
Features and Pitfalls that Users Should
Seek in Natural Language Interfaces
to Databases

Rodolfo A. Pazos Rangel, Marco A. Aguirre, Juan J. González
and Juan Martín Carpio

Abstract Natural Language Interfaces to Databases (NLIDBs) are tools that can
be useful in making decisions, allowing different types of users to get information
they need using natural language communication. Despite their important features
and that for more than 50 years NLIDBs have been developed, their acceptance by
end users is very low due to extremely complex problems inherent to natural
language, their customization and internal operation, which has produced poor
performance regarding queries correctly translated. This chapter presents a study
on the main desirable features that NLIDBs should have as well as their pitfalls,
describing some study cases that occur in some interfaces to illustrate the flaws of
their approach.

1 Introduction

Increasingly, a vast number of people in different areas use databases (DBs) for
storing important information. Obtaining unusual or complex information from a
database demands a broad knowledge on computing from users, such as a language
for querying databases, and to be acquainted with the schema of the database to be
queried.

R. A. Pazos Rangel (&) � M. A. Aguirre � J. J. González
Instituto Tecnológico de Ciudad Madero, Ciudad Madero, Mexico
e-mail: r_pazos_r@yahoo.com.mx

M. A. Aguirre
e-mail: marco.itcm@gmail.com

J. J. González
e-mail: jjgonzalezbarbosa@hotmail.com

J. M. Carpio
Instituto Tecnológico de León, León, Mexico
e-mail: jmcarpio61@hotmail.com

O. Castillo et al. (eds.), Recent Advances on Hybrid Approaches for Designing
Intelligent Systems, Studies in Computational Intelligence 547,
DOI: 10.1007/978-3-319-05170-3_44, � Springer International Publishing Switzerland 2014

617



Currently, a growing need for using systems that allows common users (dif-
ferent from computer professionals) to obtain important information from dat-
abases is growing. This capability can be extremely important for making business
decisions.

Natural language interfaces to databases (NLIDBs) emerged as an attractive
solution that serves as a bridge between common users and the information they
need for decision making.

Since the early 1960s, researchers have undertaken the development of NLIDBs
capable of satisfying the needs of final users.

However, the complexity of the problems involved in the development of
effective interfaces has prevented their widespread acceptance.

A comprehensive review of the state of the art and some of the most important
problems in NLIDBs are described in [1].

This study of the state of the art on NLIDBs is intended mainly for DB
administrators that are considering installing a NLIDB for querying a database.
This chapter defines the desirable features that DB administrators should look for
in a system of this type. Finally, since there exist different types of problems that
prevent NLIDBs to be attractive to users (regarding portability, functionality and
performance), this chapter describes the pitfalls that some interfaces have.

2 Desirable Features in a NLIDB

NLIDBs were created for retrieving information from DBs by means of NL
communication. What is expected to obtain from this interaction is the correct
answer to the query input by a user. However, besides this characteristic, there
exist others that are considered important for a NLIDB for being considered
attractive enough to meet the expectations of end users, mainly those from busi-
nesses. Next we describe desirable characteristics that a NLIDB should have.

2.1 Ease of Customization

One of the main characteristics that a NLIDB must have is easiness of custom-
ization: the interface should be easily and rapidly customized, requiring a minimal
intervention by the DB administrator.

There exist interfaces such as C-Phrase that have an authoring tool, which
facilitates the customization task.

618 R. A. Pazos Rangel et al.



2.2 Operability

Like all Graphical User Interfaces (GUIs), NLIDBs are expected to have a friendly
user interface that enables the system to be easily operated.

Earlier NLIDBs had a command-line-based user interface, where users for-
mulated NL queries by typing them in a simple text line; this was so because of the
hardware and software limitations at that time. Simplicity and fastness were the
main advantages of the usage of those NLIDBs; however, the very same simplicity
limited their operation because of the lack of tools for user-interface interaction.
An example of this type of interfaces is NLPQC.

As technology improved and the boom of graphical interfaces grew larger,
many different types of GUIs were available, such as: menu-based, dialogue/
discourse-based and multimodal.

Preferably, users should be guided by NLIDBs along query formulation.

2.3 Authoring

Customizing a NLIDB for a new domain is a complex task that could be time
consuming. For facilitating the customization process, it is necessary that inter-
faces have a tool that permits modifying the knowledge base or the data dictionary.

An authoring tool should permit associating elements (DB tables, columns,
relations between tables, etc.) of the DB schema to the linguistic elements (words
or phrases) that can occur in NL queries, as well as including other elements that
the interface might need, without compromising friendliness.

One of the few important NLIDBs that have an authoring tool is C-Phrase.

2.4 Habitability

The habitability is the ability of a NLIDB of knowing user expectations, without
surpassing the linguistic capabilities of the system (limited grammar and linguistic
coverage).

Obviously users expect the NLIDB to answer correctly all their queries;
however, it can not be expected from the interface to be able of interpreting the
queries as a human formulates them (including some jargon, words whose
meaning is not in the data dictionary, etc.). For example, EasyAsk keeps termi-
nology for business applications, but this would not be adequate if the interface
were ported to an application of a different domain.

Some interfaces intend to increase their linguistic capacity by including
domain-independent dictionaries, which are complemented with all the semantic
information that is expected to be needed by users when querying a database for
some specific domain.

Features and Pitfalls that Users Should Seek in Natural Language 619



2.5 Transparency

This characteristic establishes that the capabilities and limitations of a NLIDB
must be evident to users. Though this information should be clear, usually the
interfaces only describe their operation without making clear their capabilities and
limitations. When something unexpected occurs (such as an erroneous translation
or misinterpreted query, something that can not be customized, etc.), users might
be disappointed because they do not know what has happened.

2.6 Robustness

A NLIDB must be capable of answering all the queries formulated by users. The
system must cope with the problems that may arise when processing a query, as
well as dealing with queries that involve aggregate functions, temporal queries,
deductive queries, nested queries, and queries that involve negation.

2.7 Efficiency

A reason why a user would like to use a NLIDB is because he/she expects the
interface to answer quickly. In the experiments reported on NLIDBs, the response
time is not evaluated. Usually, the databases used for testing are small, and
therefore response times are small. However, some NLIDBs (for example, ELF)
have data dictionaries whose volume of information is proportional to the size of
the database to be queried; therefore, the time for translating a query (from NL to
SQL) increases with the size of the database, which would prevent using this type
of NLIDBs for querying very large databases.

2.8 Accuracy

NLIDB users expect all the queries they formulate are correctly answered. This is
considered the most important characteristic; however, many factors influence the
results that can be obtained from an interface. These factors are related to natural
language issues, interface customization, and the inner workings of the interface.

The average recalls achieved by state-of-the-art NLIDBs vary from 60 to 90 %,
which are unsatisfactory for considering using them in businesses for decision
making.

620 R. A. Pazos Rangel et al.



2.9 Intelligence

NLIDBs must be capable of answering temporal and deductive queries. Temporal
queries are issued to a database that permits storing the history of values that a
piece of data may adopt over time; while deductive queries are those that are based
on deductions by using inference. Additionally, NLIDBs should be able to
improve their performance (percentage of correctly answered queries) by feedback
received from user-interface interaction.

Though intelligence is a desirable feature in an interface, the customization of
this type of systems requires deep knowledge of their inner workings, which might
make difficult their customization.

Interfaces such as DaNaLIX permit feedbacking the system by user-interface
interaction.

2.10 Multimodality

Normally, most NLIDBs permit formulating queries through a keyboard; however,
this might not be the most adequate in some situations. Current technology permits
users to interact using mobile devices by means of speech, menus, graphical
objects, touch screens, etc., which is expected to be adopted by NLIDBs for
increasing their functionality.

There exist applications that use these types of interactions that operate as
NLIDBs; however, they are designed for operating with just one domain, and
consequently they have very good performance. Unfortunately, porting them to
another domain would imply modifying their inner workings so they could answer
correctly for the new domain.

Interfaces such as EasyAsk include voice recognition, and others like EDITE
[2] use graphical objects for facilitating user-interface interaction.

2.11 Independence

There exist four types of independence in NLIDBs: domain, database management
system, natural language, and hardware and software independence.

2.11.1 Domain Independence

Domain independence is one of the most important characteristics, since a NLIDB
is expected to be portable to any database, so that it may answer queries related to
the domain of interest.

Features and Pitfalls that Users Should Seek in Natural Language 621



An interface must have an architecture, and together with its data dictionary
should permit customizing the interface for a new or different domain without
requiring a lengthy intervention by the DB administrator.

An example of the information that must contain a data dictionary model can be
seen in [3].

As previously mentioned, commercial interfaces such as ELF and EasyAsk
have tools for semiautomatically customizing them for a specific domain, which
usually is not good enough for correctly answering all the queries formulated by
users. Additionally, EasyAsk provides utilities for customizing the interface to any
domain by carrying out software design tasks, such as defining user requirements,
design and implementation of the application and support, which can make more
expensive using the interface.

2.11.2 DBMS Independence

A NLIDB must be able to retrieve information from a database independently of
the database management system (DBMS). Some examples of DBMSs used are
Oracle, Sybase SQL Server, PostgrestSQL, Microsoft SQL Server, Access, DB2,
Informix, and MySQL.

To get an idea on the DBMSs that can be queried by NLIDBs, let us consider
ELF which supports only Microsoft Access versions 2007 and 2010. Interfaces
like DaNaLIX interact with XML databases; however, this type of databases does
not require a typical DBMS, they simply use a framework that offers functional-
ities similar to those of a DBMS: query processing, rule insertion, etc.

DBMS independence is related to domain independence since it is useful for
adapting the interface to any database regardless of its format (relational, ontology
oriented, object oriented, etc.). Unfortunately, developing a NLIDB that includes
this feature requires many implementation details.

2.11.3 Natural Language Independence

Most of the NLIDBs implemented support only English for formulating queries.
Some, such as the ones described in [4–6], support a few other languages.

Some efforts have been devoted to developing NLIDBs capable of supporting
multiple languages. To this end, it has been attempted to separate the syntactic
parsing from the semantic analysis; however, the translation effectiveness varies
widely depending on the syntactic and semantic complexity of every language, and
only languages with similar syntax have been supported by multilingual interfaces.
Some of the interfaces that have attempted to provide NL independence are those
described in [7–11].

622 R. A. Pazos Rangel et al.



2.11.4 Hardware and Software Independence

A NLIDB must be able to be ported to any type of computer, and nowadays, to any
wireless device (smart phone, tablet, notebook, PDA, etc.) regardless of the
hardware and software that it uses.

The architecture of modern computers permits using many applications; how-
ever, more than hardware options, what might affect the use of a NLIDB in
different devices is the software that supports it. This difficulty arises from the
diversity of operating systems in the market together with the framework needed
for supporting the interface.

2.12 Handling of Linguistic Phenomena

A NLIDB must consider the linguistic problems that may affect the meaning of a
query.

Some linguistic problems are extremely complex, which can be observed when
people communicate with each other, they might not follow syntactic or semantic
rules, and their expressions usually involve syntactic and semantic ellipsis. Some
of the most important linguistic problems are: anaphora, ellipsis and ambiguity.
There exist several works that deal with these problems from the computational
linguistic area; however, these problems have been overlooked in most NLIDBs.

3 Pitfalls in NLIDBs

Users expect NLIDBs to be intelligent and robust enough to answer correctly all
their queries, as it has been observed in investigations based on the Wizard of Oz
experiment. However, results are usually disappointing because of the extremely
difficult problems that NLIDBs have to cope with.

Despite NL processing is one of the main fields of artificial intelligence, pro-
gress has been frustratingly slow, because researchers have underestimated the
problems involved in NL processing.

Many interfaces have used different types of approaches and architectures for
addressing existing problems, but they have not been satisfactory enough to date
so as to achieve a performance (i.e., recall) close to 100 %. Furthermore, some
NLIDB have design flaws that render them inefficient for large and complex
databases (as illustrated in Subsects. 3.4 and 3.5).

In this section we describe the most important pitfalls that prospective users of
NLIDBs should be aware of, grouped in six main categories: type of graphical user
interface, domain indpendence, customization, escalability, translation process,
and performance evaluation.

Features and Pitfalls that Users Should Seek in Natural Language 623



3.1 Type of Graphical User Interface

The purpose of using different types of GUI design techniques is facilitating user-
NLIDB communication. As it has been mentioned, the easiest interface to use is
the one that permits introducing a query in the command line; for this type of
interfaces, their main limitation is that they do not permit a sophisticated user-
interface interaction.

There exist many menu-based interfaces like the one described in [12]. Though
it is desirable that an interface guides the user along query formulation, this type of
interfaces does not permit formulating queries in free-text NL. This technique may
require users to go through several steps for formulating a query, which might be
lengthy.

On the other hand, the introduction of queries by voice (like the one used in
EasyAsk) requires voice recognition that obtains a performance close to 100 %,
which remains being a challenge.

The use of different techniques for developing GUIs provides more function-
ality to NLIDBs; however, adding more functionality to these systems involves the
use of more computer resources and usually requires more training for operating
them, which may result in making their use more difficult.

3.2 Domain Independence

Achieving domain independence in NLIDBs requires customizing them for a new
or different domain. Additionally, it is very difficult for domain-independent
interfaces to obtain recalls above 90 %, and achieving this performance usually
involves a lengthy and complex customization process.

For making shure that a NLIDB is domain-indpendent, it must be tested with
different databases, and these should have a complexity similar to databases found
in large businesses. The complexity of a database can be measured by the number
of tables, the overall number of columns, the number of columns with the same or
similar information (for example, the number of columns for storing people
names), and the structure of relations among tables (number of relations and cycles
in the graph that represents the DB schema).

Despite the large number of NLIDBs developed, there only exist a small
number of databases that have been used for testing them. Most have been eval-
uated with the Tang and Mooney databases [13], which involve three different
domains (geography, restaurants and jobs). These databases were implemented in
Prolog, do not have a relational structure, and their structure is simple since they
have from 1 to 8 tables.

One of the most complex databases used for evaluation is ATIS [14] which is a
relational DB that stores information on airline flights. Its complexity resides in its
structure, since it involves 27 tables and 123 columns. Additionally, the graph that

624 R. A. Pazos Rangel et al.



represents the DB schema has many relations among tables and cycles, and 85 %
of the query corpus involves semantic ellipsis.

In conclusion, potential users of a NLIDB should find out if it has been tested
with several databases of different domains and how good is its performance with
complex databases.

3.3 Customization

The customization process consists of populating the data dictionary of a NLIDB
with the information necessary for correctly interpreting queries formulated by
users. This information consists of the association of elements of the DB schema
(tables, columns and relations) with words/phrases that occur in NL queries.

Some interfaces have tools for carrying out a semiautomatic customization
(such as EasyAsk, ELF, EnglishQuery, etc.), some others use learning techniques
(like those described in [15–19]). However, these types of customization are not
good enough for answering all the queries formulated by users; therefore, it is
usually necessary to fine-tune the customization for improving interface
performance.

Other interfaces (like C-Phrase) have an authoring tool that facilitates the
customization process; however, a factor that greatly affects the quality of the
customization is the ability of the customizer. Therefore, a desirable feature in a
NLIDB is that it should have a tool that permits an easy and quick customization,
and that it renders a customization quality that is independent of the customizer
ability.

NLIDBs that use supervised learning techniques for query translation need to be
trained with a set of queries, which can be considered as a customization process.
Unfortunately, the performance of this type of NLIDBs depends on the corpus of
training queries, which leads to two problems: selecting an adequate training
corpus and fine-tuning the learned knowledge when the interface fails in answering
some queries.

It is expected that users with a bachelor’s degree in engineering in computer
science be able to customize a NLIDB. However, a desirable feature of a NLIDB,
concerning customization, is that it does not require from the customizer to learn
neither specialized concepts (for example, linguistic terminology, logic program-
ming terms, etc.) nor the inner workings of the interface.

3.4 Scalability

Some NLIDBs use approaches that are not adequate for very large databases; i.e.,
those with tables that have over one million rows. For example, some interfaces
look into the database for search values present in queries in order to identify the

Features and Pitfalls that Users Should Seek in Natural Language 625



column name needed for generating the SLQ expression when translating from NL
to SQL. This approach, though effective for small databases, is not efficient for
large ones.

Most of the NLIDBs have been tested with small databases that contain tables
with less than 100,000 rows. In a test carried out with ELF, a database was used
that included verbs, conjugations and lexical tags from Freeling [10], which
contained approximately 497,000 rows in a table with three columns. In this test
the compilation of the dictionary took around 5 min, and the result was that ELF
could not answer any query, because the translation approach is not adequate for
dealing with large databases.

3.5 Translation Process

The translation process of a NLIDB must be able to deal with all the possible
problems that may occur when translating a NL query. Unfortunately, the com-
plexity of NL query processing has been underestimated; therefore, most NLIDBs
do not effectively deal with all the problems, rendering an unsatisfactory perfor-
mance, especially for decision making in businesses.

In some NLIDBs statistical and machine learning approaches are used for
translating queries; however, these techniques involve some degree of uncertainty,
which has caused that their recalls reach only 60–85 %.

Other NLIDBs use templates or pattern matching. These types of approaches
limit their performance, since they can only permit translating those queries that
are predefined in the templates or those that match the pre-established patterns.

There exist some processing flaws that may affect query translation; for
example, NLIDBs whose translation approach requires looking into the database
for search values present in queries. In this translation approach, each value stored
in the database is saved in the data dictionary together with the id of the column
where the value is stored. This approach has a major drawback: when a new value
is stored in the database, then the NLIDB will not be able to translate a query that
involves this value because it will not be found in the data dictionary. Therefore, to
mitigate this situation it is necessary to frequently update the data dictionary for
databases that have many insertions and updates.

For exemplifying this situation, ELF was tested using the Northwind database.
In this experiment a new row was inserted in table Products that contained the
value ‘‘Cheddar’’ in column ProductName, and next the following query was
formulated:

How much does Cheddar cost?
In this case the interface could not identify the column ProductName needed for

generating the SQL expression because ‘‘Cheddar’’ was not in the data dictionary.
Another type of error occurs when a value is present in two or more DB

columns. For example, in this experiment table Products had a row that contained

626 R. A. Pazos Rangel et al.



the value ‘‘Chang’’ in column ProductName, next a row was inserted into table
Employees that had the same value ‘‘Chang’’ in column LastName, then upon
formulating the following query:

Show the data of the employee Chang
The interface got confused because it found the value ‘‘Chang’’ in tables Products

and Employees and generated the following SQL expression (which involves
information from tables Employees, Products, OrderDetails and Orders): SELECT
DISTINCT Employees.EmployeeID, OrderDetails.OrderID, Orders.ShipName,
Employees.LastName FROM Orders, Employees, OrderDetails, Products, Orders
INNER JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID,
Orders INNER JOIN OrderDetails ON Orders.OrderID = OrderDetails.OrderID,
OrderDetails INNER JOIN Products ON OrderDetails.ProductID = Prod-
ucts.ProductID WHERE (Products.ProductName = ‘‘Chang’’).

Finally, prospective users of NLIDBs should be aware that, in general, the more
complex a database is the more likely it is that an interface will fail when trans-
lating a query from NL to SQL.

3.6 Evaluation

One of the problems that has prevented the progress of NLIDB technology is the
lack of evaluation standards and well established benchmarks.

Another situation that usually occurs in NLIDB evaluation is that most inter-
faces are customized and tested by the authors, which does not guarantees the
impartiality of the results.

Potential users of NLIDBs should be aware that there exist several metrics for
measuring the performance of interfaces: accuracy, recall and F1. The most widely
used for evaluating performance is accuracy, which is defined as the percentage of
correctly answered queries with respect to the number of translated queries.
However, this metric is not the one that end users should be more interested in but
recall, which is defined as the number of correctly, answered queries with respect
to all the queries input to the interface. It is important to point out that the value of
recall is less than or equal to accuracy, and it is usually the case that some NLIDBs
report very good accuracies but their recalls are not so good.

Concerning performance measurement, it is difficult to compare the perfor-
mance reported for different NLIDBs, since there is no uniformity on what a
correct answer means. The evaluations of some interfaces consider an answer
correct even if it includes information additional to the one requested, while other
evaluations consider an answer correct only if it includes just the expected
information. This distinction might be extremely important for a business that
intends using a NLIDB for critical decision making.

An example of this situation is shown in a test carried out using ELF and the
Northwind database, where the following query was formulated:

Features and Pitfalls that Users Should Seek in Natural Language 627



Show the units in stock of product Chang
Though the phrase ‘‘units in stock’’ explicitly refers to column Prod-

ucts.UnitsInStock, the interface considers the word ‘‘units’’ as referring also to
column OrderDetails.Quantity, and it also adds to the output the name of the
product and the order number; which were not requested in the query, as the
resulting SQL expression shows: SELECT DISTINCT OrderDetails.Quantity,
Products.UnitsInStock, OrderDetails.OrderID, Products.ProductName FROM
OrderDetails, Products, OrderDetails INNER JOIN Products ON OrderDe-
tails.ProductID = Products.ProductID WHERE (Products.ProductName =

‘‘Chang’’).
Similarly to the previous example, when the following query was formulated:

How much does Chai cost?
One would expect that the result of the query only included the price of product

‘‘Chai’’; however, the interface returned all the information of the row that contains
‘‘Chai’’, as the following resulting SQL expression shows: SELECT DISTINC-
TROW Products.* FROM Products WHERE (Products.ProductName = ‘‘Chai’’).

Strictly, there should only exist two types of evaluation for a query translation:
correct and incorrect, which is what it really matters for end users. However, there
exist performance evaluations, such as those reported in [20], where the interface
generates more than one semantic interpretation of a query, in which the answer is
evaluated with some percentage q of recall (where 0 \ q\ 100 %). Considering
partially-correct answers is not adequate, since end users are usually interested in
fully correct answers, not partially correct answers. Another detail that potential
users of NLIDBs should be aware of is that the evaluation of some interfaces
report recall values, which are actually accuracy figures (see definition at the
beginning of this subsection).

4 Conclusion

A little over 30 years ago, considerable progress in NLIDB technology was made.
However, NLIDBs have not been widely accepted as expected because of the
complexity of NL processing, customization and internal operation, which has
resulted in unsatisfactory performance (low percentage of correctly answered
queries).

Currently, the information contained in databases has achieved great impor-
tance in many areas (especially businesses), which has fostered the development of
NLIDBs for facilitating inexperienced users accessing information.

In this chapter, the features that a DB administrator should seek when con-
sidering the use of a NLIDB are presented, which are: operability, authoring,
habitability, transparency, robustness, efficiency, accuracy, intelligence, multim-
odality, and independence. Though these characteristics are very important, it is

628 R. A. Pazos Rangel et al.



difficult that an interface includes all of them. Even with existing technology,
developing a robust enough interface requires solving most of the problems, which
is a complex task.

One of the main flaws in the design of NLIDBs is the approach used for dealing
with the translation process, which has caused the stagnation of this research area:
recall of most NLIDBs lies in the range 60–85 %, and it has been extremely
difficult to increase it. Unfortunately, many approaches for NLIDB design have
overlooked the complexity of the problems involved. Therefore, we think that an
approach for dealing with very complex problems has to be used; for example, an
approach that analyzes all the problems that may occur in NL to SQL translation
and affective techniques for dealing with each problem.

References

1. Pazos, R., González, J., Aguirre, M., Martínez, J., Fraire, H.: Natural language interfaces to
databases: an analysis of the state of the art. Recent Adv. Hybrid Intell. Syst. Stud. Comput.
Intell. 451, 463–480 (2013)

2. Reis, P., Mamede, N., Matias, J.: Edite: a natural language interface to databases: a new
dimension for an old approach. In: Proceedings of the 4th International Conference on
Information and Communication Technology in Tourism (1997)

3. Pazos, R., González, J., Aguirre, M.: Semantic model for improving the performance of
natural language interfaces. In: Proceedings of the MICAI 2011 Mexican International
Conference on Advances in Artificial Intelligence, pp. 277–290 (2011)

4. Jain, H.: Hindi language interface to databases. Master’s thesis, Thapar University (2011)
5. Kovacs, L.: SQL generation for natural language interface. J. Comput. Sci. Control Syst.

2(18), 19–22 (2009)
6. Meng, X., Wang, S.: NChiql: the Chinese natural language interface to databases. Lecture

Notes in Computer Science 2113, pp. 145–154 (2001)
7. Boldasov, M., Sokolova, E., Malkovsky, M.: User query understanding by the InBASE

system as a source for a multilingual NL generation module. Lect. Notes Comput. Sci. 2448,
33–40 (2002)

8. Jung, H., Geunbae, G.: Multilingual question answering with high portability on relational
databases. In: Proceedings Conference on Multilingual Summarization and Question
Answering 19, pp. 1–8 (2002)

9. Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., Steedman, M.: Inducing probabilistic CCG
grammars from logical form with higher-order unification. In: Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pp. 1223–1233 (2010)

10. Padró Ll., Stanilovsky, E.: FreeLing 3.0: towards wider multilinguality. In: Proceedings of
the Language Resources and Evaluation Conference (2012)

11. Pakray, P.: Keyword based multilingual restricted domain question answering. Master’s
thesis, Jadavpur University (2007)

12. Hallet, C., Scott, D., Power, R.: Composing questions through conceptual authoring. Comput.
Linguist. 33, 105–133 (2007)

13. Tang, L., Mooney, R.: Using multiple clause constructors in inductive logic programming for
semantic parsing. In: Proceedings of 12th European Conference on Machine Learning,
pp. 466–477 (2001)

14. Price, P.: Evaluation of spoken language systems: the ATIS domain. In: Proceedings of the
DARPA Speech and Natural Language Workshop, pp. 91–95

Features and Pitfalls that Users Should Seek in Natural Language 629



15. Clarke, J., Goldwasser, D., Chang, M.W., Roth, D.: Driving semantic parsing from the
world’s response. In: Proceedings 14th Conference on Computational Natural Language
Learning, pp. 18–27 (2010)

16. Giordani, A., Moschitti, A.: Translating questions to SQL queries with generative parsers
discriminatively reranked. In: Proceedings of the Conference on Computational Linguistics
(Posters), 401–410 (2012)

17. Kate, R., Mooney, R.: Using string-kernels for learning semantic parsers. In Proceedings of
21st ICCL and 44th Annual Meeting of the Association for Computational Linguistics,
pp. 913–920 (2006)

18. Liang, P., Jordan, M., Klein, D.: Learning dependency-based compositional semantics. In:
Proceedings of 49th Annual Meeting of the Association for Computational Linguistics,
pp. 590–599 (2011)

19. Lu, W., Tou, H.N., Lee, W.S., Zettlemoyer, L.: A generative model for parsing natural
language to meaning representations. In Proceedings of Conference on Empirical Methods in
Natural Language Processing, pp. 783–792 (2008)

20. Kaufman, E., Bernstein, A., Fischer, L.: NLP-Reduce: A ‘‘naïve’’ but domain-independent
natural language interface for querying ontologies. In: Proceedings of the 4th European
Semantic Web Conference, pp. 1–2 (2007)

630 R. A. Pazos Rangel et al.


	44 Features and Pitfalls that Users Should Seek in Natural Language Interfaces to Databases
	Abstract
	1…Introduction
	2…Desirable Features in a NLIDB
	2.1 Ease of Customization
	2.2 Operability
	2.3 Authoring
	2.4 Habitability
	2.5 Transparency
	2.6 Robustness
	2.7 Efficiency
	2.8 Accuracy
	2.9 Intelligence
	2.10 Multimodality
	2.11 Independence
	2.11.1 Domain Independence
	2.11.2 DBMS Independence
	2.11.3 Natural Language Independence
	2.11.4 Hardware and Software Independence

	2.12 Handling of Linguistic Phenomena

	3…Pitfalls in NLIDBs
	3.1 Type of Graphical User Interface
	3.2 Domain Independence
	3.3 Customization
	3.4 Scalability
	3.5 Translation Process
	3.6 Evaluation

	4…Conclusion
	References


