
Chapter 4
Generation of Short and Ultra-Short Pulses

In this chapter we investigate two of the main methods of laser-pulse generation,
which are Q-switching and mode-locking. Whilst of-course every laser may be
pulsed by just switching it on and off, these methods allow accumulation of pump
energy between two pulses, and can therefore, create pulse peak powers that are
several orders of magnitude higher than the corresponding cw laser output power.

4.1 Basics of Q-Switching

Q-switching is based on a modulation of the cavity losses, as shown in Fig. 4.1.
This modulation, caused by an externally driven intra-cavity modulator in active Q-
switching or by a saturable absorber in passive Q-switching, increases the internal
losses of the cavity during the pump phase. Thus the laser threshold is dramatically
increased and the laser cannot start oscillating, which allows the inversion to reach
much higher values than in cw operation. After this pumping phase the modulation
losses are switched off and the feedback on the laser medium is restored. Then a
laser field builds up from noise and will extract all available stored energy in one
giant pulse of high pulse energy. As the loss modulation changes the Q-factor of the
cavity, this pulse generation method is called Q-switching. The general temporal
evolution of the Q-switch is sketched in Fig. 4.2 for the case of an active Q-switch
that acts on the internal cavity losses Λ.

4.1.1 Active Q-Switching

In this section the fundamental properties of actively Q-switched lasers will be de-
duced, starting from the rate equations (2.60), (2.61).
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Fig. 4.1 Principle setup of an
actively Q-switched laser

Fig. 4.2 Evolution of gain,
loss and photon density
during the Q-switch

Pumping at Low Q-Factor

During the pump phase of duration Tp the cavity losses are assumed to be high
enough to prevent lasing at all, i.e. 〈Φ〉 ≈ 0. Thus, Eq. (2.60) may be written as

∂〈�N〉
∂t

= Rp − 〈N〉 + 〈�N〉
τ

, (4.1)

with the pump rate

Rp = 2
λp

hc
Ip

ηabs

L
. (4.2)

This can be easily solved under the assumption of a constant pump rate, resulting in
an inversion build-up according to

〈�N〉(t) = Rpτ
(
1 − e− t

τ
) − 〈N〉. (4.3)

It is interesting to note here that this build-up is identical to the charging of a capac-
itor C, as shown in Fig. 4.3. Q-switching in this sense can thus be seen as slowly
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Fig. 4.3 Analogy between
Q-switching and the charging
of a capacitor

Fig. 4.4 Pump efficiency as
a function of the pump pulse
width

charging a capacitor over a high resistor Rch = τ
C

and quickly discharging it over a
low resistor Rdis = τc

C
, which is connected to the much smaller cavity lifetime.

For a long time pumping, i.e. t → ∞, the inversion will thus saturate and reach
its upper limit

〈�N〉∞ = Rpτ − 〈N〉, (4.4)

showing that long pumping phases will result in a low efficiency. To calculate the
pump efficiency, we assume that the laser is pumped with a given pump energy Ep ,
which may be distributed over a variable pump time Tp in a square pulse. During
this time Np,max = RpTp excitations will be created, which however, suffer from
spontaneous decay. Therefore, at the end of the pump phase only

Np = 〈�N〉(Tp) + 〈N〉 = Np,max

Tp

τ
(
1 − e− Tp

τ
)

(4.5)

excitations are still in the upper state. Thus the pump efficiency ηp can be derived
as

ηp = τ

Tp

(
1 − e− Tp

τ
)
, (4.6)

giving the amount of absorbed pump energy that is stored inside the laser medium
excitation after the pump phase. As can be seen in Fig. 4.4, a pump pulse duration
of Tp < τ

2 should be used in order to get a pump efficiency > 80 %.

Pulse Build-Up at High Q-Factor

After the pump phase, the initial inversion 〈�N〉i is present in the laser medium
and the modulator is switched off, restoring the high Q-factor of the cavity. We will
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now derive the pulse build-up time, which is defined as the time the photon field
needs in order to build-up from noise to a value comparable to the photon field in
cw operation [1]. As the peak photon density in the Q-switch pulse will be much
higher than the cw value 〈Φ〉cw, we can assume that for 〈Φ〉 ≤ 〈Φ〉cw no significant
decrease in the inversion occurs. Thus, the inversion is treated as constant during this
time, and by using Eq. (2.63), the rate equation governing the temporal evolution of
the photon field can be rewritten as

∂〈Φ〉
∂t

= c

2

[
σa(λs) + σe(λs)

](〈�N〉i − 〈�N〉th
)〈Φ〉, (4.7)

where, we assume that the axial changes in the population and the photon field
are not too high, so that we can write the averaged products as the product of the
averages. Also, we simplify the cross-sections of absorption and emission at the
laser wavelength λs by σa = σa(λs) and σe = σe(λs) in the following. Using the
abbreviations

〈�N〉′i = 〈�N〉i − σa − σe

σa + σe

〈N〉 (4.8)

〈�N〉′th = 〈�N〉th − σa − σe

σa + σe

〈N〉 (4.9)

r = 〈�N〉′i
〈�N〉′th

= gi

gth
, (4.10)

as well as Eq. (2.63) again we can simplify Eq. (4.7) to the form

∂〈Φ〉
∂t

= 1

τc

(r − 1)〈Φ〉, (4.11)

with the solution

〈Φ〉(t) = Φ0e
(r−1) t

τc , (4.12)

where, Φ0 is the noise photon density caused by the vacuum fluctuations. The cavity
field, therefore, will start growing exponentially from the vacuum fluctuations with
the time constant τc

r−1 until it depletes the inversion significantly. The pump param-
eter r can also be expressed as the ratio between the initial logarithmic gain gi and
the logarithmic threshold gain gth using

gi = (σa + σe)〈�N〉i − (σa − σe)〈N〉 (4.13)

gth = (σa + σe)〈�N〉th − (σa − σe)〈N〉. (4.14)

As long as the depletion of the ground-state N1 can be neglected during pumping,
e.g. in high-repetition rate operation as discussed later on, the logarithmic gain is
proportional to the pump power, resulting in

r = gi

gth
≈ Pp

Pth
. (4.15)

Therefore, the pump parameter r is often identified with the “times-above-
threshold” operation point of the laser given by r − 1.
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Fig. 4.5 Pulse build-up time
as a function of the pump
parameter r

Defining the cavity build-up time Tb by 〈Φ〉(Tb) = 〈Φ〉cw results in

Tb = τc

r − 1
ln

〈Φ〉cw

Φ0
. (4.16)

In most laser systems, the ratio between the cw photon density and the noise is of
the order of 108 − 1012, giving

Tb ≈ (22.5 ± 5)
τc

r − 1
. (4.17)

As shown in Fig. 4.5, the pulse build-up time quickly decreases with increasing
pump power, shifting towards the time when the modulator opens. In order not to
loose efficiency, additional losses from the modulator must be avoided. Therefore,
the modulator has to be chosen so that the switching between the low-Q and the
high-Q state of the cavity occurs much faster than the build-up time of the laser
pulse.

Pulse Peak Power and Pulse Width

To derive the pulse width of the Q-switch pulse, we can assume that during the pulse
build-up and the pulse extraction time, we can neglect further spontaneous decay of
the upper level as well as pumping, which results in the rate equations

∂〈�N〉
∂t

= c
[
(σa − σe)〈N〉 − (σa + σe)〈�N〉]〈Φ〉 (4.18)

∂〈Φ〉
∂t

= c

2
(σa + σe)

(〈�N〉 − 〈�N〉th
)〈Φ〉. (4.19)

Dividing Eq. (4.19) by Eq. (4.18) yields the evolution of the photon field with inver-
sion as

∂〈Φ〉
∂〈�N〉 = 1

2

(σa + σe)(〈�N〉 − 〈�N〉th)

(σa − σe)〈N〉 − (σa + σe)〈�N〉 , (4.20)
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which can be integrated to give the photon field as a function of the inversion density,

2
∫ 〈Φ〉

Φ0

d〈Φ〉 =
∫ 〈�N〉

〈�N〉i
[σa + σe](〈�N〉 − 〈�N〉th)

([σa − σe]〈N〉 − [σa + σe]〈�N〉)d〈�N〉. (4.21)

This integral can be performed analytically and under the assumption that the photon
noise density is low compared with the one occurring during the pulse, i.e. we can
set the lower integration boundary to Φ0 ≈ 0, this results in

2〈Φ〉 ≈ 〈�N〉i − 〈�N〉

+
[
σa − σe

σa + σe

〈N〉 − 〈�N〉th

]
ln

( 〈�N〉i − σa−σe

σa+σe
〈N〉

〈�N〉 − σa−σe

σa+σe
〈N〉

)
. (4.22)

After the pulse is emitted the photon density will decrease to zero again and a resid-
ual (final) inversion 〈�N〉f is left inside the medium given by the relation

〈�N〉f − 〈�N〉i

=
[
σa − σe

σa + σe

〈N〉 − 〈�N〉th

]
ln

( 〈�N〉i − σa−σe

σa+σe
〈N〉

〈�N〉f − σa−σe

σa+σe
〈N〉

)
. (4.23)

This is the main equation describing the Q-switch process. Using the abbreviations
in Eqs. (4.8)–(4.10) and accordingly

〈�N〉′f = 〈�N〉f − σa − σe

σa + σe

〈N〉 (4.24)

the fundamental Q-switch equation can be rewritten in the simple form

〈�N〉′f
〈�N〉′i

= 1 − 1

r
ln

〈�N〉′i
〈�N〉′f

, (4.25)

showing that the whole Q-switch pulse evolution only depends on the initial inver-
sion 〈�N〉′i and the cavity parameters included in 〈�N〉′th.

To derive the pulse peak power, we first have to find the time of the pulse peak
itself. As already shown in Fig. 4.2, the peak is reached when no further net ampli-
fication is possible, i.e. it will occur exactly when the gain, and thus the inversion,
crosses the threshold values. Using Eq. (4.22) thus gives the peak photon density
inside the cavity as

〈Φ̂〉 = r − 1 − ln r

2
〈�N〉′th. (4.26)

Therefore, it only depends on the cavity parameters and r . As these photons will
leave the cavity with the cavity photon lifetime τc, the peak power of the Q-switched
pulse can be directly given by

P̂ = hν

τc

〈Φ̂〉V = r − 1 − ln r

2
〈�N〉′th

hν

τc

V . (4.27)
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Fig. 4.6 Extraction efficiency and relative pulse width of a Q-switch pulse as a function of the
pump parameter r

Additionally, we define the energy extraction efficiency ηe by the fraction of ex-
tracted inversion as

ηe = 1 − 〈�N〉′f
〈�N〉′i

. (4.28)

Using Eq. (4.25) the energy extraction efficiency ηe(r) can be calculated indepen-
dently from the actual laser parameters by the transcendental equation

r = − ln [1 − ηe(r)]
ηe(r)

. (4.29)

Hence, we can approximate the pulse width tp of the Q-switch pulse as the ratio
between the extracted energy Es = 1

2hνV (〈�N〉′i − 〈�N〉′f ) and the pulse peak

power P̂ by

tp ≈ Es

P̂
= rηe(r)

r − 1 − ln r
τc. (4.30)

The factor 1
2 in the energy takes into account that in the �N each excitation is

counted twice.
As can be seen in Fig. 4.6 the extraction efficiency quickly approaches unity for

r > 4, whilst the pulse width asymptotically decreases towards the cavity lifetime.
This shows that short pulses on the order on several ns to 1 µs are possible with
Q-switched lasers, depending on the cavity lengths and lifetimes.

4.1.2 Experimental Realization

Q-switching is most often achieved through use of two main techniques, in which
either an acousto-optic modulator (AOM) or an electro-optic modulator (EOM) is
used to modify the cavity losses. The initial technique was to rotate the HR mir-
ror of the cavity around an axis perpendicular to the beam propagation axis. This
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generates a Q-switch pulse, because only during the short time when the mirror is
perpendicularly aligned to the beam, a high-Q cavity is formed. A special pulse-
generation method is cavity dumping, in which the laser is Q-switched between two
HR mirrors. Then the pulse builds up and is finally extracted by using the modulator
a second time. This last technique usually needs fast switching times as especially
the switching to extract the pulse has to be much faster than the cavity round-trip
time. Therefore, only electro-optical modulators are used in this case.

Acousto-Optic Modulators

The usual setup of an acousto-optically Q-switched laser is shown in Fig. 4.7. The
modulator consists of a transparent material, e.g. silica glass (SiO2) or tellurium
dioxide (TeO2), to which an ultrasonic transducer is bonded to create a sound wave
inside the bulk modulator material. Owing to the photo-elastic effect, this sound
wave generates an index of refraction distribution inside the modulator material,
which behaves as an optical phase grating that causes a part of the incident power
to be diffracted out of the cavity, thus creating losses. By switching off the radio-
frequency (rf) power to the transducer, the glass block returns to its homogeneous
index state and the high Q-factor of the resonator is restored [3].

Depending on the length Lm of the modulator material, the wavelengths of the
optical wave and the sound wave, two diffraction regimes are observed, which are
the Raman-Nath regime and the Bragg regime.

In Raman-Nath scattering the interaction length Lm is short or the sound wave-
length λa is large, thus λsLm 	 λ2

a . In this case, the incident light is scattered into
many diffraction orders, with a maximum of diffracted power occurring when the
sound wave interacts perpendicularly with the light wave, as shown in Fig. 4.8. The
amplitude of the phase grating is given by

�φ = 2π�n
Lm

λs

= π

√
2Lm

λ2
s

M2
Pa

b
, (4.31)

with b being the width of the sound wave, Pa the acoustic wave power and M2 the
so-called figure of merit of the acousto-optic material. It can be calculated from the
refractive index n, the photoelastic coefficient in the chosen geometry p, the density
of the acousto-optic material ρ and the velocity of sound va as

M2 = n6p2

ρv3
a

. (4.32)

Finally, the intensity scattered into the nth order is given by

In = Î0J
2
n (�φ), (4.33)

where, Jn(x) is the Bessel function of nth order and Î0 the incident laser intensity.
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Fig. 4.7 Setup of an actively
Q-switched laser using an
acousto-optic modulator [3]

Fig. 4.8 The two operation
regimes of an acousto-optic
modulator: The Raman-Nath
regime and the Bragg
regime [3]

In Bragg scattering, described by λsLm 
 λ2
a , a zero-order and first-order

diffraction beam become predominant under the Bragg condition [3], in this case
the sound wave and the light wave interact at the Bragg angle θB , given by

sin θB = λs

2nλa

. (4.34)

The internal deflection angle is given by 2θB and by taking into account the re-
fraction on the output side of the modulator, one finds an external diffraction angle
of

θ ′ = 2nθB ≈ λs

λa

. (4.35)

The intensity of the scattered beam is then given by

I1 = Î0 sin2 �φ

2
, (4.36)

and the intensity of the transmitted beam I0 is reduced by this amount compared
with the off-state of the modulator.
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Fig. 4.9 Layout of a Pockels
cell as an electro-optic
modulator and the induced
change in the refractive index
ellipsoid [3]

Electro-Optic Modulators

Whilst acousto-optic modulators may also be used with unpolarized light, an
electro-optic modulator uses the electro-optic effect, i.e. the birefringence induced
in an optical medium by an externally applied electric field. This is achieved in a
Pockels cell, in which the refractive index change depends linearly on the applied
electric field (Pockels effect). The external electric field will induce a birefringence,
which results in a so-called slow-axis and a fast-axis with different indices of re-
fraction. The electro-optic crystal, e.g. potassium dihydrogen phosphate (KDP), is
oriented in such way that the incident laser light will have its polarized aligned un-
der 45◦ with respect to the slow or fast axis, see Fig. 4.9. Then, the induced change
in refractive index will cause a phase shift between the slow- and fast-axis electric
field components of the beam. This results in a change of the state of polarization of
the radiation, developing from an incident linear polarization to an elliptical polar-
ization and a circular polarization during its propagation along the cell axis.

For a given cell length Lc two specific voltages exist for which the output po-
larization corresponds to a circular polarization or a linear polarization rotated by
90◦ with respect to the incident polarization orientation. These voltages are called
quarter-wave Uλ

4
and half-wave voltage Uλ

2
, respectively,

Uλ
4

= λs

4n3
0r63

, (4.37)

Uλ
2

= λs

2n3
0r63

, (4.38)

as the cell acts like a quarter- or half-wave plate in this case. In this formulae,
wherein n0 is the ordinary index of refraction, λs is the laser wavelength and r63
is the electro-optic coefficient. Combining such a Pockels cell with an intracavity
polarizer now allows efficient and fast switching of the internal beam as the electro-
optic effect has a response time much smaller than the cavity time constants. The
switching time only depends on the high-voltage power supply and its ability to
charge the Pockels cell, which is electrically charged just like a capacitor.

The quarter-wave setup only needs one intra-cavity polarizer, since the beam
passes the Pockels cell twice resulting in a total polarization rotation of 90◦ as shown
in Fig. 4.10. In the half-wave setup a second polarizer is needed to couple out the
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Fig. 4.10 Setup of an
actively Q-switched laser
using an electro-optic
modulator [3]

Fig. 4.11 Setup of a
cavity-dumped ruby laser [3]

all the incident radiation when the voltage is applied. By switching off the voltage
in both cases the electro-optic crystal will return into its non-birefringent state and
the cavity is restored, causing the Q-switch pulse to build up.

Cavity Dumping

In cavity dumping the half-wave setup of a Pockels cell is used and the laser is
Q-switched with nearly 100 % reflectivity cavity mirrors in order to obtain very
short Q-switch pulses. At the peak of the Q-switched pulse, the Pockels cell is used
to switch the closed cavity rapidly to its output port, provided by an intracavity
polarizer. Thus, the width of the Q-switched pulse is only a function of the cavity
length and its round-trip time, and not of the spectroscopic parameters of the laser
medium. In the example in Fig. 4.11 the ruby laser rod is oriented so that the c-axis is
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perpendicular to the plane of the page. Without any voltage on the Pockels cell, the
laser medium is pumped and an inversion is created. The crystal only provides a high
optical gain for a laser polarization in this plane, so that the generated fluorescence
does not “see” the second cavity mirror as it leaves the cavity by passing through
the polarizer. Then the half-wave voltage is applied to the Pockels cell, causing the
polarized fluorescence to be reflected from the polarizer. Hence, the laser cavity is
closed and the laser pulse builds up. On the maximum laser pulse power, the voltage
is removed from the Pockels cell in less than 2–5 ns and the cavity photons will all
leak out by passing the polarizer, thus creating a pulse with a width of the round-trip
time of the resonator.

If the laser medium does not provide a polarized output itself, a second polarizer
can be inserted into the cavity to provide the decoupling of the second cavity mirror
during the off-state of the Pockels cell.

4.1.3 Passive Q-Switching

In contrast to active Q-switching, where an external signal is applied to open the cav-
ity and to restore the high Q-factor to generate the pulse, passive Q-switching uses a
saturable absorber. This is an additional medium inside the cavity that absorbs on
the laser wavelength, thus decreasing the Q-factor (or increasing the internal cavity
losses). However, this absorption is intensity dependent and quickly saturates to-
wards a highly transmissive state of that material, restoring the high Q-factor of the
cavity, which causes the build-up of the pulse intensity. This switching can be seen
in Fig. 4.12, in which the transmission of a saturable medium is shown with respect
to the incident fluence

J =
∫

Isdt (4.39)

on the absorption line. By analogy with the Frantz-Nodvik model [2], this transmis-
sion can be calculated by

T (J ) = Jsat

J
ln

[
1 + (

e
J

Jsat − 1
)
T0

]
, (4.40)

where, T0 is the initial, i.e. unpumped, transmission of the saturable medium and
Jsat is the saturation fluence, given by

Jsat = hc

λs[σa(λs) + σe(λs)] = τ ∗I s
sat, (4.41)

with τ ∗ being the excitation lifetime of the saturable absorber and

I s
sat = hc

λs[σa(λs) + σe(λs)]τ ∗ (4.42)

being the saturation intensity of the absorber on the laser line. It should not be
confused with the pump saturation intensity in Eq. (2.71), in which the pump wave-
length λp occurs.
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Fig. 4.12 Transmission of a
saturable medium as a
function of the incident
fluence at an initial
transmission of T0 = 0.6

Owing to the additional saturable absorber inside the cavity, a new rate equation
has to be added to describe this system. The passive Q-switch on the time scale of
the pulse generation, i.e. when pumping and spontaneous decay can be neglected, is
therefore given by the coupled equations

∂〈�N〉
∂t

= c
[
(σa − σe)〈N〉 − (σa + σe)〈�N〉]〈Φ〉 (4.43)

∂�N∗

∂t
= c

[(
σ ∗

a − σ ∗
e

)
N∗ − (

σ ∗
a + σ ∗

e

)
�N∗]〈Φ〉 − �N∗ + N∗

τ ∗ (4.44)

∂〈Φ〉
∂t

= c

2
(σa + σe)

(〈�N〉 − 〈�N〉th
)〈Φ〉

+ c

2

[(
σ ∗

a + σ ∗
e

)
�N∗ − (

σ ∗
a − σ ∗

e

)
N∗]〈Φ〉, (4.45)

where, �N∗ and N∗ are the inversion density and total absorber density of the
saturable absorber, τ ∗ its excitation lifetime and σ ∗

a = σ ∗
a (λs) and σ ∗

e = σ ∗
e (λs)

the saturable absorber cross-sections of absorption and emission at the laser wave-
length λs .

A saturable absorber usually has a very low excitation lifetime τ ∗ < ns, much
lower than the Q-switch pulse widths created. It often uses dyes or semiconductor
materials. Thus, the inversion density of the saturable absorber �N∗ in Eq. (4.44)
will nearly instantaneously react on the photon density 〈Φ〉. Therefore, we can ap-
proximately solve this rate equation as being in the steady state compared to all
other processes during the Q-switch. This results in

�N∗ = cτ ∗(σ ∗
a − σ ∗

e )〈Φ〉 − 1

cτ ∗(σ ∗
a + σ ∗

e )〈Φ〉 + 1
N∗. (4.46)

At the beginning of the Q-switch process, it can be assumed that the laser medium
has its initial inversion density 〈�N〉i and that the saturable absorber is still unex-
cited, i.e. �N∗ ≈ −N∗. Therefore, Eq. (4.45) gives

∂〈Φ〉
∂t

= c

2
(σa + σe)

(〈�N〉i − 〈�N〉th
)〈Φ〉 − cσ ∗

a N∗〈Φ〉, (4.47)
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which results in an exponentially growing photon field 〈Φ〉(t) = Φ0e
γ0t with a time

constant

γ0 = c

2
(σa + σe)

(〈�N〉i − 〈�N〉th
) − cσ ∗

a N∗. (4.48)

In contrast to the temporal behaviour of the saturable absorber inversion den-
sity, the inversion density 〈�N〉(t) of the laser medium will be determined by the
integrated photon flux. By taking the approximate exponential growth solution of
Eq. (4.47), and the analytical solution of

∂f

∂t
= (

af (t) + b
)
u(t), (4.49)

given by

f (t) = ea
∫ t

0 u(t ′)dt ′
(

f (0) + b

∫ t

0
e−a

∫ t ′
0 u(t ′′)dt ′′u

(
t ′
)
dt ′

)
, (4.50)

Eq. (4.43) can be analytically solved, giving

〈�N〉 = e
− c(σa+σe)

γ0
〈Φ〉(t)

(
〈�N〉i + c(σa − σe)〈N〉

∫ t

0
e

c(σa+σe)
γ0

〈Φ〉(t ′)〈Φ〉(t ′)dt ′
)

.

(4.51)

Inserting these results into Eq. (4.45), the exponential time constant of the photon
field can be described by

1

〈Φ〉
∂〈Φ〉
∂t

= γ0 +
(

c2σ ∗
a

(
σ ∗

a + σ ∗
e

)
τ ∗N∗ − c2(σa + σe)

2

2γ0
〈�N〉i

)
〈Φ〉 + · · · ,

(4.52)

wherein a series development in the power of 〈Φ〉 was used.
If the coefficient of the linear term in 〈Φ〉 has a negative sign, the exponential

time constant will decrease with increasing photon flux, which means that the gain
provided by the laser medium saturates before the absober can saturate. This will
thus not result in a Q-switch pulse. However, when the sign of this linear term is
positive, the exponential time constant will increase with increasing photon flux
as the saturable absorber bleaches much faster than the gain of the laser medium
is reduced owing to amplification. Then, a Q-switch pulse is emitted as shown in
Fig. 4.13. Passive Q-switching thus depends on two thresholds: a first threshold that
needs to be passed by pumping strongly enough that the generated gain exceeds
the unsaturated losses of the cavity including the saturable absorber, and a second
threshold that is given by passing the point after which the photon flux grows faster
than exponentially. If we denote the single-pass gain before saturation occurs with
G0, the logarithmic round-trip gain results in g0 = 2 lnG0. Hence, the exponential
time constant γ0 may be approximated by

γ0 ≈ g0

�tRT
, (4.53)
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Fig. 4.13 Evolution of gain,
loss and photon density
during the passive Q-switch

neglecting the cavity photon lifetime, see Eq. (2.62). Therein, �tRT is the cavity
round-trip time. Then, the second threshold can be expressed by

N∗ >
(σa + σe)

2

σ ∗
a (σ ∗

a + σ ∗
e )

�tRT

τ ∗
〈�N〉i

2g0
, (4.54)

stating the minimum absorber density necessary to pass the second threshold.

4.1.4 Scaling Laws of Repetitive Q-Switching

In this section we will investigate repetitive Q-switching, i.e. a periodic opening and
closing of the cavity by the modulator at a repetition rate νRep and with an opening
time tG, called a gate. Of-course, the gate tG has to be at least as long as the pulse
build-up time. As a result from the finite pulse build-up time an upper limit will
exist for the repetition rate, given by the fact that during the corresponding repetition
period TRep = 1

νRep
enough inversion, and thus, gain has to build-up so that the pulse

will be created within the gate duration, i.e. during the high-Q state of the cavity.
In repetitive Q-switching under equilibrium conditions, i.e. when all pulses show

equal pulse energy, it follows from the dependence of the Q-switch pulse evolu-
tion in Eq. (4.25) that the initial inversion before each pulse emission has to be
equal. As the initial inversion of the nth pulse is coupled to the final inversion of
the n − 1th pulse, by the pumping between the two pulses, we can conclude from
self-consistency, using Eq. (4.1), that

〈�N〉i = (〈�N〉f − Rpτ + 〈N〉)e− TRep
τ + Rpτ − 〈N〉

= 〈�N〉∞ − (〈�N〉∞ − 〈�N〉f
)
e
− 1

νRepτ . (4.55)
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Fig. 4.14 Evolution of the
inversion with time for
high-repetition-rate
Q-switching

Using the abbreviations in Eqs. (4.8)–(4.10), (4.24) and accordingly

〈�N〉′∞ = 〈�N〉∞ − σa − σe

σa + σe

〈N〉, (4.56)

Eq. (4.55) can be rewritten to

〈�N〉′i = 〈�N〉′∞ − (〈�N〉′∞ − 〈�N〉′f
)
e
− 1

νRepτ . (4.57)

The other two equations necessary to derive the scaling laws are rewritten forms of
Eqs. (4.25), (4.30) and are given by

〈�N〉′i − 〈�N〉′f = 〈�N〉′th ln
〈�N〉′i
〈�N〉′f

, (4.58)

�tp = 〈�N〉′i − 〈�N〉′f
〈�N〉′i − 〈�N〉′th(1 + ln

〈�N〉′i
〈�N〉′th )

τc. (4.59)

In the case of low repetition rates, i.e. νRep 	 1
τ

, Eq. (4.57) yields 〈�N〉′i ≈
〈�N〉′∞ and thus, using Eq. (4.58), that 〈�N〉′f ≈ constant. Therefore, also the pulse

width �tp , pulse peak power P̂ and pulse energy Es are constant and the average
power, given by

〈Ps〉 = 1

2
hνV

(〈�N〉′i − 〈�N〉′f
)
νRep, (4.60)

scales with the repetition rate.
For high repetition rates, i.e. νRep 
 1

τ
, this calculation is a little bit more com-

plex. In this case, we can assume 〈�N〉′i ≈ 〈�N〉′f , as shown in Fig. 4.14, and we
can thus develop the logarithm in Eq. (4.58) to third order,

lnx 
 − (x − 1)2

2
+ x − 1, (4.61)

resulting in

〈�N〉′f
〈�N〉′th


 2 − 〈�N〉′i
〈�N〉′f

. (4.62)
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Table 4.1 Scaling laws of the repetitively Q-switched laser

Repetition rate Average power Pulse width Peak power Pulse energy

νRep 	 1
τ

〈Ps〉 ∝ νRep �t ∼ const P̂ ∼ const Es ∼ const

νRep 
 1
τ

〈Ps〉 ∼ const �t ∝ νRep P̂ ∝ 1
ν2

Rep
Es ∝ 1

νRep

As we can also assume 〈�N〉′i ≈ 〈�N〉′th, we can use the same third-order develop-
ment in Eq. (4.59) and insert the result of Eq. (4.62), giving

�tp 
 τc

〈�N〉′i − 〈�N〉′f
〈�N〉′th

2 (1 − 〈�N〉′i
〈�N〉′f )2

. (4.63)

Using the equivalent of Eq. (4.58),

〈�N〉′i
〈�N〉′f

= e

〈�N〉′
i
−〈�N〉′

f

〈�N〉′th 
 1 + 〈�N〉′i − 〈�N〉′f
〈�N〉′th

(4.64)

for
〈�N〉′i−〈�N〉′f

〈�N〉′th 	 1, we can deduce

�tp 
 2τc〈�N〉′th
〈�N〉′i − 〈�N〉′f

. (4.65)

As νRep 
 1
τ

, it follows from Eq. (4.57) that

〈�N〉′i − 〈�N〉′f 
 〈�N〉′∞ − 〈�N〉′f
τνRep

, (4.66)

and from 〈�N〉′f 	 〈�N〉′∞ we finally obtain

�tp ∝ νRep

〈�N〉′∞
. (4.67)

Thus, the pulse width will increase linearly with repetition rate for a constant
pump power, and it will decrease with increasing pump power, i.e. with increas-
ing 〈�N〉′∞. Using Eq. (4.60) and the relation

P̂ = 〈Ps〉
�tpνRep

(4.68)

we obtain the other scaling laws shown in Table 4.1.
As for high repetition rates, the average output power is constant; this regime

of operation is also often called quasi-continuous operation. Resulting from the
linear increase in pulse width, as well as the fact that with increasing repetition rate,
the pulse energy is distributed over an increasing number of pulses, the peak power
will strongly decrease with the inverse square of the repetition rate. For low rep-
etition rate operation, the continuous pumping will saturate the inversion and the
initial inversion becomes pump duration, i.e. repetition period, independent. There-
fore, every pulse has the maximum pulse energy given by the completely inverted
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Fig. 4.15 Evolution of the laser output parameters with repetition rate for a continuously-pumped
Q-switched laser [3]

population in the laser medium and the average output power simply increases with
repetition rate. However, it has to be noted here that this case is usually difficult to
achieve. In most lasers the fully inverted laser medium corresponds to such a high
pulse energy that the optical damage threshold of the coatings on some intracavity
components, such as the mirrors or the laser medium itself will be exceeded, result-
ing in the destruction of this component. The transition between the two repetition
frequency regimes is non-linear and makes a numerical solution of the rate equations
necessary. In summary, the dependence of the output parameters of a continuously-
pumped Q-switched Nd3+:YVO4 laser is shown in Fig. 4.15.

4.2 Basics of Mode Locking and Ultra-Short Pulses

As we investigated in the previous chapter, short laser pulses on the order of the
cavity lifetime τc, i.e. with a duration of several ns to µs, can be created with the
Q-switch technique. In a careful design the laser, these pulses may correspond to
a single longitudinal mode. If much shorter pulses are necessary, the longitudinal
mode structure of the laser needs to be exploited, as pulse width and laser spec-
trum are coupled by an uncertainty-like relation. To investigate this, we consider a
Gaussian laser pulse with an electric field amplitude

E(t) = E0e
−ξ t2

eiω0t (4.69)

with a Gaussian parameter

ξ = a − ib. (4.70)

Thus, the laser pulse intensity I (t) ∝ |E(t)|2 will be

I (t) = I0e
−4 ln 2( t

τp
)2

, (4.71)
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Fig. 4.16 Electric field of a
chirped Gaussian pulse

where, the pulse width τp is given by

τp =
√

2 ln 2

a
. (4.72)

We can interpret a = �(ξ) as being connected to the pulse width, while b = �(ξ) is
connected to the chirp of the pulse, i.e. the time-dependent frequency shift during
the pulse. This can be seen directly from Eq. (4.69), which results in a total pulse
phase given by

φ = ω0t + bt2, (4.73)

so that the actual laser frequency is given by

ω = ∂φ

∂t
= ω0 + 2bt. (4.74)

Therefore, b describes a linear chirp, i.e. a linearly increasing laser frequency during
the pulse, as shown in Fig. 4.16.

In order to derive the relation between laser pulse width and the spectral output,
the frequency spectrum of the electric field is calculated by its Fourier transform,

Ẽ(ω) = Ẽ0e
− (ω−ω0)2

4ξ = Ẽ0e
− 1

4 ( a

a2+b2 +i b

a2+b2 )(ω−ω0)
2

. (4.75)

Therefore, the spectral intensity distribution Ĩ (ω) ∝ |Ẽ(ω)|2 is given by

Ĩ (ω) = Ĩ0e
− 1

2
a

a2+b2 (ω−ω0)
2 = Ĩ0e

−4 ln 2(
ω−ω0

2π�νp
)2

. (4.76)

Thus, the pulse bandwidth results in

�νp =
√

2 ln 2

π

√

a

(
1 +

(
b

a

)2)
, (4.77)

and the time-bandwidth product is given by

τp�νp = 2 ln 2

π

√

1 +
(

b

a

)2

≈ 0.44

√

1 +
(

b

a

)2

. (4.78)
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For a Gaussian pulse without chirp this product will be given by τp�fp = 0.44 and
the pulse is thus (Fourier) transform limited. This shows that for the generation of
ultra-short pulses laser media with broad gain spectra are necessary.

4.2.1 Active Mode Locking

In this section we derive how ultra-short pulses can be obtained by mode-locking
of a laser, i.e. by generating a multi-longitudinal mode emission in which all the
longitudinal modes are coupled in phase. This can be obtained by use of an intra-
cavity frequency modulator such as an acousto- or electro-optic modulator, which
induces a frequency shift on to the laser signal that corresponds exactly to the free-
spectral range, and thus, the mode spacing of the cavity. Let us assume that the laser
starts oscillating on the strongest line first, corresponding to a longitudinal mode
index q0. Then, after passing through the modulator, a fraction of the laser power
will be shifted towards the modes q0 ± 1, that can be seen as sidebands to the main
mode and which are also amplified, as the gain spectrum is assumed to be broad. As
this shifted fraction usually has a much higher intensity than the spontaneous emis-
sion at that wavelength, the laser medium will predominantly amplify these shifted
photons, which have a unique phase relation to the central mode q0 with a phase
difference φ. The amplified sidebands get shifted again, locking the modes q0 ± 2
to the central mode q0 in phase with a phase difference 2φ. This scheme will go
on until the shifted modes are outside of the amplification spectrum, as shown in
Fig. 4.17. Therefore, an inhomogeneously broadened laser medium has to be used
that provides gain for all the different longitudinal modes within its amplification
spectrum.

To see that these locked modes correspond to a train of short pulses, we inves-
tigate the electric field of the laser emission [4]. For simplicity we assume that the
locked modes are symmetrically distributed around the central mode q0 and that
they all have the same amplitude E0. The electric field is then directly given by

E(t) = E0

m∑

k=−m

e2πi[(ν0+k�νFSR)t+kφ]. (4.79)

As the cavity of length L is usually long compared with the length of the laser
medium, the free spectral range can be approximated by

νFSR = c

2L
. (4.80)

The summation in Eq. (4.79) can be performed analytically, resulting in an electric
field

E(t) = A(t)e2πiν0t , (4.81)

with a time dependent amplitude

A(t) = E0
sin [(2m + 1)

2π�νFSRt+φ
2 ]

sin [ 2π�νFSRt+φ
2 ] . (4.82)
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Fig. 4.17 Build-up of the
longitudinal mode spectrum
in a mode-locked laser after
the laser emission started on
the maximum gain line

Fig. 4.18 Temporal pulse
shape of phase-locked modes
for two different values of m

The laser output intensity I (t) ∝ A2(t) will therefore show an amplitude enve-
lope on the high-frequency carrier oscillation ν0 that corresponds to a train of pulses
of width τp and a repetition period TRep, that can be seen in Fig. 4.18. The form of
Eq. (4.82) is well known from a multi-slit interference experiment, in which the
waves of the evenly spaced slits interfere after a certain distance on a screen. Here,
this interference is not an interference in space, but in time, and the different slits
correspond to the longitudinal modes that have a evenly distributed phase. The pulse
maxima then occur at the times when the denominator in Eq. (4.82) is zero, which
corresponds to a repetition rate

TRep = 1

�νFSR
= 2L

c
, (4.83)
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and which is just the round-trip time of the laser cavity. Therefore, this pulse train
can also be seen as a single pulse with pulse width τp that circulates in the cavity.
This pulse width can also be derived from Eq. (4.82), resulting in [4]

τp 
 1

(2m + 1)�νFSR
, (4.84)

which will approach the inverse gain bandwidth of the laser medium under strong
pumping, as then all modes may oscillate. As a result of the temporal interference
of the different modes, the pulse peak power will be (2m + 1)2 times higher than
for a laser in which the same modes are oscillating in an uncorrelated manner. Thus,
mode-locking allows not only the generation of very short pulses, but also the gen-
eration of extremely high peak powers in the output beam.

An equivalent way of looking at the generation of mode-locked pulses is the case
in which a loss is used as the frequency modulator in the cavity near to one of the
cavity mirrors. This modulator is then driven by an external signal that causes a loss
modulation with a frequency identical to the longitudinal mode spacing �νFSR. This
amplitude modulation now causes the creation of sidebands, as discussed previously.
An alternative view of this effect is the following: as the modulator causes loss
minima at a frequency corresponding to the round-trip time of the resonator, the
temporal evolution of the laser field that will have lowest loss is a short pulse that
circulates inside the resonator and passes the modulator just at those times when
the losses are low. The Fourier spectrum of this pulse can of-course only consist
of several longitudinal cavity modes, and in order to create the pulse-like temporal
evolution, they have to be locked in phase as shown in Eq. (4.79).

The first mode-locking of a laser used this type of loss modulation in a He-Ne
laser in 1964. Pulses generated with this mode-locking technique usually are on the
order of several ps.

4.2.2 Passive Mode Locking

As in passive Q-switching, the use of a saturable absorber in a laser cavity can also
cause mode-locking. Therefore, the saturable absorber is placed just in front of the
cavity end mirror. When the laser medium now is pumped the laser flux will start
spiking as soon as the threshold of the cavity, including the absorber, is reached.
This first intensity spike, which will circulate in the cavity with the round-trip time,
saturates the absorber more than all other fluctuations of the growing laser field. It
will, therefore, see the lowest round-trip loss and has thus maximum amplification
and growth rate. As soon as this growing pulse dominates the inversion reduction,
the laser will oscillate on a pulse train, which can again be described by Eq. (4.79).
However, this point of operation, at which the saturable absorber has enough ab-
sorption to favor only one strong noise spike, can be difficult to achieve.

In a temporal scheme the saturable absorber will shorten the rise time of an inci-
dent pulse owing to the increasing transmission with increasing pulse intensity. The
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amplifying laser medium itself creates the opposite process: as a result of the extrac-
tion of energy, and thus the reduction in gain, it will shorten the pulse by shortening
the fall time of the pulse. However, in most solid-state lasers this effect is low com-
pared with the shortening on the leading edge caused by the saturable absorber, as
the upper-state lifetime is usually several orders of magnitude longer than the cavity
round-trip time. The only case where both effects are dominant, is in the case of dye
lasers, which show excitation lifetimes of the order of the cavity round-trip time.
Therefore, ultra-short pulses on the fs-scale were mostly generated with dye lasers
in the past.

Using special semiconductor quantum-well structures as saturable absorber and
cavity mirror in one (SESAM), which exhibit a strong non-linear response, ultra-
short pulses can also created with solid-state lasers. In this case, often a second
mode-locking technique is used at the same time, to shorten the pulses further: this
is Kerr-lens mode-locking.

Kerr-Lens Mode-Locking

A special way of passive mode-locking is Kerr-lens mode-locking (KLM), in which
the self-focusing of an intense laser beam inside an optical medium is used. This
effect is based on the Kerr-effect, the increase of the refractive index with increasing
intensity n(I) = n0 + n2I , and has a response time on the order of fs. In Kerr-lens
mode-locking the laser medium is often used as the Kerr medium and an aperture is
introduced into the cavity, either by insertion of a solid aperture or by a soft aperture,
i.e. by the pumped volume. Assuming a parabolic intensity distribution inside the
Kerr medium and a focal length much longer than the Kerr medium itself, it can be
shown that the focal length of the Kerr lens is approximatively given by [3]

fKerr ≈ w2

4n2I0L
, (4.85)

where, I0 is the laser peak intensity, L the length of the Kerr medium and w the
beam radius inside the Kerr medium. For a Ti:sapphire laser rod of L = 4 mm (n2 =
3.45 × 10−16 cm2

W ) and a 200 kW peak power beam focused to w = 50 µm, i.e. a
peak intensity of

I0 = P

πw2
= 2.5

GW

cm2
, (4.86)

we obtain a focal length of fKerr ≈ 18 cm.
A Gaussian intensity distribution, e.g., thus exhibits a higher refractive index in

its center compared with the wings of the radial intensity distribution. Hence, the
Kerr medium acts as a positive lens and will focus the beam. Owing to the short
response time, the strength of this focusing will be time dependent and only the
temporally inner part of a laser pulse will see low losses at the aperture, as shown
in Fig. 4.19. The leading and falling edge will be cut off, as their intensity is not
sufficient to focus the beam through the aperture with low losses. In the case of a
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Fig. 4.19 Kerr-lens mode-locking

soft aperture, the focusing will increase the overlap between the beam and the pump
volume, thus creating a higher gain for the high-intensity parts of the pulse, which
also shortens the pulse. Using KLM in combination with a SESAM, it was possible
to generate pulses of ∼ 6.5 fs from a Ti:sapphire laser, a solid-state laser with a large
gain bandwidth.

4.2.3 Pulse Compression of Ultra-Short Pulses

As already mentioned in Sect. 4.2, short pulses can exhibit a chirp. To understand
how this chirp can build-up and how pulses can be compressed by reducing this
chirp will be discussed in the following section. Therefore, we investigate the evo-
lution of an incident laser pulse with an electric field amplitude of

Ei(t) = E0e
−ξ0t

2
eiω0t (4.87)

propagating in a dispersive medium, where, the Gaussian parameter of the incident
pulse is given by

ξ0 = a0 − ib0. (4.88)

The spectrum of this pulse is then expressed by

Ẽi(ω) = Ẽ0e
− (ω−ω0)2

4ξ0 . (4.89)

In a dispersive medium, the propagation constant β(ω) will show a non-linear de-
pendence on ω, and can thus be approximated around the center frequency ω0 by

β(ω) ≈ β0 + β1(ω − ω0) + β2(ω − ω0)
2. (4.90)

Thus, the spectrum of the pulse will change during the propagation according to

Ẽ(ω, z) = Ẽi(ω)e−iβ(ω)z. (4.91)

Using the Fourier transformation, this corresponds to a time dependence of the elec-
tric field of

E(t, z) = E0e
i(ω0t−β0z)e−ξ(z)(t−β1z)

2
, (4.92)
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where, ξ(z) is given by

1

ξ(z)
= 1

ξ0
+ 2iβ2z. (4.93)

From Eq. (4.92) it can be seen that β0 causes a propagation-distance-dependent
phase delay as for any plane wave in a medium with an effective refractive index
neff > 1, which can be expressed in terms of the phase velocity

vph = ω0

β0
. (4.94)

In an optical medium with refractive index n, the phase velocity is given by vph = c
n

and β0 = kz corresponds to the wave vector component in the propagation direc-
tion. However, in optical waveguides such as optical fibers the dispersion and index
properties of the medium are changed resulting from the wave-guiding effect.

The influence of β1 affects the Gaussian envelope of the electric field by intro-
ducing a delay on the envelope, which now propagates with the so-called group
velocity

vg =
(

∂β

∂ω

)−1∣∣∣∣
ω=ω0

= 1

β1
, (4.95)

and the effect of β2 is a change in the Gaussian parameter ξ(z) with propagation
distance, thus changing the shape of the pulse envelope, i.e. its pulse width and the
chirp. As β2 can be expressed as

β2 =
[

∂

∂ω

(
1

vg(ω)

)]

ω=ω0

, (4.96)

it is also called group-velocity dispersion. This influence on the pulse can be de-
rived from Eq. (4.93), from which the real and imaginary part of the Gaussian pa-
rameter ξ(z) = a(z) − ib(z) can be deduced as

a(z) = a0

(1 + 2β2b0z)2 + (2β2a0z)2
, (4.97)

b(z) = b0 + 2β2z(a
2
0 + b2

0)

(1 + 2β2b0z)2 + (2β2a0z)2
. (4.98)

From Eqs. (4.97), (4.97), we can deduce why ultra-short pulses usually exhibit a
chirp. Assuming a chirp-free Gaussian pulse, i.e. b0 = 0, we find that by propagating
this pulse in a dispersive medium, e.g. an output coupler mirror substate, vacuum
windows or an optical fiber with non-zero group-velocity dispersion, it will exhibit
an increasing chirp, which after a propagation length z in this medium is given by

b(z) = 2β2za
2
0

1 + (2β2a0z)2
= 1

2β2

z

z2 + (
τ 2
p

4β2 ln 2 )2
. (4.99)

This chirp build-up is shown in Fig. 4.20, where, the reference length z0 is given by

z0 = τ 2
p

4β2 ln 2
. (4.100)
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Fig. 4.20 Increasing chirp of
an unchirped pulse
propagating in a medium with
group-velocity dispersion

Fig. 4.21 Increasing pulse
width of an unchirped pulse
propagating in a medium with
group-velocity dispersion

The pulse width then results in

τp(z) = τp(0)

√

1 +
(

z

z0

)2

, (4.101)

a relation equivalent to the evolution of a the radial width of a Gaussian beam, see
Eq. (3.44). Thus the incident pulse width will increase with propagation distance, as
shown in Fig. 4.21.

However, as can also be seen from Eqs. (4.97), (4.98), a chirped pulse with in-
cident chirp b0 �= 0 can be compressed in pulse width if a medium with proper
group-velocity dispersion is used. The optimum group-velocity dispersion interac-
tion length is given by

2β2Lopt = − b0

a2
0 + b2

0

, (4.102)

which results in a maximum of a(z) at b(z) = 0, and therefore, in a minumum pulse
width

τp,min = τp(0)
√

1 + (
b0
a0

)2
. (4.103)
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Fig. 4.22 Pulse compression
using a pair of diffraction
gratings

This corresponds to a pulse from which all chirp has been removed and transformed
into its short pulse width. A large chirp will thus yield a high pulse width compres-
sion ratio with a final pulse that is Fourier transform limited when all chirp has been
removed, as can be seen by inserting this result into Eq. (4.78).

Pulse Compression Methods

Depending on the actual chirp of the pulse, a medium or optical system with the
proper group-velocity dispersion, is necessary in order to compress the pulse. In-
stead of using a massive medium with its natural dispersion, optical systems con-
sisting of gratings or prisms are mostly used in these laser designs.

The grating design uses two diffraction gratings as shown in Fig. 4.22. Owing
to the wavelength dependent diffraction angle, the internal optical path length of
this grating system differs for different wavelengths, and will consequently create
the necessary wavelength-dependent time delay to compress the pulse. Use of this
technique enables large dispersion effects can be generated to compress pulses with
strong chirps. The path length �L between the common incident point on the first
grating and the point on the common exit plane of the grating compressor E, is
given by

�L = l1 + l2 = d

cosβ
+ d

cosβ
sinγ = d

cosβ
(1 + sinγ ). (4.104)

Using the grating equation

λ

g
= sinα − sinβ, (4.105)

in which g is the grating period, the spatial dispersion is given by

∂�L

∂λ
= ∂�L

∂β

∂β

∂λ
= λd

g2 cos3 β
= λd

g2(1 − (sinα − λ
g
)2)

3
2

. (4.106)

Therefore, the internal path length of the grating compressor will increase with
wavelength, and will thus, create a larger time delay between the entry and exit
planes for larger wavelengths. Hence, it will compress a pulse with a positive chirp.
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Fig. 4.23 Prism dispersion
compensator for intracavity
applications

Fig. 4.24 Setup of a
chirped-pulse amplifier, using
gratings to stretch and
compress the pulse and a
prism pair for dispersion
compensation [3]

A second alternative, which is mostly used to introduce a small correction to the
cavity dispersion in a laser resonator for short-pulse mode-locking, is based on a
system of prisms, which again shows a wavelength-dependent optical path length.
In this case the prism material, as well as the geometry (prism angle γ ), can be
chosen so that the laser beam is incident on to the prism surfaces at Brewster’s
angle, for which the reflection losses are greatly reduced. The design in Fig. 4.23
also allows an easy insertion into an existing resonator, as the input and output
beams are colinear. The strength of the dispersion introduced by this system, is
lower than for a grating compressor; however, this prism compressor can be used to
generate both signs of dispersion, i.e. either β2 < 0 or β2 > 0.

Chirped-Pulse Amplification

A main application of pulse compressors and its counterparts, pulse stretchers, is
found in chirped-pulse amplification. This technique, depicted in Fig. 4.24, allows
the generation of high-pulse-energy fs pulses. First, a standard fs mode-locked laser
oscillator is used to generate fs pulses at a repetition rate of around 80 MHz with
pulse energies on the order of some nJ. The oscillator pulses are then stretched in
pulse width by passing an anti-parallel grating pair including a 1 : 1 telescope, cre-
ating a strong chirp on the pulse. Consequently, the pulse width is increased, e.g. by
a factor of 3000 from 200 fs to 600 ps, decreasing enormously the pulse peak power.
This now allows a high amplification of the pulses to pulse energies of several mJ
without reaching the optical damage thresholds of the components in the amplifier.
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The amplifier setup shown in Fig. 4.24 is a regenerative amplifier. The input pulses
enter the amplifier by an intracavity polarizer. Then one pulse is selected by switch-
ing the Pockels cell to its half-wave voltage to rotate the polarisation of this pulse by
90◦. It now passes the second polarizer and gets reflected by the cavity end mirror.
At that time the Pockels cell is switched off. Thus the pulse keeps its polarisation
and resonates back and forth in the amplifier cavity, where it passes a Ti:sapphire
laser gain element twice for each round-trip.

In order to compensate for the internal cavity dispersion, a prism pair is also
inserted into the amplifier cavity. When the pulse has made sufficient round-trips to
reach its maximum pulse energy, the Pockels cell is switched to its half-wave voltage
again while the pulse travels on the prism side of the cavity. Thus, when it comes
back to the Pockels cell, it will be rotated by 90◦ and leaves the cavity by the second
polarizer. Finally, the pulse chirp is removed in a grating compressor, reducing the
pulse width back to the fs scale of the input pulse. Usually, the final pulse width
is a bit longer than the original pulse width of the input pulse as a result of some
additional higher-order chirp accumulated during the amplification steps. Whilst
the damage threshold of the optical components in the stretched part of the setup
are usually high enough, a critical point is the final grating of the compressor, at
which the high-energy pulse has been compressed to its short pulse width, resulting
in extreme peak powers. In order to prevent damage on that gratings, the beam
diameter has to be strongly increased, making large-aperture gratings necessary.
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