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Abstract A new technique for forming information granules is shown in this
chapter. Based on the theory of uncertainty-based information, an approach is
proposed which forms Interval Type-2 Fuzzy information granules. This approach
captures multiple evaluations of uncertainty from taken samples and uses these
models to measure the uncertainty from the difference in these. The proposed
approach is tested through multiple benchmark datasets: iris, wine, glass, and a 5th
order curve identification.

1 Introduction

Granular computing is concerned with how information is grouped together and
how these groups can be used to make decisions [1, 2]. It is inspired by how human
cognition manages information. Granular computing is used to improve the final
representation of information models by forming information granules which
better adapt to the known information. Although granular computing expresses
information models, more commonly known as information granules, it can use a
variety of representations to express such granules, which could be rough sets [3],
quotient space [4], shadowed sets [5], fuzzy sets [6, 33–35], etc.
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Information granules are representations of similar information which can be
used for a purpose, typically to model a portion of information. Forming fuzzy
information granules is not new, knowing that many representations can be used
there have been many approaches which try to solve this: via their relationships
[7], optimization of time granularity [8], information granulation [9], with RBF
neural networks [10], Interval Type-2 Fuzzy granules [11], non-homogeneous
General Type-2 Fuzzy granules [12], etc.

This chapter proposes an approach to information granule formation by cap-
turing, through samples, evaluations of uncertainty where their difference is a
direct measure of uncertainty which is used to form Interval Type-2 Fuzzy
information granules [25–32].

This chapter is organized as follows: Sect. 2 describes the proposed approach as
well as its motivation. Section 3 shows benchmark results alongside the discus-
sion. Finally, Sect. 4 concludes the document.

2 Uncertainty-Based Information Granule Formation
Methodology Description

To first understand the main methodology, a review of the motivation is necessary,
as it describes the basis for the proposed approach. First, the basis for the proposed
approach, which is the theory of uncertainty-based information [13, 14] is
described; then, evaluations of uncertainty [15, 16] are described, which defines
functions that represent uncertainty measures.

2.1 Uncertainty-Based Information

The concept of uncertainty is closely related to the concept of information. The
fundamental characteristic of this relation is that involved uncertainty from any
problem-solving situation is a result of information deficiency pertaining to the
system within which the situation is conceptualized. This information could be
incomplete, imprecise, fragmentary, unreliable, vague, or contradictory.

With the assumption that a certain amount of uncertainty can be measured from
a problem-solving situation it is possible that a mathematical theory can be
formed.

With another assumption that this amount of uncertainty is reduced by
obtaining relevant information as a result of some action (e.g. obtaining experi-
mental results, observing new data, etc.), the amount of obtained information by
the action can be measured by that amount of reduced uncertainty. That is, the
amount of information related to a given problem-solving situation that is obtained
through some action is measured by the difference between a priori uncertainty and
a posteriori uncertainty.
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In Fig. 1, the shown diagram represents the general idea of the behavior of
uncertainty-based information; where a reduction of uncertainty can be obtain by
the difference of two uncertain models of the same information. That is, the a
priori uncertainty model is obtained with a first sample of information, where as
the posteriori uncertainty model is obtained with a second sample of information
related to the same problem-solving situation.

2.2 Evaluations of Uncertainty

To capture uncertainty, there are two fundamental types of evaluations: Type A
and Type B.

Through repeated measurements, an average measured value can infer a stan-
dard deviation which forms a Gaussian distribution function, where this functions
is a Type A evaluation of uncertainty.

Type B evaluations of uncertainty are represented by a rectangular probability
distribution, in other words, a specified interval where the measurements are
known to lie in.

2.3 Uncertainty-Based Information Granule Formation

Taking inspiration on uncertainty-based information, this can be interpreted in a
manner which forms higher-type information granules where uncertainty can be
captured and measured and build Interval Type-2 Fuzzy information granules.

A sample of information can build a model with uncertainty from the complete
source of information; this is, since it is impossible to know the complete truth of
any given situation, uncertainty will always exist in any sample information which
may be taken from it.

Through a first sample of information (D1), an uncertain model (evaluation of
uncertainty) can be created. Through a second sample of information (D2), another
similar uncertain model can be also created. These two models of uncertainty are
analogous to the models in the theory of uncertainty-based information, a priori
and posteriori uncertainty models.

Fig. 1 Diagram of the behavior of the uncertainty-based information where uncertainty is
reduced by the difference between two uncertain models of the same information
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In a direct comparison with the theory of uncertainty-based information, the
proposed approach does not reduce the uncertainty in the model, instead it mea-
sures and defines it to be able to use it in an information granule and have an
improved representation of the information. The proposed approach is shown in
Fig. 2, where a first sample of information obtains an evaluation of uncertainty, in
the form of a Gaussian function, or Type-1 Gaussian membership function; and a
second sample of information obtained another similar evaluation of uncertainty,
of the same form. A difference is found between these two Gaussian membership
functions defining the Footprint of Uncertainty (FOU), thus obtaining an IT2
Fuzzy information granule. Here there are three possibilities: (1) the first Gaussian
membership function has an r which is larger than the second; (2) the second
Gaussian membership function has an r which is larger than the first; and (3) the r
from both Gaussian membership functions are the same. For 1 and 2, the FOU
which is created defines some uncertainty which has been measured and can now
be used by the IT2 Fuzzy System; and for 3, since no uncertainty was measured a
T1 Fuzzy Set is created.

To show the viability of the proposed approach in that it captures uncertainty
and forms IT2 Fuzzy information granules, an algorithm was created that would
allow for results to be obtained. The following steps define the algorithms:

1. Obtain rules and centers. These can be obtained through any clustering algo-
rithm, for the experimental case in this chapter the subcluster algorithm [17]
was used.

2. Through a first sample of information (D1), all r1 for all centers are calculated.
These were found by calculating the Euclidean n-space distance between each
data point and all centers, where the shortest distance defines to which center
does that point belong to, afterwards having a set of data points for each cluster,
a standard deviation was calculated as to form an evaluation of uncertainty in
the form of a Gaussian membership function. For the case of testing, a random
sample comprised of 40 % of the dataset was used.

3. Through a second sample of information (D2), in the same manner as the
previous step, all r2 for all centers are calculated. A random sample comprised
of another 40 % of the dataset was used for this step.

Fig. 2 Explanatory diagram of how the proposed approach measures and defines the uncertainty,
and forms an IT2 Fuzzy set with such uncertainty

116 M. A. Sanchez et al.



4. Form the IT2 Fuzzy Gaussian information granules as proposed. This only
builds the antecedents of a complete IT2 Fuzzy System.

5. The consequents are finally optimized via an evolutionary algorithm, obtaining
a complete IT2 Fuzzy System which can be used to acquire results. For this
chapter, Interval Takagi-Sugeno-Kang (TSK) [18, 19] consequents were used,
they were optimized via a Cuckoo Search algorithm [20].

The next section uses this algorithm to obtain results.

3 Experimental Results and Discussion

For experimental tests, four datasets were used: iris, wince, glass, available from
the UCI dataset repository [21], and a 5th order polynomial curve. Where the iris
dataset, has 4 input features (petal length, petal width, sepal length, and sepal
width), and 3 outputs (iris setosa, iris virginica, and iris versicolor). With 50
samples of each flower type, with a total of 150 elements in the dataset. The wine
dataset, with 13 input features of different constituents (Alcohol, malic acid, ash,
alcalinity of ash, magnesium, total phenols, flavanoids, nonflavanoid phenols,
proanthocyanins, color intensity, hue, OD280/OD315 of diluted wines, and pro-
line) identifying 3 distinct Italian locations where the wine came from. With 59,
71, and 48 elements respectively in each class, for a total of 178 elements in the
whole dataset. The glass identification dataset, has 9 input variables (refractive
index, sodium, magnesium, aluminum, silicon, potassium, calcium, barium, and
iron), and 7 classes (building windows float processed, building windows non float
processed, vehicle windows float processed, containers, tableware, and head-
lamps). With 70, 76, 17, 13, 9, and 29 elements respectively in each class, for a
total of 214 elements in the whole dataset.

3.1 Experimental Results

On Table 1, the obtained results are shown, where the after 30 execution runs for
each dataset were made to obtain a minimum, maximum, mean, and standard
deviation for each dataset.

The following Figs. 3, 4, 5, 6 show one sample of the formed IT2 Fuzzy
information granules of each dataset: iris, wine, glass, and 5th order polynomial,
respectively.
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Table 1 Obtained results for the chosen datasets

Classification accuracy % RMSE error

Iris Wine Glass 5th order polynomial

Min 86.66 88.88 44.18 0.36
Mean 93.99 93.05 68.43 0.69
Max 100 97.22 86.04 1.14
Std 5.164 5.982 15.592 0.181

Fig. 3 Sample of the formed IT2 Fuzzy information granules for the Iris dataset

Fig. 4 Sample of the formed IT2 Fuzzy information granules for the Wine dataset
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3.2 Results Discussion

The values obtained for the classification accuracy and RMSE error are not the
best values obtained in general, yet they are comparable to current algorithms in
terms of mean results [22–24]. This is by no manner the best obtainable results this
approach can acquire; this is mostly in part to the chosen clustering algorithm as
well as the evolutionary algorithm which were used to obtain such results. A better
combination as well as tuning should yield better results.

As shown in the formed IT2 Fuzzy information granules, some granules cap-
tured more uncertainty than others, in many cases the uncertainty is minimal to the
point that there is no measurable uncertainty when forming the evaluation of
uncertainty Gaussian function.

Having chosen IT2 Fuzzy Gaussian membership functions as representation for
higher type information granules, the characteristics of these is that the center
value is the same, and only two values for r form the FOU. Although results are
acceptable, other variations can be used to yield different results as well as dif-
ferent interpretations, for example, where the center is offset and two values for r
are used. Even other types of IT2 Fuzzy membership functions could be used, each
one having their own interpretation of the information as well as varying results
when the IT2 Fuzzy System is formed and optimized.

Fig. 5 Sample of the formed IT2 Fuzzy information granules for the Glass dataset
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Fig. 6 Sample of the formed
IT2 Fuzzy information
granules for the 5th order
polynomial dataset
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4 Conclusion and Future Work

4.1 Conclusions

Taking inspiration from the uncertainty-based information theory, higher type
information granules can be formed which better conceptualize the uncertainty in
the information.

The proposed approach reduces the uncertainty in the information model by
measuring the uncertainty by means of the difference between two evaluations of
uncertainty created by two distinct measurements of information sampling.

By choosing Interval Type-2 Fuzzy sets as the representation of information
granules, the proposed approach directly takes the obtained uncertainty
measurement and builds higher type information granules.

Any other form of granule representation which can express the uncertainty in
the information can be used [36].

4.2 Future Work

Find the optimal amount of samples for each model building step. Although 40 %
was used, what is the minimal amount which can be used to obtain acceptable
results?

The amount of samples taken could be explored; this chapter only took two
samples to form the final information granule. Could taking more samples yield a
better result?

Other information granule representations could be used which also support
uncertainty. Even though Type A Gaussian evaluations of uncertainty were used,
there are other types of functions which could also directly capture uncertainty.
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