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Preface

The pervasiveness and wide-spread availability of camera phones and hand-held digital
still/video cameras has led the community to recognize document analysis and rec-
ognition of digital camera images as a promising and growing sub-field of Document
Analysis and Recognition. Constraints imposed by the memory, processing speed, and
image quality are leading to new interesting open problems that cannot be directly
resolved by traditional techniques.

To cater for the demands of camera-based document processing, the idea of a new
satellite workshop of International Conference on Document Analysis and Recogni-
tion (ICDAR) was conceived by Prof. Koichi Kise. Together with Prof. David Do-
ermann, he took the responsibility of organizing the first workshop on Camera-Based
Document Analysis and Recognition as a satellite workshop of ICDAR 2005 in Seoul,
South Korea. The workshop was very well received by the community and hence it
was held in 2007 (Curitiba, Brazil), 2009 (Barcelona, Spain), and 2011 (Beijing,
China) with the corresponding ICDAR conferences. It is our pleasure to hold the Fifth
International Workshop on Camera-Based Document Analysis and Recognition
(CBDAR 2013) in Washington D.C., USA, following the success of the past four
workshops. The workshop is aimed to provide an opportunity to researchers and
developers from various backgrounds to exchange their ideas and explore new
research directions through the presentation of recent research activities and
discussions.

In the eight years since the first CBDAR was held, the situation surrounding the
CBDAR field has been evolving. New technologies have brought a shift in the par-
adigm from static camera-captured scene image reading to real-time video-based OCR
using cameras on wearable devices, possibly complementing the camera input with
other sensors (e.g., eye tracking). Such sensors and recent technologies have the
potential to understand a user’s behavior, habit, and thought, as well as improve user
experience while reading.

The program of CBDAR 2013 was organized in a single-track one-day workshop.
It consisted of two oral sessions and one poster session. In addition to that, a keynote
talk was given by Dr. Kai Kunze from Osaka Prefecture University. Finally, a panel
discussion on the state of the art and new challenges was organized as the concluding
session of CBDAR 2013.

After the workshop, authors of selected contributions were invited to submit
expanded versions of their papers for this edited volume. The authors were encour-
aged to include the ideas and suggestions that arose during the discussions at the
workshop. Thus, this volume contains refereed and improved versions of papers
presented at CBDAR 2013. We intend to give a snapshot of state-of-the-art research in
the field of camera-based document analysis and recognition.

Finally, we would like to sincerely thank those who are helping to ensure this
workshop is a success: Dr. David Doermann (ICDAR General Chair), Prof. Daniel



Lopresti (ICDAR Executive Co-chair), Prof. Apostolos Antonacopoulos (ICDAR
Workshop Chair), and other ICDAR organizers for their generous support; the
members of the program committee and additional reviewers for reviewing and
commenting on all of the submitted papers; IAPR for its sponsorship of the workshop.

The Sixth International Workshop on Camera-Based Document Analysis and
Recognition (CBDAR 2015) is planned to be held in Tunis, Tunisia.

December 2013 Masakazu Iwamura
Faisal Shafait
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Text Detection and Recognition
in Scene Images



Spatially Prioritized and Persistent Text
Detection and Decoding

Hsueh-Cheng Wang(B), Yafim Landa, Maurice Fallon, and Seth Teller

Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

{hchengwang,landa,mfallon,teller}@csail.mit.edu

Abstract. We show how to exploit temporal and spatial coherence to
achieve efficient and effective text detection and decoding for a sensor
suite moving through an environment in which text occurs at a variety
of locations, scales and orientations with respect to the observer. Our
method uses simultaneous localization and mapping (SLAM) to extract
planar “tiles” representing scene surfaces. Multiple observations of each
tile, captured from different observer poses, are aligned using homogra-
phy transformations. Text is detected using Discrete Cosine Transform
(DCT) and Maximally Stable Extremal Regions (MSER), and decoded
by an Optical Character Recognition (OCR) engine. The decoded charac-
ters are then clustered into character blocks to obtain an MLE word con-
figuration. This paper’s contributions include: (1) spatiotemporal fusion
of tile observations via SLAM, prior to inspection, thereby improving
the quality of the input data; and (2) combination of multiple noisy text
observations into a single higher-confidence estimate of environmental
text.

Keywords: SLAM · Text detection · Video OCR · Multiple frame inte-
gration · DCT · MSER · Lexicon · Language model

1 Introduction

Information about environmental text is useful in many task domains. Exam-
ples of outdoor text include house numbers and traffic and informational signage;
indoor text appears on building directories, aisle guidance signs, office numbers,
and nameplates. Given sensor observations of the surroundings we wish to effi-
ciently and effectively detect and decode text for use by mobile robots or by
people (e.g., the blind or visually impaired). A key design goal is to develop text
extraction method which is fast enough to support real-time decision-making,
e.g., navigation plans for robots and generation of navigation cues for people.

1.1 End-to-End Text Spotting in Natural Scenes

Aspects of end-to-end word spotting have been explored previously. Batch meth-
ods for Optical Character Recognition (OCR) have long existed. In a real-time

M. Iwamura and F. Shafait (Eds.): CBDAR 2013, LNCS 8357, pp. 3–17, 2014.
DOI: 10.1007/978-3-319-05167-3 1, c© Springer International Publishing Switzerland 2014



4 H.-C. Wang et al.

Fig. 1. Our approach incorporates Simultaneous Localization and Mapping (SLAM) to
combine multiple noisy text observations for further analysis. Top left: three cropped
tile observations with decoded characters. Bottom left: the spatial distribution of
decoded characters from all observations; each colored dot is a decoded case-insensitive
character (legend at right). A clustering step is first used to group decoded characters;
each group is shown as a circle around the centroid of the decoded characters. A second
clustering step merges characters (circles) into word candidates (rectangles). Next, an
optimal word configuration (indicated with line segments) is obtained using a language
model. The final outputs are “TABLE” and “ROBOTS” (from source text “Printable
Robots”).

setting, however, resource constraints dictate that text decoding should occur
only in regions that are likely to contain text. Thus, efficient text detection meth-
ods are needed. Chen and Yuille [1] trained a strong classifier using AdaBoost
to identify text regions, and used commercial OCR software for text decoding.

Neumann and Matas [2–4] used Maximally Stable Extremal Region (MSER)
[5] detection and trained a classifier to separate characters from non-characters
using several shape-based features, including aspect ratio, compactness, and con-
vex hull ratio. They reported an average run time of 0.3 s on an 800×600 image,
achieving recall of 64.7 % in the ICDAR 2011 dataset [6] and 32.9 % in the SVT
dataset [7].

Wang and colleagues [7,8] described a character detector using Histograms
of Oriented Gradient (HOG) features or Random Ferns, which given a word
lexicon can obtain an optimal word configuration. They reported computation
times of 15 s on average to process an 800 × 1200 image. Their lexicon driven
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Fig. 2. Top: Visualization of a 3D environment. Each yellow or black label represents
an 1 × 1 m tile. The yellow ones are in camera field of view, and the black ones are
discovered by LIDAR, but not by camera. Bottom left: A camera frame. Bottom right:
Map generated by the SLAM module (black lines) with generated tiles overlaid (origins
in red; normals in green).

method — combining the ABBYY FineReader OCR engine and a state-of-the-
art text detection algorithm (Stroke Width Transform (SWT) [9]) — outper-
formed the method using ABBYY alone.

The open-source OCR engine Tesseract [10,11] has some appealing features,
such as line finding, baseline fitting, joined character chopping, and broken char-
acter association. Although its accuracy was not as high as that of some other
commercial OCR engines [7], it has been widely used in many studies.

1.2 Challenges

We address the problem of extracting useful environmental text from the datas-
tream produced by a body-worn sensor suite. We wish to extract text quickly
enough to support real-time uses such as navigation (e.g., the user seeks a num-
bered room in an office or hotel), shopping (e.g., the user seeks a particular aisle
or product), or gallery visits (e.g., the user wants notification and decoding of
labels positioned on the walls and floors, or overhead).

To achieve real-time notifications given current network infrastructure, the
processing should be performed on-board (i.e., by hardware local to the user),
rather than in the cloud, and in a way that exploits spatiotemporal coherence
(i.e., the similarity of data available now to data available in the recent past).
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First, the user often needs a response in real time, ruling out the use of inter-
mittent or high-latency network connections. Second, the task involves large
amounts of data arising from observations of the user’s entire field of view at
a resolution sufficient for text detection. This rules out reliance on a relatively
low-bandwidth network connection. Moreover, in 2013 one cannot analyze a full
field of view of high-resolution pixels in real-time using hardware that would
be reasonable to carry on one’s body (say, a quad- or eight-core laptop). We
investigated what useful version of the problem could be solved with wearable
hardware, and designed the system to inspect, and extract text from, only those
portions of the surroundings that are newly visible.

Existing work has incorporated scene text in robotics [12] and assistive tech-
nologies for visually impaired or blind people [13]. Unlike scene text in images
observed by a stationary camera, text observed by a moving camera will gener-
ally be subject to motion blur or limited depth of field (i.e., lack of focus). Blurry
and/or low-contrast images make it challenging to detect and decode text. Nei-
ther increasing sensor resolution, nor increasing CPU bandwidth, are likely to
enable text detection alone; instead, improved methods are required.

For blurry or degraded images in video frames, multi-frame integration has
been applied for stationary text [14–16], e.g., captions in digital news, and imple-
mented for text enhancement at pixel or sub-pixel level (see [17]). However,
additional registration and tracking are required for text in 3D scenes in video
imagery [18].

2 The Proposed Method

SLAM has long been a core focus of the robotics community. On-board sensors
such as cameras or laser range scanners (LIDARs) enable accurate egomotion
estimation with respect to a map of the surroundings, derived on-line. Large-
scale, accurate LIDAR-based SLAM maps can now be generated in real time
for a substantial class of indoor environments. Incremental scan-matching and
sensor fusion methods have been proposed by a number of researchers [19–21].
We incorporate SLAM-based extraction of 1m × 1m “tiles” to improve text-
spotting performance.

Our system uses SLAM to discover newly visible vertical tiles (Fig. 2), along
with distance to and obliquity of each scene surface with respect to the sensor.
For example, text can be decoded more accurately when the normal of the surface
on which it occurs is roughly perpendicular to the viewing direction. Further-
more, a SLAM-based approach can track the reoccurrence of a particular text
fragment in successive image frames. Multiple observations can be combined to
improve accuracy, e.g., through the use either of super-resolution methods [22,23]
to reduce blur before OCR, or probabilistic lexical methods [8,24] to combine
the noisy low-level text fragments produced by OCR. The present study focuses
on the latter method.

Some designers of text detection methods have used the texture-based Dis-
crete Cosine Transform (DCT) to detect text in video [25,26]. Others have used
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Fig. 3. MSER component tree. Each node was classified as (potential) text, or as non-
text, based on shape descriptors including compactness, eccentricity, and the number
of outer boundary inflexion points.

MSER, which is fast and robust to blur, low contrast, and variation in illumina-
tion, color and texture [4]. We use an 8 × 8-pixel window DCT as a first-stage
scan, then filter by size and aspect ratio. For blurry inputs, individual characters
of a word usually merge into one connected component, which could be explored
in the component tree generated by MSER [3,27,28]; see Fig. 3. We use MSER
with shape descriptors for second-stage classification, to extract individual char-
acters and to produce multiple detection regions for each character, which are
then provided to Tesseract.

The availability of multiple observations of each tile enable our method to
integrate information (Fig. 1). A clustering process incorporates spatial separa-
tion and lexical distance to group decoded characters across multiple frames .
Candidate interpretations are combined within each group (representing a sin-
gle character) using statistical voting with confidence scores. A second clustering
step merges groups to form word candidates using a distance function described
below.

Extracting environment text from word candidates is similar to the problem
of handwriting word recognition, which involves (i) finding an optimal word con-
figuration (segmentation) and (ii) finding an optimal text string. Our approach
differs from that of Wang et al. [7,8], who considered (i) and (ii) as a single
problem of optimal word configuration using pictorial structure; we separate (i)
and (ii) in order to reduce running time and increase control over the individual
aggregation stages.
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3 System

See Fig. 4 for an overview of our system’s dataflow.

3.1 Sensor Data Inputs

Data was collected from a wearable rig containing a Hokuyo UTM-30LX pla-
nar LIDAR, a Point Grey Bumblebee2 camera, and a Microstrain 3DM-GX3-25
IMU, shown in Fig. 5. The IMU provides pitch and roll information. All sensor
data was captured using the LCM (Lightweight Communications and Marshal-
ing) [29] package.

3.2 Extraction

As the sensor suite moves through the environment, the system maintains an
estimate of the sensor rig’s motion using incremental LIDAR scan-matching [20]
and builds a local map consisting of a collection of line segments (Fig. 2). Two line
segments are merged if the difference of their slopes is within a given threshold
and offset. Each line segment is split into several 1-m lateral extents which we call
tiles. Newly visible tiles are added using the probabilistic Hough transform [30].
For each new tile the system creates four tile corners, each half a meter vertically
and horizontally away from the tile center.

3.3 Image Warping

Any tiles generated within the field of view are then projected onto the frames
of the cameras that observed them. Multiple observations can be gathered from

Fig. 4. System dataflow. Our system takes images and laser range data as inputs,
extracts tiles, invokes text detection on tiles, and finally schedules text decoding for
those tiles on which text was detected.
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Fig. 5. The sensors were mounted on a rig and connected to a laptop computer for
data collection.

various viewing positions and orientations. A fronto-parallel view of each tile
is obtained for each observation through a homography transform constructed
by generating a quadrilateral in OpenGL, and using projective texture mapping
from the scene image onto the tile quadrilateral. A virtual camera is then placed
in front of each tile to produce the desired fronto-parallel view of that tile at any
desired resolution (we use 800×800 pixels). The per-tile transform is maintained,
enabling alignment of multiple observations in order to later improve image
quality and OCR accuracy.

Each individual observation is associated with a tile (its unique identifier, cor-
ners, origin, and normal vector), the synthesized fronto-parallel image, and the
camera pose. These observations are then passed to text detection and decoding.

3.4 Text Detection

The first stage of text detection applies an image pyramid to each tile in prepa-
ration for multi-scale DCT, with coefficients as per Crandall et al. [25]. The
bounding box of each text detection is then inspected using MSER [4] to extract
shape descriptors, including aspect ratio and compactness. We set the MSER
parameters as follows: aspect ratio less than 8, and compactness greater than 15.
Scale-relevant parameters are estimated according to real-world setting (8 pix-
els per cm), corresponding to a minimum text height of 3 cm, and a minimum
MSER region of 3 cm2. The parameters for DCT detection include a minimum
edge density of 8 edge-pixels per 8×8 window using Canny edge detection, with
high and low hysteresis parameters equal to 100 and 200, respectively. For MSER
detection, regions smaller than 5 pixels are discarded, and the parameter delta
(the step size between intensity threshold levels) is set to 3 for better robustness
to blurry inputs. Both the DCT and MSER computations are implemented in
OpenCV, with running times of about 10 ms and 300 ms, respectively.



10 H.-C. Wang et al.

3.5 Text Decoding

Decoding proceeds as follows. First, the image regions produced by either DCT
or MSER (as gray-scale or binary images) are processed by the Tesseract OCR
engine. Using the provided joined character chopping and broken character asso-
ciation, the binary inputs are segmented into one or multiple observations, i.e.,
the segmentation results from a MSER region. Tesseract outputs with too large
an aspect ratio are removed. Each block is classified into a few candidates with
confidence scores, for example, “B”, “E” and “8” for the crop of an image of
character “B.” We set a minimum confidence score of 65 given by Tesseract to
reduce incorrectly decoded characters. Running time depends on the number of
input regions, but is usually less than 300 ms.

3.6 Clustering for Character and Word Candidates

A clustering module is used to: (a) merge decoded characters across multiple
observations, and (b) cluster groups of decoded characters into word candidates.
For (a), our distance function incorporates Euclidean distance, text height, and
similarity between decoded results. Multiple observations can be obtained either
across multiple frames or within a single frame. The parameters of multi-frame
integration depend on system calibration. For (b), the confidence of groups
of decoded characters, size of decoded characters, and Euclidean distance are
applied. The confidence is determined by the number of decoded characters
in the group; only groups with confidence above a threshold are selected. The
threshold is

√
Nobs/k, where Nobs is the total number of accumulated decoded

characters with a parameter k set to 1.3 in our application. The bounding box of
each decoded character in selected groups are overlaid on a density map, which
is then segmented into regions. All selected groups of decoded characters are
assigned to a region, representing a word candidate.

3.7 Finding Optimal Word Configuration and String

To extract whole words, we implemented a graph to combine spatial informa-
tion (block overlaps). The output is a sequence of characters with each character
comprising a small number of candidates provided by Tesseract. To recover the
optimal word string, each candidate from each group of decoded characters is
considered as a node in a trellis, where the probability of each node arises from
normalized voting using confidence scores. The prior probability is computed
using bi-grams from an existing corpus [31]. We retain the top three candi-
dates for each group of decoded characters, and use Viterbi’s algorithm [32] for
decoding. We seek an optimal character sequence W ∗, as shown in Eq. 1, where
P (Z|Ci) is the probability of nodes from the confidence-scored observations, and
P (Ci|Ci−1) is the prior probability from the bi-gram:

W ∗ = argmax
w

(∑
P (Z|Ci)P (Ci|Ci−1)

)
(1)
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4 Experimental Results

Text examples in public datasets (e.g., ICDAR and SVT) usually occur within
high-quality (high-resolution, well-focused) imagery. In our setting, text often
occurs at lower-resolution and with significant blur. Our focus is to achieve text-
spotting in a real-time system moving through an environment. We first examine
how much the information about the surround given by SLAM and the warping
process affect text detection and decoding in video frames. Next, we demonstrate
the alignment of warped tile observations. Finally, we evaluate the accuracy gains
arising from spatiotemporal fusion.

The evaluation is performed using a metric defined over m ground truth
words and n decoded words. The m × n pairs of strings are compared using
minimum edit distance dij for the ith ground truth word and the jth decoded
word. A score Sij for each pair is calculated as (Ni − dij)/Ni, where Ni is the
number of character of ground truth word i, when Ni − dij > 0, with Sij set
to 0 otherwise. The accuracy is then measured by Eq. 2, where the weight of
each ground truth word wi is set to 1/max(m,n) to penalize false alarms when
n > m.

Accuracy =
∑
i

wi max
j

(Sij) (2)

4.1 Warping Accuracy with Distance and Obliquity

We mounted all equipment on a rig placed at waist height on a rolling cart, with
the LIDAR sampling at 40 Hz and the camera sampling at 15 Hz. We attached
signs with text in a 140-point (5 cm) font at various wall locations. We pushed the
cart slowly toward and by each sign to achieve varying view angles with respect
to the sign’s surface normal (Fig. 6(a, b)). The experiments were designed to
evaluate text-spotting performance under varying viewing distance and obliquity,
given that such factors effect the degree of blur.

Each original tile and its warped observation cropped from the image frame
was sent to Tesseract, our baseline decoder. Text spotting performance vs. the
baseline is plotted as a function of viewing distance (Fig. 6(c, d)). Examples are
shown in Fig. 6(e, f).

The results suggest that the baseline decoder works poorly when text is
observed at distances greater than 1.5 m, and generally performs better for the
warped observation than for the original ones. When the viewing direction is
about 45◦ from the surface normal, the text extracted from the warped images
is more consistent than that from the unwarped images, which may be due to
the skewed text line and perspective transformation of characters in the latter.

Given the limitations of the baseline decoder, our proposed method extends
the capability of detecting and decoding lower-quality imagery through spa-
tiotemporal fusion of multiple observations. One key factor for integration is:
how well are the warped observations aligned? We describe our use of alignment
in the next section.
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(a) (b)

(c) (d)

(e) Original tile (f) Warped tile

Fig. 6. Experimental settings and accuracy comparison of original and warped observa-
tions. (a) The normal of the surface is roughly antiparallel to the viewing direction. (b)
The normal of the surface is about 45◦ away from the viewing direction. Plots (c) and
(d) show the accuracy of baseline decoding of original (O) and warped (W) tiles with
respect to viewing distance for observations (a) and (b). (e) An original tile observation
from 0.71 m. (f) The warped observation corresponding to (e). The accuracy scores of
(e) and (f) are 0.67 and 0.96, respectively.



Spatially Prioritized and Persistent Text Detection and Decoding 13

(a) (b)

Fig. 7. The distribution of decoded characters. (a) There were only slight vertical and
horizontal shifts. (b) Comparison between data with and without IMU for the second
dataset (hand-carried). There were longer vertical drifts without IMU, but use of the
IMU reduces drift.

4.2 Alignment of Warped Observations

The distribution of decoded characters is shown in Fig. 7(a, b). Misalignment
among certain decoded characters was measured manually. In Fig. 7(a), the logs
were collected when the sensors were placed on a cart. The results suggest that
the drift of decoded characters was uncertain to within about 20 pixels.

Another log was collected when the rig was hand-carried at about chest
height by an observer who walked within an indoor environment. Figure 7(b)
demonstrates that imagery, to be aligned, required shifts of around 20 pixels
horizontally and 70 pixels vertically without IMU data. When IMU data were
integrated, the vertical shifts required reduced to around 35 pixels.

Given the alignment, we used the configuration of Fig. 6(b) to study the text-
spotting performance of fusion of multiple observations. The parameter settings
for clustering decoded characters and word candidates are shown in Table 1.
Comparing single and multiple frame integrations, Euclidean distance is the
major factor for merging decoded characters, whereas the threshold of the num-
ber of decoded character per group is the major factor for grouping to word
candidates.

4.3 Performance with Multiple Observations

We demonstrate that the proposed method combines noisy individual observa-
tions into a higher-confidence decoding. Figure 8 plots the accuracy of (a) run-
ning Tesseract on the entire tile observation (Tess), (b) combining (a) and the
proposed spotting pipeline into a single-frame detector (Tess+DMTess), and
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Table 1. Parameters for character and word clustering.

Single frame Multiple frames

Merge decoded characters
Euclidean distance 10 30
Text height scalar 2 2
Decoded text similarity 1 1

Group to word candidates
Threshold of characters per group 1

√
Nobs/k

Threshold parameter k 1.3
Size outlier scalar 5 2
Text height outlier scalar 5 2
Characters per word 3 3
Word aspect ratio min 1 1
Bounding box horizontal increment 0.3 0.3
Bounding box vertical increment 0.05 0.05

(c) fusing multiple observations from the proposed pipeline (Multi). The area
under curve (AUC) values are 0.71, 0.79, and 0.91, respectively; these repre-
sent the overall performance of each spotting pipeline. The results suggest that
Tess+DMTess moderately extends (from 1.5 to 2.4 m) the distance at which text
can be decoded, and Multi moderately improves the accuracy with which blurry
text can be decoded (since blur tends to increase with viewing distance). We
found that reducing the rate of false positives is critical to successful fusion,
because a high false-alarm rate tends to cause our clustering method (Sect. 3.6)
to fail. We will continue to investigate our observation that Tess+DMTess out-
performs Multi for close observations (1–1.5 m).

Fig. 8. Accuracy with respect to viewing distance for observations.
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5 Conclusion and Future Work

We described a SLAM-based text spotting method which detects and decodes
scene text by isolating “tiles” arising from scene surfaces observed by a moving
sensor suite. Such mode of operation poses challenges to conventional text detec-
tion methods using still imagery or stationary video frames. We demonstrate how
SLAM-derived information about the surroundings can be used to improve text
spotting performance. We also show how to merge text extracted from multi-
ple tile observations, yielding higher-confidence word recovery end-to-end. Our
future work will (1) incorporate a more sophisticated tile orientation and camera
motion model into the observation alignment, clustering, and language model;
(2) collect large-scale datasets for evaluation; and (3) schedule computationally
intensive inspection according to a spatial prior on text occurrence to improve
efficiency. Finally, we plan to explore the use of the method to support task
performance in robotics and assistive technology for blind and visually impaired
people.
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Abstract. Visual saliency models have been introduced to the field
of character recognition for detecting characters in natural scenes.
Researchers believe that characters have different visual properties from
their non-character neighbors, which make them salient. With this
assumption, characters should response well to computational models
of visual saliency. However in some situations, characters belonging to
scene text mignt not be as salient as one might expect. For instance,
a signboard is usually very salient but the characters on the signboard
might not necessarily be so salient globally. In order to analyze this
hypothesis in more depth, we first give a view of how much these back-
ground regions, such as sign boards, affect the task of saliency-based
character detection in natural scenes. Then we propose a hierarchical-
saliency method for detecting characters in natural scenes. Experiments
on a dataset with over 3,000 images containing scene text show that when
using saliency alone for scene text detection, our proposed hierarchical
method is able to capture a larger percentage of text pixels as compared
to the conventional single-pass algorithm.

Keywords: Scene character detection · Visual saliency models · Saliency
map

1 Introduction

Detection of characters in natural scenes is still a challenging task. One of the
reasons is the complicated and unpredictable backgrounds. Another reason is the
variety of the character fonts. Many methods have been proposed with the hope
of solving the above problems. Coates et al. [1] employed a large-scale unsuper-
vised feature learning algorithm to solve the blur, distortion and illumination
effects of fonts. Yao et al. [2] proposed a two-level classification scheme to solve
the arbitrary orientation problem. Mishra et al. [3] presented a framework, in
which the Conditional Random Field model was used as bottom up cues, and a
lexicon-based prior was used as top down cues. Li et al. [4] employed adaboost
algorithm to combine six types of feature sets. Epshtein et al. [5] use the Stroke
Width Transform (SWT) feature, which is able to detect characters regardless
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(a) (b) (c)

(d) (e)

Fig. 1. Examples of salient objects (bounded by red lines) containing characters in
natural scenes (Color figure online).

of its scale, direction, font and language. In addition to those recent trials, many
methods have been proposed [6].

Some other researchers have tried to employ visual attention models as fea-
tures [7]. In the recent years, visual attention models have been employed for
various object detection/recognition tasks [8–10]. Though the usage of visual
attention models for character detection is still under-investigated, their effec-
tiveness has been shown by Shahab et al. [11,12] and Uchida et al. [13]. Those
researchers, who try to employ visual attention models for scene character detec-
tion, believe that the characters have different properties compared with their
non-character neighbors (pop-out). This assumption is acceptable considering
that the characters in natural scenes, such as those in Fig. 1 are used to convey
“important” information efficiently to the passengers.

In some situations, characters are not salient when calculated by saliency-
based method; instead, regions in which the characters are written are salient.
However, when we only focus on those regions, characters become salient.
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Fig. 2. A general architecture of Itti et. al.’s model. Reference from [14].

In this paper, we investigated how much those regions affect the task of character
detection in natural scenes using visual saliency models. We also made a new
assumption according to the investigation. The key contribution of this paper
is the proposal of a new method for character detection and, compared to the
conventional method, the proposed method obtained a better result.

2 Visual Saliency Models

In 1998, Itti et al. [14] proposed the first complete implementation and veri-
fication of the Koch & Ullman visual saliency model [15]. After that, several
kinds of saliency models were proposed [16]. The visual attention models, most
of which are directly or indirectly inspired by the mechanism and the neuronal
architecture of the primate visual system, are studied to simulate the behavior
of human vision [14]. These models provide a massively parallel method for the
selection of the intesting objects for the later processing. Visual attention models
have been applied to predict where we are focusing in a given scene (an image
or a video frame) [17].

2.1 The Calculation of Saliency Map

Many implementations of visual saliency models have been proposed. In this
paper, we employ the Itti et al.’s model [14] to detect characters in natural
scenes. As shown in Fig. 2, three channels (Intensity, Color and Orientation) are
used as the low level features [18] to calculate the saliency map as follows:

1. Feature maps are calculated for each channel via center-surround differences
operation;

2. Three kinds of conspicuity maps are obtained by across-scale combination;
3. The final saliency map is built through combining all of the conspicuity maps.

Figure 3 shows saliency maps of scene images of Fig. 1, by Itti et al.’s models.
All the visual saliency maps, in this paper, are calculated using Neuromorphic
Vision C++ Toolkit (iNVT), which is developed at iLab, USC [19].
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2.2 The Problem of Using Saliency Map for Scene Character
Detection

From Fig. 3(a), we can find that the characters are salient as we expected. How-
ever, in the cases of Fig. 3(b) – (e), pixels belonging to the characters themselves
are less salient as we expected; instead, objects (such as the signboards) con-
taining those characters are salient enough to attract our attention.

The examples of Fig. 3 reveal that, in some situation, characters are not
salient if we review the whole image; however, when we focus on the signboards,
the characters become conspicuous. This means that signboards (or other objects
on which the characters are written) are designed to be salient globally (com-
pared to other parts of the image), whereas the characters are designed to be
salient locally (compared to their surrounding region).

(a) (b) (c)

(d) (e)

Fig. 3. The corresponding saliency maps of Fig. 1. The surrounding regions are
bounded by red lines (Color figure online).
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2.3 A Hierarchical-Saliency Model

Based on the above observation, we now have a new assumption: characters
are prominent compared to their near non-character neighbors, although they
may not be so in a global view of the image. In other words, characters are
often locally salient inside their possibly globally salient surrounding region. For
example, characters on a car license number plate may be less prominent than the
license number plate when we look at the entire car, but they become prominent
if we only look at the number plate.

Correspondingly, a new approach for detecting characters in natural scenes is
proposed in this study (called the hierarchical-saliency method) which is briefly
introduced below:

– First step (extraction of globally salient region):
1. A saliency map S is calculated from input image I;
2. The regions of interest (ROIs) of S are evaluated (the procedure of the

evaluation will be provided later) and all pixels are automatically clas-
sified into two categories to obtain mask M : the globally salient region
(1) and the rest (0);

3. Multiply the mask M with the input image I to calculate filtered image
I ∗;

– Second step (evaluation of local saliency inside the globally salient region):
Use I ∗ to obtain a new saliency map S∗, which is the final map we want.

It is very important to note that though we use the same saliency model to
calculate the saliency map in both first and second step, the first saliency value
and the second value are different even for the same characters. This is simply
because the areas subjected to the model are different.

3 Experimental Results

Two experiments were included: (1) in order to investigate how much the salient
regions where characters were written affect the task of scene character detection,
we firstly arbitrarily selected 101 images from the database and cropped them
manually, then calculated the saliency maps for all the 101 images using Itti’s
saliency model; (2) in order to give a comparison of the performance between
the conventional method and the hierarchical-saliency method, we used the
whole database with 3,018 images to calculate both the global and local saliency
map, and the salient regions were automatically cropped using Otsu’s method
and/or Ward’s hierarchical clustering method in the process of extracting the
ROI regions.

3.1 Database

The scenery image database containing 3,018 images of different sizes has been
prepared by our laboratory1. All these images were collected from the website
1 We are planning to make the database freely available in near feature.
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(a)

(b)

(c)

(d)

(e)

Fig. 4. (a) input images; (b) ground-truth images; (c) Itti et al.’s visual saliency maps,
calculated using the whole images (Intensity, Color and Orientation); (d) cropped ROI
images calculated with (c); (e) Itti et al. ’s visual saliency maps, calculated within (d)
(Intensity, Color and Orientation) (Color figure online).

“flickr”. For each image of our database, pixels of characters were labeled in the
corresponding image (ground truth image) and the character information (for
example, the bounding-box of the character) was stored into a separate text file.
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3.2 Extraction of the ROI

How to extract the ROI (signboards, banners, etc.) from the global saliency
map S for calculating the local saliency map is an important problem, because
the results of the second step depends on it. In this paper, the Otsu’s global
thresholding method [20] and the Ward’s hierarchical clustering method [21]
were employed for a trial (see Fig. 4(d)).

In the Ward’s hierarchical clustering method, the error sum of squares (ESS)
was given as a loss function F :

F =
n∑

i=1

x2
i − 1

n

(
n∑

i=1

xi

)2

where xi is the score of the ith individual and n donates the number of the
individulas in the set. This method reduces n sets to n − 1 mutually exclusive
sets by considering the union of all possible pairs and selecting a union having
a minimal value for the loss function F . Assume there are 3 numbers: {1,2,8}
and we want to group them into 2 sets. In the Ward’s method, all the combi-
nations are considered: {(1,2),(8)}, {(1),(2,8)}, {(1,8),(2)}. Then the loss F are
calculated for each combination:

F{(1,2),(8)} = F{(1,2)} + F{(8)} = 0.5 + 0 = 0.5
F{(1),(2,8)} = F{(1)} + F{(2,8)} = 0 + 18 = 18
F{(1,8),(2)} = F{(1,8)} + F{(2)} = 24.5 + 0 = 24.5

The combination which made the minimal value of loss function is selected, so
the final result is {(1,2),(8)}. This process is repeated until k groups remain.
(please refer to [21] for more details).

3.3 Evaluation Protocol

In the first experiment, we used three low level channels to calculate the saliency
map S. While doing the second experiment, in the first step, we also used three
low level channels to calculate the saliency map. However, in the second step,
saliency map was calculated using different combinations (7 kinds) of channels
for each image I, with the purpose of figuring out the best features for character
detection. Thresholds tn (n ∈ [0, 255]) from 0 to 255 were obtained by step 1.
Given the corresponding ground truth image IGT with the number of character
pixels GT and the number of non-character pixels GB , thresholds tn were applied
to evaluate:

1. The number of pixels that matches between saliency map I ∗ (salient pixels)
and ground truth IGT (character pixels), |ST |

2. The number of pixels that are salient in the saliency map I ∗, but belong to
the non-character regions in the ground-truth image IGT , |SB |.
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(a)

(b)

Fig. 5. ROC curves performance comparison. (a) the conventional method (CONV ) vs.
the proposed hierarchical-saliency method with manually cut images; CONV represents
the conventional method, in which method Itti’s model is used only once (first step in
our method), HIERA represents our proposed method. (b) a comparison between the
conventional method and the hierarchical-saliency method with Ward’s method cut
images (In the second step, we applied all the combination of the low level features);
I / C / O represent the low level features (Intensity / Color / Orientation). Using
Otsu’s global thresholding method instead of Ward’s method gave similar results.
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For each threshold, the following performance metrics were calculated:

FAR =
|SB |
|GB | (1)

and

FRR =
|GT | − |ST |

|GT | (2)

Receiver operator characteristic (ROC) curves were employed to evaluate
the performance. Figure 5(a) shows the result of comparison. False acceptance
rate (FAR) and false rejection rate (FRR) are plotted on the x and the y axis
respectively for the range of threshold values. In Fig. 5(a), the closest curve line
to the origin represents the best performance algorithm since it has the lowest
equal error rate.

3.4 Results and Discussion

According to Fig. 5(a), we can clearly observe that, compared to the conventional
method (using Itti’s saliency model once), the proposed hierarchical-saliency
method has a better performance. This indicates that the assumption we made
in this paper is acceptable. In this section, we give a brief explanation to this. In
order to investigate the reason of this result, we built histograms of the true pos-
itive pixels for both methods with feature combinations (see Fig. 6). From Fig. 6,
we can find that, at the high threshold side, the pixels of characters detected by
the hierarchical-saliency method are more salient compared to those detected by
the conventional method. On the other hand, the non-salient regions, most of
which are non-characters, are suppressed by cropping those salient objects.

From Fig. 5(b) we can see that using orientation as the low level feature in
the second step for scene character detection produced the best results. This is

(a) (b)

Fig. 6. Histograms of the true positive pixels where x-axis represents threshold to
decide whether pixels belong to character, and y-axis represents the average number of
true positive pixels per one image. (a) histogram calculated using conventional method;
(b) histogram calculated using the proposed hierarchical-saliency method
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(a)

(b)

(c)

(d)

Fig. 7. Examples of the fail and successful images for cropping the surrounding regions.
(a) the input images result in the failed results; (b) failed results calculated from (a);
(c) the input images result in the successful results; (d) successful results calculated
from (c).

mainly because the background in the ROIs is generally simple with few orien-
tation features, whereas the characters have strong orientation features (such as
edge features). This makes the characters respond better to the orientation-based
visual saliency model and they are easier to detect.
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When only using color as the low level feature in the second step, performance
became the worst. A possible explanation for this effect is that in natural scenes,
the character carriers (the ROIs) are usually designed to be colorful with the
purpose of attracting people’s attention, which makes them globally salient. As
a result, in the procedure of the second step, both the background and the
characters respond well to the visual saliency models. Hence characters cannot
be distinguished reliably from the background based on saliency alone.

A key issue in our method is how to determine the shape of the salient
objects in the first step. We employed Otsu’s thresholding algorithm and a simple
clustering method (the Ward’s hierarchical clustering method) and compared
their performance with the conventional method. Though the results of both
Otsu’ and Ward’s method for cropping the salient object were not always good
(please refer to Fig. 7 for some successful and failed examples), we still got a
better result than the conventional method. It is believable that our method can
be used for scene character detection.

4 Conclusion

In this paper, we discussed the problem of applying the Itti et al.’s visual saliency
model to the task of character detection in the natural scenes, and proposed
a new method (called hierarchical-saliency method). We first gave a view of
how much the surrounding regions affect character detection, then proposed
the Otsu’s method and the Ward’s hierarchical clustering method to crop the
salient objects. In order to investigate the validity of our proposal, we made
a performance comparison between the two methods. From the result we can
conclude that though the clustering method is not good enough, the hierarchical-
saliency method (using orientation feature in the second step) still achieved a
better result.
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Abstract. Here, we present our recent study of a robust but simple
approach to extraction of texts from camera-captured images. In the
proposed approach, we first identify pixels which are highly specular.
Connected components of this set of specular pixels are obtained. Pix-
els belonging to each such component are separately binarized using the
well-known Otsu’s approach. We next apply smoothing on the whole
image before obtaining its Canny edge representation. Bounding rectan-
gle of each connected component of the Canny edge image is obtained
and multiple components with pairwise overlapping bounding boxes are
merged. Otsu’s thresholding technique is applied separately on different
parts of input image defined by the resulting bounding boxes. Although
Otsu’s thresholding approach does not generally provide acceptable per-
formance on camera captured images, we observed its suitability when
applied severally as in the above. The binarized specular components
obtained at the initial stage replace the corresponding regions of the lat-
ter binarized image. Finally, a set of postprocessing operations is used
to remove certain non-text components of the binarized image.

1 Introduction

Recognition of texts in natural scene images has several important applications
such as reading aids for tourists travelling a place with foreign script or for the
blinds. Extraction and binarization of texts in scene images is an important step
for this recognition problem. Traditional binarization approaches belong to two
categories: global thresholding methods [1,2] and local thresholding methods
[3,4]. A recent evaluation study of existing thresholding methods for document
images can be found in [5]. However, these methods often suffer from poor per-
formance on natural scene text images affected by numerous degradations such
as uneven lighting, complex background, low contrast, multiple colours in both
foreground and background etc. Recently, Peng et al. [6] studied an MRF based
binarization approach for hand-held device captured document images which
also cannot be directly applied to such images due to the above challenges in
addition to the problems of enormous variability in fonts of texts.
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(a) (b)

Fig. 1. (a) A sample image containing a large glare of light falling on the text region,
(b) a sample image with varying contrast

A robust but simple method to extract as much texts as possible from natural
scene images affected by serious uneven lighting conditions such as specular
reflection of light as in the sample image shown in Fig. 1(a) or varying contrasts
as shown in Fig. 1(b) is proposed in this paper. Our aim is to enhance and extract
the information after reducing the presence of noisy pixels as much as possible.
The proposed approach not only extracts texts from scene images having uneven
specular reflections, in which most of the current algorithms fail, but also works
equally well for other difficult situations such as presence of shadow, varying
contrasts, texts at arbitrary orientations etc. Here, we use Otsu’s thresholding
method [1] for binarization purposes. It is an established fact that Otsu’s method
is an efficient binarization approach as long as the input image is not affected by
non-uniform illumination. Thus, we apply Otsu’s method severally on smaller
rectangular regions within each of which the variation in illumination condition
is less likely to occur. Moreover, the smaller rectangular regions are not selected
on an ad hoc basis but these are obtained as the minimum rectangular regions
enclosing the connected components of Canny edge image. The above is the main
factor behind the robustness of the proposed approach for extraction of texts
from general camera captured images.

Rest of this article is organized as follows. Section 2 provides the background
of the present study. Section 3 describes the proposed approach in some details
while the postprocessing operations are described in Sect. 4. Section 5 presents
extensive simulation results using the sample scene images of ICDAR 2003
Robust Reading Competitions Database [7]. Finally, Sect. 6 concludes the article.

2 Background

According to the dichromatic reflection model [8], most of inhomogeneous objects
have two kinds of reflections: diffuse and specular. In the dichromatic reflec-
tion model, the spectral factor is a weighted sum of the specular and diffuse
reflectance functions. If we use a digital camera with three sensors (RGB) to
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capture an image, the color I at each pixel x can be described as a linear com-
bination of two components D and S as follows:

I(x) = md(x)D(x) + ms(x)S(x),

where I(x) = [Ir(x), Ig(x), Ib(x)]T is the RGB color at pixel x in the captured
image. D(x) = [Dr(x),Dg(x),Db(x)]T andS(x) = [Sr(x), Sg(x), Sb(x)]T denote
the diffuse and specular chromaticity at pixel x, respectively. md(x) and ms(x)
are two factors of the two reflections which depend on the local geometry of
the pixel on the surface. The first step of the proposed approach identifies the
specular pixels of input image. Once the specular pixels are identified, regions
around it are selected and different enhancement techniques are applied on these
specular parts. Enhancement techniques involve estimation of the foreground
pixels by applying Otsu’s method separately at each such region. Enhancement
of the remaining parts of the image is considered separately. Thus what we obtain
is a more or less binarized image containing the probable text regions along with
possibly a huge amount of noise as well. So, in the next step, we remove those
noisy pixels and enhance the text regions further as detailed in the following
Sections.

3 Proposed Methodology

3.1 Separation of Specular and Diffuse Pixels

Yuan He et al. [9] proposed a fast and efficient approach to distinguish between
specular and diffused pixels. We use the same approach. The chromaticity σ of
each pixel is defined as

σ(x) =
I(x)

Ir(x) + Ig(x) + Ib(x)
,

where σ = [σr, σg, σb]T . The maximum chromaticity is defined as σ̂ = max
(σr, σg, σb). According to the mechanism, we can get the total diffuse intensity
of specular pixels as

∑
i∗{r,g,b}

Idiff
i =

Î(x)[3σ̂(x) − 1]

σ̂(x)[3λ̂(x) − 1]

where Î = max(Ir, Ig, Ib) and λ̂ = max(λr, λg, λb) is the maximum diffuse chro-
maticity which is set to an arbitrary value (13 < λ̂ ≤ 1). The specular component
is obtained as

Ispec(x) =
∑

Ii(x) − ∑
Idiff
i (x)

3
.

Then, the diffuse component of the specular pixels is achieved by subtracting
the intensity with the specular component Idiff (x) = I(x) − Ispec(x). A pixel
x is labeled as specular if Idiff (x) > τ , a constant threshold, otherwise it is
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(a) (b)

Fig. 2. (a) Identified specular pixels of the sample image of Fig. 1(b), (b) final output
of the proposed method for binarization of specular region corresponding to the sample
image of Fig. 1(b).

labeled as diffuse. However, in our case, choosing a very high value of τ enables
us to identify only those pixels which are highly specular, that is information
contained in those pixels can be assumed to be lost under the high flash of light.
Hence unlike [9], we don’t need to enhance the specular pixels as it doesn’t
contain any information. This assumption has the drawback that very bright
(almost white) text pixels get identified as specular pixels. Figure 2(a) shows the
identified specular pixels of the sample image in Fig. 1(b). However, usually, the
boundary pixels of such white text components are not very bright unlike its
interior pixels and so the information is not completely lost as it can be seen
from the output of the proposed method shown in Fig. 2(b). On the other hand,
if the background of non-white text is very bright (almost white), although the
region get selected as specular but when the same is binarized, the foreground
text information is preserved. In fact, if the color of the text is darker than the
background, the proposed method can efficiently extract the text as it may be
seen from some of the results shown in Sect. 5.

3.2 Binarization of Specular Regions

Once the specular pixels are identified, connected region(s) of these pixels are
obtained to apply Otsu’s binarization method separately on each of them.
Figure 3(a) shows the identified specular pixels (white) of the sample image
in Fig. 1(a). Smallest enclosing rectangles around each of the connected compo-
nents of these specular pixels are constructed and these are shown in Fig. 3(b).
Overlapping rectangles or rectangles separated by a small distance (say, less than
100) are merged together as shown in Fig. 3(c). In the next step, we consider
all such rectangles barring possibly a few very small ones (less than 100 pix-
els) treated as common noise. Let’s denote such a rectangular region by R. We
apply well-known Otsu’s binarization method on R and obtain the correspond-
ing binarized region R◦ as shown in Fig. 3(d) and this binarized result resembles
the results in Fig. 2(b).
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(a) (b) (c) (d)

Fig. 3. Binarization of the specular regions: (a) specular pixels of the sample image in
Fig. 1(a), (b) smallest enclosing rectangles of connected components of specular pixels
shown in (a), (c) after merging of rectangles shown in (b), (d) after binarization of each
such rectangle.

(a) (b)

Fig. 4. (a) Bounding rectangles of connected edge components obtained from the image
of Fig. 1(a), (b) candidate text regions of the sample of Fig. 1(a).

3.3 Binarization of the Whole Input Image

In this step, we consider the whole gray-level image. We first consider reduction of
noise by applying Gaussian smoothing with 5×5 kernel for a few successive times.
Next, we apply Canny’s method [10] and the distinct connected components of
the resulting edge image are identified. Bounding rectangles of such connected
components obtained from the input image sample of Fig. 1(a) are shown in
Fig. 4(a). We consider a set of empirical rules used in previous studies [11,12]
such as (i) aspect ratio of a text region lies between 0.1 and 10, (ii) height
of a text region is larger than 10 pixels, (iii) both height and width of a text
region cannot be larger than half of the corresponding size of the input image
etc. to filter out majority of non-text components and two or more among the
remaining rectangular regions are merged whenever these overlap. The resulting
rectangles provide the candidate text regions of the input image. These regions
corresponding to the sample image of Fig. 1(a) are shown in Fig. 4(b).

Now, Otsu’s thresholding method is applied individually on each of the above
rectangular candidate text regions and respective threshold values are obtained.
Pixels contained in a rectangular region are labelled ‘BLACK’ or ‘WHITE’
based on its threshold value. The result of applying Otsu’s thresholding method



A Robust Approach to Extraction of Texts from Camera Captured Images 35

(a) (b)

Fig. 5. (a) Result of binarization by applying Otsu’s method separately on each candi-
date text region, (b) the binarized image of the sample in Fig. 1(a) after the pore filling
step.

locally on the sample image in Fig. 4(a) is shown in Fig. 5(a). Here, it may
be noted that the above procedure may assign either ‘BLACK’ or ‘WHITE’
label to a text component. So, next we consider the following procedure to
ensure that text components always get the label ‘BLACK’ and background pix-
els always get ‘WHITE’ label. A similar approach was considered before in [13].

We consider the labels of following 12 pixels consisting of 3 pixels of each of
four corners of a binarized candidate text region B, i.e., the labels of

{B(x, y), B(x, y + h − 1), B(x + w − 1, y), B(x + w − 1, y + h − 1),
B(x + 1, y), B(x + 1, y + h − 1), B(x + w − 2, y), B(x + w − 2, y + h − 1),
B(x, y + 1), B(x, y + h − 2), B(x + w − 1, y + 1), B(x + w − 1, y + h − 2)},

where w and h are respectively the width and height of B and B(x, y) is its top-
left pixel. We obtain the count of ‘WHITE’ labels among these 12 pixels and
if this count is less than 6, then we interchange the labels of each pixel of the
candidate text region B, otherwise these are left unchanged. Finally, the specular
regions R (identified in Sect. 3.2) of the above binarized image are replaced by
the corresponding binarized specular regions R◦.

4 Postprocessing

Since the binarized image still contains significant amount of noise, in this
Section, we describe a sequence of postprocessing operations to produce improved
binarized image consisting of fewer noise components and cleaner texts. The first
postprocessing step is filling of pores which is followed by removal of components
of non-uniform thickness or components consisting of only a few pixels.
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4.1 Filling of Pores

Usually, binarized components extracted from glare-affected regions have many
pores as it may be verified with the three characters (‘Sys’) of Fig. 3(d). It often
causes difficulties towards the success of postprocessing operations. So, here we
first consider filling of similar pores on the binarized image (say, B) obtained in
the above Sect. 3 as described below.

At each background pixel of B we consider a 3 × 3 window and count the
number of foreground pixels inside this window. If this number exceeds two-
third of the total number of pixels inside the window (i.e., 7 or more), then the
background pixel is converted to a foreground pixel. This technique successfully
fills majority of the pores that appear on the foreground components of the
binarized image as shown in Fig. 5(b). This output image is next subjected to
the Euclidean Distance Transform as follows.

4.2 Identification of Components of Non-uniform Thickness

It has already been discussed in the literature [11,12,14] that an intriguing
property of text components is that these have more or less uniform thick-
ness compared to their non-text counterparts. The well-known Euclidean dis-
tance transform (DT) [15] has been used before [11,12] to estimate the thickness
of a connected foreground component of binary image. Each pixel of the fore-
ground component in the transformed image (denoted as Dα) is set to a value
equal to its distance from the nearest background pixel. This has been explained
with the help of Fig. 6. In Fig. 6(a), ‘1’ represents foreground pixels and ‘0’
represents background pixels. Each object pixel of this binary image is assigned
a value which is its distance from the nearest background pixel as shown in
Fig. 6(b). At each non-zero pixel of D∗, we consider a 3 × 3 window to obtain
the local maximum at that pixel. If this pixel value equals the local maximum,
we store the pixel value in a list < T > for further processing. In fact, such a
pixel value (a local maximum value) is an estimate of half of the local stroke
thickness. Finally, we compute the mean (μ) and the standard deviation (σ)
of the local stroke thickness values stored in < T >. If μ > 2σ, (well-known
2σ limit used in statistical process control), we decide that the thickness of the
underlying stroke is nearly uniform and select the foreground component as a
candidate text component. The above operation helps to filter out majority of
non-text components present in the output image produced by the method of
Sect. 3.3 as shown in Fig. 6(c).

We applied DT operation after filling of pores as described in Sect. 4.1 because
otherwise some of the text components would get removed by this operation as
shown in Fig. 6(d). On the other hand, it can be seen from the result shown in
Fig. 6(c), the individual characters are so thickened due to pore filling operation
that adjacent characters often get merged. Since joining of adjacent characters
may pose problem to the OCR software, we next replace the bounding rectangles
of connected components in the latest output image by similar rectangles taken
from the output of the binarization module described in Sect. 3.3. The result of
this replacement operation is shown in Fig. 6(e).
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. (a) A binary image, (b) distance transform of the image in (a), (c) after removal
of non-text components of the image in Fig. 5(b) with the help of DT, (d) result of DT
operation without filling of pores – the first character ‘i’ in the first row and third
character ‘s’ in the second row have been removed and a non-text component couldn’t
be removed, (e) after replacement of thick foreground components by the respective
components before pore filling operation, (f) small foreground components consisting
of 100 or fewer pixels are removed.
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Fig. 7. Screenshot of the FineReader software output when fed with the final output
shown in Fig. 6(f). Porus characters ‘Sys’ at the beginning of the 2nd line have been
correctly recognized by the software.

(a)

(b)

Fig. 8. Screenshots of the FineReader 11 Software output when it is fed with the scene
image shown in Fig. 1(a) after binarization by (a) adaptive thresholding, (b) Otsu’s
thresholding methods.
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(a)

(b)

(c)

(d)

Fig. 9. The input to the OCR software, i.e., the output of proposed strategy consists
of (a) several non-text components but the OCR software removed all of them barring
only one, (b) only 3 non-text components and the OCR software removed each of
them, (c) two artistically written words and another word ‘REDUX’ with its characters
widely spaced and OCR software didn’t recognize both the artistic words as texts,
(d) two words ‘Marlboro’ and ‘LIGHTS’, the middle two characters of ‘Marlboro’ are
sufficiently larger than others and the OCR software didn’t detect this word as text
while it correctly recognized the other word written in plain style.
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Table 1. OCR based results based on images with only plain texts

Algorithm Precision(p) Recall(r)

Proposed method 0.79 0.77

Table 2. Comparative performance analysis of text detection approaches

Algorithm Precision(p) Recall(r)

Roy Chowdhuri et al. [12] 0.57 0.59
Kasar et al. [13] 0.63 0.59
Epshtein et al. [14] 0.73 0.60
Chen et al. [16] 0.73 0.60
Merino-Gracia et al. [17] 0.51 0.67
Zhang and Kasturi [18] 0.67 0.46
Proposed method 0.63 0.65

4.3 Removal of Very Small Components

As it can be seen from the latest output of the previous step shown in Fig. 6(e),
it still contains several small noise components consisting of only a few pixels.
On the basis on extensive simulation results on the training set of ICDAR 2003
robust reading competition database, we remove those foreground components
of the output of last operation which consists of only 100 or fewer pixels. The
final output of the present work on the sample image in Fig. 1(a) is shown in
Fig. 6(f).

5 Simulation Results

A broad motivation of the present study is to binarize a scene image efficiently
such that available OCR software can recognize texts in them. The OCR output
shown in Fig. 7 shows that the proposed method is a step forward in the above
direction. It can efficiently deal with text components affected by glare. It may
also be noted that the porus text ‘Sys’ in the binarized image do not pose a
problem to the state-of-the-art software. Also, we have shown the OCR soft-
ware outputs on the same scene image when the well-known adaptive method or
Otsu’s global method were used for binarization. In Fig. 8(a) (produced by adap-
tive method), only the last line of texts ‘IT STRATEGY’ could be recognized
and in Fig. 8(b) (produced by Otsu’s global method), only the lower block of
texts containing three lines ‘BUSINESS’, ‘STRATEGY’ and ‘IT STRATEGY’
could be recognized. Thus, in both cases the upper block of text could not be
identified as texts although when the binarized image produced by the proposed
method was fed to the OCR software, it identified both upper and lower blocks
of texts as shown in Fig. 7.
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(a)

(b)

Fig. 10. (a) Two image samples having varying contrasts, (b) simulation results of the
proposed method on the image samples shown in (a).

We implemented the proposed approach using DEV-C++ and OpenCV library
under Windows environment. For evaluation purposes, we used a similar strat-
egy as that of the ICDAR2003 robust reading competition [7] and also several
other studies [12–14,16–18]. We obtained the two measures precision (p) and
recall (r) of our extraction results. Expressions used for computation of p and r
values are as follows.

p =
P ∩ T

P
and r =

P ∩ T

T
,

where P is the area of the minimum enclosing rectangles of all connected compo-
nents extracted by the proposed strategy and T is the area of all the rectangles
provided as the ground truth together with the sample images.

Since the motivation of the present study is to process an image suitably
before it is being fed to an OCR software for text recognition, an effective evalu-
ation strategy would be to obtain the value of P from the OCR software output.
In this context, it may be noted that this strategy has both positive and neg-
ative aspects. The positive aspect is that a state-of-the-art OCR software can
efficiently filter out several artifacts retained in the output image of the text
extraction method as shown in Fig. 9(a), (b) while the negative aspect is that an
existing OCR fails to recognize texts of artistic styles as shown in Fig. 9(c), (d).
So, we computed values of p and r based on results of FineReader 11 software
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Fig. 11. A few image samples of ICDAR 2003 Robust Reading Competition Database
are shown in the left column. Each of these sample images have multi-oriented texts.
Results of the proposed method on these sample images are shown in the right column



A Robust Approach to Extraction of Texts from Camera Captured Images 43

(a)

(b)

(c)

(d)

Fig. 12. (a) & (c) A few samples from ICDAR 2003 robust reading competition data-
base affected by non-uniform lighting or shadow, (b) & (d) results of the proposed
method on respective image samples shown in (a) & (b).

and on only those test samples which do not have any text of similar artistic
styles. These results are shown in Table 1.

However, for the purpose of fair comparison with the existing results avail-
able in the literature, we also computed the values of p and r directly based on
the output of our proposed approach before feeding them to an OCR software
and the entire set of test samples of ICDAR 2003 robust reading competition
database. The comparative results are listed in Table 2. It shows that the perfor-
mance of the proposed strategy is comparable with the state-of-the art results.
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(a) (b) (c)

Fig. 13. (a) A sample image of ICDAR 2003 database, (b) the binarized image before
restoration of small components in the close proximity of a text component, (c) the
binarized image after restoration of smaller text components.

(a)

(b)

Fig. 14. (a) Three image samples with texts on transparent glass doors, (b) respective
outputs of the proposed method.

On the other hand, the proposed approach is a generic one in the sense that it
can extract texts of arbitrary orientations and also it can partially recover from
degradation affected by specular reflection. Outputs of the proposed approach
on a few images of different difficulties are shown in Figs. 10, 11 12.

6 Conclusions

The present study shows that although Otsu’s global thresholding technique is
not effective on scene images but the same provides superior performance when it
is applied locally on smaller rectangular regions enclosing connected components
of the Canny edge image of such a scene image. The proposed approach can
partially recover distortions due to specular reflections. On the other hand, our
aggressive noise cleaning approach removing smaller components consisting of
100 or lesser pixels may often remove certain punctuation marks and the dots of
‘i’, ‘j’. It is true that the removal of dots of ‘i’ or ‘j’ may not be a serious issue since
such a loss is usually taken care of by the OCR software as it can be seen from
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Fig. 7. However, the loss of punctuation marks is required to be handled at the
binarization module and the same may be achieved by considering a rectangle
around each connected text component of height and width 5 % larger than those
of the respective text components and if there exists a non-text component inside
this rectangle and removed earlier due to its small size, then the same is restored.
In Fig. 13 we have shown restoration of such small text components as in the
above. Although the proposed method can efficiently extract texts from various
types of outdoor scene images, but its performance towards texts written on
transparent glass doors is miserable as it can be seen from Fig. 14.
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Abstract. In this paper, we propose an approach to scene text detection
that leverages both the appearance and consensus of connected compo-
nents. A component appearance is modeled with an SVM based dic-
tionary classifier and the component consensus is represented with color
and spatial layout features. Responses of the dictionary classifier are inte-
grated with the consensus features into a discriminative model, where the
importance of features is determined with a text level training procedure.
In text detection, hypotheses are generated on component pairs and an
iterative extension procedure is used to aggregate hypotheses into text
objects. In the detection procedure, the discriminative model is used to
perform classification as well as control the extension. Experiments show
that the proposed approach reaches the state of the art in both detection
accuracy and computational efficiency, and in particularly, it performs
best when dealing with low-resolution text in clutter backgrounds.

Keywords: Text detection · Component · Discrimination

1 Introduction

Text detection and recognition in natural scene images has recently received
increased attention of the computer vision community [1–3]. There are at least
three reasons for this trend. First is the demand for applications to read text for
indexing, especially on mobile devices and in streetview data. Compared with
the other image objects, text is embedded into scenes by humans, typically with
the intention that it be read. Second is the increasing availability of high per-
formance mobile devices, which creates an opportunity for imagery acquisition
and processing anytime, anywhere and makes it convenient to recognize text in
various environments. The third is the advance in computer vision technologies,
which is making it feasible to address these more challenging problems.

As an important prerequisite for text recognition, text detection in natural
scene images still remains an open problem due to factors including complex
background, low quality images, variation of text content and deformation of
text appearance.
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There are generally two classes of methods used in existing scene text detec-
tion approaches: connected components1 based and sliding window classification
based.

The component based methods often use color [3], point [4], edge/gradient
[5], stroke [6,7], and/or region [8–11] features or a hybrid of them [12,13] to
localize text components, which are then aggregated into candidate text regions
for further processing. Recently, Maximally Stable Extremal Regions (MSERs)
based text detection has been widely explored [8–11]. The main advantage of
these approaches over other component based approaches is rooted in the effec-
tiveness of using MSERs as character/component candidates. It is based on the
observation that text components usually have higher color contrast with their
backgrounds and tend to be form homogenous color regions. The MSER algo-
rithm adaptively detects stable color regions and provides a good solution to
localize the components.

In [8,10], MSERs from H, S, I and gradient channels are integrated to detect
components. An exhaustive search is then applied to group components into
regions and a text level classifier is used for classification of these regions. In
[11], Koo et al present a text detection approach based on MSERs and two clas-
sifiers. The first classifier is trained on AdaBoost that determines the adjacency
relationship and cluster components by using pairwise relations. The second
classifier is a multi-layer perceptron classifier that performs text/non-text classi-
fication on normalized candidate regions. Benefitting from the learning method
for clustering components, their approach won the ICDAR2011 Robust Reading
Competition [14].

Although existing MSER based approaches report promising performance,
problems remain. In particular, the approaches detect a large number of can-
didate components and neither effective classification nor component grouping
has been adequately addressed. Existing rule based approaches generally require
fine-tuned parameters. Clustering based methods require well defined/learned
criterion to determine the number of clusters and when to stop the clustering.

At the same time, sliding window methods usually train discriminative mod-
els to detect text with a multi-scale sliding window classification [15–18]. The
advantage of this kind of method lies in the fact that the training-detection archi-
tecture is simpler and more discriminative than component based approaches.
Disadvantages lie in that sliding window classification at multiple scales is often
time-consuming and computationally expensive. It is also difficult to detect
non-horizontal text because a tremendous large number of windows that would
need to be considered in a three dimensional space of scale, position and ori-
entation. After text components/patches are localized, existing methods usu-
ally use grouping-and-classification strategies to perform text level processing.
Detected patches can be grouped into text regions with morphological opera-
tions [15], Conditional Random Field [16] or graph methods [17,18]. In existing
approaches, grouping and classification procedures are often separated where
consensus among components/patches is used for grouping and appearance is

1 “Connected component” is shorted as “component” in the followings.
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Fig. 1. Block diagram of the proposed text detection approach.

used for classification. In our work, we show that consensus among components
can also be used for text/non-text classification. A group of components of less
consensus on color and spatial alignment are less likely to be a text objects while
a “good” component grouping strategy should benefit the following classification
procedure.

In this paper, we propose a new approach to detect and localize scene text by
integrating both appearance and consensus representation of components into a
discriminative model. The component appearance representation is built on His-
togram of Oriented Gradient (HOG) features and a sequence of SVMs to build a
dictionary classifier. The consensus representation includes color distance, color
variance and spatial distance of components. The functions of the discrimi-
native model are twofold: classifying text/non-text and determining whether
components should be grouped. When performing text detection, MSERs are
first extracted as candidate components. Text hypotheses are then generated on
MSER pairs. The hypotheses are extended iteratively until the output of the
discriminative model is negative. Block diagram of the proposed approach is
shown in Fig. 1.

The remainder of this paper is organized as follows. The text detection app-
roach is described in Sect. 2. Experiments are provided in Sect. 3 and conclusio1ns
in Sect. 4.

2 Text Detection Approach

The proposed text detection approach includes the following procedures: MSER
based component extraction, training of the component dictionary classifier,
integrated discriminative model and a text detection algorithm.

2.1 Component Extraction

Among a number of component extraction methods, we have adopted the MSER
algorithm because it shows good performance with a linear computation cost
[19]. This algorithm finds local shapes that are stable over a range of thresh-
olds, allowing us to find most of the text components [11]. In each channel, the
MSER algorithm yields components that are either darker or brighter than their
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Fig. 2. MSER bounding boxes from three channels. (a) Luminance channel, (b) chromi-
nance channel, (c) gradient channel and (d) detected text objects.

surroundings. We use a Gamma correction (γ = 1.0) on the image as a pre-
processing step so that low contrast text components can be correctly localized.
MSERs from the luminance, chrominance and gradient channels are extracted
and pooled. In Fig. 2, we illustrate bounding boxes of darker components. Note
that some components overlap with each other, showing the complex spatial
relationships among them.

2.2 Component Dictionary Classifier

When detecting text in the natural scenes, we need to effectively discriminate
text from other objects. Researchers have tried to model text as “structured
edges”, “a series of uniform color regions”, “a group of strokes”, or “texture”
or hybrid of these. However, there are many objects such as leaves or window
curtains that have similar edge, stroke or texture properties as text, making it
difficult to find effective features and methods to discriminate text from these
objects. In this paper we propose a more precise definition of “text patterns”
using a sequence of classifiers corresponding to components (characters or groups
of them). It is based on the fact that character patterns have been well defined
and people have explored many effective features to represent characters.

HOG features, a kind of state-of-the-art features for object representation, are
employed as component representation. As shown in Fig. 2(a), when extracting
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Fig. 3. Illustration of component dictionary classifier. (a) component samples, (b) neg-
atives and (c) visulization of 21 normal vectors of the dictionary classifier, in which 20
normal vectors are for components and the last one is for negtive samples.

HOG features, a 28 × 28 training sample is divided into cells of size 4 × 4 pixels,
and each group of 2×2 cells is integrated into a block using a sliding window, and
blocks overlap with each other. We first calculate the gradient orientation of each
pixel. In each cell, we calculate nine-dimensional HOG features by calculating
the nine-bin histogram of gradient orientations of all pixels in this cell. Each
block contains four cells, on which 36-dimensional features are extracted. Each
sample is represented by 36 blocks, on which 1296-dimensional HOG features are
extracted. Component samples are partitioned into K groups with a K-means
clustering algorithm in the HOG feature space. Considering the difficulty when
clustering samples in the high dimensional feature space, we use the methods
proposed in [20] to improve the clustering results, iteratively.

Clustered training samples of components and their negative images are
shown in Figs. 3(a) and (b) respectively. It can be seen that the component sam-
ples include single characters or several characters (or character parts) extracted
by the MSER algorithm. Samples of an aspect ratio larger than 5.0 are consid-
ered to be seriously touching and are discarded before training. The (K + 1)th
group corresponds to the negative samples. A multi-class SVM training algo-
rithm is used to train the dictionary classifier that containing K linear SVMs
fk(x) = wT

k · x + bk, k = 1, ...K that correspond to K component clusters. For
the multi-class training, an one-against-all strategy is adopted.

When performing classification, the output of a feature vector x from the
dictionary classifier is the maximum response of K linear SVMs as

f(x) = arg max {fk(x)} (1)
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2.3 Component Consensus Feature Extraction

Component consensus includes the pairwise relations of components and the
holistic variance of grouped components. Let i and j denote the indexes of two
components.

Given a text X = (x1, ..., xi) with the last component xi and an isolated com-
ponent xj , the spatial relations between text X and component xj is described
with five features as follows:

– Color difference feature

ϕ1 (X,xj) = ϕ1 (xi, xj) = √ci − cj√2 (2)

where ci and cj are mean color of component i and j.
– Spatial distance features (symbols are defined in Fig. 4)

ϕ2 (X,xj) = ϕ2 (xi, xj) =
vij

min (hi, hj)
(3)

ϕ3 (X,xj) = ϕ3 (xi, xj) =
dij

min (hi, hj)
(4)

– Alignment features (symbols are defined in Fig. 4)

ϕ4 (X,xj) = ϕ4 (xi, xj) =
|hi − hj |

min (hi, hj)
(5)

ϕ5 (X,xj) = ϕ5 (xi, xj) =
oij

min (hi, hj)
(6)

Assuming that xi is merged into text X and forms a new text, then we can
calculate the variance of color mean values of components, as follows:

ϕ6 (X,xj) = ϕ6 (X ∩ xj) = V ariance (c1, c2, ..., ci, cj) (7)

Fig. 4. Illustration of spatial relationship of component xi and xj .
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Fig. 5. Illustration of text (left )and mined hard negative samples (right).

2.4 Integrated Discriminative Model

Using the dictionary classifier defined in Sect. 2.2 and consensus feature extrac-
tion procedure in Sect. 2.3, the text discriminative model is defined as

F (X̃) = F (X ∩ x̃) = WT ·
(

ψ (X)
ϕ (X, x̃)

)
− B (8)

where ψ (X) denotes response feature extraction from the dictionary classi-
fier, which outputs two features: the average response 1

|X|
∑

xn∗X

f (xn) and the

maximum response of all the components in X as max (f (xn)) , n = 1, ..., |X|.
ϕ (X, x̃) denotes the component consensus feature extraction which includes the
six dimensional features defined by (2)–(7). x̃ is a component being considered for
inclusion into X. WT is a weight vector related to importance of each dimension
of features and B is a threshold for the model when performing text classifica-
tion. If F (X̃) outputs a positive value it means that X̃ is a text object; otherwise
a non-text object.

Given the text samples and their negatives, we calculate dictionary classifier
responses of components and component consensus features. The features are
input into a linear SVM to train the integrated discriminative model of (8). To
obtain a high performance discriminative model it is often important to use large
training sets. In the case of text there is few text samples for training but a lot
of negatives from background. Therefore a Bootstrapping procedure is adopted
to train a model with an initial subset of random negative examples, and then
collect negative examples that are incorrectly classified by this initial model to
form a set of hard negatives, as shown in Fig. 5. A new model is trained with
the hard negative examples and the process is repeated.

2.5 Text Detection

Text detection is a procedure of hypothesis-generation and hypothesis-extension.
Hypotheses are generated from component pairs. As the MSER algorithm can
generate thousands of component candidates in images of complex backgrounds,
using all of the component pairs to generate text hypotheses is time consuming.
Two loose constraints on the component spatial distance and alignment are used
to reduce number of hypothesis. We then extend the hypotheses, as illustrated
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by Fig. 4, iteratively to obtain text objects. The text detection procedure is
described as the following algorithm.

3 Experiments

3.1 Datasets

We use two different datasets, ICDAR 2011 scene text dataset [15] and the Street
View Text (SVT) dataset [16] to perform evaluation. The ICDAR 2011 dataset
is widely used for benchmarking scene text detection algorithms. Most of the
text objects in it are captured at short distances and the main challenges are
from the large scale variance and uneven illumination. The SVT dataset contains
text objects from Google street video frames and most of the text objects are
captured at middle distances. The main challenge is from the degradation of
image quality and the complex background.

The ICDAR2011 dataset contains 849 training text samples from 229 images
and 1190 test samples from 255 images. The SVT dataset contains 257 train-
ing samples from 100 images and 647 test text samples from 250 images. We
extracted 9930 components and 1620 text samples for training. We also mined
6000 negative component samples and 1000 negative text samples.
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On the ICDAR2011 dataset, our evaluation protocol is consistent with the
ICDAR2011 robust reading competition [14] (using the Deteval software). Preci-
sion, recall and a harmonic mean are used as the protocol to perform evaluation.
On the SVT dataset, the bounding boxes in groundtruth are not precise. In such
a case, precision is defined as the ratio between area of intersection regions and
that of detected text regions, recall is obtained from the ratio between area of
intersection regions and that of ground truth regions.

3.2 Effects of Parameters

We have conducted experiments to show the effects of different color channels as
shown in Table 1. With L, U and V color channels the precision is four percent
higher than in R, G and B channels. More than three point Harmonic mean
performance improvement is observed when using L, U, V and the gradient
channels compared with the R, G and B channels. This shows the effectiveness
of the combination of multiple channels when performing detection.

We use the harmonic mean rate as the criterion to determine the positive
component classifier number K in the dictionary classifier, as shown in Fig. 6. In
the experiments, it is found that the more the training samples, the larger the
value of K is. For the current training set, a scope of [24–32] of K reports the
best performance.

We have also illustrated precision-recall curves for different classification
threshold T in Fig. 7. Specifically, Fig. 7 shows that the precision could signifi-
cantly drop when the recall rate increase up to 65 %. It can be calculated that
when setting T=0.2 and T=0.4, we can obtain the best performance on ICDAR
2011 and SVT datasets, respectively.

3.3 Results and Comparisons

In Table 2 we compare our approach with other state-of-the-art approaches on
the ICDAR2011 dataset. Compared with the competition winner, our proposed
approach has improvement on both the precision and recall rates. In particularly,
our method can keep a higher precision rate without significant recall drop. In
Table 3 we compare our proposed approach with two published state-of-the-art
approaches [10,16] on the SVT dataset. It can be seen that our approach shows
significant improvement on the Harmonic mean (more than 12 %). Nevertheless,
on this dataset, all of the compared approaches reports low recall and precision
rates. The main reason is for the image quality degradation after the video
compression and decompression procedures. When performing detection, our
approach runs at a speed about 1.1 images per second (for images of width 756
pixels) on a PC with an Intel CORE i5 CPU. It is observed in experiments
that the speed mainly depends on the MSER parameter Δ that represents the
range of intensities where the regions are stable [19]. When setting Δ = 2,
thousands of components can be detected and the detection speed drops to
0.45 images/second. When setting Δ = 6 the number of components reduces
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Table 1. Performance (%) comparison of text detection different color channels.

Color channels Recall Precision Harmonic mean

LUV+Gradient 64.64 83.00 72.68
YCrCb+Gradient 64.55 82.25 72.34
Lab+Gradient 63.68 81.05 71.32
Luv 62.43 84.03 71.64
YCrCb 62.47 82.98 71.28
Lab 61.83 83.98 70.95
RGB 62.09 78.25 69.36

Table 2. Performance (%) comparison of text detection approaches on ICDAR2011
robust reading competition dataset.

Methods Recall Precision Harmonic mean

Our approach 64.64 83.00 72.68
Kims approach [14] 62.47 82.98 71.28
Neumanns approach [10] 64.71 73.10 68.70
Yis approach [13] 58.09 67.22 62.32
TH-TextLoc System [14] 57.68 66.97 61.98
Neumanns approach [8] 52.54 68.93 59.63

Fig. 6. Performance under different component classifier numbers.

to hundreds and the detection speed increases to 1.6 images per second with
performance drop of 4.1 %.

Figure 8 shows some detection examples, where most of the text objects are
correctly detected with few false positives. The text objects are in complex back-
ground and can have low resolution or low contrast. This shows that the proposed
approach can correctly capture text patterns of large variations simultaneously
with an integrated discrimination. Figure 8(f) has one miss and Fig. 8(g) two has
two missed text regions. The missing text in Fig. 8(f) is due to large distance
between the characters. In experiments, it is found that when characters have a
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Fig. 7. Curves of recall/precision under different classificiation thresholds.

Table 3. Performance (%) comparison of text detection approaches on SVT dataset.

Color channels Recall Precision Harmonic mean

Our approach 43.89 67.52 53.20
Wangs approach 29.00 67.00 40.48
(with lexicon) [16]
Neumanns approach [10] 19.10 32.90 24.17

Fig. 8. Detection examples from the ICDAR2011 text dataset (a)-(e), and the Street
View Text dataset (f) and (g). Bounding rectanges of text are of green lines and up
and down borders of text are indicated by blue lines. (Color figure online)

distance larger than their height, the text objects may be missed. The missing
text in Fig. 8(g) is due to the low resolution and perspective deformation.
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4 Conclusion and Future Work

Text detection in natural scene images remains a challenging problem due to
complex background, low image quality and/or variation of text appearance. In
this paper, we develop a discriminative approach that integrates appearance and
consensus of components for text detection. We designed a dictionary classifier
to discriminate the text components and presented six features that represent
the consensus of components. The classifiers are boosted by mining hard nega-
tive samples. The text detection is formulated as a hypothesis generation and
hypothesis extension process, where the discriminative model is used to control
the extension. Experiments have been carried out on two popular datasets to
examine the performance of the approach and perform comparisons. Compared
with several recent approaches the proposed approach reach the state of the art.
Especially, it has a significant performance improvement on the SVT dataset
of low quality text objects and clutter backgrounds. Currently, our approach
had difficult with multiple touching characters in low resolution images. Vertical
text lines or text of deep perspective transformation can also result in missed
detection, although the approach works well for most skewed text objects.
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Abstract. This paper addresses the problem of detecting characters
in natural scene image. How to correctly discriminate character/non-
character is also a very challenging problem. In this paper, we pro-
pose new character/non-character discrimination technique using the
rotation angle of characters to improve character detection accuracy in
natural scene image. In particular, we individually recognize characters
and estimate the rotation angle of those characters by our previously
reported method and use the rotation angle for character/non-character
discrimination. As the result of the character recognition experiment
evaluating 50 alphanumeric natural scene images, we have confirmed the
accuracy improvement of precision and F -measure by 9.37% and 4.73%
respectively when compared to the performance with previously reported
paper.

Keywords: Rotation-free character recognition · Weighted direction
code histogram · Modified quadratic discriminant function · Rotation
angle estimation

1 Introduction

Recently, as camera function of cellular phone and digital camera develops,
expectation of character recognition by using these as an input device is rising.
If such devices capable of recognizing characters in natural scene image were
available, they are expected to have a variety of applications. Several applica-
tions have been already provided such as Google Goggles and Evernote. Google
Goggles can be used for translation system and Evernote can be used for image
retrieval. However, these applications still have problem that it cannot detect
characters when the characters are not printed along straight line nor rotated
individually. Rotation and perspective distortion problem [1] is one of the major
challenges on character detection in natural scene image and must be solved in
order not to decrease convenience of users.
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There is another problem on character detection in natural scene image.
That is, character/non-character discrimination problem [2]. There are many
Connected Components (CCs) that are not characters but looks like characters
in natural scene images like ’I’ and ’L’ generated by the edge of object. This
problem makes character detection very difficult and must be solved in order to
realize high accuracy camera-based OCR.

Many researches have been made in order to deal with rotation and perspec-
tive distortion of characters [3–5]. Also, the methods which extract characters
from complex scene image by using strong classifier constructed by combining
weak classifiers are proposed [6,7]. Moreover, new approach using scene con-
text for character detection in natural scene image is proposed [8]. However not
many efforts have been made to deal with character/non-character discrimina-
tion problem and any efficient method have not been proposed yet.

In this paper, we propose new character/non-character discrimination tech-
nique using the rotation angle of characters to improve character detection accu-
racy in natural scene image. In particular, we individually recognize characters
and estimate the rotation angle of those characters by our previously reported
method [9] and use the rotation angle for character/non-character discrimina-
tion. There are several rotation angle estimation methods except our previously
reported method but most of the methods require at least word unit to estimate
its rotation. As the method which can individually estimate character rotation,
Uchida et.al. proposed instance-based document skew estimation method [10],
but to the best of our knowledge, our method is the first attempt for using rota-
tion angle of characters to improve character detection accuracy in natural scene
image.

2 Proposed Method

The processing flow of our method is shown in Figs. 1 and 2. In the learning
stage, first we translate the center of the enclosing rectangular of a non-rotated
character to the origin of 3D left handed Cartesian coordinate system and the 3D
rotation process is performed on a computer to generate 3D rotated characters.
After generating 3D rotated characters, feature vectors are extracted from those
rotated characters and the mean vector, eigenvalue and eigenvector of covariance
matrix are calculated as a learning model for each character class and also for
each rotation angle class.

We used Weighted Direction Code Histogram (WDCH) [11] as a feature
vector and is extracted by the following procedure.

1. The chain coding is applied to the contour pixels of the normalized character
image. Vector sum of adjacent two chain elements is taken to produce 16
directional code.

2. The normalized character image is divided into (2n−1)2 ((2n−1) horizontal
× (2n−1) vertical) blocks. The number of the contour pixels in each direction
is counted in each block to produce (2n−1)2 local direction code histograms.
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Fig. 1. The processing flow of proposed method (learning stage).

Fig. 2. The processing flow of proposed method (recognition stage).
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3. The spatial resolution is reduced from (2n−1)×(2n−1) to n×n by down sam-
pling every two horizontal and every two vertical blocks with 5 × 5 Gaussian
filter. Similarly the directional resolution is reduced from 16 to 8 by down
sampling with a weight vector [1 2 1]T, to produce a feature vector of size
8n2 (n horizontal, n vertical, and 8 directional resolution).

4. Variable transformation taking square root of each feature element is applied
to make the distribution of the features Gaussian-like.

The 5 × 5 Gaussian filter and the weight vector [1 2 1]T in the step 3) are the
high-cut filters to reduce the aliasing due to the down sampling. Their size was
empirically determined for this purpose.

We used the 392 dimensional WDCH feature vector (n = 7) in character
recognition and we used the 32 dimensional WDCH feature vector (n = 2) in
rotation angle estimation.

We classify the 392 dimensional feature vector by using learning model of
each character class. As a classifier we used Modified Quadratic Discriminant
Function (MQDF) [12].

The MQDF is defined by

g(X) =
1

ασ2

[√X − M√2

−
k∑

i=1

(1 − α)λi

(1 − α)λi + ασ2

{
ΦT

i (X − M)
}2

]

+
k∑

i=1

ln{(1 − α)λi + ασ2} (1)

where X and M are feature vector and the mean vector of a class respectively,
and λi and Φi are the ith eigenvalue and eigenvector of the covariance matrix,
respectively, σ2I and α are an initial estimates of the covariance matrix and a
confidence constant, respectively. The class which minimizes g(X) is selected as
the recognition result. The required computation time and storage is O(kn).

After identifying its character class, we classify the 32 dimensional feature
vector by using learning model of each rotation angle class of that character
class and identify its rotation angle class. We also used MQDF classifier for this
process. Since this approach does not requires rotation normalization of input
character, it can recognize rotated characters in the same computational time as
non-rotated characters. Also, since this approach recognizes without word/line
segmentation characters individual, there is no restriction of text layout. Fur-
thermore, we can identify rotation angle class by using low dimensional feature
vector as soon as once character class is identified.

3 Overview

In this section, we overview our character recognition system [9] mainly focusing
on the character recognition accuracy.
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3.1 Character Recognition System

We introduce our system that automatically detect and recognize the characters
in natural scene image. Our system mainly consists of two stages.

The first stage is character segmentation consisting of Connected Component
(CC) analysis. The processing flow of this stage is shown in Fig. 3. The input
image is binarized by Otsu’s method [13], and the CC analysis and noise removal
are performed to the binary image. Then enclosing rectangular of the CC is
detected and the corresponding area of the original image is extracted. The
extracted image is binarized again with the local threshold selected by Otsu’s
method. We leave only the largest CC to get the most characters likely candidate.
We call the CCs detected by the above method as group A (Black characters).
As in the similar flow, after the binariztion of the input image by Otsu’s method,
we perform black and white reverse operation. We call the CCs detected with
this reverse operation as group B (White characters). Although more CCs than
existing characters are included in the groups, we can extract both black and
white characters.

Fig. 3. The processing flow of character segmentation.
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Fig. 4. The processing flow of character recognition/selection.

The next stage is character recognition/selection. The processing flow of this
stage is shown in Fig. 4. Since there are CCs that are not characters, we try to
reject those CCs that are not character. We use an extended learning model set
(with period ‘.’) to calculate the MQDF to recognize characters. The reason of
adding period to the category set is to deal with small noise components. We
reject CCs that are recognized as period. The value of the MQDF represents the
negative likelihood of character and represents that the smaller the value is the
higher the possibility of the character. Therefore, if the value is greater than a
threshold value, the CC is rejected as it is not a character. We selected threshold
value by Otsu’s method. Finally, the number of remaining CCs in group A and B
are counted up and the components in the group that has more CCs are selected
as final characters.

3.2 Character Recognition Accuracy

In order to show the character recognition accuracy of our system, we have done
the character recognition experiment using natural scene images for evaluation
data. We prepared 50 natural scene images in which there are 1271 printed
alphanumeric characters. Some examples of the images are shown in Fig. 5.
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Fig. 5. Examples of natural scene images used in the experiment.

We selected printed alphanumeric character as the recognition target exclud-
ing disconnected characters ‘i’ and ‘j’. Also, we limited the rotation angle range
−45∗ to 45∗ around x-axis and y-axis, −30∗ to 30∗ around z-axis in order to
avoid similarity problem e.g. ‘N’ and ‘Z’. Therefore, when we generate learning
model, we rotated characters within the same rotation angle range discussed
above and set the intervals of rotation angle as 15∗. The number 15 is selected
by preliminary experiment. We used multi-font data set consisting of approxi-
mately 300 samples per class for learning data. Therefore, 73,500 (300×7×7×5)
samples were generated as learning data for each character class.

As the result of applying our character recognition system to 50 camera-
captured images, 4463 CCs that include 1271 characters were extracted in the
character segmentation stage. Then, in the character recognition/selection stage,
1223 CCs that should be recognized as a character were correctly recognized,
while 199 CCs that should be recognized as not character were detected as a
character. Summarized result is shown in Table 1.

Table 1. The results of recognition experiment (number of sample).

��������������Actual class
Predicted class

Character Non-character

Character 1223 48

Non-character 199 2993
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Calculating recall (R), precision (P) and F -measure (F) from Table 1, we
obtained the results as follows:

R =
1223

1223 + 48
× 100 = 96.22(%) (2)

P =
1223

1223 + 199
× 100 = 86.01(%) (3)

F =
2 × recall × precision

recall + precision
= 90.83(%) (4)

4 Experiments

4.1 Rotation Angle Estimation Accuracy

In order to show the rotation angle estimation accuracy, we have done the eval-
uation experiments using artificially generated evaluation data.

In the learning stage, we used the same data set used in Sect. 3 for learn-
ing data and prepared three kinds of learning models with rotation intervals of
15∗, 10∗ and 5∗ within the same rotation angle range in Sect. 3. The reason we
prepared three kinds of learning models is to check how estimation accuracy
changes when the intervals of rotation angle gets smaller.

On the other hand in the evaluation stage, we prepared helvetica and century
font character for evaluation data. Each character class has one sample and
normalized its size to 52 × 52 pixels by maintaining aspect ratio before feature
extraction process. We rotated evaluation data by intervals of 6∗ for x-axis and
y-axis within the range of −42∗ to 42∗, z-axis within the range of −30∗ to 30∗.
Therefore, 2475 (15 × 15 × 11) samples are generated as an evaluation data set
for each character class. When evaluating estimation accuracy, we calculated the
arccosine of inner product between the character normal detected by our method
and the correct character normal (rotation around x, y-axis). We also calculated
the difference between rotation around z-axis to evaluate estimation accuracy.

The results of the experiment is shown in Table 2. Through the experiments,
we have found that (1) estimation accuracy improves when the intervals of rota-
tion angle gets smaller, (2) rotation around z-axis is easier to estimate than the
rotation around x, y-axis and (3) the font does not affect on the estimation error
significantly.

Table 2. The average of estimation error evaluating helvetica and century font char-
acter using three kinds of rotation angle learning models (◦).

x, y z
Helvetica Century Helvetica Century

15◦ 14.49 13.73 4.08 3.72
10◦ 12.84 11.51 3.28 2.70
5◦ 10.96 9.42 2.18 1.75
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The detail estimation error of each character class when using learning models
with rotation intervals of 5∗ is shown in Figs. 6 and 7. We have found that
estimation accuracy is lower for characters ’0’, ’1’, ’I’, ’O’, ’f’, ’l’, ’t’ and ’y’.
This tendency is more significant in Helvetica than in Century.

As common estimation error for both helvetica and century font characters,
characters which is slightly rotated around x, y-axis is difficult to estimate its
rotation. This is because appearance of character change not much and difficult
to tell the difference whether it is rotated or not.

Fig. 6. Estimation error of each character class of Helvetica font.

Fig. 7. Estimation error of each character class of Century font.

4.2 Application for Character Detection

From the results of experiment in Sect. IV-A, we have found that our method
can precisely estimate the rotation angle of character around z-axis. There-
fore, we try to use rotation angle around z-axis to improve character detection
accuracy.

We execute the same experiment in Sect. 3. The processing flow of extracting
characters from natural scene image is almost the same in Sect. 3 but the only
difference is we add CC rejection process using rotation angle around z-axis. We
assume that all the characters in the same natural scene image has the same
rotation around z-axis. We used learning models with rotation intervals of 10∗.
The detail process flow of CC rejection using rotation angle around z-axis is
shown in Fig. 8. After applying conventional CC rejection process, we count up



Accuracy Improvement of Viewpoint-Free Scene Character Recognition 69

the number of rotation angle class and detect the class that has highest frequency.
We also assume the class within ±10∗ as the correct rotation angle class too.
Finally, we leave only the characters that have correct rotation angle class.

Fig. 8. The process flow of CC rejection using rotation angle.

As the result of the experiment, 1217 CCs that should be recognized as a
character were correctly recognized, while 59 CCs that is not character were
detected as a character. Summarized result is shown in Table 3.

Table 3. The results of recognition experiment (number of sample).

��������������Actual class
Predicted class

Character Non-character

Character 1217 54

Non-character 59 3133

Calculating recall (R), precision (P) and F -measure (F) from Table 3, we
obtained the results as follows:

R =
1217

1217 + 54
× 100 = 95.75(%) (5)

P =
1217

1217 + 59
× 100 = 95.38(%) (6)

F =
2 × recall × precision

recall + precision
= 95.56(%) (7)

We obtained 95.75 % recall with 95.38 % precision and the F -measure was
95.56 %. Recall slightly dropped but the precision and F -measure is improved
by 9.37 % and 4.73 % respectively. We have confirmed that the rotation angle
of characters is one of the useful information to improve character detection
accuracy.
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5 Conclusion

We evaluated how precisely our previously reported paper can estimate rotation
angle of character and also introduced an application of improving character
detection accuracy using rotation angle of characters.

As the result of the rotation angle estimation experiments, we have confirmed
that our method can estimate rotation angle within ±10∗ around x, y-axis and
±2∗ around z-axis when using learning models with rotation intervals of 5∗. Also,
as the result of character recognition experiments using rotation angle of char-
acters, precision and F -measure are improved by 9.37 % and 4.73 % respectively
and showed the usefulness of the rotation angle estimation.

While our system can estimate three dimensional rotation, we did not use
rotation angle around x-axis and y-axis to improve character detection accu-
racy. Therefore, future work is to use rotation angle around x-axis and y-axis to
improve character detection accuracy.
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Abstract. Sign text is one of the most seen text types appearing in scene
images. In this paper, we present a new sign text localization method for scene
images captured by mobile device. The candidate characters are first localized
by detecting closed boundaries in the image. Then, based on the properties of
signboard, the convex regions that contain enough candidate characters are
extracted and marked as sign regions. After removing the false positives using
the proposed layer analysis, the candidate characters inside the detected sign
regions are yielded as sign text. A sign text database with 241 images captured
by a mobile device was used to evaluate our method. The experimental results
demonstrate the validity of the proposed method.

Keywords: Closed boundary � Text detection � Layer analysis

1 Introduction

With the increasing availability of low cost portable cameras and camcorders, much
more pictures and videos are produced than ever before in nowadays. Because these
multi-media documents are useful only if they can be navigated efficiently, much
effort has been done on Content Based Information Retrieval (CBIR) systems since
1990s. However, the existing CBIR systems are far from perfect [1]. How to index and
retrieve the information in images and videos is still a big challenge due to the
semantic gap between machine-level and semantic-level descriptors [2]. Fortunately,
there is a considerable amount of text occurring in image and video documents. As a
well-defined model of concepts for humans’ communication, text embedded in multi-
media data contains much semantic information related to the content. Therefore, if
this text information can be extracted accurately, we can obtain a quite reliable
content-based access to the images and videos.

Many text extraction approaches have been proposed since 1990s. Generally, there
are four steps of a text extraction system: (1) Text detection, finding regions in an
image that contain text; (2) Text localization, grouping text regions into text instances
and generating a set of tight bounding boxes around all text objects; (3) Text bina-
rization, binarizing the bounded text and marking text as one binary level and
background as the other; (4) Text recognition, performing optical character recogni-
tion (OCR) on the binarized text image.

M. Iwamura and F. Shafait (Eds.): CBDAR 2013, LNCS 8357, pp. 71–82, 2014.
DOI: 10.1007/978-3-319-05167-3_6, � Springer International Publishing Switzerland 2014



Sign text is one of the most seen text types appearing in scene images, such as road
signs, store signs, bill-boards, and so on. Compared with other text objects, sign text
has two important properties: (i) there is a sharp color contrast between sign text and
its background in order to let people read it easily; (ii) sign text is located in signboard,
which is typically a convex polygon with homogenous color. In this paper, by
investigating the properties of both sign text and signboard, we propose a new method
that can localize sign text effectively based on sign region detection and layer analysis.

The rest of the paper is organized as follows. Section 2 reviews the related work.
Section 3 describes the proposed new sign text localization method. Experimental
results are shown and analyzed in Sect. 4. We draw conclusions in Sect. 5.

2 Related Work

Text extraction in image and video documents, as an important research field of
content-based information indexing and retrieval, has been developing rapidly since
1990s. Hundreds of approaches have been proposed to address this problem. Chen
et al. [3], Jung et al. [4], and Zhang and Kasturi [5] present comprehensive surveys of
the text extraction methods. According to the features used and the ways they work,
text extraction approaches can be divided into two categories: region based and
texture based.

Region based approach utilizes the different region properties between text and
background to extract text objects. Color, edge, and connected component are often
used in this approach. Shivakumara et al. [6] propose an algorithm to detect video text
for low and high contrast images, which are classified by analyzing the edge difference
between Sobel and Canny edge detectors. After computing edge and texture features,
low-contrast and high-contrast thresholds are used to extract text objects from low and
high contrast images separately. Liu et al. [7] use an intensity histogram based filter
and an inner distance based shape filter to extract text blocks and eliminate false
positives whose intensity histograms are similar to those of their adjoining areas and
the components coming from the same object. Bai et al. [8] use a multi-scale Harris-
corner based method to extract candidate text blocks. The position similarity and color
similarity of Harris corners are used to generate boundaries of text objects. Subra-
manian et al. [9] use character-stroke to extract text objects. Three line scans defined
as a set of pixels along the horizontal line of an intensity image are combined to locate
flux regions and flux points, which can show the significant changes of the intensity.
Character strokes are detected by using spatial and color-space constraints to find the
regions with small variation in color.

Texture based approach uses distinct texture properties of text to extract text
objects from background. Machine learning methods are often used in this approach.
Hanif et al. [10] extract mean difference feature, standard deviation feature, and
histogram of oriented gradient (HOG) feature from the blocks of an image. After
AdaBoost algorithm based feature selection, a multilayer perceptron neural network is
utilized to detect text objects in scene images. Pan et al. [11] proposed a text detection
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method by using a conditional random field model. Text regions are detected by HOG
feature and cascade boosting classifiers. A conditional random field (CRF) model is
used to label candidate text region. Characters are grouped by using minimum
spanning tree (MST) and edge cut techniques. Tu et al. [12] calculate the average
intensity and statistics of the number of edges from training samples. Adaboost is used
to classify the candidate blocks. Text boundaries are matched with pre-generated
deformable templates based on shape context and informative features.

Saliency is also studied for text detection task. Shahab et al. [13] evaluate four
visual attention-based models and show that attention model can used in early stages
of scene text detection. By using saliency map as prior, Uchida et al. [14] use SURF
[15] as local features to detect scenery characters. Their experiments demonstrated
that SURF and visual saliency can achieve around 75 % accuracy for character and
non-character discrimination.

In [16], Clark et al. first use Hough transform and a perceptual grouping method to
find the rectangular regions in the scene and then compute edge angle distribution as a
confidence measure to find regions that contain text objects. Clark et al. [17] use
texture feature and neural network classifier to locate text region. The fronto-parallel
view is recovered by using the lines of text paragraph and vanishing point of text plan.

For sign detection and text localization, the method proposed by Bounman et al.
[18] first divides the input image into non-overlapping blocks. Then, homogenous
blocks detected by luminance thresholding are used as seed to generate homogenous
regions by region growing. Finally, holes and contrast are computed for each
homogenous region to detect sign regions and holes meeting character criterions in
sign regions are output as text. A similar method is presented by Jafri et al. [19]. After
obtaining homogenous regions using small non-overlapping blocks and region
growing, color distribution is computed to find text regions based on the observation
that text regions contain few contrasting colors.

Similar to the methods presented in [16, 17], the proposed sign text detection
method also uses the relationship between text object and text plan containing it.
However, compared with the dividing and merging strategy-based perceptual
grouping methods used in [18, 19], the method presented in this paper can detect sign
regions directly based on the color and shape characteristics of sign and, therefore, is
robust to sign size and orientation. Furthermore, the proposed layer analysis method
can remove false positives effectively by analyzing the properties of text objects.

3 Algorithm

In this section, we introduce the proposed sign text localization algorithm, which is
composed of three steps: (i) localize candidate characters by extracting closed
boundaries in the image; (ii) find sign regions using color and shape information; (iii)
remove false positives outside the detected sign regions and yield the candidate
characters using the proposed layer analysis. Figure 1 shows the flowchart of the
presented algorithm.
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3.1 Candidate Text Detection

It is observed that, in order to let people read text easily, sign text typically has closed
boundary due to the sharp contrast between text and its background. Based on this
observation, we are able to localize candidate sign text by detecting closed boundaries
in the image.

In our method, the closed boundaries of text are detected by a zero-cross algorithm
based edge detector, which can provide closed boundaries more accurately than other
detectors in our experiments. Meanwhile, we notice that the edge detector with a low
threshold can provide the closed boundaries for sign text but many unexpected weak
edges are also detected. Whereas, the edge detector with a high threshold yields strong
edges but the boundaries of the sign text may not be closed. In order to detect strong
close boundaries and remove noise edges, we generate two edge maps El and Eh using
a low threshold and a high threshold and combine them as follows:

1. Each boundary in El is filtered by its Euler number, which is defined as the
number of edge (=1) minus the number of holes of this edge. The closed
boundaries are extracted from the boundaries whose Euler numbers are less than 1
(i.e. the boundaries that are have at least one hole).

2. For a extracted closed boundary B in El, it is considered as a non-character
boundary and removed from El, if:

• (i) The length of B is too short (less than 100 pixels) to be a character boundary;
• (ii) The aspect ratio (height/width) of the bounding box of B is too large (bigger

than 5) or too small (smaller than 0.2);
• (iii) Less than half of its boundary pixels appear in Eh, which indicates that it is

weak boundary.
3. The remaining closed boundaries in El form a new edge map E, which contains

strong and closed boundaries. These boundaries are marked as candidate text
boundaries.

An example is illustrated in Fig. 2. Figure 2-a is an original sign image. Figure 2-
b and 2-c are the two edge maps Eh and El of Fig. 2-a. We can see that Eh has much
less noise edges than El, but some boundaries of characters in Eh are not closed. For
instance, the character ‘‘N’’ in the word ‘‘ONLY’’ has closed boundary in El but
unclosed boundary in Eh, as shown in Fig. 2-d and 2-e. Figure 2-f shows the closed
boundary map E, which is a combination of the edges in El and Eh. Note that although
the edge map E contains closed boundaries of all characters, there are still some
boundaries of non-character objects in E.

Fig. 1. Flowchart of the algorithm
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3.2 Sign Region Detection

Now the edge map E contains boundaries of all characters and some non-characters.
If the sign region can be detected, we are able to extract the character boundaries
easily: the boundaries inside the sign region are marked as character boundaries and
the boundaries outside the sign region are discarded as non-character boundaries.

As mentioned before, the sign region typically is a convex polygon in homogenous
color with several holes (characters). Therefore, we detect sign regions using both
color and shape information.

In our method, we use Statistical Region Merging (SRM) method proposed by
Nock and Nielsen [20] to segment sign regions. SRM uses inference method to model
segmentation problem. Statistical test is applied to measure the mean intensities for a
small region and its neighbors. They are merged to form one region if their means are
similar. The parameter Q in SRM which is used to replace each color channel to
Q independent random variables to quantify the statistical complexity was 4 in our
experiments.

For a segmented region P generated by SRM, it is considered as a sign region if it
satisfies the following three conditions:

1. Let Num(Ph) indicate the number of holes inside P.

NumðPhÞ[ 1 ð1Þ

This is because the sign region has homogeneous color and more than one hole due to
our assumption thah a text object always contains more than one character.

Fig. 2. An example of candidate character detection. (a) original image; (b) weak edge map El;
(c) strong edge map Eh; (d) a closed boundary in El; (e) an unclosed boundary in Eh. (f) edge
map E.
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2. Let Ap indicate the area of P and Ah indicate the total area of holes inside P.

Ap þ Ah [ T1 ð2Þ

This is because the sign region should be large enough to contain at least two
characters. T1 is set to 100 9 100 pixels in our experiments.
3. Let Amch indicate the area of the smallest convex polygon that contains P.

Ap þ Ah

� �
=Amch [ T2 ð3Þ

This is because we notice that sign regions typically have convex shapes, such as
circle, triangle, rectangle, etc. We are able to find the convex regions by computing
the area ratio between the sign and the smallest convex polygon containing it. The
larger the ratio is, the more the region like a convex polygon. T2 was set to 0.8 in our
experiments.

Figure 3 illustrates the sign region detection of three examples. The first column is
the original sign images. The second column shows the segmentation results of SRM.
The third column illustrates the detected sign regions using the three conditions
described above. We can see that our method can detect sign regions successfully for

(a) (b) (c) 

Fig. 3. Sign region detection results. (a) original images; (b) SRM segmentation; (c) detected
sign regions.
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the images with full sign board, partial sign board, and multiple sign boards. In
Sect. 3.3, we will use the detected sign regions to extract sign text.

3.3 Layer Analysis Based Text Detection

In this subsection, we combine the candidate character regions and sign regions
detected in the previous subsection to remove false positives and extract characters
within the sign region.

After removing the candidate character regions outside the sign region as false
positives, the candidate character regions inside the sign regions are labeled using
connected component technique and the image is defined as component image
C. Figure 4 illustrates the component images of the examples in Fig. 3.

Although all characters are localized, we can see that there are still some non-
character components within the sign regions, such as the holes of the characters and
two rectangle regions in Fig. 4-a.

In this paper, a new layer analysis method is proposed to remove false alarms and
extract characters. A layer image L has the same size as the original image and all
pixels in L are initialized to zeros. L is updated using all labeled components itera-
tively. Assume there are N labeled components within the sign region in C. For the
pixels inside the component Ci ie[1,…,N] (including the holes of Ci), we increase the
pixel values at the same locations in L by 1. Consequently, we obtain the final layer
image after N iterations. The pseudo code of layer separation can be expressed as
below:

N: the number of components within the sign region; 
Ci: the labeled component in C, i [1,…,N]; 
L: the layer image; 
Region(Ci): the locations of all pixels inside Ci (includ-
ing the holes of Ci); 

L = 0; 
FOR  i = 1 to N 
         L(Region(Ci)) = L(Region(Ci)) + 1; 
END 

(a) (b) (c)

Fig. 4. Component images of three examples

Sign Detection Based Text Localization in Mobile Device Captured Scene Images 77



According to the pseudo code, we know that if a pixel is inside m labeled com-
ponents, the value of the corresponding pixel in L is m. If the maximum value of L is
M, we can separate the layer image into M layers using pixel values. The ith layer
contains only the pixels whose values are i in L.

The layer image of Fig. 4-a is shown in Fig. 5-a. The components with different
layer number are shown in different colors. The regions yellow, red, and brown have
layer number 1, 2, and 3, respectively. Figure 5-b, 5-c and 5-d illustrate the separated
three layers, among which layer 1 and layer 2 have text objects.

We know that all characters of a sign text object typically are surrounded by the
same background. Therefore, the different characters belonging to the same sign text
are inside the same number of labeled components. That means the characters of a
sign text object always have the same value in L and appear in the same layer.

Based on the obtained layers, we analyze each layer to remove false positive
components and find text layers using following heuristics:

• H1: The components with 3 or more holes are removed as non-character compo-
nents, because English letters have at most 2 holes. For example, the top and bottom
components in Fig. 4-b are removed because they have more than 2 holes.

• H2: If a component is surrounded by a component Ci and no other components in this
layer are surrounded by Ci, this component is erased as non-character because a sign
text contains at least two characters, which are surrounded by the same background.
For example, the characters in Fig. 4-b are surrounded by the same component and
have the same layer values. While, although the non-characters in Fig. 4-c have the
same layer values as well, they are surrounded by different components (different
characters). Therefore, these non-character components are erased.

• H3: If a layer has one component or only one left after component elimination using
the heuristics H1 and H2, this layer will be discarded as a non-text layer.

Fig. 5. Layer image and layer separation. (a) layer image; (b) layer 1; (c) layer 2; (d) layer 3
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Based on the above heuristics, the non-character components in layer 1 are erased
by heuristics H1 and the non-character in layer 2 and layer 3 are erased by heuristics
H2, as shown in Fig. 6. We obtain the final text detection result (the bottom image in
Fig. 6) by combining the layers after layer analysis.

Finally, the size information and spatial relationship between neighboring char-
acters are used to verify the detected characters, because the characters belonging to
the same text object typically have similar sizes and are well aligned along certain
direction.

4 Experimental Results

To evaluate the performance of the presented sign text localization method, we tested
it using the sign text database released by Bouman et al. [18], which is publicly
downloadable at [21]. This database contains total 241 images of road signs, flyers and
posters, which were taken by a 0.3-megapixel camera on a Nokia N800 mobile device
with resolution 640 9 480. The database is divided into two sets, training set contains
81 images and testing set contains 160 images. The program was implemented by
MATLAB in Windows XP operating system.

We selected the parameters and thresholds empirically based on 81 images in
training set. For comparison purpose, we computed the standard precision and recall
for the 160 images in the testing set. Figure 7 illustrates some results of sign text
localization. We can see that our method can detect sign text successfully, including

Fig. 6. Layer analysis for text detection
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varying text colors, text sizes, angles of view, orientations, backgrounds, shapes, and
partial signs.

The results are listed in Table 1. The proposed sign text detection method out-
performs the method presented in [18].

Fig. 7. Sign text localization results
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Because the proposed method is based on the closed boundary detection, the
method may fail when the closed boundaries of character cannot be detected, as the
example shown in Fig. 8. Meanwhile, for the signs with occlusions, our method may
not provide reliable text regions due to the fact that the occluded sign regions may not
have convex shapes.

5 Conclusions

A new sign text localization method has been presented in this paper. Based on our
observation that sign text has sharp contrast to the background and sign regions typically
have convex shapes with homogenous colors and contain several characters, the proposed
method first extracts closed boundaries in the image and label the regions within the
boundaries as candidate character components. Then, the convex regions that contain
enough candidate character components are detected using both edge and color information
and marked as sign regions. After that, the components inside the sign region are filtered by
a layer analysis and the remaining candidate components are yielded as sign text.

Our method is evaluated by a sign text database with 241 images using precision and
recall measures. The experimental results demonstrate the proposed method can achieve
better performance than [18] and the empirical parameters used in the experiments is
robust and can detect sign text successfully in most images in the database.

Acknowledgment. The authors wish to thank K.L. Bouman, G. Abdollahian, M. Boutin, and
E.J. Delp at Purdue University for proving us the database used in the paper.
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Abstract. The off-the-shelf Optical Character Recognition (OCR) engi-
nes return mediocre performance on the decorative characters which
usually appear in natural scenes such as signboards. A reasonable way
towards the so-called camera-based OCR is to collect a large-scale font
set and analyze the distribution of font samples for realizing some char-
acter recognition engine which is tolerant to font shape variations. This
paper is concerned with the issue of font distribution analysis by net-
work. Minimum Spanning Tree (MST) is employed to construct font
network with respect to Chamfer distance. After clustering, some cen-
trality criterion, namely closeness centrality, eccentricity centrality or
betweenness centrality, is introduced for extracting typical font sam-
ples. The network structure allows us to observe the font shape tran-
sition between any two samples, which is useful to create new fonts and
recognize unseen decorative characters. Moreover, unlike the Principal
Component Analysis (PCA), the font network fulfills distribution visu-
alization through measuring the dissimilarity between samples rather
than the lossy processing of dimensionality reduction. Compared with
K-means algorithm, network-based clustering has the ability to preserve
small size font clusters which generally consist of samples taking special
appearances. Experiments demonstrate that the proposed network-based
analysis is an effective way to grasp font distribution, and thus provides
helpful information for decorative character recognition.

Keywords: Font distribution · Minimum spanning tree · Centrality cri-
terion · Network-based clustering

1 Introduction

Optical Character Recognition (OCR) techniques have achieved great success in
the field of scanner-based document image analysis. However, as demonstrated
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Fig. 1. Scene characters captured by camera.

by Epshtein et al. in [1], OCR engines were thwarted in the scene character
recognition. This is because the scene character appearing on signboards, notice
signage, wrapper, etc. (see Fig. 1), is usually designed by special decoration with
the intent to attract people’s attention. On the other hand, since camera is far
handier than scanner, camera-based OCR, which focuses on recognizing charac-
ters captured by camera, will not only extend new applications of OCR but also
brings convenience to us in our daily life. In view of this prospect, it has become
an imperative demand to develop the camera-based OCR. However, realization
of a high-performance camera-based OCR is still a hard task, although numerous
impressive methods have been proposed [2–4]. As just mentioned, one of the chal-
lenges for scene character recognition lies in the unconstrained appearances with
various decorations. Therefore, one possible strategy towards the camera-based
OCR is to extract a topological structure that is nearly invariant to decorations.

Along this line of thought, several font-related methods have been elaborately
designed as efforts to narrow the gap between OCR and the decorative charac-
ter. Zhu et al. [5] presented a font recognizer by using multichannel Gabor filters
and weighted Euclidean distance classifier. Omachi et al. [6] detected ridges and
ravines from multi-scale images to extract an essential structure of the deco-
rated character. As a subsequent work, Omachi et al. [7] matched the graphs
of the above-extracted structure and standard patterns to recognize a character
image. Unlike relying on the global structure, Wang et al. [8] proposed a series of
part-based methods which were characterized by the robustness against various
appearances of a character.

Although the above methods fulfilled the decorative character recognition to
some extents, the performance was far from ideal. A straightforward solution for
performance improvement is to collect or enumerate all types of fonts. Unfortu-
nately, this idea is impossible since he/she always can design a new font which
takes remarkably different shapes compared with the members of the collected
set. As a remedy, we can investigate and analyze a large-scale font set under a cer-
tain type of data structure like tree, graph, cluster or network, to grasp the font
distribution so that we can approach the ideal effect of brute-force enumeration.
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In this paper, we propose a network-based method built on a large-scale
font set, which allows us to analyze the font distribution in the feature space.
Specifically, the so-called font network is constructed by Minimum Spanning
Tree (MST) algorithm taking each font sample as a node. The dissimilarity
between two font samples is measured by the Chamfer distance which has been
widely adopted in the field like template matching [9] and handwritten Chinese
recognition [10]. Merits of our proposal lie in that (1) unlike the well-known Prin-
cipal Component Analysis (PCA) which lossily projects feature points onto low-
dimensional space for distribution visualization, the proposed font network built
by linking neighbors can represent the actual font distribution without informa-
tion loss or distortion; (2) compared with the conventional K-means algorithm,
network-based clustering can generate more reliable font cluster and typical sam-
ples by introducing some clustering criterion (as introduced in Sect. 3.4). This is
because K-means is equivalent to Maximum a Posterior (MAP) estimation of a
Gaussian mixture distribution while the font distribution is neither a Gaussian
nor a Gaussian mixture; (3) along a path of the font network, we can understand
the font shape transition between any two samples, which is useful to create new
fonts or recognize various scene characters. For example, for a given decorative
character, we can find its neighbours along transition paths of the font network,
and then combines multiple recognition results for a final decision. All above
mentioned merits are demonstrated by the subsequent experiments.

The remainder of the paper is organized as follows. Section 2 gives an intro-
duction about large-scale font set preparation. Section 3 elaborates the detail
procedure of font network construction. In Sect. 4, we conduct experiments and
analysis. Section 5 concludes the whole paper and outlines our future works.

2 Large-Scale Font Set Preparation

This section is devoted to a description of large-scale font set preparation. To
simplify the problem, the proposed font network is only targeted at the capital
alphabet “A” in the current trial. Note that since the process of font network
construction is independent of alphabet class, it is feasible and tractable to fur-
ther accommodate arbitrary alphabet classes. We totally collected 6930 “A”s
without font duplication, and normalized each one of them to a 200×200 binary
image. Figure 2(a) shows 140 normalized font samples. It should be mentioned
that we manually excluded several highly decorative font samples as well as the
ones whose main character parts are normal but decorated with various sur-
roundings. We deem this pre-filtering manipulation impartial since even humans
may also be hard to make an explicit judgement whether they belong to alphabet
or not. See the examples of excluded ones in Fig. 2(b).

3 Font Network Construction

This section introduces the procedure of font network construction based on the
prepared large-scale font set. We adopt MST algorithm to build network and
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Fig. 2. (a) Examples of normalized font samples. (b) Examples of excluded font samples.

Chamfer distance to measure the dissimilarity between two font samples. To grasp
the font distribution, font clusters and typical font samples on the network are
then extracted via introducing a distance threshold and some clustering criterion.

3.1 Minimum Spanning Tree

Minimum Spanning Tree (MST) also called minimum weight spanning tree is a
pivotal concept in graph theory. Given a connected, undirected graph G(V,E)
with vertices v √ V and edges (vi, vj) √ E corresponding to pairs of neighboring
vertices, a spanning tree T (V,E′) of that graph G is a subgraph, namely E′ ∩ E,
so that all pairs of the vertices are connected by one and only one path. Obvi-
ously, a graph can generate many different spanning trees. By assigning a weight
w(vi, vj) to each edge, MST can then be defined as a spanning tree that has the
minimal sum of the weights of the edges E′. In our proposal, font samples in the
large-scale set serve as vertices, and the Chamfer distance (see details in Sect. 3.2)
between vi and vj is regarded as the weight w(vi, vj). We adopt Prim’s algorithm
[11] to construct MST on the large-scale font set, which iteratively adds edges with
smallest weights in a greedy matter, and runs in polynomial time.

The advantages of using MST can be summarized as follows: (1) MST not
only reflects the global structure of the set via spanning all font samples, but also
naturally guarantees that each local edge connects two font samples which are
most similar to each other; (2) the path between two vertices allows us to observe
the font shape transition; (3) without using dimension reduction projection, MST
well preserves the dissimilarity between two font samples and reliably provides
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Fig. 3. Visual structure of a font network (MST).

a visual network structure of the font feature space (see Fig. 3); (4) as one type
of network structure, MST is compatible with general graph or network theory.

3.2 Chamfer Distance

In this proposal, Chamfer distance [12] is employed to reliably measure the
dissimilarity between two font samples and the resulting value serves as the
weight w(vi, vj) for MST construction. Unlike some naive distance measurement
which directly accumulates the absolute difference of pixel intensities, Chamfer
distance is average nearest distance from one image to another one so that it is
more applicable to shape matching. In the practical algorithm implementation,
distance transform is employed to reduce the computational cost of calculating
Chamfer distance. This is because distance transform directly stored the wanted
nearest distance by labeling each pixel of the image with the distance to the
nearest boundary pixel as displayed in Fig. 4. More specifically, given two font
samples P and Q which are binary images of size 200 × 200, p and q denote the
corresponding distance maps, respectively. The Chamfer distance is computed
as follows:

DChamfer(P,Q) = max(dα, dβ)

dα =
∑

d(P (i, j); q)
B(P )

and dβ =
∑

d(Q(i, j); p)
B(Q)
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Fig. 4. Examples of distance transform. (a) An actual example (left = original image;
right = distance map). (b) Artificial examples where the numbers in the table stand
for distance values (left = a capital alphabet “I”; middle = a capital alphabet “F”;
right = a number “1”).

where B(P ) counts the number of black pixels of an image P . The operator
d(P (i, j); q) is defined as

d(P (i, j); q) =
{

q(i, j) if P (i, j) = 0 (black pixel)
0 otherwise

where P (i, j) represents the pixel value in the position (i, j) of an image P . As we
can see, the nearest distance can be obtained by visiting the same position of the
corresponding distance map. Thus, distance transform helps reduce the compu-
tational complexity to the level of look-up table in the course of calculation.

3.3 Network-Based Clustering

To well grasp the font distribution, we propose a network-based clustering, by
which font samples with short Chamfer distances to each other are grouped
together. In doing so, a coarser overview of the original font network (MST) can
be obtained that allows us to investigate its global configuration on different
scales. The local details are reflected in the fact that font samples within a
cluster share similar shape. Note that both the global configuration and the
local details indicate the distribution of the large-scale font set. Moreover, to



Font Distribution Observation by Network-Based Analysis 89

Fig. 5. The internal structures of four clusters.

effectively represent and observe font clusters, we utilize some centrality criterion
(see details in Sect. 3.4) to extract typical font samples.

The clustering starts with setting a distance threshold TD. Then, traverse
the vertices throughout the font network. If w(vi, vj) ∇ TD, the vertices vi and
vj are grouped into a same font cluster.

Network-based clustering preserves the internal structure of each cluster as
shown in Fig. 5, and thus allows us to locally observe the font shape transition
even after the clustering. More importantly, small size clusters survive from the
network-based clustering as long as these clusters are essentially away from oth-
ers in terms of Chamfer distance. On the contrary, K-means algorithm is approxi-
mately equally divided the whole feature space into several clusters so that
scattered font samples with special shape are forced to merge into dissimilar large
clusters. This contrast is illustrated in Fig. 6 and a subsequent experiment. Here,
the size of a cluster refers to the number of samples belonging to that cluster.

3.4 Typical Font Sample Extraction by Centrality Criterion

To extract a typical font sample from each cluster, this subsection introduces
three centrality criteria, namely closeness centrality, eccentricity centrality and
betweenness centrality, which are widely employed in the network analysis [13].
The centrality criterion estimates the degree of center for each vertex, and returns
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Fig. 6. An illustration indicating the different performance between the network-based
clustering and the K-means algorithm. Experimental results of comparative study can
be found in Table 1.

comparable scores. In this proposal, we adopt the centrality criterion to extract
the typical font sample from each cluster. In the following, three centrality cri-
teria are explained in turn.

Closeness centrality is based on the natural distance metric between all pairs
of vertices as given below.

CC(vi) =
n − 1∑n

j=1 d(vi, vj)
, i = 1, 2, · · · , n,

where n denotes the size of a font cluster. The distance d(vi, vj) takes the sum
of w(vi, vj) along the path from vi to vj . Recall that w(vi, vj) is the Chamfer
distance between two directly connected vertices. A vertex vi with largest CC(vi)
is considered as the typical font sample.

Eccentricity centrality selects the center sample by comparing all pairs of
maximum distances. That is

CE(vi) =
1

max d(vi, vj)
, i, j = 1, 2, · · · , n.

The denominator max d(vi, vj) can be defined as the degree of eccentricity so
that a larger CE(vi) indicates a more compact extent that the vertices vj (where
j = 1, 2, · · · , n) gather around vi.

Betweenness centrality quantifies the number of times that a vertex acts
as a bridge along the path between two other vertices. More specifically, the
betweenness centrality can be represented as follows.

CB(vi) =
∑n

s �=i�=t=1

σvsvt
(vi)

σvsvt

, i = 1, 2, · · · , n,

where σvsvt
is total number of edges from vs to vt (∀s ⊕= t √ {1, 2, · · · , n}) and

σvsvt
(vi) accumulates the number of times that all these paths pass through vi.
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The betweenness centrality relies on the natural fact that the center vertex has
a greater opportunity to be passed through by paths. Therefore, the vertex vi

having the largest CB(vi) corresponds to the typical font sample.

4 Experiment and Analysis

4.1 Font Network

In this experiment section, the MST algorithm and the Chamfer distance were
applied to construct the font network of the large-scale alphabet “A” set. The
global structure of the built network was displayed in Fig. 3. Further, according
to the metric of dissimilarity, the network-based clustering algorithm divided
the feature space into several clusters without affecting their internal structures
(see Fig. 5). In addition, Fig. 7 exhibited the font shape transition between two
vertices, which was useful to generate new fonts or recognize various scene char-
acters. It was worthwhile to point out that we could still observe the font shape
transition even after the clustering processing, which benefited from the above
mentioned structure preservation property. Moreover, after introducing some
centrality criterion like closeness centrality, eccentricity centrality or between-
ness centrality, the typical font sample could be extracted from each cluster.
Note that the typical font sample provided an effective representation for each

Fig. 7. Font shape transition along paths.
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font cluster. All above investigations allowed us to grasp the distribution of a
large number of font samples.

4.2 Vertex Degree Histogram

The degree of a vertex is defined as the number of edges incident to the vertex.
Figure 8 showed the histogram of vertex degree and provided another aspect of
the font distribution. As we could see, the maximum vertex degree is eight. In
addition, the number of vertices diminished with the increase of degree, which

Fig. 8. Vertex degree histogram.

(a)

(b)

Fig. 9. The hub font samples. (a) The font samples having degree 7; (b) the font
samples having degree 8.
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implied that the vertices having highest degree could be considered as the hubs of
a network. See the hub font samples in Fig. 9. Note that the hub font samples were
different from the typical ones. The former was selected from the whole network
and reflected the global distribution while the latter was the local representative
extracted from each font cluster using some centrality criterion.

4.3 Font Cluster

Since the distance threshold TD had a great impact on clustering, in this subsec-
tion, we analyzed the configuration evolution of font clusters. We displayed the
evolution of the maximum size and the number of clusters versus the increase of
TD in Fig. 10, which demonstrated the existence of the font cluster.

Table 1 listed the size of the top five largest font clusters with respect to each
distance threshold TD. Furthermore, the result of K-means algorithm (K = 5)
was given in the last row of Table 1. The results listed in Table 1, also illus-
trated in Fig. 6, indicated that the network-based clustering could preserve small
size font clusters which contained samples taking special shapes, while K-means
approximatively equally divided the feature space.

Fig. 10. The evolution of the maximum size and the number of clusters versus the
increase of TD.
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Table 1. The size of font clusters.

4.4 Typical Font Sample

Typical font samples were extracted by introducing some centrality criterion,
namely closeness centrality, eccentricity centrality or betweenness centrality, as
described in Sect. 3.4. The selected font samples from the top five largest clusters
were exhibited in Fig. 11. The digits printed above each sub-picture stood for the
size of the cluster from which the typical font sample was extracted. As we could
observe, when the distance threshold TD was small, for example TD = 0.30, the
typical font samples shared small dissimilarity to each other. With the increase
of TD, the great dissimilarity among the typical font samples emerged as shown
in Fig. 11 (c). Moreover, the typical font sample from the largest cluster shared
the similar standard shape regardless the change of TD, which indicated that
no matter how protean a font sample was, its appearance would hold approxi-
mately constant structures. In addition, applying three centrality criteria leaded
to similar results. In other words, centrality criterion would not sharply affect
the process of typical font sample extraction.
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Closeness centrality

Eccentricity centrality

Betweenness centraility

(a) Distance threshold TD = 0.30.

Closeness centrality

Eccentricity centrality

Betweenness centraility

(b) Distance threshold TD = 0.60.

Closeness centrality

Eccentricity centrality

Betweenness centraility

(c) Distance threshold TD = 1.25.

Fig. 11. The typical font samples extracted by centrality criterion.
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5 Conclusion

In this paper, we analyze the font distribution of a large-scale set by network,
which opens a new door to the camera-based OCR engines. To construct the
font network, we adopt MST algorithm under the dissimilarity measurement
using Chamfer distance. Font clusters are formed though setting distance thresh-
old. After that, we extract typical font samples from clusters by introducing
some centrality criterion, namely closeness centrality, eccentricity centrality and
betweenness centrality. Benefitting from the network structure, both the global
configuration and the font shape transition can be observed. Compared with the
conventional PCA, the proposed font network realizes distribution visualization
through Chamfer distance rather than the process of dimensionality reduction.
Moreover, as verified by experiments, the network-based clustering preserves
small size font clusters, while K-means algorithm will produce an approximately
equal division. The existence of font cluster and the effectiveness of network-
based analysis are also demonstrated by experiments. Our future work is to
extract the internal structures from font clusters, and to design regularization
approaches based on the path of font shape transition.

Acknowledgment. The authors would like to thank the support of Creation of
Human-Harmonized Information Technology for Convivial Society, which is a CREST
project organized by Japan Science and Technology Agency (JST).
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Abstract. Capturing book images is more convenient with a mobile
phone camera than with more specialized flat-bed scanners or 3D cap-
ture devices. We built an application for the iPhone 4S that captures a
sequence of hi-res (8 MP) images of a page spread as the user sweeps the
device across the book. To do the 3D dewarping, we implemented two
algorithms: optical flow (OF) and structure from motion (SfM). Making
further use of the image sequence, we examined the potential of multi-
frame OCR. Preliminary evaluation on a small set of data shows that
OF and SfM had comparable OCR performance for both single-frame
and multi-frame techniques, and that multi-frame was substantially bet-
ter than single-frame. The computation time was much less for OF than
for SfM.

Keywords: Document capture · Document analysis · Dewarping ·
Mobile phone camera · Book scanning

1 Introduction

Using portable devices to capture images of documents is a fast and convenient
way to scan documents. Being able to use the compact capture device on-site
is an important benefit in many scenarios. For example, students can use them
to copy pages from books in a library, without potentially damaging the book
spines when copying with a flat-bed copier. Another example is the digitization
of documents in storage, in which bounded or loose paper records are often in
too poor a condition to be used with flat-bed or V-bed book scanners without
damaging them.

Compared with the results produced by flatbed scanners, these photos of
documents taken with portable devices suffer from various issues including per-
spective distortion, warping, uneven lighting, etc. These defects are visually
unpleasant and are impediments to OCR (optical character recognition). This
paper focuses on the problem of dewarping page spread images of a book cap-
tured by a hi-res mobile phone camera.

We built an app for the iPhone 4S, which has an excellent camera, to cap-
ture a sequence of frames (8 MP, 2 fps). To capture a page spread, the user
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Fig. 1. Capturing a page spread of a book.

simply sweeps the device across the open book, similar to taking a video (see
Fig. 1). From the sequence of frame images, we estimate the 3D information.
We have implemented both optical flow (OF) and structure from motion (SfM)
algorithms. The output of this step is a disparity map which encodes the depth
information. Then we leverage the dewarping module in our previous system
(where the disparity map was obtained from a stereo camera) [7]. This dewarping
algorithm uses a 3D cylindrical model. An overview of the pipeline is illustrated
in Fig. 2.

Making further use of the sequence of frame images, we consider a multi-
frame OCR approach to improve the OCR performance. The idea is based on
the observation that the left and right pages may be in better focus and not
cropped off in different frames as the phone camera sweeps across the page
spread at a non-uniform velocity.

We performed a preliminary evaluation to compare the OF and SfM algo-
rithms in terms of OCR performance and computation time. We also compared
multi-frame OCR with single-frame OCR using the middle frame image to see
whether the improvement is substantial. The results are reported in detail below.

2 Related Work

Existing research systems have been developed that relies on special 3D cam-
eras or mounting hardware. The Decapod system [15] uses two regular cameras
with special mounting hardware. Our previous system [7] uses a consumer-grade
compact 3D stereo camera (Fujifilm Finepix W3). The dewarping method in our
system is based on a cylindrical model, which for non-3D images performed the
best (though the difference was not statistically significant) in the Document
Image Dewarping Contest at CBDAR 2007 (see [8,14]).

Other 3D capture devices include structured light, which can sense highly
accurate 3D information but requires more complicated apparatus. An example
system is [4].

While it is possible to dewarp a book page image from a single photo taken
with a non-3D device, the techniques to compute the 3D information are more
specialized. Approaches include detecting content features like curved text lines
or page boundaries and then applying a 3D geometric model to dewarp the image
(e.g. [5,6,8,9]).
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Fig. 2. Pipeline of system.

Using video to capture documents is perhaps the approach that is the most
related to our present work. With standard video formats, the frame image
resolution is limited (VGA at 0.3 MP, HD at 2 MP) and performing OCR is
problematic. In contrast, our app captures frames at much higher resolution
(8 MP).

An early system, Xerox XRCE CamWorks ([11,18]), has a video camera
mounted over a desk to capture text segments from flat documents. It applied
super-resolution techniques and OCR was evaluated on simulated images but
not on actual camera images.

The NEC system [10] uses a VGA webcam and a mobile PC to capture
video of a flat document or a curved book page spread. The user sweeps over
the document in a back-and-forth path in order to cover the document and
an image mosaicing method is applied to reconstruct an image of the whole
document. The mosaicing uses a structure from motion algorithm that tracks
Harris corner feature points. OCR was not performed nor evaluated.

Our system also uses a structure from motion algorithm that tracks Good
Features To Track (GFTT) feature points [16]. In addition, we implemented a
simpler optical flow algorithm. The high resolution allows us to use optical flow
because a single sweep can capture the whole image and mosaicing is not need.
Mosaicing requires a global coordinate system that SfM computes but OF does
not. With OF, it suffices that only adjacent pairs of frames share a consistent
coordinate system.



104 C. Kim et al.

Fig. 3. Identifying corresponding feature points.

Fig. 4. Removing outliers using epipolar geometry.

3 Computing and Dewarping the 3D Structure

We proceed to describe our implementation of two methods to compute the
3D structure: optical flow (OF) and structure from motion (SfM). In both, the
features that are tracked are GFTT feature points [16]. Another option for fea-
ture points is the popular SIFT points; however SIFT points are not specifically
designed to be tracked like the GFTT points. We also perform camera calibra-
tion to model the cameras geometry and correct for the lens distortions, which
depends on the individual iPhone 4S device. The algorithms for GFTT and
camera calibration are available in the OpenCV [3] computer vision library. The
output of these OF and SfM methods is a disparity map that encodes the depth
information, which are then fed into the dewarping module in the pipeline (see
Fig. 2).

3.1 Optical Flow

First, for each pair of sequential frame images, the corresponding feature points
are matched. An example is shown in Fig. 3.
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Fig. 5. Computing disparity map from optical flow.

Next, the outliers are removed using epipolar geometry between two frames,
which is described in the following equation

xT
2 Fx1 = 0 (1)

where F is the fundamental matrix, x1 and x2 are homogeneous coordinates
of the projected points of 3D point X onto the first and second image plane
respectively. From this equation, we can map x1 to a line l2 = Fx1 in the sec-
ond image. In other words, the projected point x2 on the second image plane
always lies on the line. However, we cannot guarantee that all pairs of corre-
sponding feature points satisfy this epipolar constraint due to noise in the image
measurements and error in the optical flow matching method.

Therefore, to identify outliers among them, we calculate the orthogonal dis-
tance from the matching point in the second image, x̃2 to l2 (see Fig. 4), and if
the distance is beyond a certain threshold then the pair of corresponding points
is considered as an outlier. Figure 4 shows the remaining inliers.

Computing disparities from optical flow is accomplished by looking at the
displacements of the tracked feature points. The points on the book page spread
at different depths will have different displacements (Fig. 5(a)), and these dis-
parities can be used to recover the shape of the page spread (see Fig. 5(b)). Each
dot in Fig. 5(b) represents a pair of corresponding points in the 3D space, where
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(x, y) are the image coordinates of the feature point in the first image, and z is
the displacement of the tracked feature point in the second image with respect
to the corresponding feature point in the first image. The recovered 3D points
are clustered into two groups on each page; currently this is done manually by
labeling the location of the book spine. This process can be automated by apply-
ing a clustering algorithm. A surface model is fitted to each cluster of 3D points
using a 4-th order polynomial equation. See Fig. 5(c).

From this surface model, a disparity map is generated by mapping the depth
(z-coordinate) to a grayscale value. Finally, the document region is localized
within the image using an image segmentation algorithm; a good algorithm
is GrabCut [13], which is available in OpenCV. In order to apply GrabCut,
some background pixels must be identified and one way to do this is to sample
pixels around the edge of the image and eliminate those that are similar to the
center area of the image. An example of the resulting disparity map is shown in
Fig. 5(d).

3.2 Structure Form Motion

The first step is to initialize the 3D structure and camera motion from
two sequential frames as follows: we first set the first camera matrix P1 =
K[I3×3|03×1] to be aligned with the world coordinate frame, where K is the
camera calibration matrix. Next, we identify the corresponding points between
those two frames and estimate the fundamental matrix F using RANSAC algo-
rithm. This is available in OpenCV library. The fundamental matrix is used to
remove outliers as described above. Then, the essential matrix is computed by
E = KTFK. Once we have determined the essential matrix, we can recover the
camera pose (rotation R and translation t) for the second frame with respect to
the first camera frame [17]. Then P2, the camera matrix for the second frame,
can be easily obtained by multiplying the camera calibration matrix K by the
camera pose for the second frame [R|t]. Lastly, we estimate the 3D point struc-
ture from the 2D corresponding points and P2 through triangulation [17].

In practice, the algorithm for the fundamental matrix might not produce a
well-conditioned initial 3D structure due to noise in the image measurements.
Therefore, we add a step to reject ill-conditioned structures. An example of
an ill-conditioned initial 3D structure is shown in Fig. 6(a). The criterion of
rejection is based on the prior knowledge that the shape of a book spread page
is almost always two slightly curved surfaces that are not too far from a plane.
Therefore, we first detect a dominant plane using RANSAC from the generated
3D structure, and then calculate the orthogonal distance for each 3D point to the
plane. If the average distance is less than a predefined threshold then we accept
the pair of frames, or reject it and check the next pair of frames. The threshold
can be fixed under an assumption that the distance between the camera and
the target is almost consistent across different users. Figure 6(b) shows a well-
conditioned 3D structure from the selected pair of frames.
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Fig. 6. Initial 3D structure.

Fig. 7. Structure from motion: after 5 frames.

An alternative method for computing the fundamental matrix is to use a
non-linear optimization technique (e.g. [1]). This might improve the accuracy of
the camera pose, but it requires more complicated processing.

Now we have an initial 3D point structure and consider how to use a new
frame to update it. Let us assume that the 3D point structure for (i−1)-th frame
is already known and we have tracked the existing corresponding points from the
(i−1)-th frame to the ith frame. As we described above, we remove outliers from
the tracked points using epipolar geometry. The remaining tracked points and
the corresponding 3D points are used to estimate the new camera pose for ith

image Pi by minimizing the projection error e =
∑

j

∥∥∥x(i)
j −PiXj

∥∥∥
2

, where x(i)
j

is the jth tracked 2D point in the ith image and Xj is the corresponding jth 3D
point. Given this estimated camera matrix Pi and the tracked points in the ith
frame, we recalculate the 3D point structure through triangulation. We iterate
the above process throughout the sequence of frames. Figure 7(a) shows the 3D
point structures for each iteration and camera pose frames with different colors.
To get a single 3D structure from all the frames 3D structures, we combined
them by simple averaging (Fig. 7(b)). The final 3D structure still has outliers as
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can be seen from the right most corner of the structure in Fig. 7(b). In order to
deal with this, we perform the surface fitting algorithm with RANSAC.

From the surface model, a disparity map is generated for each frame as
described above in the optical flow method.

Another option for combining all the 3D structures is to use bundle adjust-
ment (e.g. [20]). The advantage is that it might improve the accuracy of the cam-
era poses and the 3D structures. Since in our application, the camera motion is
very simple (basically linear), the improvement may be small. The disadvantage
of using bundle adjustment is that it requires more processing.

3.3 Cylindrical Model

For completeness, we give a brief summary of how the cylindrical model is used
with the disparity map to do the dewarping; for more details refer to [7]. First,
from a disparity map, two depth profiles perpendicular to the spine are extracted
from the top and bottom halves of the page spread by averaging over their
respective halves. These profiles form the skeleton of the cylindrical model. To
facilitate the rendering of the dewarped image, rectangular meshes are employed.
A mesh vertex point on the cylindrical model can be mapped to a vertex point
in the dewarped image by flattening it using its arclength along the cylindrical
surface to push it down and outward from the spine. Points inside each mesh
rectangle are then interpolated based on the rectangle’s vertices.

4 Multi-frame OCR

By single-frame OCR, we mean using one frame to OCR the left and right pages
of a page spread. Typically, the middle frame in the sequence of frame images
can be used, because both pages of the book spread are usually in view with the
camera held in landscape orientation.

By multi-frame OCR, we mean using more than one frame for doing the
OCR. The idea is that the left page is more likely to be better captured in the
early frames and the right page in the later frames. Some frames may also be in
better focus than others.

To study the potential of multi-frame OCR, we compared the best OCR
scores for the left and right pages over multiple frames to the OCR scores of the
middle frame. These results are reported below.

For single-frame OCR and multi-frame OCR, a separate condition is whether
the frame images have been dewarped.

5 Preliminary Evaluation

To compare OF vs. SfM, non-dewarped vs. dewarped, and single-frame vs. multi-
frame, we did a preliminary evaluation on a small set of data based on OCR.

Six images of book page spreads were taken with our app on an iPhone 4S
camera. The device was handheld (a tripod was not used). The frame image
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(a) before dewarping

(b) after dewarping

Fig. 8. Example of a dewarped page spread with the top-right region shown.

resolution was 8 MP (3264 × 2448). The frame rate used was about 1 fps; we
found this to work fine for our processing pipeline even though the frame rate
can go as high as 2 fps when capturing 8 MP images.

Our mobile phone app was implemented in Objective-C, and the code for
processing the frame images was implemented in C++ and uses the OpenCV
library [3]. The captured images were processed on a desktop PC.

We examined the boundary text lines on the two pages in each page spread:
top-left, top-right, bottom-left, bottom-right. By a boundary text line, we mean
the text line nearest to the top or bottom of a page that spans more than half
the body of the page, so that short lines at the bottom of a paragraph and
headers or footers are not considered. The 6 page spreads provides a total of 24
boundary text-lines.

An example of a dewarped page spread is shown in Fig. 8. The frame is the
middle frame of the image sequence. The method is OF. The bottom image in
the figure is a closeup of the top-right region of the page spread showing several
text lines that have been dewarped. There is some inaccuracy near the spine of
the book, which is a difficult area to handle due to the steepness of the page and
the lack of content for tracking.
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Fig. 9. OCR and processing time results.

For OCR, we use the open-source Tesseract OCR engine [19]. To measure the
difference between two text strings, we use edit distance (Levenshtein distance),
normalized by dividing by the length of the ground-truth string.

The left and right pages were manually cropped from the images, and each
page was processed through the OCR engine. Then the top and bottom boundary
text line characters were extracted and the edit distances were computed.

For the single-frame condition, we used the middle frame in the image
sequence. For the multi-frame condition, we used the frames at the beginning,
middle, and end of the image sequence.

The OCR results show that dewarped was better than non-dewarped, with
substantial improvement for multi-frame over single-frame. See Fig. 9. OF and
SfM had similar performance for both single-frame and multi-frame. In terms of
processing time for computing the 3D structure, OF was much faster than SfM
(more than 2x).

6 Conclusion and Future Work

We presented an application to capture page spread images with a mobile phone,
and a processing pipeline that uses either OF or SfM to compute the 3D infor-
mation along with a cylindrical model to perform dewarping. Our preliminary
evaluation indicates that OF might be a better choice than SfM since they had
similar OCR performance but OF was much faster. This could be important in
future systems when the frame images are processed on the mobile phone.

Another aspect that could be improved in the future is to mitigate the motion
blur caused by the sweeping motion of the camera when the user takes the
sequence of images. This is somewhat noticeable in the images in Fig. 8. One
way to address the blur problem is to apply deconvolution algorithms, which is
an active area of research (e.g. [21]). Improvements in mobile phone cameras such
as faster lens and more reliable autofocus systems will also lessen the blurriness.
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Other future work includes automating some of the steps in the pipeline. For
example, page frame detection algorithms (e.g. [2]) can be applied to crop the
left and right pages from the page spread. Image quality assessment algorithms
(e.g. [12]) can be applied to select the frames that are likely to produce the best
OCR results.
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Abstract. With the proliferation of cameras on mobile devices there is
an increased desire to image document pages as an alternative to scan-
ning. However, the quality of captured document images is often lower
than its scanned equivalent due to hardware limitations and stability
issues. In this context, automatic assessment of the quality of captured
images is useful for many applications. Although there has been a lot
of work on developing computational methods and creating standard
datasets for natural scene image quality assessment, until recently qual-
ity estimation of camera captured document images has not been given
much attention. One traditional quality indicator for document images
is the Optical Character Recognition (OCR) accuracy. In this work, we
present a dataset of camera captured document images containing vary-
ing levels of focal-blur introduced manually during capture. For each
image we obtained the character level OCR accuracy. Our dataset can
be used to evaluate methods for predicting OCR quality of captured doc-
uments as well as enhancements. In order to make the dataset publicly
and freely available, originals from two existing datasets - University of
Washington dataset and Tobacco Database were selected. We present a
case study with three recent methods for predicting the OCR quality of
images on our dataset.

Keywords: Document image quality · Image quality dataset · Sharp-
ness · Optical character recognition

1 Introduction

With the increasing quality of cameras on mobile devices, imaging document
pages as an alternative to scanning is becoming more feasible ([9,17,18]). How-
ever, camera captured document images may suffer from degradations arising
from the image acquisition process. One of the most frequently occurring distor-
tions that affects captured image quality is blur. When taking a photo, there are
different causes of blur. Figure 1 shows examples of (a) out-of-focus blur, (b) blur
due to the motion of camera, and (c) blur due to limited depth of field which
occurs when content is at different distances. This is especially apparent in close
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Fig. 1. (a) Out-of-focus blur (b) Motion-blur caused by hand-shake (c) Blur due to
limited depth of field when content (characters) are at different distances.

ups and with imaging devices that have a large aperture. Small, high-resolution
cameras in smart-phones are more susceptible to these distortions due to their
relatively large apertures, and their light-weight and single-hand usage, which
make them difficult to hold steady [13].

In the presence of such distortions, the ability to automatically assess the
quality of captured images is also becoming increasingly desirable. The required
quality of a document image is usually constrained by the applications and
usually with respect to human perception or machine readability. An impor-
tant measure that reflects machine readability is Optical Character Recognition
(OCR) accuracy. Predicting OCR accuracy is useful in many different applica-
tions. For example, it can be used for selecting the image which will produce
the highest OCR accuracy among multiple images of the same document and
providing feedback to user in case a re-capture is required. When capturing
a document, it is often difficult for a user to determine whether an image is
focused on a small mobile screen, so real-time methods for quality estimation
can be especially useful [17]. For a large-scale document processing tasks, we can
filter out highly degraded document image for which the OCR system would fail.
Quality estimation of images has other applications in document analysis tasks
including adjusting filters for restoration methods [8], and identifying in-focus
and out-of-focus areas of an image [10].

While there has been a lot of work on the creation of standard datasets for
scene images ([20,25,26]), the quality estimation of camera captured document
images has not been given as much attention ([17,23,29]). In this work, our
goal is to create a dataset of camera captured document images which can be
used for the development of quality estimation methods on document images.
We have made the dataset publicly and freely available to research community.
We selected a set of high-quality document pages from public domain, and used
a smart-phone camera for the creation of the dataset. A series of images with
varying levels of blur were captured, and OCR accuracies of these images were
obtained using three different OCR engines: ABBYY Finereader [4], Tesseract
[28] and Omnipage [2]. We evaluated the OCR results of each image against
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the ground-truth text files.1 In this work we discuss in detail the creation and
characteristics of our dataset. In addition, we present a case-study and discuss
results of recent quality estimation methods on our dataset. We hope that our
dataset will be useful for researchers working in the area of document image
quality assessment.

The remainder of the paper is organized as follows. In Sect. 2 we present the
related work on dataset creation for document image quality assessment. We
provide details of our dataset in Sect. 3. We then present a case study on OCR
quality estimation in Sect. 4 and conclude our paper in Sect. 5.

2 Related Work

In this section, we briefly review existing approaches on the creation of dataset
for quality assessment of document images. More specifically we will focus on
datasets for estimating OCR quality of document images.

Many datasets for assessing the quality of scanned document images have
been discussed ([7,8,27]). One of the early works on predicting OCR accuracy
was done by Blando et al. [7]. They used two sets of test data in their experi-
ments. The first set was a subset of ISRI’s Sample 2 data base [24] consisting of
460 pages. Each page was digitized at 300 dpi using a Fujitsu M3096M+ scanner.
The second set consisted of 200 pages selected from 100 magazines that had the
largest paid circulation in the U.S. in 1992. For each magazine, they selected two
pages at random and each page was digitized (300 dpi) using a Fujitsu M3096G
scanner. The images were binarized using a fixed threshold of 127 out of 255.
They used a total of six OCR systems for processing their data sets and collected
character accuracy for each image. In their evaluation, each character insertion,
deletion, or substitution required to correct the generated OCR text was counted
as an error. The character accuracy in their work is defined as:

CharacterAccuracy =
n − NumberofErrors

n
(1)

where n is the total number of characters in the ground-truth text [24].
Cannon et al. [8] focused on the quality of type-written document images and

applied it for selecting the optimal restoration approach. They used five quality
measures that assess the severity of background speckle, touching characters,
and broken characters. They used a dataset of 139 document images with 300 dpi
resolution. OmniPage Pro v8.0 was used to perform OCR and the character error
rate of the corpus was found to be 20.27 %. They further formed a sub-corpus
of 41 documents having OCR character error rates between 20 % and 50 % to
perform analysis on highly degraded images. They also created a small corpus
of documents spanning a range of gradually decreasing quality by repeatedly
photocopying a page from a book (a total of 9 versions). Each successive copy was

1 The OCR results in this paper should in no way be used to compare OCR systems
rather only to judge relative performance of each system on the collection.
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degraded with background speckle, widened stroke-widths, touching characters
and other common attributes of lower quality document images.

Souza et al. [27] experimented with a database containing printed documents
with a wide variety of font sizes, types and styles. They used a database con-
sisting of 736 documents divided into three sets. Almost all of the images suffer
from some type of degradation, such as broken characters, touching characters,
salt-and-pepper noise, or the combination of two or more of these problems. Only
one printed text line in English was used in all images and none of the images
contained any graphics, tables, drawings or underlined text.

Zheng and Kanungo [32] proposed a morphological degradation model based
restoration approach for document images. They created a dataset of 100 one-
column pages of English Bible that were typeset using LATEX. One additional
image was used to estimate pattern distributions. Although the text content of
the additional image was different from that of the test images, its font and
bigram symbol characteristics were kept similar to the test images. The 100 test
images were degraded and categorized into ten groups based on their unique
parameter set. They used FineReader 4.0 for OCR and reported reductions in
OCR accuracy error rate at the character and word levels ranging from 3.4 % to
41.5 % and from 1.0 % to 20.4 % respectively for different sets of model parame-
ters associated with the degraded images.

Zi [34] presented a document image degradation methodology which incor-
porated several common types of noise at the page and pixel levels. They devel-
oped a system to automatically generate ground truth and degraded images
from electronic text. Using their approach, one can produce a complete set of
ground truth (text-files and noise free images) which can be used in training or
evaluating document analysis systems.

Kumar and Ramakrishnan [16] used a database of 132 annotated multi-script
scanned document images comprised of different forms of degradation. They
grouped all possible scenarios of the document image degradations to be assigned
by a user in the form of a subjective score. Each document image was annotated
by 6 users on a scale from 1-5. The dataset is limited to human annotated quality
scores and no OCR related analysis was done.

Peng et al. [23] proposed an OCR based method which predicts the Normal-
ized Word Error Rate (N-WER) of each document image where a high WER
indicates a low image quality. They used a total number of 235 scanned and
binarized Arabic text documents from a Field data set as original high-quality
documents. They captured four degraded images using a digital camera of which
two images suffered severe out-of focus blur, and one suffered slight out-of-focus
blur. One “clean” image was also captured using an auto-focus feature. The
WER for each document was calculated using BBN’s OCR engine. The dataset
is not available publicly for comparison and analysis of other approaches.

Antonacopoulos et al. [6] constructed a dataset consisting of a total of 740
text zone images from a collection of gray scale newspaper images with machine-
printed English and Greek text. OCR output from FineReader 9 was used
to obtain character level OCR accuracy associated with each image. Ye and
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Doermann selected a subset of 521 text zone images which contain more than
30 characters as an experimental set in their work on OCR quality prediction
([29,30]).

Most of the previous work on OCR quality prediction models is limited to
scanned document images. The degradations and distortions associated with
camera-captured images, however, are very different than scanned images ([23,
30]). The work of Peng et al. [23] introduced an approach to create a camera-
based document image dataset for OCR quality assessment. But the dataset
consisted of only Arabic documents and it is not publicly available. In our work,
we have chosen English documents from two publicly available datasets, and
made our dataset freely available. Also, unlike [23] which allowed only three
levels of degradation based on focus distances, we have captured 6–8 images per
document to allow a more continuous OCR quality degradation.

3 Document Image Quality Dataset

In order to make our dataset available, a total of 25 documents from two pub-
licly available data sets - University of Washington Dataset [15] and Tobacco
Database [21] were selected. For each document, 6–8 images were taken from a
fixed distance to capture the whole page. The camera was focused at varying
distances to generate a series of images with focal blur (as illustrated in Fig. 2).
We used a smart-phone2 with a feature that triggers the camera hardware for
focus when the capture button is pressed half-way. Between a fixed minimum
and maximum distance to the document, users were instructed to first focus at
any distance of their choice. Then a capture was triggered to include the whole
document (including borders). The focus distance was decided by user and we
did not calibrate distances across different captures. Other conditions includ-
ing lighting and place of capture were kept the same for all documents. One of
the shots taken was sharp, i.e., focus and capture is done at the same (fixed)
distance. A total of 25 such sets, each consisting of 6–8 high-resolution images
(dimension: 3264× 1840) were created using an Android phone with an 8 mega-
pixel camera. The dataset has a total of 175 images. Figure 3 shows three sample
images from our dataset, and the corresponding OCR accuracy.

We used three popular OCR engines to process the images: ABBYY
FineReader 10 [4], Tesseract [28] and Omnipage [2]. We used the batch-mode
default settings and saved the generated text-files in the plain text format. We
obtained character level accuracy for each captured image in our dataset using
the ISRI-OCR evaluation tool [3]. The tool’s program accuracy generates a
character accuracy report when a correct and OCRed file is given. We used the
program in the case-insensitive mode. A character accuracy report consists of six
sections. The first section specifies the number of characters in the ground truth,
the number of errors made by the OCR engine, and the character accuracy (as
percentage).

2 Motorola DroidX with Android.
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Fig. 2. Creation of our Document Image Quality Assessment dataset. Images were
captured from a fixed distance to include the whole page (including borders). The
camera was focused at varying distances to generate a series of images with focal blur.

Fig. 3. Sample images from our dataset showing three levels of focus-blur. The sharp-
ness of each image is different due to variation in focal-distance. The OCR accuracy
for three images are (a) 96 % (b) 13 % (c) 99 %. The second row shows a portion of
text content from each image.
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Fig. 4. Histogram of OCR accuracies in our dataset using Finereader. The vertical
axis shows the interval of OCR accuracy and horizontal axis shows the number of
documents.

Fig. 5. Histogram of OCR accuracies in our dataset using OmniPage. The vertical
axis shows the interval of OCR accuracy and horizontal axis shows the number of
documents.

In our first release we provide the following for download: (1) 25 sets of
camera captured images each containing 6–8 images of a particular document, (2)
three OCR text files corresponding to three OCR engines used for each captured
image and ground-truth text file, and (3) OCR accuracies associated with each
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Fig. 6. Histogram of OCR accuracies in our dataset using Tesseract. The vertical axis
shows the interval of OCR accuracy and horizontal axis shows the number of docu-
ments. Negative OCR accuracy may occur in highly degraded document image when
OCR engine treats some non-text regions (e.g. figures) as text regions and generates
text for these regions.

captured image. Figure 4, 5 and 6 shows the histograms of OCR accuracies in our
dataset using FineReader, OmniPage and Tesseract respectively. As observed in
Fig. 6, some documents have negative OCR accuracy when the number of errors
is more than the number of characters (Eq. 1). The number of characters is
computed using the groundtruth file and errors are defined as the actual edit
operations (character insertions, substitutions, and deletions). Negative OCR
accuracy may occur in highly degraded document image when OCR engine treats
some non-text regions (e.g. logo, figures) as text regions and generates text for
these regions. In that case, extra deletion operations are required and the number
of errors may be larger than the original number of characters in the groundtruth.
Our dataset is publicly available for download at [19].

4 Case Study: OCR Quality Prediction

In this section we discuss results of three recent methods on quality assessment
on our dataset. We used the OCR text output from ABBYY’s FineReader in
this case study. FineReader is a widely used OCR software [5] and provides
the best performance among the three OCR softwares we have tested on our
dataset. In this case study, we limit the evaluation to OCR text obtained using
FineReader.
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4.1 Methods and Evaluation

We evaluated two unsupervised sharpness estimation methods for OCR qual-
ity prediction on our dataset. These methods were developed for estimating
human-perceived sharpness of images. We are interested in evaluating whether
the sharpness scores computed by these methods are good indicator of OCR
quality. Additionally, we tested a supervised approach of Ye and Doermann [29]
based on feature learning which showed promising results on a set of scanned
gray-scale document images. The three methods selected are as follows:

1. Q: Zhu et al. [33] proposed a no-reference sharpness metric (Q) based on sin-
gular value decomposition (SVD) of the local image gradient matrix. The
method was shown to perform well on the parametrization of an image
restoration algorithm.

2. √DOM: Kumar et al. [17] presented a fast sharpness estimation approach
(√DOM) for smart-phone based document images where degradation is com-
mon due to defocus or camera-motion. Their experiments with a corpus of
document images that they collected and labeled using workers from Ama-
zon’s Mechanical Turk show that the performance of their method is better
than state-of-the-art perceptually-based models ([14,22]).

3. CORNIA: Ye and Doermann [29] proposed an unsupervised feature learn-
ing framework to learn effective features directly from the training data for
predicting OCR accuracy of gray-scale document images. The first step in
their approach involves extracting raw-image-patches from a set of unlabeled
images to learn a dictionary using a clustering method. For the OCR quality
prediction on a given image, a set of raw-image patches are extracted and
encoded using the learned dictionary based on soft-assignment encoding with
max pooling. In the last step, Support Vector Regressor (SVR) [11] is used
to learn a mapping from the image features to an image quality score. By
learning a compact set of filters CORNIA was shown to perform real-time
quality estimation ([30,31]).

We used the MATLAB implementation provided by each of the authors for
evaluation. First two methods do not require an explicit training phase, and the
parameters were tuned based on cross-validation on different sets. For CORNIA,
we used a 25-fold cross-validation scheme in which images from 24 sets were
used for training and the remaining set was used for testing. This procedure was
repeated for all 25 sets.

We used two metrics for evaluating the performance of different systems.
The first was the Spearman Rank Order Correlation Coefficient (SROCC) to
measure how well the rank assigned by each method correlate with the ranked
OCR accuracies. The second was the Pearson (or Linear) Correlation Coefficient
(LCC) to measure the linear dependence between scores and OCR accuracy.
While SROCC is a monotonicity measure of a prediction model the second metric
LCC measures the strength and the direction of a linear relationship([1,12]).
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Fig. 7. Median Spearman rank correlation for 25 sets in our dataset. The upper and
lower end of line segments represent the 75th and 25th percentile respectively.

Fig. 8. Median Pearson linear correlation for 25 sets in our dataset. The upper and
lower end of line segments represent the 75th and 25th percentile respectively

4.2 Results and Discussion

Figure 7 summarizes the results of Spearman rank correlation (SROCC) values
for 25 sets in our data. We computed the SROCC for each set using the scores
computed by each method against the OCR accuracy. The top of the bars in
Fig. 7 indicate observation median and the line segments represent the 75th and
25th percentile. Table 1 provides exact correlation scores for comparisons.

Of the three methods, √DoM performed consistently well on all the sets, while
Q and CORNIA showed relatively higher variation in results on different sets.
A higher SROCC value indicates the method’s ability to rank images for a partic-
ular document, and can be used to select the image with best OCR accuracy.
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Table 1. Spearman rank correlation and Pearson linear correlation between OCR
accuracies and quality scores of three tested methods.

Spearman Rank Correlation

Q CORNIA √DoM
Median 0.9370 0.9286 0.9370

25th Percentile 0.8850 0.8214 0.8850
75th Percentile 0.9910 0.9799 0.9910

Pearson Linear Correlation

Median 0.8271 0.9747 0.8488
25th Percentile 0.7631 0.9447 0.7001
75th Percentile 0.8681 0.9822 0.9061

Figure 8 shows the box-plot for Pearson correlation scores for 25 sets. Similar
to previous plot, the bar shows the 75th and 25th percentile of scores. A good
correlation score is needed for applications such as determining whether a cap-
tured image is good enough to keep or should be retaken. CORNIA performed
better than other two approaches on modeling the linear relationship between
two variables. When the goal of quality estimation is to predict the true quality
score of images with different underlying content, CORNIA (or other supervised
methods) usually outperforms unsupervised approaches.

5 Conclusion

We have created a dataset for evaluating document image quality assessment
approaches. Our dataset and related data is publicly and freely available for
download. To the best of our knowledge, this is the first publicly available dataset
for camera captured document image quality assessment. This dataset will be
useful to researchers working on the purposive evaluation of quality estimation
methods for predicting the OCR quality of document images. The dataset has
a total of 525 (175 × 3) OCR-text files from three popular OCR engines. Fur-
thermore, we also obtained character level accuracy for each OCR-text file. In
future versions of this dataset, we would like to obtain human-perceived quality
of each image. We also plan to add images representing other distortions such
as low-light and motion-blur to our dataset.

We also presented results of three recent methods on estimating the OCR
quality of images based on output obtained from FineReader. Using two dif-
ferent evaluation measures we compared and discussed the advantages of three
quality estimation approaches. Our case study showed that √DOM is effective
for ranking images based on OCR quality and CORNIA is effective for obtaining
the true quality scores of document images.
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Abstract. Printed labels are widely used in our life to track items, espe-
cially in logistics management. If item information on a label could be
recognized automatically, the efficiency of the logistics would be greatly
improved. However, some particular properties of label images make
them difficult for off-the-shelf optical character recognition (OCR) sys-
tem to recognize directly. To prepare the label images for OCR, border
noise removal is an important step. With text region only, the result-
ing image would be easier for OCR to read. In this paper, we propose
a simple and effective approach to remove border noise in textile label
images. Border noise in those label images is more complex than that
in conventional document images. Our solution consists of four parts:
label boundary detection, label blank region extraction, holes filling and
border noise deletion. The experiment shows that the proposed method
yields satisfactory performance.

1 Introduction

In our daily life, printed labels are around us almost everywhere. We read it,
and get information about the item from it. In logistics management, printed
labels also play important roles. They carry and share information among vari-
ous companies along a supply chain. The information on the labels is extracted
in process such as stock taking. The productivity will be improved significantly,
if the information extraction can be carried out automatically. In practice, auto-
matic label recognition system is often utilized, for example barcode. However,
barcode has its limitations. It is not human readable. The use of barcode requires
coordination of various parties involved: at least their IT system must be able to
communicate with each other to share barcode data. Many small and medium
business units today still lack the necessary IT systems to utilize barcode. Tra-
ditional printed labels are still in wide use and will continue to be widely used.
Figure 1(b) illustrates a typical printed label that is currently used in a textile
warehouse in Hong Kong (Fig. 1(a)).

Smart phones nowadays coming with a camera as standard component are
widely available. The processing power of such devices are comparable to old
desktops. With the maturity of Optical Character Recognition (OCR) technol-
ogy in recent years, it is possible to develop an OCR based automatic label
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DOI: 10.1007/978-3-319-05167-3 10, c© Springer International Publishing Switzerland 2014
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(a) (b)

Fig. 1. (a) A textile warehouse in Hong Kong. (b) A typical printed label without
barcode.

recognition software solution and use the camera on the smartphones to replace
the barcode scanners.

However, off-the-shelf OCR softwares are often optimized for scanned docu-
ment images which usually contain little noise and distortion. Whereas, images
taken by a phone from a typical logistics operation are usually highly distorted
and contaminated with noise. Distortions are introduced by the perspective pro-
jections and nonplanar surfaces onto which the labels are pasted. Noises are
usually introduced by dusts, uneven lighting, complex patterns of the materials
onto which the labels are pasted. Figure 2 illustrates a few typical label images
from production environments. It is crucial to remove as much noise as possi-
ble before passing the image to OCR module to achieve sufficient accuracy for
production use. In this study, we focus on removing the border noise, which
refers to the noise in the margin of an image. More specifically we concentrate
on labels that are pasted on rolls of textiles. The border noise in this case is
mainly introduced by textile surrounding the label.

Border noise removal is well-known and has been studied in the field of
document image analysis. Reference [1] has carefully analyzed the effect of border
noise on page segmentation. Briefly speaking, this research can be divided into

Fig. 2. Examples of label image.
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two classes: border noise removal for scanned document images and border noise
removal for camera-captured document images. For scanned document images,
border noise removal has received enough attention. Essentially, two established
main approaches blanket the literature ([2]). One is detecting and removing noise
region while the other is directly identifying actual content region. However,
limited work has been reported for removing border noise in images captured
with a camera.

Studies concentrating on detection and removal of noisy region include [3–7].
Reference [3] proposes several heuristic procedures with empirical thresholds to
detect borders of text regions. This work relies on the assumption that borders
are very close to image edges and there is a large white areas between text bor-
ders and image edges. Obviously, this assumption can not hold in our application
(see Fig. 2). References [4,6] focus only on removing non-textual border noise.
Removing both textual and non-textual noise is addressed by [5,7]. These meth-
ods can be effective due to several underlying assumptions for scanned document
images. For example, the shape of border noises are regular and parallel to image
edges; there exists fat black non-textual noise region. In the case of label images,
the border noise are more complex and versatile due to the various textiles rolls
which the labels are pasted on.

There also exist researches directly identifying content region in scanned doc-
ument images. Reference [8] proposes to find the optimal page frame of structured
documents (journalarticles,books,magazines)byageometricmatchingalgorithm.
The method reported by [9] is to detect the optimal page frames of double-page
scanned document images and divide into two pages without border noise.

A few studies of border noise removal for camera-captured images have been
found in the existing literature ([2,8,10]). Reference [10] proposes a method
based on projection profile. The assumption behind it is that there exists blank
region between texts region and border noise. Reference [8] applied their page
frame detection algorithm to camera-captured images. This method relies on
the observation that distortion only happens on the top and bottom of the page
frame. The proposed page frame model can still be used to estimate left and
right borders and remove noise in the corresponding sides of images. In our
application, distortion occurs not only on the top and bottom of label region
but also on the left and right sides of label region (see Fig. 11(e)). Recently, [2]
proposes to use information of text and non-text region to identify page frame
and remove border noise. An important step in this method is segmentation of
text and non-text region. In our label images, the size of non-text element is not
significantly larger than that of text element. The multiresolution morphology
based segmentation method with threshold reduction used by [2] might not be
suitable to effectively separate text and non-text region in our label images.

In this paper, we propose a border noise removal approach for label images.
Labels and textiles are quite different materials. We can expect a noticeable
difference across the boundary of the label. Our idea is that we first try to
detect the border of a label through this difference in Sect. 2. We then identify
the connected component inside the label boundary, which is most likely the
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blank region of the label in Sect. 3. After that, we fill the holes inside the blank
region, which are most likely caused by texts on the label in Sect. 4. At last,
we delete the border noise in Sect. 5. Through these four steps we can properly
remove most of the border noise. We report some experimental results in Sect. 6
and discuss this study in Sect. 7.

2 Detect Label Boundary

When detecting label boundary, all the pixels on the boundary should be high-
lighted and the label should not be separated.

To detect the boundary of the label, one method is to extract the label region,
which is exactly the objective of border noise removal, based on the difference
between label and the background. Commonly used feature is gray value of
pixels. However, binary method such as Otsu’s global thresholding method [11]
is incapable. Figure 3(a) shows an example. The white pixels in the resulting
binary image represents only part of the label.

Another choice is to detect the boundary of the label directly. Edge detection
method seems to be a good choice. However, methods such as Canny’s edge
detector ([12]) would introduce too much noise (Fig. 3(b)). As a result, the label
region would be divided into different parts and we can’t get a complete image
of the label if using the same idea as our proposed method. In Fig. 3(c), the label
is divided into several parts, and the parts that connect with the border noise
are showed as background. Therefore, we need a method that could extract the
whole label boundary without separating the labels to identify the entire label
region in the next few steps.

Observe that labels and textiles are very different materials. Within a small
region in the same material, we can expect certain form of regularity, such as
color, texture, and reflection. Therefore we can expect a form of local similarity,
that is, image pixels in a small region of the same material look similar. Such
similarity does not hold at global level, that is, two regions far away from each

(a) (b) (c) (d)

Fig. 3. Comparison of different methods. (a) Applying Otsu’ method in Fig. 2(a). (b)
Edge image of Fig. 2(a) constructed by using Canny’s detector. (c) Consequence of
using edge image instead of contrast image in the proposed method. (d) Final label
region of Fig. 2(a) extracted by the proposed method.
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(a) (b) (c) (d)

Fig. 4. (a) Contrast image of Fig. 2(a). (b) Binary contrast image. (c) Contrast image
of Fig. 2(b). (d) Binary contrast image.

other will be quite different even if they are from the same material. However,
local similarity is sufficient for us to detect the border of label. Consider a small
section of a border and two small regions across the border. One region contains
pixels representing the textile and the other region contains pixels representing
the label. We can expect pixels within a region are quite similar and pixels
across the regions are quite different due to difference in material. Therefore,
if we construct a contrast image, we can expect the contrast in a region is low
(since the pixels are similar) and the contrast of pixels on the border is high.
Similar principles have been employed by [13].

In addition, labels usually contain a substantial area of blank region. Pixels in
the blank region are very similar and will have lower contrast even with shadow
on it. When we transform the contrast image into a binary image, we can expect
the blank region of the label to be a continues region inside the border.

We construct the contrast image using the same formula as Formula 2 in [14,
Formula 2]. The resulting contrast image is showed in Fig. 4(a).

We transform the resulting contrast image into a binary image using Otsu’s
global thresholding method ([11]). Most of the pixels on the boundary of the label
will be detected as high contrast pixels. However, some pixels on the boundary
of a pattern on the textiles or text characters may also be detected as high
contrast pixels. Figure 4(b) illustrates an example, where high contrast pixels are
displayed in white. We can clearly see the border of the label. The white pixels
inside the borders are mostly from the text characters on the label. The white
pixels outside the borders may introduce border noises that we must remove. At
this stage, we still cannot isolate pixels that represent borders from noises. We
will show in next Section that it is easier to identify the blank region in the label
instead. With some care, the boundary of the blank region in the label will help
us identify the border of the label.

3 Extract Blank Region of a Label

The blank region in a label forms a connected component in the binary con-
trast image constructed in previous step. Although connected component can be
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(a) (b) (c) (d)

Fig. 5. Label blank region extraction process applied to Fig. 4(d). (a) after dilating,
(b) reversing the image, (c) set all pixels in the yellow rectangle to white, (d) connected
component containing the yellow window (Color figure online)

easily detected, care must be taken to ensure that a connect component dose not
include extra regions. When there are gaps on the border, the connected com-
ponent would expand beyond the label region, as illustrated in Fig. 12. A simple
fix is to apply morphological operation to remove as many gaps on the border
as possible.

The remaining challenge is that there are usually more than one connected
components in the binary contrast image. It is tempting to assert that the largest
connected component is the blank region. This assertion is true if the label occu-
pies a substantial portion of the entire image. In cases, where images are taken
from a long distance, a label is only a very small portion in the image. In such
cases, we need some additional information to help identify the blank region. For-
tunately in our application, end users can easily provide such information. We
can provide a visual cue in the user interface and ask user to make sure the yellow
window in the center of an image is fully inside the border of a label, see Fig. 5(b).

We extract blank region in four steps. We use the binary contrast image in
Fig. 4(d) to illustrate our process. The result of each step is given in Fig. 5.

1. Dilate the binary contrast image. This will connect nearby edges and there-
fore fill up small gaps on the border of the label, see Fig. 5(a). Using larger
window size will allow us to fill larger gaps on the border. However when the
window size is too large, we may incidentally merge text characters that are
close to borders into the border and therefore lose such characters. Experi-
ment shows that flat structuring element of dimensions 10 × 10 is proper.

2. Reverse the binary image so that the white pixels represent the low contrast
pixels, which include the blank part of the label and low contrast pixels in
the margin (Fig. 5(b)).

3. Set all pixels in the yellow window in Fig. 5(b) to white color. The result is
shown in Fig. 5(c).

4. Start from a pixel in the yellow window, find all white color pixels connected
with it using the “bwlabel” function described in [15, pp. 360–362]. The
white pixels in Fig. 5(d) shows the extracted component. Note that the noise
outside the border are not included in the extracted component.
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Observe that the extracted label blank region contains many holes, see Fig. 5(d).
Those holes are most likely caused by texts on the label. Therefore, in the next
step, we would like to fill the holes, which will allow us to extract the entire label
from the image.

4 Patch Holes Inside Label Blank Region

There are two types of holes: (1) holes in the middle of the blank region that
are completely surrounded by the blank region; (2) holes at the border of the
label. The first type of holes can be easily filled up using hole filling operations
described in [15, pp. 365–366]. Figure 6(a) shows the result.

To fill the holes that are at the border of a label, we apply the closing oper-
ation described in [15, pp. 347–350]. The structuring element of the operation
must be able to eliminate the holes but not bring too much new noise. To reach
that goal, we choose the flat structuring element that is slightly larger than the
average size of a text character on the label. Note that components inside the
type 1 holes are most likely caused by text characters on the label. They are
either a complete character or a part of a character. Therefore we can use their
average size to estimate the size of a text character.

Let hi be the height of the ith component in type 1 holes. Let H be the height
of entire image. We propose four different formulas to estimate the average height
of a character:

c1 =mode of {hi}
c2 =mode of {hi | hi √= c1}
c3 =mode of {hi | hi √= c2 and hi √= c1} (1)
c4 =mean of {hi | 10 < hi < H/10}

Note that when computing c4, we filtered out components that are unlikely to
be a character. Components that are too small, say smaller than 10 pixels are

(a) (b)

Fig. 6. Filling holes in the blank region. (a) after fill the holes inside; (b) after closing
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usually caused by noises such as dirts. Components that are too large, say larger
than one tenth of the height of entire image are unlikely to be a character either.

The unexpected broken of the characters, or the existence of some small com-
ponents such as dots often leads to underestimate of the true size of a character.
To compensate for such underestimation, we take the largest among c1, · · · , c4
as our final estimate of the average height of a character and denote it by h.
The window size for the closing operation is set to 1.5h×3. The result of closing
operation is shown in Fig. 6(b). As we can see, the white region in the resulting
binary image is very similar to the actual label. In the next step, we would use
this binary image as mask to remove border noise.

5 Delete Border Noise

Let B(x, y) denote the value of pixel (x, y) in the binary image we get in the
previous step. Let f(x, y) denote the value of pixel (x, y) in the new image after
removing border noise. Let f0(x, y) denote the value of pixel (x, y) in the binary
image of original label image. The binary images are constructed using method
in [13]. The corresponding contrast image is constructed using formula in [14,
Formula 2]. Then the process to remove the border noise is as follows.

f(x, y) =

{
0 if B(x, y) = 0
f0(x, y) if B(x, y) = 1

(2)

To better illustrate the result, we implement the same process in the original
gray-scale image. The result for Fig. 2(b) is shown in Fig. 7.

In some cases, the extracted label region may contain more than the actual
label, and it seems that the border noise is not completely removed, as showed
in Fig. 8(b). The reason of the extra region is that, although in Sect. 3, we have
dilated the image to connected unexpected broken boundary, there may still exist
large gaps that are not able to be eliminated by the dilating operation. However,

(a) (b)

Fig. 7. Border noise removing result for Fig. 2(b). (a) gray-scale image after removing
border noise. (b) binary image after removing border noise.
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(a) (b) (c) (d)

Fig. 8. (a) original image. (b) gray-scale image after removing border noise. (c) binary
image for the original image. (d) binary image after removing border noise.

(a) (b) (c) (d)

Fig. 9. (a) original image, (b) binary image, (c) binary image after removing border
noise, (d) binary image after removing components with abnormal size (noise)

since those extra region is caused by low contrast pixels touching the gaps, most
of them would be transformed to 0 in the final binary image. Therefore, the
binary image (Fig. 8(d)) would not be affected too much by those extra region.
In most cases, the image fed to OCR must be in binary form, which means the
final recognition result would not be affected by the extra region.

But there still exists cases where border noise are not able to be removed
in the binary image. When the extra region contains noise that does not touch
the boundary of the image, the isolated noise would be kept after filling holes
in Sect. 4, as showed in Fig. 9(c). Generally speaking, most of those noises are
of abnormal size compared with the characters. Therefore, we apply a filter
to remove them by size. The average height of text characters (h) has been
estimated in Sect. 4. We estimate the average width of text characters, which we
denote as w, in a similar fashion. Then, we delete the components with a height
more than 3 ∩ h or a width more than 5 ∩ w. The result is shown in Fig. 9(d).

6 Experimental Results

To analyze the accuracy of the proposed approach, we conducted experiment on
our date set, which consists of images of different labels pasted on various textile
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products. The resolutions of all the images are either 612 × 816 or 750 × 1000.
We get these images by taking pictures of labels in textile warehouse with an
iphone 4S and Samsung smart phone with Andriod system.

(a) (b) (c) (d)

Fig. 10. Results for Fig. 2(c) and (d). (a), (b) final binary image and gray image for
Fig. 2(a); (c), (d) final binary image and gray image for Fig. 2(d).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Fig. 11. The first column contains original images. The second column contains gray-
scale images after removing border noise for corresponding images in the first column.
The third column contains binary images for the original images. The last column
shows the binary images after removing border noise.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 12. The first column contains original images. The second column contains gray-
scale images after removing border noise for corresponding images in the first column.
The third column contains binary images for the original images. The last column
shows the binary images after removing border noise.

Generally speaking, the proposed approach showed to be effective and effi-
cient. Figure 10 shows result for Fig. 2(c) and (d). Because of the plastic film,
the whole images are gray and not clear. The label region are almost successfully
detected. Figure 10(b) and (d) show the result of binary images.

Figure 11 shows another 3 examples. Border noise in these images have dif-
ferent patterns, colors and texture. The border noise of label in Fig. 11(a) is
removed perfectly as showed in Fig. 11(b) and (d). The labels in Fig. 11(e) and
(i) are of worse condition. They are skewed, spotted or with obvious plastic film.
But the detected label regions of these two cases are almost the same with the
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true label region. Although Fig. 11(h) still has noise, the border noise has been
removed successfully.

Another 3 examples are displayed in Fig. 12. In those cases, the identified
label regions have extra area compared with the true region. Those are caused
by the low contrast pixels that locates on the label boundary (pixels on the upper
border in Fig. 12(c), lower border in Fig. 12(g) and lower border in Fig. 12(k)).
But the resulting binary images do not contain too much border noise, see
Fig. 12(d), (h) and (l).

7 Discussion

In this paper, a novel border noise removal approach is proposed. It contains four
main procedures. They are label boundary detection, blank region extraction,
holes filling and border noise deletion. Our experiment shows that it works well
in practice.

Although the proposed approach is designed for textile label recognition sys-
tem, it would also works well with label and document images in different cases.

When applied in different cases, instead of image contrast, other techniques
could be applied to detect the boundary of the text region, i.e., the physical
limit of labels or pages. The condition of the scanning document image is always
better than the label images. Therefore, binarization method could be adapted.
If the edge is not distinct, more sensitive methods such as Canny Edge Detector
could be used. Once the edge of text region is detected, the procedure in Sects. 3
and 4 could be applied.

One constraint for our proposed method is that the central region of the
label should be part of the text region (label). However, this constraint could
be relaxed. In more general cases, if the time complexity of the method is not a
major issue, we could apply some text detection method to locate the text, and
thus locating a start region.
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Mohammad Reza Yousefi1, Faisal Shafait2, and Thomas M. Breuel1

1 Technical University of Kaiserslautern, Kaiserslautern, Germany
{afzal,kraemer,bukhari,yousefi,tmb}@iupr.com

2 The University of Western Australia, Crawley, Australia
faisal.shafait@uwa.edu.au

Abstract. Camera captured documents can be a difficult case for stan-
dard binarization algorithms. These algorithms are specifically tailored
to the requirements of scanned documents which in general have uniform
illumination and high resolution with negligible geometric artifacts. Con-
trary to this, camera captured images generally are low resolution, con-
tain non-uniform illumination and also posses geometric artifacts. The
most important artifact is the defocused or blurred text which is the
result of the limited depth of field of the general purpose hand-held cap-
turing devices. These artifacts could be reduced with controlled capture
with a single camera but it is inevitable for the case of stereo document
images even with the orthoparallel camera setup.
Existing methods for binarization require tuning for the parameters sepa-
rately both for the left and the right images of a stereo pair. In this paper,
an approach for binarization based on the local adaptive background
estimation using percentile filter has been presented. The presented app-
roach works reasonably well under the same set of parameters for both
left and right images. It also shows competitive results for monocular
images in comparison with standard binarization methods.

1 Introduction

The extensiveaut]Afzal Muhammad Zeshanaut]Krämer Martinaut]Bukhari Syed
Saqibaut]Yousefi Mohammad Rezaaut]Shafait Faisalaut]Breuel Thomas M. use
of portable cameras for capturing documents is driving the current research
in the area. It is due to the inexpensiveness and ease of use of such devices.
Although camera captured documents offer many advantages, they also have
inherited problems because of capturing procedure and the devices themselves,
which are used for capturing. The document image processing pipeline both
for the monocular and stereo images [1–3] in most of the cases starts with the
binarization of the document images in order to extract bi-level features for
further processing.

Off-the-shelf passive sensing devices, e.g. customer grade hand-held cameras,
can only focus objects which are at a certain distance from the camera. This is
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known as depth of field. The objects or the parts of objects which are nearer
or farther from that end up being not properly focused in the captured image.
Although it is possible to have a setup with large enough depth of field, it
is not possible with customer consumer grade cameras, because it requires the
knowledge about the actual scene properties, e.g. distance to the objects, and the
camera properties, e.g. lens aperture etc. Another way to tackle this problem is
to correct depth of field after acquiring the images, but it would require multiple
captures depending upon the scene.

(a) w=30 , k=0.005 (b) w=30 , k=0.005

(c) w=30 , k=0.2 (d) w=30 , k=0.2

(e) w=30 , k=0.35 (f) w=30 , k=0.35

(g) w=30 , k=0.5 (h) w=30 , k=0.5

Fig. 1. The left column of the figure comprising of (a, c, e, g) shows the left image
of the stereo pair with Savoula binarization evaluated using different k values with a
fixed window size of 30. The right column of the figure comprising of (b, d, f, h) shows
the right image of the stereo pair with Savoula binarization evaluated using different
k values with fixed window size of 30.

We show the effect of binarization for the stereo pairs using local adaptive
binarization approach Savoula as it has been reported to perform relatively bet-
ter than other local approaches [4].

We consider a stereo image pair where the effect of blurring in the left image
is major. In Fig. 1 the left column, i.e. Fig. 1(a, c, e and g) correspond to the
left image of the stereo pair. In Fig. 1 the right column, i.e. Fig. 1(b, d, f and h)
correspond to the right image of the stereo pair. The left image is blurred and
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the right image is correctly focused. The binarization for both of the images has
been carried out using Savoula with a window size of 30 as it has been reported
by Bukhari et al. [5] as suitable window size. The values of k are varied for both
of the images. As we lower the value of k, which is depicted in Fig. 1a and b,
the results of binarization become noisy. It contains salt and pepper noise. On
the other hand increasing the value of k acts differently on left and right image.
While the binarization of the right image remains reasonable under the changing
the value of k, the left image, which is blurred, produces degraded binarization
results and the foreground is vanishes with the increasing value of k.

This paper proposes an approach based on background estimation using per-
centile filters which performs reasonable binarization for both left and right
images of stereo pair under the same set of parameters. The rest of this paper
is organized as follows: the next section describes the related work for the
approaches for binarization, the percentile filter and the stereo approaches docu-
ment image processing which uses binarization. Section 3 describes the percentile
filter and the proposed binarization algorithm. Section 4 shows the experimen-
tal results with quantitative evaluation and the paper ends with the conclusion
presented in Sect. 5.

2 Related Work

The diversity of document images have been driving the research in document
image processing in various directions. The researchers are trying to come up
with generalized methods to be able to process a wide variety of documents. The
binarization methods have also been proposed keeping in mind certain types of
document images. The binarization of documents is aimed at either color [6–9]
or gray [4,5,10–13] level images, which leads to the different methods of bina-
rization. In general, when the image is being thresholded it could be done by
determining a global threshold for whole of the page known as global binariza-
tion methods. On the other hand, the threshold can also be determined using
only the statistics determined by a local window centered around the pixel which
is being thresholded. A detailed discussion about the advantages and disadvan-
tages of both local and global approaches is discussed in Bukhari et al. [5] which
concludes that global binarization approaches, e.g. Otsu [10] shows a subopti-
mal performance for camera captured documents. It is due to the fact that there
are certain variations, which appear only in specific parts of the image, e.g. a
page might contain a defocused region and another could be illuminated differ-
ently, whereas other areas might have other geometric distortions. In contrast
local methods can adapt themselves, depending upon the image characteristic
of the local region. These methods could further be divided into two categories.
The first category of methods is pixel-based and the other category is content-
based [5]. In pixel based methods text and non-text regions are treated equally
for determining the threshold used for local binarization. In content based meth-
ods the text and non-text regions are identified and different thresholds are used
for text and non-text regions. The threshold in such methods is fixed for all the
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text regions. These method improve the performance, but the threshold is not
adapted in accordance with background properties.

The proposed method in this paper takes into consideration the background
statistics based on percentile filters [14]. So, this method can be categorized as
a pixel based binarization method according to earlier classification. One very
widely used example of percentile filter is median filter [14] which equals fifty
(50) percentile. The percentile filters are generally categorized as ordered rank
filters [15]. Rank order filter are very general and can be used to approximate
other filters, e.g. median filter, as mentioned above, or morphological filters [16].
There are many ways how a percentile filter can be calculated. There are some
methods which are specifically tailored for the images. One such comparison has
been given by Duin et al. [17].

This paper describes work based on the percentile filter for binarization which
works well both on focused and defocused images. This method also works well
on monocular images with defocused parts.

3 Binarization Using Percentile Filter

Binarization using percentile filters starts with estimating the background at
each location in the image. In a sense we are calculating a whole new image
which is the background of the image based on percentile. First we define the
percentile filter and after that the details and fast implementation are discussed
and this section concludes with binarization details using percentile filters.

3.1 Percentile Filter

This algorithm has originally been proposed by [14]. We select a window of a
certain size, defined by the user, and we calculate the histogram of the window.
The window is defined as follows:

w(x, y) = (Iij)x−dx∗i∗x+dx,y−dy∗j∗y+dy (1)

where x and y denotes the location of the pixel at the center of the window and,
dx and dy denote the size of the window both in x and y directions respectively.

Let us define the bounds of our window with the following sets

s1 = {x − dx ≤ i ≤ x + dx} (2)

s2 = {y − dy ≤ j ≤ y + dy} (3)

Now let us rewrite Eq. (1) with a single index.

w(x, y) = {Iq | q = (i, j) ∈ s1 × s2} (4)
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To be able to calculate the percentile, let us sort the values in the window
represented in Eq. (4) by defining an ordering function:

ord(a, b) =

{
1, if a > b

−1, else
(5)

Let the number of pixels in the window be n and we define the following sequence:

ws(x, y) = (Ik)0∗k<n such that ∀k : ord(Ik, Ik+1) < 0 (6)

The index of the percentile is given as follows:

ip = p × n/100 where (0 ≤ p ≤ 100) (7)

where ip denotes the index of the value selected as a percentile, p is the required
percentile and n is denoting the total number of elements.

Combining Eqs. (6) and (7) we define the value percentile for our window

wsp(x, y) = Iip (8)

where wsp denotes the value of the pth percentile of the window centered around
(x, y). It is important to note that all the things have been shown above for
one window centered at (x, y). This procedure will be repeated for whole of the
image. For determining the percentile of the pixels near the boundary, reflecting
boundary conditions are used, i.e. the image has been mirrored to handle indices
lying outside the image. An efficient implementation of the percentile filter based
on histograms has been discussed in [17].

3.2 Binarization

A simple method of binarization using percentile filter is as follows: Let f be
our original image and the domain of the image is all gray level values, i.e.
f(x, y) ∈ [0, 255] Let g be the background image estimated for each value based
on percentile filters at every location (x, y) and the domain of the image cor-
responds to only two levels, i.e. g(x, y) ∈ {0, 255}. The background image is
computed according to the procedure that has already been described. The
thresholding has been done as follows:

o(x, y) =

{
255, if f(x, y) < t ∗ g(x, y)

0, otherwise
(9)

where t is the parameter, which is used to determine that whether a pixel is
foreground or background, depending on the similarity of the pixel, and the
background, which has been estimated using percentile filter.

A more complicated version of the binarization procedure is described below
step by step and is illustrated with Fig. 2. The image I is normalized in the range
between 0 and 1 as follows

In = (I − Imin)/Imax (10)
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(a) Original image (b) Normalized image (c) After percentile filtering

(d) Image after DOG (e) Smoothed absolute magnitude (f) Mask for test area detection

(g) After black and white clipping (h) Final binarized image

Fig. 2. The steps of binarization are illustrated in the figures above. (a) Original
image (b) Normalized version of the image shown in (a) according to the Eq. (10) (c)
Resultant image after applying percentile filter to the normalized image shown in (b)
according to the Eq. (11) (d) Resultant image after applying difference of Gaussian
(DOG) to the image shown in (c) according to the Eq. (12) (e) The absolute values of
the image shown in (d) with the smoothed with a Gaussian filter according to Eq. (13)
(f) Binary mask depicting the text area from which the percentile values are calculated
according to the Eq. (14) (g) Resultant image after applying the lo and hi percentile
score to the image shown in (c) according to the Eq. (16) (h) Final image after the
thresholding according to the Eq. (17)

A test image and its normalization have been shown in the Fig. 2a and b. We
apply percentile filter with value of percentile p and window of size w

Ipw
= (Ppw

) ∗ In (11)

Applying percentile filter on the normalized image shown in Fig. 2b results in
the image shown in Fig. 2c. The value used of percentile filter is 80.

For selecting the low and high thresholds, the image is then enhanced using
difference of Gaussian followed by a thresholding with a fixed value producing
a binary image which is dilated. The first step is the image enhancement. Let
σ1 and σ2 be the standard deviation of the successive levels which have been
selected heuristically

Ig = (Ipw
)σ1 − (Ipw

)σ2 (12)

The result of applying difference of Gaussian to Fig. 2c is shown in Fig. 2d. The
values 0 and 5 are used for the parameters σ1 and σ2 respectively.

The magnitude of the resultant image Ig is further smoothed with σ2

Is = (((Ig)2)σ2)
0.5 (13)

The Fig. 2e shows the result of applying the above mentioned smoothing to the
image shown in Fig. 2d.
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For estimating the white and black clipping percentile a mask over the text
area has been generated. For this purpose the resultant image from the step
above is first thresholded with a constant value 0.3 to produced a binary image
and the in the next step the binary image is dilated with a structuring element B

Id = Is ⊕ B (14)

The mask results in applying the above operations on Fig. 2e is shown in Fig. 2f.
The length used for the structuring element is 10 both in the x and y directions.

We use image Id to mask Ipw
i.e

m(x, y) =

{
Ipw

(x, y), if Id(x, y) = 1
0, otherwise

(15)

This means that the values, which are masked out, are not used for the calcula-
tion of the percentile score.

Let pb and pw be the black and white clipping percentile which are heuris-
tically selected. Let (lo) and (hi) be the percentile score calculated based on
the black and white clipping percentile respectively calculated from the masked
image. We use the calculated percentile scores on the image Ipw

as follows

If (x, y) =
Ipw

(x, y) − lo

hi − lo
(16)

For calculating the percentile scores for our image shown in Fig. 2e we used he
values 5 and 90 for pb and pw respectively. The resultant image is shown in
Fig. 2g after applying it to the image shown in Fig. 2c.

The binary image is produced by thresholding as follows

Ib(x, y) =

{
0, if If (x, y) > t

255, otherwise
(17)

The resultant binary image is shown in the Fig. 2h for t = 0.55.

4 Experiments and Results

First we consider the stereo images for comparing binarization results. Figure 3
shows the result of the percentile filter in the first row (Fig. 3a and b) for the
stereo image pair considered in Fig. 1. The second row contains the result for
Sauvola binarization of the same image pair. Figures in the second row, i.e.
(Fig. 3c and d) are the same as (Fig. 1c and d) and shown here for comparison
purposes. The results show that the percentile filter for both images perform
better than Sauvola because the binarization is almost the same. This is essential
for stereo matching. The Sauvola binarization performs well for the focused
image as can be seen in Fig. 3d, but for the defocused image the quality is
degraded and it might not help stereo matching for finding reliable matches.
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(a) p=70, w=11 , t=0.88 (b) p=70, w=11 , t=0.88

(c) w=30 , k=0.2 (d) w=30 , k=0.2

Fig. 3. The upper row (a, b) shows the left and right image of the stereo pair binarized
using percentile filter with the same set of parameters, i.e. (p = 70, w = 11 , t = 0.85).
The lower row (c, d) shows the left and right image of the stereo pair binarized using
Savoula with the same set of parameters, i.e. (w = 30, k = 0.2). The percentile filter
performs better on both left and the right images of the stereo pair with same set of
parameters.

Fig. 4. Measures for the blurred image

In order to observe the effect of percentile filter for the blurred image restora-
tion, we took a monocular image and its ground truth. The image has been
convolved with an isotropic Gaussian for several values of standard deviation
ranging from 0 to 5. Then the image is binarized using the percentile filter and
the results are shown in Fig. 5 for the visual inspection. The full effect of the
measures [18] has been shown in the Fig. 4. It can be observed that the percentile
filter is robust against the blurring effect which could either be caused by the
stereo cameras or in general by a single camera.

Furthermore, the proposed method has also been evaluated on monocular
document images. The complicated version of binarization which helps us pre-
serving the character shapes better. The dataset consists of 25 degraded images
each of size 2000 × 500. We compare the results of our approach with standard
Savoula binarization. For finding the best parameters for both of the methods
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(a) Original image (b) σ = 0.6 (c) σ = 1.2 (d) σ = 2.4

(e) Ground Truth (f) Binarization of (b) (g) Binarization of (c) (h) Binarization of (d)

Fig. 5. The upper row (a, b, c, d) shows the original image and the blurred image with
standard deviation of 0.6, 1.2 and 1.4 respectively. The lower row (e, f, g, h) shows the
ground truth and the restored images corresponding to their smoothed counter parts.
The values of the parameters used for the binarization are (p = 33, w = 75, t = 0.78).

(a) Original Image (b) Ground Truth (c) Savoula Binarization (d) Percentile Filter

Fig. 6. The comparison of the Savoula with percentile filter. The characters shapes are
better using percentile filter in comparison to Savoula.

Table 1. Comparison of proposed method with Savoula Binarization. While Savoula
performs a bit better for FMeasure evaluation, our method performs far better for
OCR-Based evaluation

Measure Savoula Percentile

FMeasure 92.07 89.39
OCR error (edit distance) 69.29 31.40

we used FMeasure for error evaluation. The method of Savoula binarization has
two parameters k and w. A grid search over an interval [0.1, 0.35] with step size
of 0.1 and [3, 53] with step size of 2 respectively for k and w has been performed.
The best values are 0.17 and 15 for k and w respectively. As we can see in the
Table 1 that the performance of both methods for FMeasure is comparable and
in fact Savoula performs a bit better than our method. On the other side, for
OCR error measure, our method performs much better than Savoula because it
is able to preserve the character shapes better which is very useful for practi-
cal applications. We used ocropus [19] for the OCR error measures. A sample
binarized image is shown in Fig. 6.
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5 Conclusion

A simple local binarization method is presented. We have shown applicability
of the proposed binarization method on stereo document images. Compared to
conventional binarization approaches, the main benefit is that the same para-
meters can be used for both images of the stereo image pair and still produce
good binarization results. We have also shown that performance is comparable to
standard methods for Fmeasure and our methods outperforms standard Savoula
method by a big margin for OCR-Based evaluation.
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Abstract. Hyperspectral imaging provides measurement of a scene in
contiguous bands across the electromagnetic spectrum. It is an effec-
tive sensing technology having vast applications in agriculture, archeol-
ogy, surveillance, medicine and forensics. Traditional document imaging
has been centered around monochromatic or trichromatic (RGB) sens-
ing often through a scanning device. Cameras have emerged in the last
decade as an alternative to scanners for capturing document images.
However, the focus has remained on mono-/tri-chromatic imaging. In this
paper, we explore the new paradigm of hyperspectral imaging for docu-
ment capture. We outline and discuss the key components of a hyperspec-
tral document imaging system, which offers new challenges and perspec-
tives. We discuss the issues of filter transmittance and spatial/spectral
non-uniformity of the illumination and propose possible solutions via
pre and post processing. As a sample application, the proposed imag-
ing system is applied to the task of writing ink mismatch detection in
documents on a newly collected database (UWA Writing Ink Hyperspec-
tral Image Database http://www.csse.uwa.edu.au/%7Eajmal/databases.
html). The results demonstrate the strength of hyperspectral imaging in
capturing minute differences in spectra of different inks that are very
hard to distinguish using traditional RGB imaging.

Keywords: Hyperspectral document analysis · Forensic document exam-
ination · Ink mismatch detection

1 Introduction

Image scanning devices are currently the major source of creating digitized ver-
sions of documents both black and white as well as color. Traditional scanners
are fairly limited with regards to the color information that they can capture
as their imaging systems are designed to replicate the trichromatic RGB human
visual system. In many situations high fidelity spectral information can be can be
very useful, for example where it is required to distinguish between two similar
inks [1] or determine the age of a writing or the document itself.

M. Iwamura and F. Shafait (Eds.): CBDAR 2013, LNCS 8357, pp. 150–163, 2014.
DOI: 10.1007/978-3-319-05167-3 12, c© Springer International Publishing Switzerland 2014
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Natural materials exhibit a characteristic spectral response to incident light.
The spectral response of a material is responsible for its specific color. It is a sig-
nature property which can be used for material identification. Spectral imaging
is an effective technique for measurement of the spectra of objects in the real
world. A hyperspectral (HS) image of a scene is a series of contiguous narrow-
band images in the electro-magnetic spectrum. In contrast to a three channel
RGB image, an HS image captures finer spectral information of a scene.

Satellite based multispectral imaging sensors have long been used for astro-
nomical and remote sensing applications. Due to the high cost and complexity
of these multispectral imaging sensors, various techniques have been proposed
to utilize conventional imaging systems combined with a few off the shelf opti-
cal devices for multispectral imaging. In this paper, we discuss new challenges
in the development of hyperspectral document imaging system. Various spec-
tral imaging techniques have been developed over the years. An overview about
different technologies for capturing hyperspectral images is given in Sect. 2. We
focus on the HS imaging specific issues of spatial/spectral illumination variation
and filter transmission variation and propose possible solutions to reduce these
artifacts in Sect. 3. We apply the proposed HS imaging system to the task of
ink mismatch detection (Sect. 4) on a newly developed writing ink hyperspectral
image database. The paper is concluded in Sect. 5.

2 Overview of Hyperspectral Imaging

Strictly speaking, an RGB image is a three channel spectral image. An image
acquired at more than three specific wavelengths in a band is referred to as a
Multispectral Image. Generally, multispectral imaging sensors acquire more than
three spectral bands. An image having finer spectral resolution or higher number
of bands is regarded as a Hyperspectral Image. There is no clear demarcation
with regards to the number of spectral bands/resolution between multispectral
and hyperspectral images. However, hyperspectral sensors may acquire a few
dozen to several hundred spectral measurements per scene point. For example,
the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) of NASA has 224
bands in 400–2500 nm range [2].

A hyperspectral image has three dimensions: two spatial dimensions (x, y)
and one spectral dimension (σ) as shown in Fig. 1. A hyperspectral image can be
presented in the form of a Hyperspectral Cube. The basic concept for capturing
hyperspectral images is to filter incoming light by the use of bandpass filters
or dispersion optics. In the following we present a brief overview of different
methods/technologies used for hyperspectral imaging, categorized based on the
underlying optical phenomenon of bandpass filtering or chromatic dispersion.
The overview presented here is limited to the hyperspectral imaging systems
used in ground-based computer vision applications. Therefore, high cost and
complex sensors for remote sensing employed in astronomy and other geo-spatial
applications are not considered.
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Fig. 1. A hyperspectral image is illustrated as a series of images along the spectral
dimension.

2.1 Bandpass Filtering

In filter based approach, the objective is to allow light in a specific wavelength
range to pass through the filter and reach the imaging sensor. This phenomenon
is illustrated in Fig. 2. This can be achieved by using optical devices generally
named bandpass filters or simply filters. The filters can be categorized into two
types depending on the filter operating mechanism. The first type is the tunable
filter or specifically the electrically tunable filter. The pass-band of such filters
can be electronically tuned at a very high speed which allows for measurement
of hyperspectral data in a wide range of wavelengths. The second type is the
non-tunable filters. Such filters have a fixed pass-band of frequencies and are
not recommended for use in time constrained applications. These filters require
physical replacement either manually, or mechanically by a filter wheel. However,
they are easy to use in relatively simple and unconstrained applications.

Non-Tunable Filters. A common approach to acquire multispectral images is
by sequential replacement of bandpass filters between a scene and the imaging
sensor. The process of filter replacement can be mechanized by using a wheel of
filters. Such filters are useful where time factor is not involved and the goal is to
image a static scene. Kise et al. [3] developed a three band multispectral imaging
system by using interchangeable filter design; two in the visible range (400–
700 nm) and one in the near infrared range (700–1000 nm). The interchangeable
filters allowed for selection of three bands. The prototype was applied to the
task of poultry contamination detection.

Tunable Filters. Electronically tunable filters come in different base technolo-
gies. One of the most common is the Liquid Crystal Tunable Filter (LCTF). The
LCTF is characterized by its low cost, high throughput and slow tuning time.
On the other hand, the Acousto-Optical Tunable Filter is known for high cost,
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Fig. 2. In bandpass filtering, the filter allows only a specific wavelength of light to pass
through, resulting in a single projection of the scene at a particular frequency.

low throughput, and faster tuning time. For a detailed description of the compo-
sition and operating principles of the tunable filters, the readers are encouraged
to read [4,5].

Fiorentin et al. [6] developed a hyperspectral imaging system using a com-
bination of CCD camera and LCTF in the visible range with a resolution of
5 nm. The device was used in the analysis of accelerated aging of printing color
inks. The system is also applicable of monitoring the variation (especially fad-
ing) of color in artworks with the passage of time. The idea can be extended to
other materials that may exhibit changes due to exposure to artificial or daylight
illumination, such as document paper and ink.

Comelli et al. [7] developed a portable UV-fluorescence hyperspectral imag-
ing system to analyze painted surfaces. The imaging setup comprises a UV-
florescence source, an LCTF and a low noise CCD sensor. A total of 33 spectral
images in the range (400–720 nm) in 10 nm steps were captured. The accuracy of
the system was determined by comparison with the fluorescence spectra of three
commercially available fluorescent samples measured with a bench-top spectro-
fluorometer. The system was tested on a 15th century renaissance painting to
reveal latent information related to the pigments used for finishing decorations
in painting at various times.

2.2 Chromatic Dispersion

In dispersion based filtering, the objective is to decompose an incoming ray
of light into its spectral constituent as shown in Fig. 3. This can be achieved
by optical devices like diffraction gratings, prisms, grisms (grating and prism
combined) and interferometers. We further outline chromatic dispersion based
on refraction or interferometric optics.
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Fig. 3. In chromatic dispersion, the dispersion optics disperses the incoming light into
its constituents which are projected onto the imaging plane.

Refraction Optics. Refraction is an intrinsic property of glass-like materials
such as prisms. A prism separates the incoming light ray into its constituent
colors. Du et al. [8] proposed a prism-based multispectral imaging system in
the visible and infrared bands. The system used an occlusion mask, a triangular
prism and a monochromatic camera to capture multispectral image of a scene.
Multispectral images were captured at high spectral resolution while trading off
the spatial resolution. The use of occlusion mask also reduced the amount of
light available to the camera and thus decreased the signal to noise ratio (SNR).
The prototype was evaluated for the tasks of human skin detection and physical
material discrimination.

Gorman et al. [9] developed an Image Replicating Imaging Spectrometer
(IRIS) using an arrangement of a Birefringent Spectral De-multiplexer (BSD)
and off-the-shelf compound lenses to disperse the incoming light into its spectral
components. The system was able to acquire spectral images in a snapshot. It
could be configured to capture 8, 16 or 32 bands by increasing the number of
stages of the BSD. It has, however, a Field-of-View limited by the width of a
prism used in the BSD. A high spectral resolution is achieved by trading-off
spatial resolution since a 2D detector is used.

Interferometric Optics. The optics such as interferometers can also be used
as light dispersion devices by constructive and destructive interference. Burns
et al. [10] developed a seven-channel multispectral imaging device using 50 nm
bandwidth interference filters and a standard CCD camera. Mohan et al. pro-
posed the idea of Agile Spectral Imaging [11]. Using a diffraction grating to dis-
perse the incoming rays, a geometrical mask pattern was used to allow specific
wavelengths to pass through and reach the sensor.

Descour et al. [12] presented a Computed Tomography Imaging Spectrome-
ter (CTIS) design using three sinusoidal phase gratings to disperse light into
multiple directions and diffraction orders. Assuming the dispersed images to be
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two dimensional projections of three dimensional multispectral cube, the mul-
tispectral cube is reconstructed using maximum-likelihood expectation maxi-
mization algorithm assuming Poisson likelihood law. The prototype works in
the visible range (470–770 nm) and is able to reconstruct multispectral images
of a simple target.

3 Hyperspectral Document Imaging

By carefully analyzing different technologies/methods for capturing hyperspec-
tral images, we chose the tunable filter due to its easy integration with off-the-
shelf machine vision cameras and programmatic control over the hardware (e.g.
exposure time, spectral resolution, etc.). This section provides an overview of our
hyperspectral document imaging setup and presents our approach for tackling
various hyperspectral-imaging-specific challenges.

3.1 Acquisition Setup

Our system comprises of a monochrome machine vision CCD camera at a base
resolution of 752 × 480 pixels. A focusing lens (1:1.4/16 mm) lies in front of
the CCD camera. In order to capture images in discrete wavelength channels, a
Liquid Crystal Tunable Filter (LCTF) is placed in front of the lens as shown in
Fig. 4. The filter can tune to any wavelength in the visible range (400-720 nm)
with an average tuning time of 50 ms. The bandwidth of the filter varies with
the center wavelength, such that it is low at shorter wavelengths and high at
longer wavelengths as shown in Fig. 5. It is measured in terms of Full Width at
Half Maximum (FWHM) which ranges from 7 to 20 nm corresponding to 400
and 720 nm. Thus, the first few bands have very low SNR combined with the
filter transmission loss (see Fig. 5). To compensate for the low SNR images, the
document is illuminated by two halogen lamps.

To achieve sufficient fidelity in the spectral dimension, we capture hyper-
spectral images comprising 33 bands in the visible range (400–720 nm at steps of
10 nm). The target is captured in a sequential manner so that the total capture
time is the sum of acquisition and filter tuning time for each band (5 s, several
times faster than a commercial system [13]).

3.2 Compensation for Filter Transmittance

Typically, each band of a hyperspectral image is captured with a constant expo-
sure time. Since different spectral bands are captured sequentially in our imaging
setup, it is possible to vary exposure before each acquisition is triggered. Look-
ing at the filter response at different wavelengths in Fig. 5, it can be observed
that the amount of light transmitted is a function of the wavelength such that –
with some minor glitches – the longer the wavelength σ, the higher the transmit-
tance λ(σ). Extremely small values of λ(σ) for σ √ [400, 450] result in insufficient
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Fig. 4. An illustration of the proposed hyperspectral document image acquisition setup.
The controller triggers cycles of filter tuning/image acquisition at a high speed allowing
for efficient image capture.
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Fig. 5. Transmission functions of the LCTF at 10 nm wavelength step (left). Exposure
time as a function of wavelength (right). Observe that the filter transmission at shorter
wavelengths needs compensation.

energy captured by the imaging system in those bands corresponding to the
blue region of the spectrum (see Fig. 1). To compensate for this effect, we model
the exposure time te(σ) as an inverse function of the wavelength such that the
shorter the wavelength, the longer the exposure time:

te(σ) = τ(λmax − λ(σ)) + t̄e (1)

where λmax is the maximum transmission of the filter at any wavelength (i.e.
transmission at σ = 700 nm for the filter used in this work – see Fig. 5), t̄e is the
corresponding exposure time, and τ is a balancing coefficient. t̄e is computed as
the maximum possible exposure time for the band corresponding to λmax which
ensures no image saturation. In order to keep each band unsaturated, we keep τ
to be small (τ = 8 in this work) and experimentally find a suitable value for t̄e.
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3.3 Compensation for Non-Uniform Illumination Intensity

In hyperspectral document imaging, the use of a nearby illumination source
induces a scalar field over the target image. This means that there is a spatially
non-uniform variation in illumination. The result is that the pixels near the
center of the image will be brighter (have higher energy) as compared to the
pixels farther away towards the edges. This effect can be seen in Fig. 1. Let
p(x, y) be the spectral response at the image location (x, y). It can be reasonably
assumed here that the non-uniformity in illumination is only a function of pixel
coordinates (x, y) and does not depend on the wavelength σ. This assumption
will hold for each (x, y) as long as p(x, y) is not saturated. Hence, normalizing
the spectral response at each pixel to the unit vector:

p̂(x, y) =
p(x, y)

∩p(x, y)∩ (2)

will largely compensate for the effect of non-uniform illumination intensity.

3.4 Compensation for Illuminant’s Non-Uniform Spectral Power
Distribution

Assuming Lambertian surface reflectance, the hyperspectral image of a document
can be modeled as follows. The formation of an N channel hyperspectral image
I(x, y, σ), σ = 1, 2, ..., N of a document is mainly dependent on four factors:
the illuminant spectral power distribution L(σ), the scene spectral reflectance
S(x, y, σ), the filter transmittance λ(σ), and the sensor spectral sensitivity C(σ).
Hence, image intensity of a particular spectral band σ can be calculated as

I(x, y, σ) =
∫ λmax

λmin

L(σ)S(x, y, σ)λ(σ)C(σ)dσ (3)

where σmin and σmax define the bandwidth of the spectral band σ.
Most of the illumination sources do not have a flat power distribution across

different wavelengths (see Fig. 6 for spectral power distribution of some common
illuminants). To compensate for non-uniform spectral power distribution of the
illuminant, color constancy methods are applied. Van de Weijer et al. [14] pro-
posed a unified formulation for different color constancy algorithms. Varying the
parameters of the following formulation, leads to estimation of the illuminant
spectra

L̂(σ : n, p, Δ) =
1
κ

(∫

y

∫

x

|∇nIσ(x, y)|pdx dy

)
, (4)

where n is the order of differential, p is the Minkowski norm and Δ is the scale
of the Gaussian filter. Iσ(x, y) = I(x, y) ∀ G(x, y : Δ) is the Gaussian filtered
image. κ is a constant, chosen such that the estimated illuminant spectra has a
unit �2-norm. The illumination corrected hyperspectral image is obtained by a
simplified linear transformation

Î(x, y, σ) = MI(x, y, σ), M √ R
N×N , (5)
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Fig. 6. Spectral power distributions of various illuminant sources. Observe that the
low illuminant power at shorter wavelengths needs compensation.

where M is a diagonal matrix such that

Mi,j =

{
1/L(σi) if i = j

0 otherwise
(6)

Color constancy can be achieved by making assumptions on the first or higher
order statistics of the image. There is no strict rule as to which assumption is
the best. Rather it mainly depends which particular assumption suits the given
image content. Following is a brief overview of assumptions made by different
color constancy algorithms.
Gray World (GW) algorithm [15] assumes that the average image spectra is
gray, so that the illuminant spectra can be estimated as the deviation from the
gray of average.
Gray Edge (GE) algorithm [14] assumes that the mean spectra of the edges
is gray so that the illuminant spectra can be estimated as the shift from gray of
the mean of the edges.
White Point algorithm [16] assumes the presence of a white patch in the scene
such that the maximum value in each channel is the reflection of the illuminant
from that white patch.
Shades-of-Gray (SoG) algorithm [17] is based on the assumption that the
�p-norm of a scene is a shade of gray.
general Gray World (gGW) algorithm [15] is based on the assumption that
the �p-norm of a scene after smoothing is gray.

Based on the assumptions behind each of these algorithms, the White Point
algorithm appears to be the most appropriate for estimating illuminant spectral
power distribution from document images. Since documents are often printed on
white paper, the assumption made by the WP algorithm about the presence of
a white patch in the image would be mostly satisfied.
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4 Application to Ink Mismatch Detection

As a sample application of hyperspectral imaging in document analysis, we chose
ink mismatch detection (please refer to [1] for more details). In this paper, we
specifically address the challenges associated with hyperspectral imaging of doc-
uments. The main focus is on compensating the effects of spatial and spectral
non-uniformity of illumination. We perform additional experiments to observe
the effects of illumination normalization using proposed compensation tech-
niques. Using the imaging setup described in Sect. 3.1, a database consisting
of 70 hyperspectral images of a hand-written note in 10 different inks by 7 sub-
jects was collected. All subjects were instructed to write the same sentence, once
in each ink on a white paper. The pens included 5 varieties of blue ink and 5
varieties of blank ink pens. It was ensured that the pens came from different
manufacturers while the inks still appeared visually similar. Then, we produced
mixed writing ink images from single ink notes by joining equally sized image
portions from two inks written by the same subject. This made roughly the same
proportion of the two inks under question.

The pre-processed mixed-ink images were first binarized using an adaptive
thresholding method [18] and then fed to the k-means clustering algorithm with
a fixed value of k = 2. Finally, ink mismatch detection accuracy was computed
as

Accuracy =
True Positives

True Positives + False Positives + False Negatives

The mismatch detection accuracy is averaged over seven samples for each
ink combination Cij . It is important to note that according to this evaluation
metric, the accuracy of a random guess (in a two class problem) will be 1/3. This
is different to common classification accuracy metrics where the accuracy of a
random guess is 1/2. This is because our chosen metric additionally penalizes
false negatives which is critical to observe in a our problem.

As discussed in Sect. 3.3, a spatially varying illumination is not desirable and
modulates the spectral responses of the image pixels. In order to undo the effect
of a non-uniform illumination, the images are normalized using Eq. 2. Figure 7
presents the mismatch detection accuracies on raw and normalized hyperspectral
images. The improvement in correctly segmenting mismatching inks is highly
evident for a majority of ink combinations of the blue and black ink, respectively.

In Sect. 3.2, an adaptive exposure scheme was proposed to compensate for the
varying filter transmittance. The adaptive exposure results in a higher SNR for
bands with a low transmittance. We compare the use of adaptive exposure with
constant exposure for hyperspectral ink mismatch detection. It can be noticed
from Fig. 8 that the use of adaptive exposure either slightly improves the accu-
racy or remains close to the performance achieved by constant exposure.

We now evaluate the ink mismatch detection accuracy after compensating
for illuminant spectral non-uniformity (color constancy) to that of no compen-
sation as outlined in Sect. 3.4. It can be seen in Fig. 9 that there is only a slight
improvement for some of the ink combinations after using color constancy.
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Fig. 7. Comparison of ink mismatch detection accuracies between raw and normalized
(using Eq. 2) images. Note that the normalization significantly improves accuracy.
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Fig. 8. Comparison of mismatch detection accuracies using constant or adaptive (using
Eq. 1) exposure. Observe that the adaptive exposure strategy results in a more accurate
discrimination between inks of the same color.
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The efficacy of the proposed hyperspectral document imaging system can be
visually appreciated by a qualitative analysis of the example images. Figure 10
shows two example images of blue and black inks. The images are made by
joining samples of ink 1 and ink 2 for both blue and black inks, separately.
The original images are shown in RGB for clarity. The ground truth images are
labeled in different colors to identify the constituent inks in the mixture.

Observe that the raw HS images are yellowish due to the strong illuminant
bias as well as low filter transmittance for the wavelengths in the blue spectrum
range. Besides, spatial non-uniformity of the illumination can be observed from
the center to the edges. The mismatch detection results on raw images indicate
that the clustering is biased by the illumination intensity, instead of the ink
color. After normalization of the raw HS images, it is evident that the effect of
illumination is highly depreciated. This results in an accurate mismatch detection
result that closely follows the ground truth.

We finally observe the effect of color constancy on ink mismatch detection.
Notice that the mismatch detection result is largely unaffected except for a few
noisy pixels which are misidentified as being from a different ink. One of the
clear benefits of color constancy is that it highly improves the visual appearance
of the images by removing the illumination bias.

etoNnettirwdnaHknIkcalBetoNnettirwdnaHknIeulB

Ground Truth Ink Map Ground Truth Ink Map

HS image (raw) HS image (raw)

Result (raw) Result (raw)

HS image (norm) HS image (norm)

Result (norm) Result (norm)

HS image (norm+cc) HS image (norm+cc)

Result (norm+cc) Result (norm+cc)

Fig. 10. An illustration of ink mismatch detection on a blue ink and a black ink
handwritten notes, acquired using adaptive exposure. The ground truth ink pixels are
labeled in pseudo colors (red: ink 1, green: ink 2). The spatially non-uniform illumina-
tion pattern can be observed in raw HS images, with high energy in the center and low
towards the edges. Normalization removes the illumination bias and greatly improves
segmentation accuracy. Color constancy improves the visualization of HS images, while
resulting in comparable accuracy.
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5 Conclusion and Future Work

Hyperspectral imaging of documents has potentially numerous applications in
document analysis. The spatial non-uniformity of illuminant source was com-
pensated to a great extent by the proposed normalization strategy. The variable
filter transmission was compensated for by a linear adaptive exposure func-
tion. Further improvements could be expected by introducing non-linear adap-
tive exposure functions. We also explored color constancy for illuminant spectral
normalization which greatly improved the HS image visualization. More research
attention is required to the limitations of current hardware to address challenges
of illumination variation and variable filter transmission.
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DP110102399 and the UWA Grant 00609 10300067.
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Abstract. Mobile phone camera-based document video scanning is an
interesting research problem which has entered into a new era with
the emergence of widely used, processing capable and motion sensors
equipped smartphones. We present our ongoing research on mobile phone
camera-based document image mosaic reconstruction method for video
scanning of paper documents. In this work, we have optimized the classic
keypoint feature descriptor-based image registration method, by employ-
ing the accelerometer and gyroscope sensor data. Experimental results
are evaluated using optical character recognition (OCR) on the recon-
structed mosaic from mobile phone camera-based video scanning of paper
documents.

Keywords: Camera-based document image analysis · Document image
mosaicing · Image registration

1 Introduction

In recent years, the availability of camera equipped, processing capable, iner-
tial sensors fitted and moderate priced mobile phones (a.k.a. smartphones), has
attracted the attention of the research community to employ them for comple-
menting the classical document scanning devices. The use of these devices for
document scanning provides interesting advantages over the traditional docu-
ment scanning devices. They can be used to scan thick books, historical docu-
ments that are too fragile to touch, text in scenes (walls, whiteboards, etc.), and
large sized documents [8]. However, the use of smartphones introduces new chal-
lenges to document scanning which are not faced by classical document scanning
devices. These challenges include uneven lighting, perspective distortion, non-
planer surfaces, motion blur and low resolution of the cameras [4,8].

In this paper we present our ongoing work on mobile phone camera-based
video scanning of paper documents. The video scanning of a paper document
is achieved by swiping the mobile phone camera over the paper document and
recording the accelerometer sensor data along with capturing the video frames.
During the video scanning the orientation of the mobile phone camera is obtained
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DOI: 10.1007/978-3-319-05167-3 13, c© Springer International Publishing Switzerland 2014
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from the gyroscope data and the user is provided with visual feedback on the
orientation of the phone to avoid perspective distortion. A complete mosaic
image of the paper document is reconstructed from the captured video frames
by employing an optimized keypoint feature descriptor-based image registration
technique. The optimization is achieved by employing the recorded accelerometer
sensor data. The resulting reconstructed mosaic has a higher resolution than a
simple photo of the document taken by the same camera.

In literature the camera-based scanning of paper documents has been
approached by various works which are mainly motivated by panorama recon-
struction and image mosaicing techniques from the computer vision research
community. In [4] first an image feature-based technique is used to estimate the
camera motion and to assist the user to capture images of patches of document.
The estimated camera motion is used with a keypoint feature descriptor-based
technique for registration of captured image patches and reconstruction of a
mosaic of the document. In [14] an algorithm for 2D scanning of a planar scene
is proposed. The topology of the video frames are inferred on a 2D manifold by
alignment of successive video frames and overlapping video frames. The aligned
frames are merged by using a multi-resolution method for constructing a seam-
less mosaic. In [11] local likely arrangement hashing (LLAH), which is originally
an image retrieval technique, is used for keypoint detection and feature descrip-
tion in frames. Images are aligned by matching LLAH feature descriptors and
the feature correspondences are used for combining input frames for reconstruc-
tion of mosaic. In [7], first, captured frames are rectified by removing perspec-
tive distortion using texture flow information. A Hough transform-based voting
scheme is used for finding translation and scaling between video frames. The
reconstruction of the mosaic is achieved by a sharpness-based seamless com-
position of overlapping images. In [17] inertial sensors in mobile phones have
been employed for constructing panoramas on mobile phones. In a first step
the position and relative displacement of video frames are computed by inertial
sensor data. Using the alignment estimation from inertial sensor data, a more
precise alignment of the video frames is computed by using a keypoint feature
descriptor-based technique and the mosaic image is constructed by using the
feature correspondences.

The perspective distortion is very important to be handled in case of camera-
based document scanning. A document image mosaicing technique should
directly or indirectly rectify perspective distortion of the captured frames before
reconstructing the mosaic image. A summary of methods for content-based cor-
rection of the perspective distortion in camera-captured document images is
presented in [5].

In this paper we present our ongoing research on document image mosaic-
ing. We are inspired by the work in [17] for employing the inertial sensors for
document mosaic image reconstruction. However, we are working on elaborating
a lightweight algorithm that could be implemented on smartphones. The two
novel contributions of our work are the following: (1) We use the gyroscope sen-
sor to give visual user feedback to avoid perspective distortion during the video
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scan of the paper document whereas perspective distortion is not considered in
[17]. (2) We compute the direction of swipe to optimize the keypoint feature
descriptor-based image registration method by using only accelerometer sensor
data whereas the authors of [17] optimize a keypoint feature descriptor-based
image registration method by computing the displacement of the mobile phone
from accelerometer and gyroscope sensor data.

The remainder of this paper is organized as follows. We present a detailed
description of our method of video scanning of paper documents in Sect. 2. In
Sect. 3 we discuss the experimental evaluation and the results. In Sect. 4 we
present our conclusion and the future directions of research.

2 Mobile Phone Camera-Based Video Scanning

A block diagram of our method for mobile phone camera-based video scan-
ning of paper documents is presented in Fig. 1. In this section we present a
detailed description of our method for mobile phone camera-based video scan-
ning of paper documents. We first describe the capturing of video frames and the
recording of the accelerometer sensor data along with the gyroscope-based visual
feedback for avoiding perspective distortion. This is followed by a description of
our methodology for finding the direction of swipe (of video scanning), from the
accelerometer data recorded with the captured frames in the video sequence.
Finally we describe the image registration of the frames of the captured video
and the reconstruction of the complete mosaic image of the paper document.

2.1 Video Scanning of Paper Documents

The video scanning of a paper document is achieved by a one-dimensional swipe
of the mobile phone camera on the paper document. The swipe could either be
from the top to the bottom of the document or from the bottom to the top of
the document. During the video scanning we record the accelerometer sensor
data along with capturing of the video frames.

Processing of Accelerometer Sensor Data: An accelerometer in a smart-
phone measures the acceleration α = (αx, αy, αz) of the phone in each direction
of the X, Y and Z-axis. The accelerometers in smartphones are usually not of
very high quality (because of cost constraints) and thus the obtained acceleration
data is very noisy. Hence, the raw accelerometer readings are full of random noise
and are unusable in their original form. The rise in temperature of the mobile
phone (resulting from camera and screen heat) increases the random noise in
the accelerometer data [16]. In order to make sure that the accelerometer read-
ing is as close to the real value as possible, we compute the calibration offset
of the accelerometer sensor by placing the phone on a flat surface and averag-
ing x readings along each of the three axes separately and independently. We
then subtract the calibration offset from the future readings of the accelerom-
eter; hence obtaining calibrated readings. For removing random noise from the
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Alignment and registration of captured video frames

Reconstruction of complete mosaic image

Calculate the dimensions of the mosaic image by employing the
respective homography transformation matrices of

captured video frames

Reconstruct the mosaic image by inverse projection of its
pixels on the captured video frames

Compute (homography) projective transformation of
all the captured frames w.r.t. a reference frame

Compute (homography) projective transformation matrix
between each pair of the successive frames

using keypoint feature descriptor-based technique

Captured video frames
with corresponding

accelerometer readings

Reconstructed
mosaic image
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to minimize the image area for SIFT
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SIFT keypoint detection &
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SIFT keypoint detection &
SIFT feature description

Feature matching
using FLANN

Homography estimation
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Fig. 1. Block diagram of method for mobile phone camera-based video scanning of
paper documents.
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accelerometer readings we smooth the accelerometer readings by using a Kalman
filter-based running average. The smoothed accelerometer readings are recorded
with the video frames. Figure 3 presents respectively the raw (noisy) accelerom-
eter readings for the whole video scanning of a paper document, the calibrated
and smoothed accelerometer readings for the whole video scanning of a paper
document, the raw accelerometer data associated to the captured frames and the
calibrated and smoothed accelerometer data associated to the captured frames,
for the X-axis of the phone accelerometer sensor.

(a) Misaligned triangles result in perspec-
tive distortion.

(b) Well-aligned triangles avoiding per-
spective distortion.

Fig. 2. Screenshots of the interface during video scanning of a paper document.

Use of Gyroscope Sensor Data for Visual User Feedback: In order to
avoid perspective distortion, we employ the gyroscope sensor data for obtaining
the orientation of the mobile phone camera. Modern smartphones are fitted with
3D gyroscopes, which measure the angular velocity ω = (ωx, ωy, ωz) along the X,
Y and Z-axis of the phone. The angular velocity along the X-axis is termed pitch,
along the Y-axis yaw and along the Z-axis roll. We obtain the angular velocity
from the gyroscope as an angle of rotation around each of the three axes. We then
employ it for providing a visual feedback to the user in order to keep the mobile
phone camera parallel to the document plane and so to avoid the perspective
distortion. We show three triangles on the screen for the visual feedback to adjust
the orientation of the device. The three triangles are mapped to the gyroscope
data along the three axes, respectively. A change in orientation of the device
along an axis, rotates its respective triangle on the screen. By aligning any two
of the three triangles, the user can keep the mobile phone parallel to the XY,
YZ or ZX plane. To illustrate it pictorially, the Fig. 2 presents some screenshots
of the interface during the video scanning of a paper document.

2.2 Finding the Direction of Swipe by Using Accelerometer Data

The accelerometer sensor data measures the acceleration of the phone along the
X, Y and Z-axis. We use the calibrated and smoothed accelerometer data for
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(a) Raw accelerometer readings of video scanning of a document.

(b) Calibrated & smoothed accelerometer readings of video scan-
ning of a document.

(c) Raw accelerometer readings associated with video frames.

(d) Calibrated & smoothed accelerometer readings associated with
video frames.

Fig. 3. Accelerometer data recorded for the X-axis of the mobile phone sensor during
video scanning of a paper document.



170 M.M. Luqman et al.

Fig. 4. Windows phone accelerometer sensor coordinate system.

inferring the swipe direction of the mobile phone during the video scanning of
the paper document. The accelerometer readings along each of the three axes is
between −1g and +1g (where g = 9.8m/s2). The document page is placed on a
planar surface (e.g. a table) and we use the phone in landscape mode (as shown
in the screenshots of Fig. 2) for video scanning of documents. This setup makes
the mobile phone’s X-axis as the primary axis of swipe. The sensor coordinate
system, indicating the X, Y and Z-axis of the mobile phone that we use for our
research, is shown in Fig. 4.

To compute the swipe direction of the mobile phone (from the top to the
bottom or from the bottom to the top of the document page) we employ a very
simple methodology. We count the number of positive and negative readings
in the recorded accelerometer data of the frames of a video scan. If there are
more negative values than positive ones, this means that the phone is swiped
in negative direction of the X-axis. And if there are more positive values than
the negative ones, this means that the phone is swiped in positive direction of
the X-axis. A swipe in negative X-axis direction corresponds to a top to bottom
video scan of a paper document whereas a swipe in positive X-axis direction
corresponds to a bottom to top video scan. This simple methodology is robust,
efficient and very useful for detecting the direction of swipe during the video
scanning of paper documents.

2.3 Image Registration of the Video Frames

The captured frames from video scanning of the paper document are registered
by employing a keypoint feature descriptor-based technique. Successive frames
in the video sequence are aligned and the projective transform or homography
is computed between them. Afterwards, the computed homographies between
successive frames are employed for calculating the homography of each frame to
a reference frame in the video sequence.
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Optimized Alignment of Successive Video Frames: For the alignment of
successive frames in the video sequence, we use a keypoint feature descriptor-
based alignment technique. As discussed by [15], the feature-based image align-
ment techniques have some very interesting advantages over pixel-based image
alignment techniques. Namely for mobile phone camera-based video scanning of
paper documents, the feature-based image alignment methods are more efficient
and robust than the pixel-based methods; specially in case of uneven lighting
and scene motions. There are many keypoint detectors and feature descriptors
in the state of the art. They include the famous SIFT [9], SURF [2], FAST [12],
ORB [13] and FREAK [1].

To align two successive frames, we first employ the SIFT keypoint detector
to obtain a set of keypoints in two frames. Second, we extract the SIFT feature
descriptors on each of the detected keypoints in the two frames. Third, we per-
form FLANN-based feature matching [10] between the two frames and employ
RANSAC [3] for refining the initial correspondences obtained by FLANN.

In order to optimize keypoint detection, feature descriptor computation and
feature matching, we use the direction of mobile phone swipe during video scan-
ning. During the keypoint detection and feature descriptor computation phases
we use the direction of swipe to avoid processing the complete image and to
ignore the top and bottom parts of successive frames (or vice versa depending
on the direction of swipe). As a result, it reduces the search space to be exploited
during feature matching. The size of top and bottom parts of successive frames
respectively to be ignored considering the direction of swipe is controlled by a
parameter which is computed automatically for a video sequence and it takes
into account the resolution of video frames (in pixels) and the speed of the swipe
in the sequence (assumed to be constant during the video scanning). The speed
of swipe is estimated from the total number of video frames in the video scan
of a document page. The parameter for ignoring the top and bottom parts of
successive frames is computed as:

G =
h

n
(1)

where G denotes the number of pixel rows to be ignored on the top and bottom
of successive frames respectively, h is the height of captured video frames in
pixels and n is the total number of frames in video sequence.

Homography Computation for Two Successive Frames: We compute the
planar homography or projective transform between two successive frames by
minimizing the backpropagation error and further refine the computed homog-
raphy by using the Levenberg-Marquardt method to minimize the backpropaga-
tion error [15]. The homography or projective transform between two successive
frames is represented by a homography matrix.
For a captured video sequence of n frames given by:

V = {f1, f2, f3, . . . , fn−1, fn} (2)
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the set of homographies between successive frames is:

h = {h(1,2), h(2,3), h(3,4), . . . , h(n−1,n)} (3)

where h(i,j) is the homography between frames fi and fj .

Homography Between Non-successives Frames: Employing the well estab-
lished properties of matrices, the homographies computed for successive frames
are employed in a cascade matrix multiplication, for computing the homogra-
phies between non-successive frames. For example for computing the homogra-
phy h(1,5) between the frames f1 and f5, the homographies h(1,2), h(2,3), h(3,4)

and h(4,5) are matrix multiplied. This permits us to define a homography between
any pair of frames in the video sequence (whether successive or non-successive).

2.4 Reconstruction of the Complete Mosaic

The complete mosaic image of the video-scanned paper document is constructed
by a projection of the pixels in captured frames onto a reference frame. Thus, we
first select a reference frame in the captured video sequence. For simplicity, we
suppose here that the first frame f1 is selected as the reference frame. Then, we
compute the size of the complete mosaic image by projecting the four corners of
each frame in the video sequence using the corresponding homography matrix
of the frame. To avoid holes or missing pixels in the complete mosaic image,
the construction of the complete mosaic image is achieved by inverse projection
of each of its pixels onto the sequence of frames. If a pixel of the mosaic is
projected onto a subpixel in a frame, we use bilinear interpolation for computing
the subpixel intensity from the intensities of the neighboring pixels. If a pixel of
the mosaic is projected onto more than one frames of the video sequence we use
the median value of the intensities of corresponding pixels of those frames.

3 Experimentation

In this section, we evaluate our method for mobile phone camera-based video
scanning of paper documents on video frames captured at a resolution of 1280×
720 pixels captured by a Nokia Lumia 920 smartphone. A custom application
is developed for the capture phase of video scanning of paper documents. Some
screenshots of this application are presented in Fig. 2. The video scanning appli-
cation runs only in landscape mode to force the user to hold the smartphone
with two hands and thus ensuring a stable orientation of the smartphone during
capture.

During these preliminary experimentations the mosaic image reconstruction
was performed on a laptop computer. The video scanning of paper documents
was performed in an office environment with normal lighting conditions. The
phone was kept parallel to the document plane by following the visual feedback
on the orientation of the mobile phone camera, and the swipe was performed
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Table 1. Number of frames captured during video scanning of the documents.

Number of frames captured
Page from video scanning at

1280× 720pixels

01 83
02 74
03 55
04 69
05 82
06 86
07 71
08 79
09 89
10 78
11 58
12 54
13 46
14 79
15 58

Mean 71

slowly and carefully. Table 1 provides the number of frames captured during the
video scanning of the documents.

The experimentation dataset comprises fifteen A4-sized pages of scientific
research papers; containing mostly printed textual content (in English). Some
document pages contain also tables and mathematical equations. The document
pages were printed on A4 pages and were digitized in three different modes, as
given below:

1. image scanned by a classic scanner at 300 dpi grayscale
2. photo taken by the smartphone at a resolution of 1280 × 720 pixels
3. video scanned by the smartphone at a resolution of 1280 × 720 pixels

The image scanned by a classic scanner at 300 dpi serves as reference for
evaluating the quality of reconstructed mosaics. We use the Levenshtein distance
[6] as metric for comparing the OCR results of the images with ground truth. The
Levenshtein distance between two string sequences is the edit distance between
them i.e. the minimum number of single character edits (insert, delete, replace)
required to change one string sequence into the other.

Table 2 presents a comparison of the Google Drive OCR results on documents
for the three digization modes. The OCR results on the reconstructed mosaic
from video scanning of the paper document at 1280×720 pixels, are better than
the results on the single image captured at 1280 × 720 pixels. However they
are not as good as those of the classical scanner scanned image. One important
reason for this is that our method does not perform any camera calibration i.e.
any wide angle lens correction on the captured video frames. The wide angle lens
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Table 2. Experimental results

Levenshtein distance between ground truth
and Google Drive OCR results

# chars Classical scanner Single image at Mosaic from video
Page in page image at 300 dpi 1280 × 720 pixels scan at 1280 × 720 pixels

01 2569 36 1330 37
02 2311 44 808 57
03 1854 10 456 56
04 2353 10 441 125
05 2438 26 885 69
06 2495 22 1061 41
07 2171 20 678 542
08 2524 72 623 99
09 1422 296 785 354
10 2482 235 1417 487
11 2085 9 431 22
12 3286 382 3230 1442
13 4299 61 3786 111
14 3638 107 2112 1451
15 3924 300 3149 606

Mean 2657 109 1413 367

noise is thus inherited by the mosaic image and it eventually effects the OCR
results. A second reason is that when the document pages were placed on the
table for video scanning there was a small curvature at the corners whereas in
case of a scanner this curvatures are flattened by closing the scanner lid. Our
method does not perform any preprocessing of the document page.

Some examples of reconstructed mosaic images in grayscale from mobile
phone camera-based video scanning of A4-sized paper documents are presented
in Fig. 5.

Apart from the advantages of portability and liberty of scanning the docu-
ments of different sizes, the video scanning of paper documents is interesting as
it allows to obtain the mosaic image at a higher resolution than the resolution
of the camera used for capturing the frames. A mobile phone camera with a
resolution of 1280× 720 pixels can take a single image of an A4-sized page at 98
dpi as given by:

dpi =

√
1280 × 720
8.27 × 11.69

= 98 (4)

where, 8.27 × 11.69 is the size of an A4 page in inches.
Whereas when the same mobile phone camera is used for video scanning of

A4-sized pages the reconstructed mosaic images have a much higher resolution
(Table 3).

Table 4 shows a comparison of computation times for the reconstructed
mosaics from video scanning at a resolution of 1280 × 720 pixels of A4-sized
pages. Computation times are shown for mosaic construction with and without



Mobile Phone Camera-Based Video Scanning of Paper Documents 175

(a) Resolution:1389x1663 pixels, 153 dpi (b) Resolution:1442x1761 pixels, 162 dpi

(c) Resolution:1404x1627 pixels, 154 dpi (d) Resolution:1553x1659 pixels, 163 dpi

Fig. 5. Reconstructed mosaic images for A4-sized paper documents from video scan-
ning at 1280 × 720 pixels.
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Table 3. Resolution of the reconstructed mosaics from video scanning of the docu-
ments.

Page Resolution

In pixels In dpi

01 1442 × 1761 162
02 1409 × 1577 152
03 1389 × 1633 153
04 1507 × 1763 166
05 1427 × 1592 153
06 1405 × 1642 154
07 1456 × 1645 157
08 1479 × 1545 154
09 1381 × 1771 159
10 1346 × 1598 149
11 1369 × 1573 149
12 1553 × 1659 163
13 1432 × 1612 155
14 1404 × 1627 154
15 1467 × 1518 152

Table 4. Comparison of computation times

Computation times (seconds) for mosaic
construction of A4-sized pages from
videoscanning at 1280× 720pixels

Page Without optimization With optimization

01 419 401
02 433 333
03 244 223
04 355 336
05 381 369
06 419 401
07 346 330
08 377 361
09 391 375
10 365 338
11 264 251
12 266 259
13 258 257
14 440 421
15 289 278

Mean 350 329
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optimized registration using accelerometer sensor data. Using the optimization a
mean speed up of 21 s could be realized. We would like to highlight that the com-
putation times are presented only to show the optimization of the classic feature
keypoint-based image mosaicing. The times in Table 4 do not represent the best
performance of our method for image mosaicing, since the code is not optimized
yet and the mosaic construction was displayed on the screen step by step. The
latter resulted into high times for mosaic reconstruction; both for optimized and
non-optimized versions.

4 Conclusion

We have presented our ongoing research on the mobile phone camera-based
video scanning of paper documents. Our method employs the gyroscope sensor
of the phone for providing a visual feedback to the user for avoiding perspec-
tive distortion, and the accelerometer sensor of the phone for optimizing the
keypoint feature descriptor-based image mosaicing technique. Our preliminary
experimentation shows that the video scanning of documents not only allows
to reconstruct the full page mosaic image of a document page from its mobile
phone camera-based video scanning, but also reconstructs the full page mosaic
image at a better resolution than the resolution of the camera lens used for video
scanning. The work is in progress and we are working on the detailed experimen-
tal evaluation of the method along with an implementation on the smartphone
platform.

Our ongoing research focus is on employing the gyroscope data for correcting
perspective distortion of the frames in addition to the visual feedback. A second
direction of ongoing research is to use super-resolution techniques for improv-
ing the quality of the mosaic image. In near future we will explore the use of
the ambient light sensor for incorporating the lighting conditions of the video
scan environment in mosaic reconstruction. In medium term we have planned to
include a preprocessing step in our system for rectifying various geometric noises
from mobile phone camera-captured document image frames.

Acknowledgment. The piXL project is supported by the “Fonds national pour la
Société Numérique” of the French State by means of the “Programme d’Investissements
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Abstract. As the field of physical activity recognition matures, we can
build more and more robust pervasive systems and slowly move towards
tracking knowledge acquisition tasks. We are especially interested one
particular cognitive task, namely reading (the decoding of letters, words
and sentences into information) Reading is a ubiquitous activity that
many people even perform in transit, such as while on the bus or while
walking. Tracking reading and other high level user actions gives us more
insights about the knowledge life of the users enabling a whole range of
novel applications. Yet, how can we extract high level information about
human activities (e.g. reading) and complex real world situations from
heterogeneous ensembles of simple, often unreliable sensors embedded in
commodity devices?

The paper focuses on how to use body-worn devices for activity recog-
nition and how to combine them with infrastructure sensing, in general.
In the second part, we take lessons from the physical activity recognition
field and see how we can leverage to track knowledge acquisition tasks
(in particular recognizing reading activities). We discuss challenges and
opportunities.

Keywords: Activity recognition · Reading · Cognitive tasks

1 Introduction

Activity recognition promises more pro-active computing assistants. If comput-
ing can recognize what we do during everyday life, it can actively support us in
our tasks. Traditional context and activity systems focus on physical activities
and rely strongly on specific sensor combinations at predefined positions, orien-
tations etc. While this might be acceptable for some application domains (e.g.
industry), it hindered so far the wide adoption of pervasive computing.

In recent years, physical activity recognition for very simple physical tasks
has become relatively mainstream. industry begins to apply advances in activity
recognition research, we see more and more commercial products that help peo-
ple record their physical life, from simple step counting, over recording sports
exercises, to monitoring sleep quality. Applying even newer results from research
can help to recognize more complex tasks and make inference more robust.

M. Iwamura and F. Shafait (Eds.): CBDAR 2013, LNCS 8357, pp. 179–185, 2014.
DOI: 10.1007/978-3-319-05167-3 14, c© Springer International Publishing Switzerland 2014
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Fig. 1. Example for combining stationary and body worn sensors [1]

2 Robust Activity Recognition

Activity recognition has come a long way, from dedicated sensors in lab set-
tings to being shipped in consumer products. For example, the new iPhone 5 s
counts every step a user does (with the M7 motion co-processor) and tracks their
mobility activity (walking versus driving etc.).

The initial systems only worked with a well-defined set of sensors on pre-
determined positions with known orientation. Yet, what happens if we want
to use the recognition algorithms of these systems with commodity devices?
How do placement variations of electronic appliances carried by the user influ-
ence the possibility of using sensors integrated in those appliances for human
activity recognition? To overcome these problems, we designed a paradigm and
classification for potential problems due to sensor displacement (informally also
depicted in Fig. 2). We categorize possible variations into four classes: environ-
mental placements, placement on different body parts (e.g. jacket pocket on the
chest, vs. a hip holster vs. the trousers pocket), small displacement within a given
coarse location (e.g. device shifting in a pocket), and different orientations.

For each of these variations, I give an overview of our efforts to deal with
them [7]. We also describe initial research on how to dynamically combine envi-
ronmental and body-worn sensors [1,13]. An example setup is shown in Fig. 1).

As we will see this principles more and more applied from industry, there
are still a several open research questions related to activity recognition. First
of all, how can a system combine changing sensor ensembles with heteroge-
nous capabilities to provide reliable inference? We need a standardization for
contextual information, defining lower level activities. For some cases, like modes
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Is the device on the body?

no

yes

Can we determine 
its placement

in the environment?

Can we recognize the body part?

Is it displaced?Did the orientation 
change?

yes no no yes

infer orientation compensateuse as trained

Environmental 
Placement:

Active Sampling

On-body
Placement Recognition

Orientation Recognition
while walking

Heuristics 
for Displacement

Fig. 2. Overview about the research questions and topics discussed in the first part of
the talk.

of locomotion, this is easier solved (e.g. walking, running, standing) for others
it’s a very open question. Also on-body and environmental placement sensing
are far from perfect and can be improved.

3 Towards Tracking Learning Tasks

There are several approaches possible if we talk about analyzing learning tasks.
Sensing brain activity seems to be an obvious choice. Yet, doing this accurately
demands invasive methods: electroencephalography (EEG), functional magnetic
resonance imaging, and electrocorticography. EEG seems the most promising of
those, as there are already some portable devices on the market. Yet, EEG is
quite noisy and motion artifacts can overshadow the signal requiring additional
processing and filtering.

Alternatively, we can track eye movements, which are strongly correlated
with cognitive tasks. However, because eye movements include various types of
information -about the users attentiveness, degree of fatigue, emotional state,
etc.- it can be difficult to isolate the object of interest. There are two prevalent
methods the uses optical eye tracking and using Electrooculography [5].

Sometimes other sensing modalities, like galvanic skin response or motion
can give us insights into the mind. Yet, this is highly dependent on the tasks at
hand. Also galvanic skin response seems to be quite user dependent.

Egocentric cameras are another interesting sensing modality. Although they
are not able to detect cognitive tasks as such, they could be used to assess the
stimuli a user faces or in the context of reading give a quantitative upper limit
on the amount of reading a user can do (as all reading materials are seen by the
camera). The same holds for capacitive sensors or other types of sensing focusing
on physical activity.
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As more and more learning and reading is done on digital devices, augmenting
those devices can also give additional statistics. We can now track how often a
user opens a given book ,when he underlines something, when he closes the book
etc. These types of information are already gathered by Amazon, Google etc.
and give interesting insights if combined with sensing technologies.

3.1 Reading Activities

We try to combine several pervasive sensing approaches (document image
retrieval, motion-based activity recognition, eye tracking etc. Fig. 3) to tackle the
problem of recognizing and classifying knowledge acquisition tasks with a spe-
cial focus on reading [9,10,12]. Tracking reading enables us to gain more insights
about expertise level and potential knowledge of users. We discuss which sensing
modalities can be used for digital and offline reading recognition, as well as how
to combine them dynamically.

Reading is interesting as it’s a basic knowledge acquisition task, it’s relatively
easy to define what constitutes reading yet recognition is sufficiently complex,
actually quite difficult if no eye tracking is used. We believe “Reading” in terms
of cognitive tasks can be similar to “walking” or modes of locomotions in physical
activity recognition. It’s a first starting point that is challenging enough to get
new insides about how to tackle more difficult tasks like comprehension.

As a first step to track reading, they implemented the Wordometer. Analo-
gous to a pedometer counting the number of steps a user takes, the Wordometer
estimates the words a user reads using the eye gaze recorded by a mobile eye

User’s gaze

Coverted gaze

Fig. 3. Inferring the words read on a document by combining document image retrieval
and mobile eye tracker data [10]
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tracker and document image retrieval. We also investigate what you read using
eye gaze. Tracking the document types gives more insights about expertise level
and potential knowledge of users towards a reading log tracking and improve
knowledge acquisition [11]. How often a user reads specific document types can
provide insights into interests (e.g., comic versus belletristic) or language exper-
tise and skills (e.g., computer vision textbooks versus English literature books).

An even more interesting question is whether one can estimate the text com-
prehension and the level of expertise of the reader using eye movements. In an
initial study, they focus on assessing second language skills in students. Wearing
the mobile eye tracker, the participants read several text comprehension sections
from a standardized English test, answered questions, and highlighted difficult
words afterwards. Looking at the frequency of fixations, one can determine all
difficult words marked by the user.

3.2 More General Knowledge Acquisition

Although we focus so far on reading as a fundamental knowledge acquisition task,
the methodology we applied can be easily extended to other learning activities
and to other cognitive tasks (as also described in [4,6,8]). Take comprehension
level, one can not only try to assess the reading comprehension but also the
comprehension of an diagram, picture, video or an arbitrary other stimulus. Of
course, the processing, sensors and analysis might differ significantly. The same
holds for the document type analysis, we can try classifying types of movies or
other art pieces. Yet, how well these systems will work has to be seen. Combining
the cognitive science findings from the lab with robust activity recognition opens
a new insights into the human mind, its functioning and dependencies.

4 Challenges and Opportunities

We could identify 3 major issues that need to be resolved for cognitive activity
recognition to take off:

1. Ground Truth: Even during tracking physical activities, researchers have
sometimes trouble defining the ground truth for some tasks. Some like modes
of locomotion seem fairly easy to describe, others are more difficult e.g. con-
sider “greeting somebody”, this can be a fairly difficult context to describe
and might be interpreted differently depending on cultural background. Now
if we regard cognitive tasks, the problem increases, as it is in general hard
to figure out what goes on in somebodies mind. For example, how do you
define the ground truth for the reading comprehension? Even if you assess
the level of understanding using questions or similar, somebody who did not
understand the test at all might score well because of previous knowledge in
the topic.

2. Sensing technologies: Right now there are very few mobile setups to track
cognitive recognition. Usually they just use a single modality, e.g. mobile eye
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trackers and eeg devices. So far there’s also very little research in doing multi-
modal cognitive task recognition. Defining and finding new sensor modalities
and the combination of them will be hot topics in the future.

3. Privacy: Trusting somebody with our digital communications and physical
activity logs is already challenging. Yet, trusting somebody with our reading
log or our current comprehension level is even more challenging. How to safely
store and process this data without violating privacy and ethical issues is very
critical.

Despite these problems, the field offers a huge set of opportunities. We picked
4 interesting merits in the following.

1. “Quantified” Learning: We don’t need to rely on few talented teachers who
inspire their pupils. We can now better understand what type of learning
might work. Questions that could be answered are: How much reading is
necessary on average to understand this concept? Which are the most efficient
ways to understand a particular topic? Which students/classes are good at a
topic? Where are they lacking? It gets also interesting on an individual level,
as we can now see more about our reading habits and get details about how
well we are performing compared to colleagues, friends, fellow students.

2. Assessing requirements and dependencies in the large: Moving cognitive task
monitoring away from the Lab, enables us to better assess secondary effects
on learning. What are healthy sleeping cycles for learning? Are there types of
food or other living circumstances that are beneficial to mental fitness? For
which types of problems are discussions the right approach? Where is reading
better?

3. Interactive way of storytelling: Initially outlined by Biedert [3] just for eye
tracking, we can tailor story telling towards the user, by observing the mental
state and displaying content accordingly: Making text passages easier or more
dense to read depending on the current capacity and fitness of the reader. We
can also introduce a video or graph when we recognize the user gets bored
by the content and is close to drift away. Enabling cognitive tracking will
revolutionize the way we tell stories.

4. User-Centric Document Analysis: this technology is not only for content con-
sumers but also for content providers. Aggregating the cognitive experiences
of users, we can tag documents with this information giving feedback to the
authors. For example, a lot of users stopped reading after this paragraph.
Most users were lost during this section and were really entertained by this
part.

5 Conclusion

We outlined the emerging field of cognitive activity tracking by looking first at
traditional physical activity recognition and its robust implementation. We sum-
marized our efforts so far about a small part in this new research field, dealing
with knowledge acquisition focusing on reading. We identified reading as a good
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start for exploring this field also over learning towards more general cognitive
activities. Finally, we described where we see challenges and opportunities for
future research. Let’s combine physiology, cognitive science and wearable com-
puting technology to figure out more about our minds and give us new insights
about the functions of our brains.

Acknowledgments. This work was supported in part by the CREST project “Cre-
ation of Human-Harmonized Information Technology for Convivial Society” from the
Japan Science and Technology Agency (JST).
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