
Comparing Metaheuristic Algorithms
on the Training Process of Spiking Neural
Networks

Andrés Espinal, Martín Carpio, Manuel Ornelas, Héctor Puga,
Patricia Melin and Marco Sotelo-Figueroa

Abstract Spiking Neural Networks are considered as the third generation of
Artificial Neural Networks. In these networks, spiking neurons receive/send the
information by timing of events (spikes) instead by the spike rate; as their pre-
decessors do. Spikeprop algorithm, based on gradient descent, was developed as
learning rule for training SNNs to solve pattern recognition problems; however
this algorithm trends to be trapped in local minima and has several limitations. For
dealing with the supervised learning on Spiking Neural Networks without the
drawbacks of Spikeprop, several metaheuristics such as: Evolutionary Strategy,
Particle Swarm Optimization, have been used to tune the neural parameters. This
work compares the performance and the impact of some metaheuristics used for
training spiking neural networks.

A. Espinal � M. Carpio � M. Ornelas � H. Puga (&) � M. Sotelo-Figueroa
Instituto Tecnológico de León, León Gto, Mexico
e-mail: pugahector@yaho.com

A. Espinal
e-mail: andres.espinal@itleon.edu.mx

M. Carpio
e-mail: jmcarpio61@hotmail.com

M. Ornelas
e-mail: mornelas67@yahoo.com.mx

M. Sotelo-Figueroa
e-mail: marco.sotelo@itleon.edu.mx

P. Melin
Instituto Tecnológico Tijuana, Baja California, Mexico
e-mail: pmelin@tectijuana.edu.mx

O. Castillo et al. (eds.), Recent Advances on Hybrid Approaches for Designing
Intelligent Systems, Studies in Computational Intelligence 547,
DOI: 10.1007/978-3-319-05170-3_27, � Springer International Publishing Switzerland 2014

391

1 Introduction

Spiking Neural Networks (SNNs) are considered as the third generation of Arti-
ficial Neural Networks (ANNs) [1]. These networks are formed by spiking neu-
rons; which deal with information encoded in timing of events (spikes), instead by
the spike rate as their predecessors do. It have been proved that spiking neural
networks are computationally more stronger than sigmoid neural networks [2]. In
fact, there is evidence that fewer spiking neurons are required for solving some
functions than neurons of previous generations [1].

As their predecessors, SNNs have been applied for dealing with pattern rec-
ognition problems. Spikeprop algorithm is a learning rule for training SNNs,
which is based on gradient descent [3]; it is capable of training SNNs to solve
complex classification problems. However, this algorithm trends to be trapped in
local minima and it has several limitations i.e. it does not allow both, positive and
negative synaptic weights. The following list explains some drawbacks about
using Spikeprop on the supervised training of SNNs [4]:

• The convergence of the algorithm is vulnerable to being caught in local minima.
• The convergence of the algorithm is not guaranteed as it depends on fine tuning

of several parameters before start of the algorithm.
• The structure of the synapse which consists of a fixed number of sub-connec-

tions, each of which has a fixed synaptic delay, leads to a drastic increase in the
number of connecting synapses and therefore the number of adjustable weights.

• The huge number of synaptic connections makes it difficult for such algorithms
to scale up when processing high-dimensional dataset is considered.

• Also having a fixed number of sub-connections with fixed delay vales is not
necessity and yields a lot of redundant connections.

• The algorithm entails the problem of ‘silent neurons’; i.e. if the outputs do not
fire then the algorithm halts, since no error can be calculated.

For overcoming the drawbacks of Spikeprop on the supervised learning of SNNs,
some works have proposed to use metaheuristic for tuning the neural parameters
(weights and delays) [4–7]. Two similar proposals of the state of the art for
training SNNs by using metaheuristics are compared in this work. Both method-
ologies are tested with classical test benchmarks: XOR Logic Gate and Iris plant
dataset (UCI Machine Learning Repository), with different architectures over
several experiments.

This chapter is organized as follows: Sect. 2 gives fundamentals for simulating
SNNs, including neural network structure, codifier and spiking neuron model. In
Sect. 3, the methodology used for training SNNs is explained. The experimental
design and results are showed in Sect. 4. Finally, in Sect. 5 conclusions about the
work and future work is presented.

392 A. Espinal et al.

2 Spiking Neural Networks

A neural network can be defined as an interconnection of neurons, such that
neuron outputs are connected, through weights, to all other neurons including
themselves; both lag-free and delay connections are allowed [8]. There are several
models or topologies of ANNs, which are defined around three aspects: computing
nodes, communication links and message types [9].

For this work were used feed-forward SNNs. They were formed by 3 layers:
input, hidden and output (see Fig. 1), their topology was set as follows: the
computing nodes (neuron models) are spiking neurons, specifically neurons of the
Spike Response Model (SRM) [10]; this model is explained later. The commu-
nication links (synaptic connections, each synaptic connection is defined by a
synaptic weight and a synaptic delay) were set to form a fully interlayer connected
neural network; where all possible interlayer connections are present and the
network contains no intralayer (including self-connections), or supralayer con-
nections [11], this kind of pattern connection is also know it as fully connected
neural network. The message types are based on the time-to-first-spike encoding
scheme; it means that each neuron can produce at most one spike in all the
simulation time for each stimuli.

2.1 Gaussian Receptive Fields

The traditional form of patterns as multidimensional raw data, which consist of
real values can’t be used to feed a SNNs in a simulation process. The patterns need
to be transformed into temporal patterns (a set of events in time or spikes as known
as spike trains) before being processed by the SNN.

Fig. 1 Top Spiking neural
network with three layers:
input, hidden and output.
Bottom Synapse connection
(weights and delays) between
presynaptic neurons and the
postsynaptic neuron j (figure
taken from [6])

Comparing Metaheuristic Algorithms 393

In [12], was proposed an encoding scheme to generate firing times from real
values; the Gaussian Receptive Fields (GRFs). This scheme enables the repre-
sentation of continuously valued input variables by a population of neurons with
graded and overlapping sensitivity profiles, such as Gaussian activation functions
(the receptive fields). To encode values into a temporal pattern, it is sufficient to
associate highly stimulated neurons with early firing times and less stimulated
neurons with later (or no) firing times. Each input variable is encoded indepen-
dently, it means that each input dimension is encoded by an array of one-
dimensional receptive fields; the GRFs constitute a biologically plausible and well
studied method for representing real-valued parameters [3].

In [13] is given a detailed definition about the construction and use of the GRFs.
Each input datum is fed to all the conversion neurons covering the whole data
range. For a range nmin; nmax½ � of a variable n, m neurons were used with GRF. For
the i-th neuron coding for variable n, the center of the Gaussian function is set to
Ci according to Eq. (1).

Ci ¼ nmin þ
2i� 3

w
� nmax � nmin

m� 2
; m [2 ð1Þ

The width w of each Gaussian function is set according to Eq. 2. Where
1� c� 2 is a coefficient of multiplication which is inversely proportional to the
width of the Gaussian functions.

w ¼ nmax � nmin

c m� 2ð Þ ð2Þ

Using the centers of each neuron/Gaussian function and their width, the mag-
nitude of firing f(x) for each sample points of the input x is calculated using Eq. 3.

fi xð Þ ¼ e�
x�cið Þ2
2w2 ð3Þ

The magnitude values are then converted to time delay values by associating
the highest magnitude value to a value close to zero milliseconds and neurons with
lower firing magnitude are associated with a time delay value close to the limit
maximum of time of simulation. Conversion from magnitude to time delay values
is done using Eq. (4). Where s is the total time of simulation.

Ti ¼ 1� fið Þ � s; i ¼ 1; 2; . . .;m ð4Þ

Time delay values greater than some value sthreshold \ s are coded no to fire as
they are consider being insufficiently excited. Therefore, neurons with time delay
value between zero and sthreshold milliseconds carry all the encoded information of
the input data.

394 A. Espinal et al.

2.2 Spike Response Model

The SRM [10, 14] is an approximation of the dynamics of the integrate-and-fire
neurclose to the limit maximum of time of simulation.ons. The neuron status is
updated through a linear summation of the postsynaptic potentials resulting from
the impinging spike trains at the connecting synapses. A neuron fires whenever its
accumulated potential reaches a threshold from below (see Fig. 2) [6].

Due to spiking neurons in this work use the time-to-first-spike encoding scheme
for sending/receiving messages, a reduced version of the SRM is implemented;
this has been used in [3–7, 12].

The reduced SRM is defined according [6] as follows. Let us consider that a
neuron j has a set Cj of immediate predecessors called presynaptic neurons and
receives a set of spikes with firing times ti; i 2 Cj. Neurons fire when their state
variable x(t), called membrane potential, reaches a certain threshold H. The
internal state of a neurons is determined by (5), where wji is the synaptic weight to
modulate yiðtÞ, which is the unweighted postsynaptic potential of a single spike
coming from neuron i and impinging on neuron j.

xj tð Þ ¼
X

i2Cj

wjiyiðtÞ ð5Þ

The unweighted contribution yi tð Þ is given by Eq. (6), where e(t) is a function
that describes the form of the postsynaptic potential.

yi tð Þ ¼ e t � ti � dji

� �
ð6Þ

The form of the postsynaptic potential is given by Eq. (7), and it requires the
next parameters: t is the current time, ti is the firing time of the presynaptic neuron
i and dji is the associated synaptic delay. Finally the function has a s parameter, it
is the membrane potential time constant defining the decay time of the postsyn-
aptic potential.

e tð Þ ¼
t
s e1�t

s if f [0
0 else

�
ð7Þ

Fig. 2 Incoming spikes transformed into postsynaptic potentials, they are delayed and weighted
by the synapse and finally they are integrated by the postsynaptic neuron (figure taken from [5])

Comparing Metaheuristic Algorithms 395

The firing time tj of neuron j is determined as the first time the state variable
crosses the threshold from below. The threshold H and s are constants and equal
for all neurons in the network.

3 Metaheuristic-Based Supervised Learning

Learning is a process by which the free parameters of a neural network are adapted
through a process of stimulation by the environment in which the network is
embedded. The type of learning is determined by the manner in which the
parameter changes take place [15]. In this case, the learning is driven by some
metaheuristic algorithm (see Fig. 3 the free parameters of the SNN are all weights
and delays of each synapse.

Several works have used metaheuristics for training SNN [4–7]; each of them
defines a particular methodology, next is presented the methodology followed
based on similar aspects of the works revised for this work.

In Metaheuristic-Based Supervised Learning, each individual contains all the
free parameters of a previously structured SNN. Every individual is evaluated by
means of a fitness function, the first step of the fitness function makes a mapping
process; this sets the individuals parameter as weights and delays in the SNN. The
second step of the fitness function uses the batch training as learning protocol,
where all patterns are presented to the network before the learning takes place [16].
The third step of the fitness function is calculated an error (to be minimized)
according Eq. (8) (equation taken from [4]); where T are all training patterns,
O are all output spiking neurons, ta

OðtÞ is the current timing output of the SNN and
tt
OðtÞ is the desired timing output. The error calculated in the fitness function

Fig. 3 Generic scheme for training SNNs with metaheuristic algorithms

396 A. Espinal et al.

determines the fitness value of each individual and drives the supervised learning
based on metaheuristic algorithms.

E ¼
XT

t

XO

o

ta
0 tð Þ � tt

oðtÞ
� �2 ð8Þ

Next are presented two metaheuristic used for training SNNs in the state of the
art.

3.1 Evolutionary Strategy

The Evolutionary Strategies (ES) [17], deal natively with problems in real domain.
In [4] was designed a Self-Adaptive ES for training SNNs, in this ES each pop-
ulation member consists of n-dimensional vectors, where n is the total number of
tuneable network parameters within input, hidden and output layer. The population
at any given generation g is denoted as P(g). Each individual is taken as a pair of
real-valued vectors, xi; gið Þ, where xi’s are objective variables representing the
synaptic free parameters, and gi’s are standard deviations for mutations. Each
individual generates a single offspring x0i; g0ið Þ, where each variable x0i jð Þ of the
offspring can be defined by either Eq. 9 (local search) or Eq. 10 (global search)
and the standard deviation is defined by Eq. (11).

x0i jð Þ ¼ xi jð Þ þ gi jð ÞNjð0; 1Þ ð9Þ

x0i jð Þ ¼ xi jð Þ þ gi jð Þdj ð10Þ

g0i jð Þ ¼ gi jð Þ exp s0Nð0; 1Þ þ sNjð0; 1Þ
� �

ð11Þ

where:

• Nð0; 1Þ denotes a normally distributed one dimensional random number with
l = 0 and r = 1.

• Njð0; 1Þ indicates that the random number is generated anew for each value of j.
• dj is a Cauchy random variable, and it is generated anew for each value of

j (Scale = 1).
• Factor s ¼ 1ffiffiffiffiffiffiffi

2
ffiffi
n
pp

• Factor s0 ¼ 1ffiffiffiffi
2n
p

The Self-adaptive ES is presented in the Algorithm 1.

Comparing Metaheuristic Algorithms 397

Algorithm 1 Self-adaptive ES 1

1: Generate the initial population of l individuals.
2: Evaluate the fitness score for each individual (xi, gi), i ¼ 1; . . .; l of the population based on

E ¼
PT

t

PO
o ðta

oðtÞ � tt
oðtÞÞ

2

3: while the maximum iteration is not reached do
4: Each parent (xi, gi) generates a single offspring (x0i; g

0
i)

5: Calculate the fitness of each offspring ðx0i; g0iÞ; i ¼ 1; . . .; l
6: Generate a new population P(g) using tournament selection and elitism to keep track of the

best individual at each generation
7: end while

3.2 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) [18] is an algorithm originally used for
continuous optimization problems, it is inspired in the behavior of flocks of birds
or schools of fish. A version of PSO called Cooperative PSO (CPSO) has been
used in [7] for training SNNs. In this metaheuristic, each individual is defined by
the vector velocity vi and the vector position xi.

The vector vi is updated by Eq. (12) where q1 and q2 are acceleration coeffi-
cients. v is a constriction factor, it can be defined according Eq. (14). c1 and c2 are
two independent uniform numbers randomly distributed in the range [0,1]. And x is
the inertia weight, which controls the impact of the previous velocity; it is defined
by Eq. (13) where x0 is the maximum of x, x0 � x1 is the minimum of x, t is the
current iteration and Tmax is the maximal iteration of PSO.

The vector xi is updated by Eq. (12).

vid ¼ v xvid þ q1c1 pid � xidð Þð Þ ð12Þ

x ¼ x0 � x1
t

Tmax
ð13Þ

v ¼ 2

2� u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4u

p���
���
; u ¼ q1 þ q2;u [4 ð14Þ

xid ¼ xid þ vid ð15Þ

The CPSO is presented in the Algorithm 2.

Algorithm 2 CPSO-based supervised learning

1: Generate the initial swarm.
2: for all particle i do
3: xid rand xmin; xmaxð Þ

(continued)

398 A. Espinal et al.

(continued)

Algorithm 2 CPSO-based supervised learning

4: vid rand vmin; vmaxð Þ
5: Its past best solution can be set to the same as xi initially.
6: end for
7: while the maximum iteration is not reached do
8: Compute the fitness of each particle for its current position
9: Compute for each input pattern by Spiking neural network, and obtain the spike times of the

output neurons
10: Calculate the square error usign E ¼

PT
t

PO
o ðta

oðtÞ � tt
oðtÞÞ

2 as the fitness of the particle
11: Find the global best particle g with the minimal fitness from the swarm of the current

iteration
12: vid v xvid þ plc1 pid � xidð Þ þ p2c2 pgd � xid

� �� �

13: xid xid þ vid

14: end while

4 Experiments and Results

Classical benchmarks of pattern recognition were used for experimentation: XOR
Logic Gate and Iris Plant dataset. For each benchmark, 5 SNNs with different
configurations on their layers were used; each of them was trained (using both
metaheuristics) 35 times. For each benchmark, the training by using ES and CPSO
of each SNN configuration is contrasted using the fitness values by calculating the
minimum, the maximum, median, mean and standard deviation.

The common parameters of the metaheuristics through all experiments and
trainings are: 30 individuals and 15,000 function calls.

4.1 XOR Logic Gate

For the XOR logic gate, it was not necessary to use GRFs. Inputs values were
manually encoded, the encoded inputs and the desired timing output are showed in
Table 1.

The values of CPSO parameters were empirically set, they were set as q1 ¼ 0:8
and q2 ¼ 3:3. The results for the training of each configuration are showed in
Table 2. For this benchmark the testing phase was not necessary, due that any
fitness value greater than 0 produces a poor performance of the SNN. Taking the
median value as representative error of training for each metaheuristic over all
configurations, can be inferred that ES outperforms to CPSO for the training phase
in this problem.

Comparing Metaheuristic Algorithms 399

4.2 Iris Plant Dataset

The Iris plant dataset contains 3 classes of which 2 are not linearly separable, each
class is formed by 50 patterns each of them described by 4 features. For this
benchmark, each feature was encoded by GRFs using 4 encoding. The desired
timing outputs for setosa, versicolor and virginica classes are respectively 6,10 and
14 ms. The dataset was divided into 2 equal parts (2-Folds Cross Validation). Then
2 tests were performed.

The values of CPSO parameters were empirically set, they were set as q1 ¼ 2:1
and q2 ¼ 2:1. For the first test instance Tables 3 and 4 show the optimization
phase and classification phase respectively. And for the second test instance
Tables 5 and 6 show the optimization phase and classification phase respectively.
The classification phase was performed by using the configuration given by the

Table 1 Configuration used for solving XOR

Original XOR Encoded XOR

x1 x2 y x01 x02 Output firing time (ms)

0 0 0 0 0 20
0 1 1 0 6 10
1 0 1 6 0 10
1 1 0 6 6 20

Table 2 Results of fitness values for training SNNs by using ES and CPSO to solve XOR Logic
Gate

Network ES Optimization CPSO Optimization

Minimum Median Maximum l ± r Minimum Median Maximum l ± r

2-3-1 0.0 8.0 51.0 15.4 ± 16.8 1.0 22.0 52.0 25.8 ± 15.6
2-5-1 0.0 1.0 50.0 5.7 ± 9.9 0.0 5.0 43.0 10.3 ± 12.0
2-7-1 0.0 0.0 18.0 1.3 ± 3.3 0.0 2.0 24.0 5.9 ± 7.0

Table 3 Results of fitness values for training SNNs by using ES and CPSO to solve Iris plant
dataset (1st fold)

Network ES Optimization (Fitness) CPSO optimization (Fitness)

Minimum Median Maximum l ± r Minimum Median Maximum l ± r

16-1-1 35.0 99.0 218.0 101.4 ± 40.1 83.0 182.0 267.0 181.2 ± 47.8
16-5-1 10.0 67.0 167.0 69.7 ± 30.1 33.0 117.0 192.0 121.2 ± 40.6
16-10-1 16.0 62.0 207.0 64.9 ± 34.0 55.0 111.0 202.0 115.6 ± 35.5
16-15-1 20.0 64.0 123.0 65.9 ± 23.1 13.0 86.0 215.0 97.4 ± 42.8
16-20-1 29.0 66.0 111.0 66.3 ± 23.5 16.0 88.0 204.0 92.6 ± 41.4

400 A. Espinal et al.

minimum and maximum fitness values on the training phase, the best perfor-
mances correspond to trainings with low fitness and worst performances corre-
spond to trainings with high fitness. Same as the XOR logic gate, taking the
median value as representative error of training for each metaheuristic over all
configurations, can be inferred that ES outperforms to CPSO for the training phase
in this problem. In general the best performances on classification tasks, for both:
known patterns and unknown patters, can be observed in the trainings made by ES.

Table 4 Results of performance of SNN trained with ES and CPSO (1st fold)

Network Classification (ES Training) Classification (CPSO Training)

Training Testing Training Testing

Minimum
(%)

Maximum
(%)

Minimum
(%)

Maximum
(%)

Minimum
(%)

Maximum
(%)

Minimum
(%)

Maximum
(%)

16-1-1 4.0 69.3 13.3 81.3 9.3 22.7 12.0 34.7
16-5-1 41.3 85.3 38.7 90.7 20.0 68.0 21.3 80.0
16-10-1 4.0 89.3 8.0 98.7 1.3 32.0 2.7 37.3
16-15-1 41.3 92.0 41.3 97.3 36.0 66.7 32.0 82.7
16-20-1 54.7 86.7 58.7 86.7 34.7 78.7 33.3 89.3

Table 5 Results of fitness values for training SNNs by using ES and CPSO to solve Iris plant
dataset (2nd fold)

Network ES Optimization (Fitness) CPSO Optimization (Fitness)

Minimum Median Maximum l ± r Minimum Median Maximum l ± r

16-1-1 16.0 67.0 218.0 65.5 ± 16.3 69.0 133.0 312.0 134.7 ± 32.2
16-5-1 10.0 39.0 167.0 37.3 ± 11.4 33.0 95.0 220.0 86.7 ± 23.1
16-10-1 16.0 32.0 207.0 34.5 ± 11.0 37.0 83.0 202.0 79.3 ± 20.2
16-15-1 7.0 39.0 123.0 37.6 ± 11.3 13.0 62.0 215.0 62.3 ± 18.4
16-20-1 16.0 39.0 111.0 38.0 ± 8.8 16.0 52.0 204.0 53.5 ± 13.8

Table 6 Results of performance of SNN trained with ES and CPSO (2nd fold)

Network Classification (ES Training) Classification (CPSO Training)

Training Testing Training Testing

Minimum
(%)

Maximum
(%)

Minimum
(%)

Maximum
(%)

Minimum
(%)

Maximum
(%)

Minimum
(%)

Maximum
(%)

16-1-1 4.0 89.3 13.3 80.0 1.3 53.3 4.0 52.0
16-5-1 41.3 85.3 38.7 90.7 33.3 68.0 36.0 80.0
16-10-1 4.0 89.3 8.0 98.7 1.3 78.7 2.7 68.0
16-15-1 41.3 90.7 41.3 85.3 36.0 66.7 32.0 82.7
16-20-1 54.7 98.7 58.7 93.3 34.7 78.7 33.3 89.3

Comparing Metaheuristic Algorithms 401

5 Conclusions and Future Work

This work compares two metaheuristics on the training of SNNs. The few ES’s
parameters made easier to implement. It as training algorithm than CPSO.
Moreover, in general ES gets better fitness values than CPSO and the SNNs trained
with ES get better classification performance too.

The results obtained show evidence that there is a relationship between the
neural architecture and the capability of the metaheuristic to train it. Due that good
results in phases of training and testing can be achieved by different architectures,
but some neural configurations are easier to train and show more stability through
several experiments. Even when a metaheuristic can achieved low fitness values, it
doesn’t ensure the good performance of the SNN for classifying unseen data; this
is an important aspect that needs to be analyzed when using metaheuristic-based
supervised learning on SNNs.

As future work, authors propose try to improve the CPSO performance on the
training of SNNs by tuning its parameters. It is interesting to use other meta-
heuristic algorithms as learning rules to analyze their behavior. Finally it is nec-
essary to use statistical tests for a best comparison of these algorithms in this task.

Acknowledgments Authors thanks the support received from Consejo Nacional de Ciencia y
Tecnologia (CONACyT).The authors want to thank to Instituto Tecnológico de León (ITL) for
the support to this research. Additionally they want to aknowledge the generous support from the
Mexican National Council for Science and Technology (CONACyT) for this research project.

References

1. Maass, W.: Networks of spiking neurons: the third generation of neural network models.
Neural Networks 10(9), 1659–1671 (1997)

2. Maass, W.: Noisy Spiking Neurons with Temporal Coding Have More Computational Power
Than Sigmoidal Neurons, pp. 211–217. MIT Press, Cambridge (1996)

3. Bohte, S.M., Kok, J.N., LaPoutre, H.: Error-backpropagation in temporally encoded networks
of spiking neurons. Neurocomputing 48, 17–37 (2002)

4. Belatreche, A.: Biologically Inspired Neural Networks: Models, Learning, and Applications.
VDM Verlag Dr. Müller, Saarbrücken (2010)

5. Belatreche, A., Maguire, L.P., McGinnity, M., Wu, Q.X.: An evolutionary strategy for
supervised training of biologically plausible neural networks. In: The Sixth International
Conference on Computational Intelligence and Natural Computing (CINC), Proceedings of
the 7th Joint Conference on Information Sciences. pp. 1524–1527 (2003)

6. Belatreche, A., Maguire, L.P., McGinnity, T.M.: Advances in design and application of
spiking neural networks. Soft. Comput. 11(3), 239–248 (2007)

7. Shen, H., Liu, N., Li, X., Wang, Q.: A cooperative method for supervised learning in spiking
neural networks. In: CSCWD. pp. 22–26. IEEE (2010)

8. Zurada, J.M.: Introduction to Artificial Neural Systems. West (1992)
9. Judd, J.S.: Neural Network Design and the Complexity of Learning. Neural Network

Modeling and Connectionism Series, Massachusetts Institute Technol (1990)

402 A. Espinal et al.

10. Gerstner, W.: Time structure of the activity in neural network models. Phys. Rev. E 51(1),
738–758 (1995)

11. Elizondo, D., Fiesler, E.: A survey of partially connected neural networks. Int. J. Neural Syst.
8(5–6), 535–558 (1997)

12. Bohte, S.M., La Poutre, H., Kok, J.N.: Unsupervised clustering with spiking neurons by
sparse temporal coding and multilayer RBF networks. Neural Networks IEEE Trans. 13,
426–435 (2002)

13. Johnson, C., Roychowdhury, S., Venayagamoorthy, G.K.: A reversibility analysis of
encoding methods for spiking neural networks. In: IJCNN. pp. 1802–1809 (2011)

14. Gerstner, W., Kistler, W.: Spiking Neuron Models: Single Neurons, Populations, Plasticity.
Cambridge University Press, Cambridge (2002)

15. Haykin, S.: Neural Networks: Comprehensive Foundation. Prentice Hall (1999)
16. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2012)
17. Rechenberg, I.: Evolutions Strategie: optimierung technischer systeme nach prinzipien der

biologischen evolution. Frommann-Holzboog (1973)
18. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. IEEE Int. Conf. Neural Netw. 4,

1942–1948 (1995)

Comparing Metaheuristic Algorithms 403

	27 Comparing Metaheuristic Algorithms on the Training Process of Spiking Neural Networks
	Abstract
	1…Introduction
	2…Spiking Neural Networks
	2.1 Gaussian Receptive Fields
	2.2 Spike Response Model

	3…Metaheuristic-Based Supervised Learning
	3.1 Evolutionary Strategy
	3.2 Particle Swarm Optimization

	4…Experiments and Results
	4.1 XOR Logic Gate
	4.2 Iris Plant Dataset

	5…Conclusions and Future Work
	Acknowledgments
	References

