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1 Introduction

Pancreatic cancer is the fourth leading cause of death by cancer worldwide with an

increasing incidence and a very poor prognosis [1]. The estimated 5-year survival is

lower than 5 %. Patients’ median survival following diagnosis is approximately

6 months. Nowadays, there is no curative treatment excepting surgery for 15 % of

patients. Nevertheless palliative chemotherapy (gemcitabine) can be applied.

Development of pancreatic cancer is very slow and involves many actors from

which microRNAs.

MicroRNAs (miRNAs, miRs) derive from endogenous genes (from intergenic or

intragenic genomic regions) transcribed for the most part by RNA polymerase

II. They follow a complex maturation process implicating key enzymes such as

DROSHA, DGCR8 and DICER [2]. They are small non coding RNA that functions

as translation inhibitors of messenger RNA mainly following binding to 30-
untranslated region [3–5]. This mechanism is conserved from plants to humans.

Because they regulate more than 30 % of mammalian gene products,

microRNAs are tightly involved in the regulation of many physiological processes

including development, proliferation, cell signaling and apoptosis. In addition,

microRNAs play important roles in many diseases, including cancer, cardiovascu-

lar disease, and immune disorders. In oncology, two main families of microRNAs

can be defined: oncomiRs (such as miR-21 and miR-155) which target messenger

RNAs from tumor suppressor genes and tumor suppressor microRNAs (tsmiR)

(let7, miR-34a and miR-146a) which target oncogenic mRNAs. More recently,

another class of microRNA implicated in cell metastasis has been described
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(MetastmiR). Indeed, Ma et al. described that the over expression of miR-10b in

non invasive breast cancer cell line alone confer metastatic potential. MicroRNAs

are involved in many oncogenic pathways [2] for example miR-34a and miR-146a

are induced by p53 and NF-kB, respectively [6] while miR-21 which inhibits the

p53 network [7] is induced by many oncogenic pathways including activated KRAS

and EGF receptor among other [8].

The alteration of microRNA expression in cancer has been described for the first

time by Calin and colleagues in 2002 [9]. Several mechanisms are implicated in this

deregulation such chromosomal aberrations, transcriptional control by oncogenic

transcription factors (such as MYC) [10], environmental factors, polymorphisms

[11], epigenetics [12] and altered expression or function of proteins involved in

microRNAs maturation [13]. Recently, Dicer and Drosha were found decreased in

60 % and 51 % of ovarian-cancer specimens, respectively [14]. As a consequence,

microRNA profiling permits the differential diagnosis between normal vs cancerous
tissue and to indentify tissues of origin for metastases [2]. In pancreatic cancer,

Bloomston et al. originally published that 21 upregulated and 4 downregulated

microRNAs could differentiate pancreatic tumors from benign pancreatic tissue in

90 % of their samples [15].

2 MicroRNAs as Emerging Therapeutic Targets

Single microRNA are demonstrated to control the expression of hundreds of genes,

and represent a new class of therapeutic targets to modulate many pathways

simultaneously and to reduce the emergence of resistant cellular clones that remains

a major concern in oncology [16]. In addition, recent publications demonstrate that

altering the level of expression of the entire population of cellular microRNAs by

targeting microRNA processing alters tumor progression in a disease-specific

manner [17].

MicroRNAs are also established as key players in cancer cell resistance to

treatment. MiR-21, one of the most cited oncomiR, is implicated in the resistance

to chemotherapy of many types of cancer including breast and pancreatic cancer

among others [18, 19]. In the later example, miR-21 targeting in combination with

gemcitabine treatment induces tumor regression. Other microRNAs are implicated

in pancreatic cancer cells chemoresistance such as miR-17-5p [20] and miR-181b

[21]. MicroRNAs are also implicated in cancer cell resistance to radiotherapy.

Indeed, Di Francesco and colleagues demonstrated that DNA damage response is

affected by miR-27a in lung adenocarcinoma-derived cell lines by a direct interac-

tion between miR-27a and the 30UTR region of the ATM kinase (Ataxia-

Telangiectasia Mutated) [22]. ATM regulates H2AX phosphorylation and the

activation of check point and cell cycle arrest following DNA damages. Taken

together, these studies demonstrate the importance of microRNA in carcinogenesis

but also in response to treatment making microRNAs very appealing therapeutic

targets.
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3 MicroRNA Targeting in Cancer

microRNA can be considered as emerging targets for the treatment of cancer

including pancreatic cancer either following restoration of the expression of

tumor suppressor microRNAs (let-7, miR-143-145, miR-34) or the targeting of

pro-oncogenic microRNA (miR-21, miR-155, miR-27). Many strategies have been

developed to achieve this goal (antisens, microRNA decoys. . .). Interestingly, some

approaches allow the synchronized targeting of several microRNAs by using so

called ‘Tough Decoys’ (TuDs) [23]. Consequently, many microRNAs carriers are

needed to deliver these moieties and to avoid the different biological barriers

[24]. Later in the chapter we will suggest which vector could be used for the

specific targeting of a diseased cell.

3.1 In the Absence of Carriers

Nowadays, microRNAs upregulation (tsmiR) is done by the use of microRNA

mimics contrary to downregulation of oncomiR that is achieved using antisense

oligonucleotide (ASO or antagomiR) or microRNA sponges (with repeated miRNA

antisense sequence). These strategies take advantage of small RNAs (19–22 nt) that

are by definition very sensitive to nuclease degradation. Consequently, it is man-

datory to conjugate cholesterol with 20-O-methyl (20-O-Me), 20-O-methoxyethyl

(20-O-MOE) or 20-fluoro substitutions. These substitutions improve microRNA

modulators stability and effectiveness of microRNA inhibition in vivo [25].

3.2 Non Viral Nanovectors

MicroRNA modulators have a small size (7–20 kDa) so they undergo kidney

filtration [2]. In addition, these non endogenous modulators should avoid phago-

cytic immune cells (macrophages and monocytes) in the bloodstream. So it is

necessary to combine them with a carrier. There are different nanovectors which

can be used to protect microRNA modulators, to improve targeting and to improve

the cellular uptake of the modulator. Lipid-based nanovectors (liposomes) can be

toxic for cells, are non specific and can induce immune response [26]. Accordingly,

they must be modified to serve as microRNA carriers. Pramanik and colleagues

demonstrated that the systemic injection of miR-34a and the miR-143/145 clusters

(two main tsmiR lost in pancreatic cancer) using lipid-based nanovectors in

orthotopic xenografts model induce tumor growth inhibition with increasing apo-

ptosis and decreasing proliferation [27]. Interestingly, tumor cells can be targeted

with modified liposomes. Polycationic liposome-hyaluronic acid (LPH) are used

because hyaluronic acid is a targeting agent due to its cell surface receptor CD44
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which is overexpressed on various tumors. LPH could be combined with the tumor

targeting GC4 single-chain antibody fragment (scFv-LPH) or with an integrin-

binding tripeptide (cRGD-LPH) for targeting integrin receptors on tumor vascula-

ture. Many other possibilities of lipid-based nanovectors combination are described

by Dr Leone’s group [28]. Polyethyleneimines (PEI) is commonly used due to its

global positive charge which ensures a strong interaction with the negatively

charged plasma membrane. Polyurethane-short branch polyethylenimine

(PU-PEI) is not cytotoxic and has high transfection efficiency as described by

Chiou and al for the delivery of miR-145 to treat lung adenocarcinoma in vivo
[29]. Nowadays it is possible to modify PEI nanovectors with rabies virus glyco-

protein (RVG) to allow PEI-microRNA modulator system to cross through the

blood–brain barrier. For example miR-124a (neuron specific microRNA) delivery

in brain promotes neurogenesis [30]. Atelocollagen that derives from type I colla-

gen can also be used as a microRNA carrier. MicroRNA modulators-atelocollagen

complex have a high delivery efficiency and limited immunogenicity. Matsuyama

and colleagues described that the local administration of miR-135b inhibitors with

atelocollagen suppressed the growth of subcutaneous Karpas 299 tumors in a

xenograft model [31]. Last, Calin’s team has recently described nanovector inspired

from endogenous intracellular transport of microRNA. Indeed, microRNA-protein

complex composed by Argonaute 2 protein or lipoproteins (HDL) are actively

secreted or can be part of cell-derived membrane vesicles such as exosomes or

apoptotic bodies [32]. Recently, Ohno et al., demonstrated the feasibly of targeting

EGFR-expressing cancerous tissues after systemic injection in a RAG 2�/� mice

of let-7a microRNA in a modified exosomes by the GE11 peptide (specific ligand of

EGFR less mitogenic than EGF). Their results suggest that exosomes can be used

therapeutically as a nanovector delivery system for microRNAs [33].

3.3 Viral Vectors

Viral vectors are very efficient for gene transfer and can be easily targeted to

diseased cells. MicroRNA replacement or inhibition using lentivectors,

adenovectors or adeno-associated vectors (AAV) have been shown to inhibit

tumor growth in experimental models of lung, prostate, breast and liver cancer.

Pr Tyler Jacks’s team demonstrated that let-7 g overexpression using lentiviral

vector in both murine and human non-small cell lung tumors induced significant

growth reduction [34]. In another study, miR-145 overexpression using adenoviral

vector in combination with 5-FU treatment in orthotopic breast cancer mice in vivo
significantly showed anti-tumor effects as compared to chemotherapy alone

[35]. Last, Dr Mendell’s team described that the systemic injection of miR-26a in

a mouse model of hepatocellular carcinoma (HCC) using AAV, inhibits cancer cell

proliferation and induces tumor-specific apoptosis without toxicity. This study is a

proof of concept that expression of a microRNA lost in cancer using a dedicated

delivery system is well tolerated [36].
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3.4 Route of Administration

There are three main routes of administration depending on the type of microRNA

delivery systems used [2]. MicroRNA can be injected systemically in the absence

of carrier (antagomiR, LNA and modified oligos), while non viral and viral vectors

permit systemic, locally or intranasal delivery. Importantly, local injection can help

minimize microRNA modulators exposure to nuclease degradation in body fluids

and decrease unspecific uptake in non target tissues. Accordingly, Dr Slack’s group

described that the intranasal injection of let-7-encoding adenovector reduces tumor

growth in mouse models of lung cancer due to the capability of this class of vector

to have a unique cell surface receptor and to transduce epithelial cells [37]. To

finish, systemic or local injection can also be done for nanoparticles carrying

microRNAs [2].

4 MicroRNA Targeting in Pancreatic Cancer

Concerning pancreatic cancer, there are several studies of microRNA targeting

using different carriers. The most recent studies of microRNA targeting are

described below. First of all, intravenous injections of miR-34 or miR143/145

lipid-based nanoparticules in pancreatic cancer xenografts induced tumor growth

reduction and apoptosis [27]. However, while this strategy may permit the targeting

of distant metastasis, the transfection efficacy of this approach was not mentioned.

In a similar work, Hu and colleagues developed a nanovector-based miR-34a

delivery system combined with CC9 peptide that increases the targeting and

penetrating capability in pancreatic cancer-derived cells. Interestingly, systemic

administration of this complex inhibits tumor growth and induces pancreatic cancer

cell apoptosis in a murine model of PANC-1 subcutaneous xenografts [38]. Again,

in vivo transfection efficacy of this approach is not quantified. In addition, both

strategies used subcutaneaous models of pancreatic tumor growth that greatly

diverges from orthotopic tumors. On the other hand, miR-21 is barely expressed

in normal cells and participates in many oncogenic pathways. This particular

miRNA is most frequently associated with poor outcome in cancer including

pancreatic neoplasia. Our group recently asked whether targeting miR-21 could

impair tumor growth and sensitize pancreatic tumors to chemotherapy. We used

lentiviral vectors encoding for miR-21 decoys that efficiently silence miR-21 in

cancer cells. Intratumoral injection of miR-21 decoys in an orthotopic human

pancreatic cancer xenograft model inhibits tumor progression. We next combined

miR-21 targeting vector with repeated intra peritoneal gemcitabine injection. We

demonstrate that miR-21 alone is more efficient than the standard of care chemo-

therapy to inhibit tumor progression and, more importantly, that combining miR-21

targeting with chemotherapy induced tumor regression in a very aggressive model
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of pancreatic cancer [19]. Thus, microRNAs such as miR-21, are promising targets

for pancreatic cancer therapy.

Nevertheless, few reports demonstrated that microRNAs modulators are ineffec-

tive to inhibit cancer growth. In these studies; the delivery systems do not appear to

be faulty, but the enforced expression of the candidate microRNA may not result in

the antitumoral effect expected. For instance, Delpu and colleagues analyzed the

potential role of miR-148a over-expression in PDAC using lentiviral vector carriers.

While this microRNA is lost during pancreatic carcinogenesis [12], they demon-

strated that miR-148a expression in vivo using lentiviral vectors does not impede

tumor growth [39]. In another example, restoring Let-7 expression using lentiviral

vectors in pancreatic cancer derived cell lines strongly inhibits cell proliferation but

fails to impede tumor growth [40]. Thus, it is mandatory to perform in vivo studies to
demonstrate the antitumoral activity of microRNA-based therapeutics before fur-

ther (pre)clinical evaluation.

5 MicroRNA and Clinical Trials for Cancer

Nowadays, microRNAs are commonly associated with clinical trials and can be

used as robust and reliable biomarkers for different diseases. Nevertheless there is

no clinical trial to date using microRNA as a therapeutic target in cancer. Indeed,

MiR-122 is the only microRNA that has been implicated in clinical trials (phase

2 with 36 patients) for patients with chronic hepatitis C viral infection. This

microRNA is liver-specific and de rigueur for hepatitis C virus replication.

Repeated weekly subcutaneously injection of different doses of miravirsen

(LNA-antimiR-122) have been performed. Miravirsen efficiently inhibits

miR-122 in HCV patients. Interestingly, miravirsen is safe and well tolerated and

provoke a dose dependent reduction in HCV RNA levels [41].

6 Conclusion

Despite these very encouraging results, it is important to question why microRNAs

are not widely used in cancer clinical trials. Importantly, most of the studies have

been performed in immunosuppressed experimental models and in very few

immune-competent animals. As microRNAs have been associated with the regula-

tion of TLRs [42], further experiments are needed to demonstrate the safety of such

approach. In addition long term studies in model organisms must be performed, to

identify unexpected serious adverse events linked to microRNA modulators admin-

istration. Along with, targeting tumor cells using delivery vehicles remains a

challenge in the gene therapy field of research. Last but not least, the specificity

of microRNA modulators must be scrutinized because lead off-target effects

(i.e. silencing of non targeted genes) have been already described for other RNA
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interference strategies using siRNA [43]. In conclusion, the potential benefits for

basic cancer research, medicine and public health of using microRNAs as thera-

peutic targets are numerous. As existing treatment offer little benefit, targeting

microRNAs may give therapeutic perspectives for the treatment of pancreatic

cancer or other human solid tumors. Such challenges notwithstanding, this strategy

represents a welcome and refreshing set of new considerations to ponder in a

disease that has too often been met with frustration and nihilism in the past.
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