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Abstract

The TRP-canonical (TRPC) subfamily, which consists of seven members

(TRPC1–TRPC7), are Ca2+-permeable cation channels that are activated in

response to receptor-mediated PIP2 hydrolysis via store-dependent and store-

independent mechanisms. These channels are involved in a variety of physio-

logical functions in different cell types and tissues. Of these, TRPC6 has been

linked to a channelopathy resulting in human disease. Two key players of the

store-dependent regulatory pathway, STIM1 and Orai1, interact with some

TRPC channels to gate and regulate channel activity. The Ca2+ influx mediated

by TRPC channels generates distinct intracellular Ca2+ signals that regulate

downstream signaling events and consequent cell functions. This requires local-

ization of TRPC channels in specific plasma membrane microdomains and

precise regulation of channel function which is coordinated by various scaffold-

ing, trafficking, and regulatory proteins.

Keywords

TRPC channels • Ca2+ signaling • Protein complex • Trafficking • Regulation •

Function

1 Introduction

TRPC channels were first identified as molecular components of the store-operated

calcium entry (SOCE) channels (Ambudkar et al. 2007; Parekh and Putney 2005;

Venkatachalam and Montell 2007). SOCE is an ubiquitous Ca2+ entry mechanism

that is activated in response to stimulation of plasma membrane receptors coupled

to phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis, inositol 1,4,5-

triphosphate (IP3) generation, and IP3 receptor (IP3R)-mediated Ca2+ release from

the endoplasmic reticulum (ER). The primary trigger for activation of SOCE is

depletion of the ER-Ca2+ store, while refilling of this store leads to inactivation. The

first store-operated Ca2+ current to be identified (ICRAC) was the inwardly rectifying

and highly Ca2+-selective current that was measured in mast cells and T

lymphocytes (Hoth et al. 1993; Hoth and Penner 1992; Parekh and Penner 1997).

The channel mediating this current was termed calcium release-activated calcium

(CRAC) channel. Later studies revealed currents with varying electrophysiological

characteristics in other cell types (Liu et al. 2004; Parekh and Putney 2005). TRPC

channels were proposed as possible molecular components of such channels and

indeed, several TRPC members have been reported to contribute to SOCE,

although data for some TRPCs are not very consistent. TRPC1 was the first

mammalian TRPC channel to be cloned (Wes et al. 1995; Zhu et al. 1995), and

early studies established that when activated by conditions resulting in store

depletion, it is required for the generation of a relatively Ca2+-selective cation

current that was termed ISOC (store-operated Ca2+ current; Liu et al. 2003) to
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distinguish it from ICRAC. TRPC1 has been most consistently demonstrated to

contribute to SOCE in a variety of cell types (Ambudkar et al. 2007; Beech

2005), although heterologous expression of the channel does not always result in

consistent functions.

The critical mechanism that senses the status of ER-[Ca2+] and regulates activa-

tion of plasma membrane channels mediating SOCE remained a challenge for more

than two decades. This component has now been elucidated, with the discovery of

STIM1 as the ER Ca2+-sensor protein involved in regulating the plasma membrane

channels. Further, Orai1 has been established as the pore-mediating component of

CRAC channels. Of further interest is the finding that activation of TRPC channels

following store depletion is dependent not only on STIM1 but also on Orai1

(discussed in detail below). The exact mechanism(s) that regulate TRPC channels

in the non-store-operated mode is not yet clearly elucidated, although

diacylglycerol (DAG), a product of PIP2 hydrolysis, has been suggested as an

endogenous ligand.

2 Physiological Functions of TRPC Channels

The physiological functions ascribed to TRPCs have been determined in cell

cultures and animal models. Some human diseases are also associated with loss

or gain of channel function. In cell lines and primary cell cultures, endogenous

TRPC channel function has been assessed by decreasing protein expression using

shRNA or siRNA (Table 1). TRPC1-mediated Ca2+ entry regulates endogenous

glioma Cl� channels to facilitate cell migration by promoting cell shape and

volume changes (Cuddapah et al. 2013). The channel is also vital for maintaining

permeability of endothelial cell barrier, promoting wound healing following injury

to the intestinal epithelial layer and protection against cell cytotoxicity

(Bollimuntha et al. 2005b; Paria et al. 2004). Other physiological functions that

have been attributed to TRPC1 include cell proliferation and synaptic plasticity

(Fiorio Pla et al. 2005; Li et al. 2012a; McGurk et al. 2011). Knocking down

endogenous TRPC2 levels or expression of a dominant-negative isoform of TRPC2

in rat thyroid FRTL-5 cells severely impacted cell proliferation and migration, as

well as cellular adhesion (Sukumaran et al. 2013). TRPC2 and anoctamin 1 have

been proposed to function synergistically to modulate iodide transport in thyroid

cells (Viitanen et al. 2013). TRPC3 is involved in proliferation and differentiation

of various cell types, such as myoblasts, cardiac fibroblasts, and primary T cells

(Harada et al. 2012; Wenning et al. 2011; Woo et al. 2010). In some cells, more than

one TRPC channels have been shown to regulate the same physiological event. For

example, TRPC3, TRPC4, and TRPC5 facilitate in vitro endothelial tube formation

by promoting proliferation of endothelial cells (Antigny et al. 2012). TRPC5 and

TRPC6 regulate migration of fibroblasts and kidney podocytes in an antagonistic

manner, whereby TRPC5 activates Rac1 to promote motility but TRPC6 activates

RhoA to inhibit motility (Tian et al. 2010). TRPC5 also plays an important role in

facilitating migration of vascular smooth muscle cells, as well as regulating neurite
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extension and growth cone morphology of hippocampal neurons (Greka et al. 2003;

Tian et al. 2010; Xu et al. 2006). TRPC6 regulates the growth of pontine neurons

(in addition to TRPC3) (Li et al. 2005) and prostate cancer epithelial cells (Thebault

et al. 2006).

The physiological functions of TRPC channels has been revealed by studies using

knockout mouse models (discussed in further detail in Chapters 2 to 8 of volume 1,

Table 1 Cell-based assays used to delineate physiological functions of TRPC1–7 channels

TRPC

Physiological

function

Protein

manipulation Cell type References

1 Cell

migration

Knockdown Human malignant gliomas Cuddapah et al. (2013)

Overexpression,

knockdown

Intestinal epithelial cells Bomben et al. (2011),

Rao et al. (2006)

Cell

proliferation

Knockdown Neural stem, hippocampal

neural progenitor cells

Fiorio Pla et al. (2005),

Li et al. (2012a), McGurk

et al. (2011)

Synaptic

plasticity

Knockdown Neuromuscular junctions McGurk et al. (2011)

2 Cell

proliferation,

migration

Knockdown,

dominant

negative

Rat thyroid cells Sukumaran et al. (2013)

Iodide

transport

Knockdown Rat thyroid cells Viitanen et al. (2013)

3 Cell

proliferation

Knockdown Muscular dysgenic

myoblasts, cardiac

fibroblasts, endothelial

cells, pontine neurons,

primary T cells

Antigny et al. (2012),

Harada et al. (2012), Li

et al. (2005), Wenning

et al. (2011), Woo

et al. (2010)

Cell

differentiation

Knockdown Muscular dysgenic

myoblasts, cardiac

fibroblasts

Harada et al. (2012),

Woo et al. (2010)

4 Cell

proliferation

Knockdown Endothelial cells Antigny et al. (2012)

5 Cell

migration

Knockdown Fibroblasts, kidney

podocytes

Tian et al. (2010)

Antibody block Vascular smooth muscle

cells

Greka et al. (2003), Tian

et al. (2010), Xu

et al. (2006)

Cell

proliferation

Knockdown Endothelial cells Antigny et al. (2012)

Neurite

extension,

growth cone

morphology

Dominant-

negative,

interacting

protein

knockdown

Hippocampal neurons Greka et al. (2003), Tian

et al. (2010), Xu

et al. (2006)

6 Cell

migration

Knockdown Fibroblasts, kidney

podocytes

Tian et al. (2010)

Cell

proliferation

Knockdown Pontine neurons, prostate

cancer epithelial cells

Li et al. (2005), Thebault

et al. (2006)
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“TRPC1”, “TRPC2”, “TRPC3: AMultifunctional SignalingMolecule”, “TRPC4- and

TRPC4-Containing Channels”; “TRPC5”, “TRPC6: Physiological Function and

Pathophysiological Relevance” and “Transient Receptor Potential Canonical 7: A

Diacylglycerol-Activated Non-selective Cation Channel”). In addition to knockout

mouse models, mice expressing dominant-negative isoforms of TRPC3, TRPC4, and

TRPC6 reveal that these channels are involved in the development of cardiac hyper-

trophy via a calcineurin-NFAT signaling pathway (Wu et al. 2010). Various

dominant-negative isoforms of TRPCs have been generated, e.g., pore-dead channel

created by mutations in the pore region. Others, such as the TRPC3 N-terminus

(amino acids 1–302), also exert dominant-negative effects when overexpressed by

disrupting channel assembly since TRPCs interact via their N-terminal regions (Balzer

et al. 1999). In the case of TRPC4, an N-terminal fragment that includes the first

ankyrin-like repeat has been used (Schindl et al. 2008). In other studies, TRPC

function has been revealed by using disease models. A mouse model for Parkinson’s

disease (PD) shows the vital role of TRPC1 in maintaining calcium homeostasis,

promoting neuronal survival to limit neuronal degeneration, and possibly slowing

down or preventing the onset of progression of PD. PD-associated symptoms are

ameliorated by heterologous expression of TRPC1 in neuronal cells or in vivo

intranigral injection of TRPC1-containing adenovirus particles in PD mouse model

(Selvaraj et al. 2009, 2012).

A number of other mouse models also reveal important information regarding

TRPC channel regulation. Physiological functions attributed to TRPC1 are severely

affected in caveolin-deficient (Cav-1�/�) and Homer1-deficient (Homer1�/�) mice.

Knocking out caveolin-1 (Cav-1) results in mislocalization of TRPC1 due to aber-

rant trafficking, leading to impaired channel function that significantly reduces

salivary gland fluid secretion (Pani et al. 2012). Loss of Homer1, a scaffolding

protein that mediates TRPC1 interaction with the IP3R, causes aberrant calcium

signaling resulting in skeletal myopathy (Stiber et al. 2008). TheMecp2mutant mice

are a model system for Rett syndrome, which is caused by loss-of-function muta-

tions in theMecp2 gene. These mice display sensory and motor abnormalities due to

loss of TRPC3 function in hippocampal neurons, although potential contributions

from TRPC6 or TRPC7 have not been ruled out (Li et al. 2012b). Interestingly, in

some studies, an increase of TRPC expression and function has been proposed to

underlie disease onset and/or progression. Studies with Duchenne muscular dystro-

phy (mdx) mice demonstrate an increase in TRPC1-mediated Ca2+ influx induces

muscle damage (Gervasio et al. 2008; Williams and Allen 2007). Expression of

TRPC1, TRPC5, and TRPC6 is significantly elevated in adrenalmedulla of Ossabaw

miniature pigs are used to study the metabolic syndrome or pre-diabetes state

(Hu et al. 2009). Perturbations in Ca2+ signaling and homeostasis have been

correlated with increased TRPC3 expression and function in cardiomyocytes

obtained from muscle LIM protein knockout mice (model for the myocardial

disorder, dilated cardiomyopathy) (Kitajima et al. 2011) and spontaneously hyper-

tensive rats (model for hypertension) (Adebiyi et al. 2012; Bush et al. 2006; Noorani

et al. 2011). TRPC7 has been implicated in myocardial apoptosis failure as its

expression is upregulated in Dahl salt-sensitive rats with heart failure and has been

proposed to be a novel target for treatment of heart failure (Satoh et al. 2007).

Physiological Functions and Regulation of TRPC Channels 1009



The genes encoding TRPC channels have also been linked to various human

diseases, such as cardiovascular, pulmonary, and neurological, as well as cancer

(Nilius and Owsianik 2010). For example, trpc5 and trpc6 loci are linked with

infantile hypertrophic pyloric stenosis, a very common condition of stomach

obstruction that is characterized by projectile vomiting. Increased trpc6 promoter

activity and TRPC6 expression have been linked to the development of idiopathic

pulmonary arterial hypertension, which is caused by excessive proliferation of

pulmonary artery smooth muscle cells. Nonetheless, the only TRPC-related

channelopathy reported so far is focal and segmental glomerulosclerosis (FSGS),

which is linked to a mutation of the trpc6 gene. These mutations resulted in

alterations of residues in the N- and C-termini, leading to significantly elevated

TRPC6-mediated calcium signaling that may affect channel interaction with

podocyte structural proteins, leading to defects in the filtration barrier. Alterna-

tively, the elevated calcium signaling mediated via TRPC6 may lead to apoptosis,

resulting in a defective permeability barrier (Mukerji et al. 2007; Nilius and

Owsianik 2010). Nonetheless, some TRPC6 variants linked to FSGS have also

been reported to not cause any change in channel activity (Reiser et al. 2005).

3 TRPC Channel Complexes

Much of the initial insights into TRPC protein interactions are based on studies with

the Drosophila TRP channel which is localized in the Drosophila eye and plays a

critical role in phototransduction (Venkatachalam and Montell 2007). This TRP

channel resides in a multiprotein signalplex with proteins that are important for

proper channel assembly, retention, activity, regulation of phototransduction, and

downstream signaling. The scaffolding protein INAD forms the core of this com-

plex since it has the ability, via multiple PDZ domains, to bind to numerous

signaling proteins and serve as a platform for their interaction with TRP and

regulation of channel function (Venkatachalam and Montell 2007). Critical amino

acid sequences that are conserved in TRP channel families appear to be involved in

these various, but specific, protein–protein interactions. These include the coiled-

coiled domain, ankyrin repeat region, calmodulin- and lipid-binding domains, as

well as other less well-characterized protein binding domains. Since mammalian

TRPC proteins share many of the same structural components as the Drosophila
TRP channel, it has been hypothesized that the individual TRPC protein is also

capable of forming homomeric or heteromeric interactions with other TRPC

channels and signaling proteins. It is now well established that a number of key

signaling and scaffolding proteins are associated with mammalian TRPC channels

(Ambudkar et al. 2006; Ambudkar and Ong 2007; Kiselyov et al. 2007).

3.1 TRPC1

TRPC1 interacts with other TRPCs to form channels with diverse properties,

ranging from relatively Ca2+-selective to non-selective (Ca2+ vs. Na+) (Cheng

1010 H.L. Ong et al.



et al. 2013). In human submandibular gland (HSG) cells, TRPC1 contributes to a

relatively Ca2+-selective cation channel, possibly via a homomeric TRPC channel

(Liu et al. 2004). Several TRPCs are endogenously expressed in cells, for example,

TRPC1 and TRPC3 in HEK293 cells and neuronal cells (Zhu et al. 1995, 1996).

Based on the association of TRPC1 and TRPC3 in heterologous expression

systems, it can be suggested that the endogenous channels can also assemble in

heteromeric complexes. Indeed, endogenous heteromeric TRPC channels have

been described in different cell types: e.g., TRPC1 +TRPC3 in HSY cells (Liu

et al. 2005), TRPC1 +TRPC3 +TRPC7 in HEK293 cells (Zagranichnaya

et al. 2005), TRPC1 +TRPC4 in mesangial cells (Sours-Brothers et al. 2009) and

endothelial cells (Sundivakkam et al. 2012), and TRPC1+TRPC5 in neuronal cells,

vascular endothelial cells, and vascular smooth muscle cells (Goel et al. 2002; Shi

et al. 2012; Strubing et al. 2001; Xu et al. 2006). TRPC1 forms a macromolecular

complex with TRPC6, SERCA, and IP3R following passive depletion of the

ER-Ca2+ stores in human platelets (Redondo et al. 2008).

TRPC1 also interacts with non-TRPC channels, such as Orai1 (Cheng

et al. 2008; Lu et al. 2010), TRPV4 (Ma et al. 2010, 2011), and TRPV6 (Schindl

et al. 2012). The association with Orai1 is a critical determinant of TRPC1 function

(further discussed below). Although it is unclear whether there is a physical

interaction between the two channels, studies have clearly established that Orai1

and TRPC1 form distinct STIM1-gated channels in the membrane that are activated

following store depletion (Cheng et al. 2008; Lu et al. 2010). In a recent study, a

splice variant of TRPC1 has been shown to regulate the activity of Orai1 (Ong

et al. 2013). TRPC1 +TRPV4 forms a heteromeric channel involved in SOCE in

vascular smooth muscle cells as well as endothelial cells (Ma et al. 2010, 2011).

TRPC1 can also interact with and negatively regulate TRPV6 channel activity,

without generation of a heteromeric channel, in HEK293 cells (Schindl et al. 2012).

In addition to calcium channels, TRPC1 interacts with a wide range of signaling

proteins, as well as scaffolding and trafficking proteins (Table 2). The TRPC1

signaling complex contains key Ca2+ signaling proteins that function upstream in

the agonist-activated signaling cascade, such as PLC, CaM, Gq/11, IP3R, PMCA,

SERCA, and STIM1 (Cheng et al. 2008; Heo et al. 2012; Huang et al. 2006;

Lockwich et al. 2000; Lu et al. 2010; Ng et al. 2009; Ong et al. 2007; Pani

et al. 2009; Redondo et al. 2008; Selvaraj et al. 2012 ; Singh et al. 2002;

Sundivakkam et al. 2009; Tang et al. 2001; Yuan et al. 2003). Such findings have

led to the proposal that TRPC1 channel complexes are composed of proteins from

both ER and plasma membranes and likely represent cellular microdomains where

these two membranes are in close proximity to each other. The interaction with

STIM1 is critically required for channel activation following store depletion.

Additionally, TRPC1 activity is also regulated via its binding to IP3R as it has the

CaM-/IP3R-binding (CIRB) domain in the C-terminus. Both CaM and IP3R bind

competitively to TRPC1 to modulate channel activity, with IP3R involved in

channel activation and CaM regulating the Ca2+-dependent feedback inhibition

(Singh et al. 2002; Tang et al. 2001). It is interesting that the STIM1- and IP3R-

binding domains lie in close proximity in the C-terminus of TRPC1. However, it is

yet unclear whether STIM1 and the IP3R are simultaneously involved in activation
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Table 2 Interacting partners for TRPC1–7 channels

Channel Other channels Signaling proteins

Scaffolding and trafficking

proteins

TRPC1 TRPC1a

TRPC3 (Xu et al. 1997)

TRPC4, TRPC5 (Strubing

et al. 2001)

TRPC6 (Strubing

et al. 2003)

TRPC7 (Zagranichnaya

et al. 2005)

TRPV4 (Ma et al. 2010)

TRPV6 (Schindl

et al. 2012)

Orai1 (Cheng et al. 2008)

IP3R, CaM, Gq/11 (Lockwich

et al. 2000)

PLCγ (Tu et al. 2005)

PMCA (Singh et al. 2002)

SERCA (Redondo et al. 2008)

STIM1 (Huang et al. 2006)

β-tubulin (Bollimuntha

et al. 2005a)

Cav-1 (Lockwich

et al. 2000)

Enkurin (Sutton

et al. 2004)

Homer (Yuan et al. 2003)

MxA (Lussier et al. 2005)

RhoA (Mehta et al. 2003)

SNAP-25, VAMP

(Redondo et al. 2004)

TRPC2 TRPC6 (Chu et al. 2004;

Tong et al. 2004)

CaM (Tang et al. 2001)

epoR, IP3R, PLCγ (Chu
et al. 2004; Tong et al. 2004)

STIM1 (Huang et al. 2006)

Enkurin (Sutton

et al. 2004)

Homer1 (Yuan et al. 2003)

RTP1 (Mast et al. 2010)

TRPC3 TRPC1, TRPC4, TRPC5

(Strubing et al. 2003)

TRPC6, TRPC7

(Hofmann et al. 2002)

Orai1 (Liao et al. 2007)

IP3R (Kiselyov et al. 1999)

CaM (Zhang et al. 2001)

CSR (Bandyopadhyay

et al. 2012)

Gq/11, PLCβ (Lockwich

et al. 2001)

PLCγ (Patterson et al. 2002)

PMCA (Kim et al. 2006a)

RACK1 (Bandyopadhyay

et al. 2008)

SERCA (Lockwich

et al. 2001)

AP-2, clathrin, dynamin,

synaptotagmin

(Lockwich et al. 2008)

Cav-1, Ezrin (Lockwich

et al. 2001)

Homer (Kim et al. 2006a)

MxA (Lussier et al. 2005)

RACK (Bandyopadhyay

et al. 2008)

SNARES, syntaxin,

VAMP2 (Singh et al. 2004)

TRPC4 TRPC1 (Strubing

et al. 2001)

TRPC3, TRPC6(Strubing

et al. 2003)

TRPC5 (Hofmann

et al. 2002)

Fyn (Odell et al. 2005)

IP3R, CaM (Tang et al. 2001)

PLCβ (Tang et al. 2000)

Protein 4.1 (Cioffi et al. 2005)

SESTD1 (Miehe et al. 2010)

STIM1 (Huang et al. 2006)

Cav-1 (Murata et al. 2007)

Homer (Yuan et al. 2003)

MxA (Lussier et al. 2005)

NHERF (Tang et al. 2000)

ZOI (Song et al. 2005)

TRPC5 TRPC1 (Strubing

et al. 2001)

TRPC4 (Hofmann

et al. 2002)

IP3R, CaM (Tang et al. 2001)

NCS-1 (Hui et al. 2006)

SESTD1 (Miehe et al. 2010)

STIM1 (Huang et al. 2006)

AP-2, clathrin, dynamin

(Goel et al. 2005)

EB50, NHERF (Tang

et al. 2000)

Enkurin(Sutton et al. 2004)

Homer (Yuan et al. 2003)

MxA (Lussier et al. 2005)

PI(3)K, PIP(5)K, Rac1

(Bezzerides et al. 2004)

Stathmin (Greka

et al. 2003)

TRPC6 TRPC1, TRPC4, TRPC5

(Strubing et al. 2003)

TRPC2 (Chu et al. 2004)

TRPC3, TRPC7

IP3R, CaM, Calcineurin (Tang

et al. 2001)

FKBP12 (Kim and Saffen

2005)

Clathrin, dynamin (Goel

et al. 2005)

MxA (Lussier et al. 2005)

PI(3)K, PTEN (Monet

(continued)
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of TRPC1. It is interesting to speculate that the level and type of physiological

stimuli may have an impact on the channel regulation. Interaction between TRPC1

and IP3R has been reported to be mediated by RhoA in endothelial cells (Mehta

et al. 2003) and Homer1 in HEK293 cells (Kiselyov et al. 2007). Additionally,

RhoA (Mehta et al. 2003) and other proteins such as Cav-1 (Ambudkar et al. 2006;

Brazer et al. 2003; Lockwich et al. 2000) and β-tubulin (Bollimuntha et al. 2005a)

affect surface expression of TRPC1. TRPC1 interaction with Cav-1 and RhoA is

suggested to mediate its localization in lipid raft domains where TRPC1 channels

are assembled and activated in response to store depletion (Pani et al. 2008). Further

studies will be required to establish the exact contributions of each interacting

protein in the regulation of TRPC1.

3.2 TRPC2

While the human Trpc2 is a pseudogene and does not form a functional channel

(Wes et al. 1995; Zhu et al. 1995), TRPC2 in other mammals (e.g., rat, bovine, and

mouse) forms functional channels in different cell types and tissues, such as the

vomeronasal organ (VNO), testis, spleen, and liver (Liman et al. 1999 ; Vannier

et al. 1999; Wissenbach et al. 1998). Few studies have looked at the interactions

between TRPC2 and other TRPC channels and various signaling proteins. When

heterologously expressed in HEK293 cells, TRPC2 interacts with endogenous

Table 2 (continued)

Channel Other channels Signaling proteins

Scaffolding and trafficking

proteins

(Hofmann et al. 2002)

Orai1 (Liao et al. 2007)

Fyn (Hisatsune et al. 2004)

Gαq/11 (Bandyopadhyay

et al. 2005)

mAChR, PKC (Kim and

Saffen 2005)

PLCγ (Hirschler-Laszkiewicz
et al. 2009)

SERCA (Redondo et al. 2008)

et al. 2012)

Rab9, Rab11 (Cayouette

et al. 2010)

RhoA (Tian et al. 2010)

Syntaxin (Bandyopadhyay

et al. 2005)

TRPC7 TRPC1 (Zagranichnaya

et al. 2005)

TRPC3 (Hofmann

et al. 2002)

TRPC5 (Saleh et al. 2008)

TRPC6 (Hofmann

et al. 2002)

cGMP-dependent protein

kinase (Yuasa et al. 2011)

IP3R, CaM (Tang et al. 2001)

MxA (Lussier et al. 2005)

Channel–protein interactions are shown using methods such as immunoprecipitation, yeast two

hybrid assays, GST fusion protein pull-down, and microscopy imaging techniques (e.g., immuno-

fluorescence, TIRF, and FRET)
aAmbudkar and Singh (unpublished results)
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Homer1 and IP3R (Yuan et al. 2003), but not with other TRPCs (Hofmann

et al. 2002). Nonetheless, TRPC2 has been shown to interact with TRPC6 and

signaling proteins, erythropoietin receptor, IP3R, and PLCγ in primary

erythroblasts (Chu et al. 2004; Tong et al. 2004). Additionally, TRPC2 forms a

signaling complex with the receptor-transporting protein 1 (RTP1), Homer1, and

IP3R in the VNO (Mast et al. 2010). Other signaling proteins that interact with

TRPC2 include STIM1 (Huang et al. 2006) and CaM (Tang et al. 2001; Yildirim

et al. 2003). TRPC2 has been reported to co-localize with anoctamin 1 in the

vomeronasal epithelium (Dibattista et al. 2012), although the interaction between

the two proteins has not been confirmed using other techniques such as immuno-

precipitation, FRET and TIRF.

3.3 TRPC3

While TRPC3, TRPC6, and TRPC7 share considerable homology in their amino

acid sequences, as well as modes of activation, their physiological properties and

function are quite distinct (Owsianik et al. 2006; Putney 2005). Depending on the

level of expression and its heteromeric interactions with other TRPC channels,

TRPC3 can form both store-independent and store-dependent channels in different

cell types. As shown in Table 2, TRPC3 interacts with almost every member of the

TRPC subfamily, as well as TRPM4 (Park et al. 2008) and Orai1 (Liao et al. 2007;

Woodard et al. 2010). A fairly comprehensive list of TRPC3-associated proteins

was identified in an earlier proteomic study, including proteins associated with Ca2+

entry and signaling, neural growth, vesicle fusion, mitochondria, endocytosis, actin

cytoskeleton, and microtubules (Lockwich et al. 2008). As noted above, TRPC1

+TRPC3 and TRPC1 +TRPC3 +TRPC7 contribute to SOCE. TRPC3 has been

suggested to act concertedly with TRPC1 to mediate SOCE in H19-7 hippocampal

neuronal cells (Wu et al. 2004). Store dependence of TRPC3 might also be

mediated by its interactions with Orai1 (Liao et al. 2007) and STIM1, the latter

likely dependent on an interaction of TRPC3 with TRPC1 (Yuan et al. 2007). In

addition to activation via the G protein/PLC-mediated pathway, heteromeric

TRPC3 +TRPC4 channels in porcine aortic endothelial cells are redox activated

(Poteser et al. 2006). Further research is required to delineate the molecular

interactions involved in regulating TRPC3 channel assembly and function.

As seen with TRPC1, TRPC3 also interacts with a number of key Ca2+ signaling

proteins involved in receptor-stimulated Ca2+ mobilization, such as PIP2 hydrolysis

(PLCβ, Gq/11), IP3R, and the calcium-sensing receptor (CSR) (Table 2). SERCA

and PMCA pumps also co-immunoprecipitate with TRPC3 (Bandyopadhyay

et al. 2005; Kiselyov et al. 2007; Lockwich et al. 2001, 2008). Further, scaffolding

proteins such as Homer or RACK1 interact with TRPC3 and modulate its interac-

tion with IP3R (Bandyopadhyay et al. 2008; Kiselyov et al. 2007). A number of

protein interactions are involved in plasma membrane localization of TRPC3

(further discussed below).
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3.4 TRPC4

TRPC4 is most closely related to TRPC5, sharing 65 % amino acid identity, but

both proteins diverge in the last 220 amino acids. There is general consensus that

TRPC4 forms an SOC channel even though it has been shown to form constitutively

active or store-independent channels in some studies (Parekh and Putney 2005;

Venkatachalam and Montell 2007). Heteromeric interactions have been described

between TRPC4 and other TRPCs (Table 2) (Alvarez et al. 2008; Ambudkar

et al. 2006; Ambudkar and Ong 2007; Antoniotti et al. 2006; Chen et al. 2009;

Cheung et al. 2011; Murata et al. 2007; Phelan et al. 2013; Poteser et al. 2006;

Puram et al. 2011; Riccio et al. 2009; Sabourin et al. 2009; Sundivakkam

et al. 2012; Woo et al. 2008; Zimmermann et al. 2011). As described above for

TRPC1 and TRPC3, TRPC4 heteromultimerizes with TRPC6 and, via its direct

interaction with STIM1, forms a TRPC4 +TRPC6 channel that is store-dependent

(Yuan et al. 2007). In intestinal smooth muscle cells, TRPC4 and TRPC6 channels

are simultaneously activated by muscarinic receptors and contribute independently

to the muscarinic receptor-induced cation current. Therefore, TRPC4 and TRPC6

channels couple muscarinic receptors to depolarization of intestinal smooth muscle

cells and voltage-activated Ca2+ influx and contraction, thereby accelerating small

intestinal motility in vivo (Ambudkar 2009; Tsvilovskyy et al. 2009). The interac-

tion between STIM1 and TRPC4 was proposed to be the activation mechanism of

the heteromeric TRPC1 +TRPC4 channels in glomerular mesangial cells (Sours-

Brothers et al. 2009). Another protein vital for TRPC4 activity is protein 4.1, which

functionally links TRPC4 to the actin cytoskeleton and spectrin in endothelial cells

(Cioffi et al. 2005). Protein 4.1 and another adaptor protein, SESTD1, have been

proposed to stabilize TRPC4 in a macromolecular complex associated with the

cytoskeleton. SESTD1 associates with both TRPC4 and TRPC5 via the CIRB

domain and functions to couple TRPC channel activity to lipid signaling (Miehe

et al. 2010).

Signaling proteins involved in interactions with TRPC4 include the

PDZ-domain proteins NHERF and ZO1 via the “VTTRL” sequence in the

C-terminus of TRPC4 and PLC (Tang et al. 2000), as well as fyn (Odell

et al. 2005). The dynamic interplay between tyrosine kinases, TRPC4 and

NHERF, regulates cell surface expression and activation of the channel. TRPC4

also associates with the caveolae where growth factor receptor signaling proteins as

well as NHERF-binding proteins, such as ezrin, are localized (Torihashi

et al. 2002). It has been suggested that the interaction with NHERF and Z01 provide

a scaffold to position the channel in the apical or lateral regions of polarized cells

such as endothelial cells.

3.5 TRPC5

Heterologously expressed TRPC5 forms a non-selective channel that can be

activated by receptor stimulation but not store depletion in HEK293 (Schaefer
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et al. 2000), PC12 (Ohta et al. 2004), and murine stomach cells (Lee et al. 2003) or

directly by Ca2+ in HEK293 cells (Blair et al. 2009; Gross et al. 2009). TRPC5 can

potentially form multimeric channels with other TRPCs (Table 2), e.g., TRPC1

+TRPC5 in neurons, vascular endothelial cells, and vascular smooth muscle cells

(Goel et al. 2002; Shi et al. 2012; Strubing et al. 2001). Heterologously expressed

TRPC5 forms a heteromeric channel with TRPC4 (Schindl et al. 2008). TRPC5 also

has the sequence “VTTRL” in its C-terminus that mediates its interaction with the

PDZ-binding proteins, NHERF and ezrin/moesin/radixin-binding phosphoprotein

50 (EBP50) (Obukhov and Nowycky 2004; Tang et al. 2000). NHERF mediates

TRPC5 association with PLCβ and also regulates surface expression of TRPC5,

whereas EBP50 links the channel to the actin cytoskeleton and modulates its

activation kinetics following cell stimulation. Two CaM-binding sites located in

the C-terminus of TRPC5 are involved in modulating channel activity (Tang

et al. 2001). While myosin light chain kinase (MLCK) and PKC have been

shown to regulate TRPC5 function, it is not clear whether these kinases exert

their effects directly on the channel or indirectly by modulating the status of the

actin cytoskeleton. Inhibition of MLCK activity adversely impacts channel activa-

tion, whereas PKC regulates channel desensitization following agonist stimulation.

Additionally, activation of MLCK by Ca2+/CaM has been proposed to prolong

channel activity by enhancing surface expression of TRPC5 (Kim et al. 2006b;

Shimizu et al. 2006). Trafficking of TRPC5 to specific sites in the hippocampal

neurons is determined by its interaction with the exocyst component protein

stathmin-2, SNARE proteins, and other trafficking proteins such as dynamin,

clathrin, and MxA (Goel et al. 2005; Greka et al. 2003). Moreover, the neuronal

calcium sensor-1 (NCS-1) binds to the C-terminus of TRPC5 (Hui et al. 2006) and

is involved in retardation of neurite outgrowth by TRPC5 homomeric channel

(Bezzerides et al. 2004).

3.6 TRPC6

TRPC6 has been widely shown to be activated by DAG and not by internal Ca2+

store depletion (Dietrich et al. 2005; Putney 2005). Nonetheless, several studies

report that activation of TRPC6 by store depletion is mediated by its association

with Orai1 (Liao et al. 2007) and TRPC4 (which directly binds STIM1) (Yuan

et al. 2007). Heteromeric TRPC6 channels have also been reported in different cell

types, such as TRPC3 +TRPC6 in pontine neurons (Li et al. 2005) and prostate

cancer epithelial cells (Thebault et al. 2006) and TRPC6 +TRPC7 in A7r5 cells

(Maruyama et al. 2006). TRPC6 channel activity is determined via its interactions

with different signaling proteins. The tyrosine kinase, fyn, interacts with TRPC6

and modulates channel activity via tyrosine phosphorylation in COS-7 cells

(Hisatsune et al. 2004). Stimulation of neuronal PC12D cells with acetylcholine

results in formation of a multiprotein complex of TRPC6, M1 mAChR and PKC,

and DAG production. While DAG activates TRPC6, DAG-activated PKC

phosphorylates the channel to inhibit it (Kim and Saffen 2005).
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TRPC6 also undergoes trafficking to the plasma membrane, and several proteins

that associate with the channel have a role in this process, such as enkurin (Sutton

et al. 2004), actinin, actin, and drebrin (Goel et al. 2005), and endocytic vesicle-

associated proteins (Goel et al. 2005; Lussier et al. 2005). TRPC6 also contains the

conserved CIRB domain in the C-terminus, and CaM reportedly regulates TRPC6

activation (Tang et al. 2001; Yuan et al. 2003).

3.7 TRPC7

Since the first isolation of TRPC7 by screening the fetal brain and caudate nucleus

cDNA libraries (Nagamine et al. 1998), there are relatively few studies that report

its properties and function. Both store-dependent and store-independent modes of

activation, as well as constitutive activation, have been reported for TRPC7

(Numaga et al. 2007). Multimeric TRPC1 +TRPC3 +TRPC7 channels function

as SOC channels, whereas TRPC3 +TRPC7 channels appear to be

DAG-activated channels, in HEK293 cells (Zagranichnaya et al. 2005). Addition-

ally, function of TRPC7 has been reported to be modulated by cGMP-dependent

protein kinase 1α (Yuasa et al. 2011), CaM, IP3R, and PIP2 (Ju et al. 2010; Mery

et al. 2001; Tang et al. 2001; Yuan et al. 2003). Little is known about the

mechanisms regulating the trafficking and localization of TRPC7, even though it

has been shown to interact with IP3R, CaM, and MxA (Table 2).

4 Regulation of TRPC Channel Function by Intracellular Ca2+

Store Depletion

As discussed above, all TRPC channels are activated in response to stimulation of

plasma membrane receptors that result in PIP2 hydrolysis. Some TRPCs are

regulated by store depletion induced following stimulation by physiological

agonists as well as treatment of cells with passively depleting agents such as

thapsigargin and cyclopiazonic acid. Furthermore, in these cases, channel function

is blocked by conditions that inhibit SOCE, such as the application of 1 μM Gd3+

and 10 μM 2APB. Typically, TRPC1 and TRPC4 have been suggested to be store-

operated while TRPCs 3, 5, 6, and 7 have shown to be store-independent. The

mechanisms by which store-independent regulation of TRPC channels occurs,

presumably via PIP2 hydrolysis or DAG, are not very well established. Here we

will summarize the presently available data on the regulation of TRPC channels by

store depletion.

4.1 Role of STIM1

Considerable progress has been made regarding the TRPC channels that contribute

to SOCE. In 2005, STIM1 was identified as the ER calcium sensor that regulates
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SOCE. STIM1 is diffusely localized in the ER in resting conditions, and upon Ca2+

store depletion, it aggregates and translocates to the periphery of the cells where it

interacts with both Orai1 and TRPC channels in specialized ER-plasma membrane

(PM) junctional domains. In these regions, the ER and plasma membrane come in

close proximity to each other (Cheng et al. 2013; Hogan et al. 2010; Liou

et al. 2005; Roos et al. 2005). The Orai channel family is comprised of three

isoforms (Orais 1, 2, and 3), all of which have four transmembrane domains.

Orai1 has been suggested to function as a tetramer (Hogan et al. 2010; Ji

et al. 2008; Penna et al. 2008) and more recently as a hexamer based on crystal

structure (Hou et al. 2012). The discovery of STIM1 and Orai1 led to the identifi-

cation of the long sought-after components of the CRAC channel. STIM1 and Orai1

together are sufficient to reconstitute CRAC channel activity, with the C-terminal

SOAR domain (aa 344–442) in STIM1 being the region involved in gating Orai1

and generating ICRAC (Hogan et al. 2010; Yuan et al. 2009). Numerous reports have

demonstrated that STIM1 also interacts with members of the TRPC channel family

and that it is necessary for gating TRPC channels (Cheng et al. 2013; Lee

et al. 2010). Furthermore, TRPC heteromers that contain either TRPC1 or TRPC4

can be activated by STIM1. Thus, TRPC3 or TRPC6, likely non-store-operated

channels, can appear to be regulated by STIM1 if they are assembled in the channel

with TRPC1 or TRPC4 (Huang et al. 2006). The critical role of STIM1 in TRPC

regulation [discussed in reviews by Cheng et al. (2013), Worley et al. (2007), and

Lee et al. (2010)] is shown by the following data: (1) STIM1 and TRPCs

co-immunoprecipitate and this association increases following store depletion;

(2) the binding of STIM1 and TRPC1 has been confirmed by GST-fusion protein

pull-down assays; (3) TRPC-mediated Ca2+ entry in response to store depletion is

completely abolished by the knockdown of endogenous STIM1; (4) co-expression

of TRPC1 and STIM1 induces an increase in store depletion-induced Ca2+ influx as

well as ISOC; (5) endogenous TRPC function is suppressed by heterologous expres-

sion of dominant-negative STIM1 constructs; and (6) the STIM1D76A mutant,

which induces constitutive Orai1 activation, also mediates spontaneous TRPC

channel function. In aggregate, all these data provide convincing support that

STIM1 regulates TRPC channel activation and function. Structure-function analy-

sis of STIM1 has revealed crucial information regarding STIM1 domains involved

in the interaction with TRPCs. The ERM (ezrin/radixin/moesin) domain (aa 251–

535) located within the STIM1 cytosolic carboxyl terminus has been shown to bind

selectively to some TRPC channels, e.g., TRPC1, TRPC2 and TRPC4, but not

TRPC3, TRPC6, and TRPC7. As mentioned above, channels that cannot bind to

STIM1 can be regulated by it if they are assembled in a heteromeric channel

complex with TRPCs that bind STIM1. Nonetheless, it is notable that several

studies with heterologous expression of TRPCs and STIM1 have failed to demon-

strate the involvement of these channels in SOCE. It might be important to consider

the assembly of TRPC channel complexes in such studies as other components

might be essential in the regulation of these channels.

Binding of the ERM domain of STIM1 to TRPC channels is not sufficient for

channel activation. A lysine-rich domain (referred to as polybasic tail or K domain)

1018 H.L. Ong et al.



located at the C-terminal end of STIM1 has been established as the region that is

involved in gating TRPC channels. Deletion of the STIM1-K domain affected

TRPC channel activity but not binding to STIM1. The mechanism underlying the

gating of TRPC channels by STIM1 has been revealed in a study demonstrating that

the positively charged lysine residues (684KK685) in STIM1 interact electrostati-

cally with negatively charged conserved aspartate residues in TRPC1 (639DD640),

which leads to gating of the channel (Zeng et al. 2008). When the negative charges

in TRPC1 are neutralized by substituting lysine (K) with alanine (A), channel

activation by STIM1 is blocked. Moreover, swapping the charges between

TRPC1 and STIM1 induces recovery of channel gating and function, providing

conclusive evidence for the gating of TRPC1 by STIM1. Remarkably, the nega-

tively charged sequence in TRPC1 C-terminus is highly conserved among TRPC

family members, including TRPC3, TRPC4, TRPC5, and TRPC6 (Zeng

et al. 2008). Thus, it was proposed that other TRPCs also have the inherent capacity

to be gated by STIM1, although not all TRPCs bind directly to STIM1. Further

studies need to be carried out to conclusively establish which TRPCs can bind to

and are gated by STIM1, especially with regards to endogenous TRPC channels.

Such information is crucial for understanding how store-dependent TRPC channels

are assembled and regulated.

4.2 Role of Orai1

A very significant finding reported by several groups of researchers is that TRPC

channel activation is not only dependent on STIM1 but also requires Orai1.

Conclusive findings show that stimulation of cells results in dynamic assembly of

TRPC1, STIM1, and Orai1 in a ternary complex in the ER-PM junctional domains,

which is required for the activation of both Orai1 as well as TRPC1 channels. The

TRPC1–STIM1–Orai1 complex, associated with SOCE, can be detected in HSG

cells (Ong et al. 2007), mouse pulmonary arterial smooth muscle cells

(Ng et al. 2009), human parathyroid (Lu et al. 2010), human liver cell (Zhang

et al. 2010), and rat kidney fibroblast (Almirza et al. 2012). Assembly of this

complex is mediated via STIM1, as knockdown of STIM1 prevents clustering of

TRPC1 with Orai1. Knockdown of TRPC1 results in attenuation of function, while

knockdown of Orai1 or STIM1 results in complete loss of SOCE. Furthermore,

overexpression of pore-deficient, dominant-negative mutants of Orai1 (R91W,

E106Q) abrogate Ca2+ entry due to TRPC1-STIM1 (Cheng et al. 2008; Ong

et al. 2007). The exact mechanism by which Orai1 determines TRPC function has

been a matter of much debate. It was suggested that Orai1 can physically interact

with the C- and N-termini of both TRPC3 and TRPC6 channels and modulate

channel sensitivity to store depletion and STIM1 (Liao et al. 2007). Hence, these

investigators proposed that the endogenous SOCE channel pore is contributed by

TRPC channels with Orai1 functioning as the regulatory subunit. Alternatively,

TRPC channels have been proposed to modify Orai1 function.
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The key question of whether TRPC and Orai1 contribute to a single channel pore

(formation of a heteromeric TRPC+Orai1 channel) or are two distinct channels

which independently contribute to SOCE has been resolved recently for TRPC1 and

TRPC5. In a cell line where endogenous TRPC1 contributes to SOCE, TRPC1 and

Orai1 form two distinct channels: a relatively Ca2+-selective channel mediating

ISOC is composed of STIM1/TRPC1 and a highly Ca2+-selective channel mediating

ICRAC is formed by STIM1/Orai1 (Cheng et al. 2011). The smaller conductance of

ICRAC is masked by the larger STIM1/TRPC1-mediated current that gets activated

under the same conditions. Hence, the ISOC attributed to STIM1/TRPC1 includes a

small contribution from STIM1/Orai1 ICRAC. Further, native ICRAC is detected

when TRPC1 channel function is suppressed in these cells by expression of the

STIM1-KK/EE mutant, which can gate Orai1 but not TRPC1. More importantly,

Ca2+ entry through STIM1/Orai1 facilitates TRPC1 channel trafficking and triggers

TRPC1 insertion into the plasma membrane. Membrane insertion of TRPC is

attenuated by removal of extracellular Ca2+, blocking ICRAC with 1 μM Gd3+,

knockdown of Orai1 or overexpression of dominant-negative mutant of Orai1

(E106Q) that lacks a functional pore (Cheng et al. 2011). These data define the

functional role of Orai1 and provide novel insights into the regulation and activa-

tion of TRPC1 in SOCE. Regulated surface insertion of TRPC1 by Orai1 can

provide a rapid modulation and amplification of SOCE-facilitated Ca2+ signals

that could selectively impact regulation of cell function (Cheng et al. 2013). Ca2+

entry via Orai1 has also been shown to facilitate TRPC5 activity (Gross et al. 2009).

In this case, Ca2+ coming into the cell via Orai1 directly activates the TRPC5

channel. Detailed studies have not been done along these lines for other TRPCs to

either demonstrate or rule out a secondary effect of Orai1 on channel function. It is

important to note that heterologous expression might not yield similar data to that

with endogenous channels, especially when several molecular components and

regulatory mechanisms concertedly determine channel function.

5 Modulation of TRPC Channels by Membrane Trafficking

Localization of TRPC channels in specific plasma membrane microdomains allows

the generation of precise intracellular Ca2+ signals that modulate downstream

signaling events and consequent cell functions. The amplitude and duration of

intracellular Ca2+ signals can be varied by regulating Ca2+ influx via TRPC

channels, which can be enhanced by increasing the number of active channels at

the cell surface either by driving channel trafficking to the plasma membrane or by

prolonging channel retention at the cell surface. Major modes of regulating Ca2+

entry include constitutive and regulated vesicular trafficking mechanisms as well as

the rates of protein synthesis and degradation. The constitutive and regulated

trafficking processes determine the surface expression of TRPC channels by

(1) increasing exocytosis and/or recycling to the plasma membrane or (2) reducing

endocytosis and/or increasing channel retention in the plasma membrane.
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5.1 TRPC1

Studies of the TRPC1 complex identified several interacting proteins that are

involved in vesicle trafficking, membrane fusion, and cytoskeletal and actin rear-

rangement, such as clathrin, dynamin, Sec1, synapsin-2, Cav-1, and RhoA

(Table 2). The TRPC1 signaling complex is localized in distinct cholesterol-rich

plasma membrane domains known as lipid rafts. Disruption of lipid rafts with

cholesterol-depleting agents like methyl-β-cyclodextrin (MβCD) decreased SOCE

in salivary gland cells (Lockwich et al. 2000) and vascular smooth muscle cells

(Bergdahl et al. 2003), suggesting lipid raft integrity is a prerequisite for TRPC1

localization and function. Cav-1 is a cholesterol-binding protein found within the

caveolae, which are caveolin-containing lipid rafts present in the plasma mem-

brane. Cav-1 plays an important role in the trafficking and function of TRPC1

(Brazer et al. 2003; Kwiatek et al. 2006; Lockwich et al. 2000; Pani et al. 2009,

2012). The present model proposes that Cav-1 functions as a scaffolding protein

that facilitates assembly of the TRPC1 signaling complex and acts synergistically

with Orai1 and STIM1 to regulate TRPC1 channel activity (Ong and Ambudkar

2012; Pani et al. 2009). In resting cells, TRPC1 is controlled by constitutive

trafficking mechanisms. Following trafficking to the cell periphery, TRPC1

associates with Cav-1 but remains inactive and does not get inserted into the plasma

membrane. When cells are stimulated by physiological agonists and the ER-Ca2+

stores are depleted, STIM1 translocates to the plasma membrane and activates the

Orai1 channel. The Orai1-mediated Ca2+ influx drives the recruitment of TRPC1

into the plasma membrane. TRPC1 dissociates from Cav-1 and interacts with and is

activated by STIM1. Dissociation of TRPC1 from Cav-1 is an essential step in the

activation of TRPC1 by STIM1 since C-terminal 684KK685 residues of STIM1

responsible for gating TRPC1 also releases the channel from Cav-1 (Pani

et al. 2009; Zeng et al. 2008). In addition to Cav-1, Homer1 also interacts with

TRPC1 in the C-terminus (aa 644–650), a region that lies just upstream of the

STIM1-gating site (aa 639–640). Homer1 forms a dynamic complex with TRPC1

and IP3R. Following cell stimulation, the TRPC1/Homer1/IP3R complex

disassembles, resulting in channel activation.

Local changes in the cytoskeleton or microtubules also contribute to the traf-

ficking of TRPC1 (Bollimuntha et al. 2005a; Mehta et al. 2003). In retinal epithelial

cells, β-tubulin has been shown to interact with TRPC1 and to be required for

channel translocation to the plasma membrane (Bollimuntha et al. 2005a). RhoA, a

monomeric GTPase protein responsible for actin cytoskeleton dynamics, associates

with TRPC1 and IP3R in endothelial cells following stimulation with thrombin.

Assembly of the TRPC1/IP3R complex, as well as trafficking to the plasma

membrane, is dependent of RhoA and actin polymerization since SOCE is

attenuated following treatment with C3 transferase protein that inactivates Rho or

expression of a Rho dominant mutant (Mehta et al. 2003). Enkurin, a CaM-binding

protein, interacts with TRPC1 and TRPC5 in sperm and has been suggested to

function as an adaptor protein that tethers signaling proteins to TRPC channels

(Sutton et al. 2004). Proteins involved in vesicle docking and fusion have also been
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reported to interact with TRPC1 and regulate channel activity. Nevertheless, the

relevance of these various components in the intracellular trafficking of TRPC1 has

yet to be identified.

5.2 TRPC3

As described earlier for TRPC1, the interactions of TRPC3 with several proteins are

vital for its proper trafficking and cellular localization. These include PLCγ (van

Rossum et al. 2005), Cav-1 (Lockwich et al. 2001), VAMP2 (Singh et al. 2004),

RFN24 (Lussier et al. 2008), and Homer1 (Kim et al. 2006a). Surface expression of

the TRPC3 channel requires interaction with PLCγ and PIP2, which anchors the

channel in the plasma membrane (van Rossum et al. 2005). Homer1 has been

reported to stabilize the interaction between TRPC3 and IP3R, determining the

rate of TRPC3 translocation to and retrieval from the plasma membrane (Kim

et al. 2006a; Kiselyov et al. 2007). Both Homer1 and junctate may function

synergistically to facilitate the interaction between TRPC3 and IP3R which leads

to channel activation. It is possible that the components involved in TRPC3

trafficking depend on the cell type and the spatial constraints within the cell.

Cell surface expression of TRPC3 is regulated by VAMP2-mediated fusion of

mobile intracellular vesicles containing TRPC3 with the plasma membrane.

Expression of TRPC3 in the plasma membrane increases following stimulation

with carbachol, and this increase is abolished by treatment with tetanus toxin, which

inhibits VAMP2 activity (Singh et al. 2004). Likewise, status of the actin cytoskel-

eton has also been reported to affect TRPC3 localization and function. Conditions

that result in enhancement or stabilization of the cortical actin layer, such as

treatment with jasplakinolide or calyculin A, promote internalization of TRPC3

signaling complex with a consequent decrease of TRPC3 function (Lockwich

et al. 2001). TRPC3-interacting proteins may also influence the trafficking and

surface expression of the channel. These include clathrin, dynamin, AP-2, syntaxin,

synaptotagmin-1 (Lockwich et al. 2008), MxA (Lussier et al. 2005), and RACK1

(Bandyopadhyay et al. 2008) (Table 2). Additional studies are required to resolve

the role of the TRPC3-interacting proteins involved in constitutive and regulated

trafficking of the channel.

5.3 TRPC4

Although several studies have reported the association of TRPC4 with scaffolding

and trafficking proteins (Table 2), the mechanisms regulating TRPC4 localization

in the plasma membrane have not been fully elucidated. A dynamic interplay

between tyrosine kinases, TRPC4, and NHERF regulates surface expression and

activation of TRPC4 channels (Tang et al. 2000). The protein tyrosine kinase, fyn,

phosphorylates TRPC4 following stimulation by the epidermal growth factor

(EGF), increasing its interaction with NHERF, as well as its insertion into the
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plasma membrane (Odell et al. 2005). As mentioned above, TRPC4 forms a

heteromeric complex with TRPC1 to mediate SOCE in endothelial cells. Loss of

Cav-1 impairs surface expression of both TRPC4 and TRPC1, significantly reduces

association of the heteromeric complex with IP3R, and inhibits agonist-induced Ca
2+

entry in these cells. Hence, Cav-1 is proposed to function as a scaffold that facilitates

the interactions between TRPC4, TRPC1, and IP3R.

5.4 TRPC5

Proteomic analysis of TRPC5-binding partners revealed the interactions of TRPC5

with proteins involved in vesicle trafficking and scaffolding (Table 2), such as

dynamin, clathrin, AP-2 (Goel et al. 2005), and MxA (Lussier et al. 2005). Interac-

tion of TRPC5 with the exocyst component protein, stathmin 2, targets homomeric

channels to the growth cone of hippocampal neurons (Greka et al. 2003). In resting

neuronal cells, TRPC5 is localized in intracellular vesicles close to the plasma

membrane. Following stimulation with growth factors, TRPC5-containing vesicles

are rapidly translocated and inserted to the plasma membrane, thereby increasing

channel function constitutively. Trafficking of TRPC5 and insertion into the plasma

membrane requires phosphatidylinositide 3-kinase (PI(3)K), Rac1, and phosphati-

dylinositol 4-phosphate 5-kinase (PIP(5)K). Interestingly, Rac1 initiates the inser-

tion of homomeric TRPC5 but not the heteromeric TRPC1 +TRPC5 channels into

the plasma membrane. This may be due to homomeric channels being localized in

the growth cones to modulate elongation, whereas heteromeric channels are

localized in the neurites (Bezzerides et al. 2004). It is also shown that TRPC5

participates in a molecular complex with Rac1 in fibroblasts and kidney podocytes

and Ca2+ influx mediated by TRPC5 activates Rac1 (Tian et al. 2010). In aggregate,

these studies show that components of the TRPC5 signaling complex determine its

physiological function by influencing channel trafficking, localization, and

activation.

5.5 TRPC6

There is a paucity of information on the proteins that interact with TRPC6 and

regulate its trafficking to and localization in the plasma membrane (Table 2).

Surface expression of TRPC6 is enhanced following cell stimulation by muscarinic

receptor agonists or passive depletion of the ER-Ca2+ stores by thapsigargin

(Cayouette et al. 2004). The GTPases, Rab9 and Rab11, have been shown to

regulate the intracellular trafficking of TRPC6 in HeLa cells (Cayouette

et al. 2010). In cells cotransfected with Rab9, TRPC6 shows a diffuse localization

through the cell as well as partial colocalization with Rab9 containing vesicles.

However, when Rab11 is overexpressed, TRPC6 is predominantly present at the

cell periphery. Surface expression of TRPC6, as well as the channel activity,
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increases following the expression of a dominant-negative mutant of Rab9 (S21N)

and Rab11, whereas channel activity decreases when dominant-negative mutant of

Rab11 (S25N) is expressed. In aggregate, these data suggest that the intracellular

trafficking of TRPC6 is through early endosomes and late endosomes, where the

channel interacts with Rab9-containing vesicles and the channel is translocated to

the plasma membrane via Rab11-containing vesicles (Cayouette et al. 2010). PI(3)

K and PTEN have also been reported to regulate the trafficking and activation of

TRPC6 channels. PTEN-dependent inhibition of PI(3)K reduced translocation of

TRPC6 to the plasma membrane, as well as TRPC6-mediated Ca2+ influx in T6.11

cells. Previous studies have reported the interaction of TRPC6 with other proteins

that are involved in vesicle trafficking, such as MxA (Lussier et al. 2005), RhoA

(Tian et al. 2010), syntaxin (Bandyopadhyay et al. 2005), clathrin, and dynamin

(Goel et al. 2005). MxA (which also interacts with other TRPCs except TRPC2) has

been shown to modulate TRPC6-mediated Ca2+ entry in response to cell stimula-

tion. The importance of such interactions in modulating surface expression and

activity of TRPC6 remain to be fully delineated in future studies.

5.6 TRPC2 and TRPC7

There is relatively less information regarding the protein interactions and traffick-

ing of TRPC2 and TRPC7. Similar to other TRPC channels, TRPC2 interacts with

enkurin (Sutton et al. 2004) and Homer (Yuan et al. 2003). It has also been shown

that the chaperone receptor-transporting protein 1 (RTP1) regulates the surface

expression and channel activity of TRPC2 in HEK 293 cells. In cells cotransfected

with RTP1, the surface expression of TRPC2, as well as the channel activity, is

increased relative to cells expressing TRPC2 alone (Mast et al. 2010). A previous

study demonstrates that TRPC7 interacts with MxA, a member of the dynamin

superfamily (Lussier et al. 2005).

Conclusion

In summary, TRPC channels are regulated downstream from receptor-coupled

PLC activation. These channels contribute to a wide variety of cellular function.

Loss or gain of channel function has resulted in aberrant physiology in human

and mouse. The physiological function and regulation of TRPC channels are

influenced by their physical and functional interactions with numerous channels

and proteins involved in the signaling, scaffolding, and trafficking processes.

Further studies are required to delineate the exact steps involved in assembling

TRPC channels with their accessory proteins to form functional signaling

complexes in discrete ER-PM junctional regions. Understanding the various

modes and mechanisms involved in TRPC channel function can provide poten-

tially important targets for treatment of a number of diseases.
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