Definition 7.9 (preserve the pair). Let f̃ be an aggregation rule on

(A ,(R̃1, ..., R̃n))

and let f be an aggregation rule on
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(X ,(R1, ...,Rn)).

Let f ∗
i be a homomorphism of (A , R̃i) onto (X ,Ri), for i = 1, ...,n. Let f ∗ be a

homomorphism of (A , f̃ ((R̃1, ..., R̃n))) onto (X , f ((R1, ...,Rn))). Then f ∗ is said to
preserve the pair ( f̃ , f ) with respect to ( f ∗

1 , ..., f ∗
n ) if

f ∗( f̃ (R̃1, ..., R̃n)) = f ((R1, ...,Rn)) .

In Definition 7.9, it is understood that if f ∗ preserves ( f̃ , f ) with respect to
( f ∗

1 , ..., f ∗
n ), then f ∗

i (R̃i) = Ri, i = 1, ...,n.

Definition 7.10 (Pareto set). (Austen-Smith and Banks (2005), p. 7) Let ρ ∈ Rn.
Define the Pareto set at ρ ,PSN(ρ), to be the set PSN(ρ) = {x ∈ X | for all y ∈ X
where y �= x (there exists i ∈ N,yPix implies there exists j ∈ N,xPjy)}.
An alternative x is in the Pareto set if whenever a player strictly prefers an alternative
w to x, then there is a player who strictly prefers x to w. Any effort by the group
to choose other than an alternative in the Pareto set will leave at least one player
worse off. Note that the Pareto set is not determined by majority rule but rather by
unanimity.

In Definition 7.9, let ρ̃ = (R̃1, ..., R̃n) and ρ = (R1, ...,Rn).
In the following result, we show that a homomorphism preserves the notion of a

Pareto set and that the preimage of the Pareto set is exactly the Pareto set.

Theorem 7.11. Let f̃ be an aggregation rule on (A ,(R̃1, ..., R̃n)) and let f be
an aggregation rule on (X ,(R1, ...,Rn)). Let f ∗

i be a homomorphism of (A , R̃i)

onto (X ,Ri), i = 1, ...,n. Let f ∗ be a homomorphism of (A , f̃ ((R̃1, ..., R̃n)))

onto (X , f ((R1, ...,Rn))) such that f ∗ preserves ( f̃ , f ) w.r.t. ( f ∗
1 , ..., f ∗

n ). Then
f ∗(PSN(ρ̃)) = PSN(ρ). Furthermore, f ∗−1(PSN(ρ)) = PSN(ρ̃).

Proof. Recall that a ∈ PSN(ρ̃) ⇔ ∀b ∈ A ,(there exists i ∈ N,bP̃ia implies there
exists j ∈ N,aP̃jb). Let a ∈A . Suppose f ∗(a) ∈ f ∗(PSN(ρ̃)). Then a ∈ PSN(ρ̃) by
definition of a homomorphism and Propositions 7.6 and 7.7. Hence f ∗(a)∈ PSN(ρ).
Thus

f ∗(PSN(ρ̃)) ⊆ PSN(ρ) .

Let x ∈ PSN(ρ). Let y ∈ X . If there exists i ∈ N such that yPix, then there exists j ∈ N
such that xPjy. Let a ∈ A be such that f ∗(a) = x. Let b ∈ A . Then f ∗(b)Pi f ∗(a)
if and only if bP̃ia and f ∗(a)Pj f ∗(b) if and only if aP̃jb. Thus if there exists i ∈ N
such that bP̃ia, then there exists j ∈ N such that aP̃jb. Thus a ∈ PSN(ρ̃) and so

x = f ∗(a) ∈ f ∗(PSN(ρ̃) .

Hence
PSN(ρ) ⊆ f ∗(PSN(ρ̃) .

Clearly f ∗−1(PSN(ρ)) ⊇ PSN(ρ̃). Let a ∈ f ∗−1(PSN(ρ)). Suppose a /∈ PSN(ρ̃).
Then ∼ (for all b ∈ A , there exists i ∈ N,bP̃ia implies there exists j ∈ N,aP̃jb).
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Then there exists b ∈ A such that ∼ (there exists i ∈ N,bP̃ia implies there exists
j ∈ N,aP̃jb). Thus if there exists i ∈ N,bP̃ia, then there does not exist j ∈ N,aP̃jb
and so bR̃ ja for all j ∈ N. Hence (b,a) ∈ R̃i for all i ∈ N and so ( f ∗(a), f ∗(b)) ∈ Ri

for all i ∈ N. Thus (b,a) ∈ R̃i for all i ∈ N and so ( f ∗(b), f ∗(a)) ∈ Ri for all i ∈ N.
Hence f ∗(a) /∈ PSN(ρ) which contradicts the fact that a ∈ f ∗−1(PSN(ρ)). Thus
a ∈ PSN(ρ̃) and so f ∗−1(PSN(ρ)) ⊆ PSN(ρ̃). ��
Let f ∗ be a homomorphism of the relation space (A , R̃) onto the relation space
(X ,R). Define the relation ∼ on A by ∀(x,y) ∈ A ×A ,(x,y) ∈∼ if and only if
f ∗(x) = f ∗(y). Then ∼ is an equivalence relation on A . For all x ∈ A, let [x] = {y ∈
A | y ∼ x}. Then [x] is the equivalence class of x with respect to ∼.

Definition 7.12 (quotient top cycle set). Let f ∗ be a homomorphism of the relation
space (A , R̃) onto the relation space (X ,R). Define the quotient top cycle set of R̃
with respect to ∼, denoted T (R̃), to be the set {x ∈A | ∀y ∈A \[x],∃a0,a1, ...,ar ∈
A such that atP̃at+1, i = 0,1, ...,r− 1,a0 = x,ar = y}.
It is clear that T (R̃) ⊆ T (R̃). Thus f ∗(T (R̃)) ⊆ f ∗(T (R̃)), where T (R̃) is the top
cycle set of R̃. Let T (R) denote the top cycle set of R.

Theorem 7.13. Let f ∗ be a homomorphism of the relation space (A , R̃) onto the
relation space (X ,R). Then f ∗(T (R̃ )) = T (R). Furthermore, f ∗−1(T (R)) = T (R̃).

Proof. Let x ∈ T (R̃). Let z ∈ X\{ f ∗(x)}. Let y ∈ A \[x] be such that f ∗(y) =
z. Hence ∃a0,a1, ...,ar ∈ A such that at P̃at+1, i = 0,1, ...,r − 1,a0 = x,ar = y.
By Proposition 7.7, f ∗(at)P f ∗(at+1), t = 0,1, ...,r − 1. Now f ∗(a0) = f ∗(x) and
f ∗(ar) = f ∗(y) = z. Thus f ∗(x) ∈ T (R). Hence f ∗(T (R̃)) ⊆ T (R). Let w ∈ T (R).
Let x ∈ A be such that f ∗(x) = w. Let y ∈ A \[x]. Then f ∗(y) �= f ∗(x) and
in fact f ∗(y) can be considered an arbitrary element of X\{ f ∗(x)}. Thus since
f ∗(x) ∈ T (R),∃b0,b1, ...,br ∈ X such that b0 = f ∗(x),br = f ∗(y) and btPbt+1 for
t = 0,1, ...,r − 1. Let at ∈ A be such that f ∗(at) = bt , t = 0,1, ...,r − 1. Then
atP̃at+1, t = 0,1, ...,r − 1 and we can take a0 = x,ar = y. Hence x ∈ T (R̃) and
f ∗(x) = w. Thus T (R) ⊆ f ∗(T (R̃)).

Clearly, f ∗−1(T (R)) ⊇ T (R̃). Let x ∈ f ∗−1(T (R)). Then f ∗(x) ∈ T (R). Let
y ∈A \[x]. Then ∃b0,b1, ...,br ∈ X such that b0 = f ∗(x),br = f ∗(y) and btPbt+1, t =
0,1, ...,r − 1. Let at ∈ A be such that f ∗(at) = bt , t = 0,1, ...,r − 1. Then
atP̃at+1, t = 0,1, ...,r − 1 by Proposition 7.7 and we can take a0 = x,ar = y. Thus
x ∈ T (R̃). Hence f ∗−1(T (R))⊆ T (R̃). ��
Theorem 7.14. Let f̃ be an aggregation rule on (A ,(R̃1, ..., R̃n)) and let f be
an aggregation rule on (X ,(R1, ...,Rn)). Let f ∗

i be a homomorphism of (A , R̃i)

onto (X ,Ri), i = 1, ...,n. Let f ∗ be a homomorphism of (A , f̃ ((R̃1, ..., R̃n))) onto
(X , f ((R1, ...,Rn))) such that f ∗ preserves ( f̃ , f ) w.r.t. ( f ∗

1 , ..., f ∗
n ). Then f̃ is a sim-

ple majority rule if and only if f is a simple majority rule.

Proof. Since by Proposition 7.7, for all a,b ∈ A ,(a,b) ∈ P̃i if and only if
( f ∗(a), f ∗(b)) ∈ Pi, i = 1, ...,n, it follows that |P̃(a,b; f̃ ((R̃1, ..., R̃n)))| = |P( f ∗(a),
f ∗(b)); f ((R1, ...,Rn)))|. The desired result now follows. ��
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Proposition 7.15. Let f ∗ be a homomorphism of the relation space (A , R̃ = (R̃1, ...,

R̃n)) onto the relation space (X ,R = (R1, . . . ,Rn)). Let f̃ and f be fuzzy aggregation
rules for (A , R̃) and (X ,R), respectively. Let f ∗

i be a homomorphism of (A, R̃i) onto
(X ,Ri), i = 1, ...,n. Suppose f ∗ preserves ( f̃ , f ) with respect to ( f ∗1 , ..., f ∗

n ). Then f
is a Pareto extension rule if and only if f̃ is a Pareto extension rule.

Proof. Since ∀a,b ∈ A ,aR̃ib ⇔ f ∗(a)Ri f ∗(b), i = 1, ...,n, it follows that
∣
∣R̃(a,b;(R1, ...,Rn))

∣
∣ = |R( f ∗(a), f ∗(b);(R1, ...,Rn))| .

Thus

R̃(a,b;(R1, ...,Rn)) = N

⇔ R( f ∗(a), f ∗(b);(R1, ...,Rn)) = N.

Also aP̃b ⇔ f ∗(a)P f ∗(b). Consider the statements.

(1) aP̃b ⇔ R̃(a,b;(R1, ...,Rn)) = N,
(2) f ∗(a)P f ∗(b)⇔ R( f ∗(a), f ∗(b);(R1, ...,Rn)) = N.

Now f̃ is a Pareto extension rule if and only if (1) holds and f is a Pareto extension
rule if and only if (2) holds. The desired result is now immediate. ��
Proposition 7.16. Let f ∗ be a homomorphism of the relation space (A , R̃ = (R̃1, ...,

R̃n)) onto the relation space (X ,R = (R1, ...,Rn)). Let f̃ and f be fuzzy aggregation
rules for (A , R̃) and (X ,R), respectively. Let f ∗

i be a homomorphism of (A, R̃i) onto
(X ,Ri), i = 1, ...,n. Suppose f ∗ preserves ( f̃ , f ) with respect to ( f ∗1 , ..., f ∗

n ). Then f
is dictatorial if and only if f̃ is dictatorial.

Proof. We have ∀i ∈ N,∀a,b ∈ A ,aP̃ib ⇔ f ∗(a)Pi f ∗(b) and aP̃b ⇔ f ∗(a)P f ∗(b).
Consider the statements

(1) ∃i ∈ N, ∀a,b ∈ A , aP̃i b ⇒ aP̃b,
(2) ∃i ∈ N, ∀a,b ∈ A , f ∗(a)Pi f ∗(b)⇒ f ∗(a)P f ∗(b).

Now f̃ is dictatorial if and only if (1) holds and f is dictatorial if and only (2) holds
since f ∗ maps A onto X . The desired result is now immediate. ��
Proposition 7.17. Let f ∗ be a homomorphism of the relation space (A , R̃ = (R̃1, ...,

R̃n)) onto the relation space (X ,R = (R1, ...,Rn)). Let f̃ and f be fuzzy aggregation
rules for (A , R̃) and (X ,R), respectively. Let f ∗

i be a homomorphism of (A, R̃i) onto
(X ,Ri), i = 1, ...,n. Suppose f ∗ preserves ( f̃ , f ) with respect to ( f ∗1 , ..., f ∗

n ). Then f
is weakly Paretian if and only if f̃ is weakly Paretian.

Proof. We have ∀i ∈ N,∀a,b ∈ A ,aP̃ib ⇔ f ∗(a)Pi f ∗(b) and aP̃b ⇔ f ∗(a)P f ∗(b).
Consider the statements
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(1) ∃i ∈ N, ∀a,b ∈ A , aP̃i b ⇒ aP̃b,
(2) ∃i ∈ N, ∀a,b ∈ A , f ∗(a)Pi f ∗(b)⇒ f ∗(a)P f ∗(b).

Now f̃ is weakly Paretian if and only if (1) holds and f is weakly Paretian if and
only (2) holds since f ∗ maps A onto X . The desired result is now immediate.

7.5 The Existence of a Majority Rule Maximal Set

We have demonstrated the equivalence between R on X and R̃ on A , as a result
of which spatial models making use of fuzzy sets representing thick indifference
can easily solve for the existence of a majority rule maximal set. The reader should
also be able to see for herself that the approach can be extended with relative ease
to extraordinarily complex representations, to include multi-modal individual pref-
erences. However, as the example at Figure 6.1 makes clear, such a set may not
always exist. We now consider the conditions under which a majority rule maximal
set exists.

7.5.1 Conditions for the Existence of a Majority Rule Maximal
Set

The results derived here are for arbitrary finite T ⊆ [0,1] with 0,1 ∈ T and with U ar-
bitrary. In the ensuing subsection we demonstrate our results by applying them to the
case U = T 3, where T 3 = {(a1,a2,a3) | ai ∈ T, i = 1,2,3}, T = {0, .25, .5, .75,1}.
T 3 is the set of all ordered 3−tuples with the entries from T .

We will be interested in fuzzy subsets of A . When A represents spatial alter-
natives, let R+ denote the nonnegative real numbers and let R2

+ denote the set of
ordered pairs R+ ×R+. Of primary interest to us in our application and subsequent
demonstration are fuzzy subsets in C = { X̃ : R2

+ → T | 0,1 ∈ Im(X̃), the t-level set
X̃t is the interior and boundary of a simple closed curve for all t ∈ T\{0}}, where
Im(X̃) denotes the image of X̃ . A simple closed curve is a curve for which there is
a one-to-one open continuous function of the unit circle onto it. A simple closed
curve has an interior that is bounded and an exterior. Individual preferences over
alternatives in space need not be convex.

We also have a particular interest in those fuzzy subsets X̃ in C for which X̃t is a
compact set for all t ∈ T\{0}. A compact set is one that is closed and bounded.

If we are to avoid cycling, then under majority rule, our models must predict a
maximal set. Let N denote a set of players and A denote an arbitrary set of interest.
We consider A as a set of alternatives. Our goal is to characterize the maximal set
in A with respect to a binary relation R̃ on A . We first characterize the maximal set
for a set of alternatives X in a universe U for which there is a special function f ∗ of
A onto X such that the results determined in X can be carried back to corresponding
results in A . We first characterize the maximal set in X with respect to a relation R
such that f ∗(R̃) = R. In Theorem 7.8 we proved that the characterized maximal set
in X characterizes the maximal set in A .
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We demonstrated earlier in this chapter that a maximal set does not always exist
in fuzzy set spatial models. In what follows, we characterize the conditions under
which that is the case. Our analysis begins with the Pareto set. As we will demon-
strate, the characteristics of the elements in the Pareto set determine whether a max-
imal exists in fuzzy set spatial models.

Let � be any partial order on U. Recall that ∀x,y ∈ U,x ≺ y if and only if x � y
and x �= y. For ρ = (R1, ...,Rn), we assume in subsequent sections of this paper that
� satisfies the following properties:

(1) for all x,y ∈ U,x � y implies for all i ∈ N,yRix;
(2) for all x,y,z ∈ U, for all i ∈ N,x � y and xRiz implies yRiz;
(3) for all x,y,z ∈ U, for all i ∈ N,x � y and xPiz implies yPiz;
(4) for all x,y ∈ U,x ≺ y implies there exists i ∈ N such that yPix;
(5) for all x,y,z ∈ U, for all i ∈ N,x � y and zRiy implies zRix;
(6) for all x,y ∈ U,x and y incomparable under � and there exists i ∈ N such that

xPiy implies there exists j ∈ N such that yPjx.

The above properties give the relationship of � to R of Definition 7.2. An example of
a partial order � that satisfies properties (1)-(6) is the one given in our three-player
example in the ensuing section.

Definition 7.18 (largest element). Let X ⊆U and LR = {x ∈ X | there does not exist
y ∈ X ,x ≺ y}. An element of LR is called a largest element of X with respect to �.

Mathematics refers to an element in LR, which in defined in terms of �, as a maximal
element. We use “largest element” to avoid confusion with the elements compris-
ing the maximal set given in Definition 7.4. In what follows, we demonstrate the
relationship of the set of maximal elements to the Pareto set (Definition 7.10).

The relation between R and ρ in the following results and those to follow is given
by Definition 7.2.

Proposition 7.19. LR = PSN(ρ).

Proof. Suppose x ∈ LR. Let y ∈ X . Suppose there exists i ∈ N such that yPix. Now
there does not exist y ∈ X such that x ≺ y. Thus for all y ∈ X , either y � x or x and
y are not comparable. Since yPix,y � x is impossible else xRiy for all i ∈ N by (1).
Hence x and y are incomparable under � . Thus there exists j ∈ N such that xPjy by
property (6). Hence x ∈ PSN(ρ). Thus LR ⊆ PSN(ρ).

Suppose x ∈ PSN(ρ). Suppose there exists y ∈ X such that x ≺ y. Then there exists
i ∈ N such that yPix. Since x ∈ PSN(ρ), there exists j ∈ N such that xPjy. Thus x ≺ y
is impossible by (1). Hence x ∈ LR. Therefore PSN(ρ) ⊆ LR.

Corollary 7.20. Let x ∈ X .

(1) Suppose for all y ∈ X ,x � y implies x = y. Then x ∈ PSN(ρ).
(2) If x /∈ PSN(ρ), then there exists y ∈ PSN(ρ) such that x ≺ y.

Proof. (1) Clearly x ∈ LR, but LR = PSN(ρ).
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(2) Since x /∈ PSN(ρ),x /∈ LR. Thus there exists y ∈ X such that x ≺ y. Let y be the
largest such element. Then y ∈ LR = PSN(ρ). ��

Definition 7.21 (closure operator). Define 〈〉 :P(U)→P(U) by ∀S ∈P(U),〈S〉
= {x ∈ U | ∃s ∈ S,x � s}.

The notation 〈〉 in the foregoing definition is standard mathematical notation used
to denote a closure operator. In our case, it yields the smallest set containing S that
is closed under �.

Proposition 7.22. Let 〈〉 : P(U)→P(U) be defined as above. Then the following
conditions hold.

(1) for all S ∈ P(U),S ⊆ 〈S〉;
(2) for all S1,S2 ∈P(U),S1 ⊆ S2 implies 〈S1〉 ⊆ 〈S2〉;
(3) for all S ∈ P(U),〈S〉 = 〈〈S〉〉;
(4) for all S ∈ P(U),〈S〉 = ∪s∈S〈{s}〉;
(5) for all S ∈ P(U),for all x,y ∈ U,x ∈ 〈S∪{y}〉 and x /∈ 〈S〉 implies x ∈ 〈{y}〉.
Proof. (1) Let s ∈ S. Then s � s and so s ∈ 〈S〉. Thus S ⊆ 〈S〉.
(2) Let x ∈ 〈S1〉. Then there exists s ∈ S1 such that x � s. Since s ∈ S2,x ∈ 〈S2〉.
(3) By (1), 〈S〉 ⊆ 〈〈S〉〉. Let x ∈ 〈〈S〉〉. Then there exists y ∈ 〈S〉 such that x � y.

There exists s ∈ S such that y � s. Since � is transitive, x � s. Thus x ∈ 〈S〉.
Hence 〈〈S〉〉 ⊆ 〈S〉.

(4) For all s ∈ S,〈{s}〉 ⊆ 〈S〉 by (2). Thus ∪s∈S〈{s}〉 ⊆ 〈S〉. Let x ∈ 〈S〉. Then there
exists s ∈ S such that x � s. Thus x ∈ 〈{s}〉 and so x ∈ ∪s∈S〈{s}〉. Hence 〈S〉 ⊆
∪s∈S〈{s}〉.

(5) Suppose x ∈ 〈S ∪{y}〉 and x /∈ 〈S〉. Then there does not exist s ∈ S such that
x � s. Hence x � y. Thus x ∈ 〈{y}〉. ��

The function 〈〉 is similar to that used to obtain structure results for (fuzzy) directed
graphs, (fuzzy) finite state machines, and approximation spaces Kuroki and Morde-
son (1997); Malik and Mordeson (2002); Mordeson (1999); Mordeson and Nair
(1996). It may be possible to apply these structure results to PSN(R).

The following result is the gateway to our main conclusion. The result is critical
in a series of lemmas that lead to our main conclusion (Theorem 7.27).

Theorem 7.23. 〈X〉 = 〈PSN(ρ)〉.
Proof. Clearly, PSN(ρ)⊆ X . Thus 〈PSN(ρ)〉 ⊆ 〈X〉. Let x ∈ X . If x /∈ PSN(ρ), then
by (2) of Corollary 15, there exists y ∈ PSN(ρ) such that x ≺ y. Thus x ∈ 〈{y}〉
⊆ 〈PSN(ρ)〉. If x ∈ PSN(ρ) clearly x ∈ 〈PSN(ρ)〉. Hence X ⊆ 〈PSN(ρ)〉 and so
〈X〉 ⊆ 〈PSN(ρ)〉. ��
The following lemma shows that if a maximal set exists, then at least one element
of the maximal set is in the Pareto set. Recall that the relationship between R and ρ
is given in Definition 7.2.

Lemma 7.24. M(R,X)∩PSN(ρ) = /0 if and only if M(R,X) = /0.
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Proof. Suppose M(R,X) �= /0. Let x ∈ M(R,X). By Theorem 7.23, there exists y ∈
PSN(ρ) such that y ! x. Since x ∈ M(R,X),xRz for all z ∈ X . Since y ! x,yRz for
all z ∈ X . Thus y ∈ M(R,X). Hence M(R,X)∩PSN(ρ) �= /0. ��
The next lemma shows that an element in the Pareto set is in the maximal set of R
if and only if it is not strictly preferred to (by majority rule) by another element in
the Pareto set. Hence, the search for an element strictly preferred to another can be
confined to the Pareto set.

Lemma 7.25. Let s ∈ PSN(ρ). Then there does not exist c ∈ PSN(ρ) such that cPs
if and only if s ∈ M(R,X).

Proof. Since R is complete and not cPs for all c ∈ PSN(ρ), it follows that sRc for all
c ∈ PSN(ρ). Let x ∈ X . By Theorem 7.23, there exists c ∈ PSN(ρ) such that c ! x.
Thus sRx by property (5). Hence s ∈ M(R,X). The converse is immediate.

The next lemma establishes that if an element in the Pareto set can be majority
defeated by any other element in X , it can be defeated by at least one element in the
Pareto set.

Lemma 7.26. (1) Let s ∈ PSN(ρ). If there exists x ∈ X such that xPs, then there
exists c ∈ PSN(ρ) such that cPs.

(2) M(R,X) = /0 if and only if ∀s ∈ PSN(ρ), there exists c ∈ PSN(ρ) such that cPs.

Proof. (1) By Theorem 7.23, there exists c ∈ PSN(ρ) such that c ! x. Hence cPs
by property (3).

(2) Suppose M(R,X) = /0. Then the result holds by Lemma 7.25. Conversely, sup-
pose M(R,X) �= /0. By Lemma 7.24, M(R,X)∩PSN(ρ) �= /0 and so there exists
s ∈ M(R,X)∩PSN(ρ). Hence there does not exist c ∈ PSN(ρ) such that cPs. ��

We can now state our main conclusion, which lays out the conditions under which
a maximal set is empty in fuzzy set spatial models.

Let C be a nonempty subset of X . Let R be a binary relation on X and P the
strict binary relation associated with R. Then C is a cycle with respect to R if there
exists an ordering of the elements of C, say c1, ...,ck, such that c1Pc2,c2Pc3, ...,
ck−1Pck,ckPc1.

Let V = {v ∈ U | v is not in a cycle}. Let N1 = V\N2, where N2 = {w ∈ V |
∀R ∈ R,w ∈ PSN(R)⇒ M(R,X) �= /0}. Let M1 = {w ∈ V | ∀R ∈Rn,w /∈ PSN(R)}.
Assume M1 ⊆ N1. Let N′

1 = N1\M1. Suppose N1 is such that none of its elements
are strictly preferred to one of U\V.

Theorem 7.27. M(R,X) = /0 if and only if

PSN(ρ) =

(
n⋃

k=1

Ck

)

∪
(

m⋃

j=1

C′
j

)

∪N′′
1 ,

where N′′
1 ⊆ N′

1,Ck are cycles, k = 1, ...,n,C′
j are subsets of cycles which are not

themselves cycles, j = 1, ...,m, and



162 7 Representing Thick Indifference in Spatial Models

(1) ∀s ∈ ⋃m
j=1 C′

j, there exists c ∈ (
⋃n

k=1 Ck)∪
(⋃m

j=1C′
j

)
such that cPs,

(2) ∀s ∈ N′′
1 there exists c ∈ (

⋃n
k=1 Ck)∪

(⋃m
j=1 C′

j

)
such that cPs.

Proof. It follows that

PSN(ρ)⊆
(

n⋃

k=1

Ck

)

∪
(

m⋃

j=1

C′
j

)

∪V .

Since no element of M1 can be in PSN(ρ)

PSN(ρ) ⊆
(

n⋃

k=1

Ck

)

∪
(

m⋃

j=1

C′
j

)

∪ (N1\M1)∪N2.

Hence it follows that

PSN(ρ) =

(
n⋃

k=1

Ck

)

∪
(

m⋃

j=1

C′
j

)

∪N′′
1 ∪N′

2

for certain cycles Ck,k = 1, ...,n,C′
j subsets of cycles which are not themselves cy-

cles, j = 1, ...,m, and for some N′′
1 ⊆ N′

1, and N′
2 ⊆ N2.

Suppose M(R,X) = /0. Since N2 ∩PSN(ρ) �= /0 implies M(R,X) �= /0,

PSN(ρ) =

(
n⋃

k=1

Ck

)

∪
(

m⋃

j=1

C′
j

)

∪N′′
1 ,

i. e., N′
2 = /0. Since no element of N1\M1 is preferred to one of U\V, no element of

N1\M1 is preferred to one of PSN(ρ). Hence for all s ∈ ⋃m
j=1C′

j , there exists

c ∈
(

n⋃

k=1

Ck

)

∪
(

m⋃

j=1

C′
j

)

such that cPs by Lemma 7.25, else M(R,X) �= /0. By Lemma 7.25, ∀s ∈ N′′
1 , there

exists

c ∈
(

n⋃

k=1

Ck

)

∪
(

m⋃

j=1

C′
j

)

such that cPs.
For the converse, the conditions imply for all s ∈ PSN(ρ), there exists c ∈ PSN(ρ)

such that cPs. Hence no element of PSN(ρ) is in M(R,X). Thus by Lemma 7.24,
M(R,X) = /0. ��
Theorem 7.28. If PSN(ρ) has no cycles, then M(X ,R) �= /0.

Proof. Suppose that there are no strict preferences among the elements of PSN(R).
Then by Lemma 7.25, it follows that
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PSN(ρ) ⊆ M(R,X) .

Hence M(R,X) �= /0 in this case. Let a1, ...,an be distinct elements of PSN(R) such
that a1Pa2,a2Pa3, ...,an−1Pan is of maximal length. If n = 2, then clearly it is not
the case that a1Pa1 or a2Pa1. If n ≥ 3, there does not exist ai such that aiPa1 else
a1Pa2, ...,ai−1Pai is a cycle but PSN(ρ) has no cycles. By the maximality of n,
there does not exist b ∈ PSN(ρ) distinct from ai(i = 1, ...,n) such that bPa1. Hence
no element of PSN(ρ) is strictly preferred to a1. Thus a1 is a maximal element by
Lemma 7.25. Hence M(R,X) �= /0. ��

7.5.2 The Three-Player Case

Our main conclusion is presented in Theorem 7.27. In all but a limited number of
cases the maximal set is empty if and only if the Pareto set is a union of cycles or
a subset of a union of cycles. In this section, we completely characterize the set of
elements that constitute the exceptions to Theorem 7.27 in a three-player game. The
characterized set is presented in Theorem 7.35.

Let the set of political players be N = {1,2,3} and i = N. Let σi : A → T . Define
the binary relation Ri on A by for all x,y ∈ A ,xRiy if and only if σi(x) ≥ σi(y). In
such a case, we say that x is at least as good as y for player i. Clearly, Ri is reflexive,
complete, and transitive. Now xPiy if and only if xRiy and not yRix if and only if
σi(x)> σi(y). In such case, we say that x is strictly preferred to y by player i.

We now consider our application area. Let Ri be defined in terms of σi as above,
i = 1,2,3. Let R denote the set of all reflexive, complete, and transitive binary
relations on A ; R3 the set of all ordered triples of elements of R; and B the set
of all reflexive and complete binary relations on A . Define simple majority rule
f : R3 →B as follows: for all ρ = (R1,R2,R3),for all (x,y) ∈A ×A ,(x,y) ∈ f (ρ)
if and only if |{i ∈ N | xRiy}| ≥ 2. Then (x,y) ∈ f (ρ) and not

(y,x) ∈ f (ρ) ⇔ |{i ∈ N | xRiy}| ≥ 2

and
|{i ∈ N | yRix}| ≤ 1 ⇔ |{i ∈ N | xPiy}| ≥ 2 .

Recall the definition of the Pareto set (Definition 7.10). An alternative x is in the
Pareto set if whenever a player strictly prefers an alternative w to x, then there is a
player who strictly prefers x to w. Any effort by the group to choose an alternative
not in the Pareto set will leave at least one player worse off. Note that the Pareto set
is not determined by majority rule but rather by unanimity.

Let T 3 denote the set of all ordered triples of elements from T .

Definition 7.29 (assignment). Define f ∗ : A → T 3 by ∀x ∈ A , f ∗(x) = (r,s, t),
where
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r =
∨

{a ∈ T | x ∈ σa
1 } ,

s =
∨{

b ∈ T | x ∈ σb
1

}
,

t =
∨

{c ∈ T | x ∈ σ c
3} .

Then (r,s, t) is called the assignment of x with respect to σ1,σ2,σ3. An element
(a,b,c) of T 3 is called allowable with respect to σ1,σ2,σ3 if there exists x ∈A such
that f ∗(x) = (a,b,c). Let X denote the set of all elements of T 3 that are allowable
with respect to σ1,σ2,σ3.

In Definition 7.29, it is clear that x ∈ σ r
1 ∩σ s

2 ∩σ t
3. It is also clear that for r′,s′, t ′ ∈ T

with r ≤ r′,s ≤ s′, t ≤ t ′, it is not the case that x ∈ σ r′
1 ∩ σ s′

2 ∩ σ t′
3 if any of the

inequalities are strict.
The following results show that the main results, which are determined in T 3, can

be transferred faithfully to A via the function f ∗ of A into T 3.

Definition 7.30 (RT 3). Define the binary relation R on T 3 as follows: for all

(a,b,c),(d,e, f ) ∈ T 3,(a,b,c)R(d,e, f )

if and only if either a ≥ d,b ≥ e or a ≥ d,c ≥ f or b ≥ e,c ≥ f . Define the binary
relation P on T 3 by for all (a,b,c),(d,e, f ) ∈ T 3,

(a,b,c)P(d,e, f ) if and only if (a,b,c)R(d,e, f ) and not (d,e, f )R(a,b,c).

Proposition 7.31. Let R and P be defined as in Definition 7.30. Then for all (a,b,c),
(d,e, f ) ∈ T 3,

(a,b,c)P(d,e, f ) if and only if a > d,b > e or a > d,c > f or b > e,c > f .

Proof. It follows easily that R is complete. Thus for all

(a,b,c),(d,e, f ) ∈ T 3,(a,b,c)P(d,e, f )

if and only if not (d,e, f )R(a,b,c). Now not

(d,e, f )R(a,b,c) ⇔ not(d ≥ a,e ≥ b or d ≥ a, f ≥ c or e ≥ b, f ≥ c)

⇔ not(d ≥ a,e ≥ b) and not(d ≥ a, f ≥ c) and not(e ≥ b, f ≥ c))

⇔ (notd ≥ a or note ≥ b)

and (notd ≥ a or not f ≥ c)

and (note ≥ b or not f ≥ c)

⇔ (a > d or b > e) and (a > d or c > f ) and (b > e or c > f )

⇔ a > d,b > e or a > d,c > f or b > e,c > f .

Hence the desired result holds. ��
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Definition 7.32 (strict preference in T 3). Define the binary relation R̂ on A as fol-
lows: for all x,y ∈A ,xR̂y if and only if (a,b,c)R(d,e, f ), where (a,b,c) and (d,e, f )
are the assignments of x and y, respectively, with respect to σ1,σ2,σ3. Define the
binary relation P̂ on A by for all x,y ∈A ,xP̂y if and only if xR̂y and not yR̂x.

The following result is an easy consequence of the definitions. It makes the connec-
tion between strict preference in A and strict preference in T 3.

Proposition 7.33. For all x,y ∈ A , xP̂y if and only if (a,b,c)P(d,e, f ), where
(a,b,c) and (d,e, f ) are the assignments of x and y, respectively, with respect to
σ1,σ2,σ3.

Let x,y ∈ A . Let (a,b,c) = f ∗(x) and (d,e, f ) = f ∗(y). Then xR̂y if and only if
f ∗(x)R f ∗(y) if and only if (a,b,c)R(d,e, f ) if and only if σ1(x) ≥ σ1(y),σ2(x) ≥
σ2(y) or σ1(x) ≥ σ1(y),σ3(x) ≥ σ3(y) or σ2(x) ≥ σ2(y),σ3(x) ≥ σ3(y) if and only
if xR1y,xR2y or xR1y,xR3y or xR2y,xR3y if and only if xR̃y. Thus R̂ and R̃ are the
equivalent. (This argument shows that f ∗ is a homomorphism as defined in section
three.) It also follows that

PSN(ρ) = {(a,b,c) ∈ f ∗(A ) | ∀(d,e, f ) ∈ f ∗(A ),a < d ⇒ b > e or c > f

and b < e ⇒ a > d or c > f and c < f ⇒ a > d or b > e}.

Thus we see that the preimage of PSN(R) under f ∗ equals PSN(R̃).
Let U = T 3, where T = {0, .25, .5, .75,1}. The partial order � on T 3 is defined

by ∀(a1,a2,a3),(b1,b2,b3) ∈ Rn,(a1,a2,a3) � (b1,b2,b3) if and only if ai ≤ bi for
i = 1,2,3. Then (a1,a2,a3)≺ (b1,b2,b3) if and only if (a1,a2,a3)� (b1,b2,b3) and
ai < bi for some i = 1,2,3. For properties (1)− (6) in Section 7.5.1, the relations Ri

are defined as follows: for all (a1,a2,a3),(b1,b2,b3) ∈ T 3,(a1,a2,a3)Ri(b1,b2,b3)
if and only if ai ≥ bi, i = 1,2,3. It follows easily that properties (1)− (6) hold.
(Suppose f ∗ : A → T 3 is such that for x,y ∈ A , f ∗

i (x) = (a1,a2,a3) and f ∗
i (y) =

(b1,b2,b3). Then for i = 1,2,3,

f ∗
i (x)Ri f ∗

i (y) ⇔ (a1,a2,a3)Ri(b1,b2,b3)

⇔ ai ≥ bi

⇔ Ãi(x) ≥ Ãi(y)

⇔ xR̃iy .

Thus f ∗
i satisfies the properties in Theorem 7.14.

Lemma 7.34. Let

N1 = {(a,b,c) | a,b,c ∈ {0,0.25}}
∪{(0,0,a) | a ∈ T}
∪{(0,a,0) | a ∈ T}
∪{(a,0,0) | a ∈ T}

and
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N2 = {(d,e, f ) | d,e, f ∈ {.75,1}}
∪{(1,1,a) | a ∈ T}
∪{(1,a,1) | a ∈ T}
∪{(a,1,1) | a ∈ T} .

Let (x,y,z) ∈ T 3. Then there does not exist a cycle in T 3 containing (x,y,z) if and
only if (x,y,z) ∈ N1 ∪N2.

Proof. Let x ∈ N2. If there does not exist y ∈ T 3 such that yPx, then x is not in a
cycle. If there exists y ∈ T 3 such that yPx, then two of the components of y equal 1.
Thus there does not exist z ∈ T 3 such that zPy. Hence x is not in a cycle. Let x ∈ N1.
If there does not exist y ∈ T 3 such that xPy, then x is not in a cycle. If there exists
y ∈ T 3 such that xPy, then two components of y equal 0. Hence there does not exist
z ∈ T 3 such that yPz. Thus x is not in a cycle.

We complete the proof by showing any other element of T 3 is in a cycle. Consider
(a,b,c), where a,b,c are pairwise distinct, say a < b < c. Then {(c,a,b),(b,c,a),
(a,b,c)} is a cycle. Suppose a = b = c. Then the previous paragraph shows that
a = b = c = .5. Clearly

{(.75,0, .75),(.5, .5, .5),(.25, .25,1)}

is a cycle. Suppose exactly two of a,b,c are equal, say a= b. There are 10 remaining
elements (a,a,c) and their permutations (a,c,a),(c,a,a). It suffices to consider the
10 elements,

(.5, .5,0),(.5, .5, .25),(.5, .5, .75),(.5, .5,1),

(.25, .25, .5),(.25, .25, .75),(.25, .25,1),

(.75, .75,0),(.75, .75, .25),(.75, .75, .5).

The following are cycles involving the 10 elements or permutations of the elements:

{(0, .75, .75),(.5, .5,0),(.25, .25,1)},{(0, .75, .5),(.5, .5, .25),(,25, .25, .75)},
{(0, .75,1),(.5, .5, .75),(.25,1, .25)},{(.75, .75,c),(.5, .5,1),(.25,1, .75)},
{(.5, .5,0),(.25, .25, .5),(.75,0, .25)},

where c = 0, .25 or .5. ��
Let

N′
1 = {(.25, .25, .25),(.25, .25,0),(.25,0, .25),(0, .25, .25)}

and
I1 = {(1,0,0),(0,0,1),(0,1,0)} .

We can now state our main conclusion, which lays out the conditions under which
a maximal set is empty in fuzzy three-player spatial models.
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Theorem 7.35. M(R,X) = /0 if and only if PSN(ρ) = (∪n
k=1Ck)∪(∪m

j=1C′
j)∪N′′

1 ∪I′1,
where N′′

1 ⊆ N′
1, I

′
1 ⊆ I1,Ck are cycles, k = 1, ..,n,C′

j are subsets of cycles which are
not themselves cycles, j = 1, ...m, and

(1) for all s ∈ ∪m
j=1C′

j , there exists c ∈ (∪n
k=1Ck)∪ (∪m

j=1C′
j) such that cPs,

(2) for all s ∈ N′′
1 there exists c ∈ (∪n

k=1Ck)∪ (∪m
j=1C′

j) such that cPs and

(3) for all i ∈ I′1, there exists d ∈ (∪n
k=1Ck)∪ (∪m

j=1C′
j)∪N′′

1 such that dPi.

Proof. By Lemma 7.34, it follows that

PSN(ρ) ⊆
(

n⋃

k=1

Ck

)

∪
(

m⋃

j=1

C′
j

)

∪N1 ∪N2.

Since no element of ({(0,0,a) | a ∈ T}∪{(0,a,0) | a ∈ T}∪{(a,0,0) | a ∈ T})\I1

can be in PSN(ρ) and since no element of N1\(N′
1 ∪ I1) can be in

PSN(ρ),PSN(ρ) ⊆
(

n⋃

k=1

Ck

)

∪
(

m⋃

j=1

C′
j

)

∪N′
1 ∪ I1 ∪N2.

Hence it follows that

PSN(ρ) =

(
n⋃

k=1

Ck

)

∪
(

m⋃

j=1

C′
j

)

∪N′′
1 ∪ I′1 ∪N′

2

for certain cycles Ck,k = 1, ...,n,C′
j subsets of cycles which are not themselves cy-

cles, j = 1, ...,m, and for some N′′
1 ⊆ N′

1, I
′
1 ⊆ I1, and N′

2 ⊆ N2.
Suppose M(R,X) = /0. By Lemma 7.24,

PSN(ρ) =

(
n⋃

k=1

Ck

)

∪
(

m⋃

j=1

C′
j

)

∪N′′
1 ∪ I′1,

i. e., N′
2 = /0. If s ∈ N1 is such that sPc for some c ∈ PSN(ρ), then two of the com-

ponents of c equal 0 and so c ∈ I′1. Thus no element of N1 is strictly preferred to one
of (

n⋃

k=1

Ck

)

∪
(

m⋃

j=1

C′
j

)

.

No element of I′1 is strictly preferred to any element of PSN(ρ). Hence for all s ∈
⋃m

j=1 C′
j, there exists

c ∈
(

n⋃

k=1

Ck

)

∪
(

m⋃

j=1

C′
j

)

such that cPs by Lemma 7.25 else M(R,X) �= /0. By Lemma 7.25, for all s ∈ N′′
1

there exists
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c ∈
(

n⋃

k=1

Ck

)

∪
(

m⋃

j=1

C′
j

)

such that cPs and for all i ∈ I′1, there exists

d ∈
(

n⋃

k=1

Ck

)

∪
(

m⋃

j=1

C′
j

)

∪N′′
1

such that dPi.
For the converse, the conditions imply ∀s ∈ PSN(ρ), ∃c ∈ PSN(ρ) such that cPs.

Hence no element of PSN(ρ) is in M(R,X). Thus by Lemma 7.26, M(R,X) = /0. ��
We can have (

n⋃

k=1

Ck

)

∩
(

m⋃

j=1

C′
j

)

= /0

in Theorem 7.35 by deleting any element

s ∈
(

n⋃

k=1

Ck

)

∩
(

m⋃

j=1

C′
j

)

from
⋃m

j=1C′
j since s is in some Ck. Also any elements of

⋃m
j=1 C′

j that form a cycle
can be removed from

⋃m
j=1 C′

j and moved to
⋃n

k=1 Ck since they form a cycle.

Example 7.36. Let PSN(ρ) =C ∪{(.75, .75, .75)}, where

C = {(1, .5,0),(.5,0,1),(0,1, .5)}.

Then C is a cycle. Thus M(R,X) ∩ PSN(R) = {(.75, .75, .75)}. It is easily ver-
ified that M(R,X) = {(.75, .75, .75,(.75, .75, .5),(.75, .5, .75),(.5, .75, .75)}. Here
M(R,X)� PSN(R).

Example 7.37. Let PSN(ρ) =C ∪{(.75, .75, .75)}, where

C = {(1, .75,0),(.75,0,1),(0,1, .75)}.

Then C is a cycle. Thus M(R,X)∩PSN(R) = {(.75, .75, .75)}. It is easily verified
that M(R,X) = {(.75, .75, .75}. In this example, M(R,X) ⊆ PSN(ρ).

7.6 Implications

Our main argument is contained in Theorem 7.27, which demonstrates that spatial
models of fuzzy individual preferences can predict a majority rule maximal set
under far less restrictive conditions than the conventional approach. Theorem 7.27
can be applied to any n-player game (n> 2). Moreover, Mordeson and Clark (2010)



7.6 Implications 169

demonstrates similar results in greater dimensionality spatial models. Our results
in this chapter establish that in all but a limited number of cases, the majority rule
maximal set is empty if and only if the Pareto set is a union of cycles or a subset
of a union of cycles. Hence, if the elements in the Pareto set cycle under majority
rule or if they constitute a subset of a cycle under majority rule, the maximal set
is empty, and vice versa. Moreover, Theorem 7.28 establishes that for the majority
rule maximal set to be empty, the Pareto set must contain at least one undefeated
alternative.

Furthermore, we have demonstrated that if the maximal set exists, at least one of
its elements must be contained in the Pareto set (Lemma 7.24). If an element in the
Pareto set can not be majority defeated by any other element in the Pareto set, then it
is an element in the maximal set. However, if every element in the Pareto set can be
majority defeated by at least one other element in the Pareto set, then the maximal
set is empty. Moreover, if an element in the Pareto set can be majority defeated by
any element in the total set of available alternatives then at least one of the elements
that defeats it must be in the Pareto set (Lemma 7.26). The implication is that we
may confine our initial search for the existence of a majority rule maximal set to the
Pareto set.

The substantive interpretation of our argument is straightforward and intuitive. If
the degree to which a majority find a given alternative acceptable is relatively high,
then a stable outcome is assured under majority rule. This is born out by Theorem
7.35, which completely characterizes the limited cases that constitute the exceptions
for a three-player game. While none of the following seven distinct elements are ever
part of any cycle, if they are part of the Pareto set together with a cycle or a subset
of a cycle, and they are defeated by at least one other element in the Pareto set, then
the maximal set is empty.

{(.25, .25, .25),(.25, .25,0),(.25,0, .25),(0, .25, .25),

(1,0,0),(0,0,1),(0,1,0)}.

If they are not defeated by at least one other element in the Pareto set or if
they uniquely comprise the Pareto set, then they are elements in the maximal set.
The first four elements represent a situation in which the players’ preferences in-
tersect at the lowest t−level possible. In the most trivial case, represented by
{(1,0,0),(0,0,1),(0,1,0)}, the preferences of three players do not intersect at any
t−level. In this case, the Pareto set and maximal set comprise the same three alter-
natives (the "ideal" points of the players).

Furthermore, if any of the following elements are in the Pareto set, a maximal set
always exists:

{(1,1,a),(1,a,1),(a,1,1),(1, .75, .75),(.75,1, .75),(.75, .75,1),

(.75, .75, .75)}, where a is any element of T .
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In essence, if the preferences for all three players intersect at relatively high t−levels
or at t−level = 1 (the ideal region of alternatives) for any two of them, a maximal
set exists.

We would be remiss if we did highlight the ability of the approach considered
in this paper to deal with highly irregular preferences, which standard mathemat-
ical approaches can only tackle with substantial difficulty. If spatial models are to
be tested empirically, they will need to be able to accommodate any shape imposed
upon them by estimates derived from data sets. As of yet, no convention has emerged
on how best to estimate preferences, but judging by the efforts to do so using Nom-
inate Bianco et al. (2004) and the Comparative Manifesto Project Laver (2001),
preferences are likely to take any number of shapes. The oddity of those shapes is
far likelier in the case of collective institutions.

We should also note the relative ease with which the approach deals with non-
separable issues. The conventional approach relying on the Euclidean utility func-
tion ui(y) = −[(y − x)Ai(y − x)T ] requires constructing a k × k positive definite
matrix Ai to weight a player’s preference calculations, where k denotes the num-
ber of dimensions in Euclidean space and T denotes transpose. In the case of
non-separable preferences, the model must specify the off-diagonal entries of Ai to
numbers other than zero. The approach put forth by Clark, Larson, Mordeson, and
Wierman (2008) does not require this degree of specificity. The homomorphism, the
proof of which is provided in section three, permits the model to solve for solution
sets when preferences are non-separable, even though σ can be represented by any
geometric shape. In fact, Clark, Larson, Mordeson, and Wierman (2008) demon-
strate that separable fuzzy preferences in two-dimensional space are rectangular.
Fuzzy preferences represented by other shapes, to include circles, are non-separable.

We conclude with a brief comment on our major theorem (Theorem 7.27). The
theorem makes it clear that it is neither the shape of players’ preferences nor the po-
sitioning of players in space that matters when determining the maximal set. In fact,
convex ellipses might result in an empty maximal set, and non-convex preferences
can result in a maximal set. What is important are the intersections of the play-
ers’ preferences. If the preferences for all three players intersect at relatively high
t−levels or at t−level = 1 (the ideal region of alternatives) for any two of them,
a maximal set always exists. Furthermore, our theory demonstrates that fuzzy set
spatial models can map any geometric shape representing the preferences of players
to a region with suitable and natural partial ordering.
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Chapter 8
Conclusion

Abstract. This concluding chapter provides a summary of the findings from this
book. After showing that a fuzzy maximal set exists, a fuzzy aggregation rule
was shown to exist which satisfies all five Arrowian conditions including non-
dictatorship. Although the Gibbard-Satterthwaite Theorem has considered individ-
ual fuzzy preferences, this book shows that both individuals and groups can choose
alternatives to varying degrees resulting in a social choice that can be both strategy-
proof and non-dictatorial. Under strict fuzzy preferences, the Median Voter Theorem
is shown to hold; however, this is not found under weak fuzzy preferences.

Introduction

In the preceding chapters, we described the set-theoretic work produced to date
on social choice theory and reanalyzed its implications in the fuzzy framework.
Though we presented many previously-obtained results regarding the basic behav-
ior of fuzzy preferences (Chapters 1 and 3), our primary focus was on the novel
application of fuzzy set theory to the normatively-problematic results in the crisp
social choice literature. Specifically, we generalized the well-known works of Ar-
row (Chapter 4), Gibbard and Satterthwaite (Chapter 5), Black (Chapter 6), and
KcKelvey (Chapter 7). We extended these theorems in the fuzzy framework, with
novel results that differ substantially from the crisp framework.

We began to discuss our novel results in Chapter 4, wherein we generalized Ar-
row’s Impossibility Theorem in the fuzzy framework. Table 8.1 summarizes our
results, as well as the results of previous attempts by others in the social choice lit-
erature. Specifically, Table 8.1 classifies generalized versions of Arrow’s Theorems
by the type of strict preference relation used. Recall from Corollary 3.23 that π(n) is
given as follows.

Proposition 8.1. Let ρ be an FWPR on X such that ρ = ι ∪π .
Then we list the following results.

(1) If ∪= ∪1, where Gödel union ∪1 is given by

M.B. Gibilisco et al., Fuzzy Social Choice Theory, 173
Studies in Fuzziness and Soft Computing 315,
DOI: 10.1007/978-3-319-05176-5_8, © Springer International Publishing Switzerland 2014
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(A∪1 B)(x) = max{A(x), B(x)} ,

then π = π(1) where

π(1)(x,y) =

{
ρ(x,y) if ρ(x,y)> ρ(y,x),

0 otherwise.

(2) If ∪= ∪2, where Łukasiewicz union ∪2 is given by

(A∪2 B)(x) = min{1, A(x)+B(x)} ,

and conditions (iv) and (v) from Proposition 3.18 hold, then π = π(2) where

π(2)(x,y) = 1−ρ(y,x).

(3) If ∪= ∪2, then π = π(3) where

π(3)(x,y) = max{0, ρ(x,y)−ρ(y,x)}.

(4) If ∪= ∪3, where strict union ∪3 is given by

(A∪3 B)(x) =

⎧
⎨

⎩

B(x) if A(x) = 0
A(x) if B(x) = 0

1 otherwise,

then π = π(4) where

π(4)(x,y)=

{
ρ(x,y) if ρ(y,x) = 0,

0 otherwise.

(5) If ∪= ∪4, where algebraic union ∪4 is given by

(A∪4 B)(x) = A(x)+B(x)−A(x)B(x)

then π = π(5) where

π(5)(x,y) =

{
ρ(x,y)−ρ(y,x)

1−ρ(y,x) if ρ(x,y)> ρ(y,x),
0 otherwise.
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Table 8.1 then specifies the necessary assumptions that each generalized theo-
rem makes regarding individual and social preferences. The definitions of each of
these assumptions (reflexiveness, completeness, max-∗ transitivity, and so on) can
be found in Chapter 3, while the properties of each Fuzzy Preference Aggregation
Rule (IIA-n, weak-paretianism, etc.) are defined in Chapters 3 and 4. The social
choice results of these FPARs and their properties are then summarized at the end
of the table.

In the Assumptions on Individual/Social Preferences columns we use the fol-
lowing conventions. Max-min and max-∗ transitivity are from Definitions 1.19 and
3.32 respectively. Preference is Ł-transitive if it is max-∗ transitive with ∗ being the
Łukasiewicz t–norm, so that ∀x,y,z ∈ X ,

ρ(x,z) ≥ ρ(x,y)+ρ(y,z)−1 .

Preference is m-transitive (minimal transitive) if ∀x,y,z ∈ X ,

(ρ(x,y) = 1 and ρ(y,z) = 1) imply ρ(x,z) = 1 .

Finally, w-connected stands for weakly connected, i.e., ρ(x,y) = 0 implies ρ(y,x) =
1 which is a slightly stronger requirement than the completeness condition.

In the Properties of the FPAR column PC stands for Pareto Condition, see
Definition 4.5 and NI stands for non-imposition where πi(x,y) for all i ∈ N then
nπ(y,x) = 0.

In the Social Choice Results column, a weak dictator implies there exists a dicta-
tor over (x,y) ∈ X ×X for all (x �= y,y �= x) �/∈ X ×X .

The key to the Reference column is

Bill Billot (1992),
Bann Banerjee (1994),
Dutt Dutta (1987),
DPPP Duddy, Perote-Peña, and Piggins (2011),
DaDe Dasgupta and Deb (1999),
FoAn Fono and Andjiga (2005),
FDKA Fono, Donfack-Kommogne, and Andjiga (2009),
MoCl Mordeson and Clark (2009) and
Rich Richardson (1998).

Theorem and proposition numbers refer to the numbering in the associated paper. If
no paper is specified, the number references a Theorem in this book.

We encountered many difficulties in formulating fuzzy definitions of an ideal ag-
gregation rule – particularly with respect to the IIA criterion – but we found that
there exist specific combinations of conditions that allow for a fuzzy aggregation
rule that satisfies all of the fuzzy counterparts of Arrow’s conditions. This result and
its assumptions are listed in Table 8.1 below, under Theorem 4.24. Essentially, The-
orem 4.24 indicates that, given an FPAR which satisfies fuzzy definitions of transi-
tivity, weak Paretianism and independence of irrelevant alternatives, the FPAR must
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be dictatorial. However, the implication of dictatorship cannot be generalized over
all derivations of fuzzy Arrowian conditions, as the rest of Table 8.1 demonstrates.

Specifically, as we show in Sections 4.1.3 and 4.1.4, the fuzzy Arrowian frame-
work allows for a non-dictatorial aggregation of fuzzy preferences that satisfies the
five Arrowian criteria laid out in Section 4.1. Theorems 4.43, 4.44, and 4.50 (also
listed in Table 8.1) illustrate this result. Theorem 4.50, for instance, satisfies the
fuzzy Pareto rule and is reflexive, complete, weakly Paretian, IIA-1, IIA-3 and max-
∗ transitive, without placing excessive restrictions on π .

The results obtained in Theorems 4.43, 4.44, and 4.50 of Chapter 4 are distinct
from those previously obtained by approaches that use exact preferences. Most im-
portantly, our results suggest that the normatively-undesirable results of classic so-
cial choice theory no longer hold when groups possess fuzzy preferences.

Chapter 5 parallels Chapter 4 with a generalization of the Gibbard-
Satterthwaite Theorem, which states that voters, if they are able, can manipulate
voting procedures to obtain more preferred social outcomes by reporting insin-
cere preferences. We begin by considering three definitions of strategic manipu-
lation of fuzzy social choice functions wherein actors can choose alternatives to
varying degrees. We then demonstrate that with minimal assumptions on individual
preferences, strategy-proof fuzzy social choice functions satisfy fuzzy versions of
peak-only, weak Paretianism, and monotonicity. Furthermore, a fuzzy social choice
function is strategy-proof if and only if it is a form of the fuzzy augmented median.
These results, outlined in Table 8.2, provide a new dimension to the strategic manip-
ulation literature, which is currently divided as to whether choice functions can be
both non-manipulable and nondictatorial when individual preferences are restricted
to a single-peaked domain. Else in Table 8.2 denotes all conditions except the ones
noted.

Table 8.2 Summary: Chapter 5

Fuzzy Social
Choice

Function
(FSCF)

Assumptions of
the FSCF

Properties of
the FSCF

Social Choice
Results

Reference

Fuzzy
Augmented

Median Rule

Choice
intensities are

separable

Sigma-only
Weakly-
Paretian

Monotonic
IIA-3

Strategy-proof
(Dictatorial)
Allows for
unrestricted

choice domain

Definition 6.32

Else Else Else Manipulable Theorem 6.35

In Chapter 6, we showed that when fuzzy simple rules allow the social strict
preference relation to be regular, the fuzzy maximal set is not necessarily equal
to the set of f -medians under a single-peaked profile. As Table 8.3 illustrates, the
conditions placed on πmust be quite restrictive. Else, the maximal set may be empty,
or it may contain more alternatives than the set of f -medians. In other words, Black’s
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Median Voter Theorem does not hold under many conceptualizations of the fuzzy
framework.

Table 8.3 Summary: Fuzzy Simple Rules vs. Fuzzy Voting Rules

Fuzzy Non-Dominated Set Fuzzy Maximal Set
ND(�,�) M(�,�)

Fuzzy Simple Rules Non-empty when � is weakly
single-peaked

Non-empty when � is weakly
single-peaked

Fuzzy Voting Rules Non-empty when � is
single-peaked

Non-empty when � is weakly
single-peaked

However, Chapter 6 also demonstrates that Black’s Median Voter Theorem can
be made to hold under both the fuzzy non-dominated and maximal sets in the fuzzy
framework if the strict preference relation, π, is partial. Unfortunately, the non-
emptiness of neither the maximal set nor the non-dominated set can be guaranteed
under any other type of preference relation, as Table 8.4 illustrates.

Table 8.4 Summary: Results with Black’s Median Voter Theorem

Fuzzy Non-Dominated Set Fuzzy Maximal Set
ND(�,�) M(�,�)

Fuzzy Augmented
Median Voter Theorem

Holds Holds

Else Does Not Hold Does Not Hold

In the final chapter of this book, we turn our focus to the spatial model. In Section
7.1, we consider several problems that can occur when modeling crisp social pref-
erence, indifference and majority rule. A particular area of concern is the inherent
difficulty of modeling indifference curves which are thick or irregularly-shaped, as
is often the case in empirical reality. Traditionally, mathematicians have only been
able to do this with great difficulty and limited accuracy. Additionally, traditional
crisp spatial models tend to do a rather poor job of predicting majority rule out-
comes. A remarkable example of this is that many Euclidian rational choice models
predict empty or cycling maximal sets with a high degree of frequency. However,
emptiness or cycling problems are very rarely observed in real world elections.

The application of fuzzy set theory to the traditional spatial model addresses
both of these concerns surprisingly well. Fuzzy spatial models can successfully ac-
commodate thick, highly-irregular indifference curves in addition to predicting the
existence of non-empty, non-cycling maximal sets. We detail this approach, which
relies on a specific isomorphism, in Section 7.2. Section 7.4 proves this homor-
phism with Proposition 7.7, while Section 7.3 provides an empirical application of
our approach.
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The chapter’s main theorem is presented in Section 7.5. Specifically, Theorem
7.27 proves the possibility of a non-empty majority rule maximal set, while the rest
of the section describes the necessary conditions for its existence. As illustrated in
Table 8.5, we found that in nearly all cases, a spatial model with thick indifference
curves results in an empty maximal set if and only if its Pareto set contains a union
of cycles a subset of a union of cycles. The certain exceptions which exist in the
case of specific 3-player games are listed in their entirety in Subsection 7.5.2 and
explained in further detail therein. Section 7.6 concludes our final chapter with a
summary of our findings and a discussion of applications relating to the theoretical
approach utilized in Theorem 7.27.

We hope that our work lends itself in the future to further empirical studies of how
these theorems behave. We are confident that the benefits of this novel approach to
social choice will justify the extensive theoretical work which has been done, and
much of which remains to be completed. In particular, we hope future research
expounds upon the applications of fuzzy topology and fuzzy calculus to the spatial
model, as well as the relevance of fuzzy propositional logic to social choice theory.
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