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Abstract This paper describes the optimization of a navigation controller system
for a mobile autonomous robot using the PSO algorithm to adjust the parameters of
each fuzzy controller, the navigation system is composed of 2 main controllers, a
tracking controller and a reactive controller, plus an integrator block control that
combines both fuzzy inference systems (FIS). The integrator block is called
Weighted Fuzzy Inference System (WFIS) and assigns weights to the responses in
each block of behavior in order to combine them into a single response. A com-
parison with the results obtained with genetic algorithms is also performed.

1 Introduction

The mobile robots must be able to operate in a real environment, and navigate in
an autonomous manner. In this case an intelligent control strategy that can handle
the uncertainty can be implemented by the working environment, while comparing
with the performance in real time of a relatively low computational load.

One of the applications of fuzzy logic is the design of fuzzy control systems.
The success of this control lies in the correct selection of the parameters of fuzzy
controller; it is here where the Particle Swarm Optimization (PSO) metaheuristic
will be applied, which is one of the most used for optimization with real
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parameters. PSO, because of their ease of implementation, converges faster than
the Evolutionary Algorithms (EA) has better performance [9–30].

The present research work deals with the problem of mobile robot autonomy,
for which a fuzzy control system is developed using fuzzy logic and the PSO
algorithm [31–52].

This paper is organized into four sections as follows: Sect. 2: the points are
developed and progress of the research work is shown. Sections 3 and 4: In part
disclose the theory underlying the present work, in which issues such as fuzzy
logic, PSO algorithm and a bit on the operation of autonomous mobile robot are
discussed. Section 5 shows the results of the simulations are presented.

2 Mobile Robots

The particular mobile robot considered in this work is based on the description of
the Simulation toolbox for mobile robots [1], which assumes a wheeled mobile
robot consisting of one conventional, steered, unactuated and not-sensed wheel,
and two conventional, actuated, and sensed wheels (conventional wheel chair
model). This type of chassis provides two DOF (degrees of freedom) locomotion
by two actuated conventional non-steered wheels and one unactuated steered
wheel. The Robot has two degrees of freedom (DOFs): y-translation and either
x-translation or z-rotation [1]. Figure 1 shows the robot’s configuration, it has 2
independent motors located on each side of the robot and one castor wheel for
support located at the front of the robot.
The kinematic equations of the mobile robot are as follows:

Equation 1 shows the sensed forward velocity solution [2]
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Equation 2 shows the Actuated Inverse Velocity Solution [3]
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Under the Metric system are define as:

VBx;VBy Translational velocities m
s

� �
;

xBz Robot z-rotational velocity rad
s

� �
;

xW1;xW1 Wheel rotational velocities rad
s

� �
;

R Actuated wheel radius [m],
la,lb Distances of wheels from robot’s axes [m].
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3 Navigation Control System

The proposed control system consists of three main fuzzy blocks: two controllers
are based on the behavior of the robot (tracking and reactive) and one is in charge
of combining the responses of the other two drivers, called block integration.

Each controller has a specific behavior, the problem is that they seem to be in
conflict with each other when an unexpected obstacle appears, because if the route
is planned when obstacles are present, the route can be designed to avoid them but
when there are obstacles we do not realize that the two behaviors are in contra-
diction, one is designed to prevent the collision object and the other to keep the
robot on the path.

The most common solution is to simply change among drivers as needed.
However, this method is not very effective because of the lack of knowledge of the
two controllers on to one another, the reagent remains the robot free from a
collision, but may redirect the robot further from your destination to a point at
which the tracking controller can no longer find their way back to the reference, or
the tracking controller can directly guide the robot to an obstacle if the control
reagent provides no actuation time. The proposed reference for navigation control
always has both active controls and responses combined to create the movement of
the robot. The integration is performed with another block called diffuse WFIS [2]
(Weight-Fuzzy Inference System) so that this controller assigning weights is made
responsive to each of the response values of the drivers.

The inputs are gathered from the information we can collect from the robot
(sensors) or the environment by other means (cameras) and from this we need to
create the knowledge rule base to give higher activation values to the response. If
we want to take the lead on the robot movement one example of the rule is the
following (if Front_Sensor_Distance is Close Then TranckingWeight is Medium
and ReactiveWeight is Medium), both of our controls provide the right and left

Fig. 1 Kinematic coordinate system assignments [2]

Optimization of Fuzzy Control Systems 193



motor speed and we combine each one with the weight given by the WFIS block.
Figure 2 shows the proposed navigation control [2].

4 PSO Algorithms

The Particle Swarm Optimization Algorithm (PSO) was applied to each of the
design problems in order to find the best fuzzy controller reactive and tracking.
The purpose of using a behavior-based method is to find the best controllers of
each type and this can be achieved by PSO as it searches along the search space of
the solution, which combines the knowledge of the best controllers (particles), and
we can handle the exploration and exploitation throughout the iterations. The main
task of the algorithm is to convert the particle into a FIS and then evaluate each
particle to determine its performance. Figure 3 shows the flowchart of the PSO.

4.1 Particle Encoding

The particle consists of 60 real-valued vectors, representing the parameters for the
triangular membership function; we use five membership functions for each
variable. This encoding is shown Fig. 4.
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Fig. 2 Navigation control system [2]
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4.2 Reactive Controller

The role of reactive control is to apply the same capacity when we are driving, i.e.
to react to unexpected situations, traffic jams, traffic lights, etc., but in a more basic
concept. The objective is to guide the robot through the maze avoiding any col-
lision. It is our goal to optimize the robot to find the exit of the maze, we used a
maze to optimize the reactive control because of the feature that conditions the
simulation, i.e. it is a closed space in which the robot cannot move easily and each
wall is considered an obstacle to the robot to avoid while moving. The FIS is
Mamdani type; each consisting of 3 entries, namely the distances obtained by the
sensors of the robots described in Sect. 2, and 2 outputs that control the speed of
the servo motors on the robot, all this information is encoded in each particle.

4.3 Tracking Controller

The tracking controller has the responsibility to keep the robot on the right track,
given a reference; the robot will move on the reference and keep it on the road,
allowing moving from point A to B without obstacles present in the environment.

The controller will work keeping the error ðDep; DhÞ in the minimum values,
Fig. 5, these minimum values are the relative position error and the relative error
of the orientation of the front of the robot, the Mamdani fuzzy system and its 2
inputs are ðDep; DhÞ and two outputs which control the speed of each servomotor
of the robot (Fig. 6).

Fig. 3 Flowchart of the PSO
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Controller performance is measured using the equation of the mean square error
between the reference and the robot trajectory. We perform each test three times
and take the average, above, below and random reference.

In Fig. 7 we can see the overall flowchart of the PSO. At the point of evaluation
of the particle, we measure the effectiveness of the tracking controller FIS
(Inference System Fuzzy) in our toolbox of evidence, which will be in a closed
circuit with a given reference by a straight line [2, 4–7] environment.

4.4 WFIS Controller

The function of the WFIS control is to correctly combine the two behaviors of
tracking and reaction and obtain a new global behavior that resembles the same
ability that we apply when we are driving, that is to react to unexpected objects,
but in a more basic concept and ability, to the problem that is the navigation of the
robot. A forward moving behavior response out of the global control is desired.
The objective is to guide the robot through the reference avoiding any collision
with any obstacle present. It’s not our objective to optimize the robot to find the
maze exit. We use a closed space where the robot cannot easily wonder off and
each wall is considered an obstacle to the robot that it must avoid while it moves
around. The FISs are Mamdani fuzzy systems [8], each consisting of three inputs,
which are the distances obtained by the robots sensors described on Sect. 2, and
two outputs that are the weights that will be used to integrate the responses of the
other two controllers. All this information is encoded into each particle.

Fig. 4 Particle encoding
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4.5 Objective Function

The PSO will be generating particles that will need to be evaluated and assigned a
crisp value that will represent the controller performance on each of the criteria
that we want to improve. For this, we need to provide the PSO with a good
evaluation scheme that will penalize unwanted behaviors and reward with higher
fitness values those individuals that provide the performance we are looking for in
our controller; if we fail to provide a proper evaluation method we can guide the
population to suboptimal solutions or no solution at all [2, 4–7].

Fig. 5 Fuzzy controller inputs ep, eh

Fig. 6 Calculation of controller performance
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4.5.1 Reactive Controller Objective Function

The criteria used to measure the Reactive controller performance are the following

• Covered Distance
• Time used to cover the distance
• Battery life.

A Fitness FIS will provide the desired fitness value, adding very basic rules that
reward the controller that provided the longer trajectories and smaller times and
higher battery life. This seems like a good strategy that will guide the control
population into evolving and provide the optimal control, but this strategy on its
own is not capable of doing just that: it needs to have a supervisor on the robots
trajectory to make sure it is a forward moving trajectory and that they does not
contain any looping parts. For this, a Neural Network (NN), is used to detect cycle
trajectories that do not have the desired forward moving behavior by giving low
activation value and higher activation values for the ones that are cycle free. The
NN has two inputs and one output, and 2 hidden layers, see Fig. 8.

The evaluation method for the reactive controller has integrated both parts of
the FIS and the NN where the fitness value for each individual is calculated with
Eq. 3. Based on the response of the NN the peak activation value is set to 0.35, this
meaning that any activation lower than 0.35 will penalize the fitness given by the
FIS [2, 4–7].

Fig. 7 Flowchart of the PSO
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Equation 3 expresses how to calculate the fitness value of each individual

f ðiÞ ¼ fv � nnv nnv\0:35
fv nnv� 0:35

�
ð3Þ

where:
fi Fitness value of the i-th individual,
fv Crisp value out of the fitness FIS,
nnv Looping trajectory activation value.

4.5.2 Tracking Controller Objective Function

The Tracking controller performance is measured with the RMSE between the
reference and the robots trajectory; we apply the test three times and take the
average on each of the three tests. The robot and the reference vertical position is
random, but it’s ensured that on one test the robots’ vertical position is above the
reference and on another test is below it. We do this to ensure the controller
works properly for any case the robot may need it when its above or below
(Fig. 9) [2, 4–7].

4.5.3 WFIS Controller Objective Function

The WFIS controller performance is measured by the RMSE between the refer-
ence and the robot’s trajectory. We apply the test three times and take the average.
On each of the three tests the robot’s and the reference vertical position are
random, but we make sure that on one test the robot’s vertical position is above the
reference and on another test is below it. We do this to ensure the controller works
properly for any case the robot may need may need to deal with (Fig. 10) [2, 4–7].

Fig. 8 Fitness function for the reactive controller
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5 Simulation Results

This section presents the results of experiments carried out for the robot control
system, with individual optimization of each behavior (tracking and reactive),
necessary to obtain shown WFIS controller results.

The results are divided in 3 main principals:

• Tracking Controller
• Reactive Controller
• WFIS Controller

The tools that were used to conduct the experiments are Matlab and simulation
tool Simrobot.

Reference

trajectory

+ +trajectory

trajectory

Reference
Reference

Random Lower Upper

Fig. 9 Fitness function for the tracking controller
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Fig. 10 Fitness functions for the WFIS controller
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5.1 Tracking Controller

Table 1 shows the configuration of the PSO and the results, in which we have the
fitness value obtained in each experiment. It also shows the mean, variance, as well
as the best and worst value obtained. In optimizing the weight of the inertia
controller a constraint factor was used, not at the same time, but when the weight
iteration inertia torque used as odd iteration a constraint factor is used.

Figure 11 shows the best path simulation during cycle PSO obtained for the
tracking controller. The reference is defined by the red line and the smallest dot
line is the trajectory of the robot, we can also see the graph of the FIS where input1
and input2 indicate the error on the position and orientation respectively, output1
and output2 speed to be applied to each actuator.

5.2 Reactive Controller

In this section, we show test of reactive controller, which includes the creation of a
PSO algorithm to optimize the controller. The fitness of each controller is deter-
mined by their performance in the simulation tool. The robot should react in a
closed environment (maze), avoiding obstacles present (walls) and must perform
movements and avoid repeated.

Table 2 shows the configuration of PSO and displays the results, where we have
the fitness value obtained in each experiment. It also shows the mean, variance, the
best and worst value obtained. In this controller optimization constraint factor was
used.

Table 1 Summary of tracking results

Particle Iteration C1 C2 Inertia weight Constraint factor

20 500 1.4962 1.4962 LD D
Fitness Fitness Fitness

1 0.3206 11 0.3266 21 0.3293
2 0.3256 12 0.3148 22 0.3229
3 0.3014 13 0.3266 23 0.3117
4 0.3219 14 0.3255 24 0.3102
5 0.3266 15 0.2944 25 0.3117
6 0.3229 16 0.3313 26 0.3233
7 0.3164 17 0.2557 27 0.3136
8 0.3271 18 0.2806 28 0.3233
9 0.2919 19 0.2926 29 0.3313
10 0.2796 20 0.3154
Average 0.312924138
Best 0.2557
Poor 0.3313
Std dev 0.000334708
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Fig. 11 Tracking controller results

Table 2 Summary of reactive controls results

Particle Iteration C1 C2 Inertia weight Constraint factor

20 500 1.4962 1.4962 – D
Rank Fitness
1 0.36249
2 0.36079
3 0.36219
4 0.35533
5 0.35518
6 0.39059
7 0.39018
8 0.37154
9 0.41107
10 0.39917

Average 0.375853
Best 0.41107
Poor 0.35518
Std dev 0.0201816
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Figure 12 shows the best robot path during the simulation of the PSO cycle obtained
for the reactive controller. We can also see the graph of the FIS, where input1, input2
and input3 refer to the reading of the sensors robot orientation (straight, left and front),
respectively, output1 and output2 speed to be applied to each servomotor.

5.3 WFIS Controller

In this section, we discuss the WFIS test driver. The best of each type of reagent
and tracking controller are used as blocks in the behavioral integration system,
which include the creation of a PSO algorithm to optimize the controller.

Fig. 12 Reactive controller results
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Table 3 Summary of WFIS results

Particle Iteration C1 C2 Inertia weight Constraint factor

20 500 1.4962 1.4962 – D
Rank Fitness
1 0.3497
2 0.3497
3 0.3497
4 0.3497
5 0.3497
6 0.3497
7 0.3497

Average 0.3497
Best 0.3497
Poor 0.3497
Std dev 5.99589E-17

Fig. 13 WFIS controller results
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The fitness of each controller is determined by its performance in the simulation
tool, in which the robot must start from a random starting point and move forward
on the reference line to avoid any collision. This test is performed 3 times forcing
each robot controller to start at least once above and below the reference line.

Table 3 shows the configuration of PSO and results, in which we have the
fitness value obtained in each experiment. It also shows the mean, variance, the
best and worst value obtained. In this controller optimization a constraint factor
was used.

Figure 13 shows the best robot path during the simulation of the PSO cycle
obtained for the WFIS controller. We can also see the graph of the FIS, where
input1, input2 and input3 refer to the reading of the sensors robot orientation
(straight, left and front), respectively. Also output1 and output2 fuzzy weights will
be applied to the controllers.

6 Conclusions

In this paper, the improved PSO algorithm used to tune the parameters of the fuzzy
controller for the Reactive and Tracking Controllers, and we are currently working
on the WFIS Optimization.

The fuzzy controllers both provide good results as they are able to guide the
robot through the maze without hitting any wall and keep the robot on track. In
comparison with the GA, only one of the two controllers in the tests that performed
with the PSO proved to be better than the GA. Also, in the PSO less iterations have
been performed, therefore consuming less computational resources.

Acknowledgments We would like to express our gratitude to CONACYT, and Tijuana Institute
of Technology for the facilities and resources granted for the development of this research.

References

1. Measurement and Instrumentation, Faculty of Electrical Engineering and Computer Science,
Brno University of Technology, Czech Republic Department of Control: Autonomous
Mobile Robotics Toolboxfor Matlab 5 (2001). Online. http://www.uamt.feec.vutbr.cz/
robotics/simulations/amrt/simrobot%20en.html

2. Melendez, A., Castillo, O.: Hierarchical genetic optimization of the fuzzy integrator for
navigation of a mobile robot. In: Melin, P., Castillo, O. (eds.) Soft Computing Applications in
Optimization, Control, and Recognition. Volume 294 of Studies in Fuzziness and Soft
Computing, pp. 77–96. Springer, Berlin (2013)

3. Astudillo, L., Melin, P., Castillo, O.: Nature optimization applied to design a type-2 fuzzy
controller for an autonomous mobile robot. In: 2012 Fourth World Congress on Nature and
Biologically Inspired Computing (NaBIC), pp. 212, 217, 5–9 Nov 2012. doi: 10.1109/NaBIC.
2012.6402264

Optimization of Fuzzy Control Systems 205

http://www.uamt.feec.vutbr.cz/robotics/simulations/amrt/simrobot%20en.html
http://www.uamt.feec.vutbr.cz/robotics/simulations/amrt/simrobot%20en.html
http://dx.doi.org/10.1109/NaBIC.2012.6402264
http://dx.doi.org/10.1109/NaBIC.2012.6402264


4. Melendez, A., Castillo, O.: Optimization of type-2 fuzzy reactive controllers for an
autonomous mobile robot. In: 2012 Fourth World Congress on Nature and Biologically
Inspired Computing (NaBIC), pp. 207–211 (2012)

5. Melendez, A., Castillo, O.: Evolutionary optimization of the fuzzy integrator in a navigation
system for a mobile robot. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Recent Advances on
Hybrid Intelligent Systems, volume 451 of Studies in Computational Intelligence, pp. 21–31.
Springer, Berlin (2013)

6. Melendez, A., Castillo, O., Soria, J.: Reactive control of a mobile robot in a distributed
environment using fuzzy logic. In: Annual Meeting of the North American on Fuzzy
Information Processing Society, 2008. NAFIPS 2008, pp. 1–5 (2008)

7. Melendez, A., Castillo, O., Garza, A., Soria, J.: Reactive and tracking control of a mobile
robot in a distributed environment using fuzzy logic. In: FUZZ-IEEE, pp. 1–5 (2010)

8. Astudillo, L., Castillo, O., Aguilar, L.: Intelligent control of an autonomous mobile robot
using type-2 fuzzy logic. In: IC-AI 2006, pp. 565–570

9. Adika, C.O., Wang, L.: Short term energy consumption prediction using bio-inspired fuzzy
systems. In: North American Power Symposium (NAPS), 2012, pp. 1, 6, 9–11 Sept 2012

10. Amin, S., Adriansyah, A.: Particle swarm fuzzy controller for behavior-based mobile robot.
In: 9th International Conference on Control, Automation, Robotics and Vision, 2006.
ICARCV ’06, pp. 1, 6, 5–8 Dec 2006. doi: 10.1109/ICARCV.2006.345293

11. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley, New York,
2006

12. Astudillo, L., Castillo, O., Aguilar, L., Martínez, R.: Hybrid Control for an Autonomous
Wheeled Mobile Robot under Perturbed Torques. IFSA (1), 594–603 (2007)

13. Cardenas, S., Garibaldi, J., Aguilar, L., Castillo, O.: Intelligent Planning and Control of
Robots using Genetic Algorithms and Fuzzy Logic. In: IC-AI 2005, pp. 412–418

14. Castillo, O., Martinez, R., Melin, P., Valdez, F., Soria, J.: Comparative study of bio-inspired
algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an
autonomous mobile robot. Inf. Sci. 192, 19–38 (2012)

15. Cervantes, L., Castillo, O.: Design of a fuzzy system for the longitudinal control of an F-14
airplane. In: Soft Computing for Intelligent Control and Mobile Robotics, pp. 213–224
(2011)

16. Tsai, C.C., Tsai, K.I., Su, C.T.: Cascaded fuzzy-PID control using PSO-EP algorithm for air
source heat pumps. In: 2012 International Conference on Fuzzy Theory and it’s Applications
(iFUZZY), pp. 163, 168, 16–18 Nov 2012

17. De Santis, E., Rizzi, A., Sadeghiany, A., Mascioli, F.M.F.: Genetic optimization of a fuzzy
control system for energy flow management in micro-grids. In: IFSA World Congress and
NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint, pp. 418, 423, 24–28 June 2013. doi:
10.1109/IFSA-NAFIPS.2013.6608437

18. Wang, D., Wang, G., Hu, R.: Parameters optimization of fuzzy controller based on PSO. In:
3rd International Conference on Intelligent System and Knowledge Engineering, 2008. ISKE
2008, vol. 1, pp. 599, 603, 17–19 Nov 2008

19. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm
optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, 2000, vol.
1, pp. 84, 88 (2000). doi: 10.1109/CEC.2000.870279

20. Esmin, A.A.A., Aoki, A.R., Lambert-Torres, G.: Particle swarm optimization for fuzzy
membership functions optimization. In: 2002 IEEE International Conference on Systems,
Man and Cybernetics, vol. 3, 6 pp., 6–9 Oct 2002

21. Fierro, R., Castillo, O.: Design of fuzzy control systems with different PSO variants. In:
Recent Advances on Hybrid Intelligent Systems, pp. 81–88 (2013)

22. Fang, G., Kwok, N.M., Ha, Q.: Automatic fuzzy membership function tuning using the
particle swarm optimization. In: Pacific-Asia Workshop on Computational Intelligence and
Industrial Application, 2008. PACIIA ’08, vol. 2, pp. 324, 328, 19–20 Dec 2008

23. Hassen, T., Ahmed, M., Mohamed, E.: Pso-belbic scheme for two-coupled distillation
column process. J. Adv. Res. 2(1), 73–83 (2011)

206 D. de la O et al.

http://dx.doi.org/10.1109/ICARCV.2006.345293
http://dx.doi.org/10.1109/IFSA-NAFIPS.2013.6608437
http://dx.doi.org/10.1109/CEC.2000.870279


24. Chen, J., Xu, L.: Road-junction traffic signal timing optimization by an adaptive particle
swarm algorithm. In: 9th International Conference on Control, Automation, Robotics and
Vision, 2006. ICARCV ’06, pp. 1, 7, 5–8 Dec 2006

25. Kamejima, T., Phimmasone, V., Kondo, Y., Miyatake, M.: The optimization of control
parameters of PSO based MPPT for photovoltaics. In: 2011 IEEE Ninth International
Conference on Power Electronics and Drive Systems (PEDS), pp. 881, 883, 5–8 Dec 2011

26. Astudillo, L., Melin, P., Castillo, O.: Optimization of a fuzzy tracking controller for an
autonomous mobile robot under perturbed torques by means of a chemical optimization
paradigm. In: Recent Advances on Hybrid Intelligent Systems, pp. 3–20 (2013)

27. Wang, L., Kang, Q., Qiao, F., Wu, Q.: Fuzzy logic based multi-optimum programming in
particle swarm optimization. In: Proceedings. 2005 IEEE Networking, Sensing and Control,
2005, pp. 473, 477, 19–22 March 2005

28. Mahendiran, T.V., Thanushkodi, K., Thangam, P., Gunapriya, B.: Speed control of three
phase switched reluctance motor using particle swarm optimization. In: 2012 International
Conference on Advances in Engineering, Science and Management (ICAESM), pp. 315, 319,
30–31 March 2012

29. Martínez, R., Castillo, O., Soria, J.: Particle swarm optimization applied to the design of type-
1 and type-2 fuzzy controllers for an autonomous mobile robot. In: Bio-inspired Hybrid
Intelligent Systems for Image Analysis and Pattern Recognition, pp. 247–262 (2009)

30. Martínez, R., Castillo, O., Aguilar, L.: Optimization of interval type-2 fuzzy logic controllers
for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf. Sci. 179(13),
2158–2174 (2009)

31. Martinez, R., Castillo, O., Aguilar, L., Baruch, I.: Bio-inspired optimization of fuzzy logic
controllers for autonomous mobile robots. In: 2012 Annual Meeting of the North American
on Fuzzy Information Processing Society (NAFIPS), pp. 1–6 (2012)

32. Martínez, R., Castillo, O., Aguilar, L., Melin, P.: Fuzzy logic controllers optimization using
genetic algorithms and particle swarm optimization. MICAI 2, 475–486 (2010)

33. Melin, P., Astudillo, L., Castillo, O., Valdez, F., Garcia, M.: Optimal design of type-2 and
type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques
using a new chemical optimization paradigm. Expert Syst. Appl. 40(8), 3185–3195 (2013)

34. García, M.A.P., Montiel, O., Castillo, O., Sepúlveda, R.: Optimal path planning for
autonomous mobile robot navigation using ant colony optimization and a fuzzy cost function
evaluation. In: Analysis and Design of Intelligent Systems using Soft Computing Techniques,
pp. 790–798 (2007)

35. Milla, F., Sáez, D., Cortés, C.E., Cipriano, A.: Bus-stop control strategies based on fuzzy
rules for the operation of a public transport system. In: IEEE Transactions on Intelligent
Transportation Systems, vol. 13, no. 3, pp. 1394, 1403, Sept 2012

36. Yang, M., Wang, X.: Fuzzy PID controller using adaptive weighted PSO for permanent
magnet synchronous motor drives. In: Second International Conference on Intelligent
Computation Technology and Automation, 2009. ICICTA ’09, vol. 2, pp. 736, 739, 10–11
Oct 2009

37. Montiel, O., Camacho, J., Sepúlveda, R., Castillo, O.: Fuzzy system to control the movement
of a wheeled mobile robot. In: Soft Computing for Intelligent Control and Mobile Robotics,
pp. 445–463 (2011)

38. Porta, M., Montiel, O., Castillo, O., Sepúlveda, R., Melin, P.: Path planning for autonomous
mobile robot navigation with ant colony optimization and fuzzy cost function evaluation.
Appl. Soft Comput. 9(3), 1102–1110 (2009)

39. Martínez, R., Castillo, O., Aguilar, L.: Optimization of interval type-2 fuzzy logic controllers
for a perturbed autonomous wheeled mobile robot using genetic algorithms. In: Soft
Computing for Hybrid Intelligent Systems, pp. 3–18 (2008)

40. Rajeswari, K., Lakshmi, P.: PSO optimized fuzzy logic controller for active suspension
system. In: 2010 International Conference on Advances in Recent Technologies in
Communication and Computing (ARTCom), pp. 278, 283, 16–17 Oct 2010

Optimization of Fuzzy Control Systems 207



41. Vaneshani, S., Jazayeri-Rad, H.: Optimized fuzzy control by particle swarm optimization
technique for control of CSTR 5(11), 464, 470 (2011)

42. Aguas-Marmolejo, S.J., Castillo, O.: Optimization of membership functions for type-1 and
type 2 fuzzy controllers of an autonomous mobile robot using PSO. In: Recent Advances on
Hybrid Intelligent Systems, pp. 97–104 (2013)

43. Selvakumaran, S., Parthasarathy, S., Karthigaivel, R., Rajasekaran, V.: Optimal decentralized
load frequency control in a parallel ac-dc interconnected power system through fHVDCg link
using fPSOg algorithm. Energy Procedia 14(0), 1849, 1854 (2012). In: 2011 2nd
International Conference on Advances in Energy Engineering (ICAEE)

44. Singh, R., Hanumandlu, M., Khatoon, S., Ibraheem, I.: An adaptive particle swarm
optimization based fuzzy logic controller for line of sight stabilization tracking and pointing
application. In: 2011 World Congress on Information and Communication Technologies
(WICT), pp. 1259, 1264, 11–14 Dec 2011

45. Talbi, N.; Belarbi, K.: Fuzzy rule base optimization of fuzzy controller using hybrid tabu
search and particle swarm optimization learning algorithm. In: 2011 World Congress on
Information and Communication Technologies (WICT), pp. 1139, 1143, 11–14 Dec 2011

46. Valdez, F., Melin, P., Castillo, O.: Fuzzy control of parameters to dynamically adapt the PSO
and GA Algorithms. In: FUZZ-IEEE 2010, pp. 1–8

47. Vázquez, J., Valdez, F., Melin, P.: Comparative study of particle swarm optimization variants
in complex mathematics functions. In: Recent Advances on Hybrid Intelligent Systems,
pp. 223–235 (2013)

48. Venayagamoorthy, G., Doctor, S.: Navigation of mobile sensors using PSO and embedded
PSO in a fuzzy logic controller. In: Industry Applications Conference, 2004. 39th IAS Annual
Meeting. Conference Record of the 2004 IEEE, vol. 2, pp. 1200, 1206, 3–7 Oct 2004

49. Wong, S., Hamouda, A.: Optimization of fuzzy rules design using genetic algorithm. Adv.
Eng. Softw. 31(4), 251–262 (2000). ISSN 0965-9978, http://dx.doi.org/10.1016/
S0965-9978(99)00054-X

50. Yen, J, Langari R.: Fuzzy Logic: Intelligence, Control, and Information. Prentice Hall,
Englewood Cliffs (1999)

51. Liu, Y., Zhu, X., Zhang, J., Wang, S.: Application of particle swarm optimization algorithm
for weighted fuzzy rule-based system. In: 30th Annual Conference of IEEE Industrial
Electronics Society, 2004. IECON 2004, vol. 3, pp. 2188, 2191, 2–6 Nov 2004
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