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Abstract. It is well known that Search SVP is equivalent to Optimiza-
tion SVP. However, the classical reduction from Search SVP to Optimiza-
tion SVP by Kannan needs polynomial times of calls to the oracle that
solves Optimization SVP. In this paper, a new rank-preserving reduction
is presented with only one call to the Optimization SVP oracle. The idea
also leads to a similar direct reduction from Search CVP to Optimiza-
tion CVP with only one call to the corresponding oracle. Both of the
reductions above can be generalized for lp norm with p ∈ Z

+.
On the other hand, whether the search and optimization variants

of approximate SVP are computationally equivalent is an outstanding
open problem. Recently, Cheng gave a reduction from Search SVPγ to

Optimization SVPγ
′ , where γ

′
= γ

1
n(n−1) log2 γn is much smaller than

γ. We slightly improve the reduction by making γ
′

= γ
O(log2 n)

n(n−1) log2 γn . In
addition, a reduction from Search CVPγ to Optimization CVPγ

′ with

γ
′
= γ

1
n�n/2+log2 γ·dist(t,L(B))� is also presented.

Keywords: Search SVP · Optimization SVP · GapSVP · Lattice ·
Reduction

1 Introduction

Lattices have many important applications in cryptographic constructions due
to the seminal work of Ajtai [1] in 1996 which first connected the average-case
complexity of lattice problems to their complexity in the worst case. Many
lattice-based public-key cryptosystems have been proposed since then like the
well-known Ajtai-Dwork cryptosystem [2], Regev’s LWE-based cryptosystem
[18], the GPV system [6] and the famous NTRU [7]. Moreover, a lot of other
lattice-based cryptographic primitives have been also presented, such as the hash
function [1,12,14,16], the digital signatures schemes NTRUSign [8] and the fully
homomorphic encryption [5]. Usually, the securities of these schemes can be
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based on the hardness of some lattice problems, such as SVP and CVP. SVP
(the shortest vector problem) and CVP (the closest vector problem) are two
of the most famous computational problems of lattice. SVP refers to finding a
shortest non-zero vector in a given lattice, whereas CVP asks to find a lattice
vector closest to a given target vector.

Depending on whether we have to actually find a shortest vector, find its
length, or just decide if it is shorter than some given number, there are three
different variants of SVP: Search SVP, Optimization SVP and Decisional SVP
(See Sect. 2 for the definitions).

It has been proved that the three problems of SVP are equivalent to each
other (see [15]). It is easy to check that Decisional SVP is as hard as Optimization
SVP and the optimization variant can be reduced to the search variant.

In 1987, Kannan [11] showed that the search variant can be reduced to the
optimization variant. The basic idea of his reduction is to recover the integer
coefficients of some shortest vector under the given lattice basis by introducing
small errors to the original lattice basis. However, his reduction is a bit complex.
It needs to call Optimization SVP oracle polynomial times, since it could not
determine the signs of the shortest vector’s entries at one time. It also needs an
oracle to solve Optimization SVP for some lattices with lower rank along with
the same rank as the original lattice.

In this paper, we propose a new rank-preserving reduction which can solve
Search SVP with only one call to the given Optimization SVP oracle. It is obvious
that there is no reduction with less calls than ours. For the new reduction, we
try to construct a new lattice by adding small errors to the original lattice basis
such that the integer coefficients of the new lattice’s shortest vector under the
new basis are the same as the integer coefficients of some shortest vector in the
original lattice under the original lattice basis. Moreover, by the Optimization
SVP oracle, we can recover the integer coefficients.

A similar direct reduction from Search CVP to Optimization CVP with only
one call also holds whereas some popular reductions [15,17] usually take Deci-
sional CVP to bridge Search CVP and Optimization CVP. The former reduction
from Decisional CVP to Optimization CVP needs one call to the Optimization
CVP oracle, but it needs polynomial times of calls to reduce Search CVP to
Decisional CVP.

Both of our two reductions can be generalized to the case for any lp-norm
(p ∈ Z

+).
Since there exists efficient reduction from Search SVP to Optimization SVP,

we want to obtain similar results for the approximate version. In fact, one
open problem on the complexity of lattice problems is whether the search and
optimization variants of approximate SVP are computationally equivalent. As
pointed out in [13], once there exists an efficient reduction from Search SVPγ

to Optimization SVPγ , almost all the lattice problems used in cryptography,
such as uSVP (unique SVP), BDD (Bounded Distance Decoding), SIVP (the
shortest independent vector problem), GapSVP (Decisional SVP), SVP, CVP,
are equivalent up to polynomial factors.



Improvements on Reductions among Different Variants of SVP and CVP 41

It seems difficult to generalize our idea above to solve the problem, for our new
reduction is sensitive to the error. However, Cheng [9] recently gave a reduction
from Search SVPγ to Optimization SVPγ′ with γ

′
= γ

1
n(n−1) log2 γn . His reduction

uses the framework in [13] but shrinks the factor γ too much.

We slightly improve this result to γ
′
= γ

O(log2 n)
n(n−1)(n+log2(γn)) , but we have to point

out that it is still far away to be useful to give some meaningful result about
the complexity of some lattice problems because the approximation factor is still
shrunk exponentially.

Finally, enlightened by the idea in the above reduction, we present a
new reduction from Search CVPγ to Optimization CVPγ′ where γ

′
=

γ
1

n�n/2+log2 γ·dist(t,L(B))� . This is the first reduction from Search CVPγ to Opti-
mization CVPγ′ although γ

′
is also much smaller than γ.

The remainder of the paper is organized as follows. In Sect. 2, we give some
preliminaries needed. In Sect. 3, we describe the new reduction from Search SVP
to Optimization SVP. In Sect. 4, an improved reduction from Search SVPγ to

Optimization SVPγ′ with γ
′

= γ
O(log2 n)

n(n−1)(n+log2(γn)) is given. Our reduction from
Search CVPγ to Optimization CVPγ′ can be found in Sect. 5. Finally, we give
a short conclusion in Sect. 6.

2 Preliminaries

Given a matrix B = (bij) ∈ R
m×n with rank n, the lattice L(B) spanned by the

columns of B is

L(B) = {Bx =
n∑

i=1

xibi|xi ∈ Z},

where bi is the i-th column of B. We call m the dimension of L(B) and n its
rank. The determinant of L(B), say det(L(B)), is defined as

√
det(BT B). It is

easy to see when B is full-rank (n = m), its determinant becomes |det(B)|.
A sublattice of L(B) is a lattice whose elements are all in L(B). The space

spanned by B is defined as span(B) = {By|y ∈ R
n}. The dual lattice L(D) of

L(B) is defined as L(D) = {z ∈ span(B)|∀y ∈ L(B), yT z ∈ Z}. Moreover, a
basis of L(D) is given by B(BT B)−1, and det(L(D)) = det(L(B))−1.

The first minima of lattice L(B) is defined as

λ1(L(B)) = min
0 �=v∈L(B)

‖v‖,

where ‖v‖ is the l2 norm of vector v. Minkowski’s first theorem tells us that for
any lattice L(B) with rank n,

λ1(L(B)) ≤ √
n · det(L(B))1/n.

SVP usually refers to finding a vector in L(B) with length λ1(L(B)). It has
the following three variants:
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– Search SVP: Given a lattice basis B ∈ Z
m×n, find v ∈ L(B) such that ‖v‖ =

λ1(L(B)).
– Optimization SVP: Given a lattice basis B ∈ Z

m×n, find λ1(L(B)).
– Decisional SVP: Given a lattice basis B ∈ Z

m×n and a rational r ∈ Q, decide
whether λ1(L(B)) ≤ r or not.

Notice that we restrict the lattice basis to be integer vectors instead of arbitrary
real vectors. The purpose is to make the input representable in finite bits so we
can view it as a standard computation problem.

Since SVP is proved to be NP-hard under randomized reductions (see [3]),
its approximate versions are attracting more attention. With approximate factor
γ ≥ 1, the corresponding variants of approximate SVP are:

– Search SVPγ : Given a lattice basis B ∈ Z
m×n, find v ∈ L(B) such that

‖v‖ ≤ γ · λ1(L(B)).
– Optimization SVPγ : Given a lattice basis B ∈ Z

m×n, find d such that d ≤
λ1(L(B)) ≤ γ · d.

– Decisional SVPγ : Given a lattice basis B ∈ Z
m×n and a rational r ∈ Q, decide

λ1(L(B)) ≤ r or λ1(L(B)) > γ · r.

For the Search SVPγ , the famous LLL algorithm [10] tells us a basis b1, b2, . . . , bn

can be found in polynomial time such that

‖b1‖ ≤ 2(n−1)/2λ1(L(B)).

The Decisional SVPγ is usually denoted by GapSVPγ . This is a promise
problem defined by two disjoint sets: the YES instances (λ1(L(B)) ≤ r) and the
NO instances (λ1(L(B)) > γ · r). We have to decide which set the input lattice
is taken from.

Given any t ∈ R
m, the distance of t to L(B) is defined as

dist(t,L(B)) = min
v∈L(B)

‖t − v‖.

In the same way, for approximate factor γ ≥ 1, CVPγ also has three variants:

– Search CVPγ : Given a lattice basis B ∈ Z
m×n and a target t ∈ Q

m, find
v ∈ L(B) such that ‖t − v‖ ≤ γ · dist(t,L(B)).

– Optimization CVPγ : Given a lattice basis B ∈ Z
m×n and a target t ∈ Q

m,
find d such that d ≤ dist(t,L(B)) ≤ γ · d.

– GapCVPγ : Given a lattice basis B ∈ Z
m×n, a target t ∈ Q

m and a rational
r ∈ Q. In YES instances, dist(t,L(B)) ≤ r. In NO instances, dist(t,L(B)) >
γ · r.

For the Search CVPγ , Babai’s Nearest Plane Algorithm [4] says a lattice
vector v can be found in polynomial time such that

‖t − v‖ ≤ 2(n−1)/2 · dist(t,L(B)).

Notice that when γ = 1, these problems will become exact variants of CVP.
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3 The New Reduction from Search SVP
to Optimization SVP

For simplicity, we just give the new reduction for the full rank lattice, i.e.,
n = m, as in [11], with l2 norm. It is easy to generalize the new reduction
for the lattices with rank n < m and lp norm (p ∈ Z

+).

3.1 Some Notations

Given a lattice basis B = (bij) ∈ Z
n×m, let M(B) = max |bij |. For lattice L(B),

we define its SVP solution set SB as:

SB = {x ∈ Z
n|‖Bx‖ = λ1(L(B))}.

SB is nonempty and might contain more than one element.
We denote by poly(n) the polynomial in n. More generally, the polynomial

in the variables n1, n2, . . . , np is denoted by poly(n1, n2, . . . , np).

3.2 Some Lemmas and Corollaries

We need some lemmas and corollaries to prove our main theorem.

Lemma 1. Given a fixed positive integer p, then for every positive integer n ≥ p,
there exist n positive integers a1 < a2 < · · · < an s.t. all the ai1 + · · · + aip

(i1 ≤
. . . ≤ ip)’s are distinct (up to a permutation) and an is bounded by poly(n).

Proof. We can take

ai =
p∑

k=0

(p(n + 1)p)(p−k)ik,

for i = 1, 2, . . . , n. Suppose

ai1 + ai2 + · · · + aip
= aj1 + aj2 + · · · + ajp

,

for some i1, . . . , ip, j1, . . . , jp.
Let σk(i) =

∑p
t=1(it)

k and σk(j) =
∑p

t=1(jt)k, then the former equality
turns to

p∑

k=0

(p(n + 1)p)(p−k)σk(i) =
p∑

k=0

(p(n + 1)p)(p−k)σk(j).

Notice that σk(i), σk(j) < p(n+1)p for k = 1, 2, . . . , p, then by taking both sides
modulo p(n + 1)p, we get

σp(i) = σp(j),

which leads to

p−1∑

k=0

(p(n + 1)p)(p−k−1)σk(i) =
p−1∑

k=0

(p(n + 1)p)(p−k−1)σk(j).
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Again taking both sides modulo p(n + 1)p, we get

σp−1(i) = σp−1(j).

Similarly, we repeat this procedure to obtain

σk(i) = σk(j),

for k = 1, 2, . . . , p. Thus by the property of the symmetric polynomials, we know
that i1, . . . , ip and j1, . . . , jp are both exactly all the roots of a same polynomial,
which implies i1, . . . , ip and j1, . . . , jp are equal up to a permutation. Hence all
the ai1 + · · ·+aip

(i1 ≤ · · · ≤ ip)’s are distinct. Since p is a fixed positive integer,
then by our choice, an is bounded by poly(n).

Corollary 1. For every positive integer n > 1, there exist n positive integers
a1 < a2 < · · · < an s.t. all the ai + aj(i ≤ j)’s are distinct and an is bounded by
poly(n).

Lemma 2. Given a positive odd integer q > 2, and any positive integer n, which
satisfies n =

∑k
i=0 niq

i where |ni| ≤ �q/2	, then we can recover the coefficients
ni’s in 
logq n� steps.

Proof. We can recover n0 by computing a ≡ n mod q and choose a in the interval
from −�q/2	 to �q/2	. After obtaining n0, we get another integer (n−n0 ∗q0)/q.
Recursively in 
logq n� steps, we can recover all the coefficients.

Lemma 3. For bivariate polynomial f(x, y) = xy, given any lattice basis matrix
B ∈ Z

n×n, λ1(L(B)) has an upper bound f(M,n), where M = M(B). What’s
more, for every x ∈ SB, |xi| (i = 1, . . . , n) has an upper bound f(Mn, nn).

Proof. The length of any column of B is an upper bound of λ1(L(B)), so
λ1(L(B)) ≤ n1/2M ≤ nM .

For x ∈ SB , we let y = Bx, then ‖y‖ = λ1(L(B)) ≤ √
nM . By Cramer’s

rule, we know that

xi =
det(B(i))
det(B)

,

where B(i) is formed by replacing the ith column of B by y. By Hadamard’s
inequality, |det(B(i))| ≤ nn/2Mn ≤ nnMn. We know |det(B)| ≥ 1 since det(B)
is a non-zero integer. Hence |xi| ≤ nnMn.

3.3 The Main Theorem

Theorem 1. Assume there exists an oracle O that can solve Optimization SVP
for any lattice L(B′) with basis B′ ∈ Z

n×n, then there is an algorithm that can
solve Search SVP for any lattice L(B) with basis B ∈ Z

n×n with only one call
to O in poly(log2 M,n, log2 n) time, where M = M(B).
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Proof. The main steps of the reduction are as below:
(1) Constructing a new lattice L = L(Bε).

We construct Bε from the original lattice basis B:

Bε = εn+1B +

⎛

⎜⎜⎜⎝

ε1 ε2 . . . εn

0 0 . . . 0
...

...
...

0 0 . . . 0

⎞

⎟⎟⎟⎠ ,

where the εi will be determined as below.
For any x ∈ Z

n, we define

c(x) =
n∑

i=1

b1ixi,

for x ∈ SB . By Lemma 3, |xi| has an upper bound f(Mn, nn). Let M1 = 2f((M+
1)n, nn). In addition, ‖Bx‖ = λ1(L(B)) is bounded by f(M,n). Let M2 =
f(M + 1, n). since |c(x)| ≤ ‖Bx‖, |c(x)| is also bounded by M2 . We let

R = 2 ∗ max {M2
2 , 2M1M2, 2M2

1 } + 1.

By Corollary 1, we can choose n + 1 positive integers a1 < a2 < . . . < an+1,
such that all the ai + aj(i ≤ j)’s are distinct where an+1 is bounded by poly(n).
Let

εi = Rai .

We claim that
SBε

⊆ SB .

Since SBε
= S 1

εn+1
Bε

by scaling, it is enough to prove S 1
εn+1

Bε
⊆ SB .

We first show that |det ( 1
εn+1

Bε)| ≥ 1
2 . Notice that

det (
1

εn+1
Bε) = det(B) +

n∑

i=1

αi
εi

εn+1
,

where αi is the cofactor of b1i in B. Since εi

εn+1
≤ 1

R2 and |αi| ≤ Mn−1(n−1)n−1

by Hadamard’s inequality, |∑n
i=1 αi

εi

εn+1
| ≤ 1

R2 Mn−1nn < 1
2 . Notice that det(B)

is a non-zero integer, we get |det ( 1
εn+1

Bε)| ≥ 1
2 .

For any x ∈ S 1
εn+1

Bε
, by the proof of Lemma 3 and the fact that

|det ( 1
εn+1

Bε)| ≥ 1
2 , we know that |xi| ≤ M1, |c(x)| ≤ M2. By the choice of

R, we have x2
i , 2c(x)xi, 2xixj are in the interval [−�R/2	, �R/2	].

Next, we prove S 1
εn+1

Bε
⊆ SB . Suppose there exists x ∈ S 1

εn+1
Bε

but x �∈ SB,

then
‖Bx‖2 ≥ λ1(L(B))2 + 1.
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Taking y ∈ SB, we get 1
εn+1

Bεy ∈ L( 1
εn+1

Bε). Noticing εn+1 > R2εn, εiεj

ε2n+1
(i ≤

j)’s are different powers of R (by our choice of εi and Corollary 1), and y2
i ,

2c(y)yi, 2yiyj are in the interval [−�R/2	, �R/2	] by the choice of R, we have

‖ 1
εn+1

Bεy‖2 = ‖By‖2 +
∑n

i=1 y2
i ( εi

εn+1
)2 +

∑n
i=1 2c(y)yi

εi

εn+1
+

∑
i<j 2yiyj

εiεj

ε2n+1

< λ1(L(B))2 + (�R/2	 + 1) εn

εn+1

≤ ‖Bx‖2 − (1 − (�R/2	 + 1) εn

εn+1
)

< ‖Bx‖2 − (�R/2	 + 1) εn

εn+1

≤ ‖Bx‖2 +
∑n

i=1 x2
i (

εi

εn+1
)2 +

∑n
i=1 2c(x)xi

εi

εn+1
+

∑
i<j 2xixj

εiεj

ε2n+1

= λ1(L( 1
εn+1

Bε))2,

which is a contradiction. Hence SBε
⊆ SB .

(2) Querying the oracle O with Bε once, we get λ1(L(Bε)).
So there exists x = (x1, . . . , xn)T ∈ SBε

⊆ SB , such that

‖Bx‖2ε2n+1 +
n∑

i=1

x2
i ε

2
i +

n∑

i=1

2c(x)xiεn+1εi +
∑

i<j

2xixjεiεj = λ1(L(Bε))2.

(3) Recovering all the xi’s and output Bx.
Since x ∈ SB, every coefficient ‖Bx‖2, x2

i , 2c(x)xi, 2xixj is in the inter-
val [−�R/2	, �R/2	] and εiεj (i ≤ j)’s are different powers of R. Hence, log2
(λ1(L(Bε))) is bounded by poly(log2 M,n, log2 n). Furthermore, by Lemma 2,
we can recover all the coefficients in poly(log2 M,n, log2 n) time. Especially, we
can recover all x2

i and xixj(i �= j). Let k = min{i|xi �= 0}. We fix xk =
√

x2
k > 0,

and can recover all the remaining xj = sign(xkxj)
√

x2
j according to x2

j and
xkxj(k �= j).

It is easy to check that the time and space complexity of every step is bounded
by poly(log2 M,n, log2 n).

Remark 1. Notice that the norm in our main theorem is the most common l2-
norm. In fact, our result can be easily generalized to the case for lp-norm (p ∈ Z

+)
by Lemma 1.

Remark 2. For any Search CVP instance (B, t), given an oracle which can solve
the Optimization CVP, we can call the oracle with (Bε, εn+1t) only once to solve
the Search CVP similarly.

4 Improved Reduction from Search SVPγ to Optimization
SVPγ

′

In [9], Cheng gave a reduction from Search SVPγ to Optimization SVPγ′ where

γ
′
= γ

1
n(n−1)(n+log2(γn)) . We slightly improve the result to γ

′
= γ

O(log2 n)
n(n−1)(n+log2(γn)) .

As in [9] (Theorem 1), the main idea is to obtain lower rank sublattice of L(B)
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which still contains an approximate shortest lattice vector of L(B). After low-
ering the rank for several (n − 1) times, we finally obtain a rank-one sublattice
of L(B) containing a short vector. Since it is easy to find the shortest vector in
a lattice with rank one (its basis), we can find an approximate shortest lattice
vector of L(B). Below we will give a self-contained proof.

Theorem 2. For any γ ≥ 1, Search SVPγ can be polynomially reduced to Opti-

mization SVPγ′ where γ
′
= γ

O(log2 n)
n(n−1)(n+log2(γn)) .

Proof. Given the input instance B = (b1, b2, . . . , bn), we intend to find v ∈ L(B)
such that ‖v‖ ≤ γ · λ1(L(B)).

First, for k = O(log2 n), we consider 2k+1 −1 sublattices of L(B) where their
respective bases are Bi,j = (2ib1 + jb2, 2k−ib2, b3, . . . , bm)(i = 1, 2 . . . , k, 0 ≤ j <
2k−i). Notice for every Bi,j , det(L(Bi,j)) = 2k det(L(B)). We claim that

L(B) =
⋃

i,j

L(Bi,j).

For any w = x1b1 + x2b2 + · · · + xnbn in L(B), x1 ∈ Z can be written as
x1 = 2rs, where s is odd. If r ≥ k, then w ∈ L(Bk,0) = L(2kb1, b2, . . . bm).
Otherwise, we assume r < k. There exist integers p, q such that sp + 2k−rq = 1
since (s, 2k−r) = 1, which implies spx2 + 2k−rqx2 = x2. We take i = r, j = px2

mod 2k−r, then s(2ib1 + jb2) + (qx2 + spx2−j
2k−r )2k−rb2 = x1b1 + x2b2. So w ∈

L(Bi,j), thus L(B) ⊆ ⋃
i,j

L(Bi,j). On the other hand, since all the L(Bi,j)’s are

sublattices of L(B), our claim follows.
Secondly, we want to find a good sublattice L(Bi,j) of the original lattice

L(B) still containing a short lattice vector. We query the Optimization SVPγ′

oracle for 2k+1 (which is ploy(n) by the choice of k) times with these Bi,j and
get the output intervals Ii,j = [ri,j , γ

′ · ri,j) containing λ1(L(Bi,j)) respectively.
Specially, we can invoke the SVPγ′ oracle for B to obtain an interval I = [r, γ

′ ·r)
containing λ1(L(B)). By our claim, a shortest lattice vector in L(B) must lie in
some L(Bi,j) which means I must intersect some Ii,j ’s. We take Ii0,j0 that has
the smallest left endpoint from these Ii,j ’s. We claim

λ1(L(Bi0,j0)) ≤ γ
′ · λ1(L(B)).

Let Ii′ ,j′ be the interval where a shortest lattice vector in L(B) lies. Then by
the choice of Ii,j , λ1(L(Bi0,j0)) ≤ γ

′ · ri0,j0 ≤ γ
′ · ri′ ,j′ ≤ γ

′ · λ1(L(B)).
Thirdly, we repeat this procedure by replacing the input B with the Bi0,j0 .

After t = n(n+log2(γn))
O(log2 n) steps, we obtain a sublattice L(B

′
) of L(B) such that

λ1(L(B
′
)) ≤ (γ

′
)t · λ1(L(B)),

where det(L(B
′
)) = 2kt det(L(B)) ≥ 2n(n+log2 γn) det(L(B)).
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According to Minkowski’s bound, we have λ1(L(B)) ≤ √
n det(L(B))1/n.

Denote by u
′
a shortest lattice vector in L(B

′
), then

‖u
′‖ ≤ (γ

′
)t

√
n det(L(B))1/n.

Assume L(D) is the dual lattice of L(B
′
). Then det(L(D)) ≤ 1/(2n(n+log2 γn)

det(L(B))). By the LLL Algorithm [10], we can find a vector u ∈ L(D) such
that

‖u‖ < 2n
√

n det(L(D))1/n ≤ √
n2n/(2(n+log2 γn) det(L(B))1/n)

= 1/(γ
√

n det(L(B))1/n).

By Cauchy–Schwarz inequality, we have

|〈u′
, u〉| ≤ ‖u

′‖ · ‖u‖ < (γ
′
)t/γ ≤ 1.

Since u
′ ∈ L(B

′
), u ∈ L(D), 〈u′

, u〉 is an integer, which means 〈u′
, u〉 = 0. Hence

u
′
lies in the sublattice of L(B

′
) orthogonal to u. Denote this sublattice by L(B1)

and notice that its rank is n − 1. Therefore, we can efficiently find a lower rank
sublattice L(B1) ⊆ L(B) such that λ1(L(B1)) ≤ (γ

′
)tλ1(L(B)).

Finally, after repeating n − 1 times of the above procedures, we obtain a
sublattice L(Bn−1) of rank one with

λ1(L(Bn−1)) ≤ (γ
′
)(n−1)tλ1(L(B)).

Since a lattice basis is already the shortest lattice vector in any 1-rank lattice
and (γ

′
)(n−1)t = γ, we can find a lattice vector in L(B) of length λ1(L(Bn−1)) ≤

γλ1(L(B)). This completes our proof.

Remark 3. The above reduction is for l2-norm. Using the fact that for any v ∈ R
n

and any p ≥ 1, ‖v‖2/
√

n ≤ ‖v‖p ≤ n1/p‖v‖2, we can generalize our reduction to

the case for any lp-norm, where γ
′
= γ

O(log2 n)

n(n−1)(n+log2(γn3/2+1/p)) .

5 Our Reduction from Search CVPγ to Optimization
CVPγ

′

In this section, we present our reduction from Search CVPγ to Optimization
CVPγ′ where γ

′
= γ

1
n�n/2+log2 γ·dist(t,L(B))� . We have to point out that the rela-

tionship between two approximate factors γ and γ
′
is still waiting to be improved.

Theorem 3. For any γ
′ ≥ 1 and n ≥ 4, Search CVPγ can be solved in

polynomial time given an oracle solving Optimization CVPγ′ where γ
′

=

γ
1

n�n/2+log2 γ·dist(t,L(B))� .
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Proof. Given the input lattice basis B = (b1, b2, . . . , bn) ∈ Z
m×n and a target

t ∈ Q
n, we call the Optimization CVPγ′ oracle to obtain an interval [r, γ

′ · r)
containing dist(t,L(B)) � d. Our goal is to find a v ∈ L(B) s.t. ‖v − t‖ ≤
γ · dist(t,L(B)).

Firstly, a sequence of instance (Bi, ti)(i = 0, 1, . . . , k, where k = 
n/2+log2 γ ·
d�) is constructed in the following way.

Let B0 = B, t0 = t and Bi = (2ib1, b2, . . . , bn). We want to construct ti+1

from ti, Bi and Bi+1. Given (Bi, ti), we call the Optimization CVPγ′ oracle
on the three inputs (Bi, ti), (Bi+1, ti) and (Bi+1, ti − 2ib1) to get three interval
I0 = [r0, γ ·r0), I1 = [r1, γ ·r1) and I2 = [r2, γ ·r2) containing dist(ti,L(Bi)) � d0,
dist(ti,L(Bi+1)) � d1 and dist(ti − 2ib1,L(Bi+1)) � d2 respectively. Notice that

L(Bi) = L(Bi+1) ∪ (L(Bi+1) + 2ib1),

meaning d1 = d0 or d2 = d0. So I0 must intersect at least one of I1 and I2.
Similar to that in the proof of Theorem 2, let Ii0 be the interval having the
smallest left endpoint in these Ii’s that intersect I0. Then we set ti+1:

ti+1 =

{
ti (i0 = 1)
ti − 2ib1 (i0 = 2).

(1)

We can also prove that

dist(ti+1,L(Bi+1)) ≤ γ
′ · dist(ti,L(Bi)).

Hence we can find (Bk = (2kb1, b2, . . . bn), tk) such that dist(tk,L(Bk)) ≤ (γ
′
)k ·

dist(t,L(B)).
Secondly, by repeating this procedure for other lattice basis vector b2, . . . , bn,

we obtain (Bnk = (2kb1, 2kb2, . . . , 2kbn), tnk) s.t.

dist(tnk,L(Bnk)) ≤ (γ
′
)nk · dist(t,L(B)) = γ · dist(t,L(B)) = γ · d,

where tnk is of the form t+u (u ∈ L(B) is known). We denote dist(tnk,L(Bnk))
by dnk.

Notice that the new lattice L(Bnk) = 2kL(B) is sparse enough with
λ1(L(Bnk)) = 2kλ1(L(B)) ≥ 2k · 1 = 2k. For the choice of k,

λ1(L(Bnk)) ≥ 2k ≥ 2n/2γd ≥ 2n/2dnk.

By Babai’s Nearest Plane Algorithm [4] on input (Bnk, tnk), we can find a
lattice vector v ∈ L(Bnk) s.t. ‖v − tnk‖ ≤ 2

n−1
2 · dnk. We claim that v is the

lattice vector closest to tnk in L(Bnk). Let v′ be the lattice vector closest to tnk

in L(Bnk), then ‖v′−tnk‖ = dnk. We will show v = v′. For any w �= v′ ∈ L(Bnk),
we have

‖w−tnk‖ ≥ ‖w−v′‖−‖v′−tnk‖ ≥ λ1(L(Bnk))−dnk ≥ 2n/2dnk−dnk > 2
n−1
2 dnk,
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where the last inequality comes from n ≥ 4. Together with ‖v−tnk‖ ≤ 2
n−1
2 ·dnk,

we have v is actually the lattice vector closest to tnk in L(Bnk). Thus we have

‖v − tnk‖ = dist(tnk,L(Bnk)) ≤ γ · dist(t,L(B)).

Finally, as v is in L(B), we subtract the known u from v to get our Search CVPγ

solution v − u.

Remark 4. The above reduction can also be generalized to the case for any lp-

norm, where γ
′
= γ

1
n�n/2+log2 γn1/p·dist(t,L(B))� .

6 Conclusions

In this paper, we give a new reduction from Search SVP to Optimization SVP
with only one call, which is the least, to the Optimization SVP oracle. A similar
result for CVP also holds. When it goes to approximate version, inspired by
the idea in [9], we get an improved result on reduction from Search SVPγ to
Optimization SVPγ′ and a reduction from Search CVPγ to Optimization CVPγ′ .
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