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Abstract Finding efficient and effective automatic methods for the identification
and prediction of epileptic seizures is highly desired, due to the relevance of this
brain disorder. Despite the large amount of research going on in identification and
prediction solutions, still it is required to find confident methods suitable to be used in
real applications. In this paper, we discuss the principal challenges found in epilepsy
identification, when it is carried on offline analyzing electro-encephalograms (EEG)
recordings. Indeed, we present the results obtained so far in our research group, with
a system based on multi-resolution analysis and feed-forward neural networks,
which focus on tackling three important challenges found in this type of problems:
noise reduction, feature extraction and pertinence of the classifier. A 3-fold vali-
dation of our strategy reported an accuracy of 99.26 ± 0.26 %, a sensitive of
98.93 % and a specificity of 99.59 %, using data provided by the University of Bonn.
Several combinations of filters and wavelet transforms were tested, found that the
best results occurs when a Chebyshev II filter was used to eliminate noise, 5 char-
acteristics were obtained using a Discrete Wavelet Transform (DWT) with a Haar
wavelet and a feed-forward neural network with 18 hidden nodes was used for
classification.
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1 Introduction

It is estimated that around 1 % of the world population suffers from epilepsy. This
disease is the result of sudden changes in the dynamics of the brain, producing
abnormal synchronization in its networks, which is called a ‘‘seizure’’ [16].
In some cases, this disease cannot be controlled, producing serious physical and
social disturbances in the affected patients. Seizures occur unexpectedly, lasting
from few seconds to few minutes and showing symptoms as loss of consciousness,
convolutions, lip smacking, blank staring or jerking movements of arms or legs
[8]. Due to the negative effects of their occurrence, the medical community is
looking for ways to predict seizures in real-time, so that patients can be warned of
incoming episodes. However, still this is an open problem, but many research
efforts are being dedicated to this. Among several strategies, the monitoring of the
electroencephalographic activity (EEG) of the brain is considered one of the most
promising options for building epilepsy predictors. However, this is very difficult
problem, because the brain is a very complex system, and an EEG time series may
be generated by dynamics among neurons nearby or far away from the electrodes
where it was acquired, which makes difficult to model the dynamics involved.

The electrical activity of the brain was first mentioned in 1875, when Galvani
and Volta performed their famous experiments [7, 23]. The first EEG was recorded
from the surface of a human skull by Borger in 1929 [5] and 1935 is considered the
year of birth of today’s clinical electroencephalography. Since then, EEGs are part
of the required medical tools for diagnosis and monitoring of patients. Figure 1
shows a portion of a EEG of a healthy patient.

Experts have identified several morphological characteristics in an EEG, related
to the type of patients and brain stages when the EEG is recorded. The EEG of a
healthy, relaxed patient with closed eyes presents a predominant physiological
rhythm, known as the ‘‘alpha rhythm’’, with frequencies ranging from 8 to 13 Hz;
if patient’s eyes are open, broader frequencies are presented. Seizure-free inter-
vals, acquired within the epileptogenic zone of a brain, that is, the zone where the
abnormality occurs, present rhythmic and high amplitude patterns, known as
‘‘interictal epileptiform activities’’; these activities are fewer and less pronounced
when intervals are sensed in places distant from the epileptogenic zones. Contrary
to the expected, an EEG taken during an epileptic event (ictal activity) is almost
periodic and presents high amplitudes [16].

Several stages may be identified in an EEG related to epilepsy: the ictal stage,
which corresponds to the occurrence a seizure, the interictal stage, which occurs in
between epileptic events, the pre-ictal state, occurring few minutes prior to a
seizure and the postictal stage [26]. The term ‘‘healthy stage’’ is used here to
identify the behavior of a EEG obtained from relaxed, healthy patients with closed
eyes.

With the possibility of using fast and accurate information technologies ubiq-
uitously, the promise of trustily devices able to monitor and predict health con-
ditions in real time is growing, and a fact in many cases. Based on this, a huge
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amount of research has been published, with the hope of finding better uses of
signal processing techniques to support clinical diagnosis. Related to the use of
EEG for diagnosis, the health community has agreed on some nomenclature
related to time–frequency analysis. Table 1 lists the identifications given by most
authors to frequency sub-bands found in an EEG spectra, and its relation to spe-
cific conditions of the subjects being analyzed. These sub-bands have been used to
characterize different brain conditions as Alzheimer disease or epilepsy and as a
tool for building brain computer interfaces [7]. In this respect, some researchers
have reported that delta and alpha sub-bands are suitable for the identification of
epileptic episodes [28, 31]. Signal processing has also been widely involved in the
use of time–frequency transformations as an aid for feature extraction in classi-
fication and prediction in medical applications and as pre-processing techniques
for biomedical signals [34]. In particular, wavelet analysis has been widely used
for classification and prediction of epilepsy (see for example [1, 10, 15, 19, 29].

In this chapter we review some important concepts and research work related
with the automatic identification of epilepsy using EEG, and we analyze the use of
filtering, wavelet analysis and artificial neural networks to tackle the main prob-
lems associated to this identification: noise reduction, definition of a suitable
feature vector and design of a classifier. The behavior of several classifiers is
presented, which were built using combinations of: Infinite Impulse Response
(IIR) filters, Finite Impulse Response (FIR) filters, discrete wavelet transforms
(DWT), Maximal Overlap Discrete Wavelet Transform (MODWT) and Feed-
Forward Artificial Neural Networks (FF-ANN). The chapter is organized as fol-
lows: Sect. 2 presents some of the recent work related to this research; Sect. 3
comments on the basic concept used for identification of epilepsy; the main steps
for identifying epilepsy using EEG are detailed in Sect. 4; Sect. 5 shows the results
obtained with an experiment using the just mentioned characteristics. Section 6
presents some conclusions and future work.

Fig. 1 An example of a EEG of a healthy patient (taken form set Z of the database created by the
University of Bonn)
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2 Related Works

The amount of published work related to the automatic identification of epilepsy in
EEGs is amazing. For this reason, a complete state-of the art review is out of the
scope of this chapter. Therefore, in this section, we limit our analysis to works
similar to ours. We present only recent works that have tested using a free-available
EEG database, originally presented in [2] from the University of Bonn and avail-
able at [33]. This collection contains unfiltered EEGs of five subjects, including
different channels per patient, recorded with a sampling rate of 173 Hz. The
database is divided in 5 sets, identified as (A, B, C, D, E) or (Z, O, N, F, and S). Each
set contains 100 single-channel segments of EEG with the characteristics described
in Table 2, lasting 23.6 s each. Even though larger databases exist (see [16] for a
review), this database has the advantages of being free, highly popular and very
easy to use. For this reason, we decided to use this database to test our algorithms,
referred herein as the ‘‘Bonn database.’’ In addition, we focus our review in works
based on the use of wavelet analysis for feature extraction and feed-forward neural
networks (FF-NN) for identification of 2 classes (healthy and ictal stage) and 3
classes (healthy, ictal and inter-ictal stages). Table 3 summaries this review. A
detailed review of other works can be found in [32].

3 Filtering and Wavelet Analysis

This section describes some basic concepts related to filtering and wavelet anal-
ysis, which are used in this paper. It is important to point that that these paragraphs
include just basic definitions and brief descriptions of techniques; it does not
pretend to be a detailed review of them. The interested reader is encouraged to
review [1, 27].

In this context, filtering refers to a process that removes unwanted frequencies
in a signal. This is required for some tasks in order to eliminate noise, even though

Table 1 Frequency sub-
bands identified in EEG
(adapted from)

Name Frequency range (Hz) Subject’s conditions

Delta 0–4 Deep sleep, Infancy,
Brain diseases

Tetha 4–8 Parental an temporal regions
in children, emotion
stress in some adults,

Alpha 8–12 or Awaked, resting healthy
subjects8–13

(Ihle 2013)
Beta 12–30 Intense mental activity
Gamma [30 Information processing

Onset of voluntary movements
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it may create some distortion in the features represented in the frequency-time
domain of the signal. In spite of that, filtering in epilepsy identification is highly
recommended; according to Mirzaei, EEG frequencies above 60 Hz can be

Table 2 A brief description of the EEG data collection provided by the Univerisity of Bonn [33].
For a detailed description see [2]

Set Description

Z Extra-cranial EEG recording of healthy subjects with open eyes
O Extra-cranial EEG recording of healthy subjects with closed eyes
N Intra-cranial EEG recording into the hippocampal formation zone of interictal stages
F Intra-cranial EEG recording into the epileptogenic zone of interictal stages
S Intra-cranial EEG recording of seizure stages

Table 3 Comparison of published works in epilepsy identification. Two or three classes are
identified using data provided by [2, 33]

Author(s) Feature extraction method Accuracy Number of classes
and observations
on the database

Tzallas
et al. [32]

Based on power spectrum
density (PSD) calculated
using fast-fourier transform

100 % (using
sets Z and S)

2 classes (healthy and
ictal) using sets Z
and S;

100 % (using
sets Z, F and S)

3 classes (healthy,
interictal and ictal)
using sets Z, F and
S and using all sets

89 % (using
all sets)

Anusha et al. [3] Sliding windows 95.5 % (ictal) 2 classes using sets
A and E93.37 % (healthy)

Ghosh-Dastidar
et al. [10]

Standard deviation, correlation
dimension and largest
Lyapunov exponent of delta,
theta, alpha beta and gamma
sub-bands obtained by
wavelet analysis

96.7 % 3 classes using sets
Z, F and S

Husain &
Rao [15]

Energy, covariance inter-
quartile range and
Median Absolute
Deviation, applied to
sub-bands obtained from
segments of 1 s

98.3 % 2 classes using all sets

Juarez et al. [17] Maximal overlap discrete
wavelet transform over
delta and alpha bands of
segments of 23.6 s,
previously filtered using a
10-order Butterworth low
pass filter

90 % 2 classes using sets Z
and S

Juarez et al. [18] Chebyshev II filtering, DWT
with Haar wavelet over
segments of 1 s

99.26 % 2 classes, sets Z and S

Identification of Epilepsy Seizures 341



neglected [25]. There are different types of filters: linear and non-linear, time-
invariant or time-variant, digital or analog, etc.

Digital filters are divided as infinite impulse response (IIR) filters and finite-
impulse response filters (FIR). A FIR filter is one whose response to any finite
length input is of finite duration, because it settles to zero in finite time. On the
other hand, an IIR filter has internal feedback and may continue to respond
indefinitely, usually decaying. The classical IIR filters approximate the ideal
‘‘brick wall’’ filter. Examples of IIR filters are: Butterworth, Chebyshev type I and
II, Elliptic and Bessel; of special interest are Chebyshev type II and Elliptic. The
Chebyshev type II filter minimizes the absolute difference between the ideal and
actual frequency response over the entire stop band. Elliptic filters are equiripple in
both the pass and stop band and they generally meet filter requirements with the
lowest order of any supported filter type. FIR filters have useful properties, for
example, they require no feedback and they are inherently stable. The main dis-
advantage of FIR filters is that they require more computational power that IIR
filters, especially when low frequency cutoffs are needed [24].

To design a filter means to select their coefficients in a way that the system
covers specific characteristics. Most of the time these filter specifications refer to
the frequency response of the filter. There are different methods to find the
coefficients suitable from frequency specifications, for example: window design,
frequency sampling method, weighted least squares design and equiripple [6]. In
the experiments presented in this chapter, the methods ‘‘weighted least squares
design’’ and ‘‘Equiripple’’ were applied, as recommended by [4]. Figure 2 shows a
filtered EEG and its frequency spectrum of an ictal stage. The filtering was
obtained using a Least Squares FIR filter.

Wavelet analysis is a very popular signal processing technique, widely applied
in non-periodic and noisy signals [1]. It consists on calculating a correlation
among a signal and a basis function, known as the wavelet function; this similarity
is calculated for different time steps and frequencies. A wavelet function u(.) is a
small wave, which means that it oscillates in short periods of time and holds the
following conditions:

1. Its energy is finite, that is:

E ¼
Z1

�1

uðtÞj j2dt \1 ð1Þ

2. Its admissibility constant Cu is finite, that is:

Cu ¼
Z1

0

UðuÞj j2

u
du \1 ð2Þ
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where:

UðuÞ ¼
Z1

�1

uðtÞe�i2pudt ð3Þ

is the Fourier transform of u(.).
Any function f(t) can be expressed as a linear decomposition:

f ðtÞ ¼
X
‘

a‘u‘ðtÞ ð4Þ

where a‘ are real-valued expansion coefficients and u‘(t) are a set of real functions,
known as the expansion set. Using wavelets as an expansion set, a series expansion
of a signal is defined as:

f ðtÞ ¼
X

k

X
j

aj;kuj;kðtÞ ð5Þ

aj,k are known as the Discrete Wavelet Transform (DWT) of f(t).

In addition to DWT, there are several wavelet transforms, which may be
applied using different types of wavelets. Two transforms frequently used are the
Discrete Wavelet Transforms (DWT) and Maximal Overlap Discrete Wavelet
Transform (MODWT). DWT can be estimated using a bank of low-pass and high-
pas filters. Filters are combined with down-sampling operations, to create coeffi-
cients that represent different frequencies in different resolution levels. Two types
of coefficients are obtained: approximation coefficients and detailed coefficients.
The output of each filter contains a signal with half the frequencies of the input

Fig. 2 A filtered EEG of an ictal stage (a), its corresponding frequency spectra (b). Signal was
filtered using a least-square FIR filter. Data taken from [33]
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signal, but double the points, requiring then to be down-sampled. Figure 3 shows a
tree representing the decomposition of an EEG using a DWT algorithm. Notice
that the EEG sub-bands, described in Table 1, are obtained in different levels of
the decomposition (marked as yellow blocks in the figure). Figure 4 shows the
delta sub-band of an EEG signal obtained by a MODWT with Daubechies degree 2
and its corresponding spectra. Figure 5 shows the same for Alpha sub-band.

The selection of the right wavelet to be used in a specific problem is related
with the characteristics found in the signal being analyzed. In this paper, we used
Haar, second order Daubechies (Db2) and fourth order Daubechies (Db4) wave-
lets. For a complete review of wavelet analysis, see [1].

4 Identifying Epilepsy

Off-line identification of epilepsy stages using EEGs is composed of 3 main steps,
which are described next:

1. Preprocessing of the input signal. In this step the EEG stream is divided in
segments and each segment is clean of unwanted frequencies that may repre-
sent noise or other artifacts. Section 3 describes some methods for filtering. In

Fig. 3 Wavelet analysis of an EEG using a DWT. The yellow blocks correspond to identifiers of
sub-bands found in a EEG (see Table 1). LP Low-pass filter, HP High-pass filter, C#
Approximation coefficient number #, D# Detailed coefficient number#
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this chapter we compare the performance obtained for classifiers using different
types of filters: Chebyshev II, Elliptic, Equiripple and Least Squares. For de
results showed in this paper, we used segments lasting 23.6 s, 1 s, and 0.7375
segments each.

2. Feature extraction. The design of this part of a classifier is one of the most
important challenges in this and other identification problems. Using signal
processing, statistics, or other math techniques, each filtered EEG segment
(sample) has to be represented with appropriate values that will allow the
recognizer to separate the different classes. In Table 3, we list some examples
of feature extraction methods, used for some works related to epilepsy identi-
fication, but there are many more. Here we present the results obtained using

Fig. 4 Delta sub-band of an EEG signal obtained by a MODWT with Daubechies degree 2
(a) and its corresponding frequency spectrum (b)

Fig. 5 Alpha sub-band of an EEG signal obtained by a MODWT with Daubechies degree 2
(a) and its corresponding frequency spectrum (b)
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DWT and MODWT as feature extractors. First, each segment of one second is
decomposed using DWT or MODWT, obtaining sub-bands alpha and delta
(among others). Next, the mean, absolute mean and variance of the amplitude
of each sub-band are calculated. This results in a feature vector of six positions
characterizing each segment.

3. Recognition. The feature vectors obtained in previous step are input to a system
that will decide the class with highest probability of being the sample’s class.
There are many classifiers that have been tried for epilepsy identifications,
being those based on soft computing the most popular.

In special, artificial neural networks have showed to be good modelers with
excellent generalization abilities, when compared with other strategies. Here we
present results using a feed forward neural network (FF-ANN). The activation
function used in all neurons was a sigmoid. The network used here has 6 input
neurons (one for each feature) and two output neurons, each representing a class:
ictal stage or healthy stage.

The best combination of filter method, features and recognizer parameters need
to be found in order to get the best possible performance in a particular applica-
tion. To find this, it is advised to execute several experiments, testing each model
with some validation criteria. Several of these methods have been proposed in the
literature, being k-fold validation one of the most popular, due to its ability to
provide a good statistical estimation of the performance of the classifier [20]. The
selection of a value for k depends upon the number of samples available for
training and testing the system. We used a 3-fold validation to test all the com-
binations reported here.

With respect to the way of evaluating the performance of epilepsy identifiers, it
is a common practice to use 3 metrics: accuracy, sensitivity and specificity. When
two classes are involved (healthy and ictal stages), these metrics are defined as [26]:

Accuracy ¼ number of correct classified segments

total of segments
ð6Þ

Sensitivity ¼ number of correct classified ictal segments

total of ictal segments
ð7Þ

Specificity ¼ number of correct classified healthy segments

total of healthy segments
ð8Þ

Accuracy gives the proportion of correctly identified samples. Sensitivity, also
known as the recall rate, measures a proportion of sick cases correctly identified as
such. Specificity gives the proportion of healthy cases correctly identified as
such [13].

In the next section, we present the results of an experiment that we executed for
identification of ictal and healthy stages in EEG, which were originally reported in
[18].
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5 An Experiment for Ictal Identification

Our research group is working with the design of new models for identification and
prediction of epilepsy [17]. In our way to do so, we have experimented with some
models currently proved to obtain good results in this task. Here, as an example of
this process, we detail the results obtained for a FF-NN when trained with filtered
segments of EEG [18]. As described in Sect. 4, we tested different combinations of
filters, wavelet transforms and number of hidden nodes, to obtain the most suitable
architecture for the data provided by sets Z and S from the Bonn database. We
tested two cases, the first using segments of 23.6 s and the second using segments
of one second or of 0.7375 s. For the second case, segments of one second were
used when a DWT transform were applied and segments of 0.7375 were used
when MODWT was applied. Table 4 presents the parameters used for setting the
FF-NN classifier. As we stated before, three-fold validation was applied to obtain
all performance measures.

Performances obtained in the first case are summarized in Table 5, and the
performances obtained for second case are summarized in Table 6. Measures are
calculated according to Eqs. (6), (7) and (8). These values are the average obtained
by a 3-fold validation procedure. The best results in each case are bolded. Notice
that the best results are obtained using segments of one second (second case)
cleaned using a Chebyshev II filter, features are obtained using a DWT with a Haar
wavelet. In this case an accuracy of 99.26 ± 0.26 is obtained, with a sensitivity of
98.93 % and a specificity of 99.59 %. This results are better than most of the
results shown in Table 3, except for the work of [32].

6 Conclusions and Ongoing Work

In this paper, we present basic ideas related to the identification of different stages
identified in a EEG, related to epilepsy. Given the importance of this brain dis-
order, it is mandatory to find better ways to identify and predict seizures in real
time. However, this is still an open problem, given the complexity inherent to the
brain and the amount of information provided by EEGs. Some recent works using

Table 4 Parameters for the FF-NN, applied for both experimental cases

Characteristic Value(s)

Number of input nodes 6
Number of hidden nodes 6, 9, 12, 15, 16, 18, 21 and 24
Number of output nodes 2
Software Based on Matlab 2010 and Neural Toolbox V 6.0.3, available in [11]
Training algorithm Leverage at a learning rate of 0.5, with a max. of 1,000 epochs
Activation functions sigmoid
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filtering, FF-NN and wavelet decomposition were analyzed. We also presented the
design of a identifier of ictal and healthy stages, based on filters, wavelet analysis
and FF-NN, which obtained an average of 99.26 ± 0.26 % of accuracy.

Here we present just the first steps of an ongoing research, and still the most
important ideas are being explored. A critical issue to be considered is that this
problem is highly related to temporal classification. Some temporal classification
problems may be solved using static classification strategies (as the one presented
here), provided that the information about time is represented in some way in a
feature vector. However, it is difficult to identify accurately the time lag required
to build the feature vector, which in this case corresponds to the right size of the
segment to be characterized. It has been showed that recurrent neural networks are
a better option than FF-NN for time-dependent problems where chaos is present
[12]. Particularly, some studies have outlined the advantage of recurrent models
over feed-forward models for EEG classification [13]. Indeed, there is a strong
evidence of the chaotic behavior of EEG during seizures [2] and that recurrent
neural networks have presented good results modeling chaotic systems [12].
Therefore, the next step to be explored in our research is the use of recurrent neural
networks for temporal identification. Encourage for the results obtained here, we
will explore wavelet-recurrent neural networks, as the ones presented in [30] and
[9], modeled with Haar wavelets as activation functions.

A search for better features extractor methods has to be performed. A method
that has reported with good results in this context is Empirical Mode Decompo-
sition (see for example [22] ) will be also analyzed. EMD, introduced by Huang in
1971 [34], has become very popular in biomedicine in the last few years [35]. This
is a spontaneous multi-resolution method that represents nonlinear and non-sta-
tionary data as a sum of oscillatory modes inherent in the data, called Intrinsic
Mode Functions (IMFs) [21].

Table 6 Performance of the models using segments of 1 or 0.7375 s

Filter Wavelet Hidden
nodes

Accuracy
(%)

Acc. of
Standard
deviation

Sensitivity
(%)

Specificity
(%)

Chebyshev II DWT—Haar 18 99.26 0.26 98.93 99.59
Chebyshev II DWT—Db2 18 99.03 0.27 98.75 99.32
Chebyshev II DWT—Db4 18 96.57 5.87 95.38 98.91
Chebyshev II MODWT—Haar 15 99.24 0.32 98.86 99.64
Chebyshev II MODWT—Db2 24 95.80 12.84 94.77 96.19
Chebyshev II MODWT—Db4 24 97.72 4.55 96.76 99.13
Elliptic DWT—Haar 21 95.49 11.10 97.48 95.30
Elliptic DWT—Db2 21 95.96 12.33 96.65 96.23
Elliptic DWT—Db4 9 98.44 1.26 97.91 99.06
Elliptic MODWT—Haar 18 95.98 12.52 95.49 99.74
Elliptic MODWT—Db2 6 99.12 0.40 98.73 99.51
Elliptic MODWT—Db4 24 95.34 12.62 91.27 96.14
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