
Chapter 1
Quantum-Mechanical Fundamentals of Lasers

In this chapter we will investigate the basic quantum-mechanical effects and rela-
tions that allow the realization of a laser and determine the properties of laser opera-
tion. These are the fundamental processes of absorption, spontaneous emission and
stimulated emission of light and their quantum-mechanical description.

1.1 Einstein Relations and Planck’s Law

It was is the early years of quantum physics, when Planck found a theoretical
description of the spectral distribution of the blackbody radiation. This radiation,
which is emitted, e.g., from a small hole in the walls of a hohlraum (the blackbody)
kept at a temperature T as shown in Fig. 1.1, shows a characteristic spectrum. Its
spectral distribution and the peak of the emission intensity are only a function of
the blackbody temperature. In Planck’s derivation of this spectrum he assumed that
electromagnetic radiation cannot be emitted or absorbed continuously, but only in
fixed amounts of energy, the quanta, with a corresponding energy of

E = hν = hc

λ
. (1.1)

Today we know that these quanta are the photons of the electromagnetic field that
can be described by their frequency ν or their wavelength λ.

Einstein also tried to find a derivation of this spectral distribution, starting
from the fundamental interactions of absorption and emission between a quantum-
mechanical system (atom, ion, molecule, electronic states in condensed matter for

Fig. 1.1 Measurement of the
spectral distribution of the
blackbody radiation emitted
by a hohlraum at a
temperature T
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Fig. 1.2 Interactions between a two-level system and a photon according to Einstein

example) and a photon. According to Einstein, this can be described by three basic
processes as shown in Fig. 1.2 for a simple two-level system. These processes are:

• The absorption of a photon of energy hν = E2 − E1, causing a transition from
level |1〉 to level |2〉.

• The spontaneous emission, in which the system emits a photon of energy hν

by returning from level |2〉 to level |1〉. This is called spontaneous emission as
the moment of emission (i.e. the phase φ of the radiation), the polarization �ε and
the propagation direction, i.e. the direction of the wave vector �k, is random. Thus
the spontaneous emission causes incoherent radiation and is responsible for the
fluorescence of excited media.

• The stimulated emission, in which an incoming photon induces a resonant tran-
sition from the excited level |2〉 to level |1〉, emitting a second photon of energy
hν. As photons are Bosons, i.e. they are allowed to be in the same quantum-
mechanical state, and as stimulated emission is a resonant process, both photons
are identical in all their properties. This effect, therefore, allows the amplification
of light, the fundamental process of any laser.

The fundamental process that allows us to realize a laser is the stimulated emis-
sion process occurring in excited quantum-mechanical systems, giving rise to the
possibility of photon amplification. It was the existence of the stimulated emission
process that Einstein postulated in 1917 in order to derive the well-known Planck’s
law of the spectral energy density of electromagnetic radiation per volume u(ν,T )

in the spectral range ν to ν + dν (or in wavelengths u(λ,T ) in the spectral range λ

to λ + dλ),

u(ν,T )dν = 8πhν3

c3

1

e
hν

kBT − 1
dν (1.2)

u(λ,T )dλ = 8πhc

λ5

1

e
hc

λkBT − 1
dλ, (1.3)

which is shown in Fig. 1.3. Therein, also the classical Rayleigh-Jeans law is shown,
which we will need later to find some relations in Einstein’s derivation.

In this derivation [1] Einstein assumed that an ensemble of N = N1 + N2 non-
degenerate two-level systems with an energy difference �E = hν = E2 − E1 is in
thermal equilibrium with its environment kept at a temperature T . The absorption
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Fig. 1.3 Plot of the spectral energy density of electromagnetic radiation per volume as a function
of frequency or wavelength for different temperatures

of the radiation then causes a transition rate from level |1〉 to level |2〉,(
dN2

dt

)
abs

= −
(

dN1

dt

)
abs

= B12u(ν,T )N1, (1.4)

that is proportional to the (unknown) radiation energy density u(ν,T ) and the num-
ber of absorbers N1 with a proportionality constant B12. The stimulated emission of
the radiation causes a transition from level |2〉 to level |1〉 with the rate(

dN2

dt

)
stim

= −
(

dN1

dt

)
stim

= −B21u(ν,T )N2, (1.5)

which is also proportional to the radiation density u(ν,T ) and the number of emit-
ters N2 with a proportionality constant B21. The spontaneous emission is only pro-
portional to the number of the possible emitters N2 and causes a rate(

dN2

dt

)
spont

= −
(

dN1

dt

)
spont

= −A21N2. (1.6)

The proportionality constants B12, B21 and A21 are called Einstein coefficients.
From Eq. (1.6) it can be deduced that in absence of other processes the population

of level |2〉 decays exponentially with a time constant τ21 = A−1
21 , called the natu-

ral lifetime of the level |2〉. Therefore, the evolution of the externally measurable
fluorescence intensity I (t) ∝ dN2

dt
is given by

I (t) = I (0)e
− t

τ21 . (1.7)

This exponential decay is shown in Fig. 1.4.
In thermal equilibrium the populations of the levels |1〉 and |2〉 are constant, i.e.

dN2

dt
=

(
dN2

dt

)
abs

+
(

dN2

dt

)
stim

+
(

dN2

dt

)
spont

= 0, (1.8)
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Fig. 1.4 Decay of the
fluorescence intensity of an
excited sample

dN1

dt
=

(
dN1

dt

)
abs

+
(

dN1

dt

)
stim

+
(

dN1

dt

)
spont

= 0, (1.9)

and their ratio can be described by a Boltzmann distribution resulting in

N2

N1
= B12u(ν,T )

A21 + B21u(ν,T )

!= e
− E2−E1

kBT . (1.10)

Therefore, the spectral energy density u(ν,T ) has to have the form

u(ν,T ) = A21

B12e
hν

kBT − B21

. (1.11)

In order to find the relations between the Einstein coefficients, two limits are inves-
tigated: In the high temperature limit T → ∞ the spectral energy density diverges,
forcing

B21 = B12. (1.12)

This result is very important as it shows that absorption and stimulated emission are
completely equivalent processes.

For the low photon energy limit hν � kBT , u(ν,T ) needs to be consistent with
the classical Rayleigh-Jeans law

uRJ (ν,T ) = 8πν2

c3
kBT , (1.13)

which itself was proven experimentally and which can be deduced in the scope of
classical Maxwellian electrodynamics, as it does not contain h. This comparison
results in

A21 = 8πhν3

c3
B12, (1.14)

stating that absorption and spontaneous emission are proportional to each other
(Kirchhoff’s law). Including both limits into Eq. (1.11) then gives Planck’s law
as in Eq. (1.2).
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Fig. 1.5 Spatial radiation power of a classical dipole and dipole moment of an electron in quantum
mechanics

1.2 Transition Probabilities and Matrix Elements

In this section we will derive the relations between the Einstein coefficients and the
quantum-mechanical properties of a dipole transition [2].

1.2.1 Dipole Radiation and Spontaneous Emission

In classical electrodynamics, a dipole consisting of a charge q oscillating at a fre-
quency ω = 2πν with a spatial amplitude r0 = |�r0| possesses an electric dipole
moment

�p(t) = q�r(t) = q�r0 sinωt. (1.15)

As the oscillating dipole is an accelerated charge, it will give rise to a dipole radia-
tion, see Fig. 1.5. The total radiated average power P can be derived in the scope of
classical electrodynamics and results in Larmor’s formula,

P = 2

3

�p2ω4

4πε0c3
. (1.16)

Therein,

f = 1

T

∫ T

0
f dt (1.17)

is the time-average over one period T = 2π
ω

, leading to

�p2 = 1

2
q2|�r0|2. (1.18)

In quantum mechanics, the average dipole moment of an electron with its ele-
mentary charge e, described by the wave function ψ , is given by

〈 �p〉 = 〈ψ |e�r|ψ〉 =
∫

ψ∗e�rψdV . (1.19)
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Accordingly, we define for a transition between two levels |1〉 and |2〉 the transition
dipole moment

�M21 = 〈ψ2|e�r|ψ1〉 =
∫

ψ∗
2 e�rψ1dV (1.20)

and its absolute value

M21 = ∣∣〈ψ2|e�r|ψ1〉
∣∣ =

∣∣∣∣
∫

ψ∗
2 e�rψ1dV

∣∣∣∣. (1.21)

In this transition to quantum mechanics we also have to exchange the classical av-
erage of �p2 by the quantum-mechanical expression [3]

�p2 → 1

2
(M21 + M12)

2 = 2M2
21. (1.22)

Inserting this in Eq. (1.16) results in an emitted power given by

〈P21〉 = 4

3

ω4

4πε0c3
M2

21, (1.23)

with ω = (E2 −E1)/�. According to Eq. (1.6), the total average fluorescence power
Pf emitted by N2 excited levels corresponds to

Pf = hνA21N2
!= 〈P21〉N2. (1.24)

This comparison now allows us to deduce the explicit form of the Einstein coeffi-
cient A21 as

A21 = 2

3

e2ω3

hε0c3
|〈ψ2|�r|ψ1〉|2 = 2

3

e2ω3

hε0c3

∣∣∣∣
∫

ψ∗
2 �rψ1dV

∣∣∣∣
2

. (1.25)

For an atom or molecule with many different levels for which the wave functions are
known, the spontaneous emission rates Aji may now be calculated for all possible
transitions between the levels j and i, resulting in a matrix A[j,i]. Therefore the Mji

in Eq. (1.21) are also called matrix elements.
The derivation above, as a result of Eqs. (1.16), (1.25), is valid only in the dipole

approximation, i.e. as long as the wavelength of the emitted radiation is longer than
the spatial dimension of the dipole λ 
 r0. This is true for λ > 1 nm, and therefore,
for all visible and infrared lasers.

From the ω3 dependence in Eq. (1.25) it can also be concluded that the sponta-
neous emission increases dramatically for short wavelengths, resulting in very short
lifetimes of the corresponding upper level. As will be shown in Chap. 2, this affords
very high pump and laser intensities to saturate the optical transition, making the re-
alization of deep-UV and X-ray lasers based on electronic transitions very difficult.

1.2.2 Stimulated Emission and Absorption

In contrast to the description of the spontaneous emission presented before, the stim-
ulated emission or absorption of a photon by our two-level system is a quantum-
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mechanical process that involves the interaction between the system and the elec-
tromagnetic field. Therefore, it is necessary to make a short excursion into time-
dependent quantum-mechanics and perturbation theory [4]:

Let H0 be the Hamiltonian for the unperturbed system, i.e. the system with-
out the electromagnetic field, which is therefore described by the time-dependent
Schrödinger equation

i�
∂

∂t

∣∣ψ0(t)
〉 = H0

∣∣ψ0(t)
〉

(1.26)

for t < t0 with |ψ0(t)〉 being the state of the system before the perturbation occurs.
After the application of the time-dependent perturbation V(t), which is assumed to
be small compared with H0, the system will occupy the state |ψ(t)〉 and will evolve
according to

i�
∂

∂t

∣∣ψ(t)
〉 = (

H0 +V(t)
)∣∣ψ(t)

〉
. (1.27)

The time dependent perturbation theory allows to calculate the transition rates be-
tween different states. The exact derivation of the following formulas can be found,
e.g., in [4]. Here we only quote the results that we need to investigate the stimulated
emission and absorption processes. As the electromagnetic field of the incident pho-
ton can be treated as a periodic perturbation, we use the corresponding results of
perturbation theory for a periodic perturbation oscillating at a frequency ω = 2πν

of the form

V(t) = Fe−iωt + F
†eiωt , (1.28)

in which F is an operator defining the nature of the perturbation. Then the transition
rate, i.e. the transition probability per unit time, for the transition from state j to
state i can be calculated by Fermi’s golden rule, resulting in

Rji = 2π

�

(
δ(Ej − Ei − �ω)

∣∣〈ψj |F|ψi〉
∣∣2 + δ(Ej − Ei + �ω)

∣∣〈ψj |F†|ψi〉
∣∣2)

.

(1.29)
The two δ-functions describe the conservation of energy (or the resonance of the
process) and the matrix elements of the perturbation F account for the strength of
the transition. Owing to ω > 0 it follows that for Ej > Ei the first term describes
the stimulated emission and for Ej < Ei the absorption process is described by the
second term.

For the stimulated emission from level |2〉 to level |1〉 or the absorption from
level |1〉 to level |2〉 in our two-level system the perturbation is given by the electric
field of the incoming photon

�E(t) = �E0e
i�k�re−iωt , (1.30)

causing a transition rate [5]

R21 = πe2

2�2

∣∣〈ψ2| �E0�rei�k�r |ψ1〉
∣∣2

δ(ω0 − ω) = πe2

2�2

∣∣∣∣
∫

ψ∗
2

�E0�rei�k�rψ1dV

∣∣∣∣
2

δ(ω0 − ω).

(1.31)
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Fig. 1.6 Local coordinate
frame for the calculation of
the average over all
polarizations

Therein �k is the wave vector of the electromagnetic wave with |�k| = 2π
λ

and ω0 =
E2−E1

�
is the resonance frequency.

In the same dipole approximation as used for the spontaneous emission, λ 
 r0,
i.e. �k�r � 1, this rate can be approximated by taking |ei�k�r | ≈ 1 to give

R21 = πe2

2�2
E2

0

∣∣�ε〈ψ2|�r|ψ1〉
∣∣2

δ(ω0 − ω) = πe2

2�2
E2

0

∣∣∣∣�ε
∫

ψ∗
2 �rψ1dV

∣∣∣∣
2

δ(ω0 − ω),

(1.32)
with �ε describing the polarisation of the wave. It shows that the electric field needs
to be applied in the same direction as the dipole orientation, in order to produce the
maximum transition rate.

We will now simplify this relation for the case of a thermal radiation that is
isotropically distributed in space. Therefore, Eq. (1.32) is averaged over all possible
polarisation orientations �ε, noting that 〈�r〉21 = ∫

ψ∗
2 �rψ1dV is a constant vector after

the integration has been performed. By defining a local frame with its z-axis aligned
with 〈�r〉21 as in Fig. 1.6, the average over all orientations of

�ε =
⎛
⎝ sin θ cosφ

sin θ sinφ

cos θ

⎞
⎠ (1.33)

is calculated in polar coordinates to give

〈|�ε〈�r〉21|2
〉 = 1

4π

∫ π

0

∫ 2π

0
cos2 θ

∣∣〈�r〉21
∣∣2 sin θdθdφ = 1

3

∣∣〈�r〉21
∣∣2

. (1.34)

This results in the averaged transition rate

〈R21〉 = πe2

6�2
E2

0

∣∣〈ψ2|�r|ψ1〉
∣∣2

δ(ω0 − ω) = πe2

6�2
E2

0

∣∣∣∣
∫

ψ∗
2 �rψ1dV

∣∣∣∣
2

δ(ω0 − ω),

(1.35)
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which can be further simplified by introducing the spectral energy density of the
electric field at resonance,

u(ν) = 1

2
ε0E

2
0δ(ν0 − ν) = πε0E

2
0δ(ω0 − ω), (1.36)

using δ(ax) = 1
a
δ(x). This yields

〈R21〉 = 2

3

π2e2

3ε0h2

∣∣〈ψ2|�r|ψ1〉
∣∣2

u(ν) = 2

3

π2e2

3ε0h2

∣∣∣∣
∫

ψ∗
2 �rψ1dV

∣∣∣∣
2

u(ν). (1.37)

The direct comparison with Eq. (1.5) results in the expression for the Einstein coef-
ficient of stimulated emission,

B21 = 2

3

π2e2

ε0h2

∣∣〈ψ2|�r|ψ1〉
∣∣2 = 2

3

π2e2

ε0h2

∣∣∣∣
∫

ψ∗
2 �rψ1dV

∣∣∣∣
2

. (1.38)

It is, in contrast to A21, independent of the transition frequency or wavelength,
and does only depend on the quantum-mechanical properties of the transition en-
closed in the matrix elements. By comparing this result with the Einstein coefficient
of spontaneous emission A21 in Eq. (1.25), we again find the relation shown in
Eqs. (1.12), (1.14).

1.3 Mode Structure of Space and the Origin of Spontaneous
Emission

Spontaneous emission can be seen as a statistical process, i.e. each atom, ion or
molecule decays independently by emitting a photon at a certain time in a single
process whilst the observation of the fluorescence of an ensemble of many atoms,
ions or molecules shows the well-known exponential decay law of Eq. (1.7). How-
ever, this statistical view cannot explain why a single atom “decides” to emit the
photon at a certain time. In order to answer this question, we need to have a look
into the mode structure of space, i.e. the structure of the allowed eigenmodes of
electromagnetic radiation in vacuum, and the nature of the photons occupying these
states.

1.3.1 Mode Density of the Vacuum and Optical Media

In order to determine the mode density of the vacuum and of optical transparent
media with a refractive index n > 1, we first calculate the number of eigenmodes of
a cubic hohlraum resonator of length a and volume a3 up to the frequency ω. As
we assume infinitely conductive walls the tangential components of the electric field
must vanish on these walls. Therefore, the set of eigenmodes can be represented by
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Fig. 1.7 Standing waves in a
conductive hohlraum and
representation of the
eigenmodes in reciprocal
space

the standing waves inside the hohlraum as shown in Fig. 1.7 with the wave vectors
given by

�k = π

a

⎛
⎝q

r

s

⎞
⎠ with q, r, s ∈ Z. (1.39)

The corresponding electric field can be written as

�E = �E0 cosωt, (1.40)

with the spatial components

�E0 =
⎛
⎜⎝

E0x cos πq
a

x sin πr
a

y sin πs
a

z

E0y sin πq
a

x cos πr
a

y sin πs
a

z

E0z sin πq
a

x sin πr
a

y cos πs
a

z

⎞
⎟⎠ , (1.41)

the wave vector

|�kqrs | = π

a

√
q2 + r2 + s2 (1.42)

and the possible resonance frequencies

ωqrs = πc

a

√
q2 + r2 + s2, (1.43)

that result from the dispersion relation

ω = c|�k| (1.44)

of electromagnetic waves in vacuum.
In reciprocal space or k-space, where all eigenmodes are represented by a three-

dimensional point lattice with a lattice constant π
a

, Eq. (1.42) describes a sphere with

radius |�k| = ω
c

. For high frequencies, i.e. large mode numbers q2 + r2 + s2 
 1, the
discrete lattice can be approximated by a homogeneous k-space density ρk = ( a

2π
)3,

which takes into account that, e.g., −q and q describe the same mode. This allows
an easy calculation of the volume density of the number of modes in the hohlraum
up to the frequency ν:

M(ν) = 2a−3
∫

ρkd
3k = 8π

∫
k2dk

(2π)3
= 8πn3

c3

∫
ν2dν = 8πn3ν3

3c3
. (1.45)
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Therein the factor of 2 represents the two independent polarisations of the electric
field and n the refractive index in the case of a hohlraum filled with an optical
medium. This result is independent from the external dimension or orientation of
the hohlraum. We can thus let a → ∞ and find the spectral mode density of space as

M̃(ν) = ∂M

∂ν
= 8πn3ν2

c3
. (1.46)

One can recognize this spectral mode density in Planck’s law, Eq. (1.2) and in the
Rayleigh-Jeans law, Eq. (1.13), which simply states that each of these modes is
excited with an energy of kBT in thermal equilibrium.

An alternative deduction of Planck’s law, which is the one Planck used, starts
from this spectral mode density M̃(ν), which is multiplied by the energy per photon
hν and by the number of thermally excited photons per mode

n(ν,T ) = 1

e
hν

kBT − 1
, (1.47)

to yield the spectral energy density in thermal equilibrium. n(ν,T ) is given by the
Bose-Einstein distribution as photons, spin 1 particles, are bosons.

1.3.2 Vacuum Fluctuations and Spontaneous Emission

We now know the spectral mode density of space and the fact that photons are
bosons, which means especially that the number of photons in one quantum-
mechanical state, i.e. in one mode, is not restricted. But what kind of state is a
mode, i.e. what energy potential creates this state? In order to answer this question
we have to look at the quantum structure of the electromagnetic field.

In classical electrodynamics [1], as we did for the determination of the spectral
mode density, we can see a mode as a monochromatic wave, e.g. propagating along
the x-axis and polarized along the z-axis with an electric field given by

�E(t) =
⎛
⎝ 0

0
p(t) sinkx

⎞
⎠ , (1.48)

with a temporal evolution described by p(t). The corresponding magnetic field is

given by the Maxwell-Equation �∇ × �E = − ∂ �B
∂t

, resulting in

�B(t) =
⎛
⎝ 0

1
c
q(t) coskx

0

⎞
⎠ , (1.49)

with q(t) being given by

dq(t)

dt
= ωp(t) (1.50)
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using Eq. (1.44). By inserting both fields into the Maxwell-Equation �∇ × �B =
ε0μ0

∂ �E
∂t

, we get

dp(t)

dt
= −ωq(t), (1.51)

which we can combine with Eq. (1.50) to result in

d2q(t)

dt2
+ ω2q(t) = 0. (1.52)

This is the equation of motion of a harmonic oscillator, that, in terms of classical
mechanics, can be described by a Hamilton function, i.e. a total energy, of

H = 1

2
ω

(
p2 + q2). (1.53)

The quantization of the electromagnetic field can now be done by formally iden-
tifying this result with the quantum-mechanical harmonic oscillator of mass m de-
scribed by the Hamiltonian

HHO = 1

2m
P

2 + 1

2
mω2

Q
2 = �ω

(
N+ 1

2

)
, (1.54)

with P and Q being the momentum and position operators, respectively. For this
formal identification the mass m is a free, non-used parameter that we can simply
set to m = ω−1 and compare the result with the classical Eq. (1.53). The different
operators in this Hamiltonian are given by

N = A
†
A (1.55)

A = 1√
2�

(√
mωQ+ i√

mω
P

)
(1.56)

A
† = 1√

2�

(√
mωQ− i√

mω
P

)
, (1.57)

with N being the occupation number operator and A and A
† the annihilation and

creation operators, respectively, as they decrease or increase the quantum number
n of the eigenstate |n〉 by one, i.e. A|n〉 = √

n|n − 1〉 and A
†|n〉 = √

n + 1|n + 1〉.
For the quantum-mechanical oscillator, we know that the possible energy levels are
evenly spaced with a separation of �ω as shown in Fig. 1.8 and that the energy
eigenvalues are given by

HHO|n〉 = En|n〉 with En = �ω

(
n + 1

2

)
. (1.58)

As a result, we can state that a photon mode consisting of n photons can be
seen as a harmonic quantum oscillator occupying the state with quantum number n.
The linear relationship between the number of photons n and the total energy En

of the mode is as expected, since adding a photon just should increase the energy
of that mode by �ω. However, as it is well known from the quantum oscillator,
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Fig. 1.8 Potential and
corresponding eigenstates of
the quantum-mechanical
harmonic oscillator

the lowest state |0〉 has a finite energy of 1
2�ω, and since usually the quantum-

mechanical system is found in its ground state at absolute zero, i.e. at T = 0 K, this
energy is called zero-point energy. We thus found that in quantum electrodynamics
the vacuum is not just an empty space. Electrodynamically, it can be described by
an infinite set of modes that are all in their ground state, i.e. unoccupied. However,
from Heisenberg’s uncertainty relation

�E�t ≥ �

2
, (1.59)

we can deduce that it is quantum dynamically allowed that a photon of energy �ω

may be spontaneously created “out of nothing’ for a short period of time �t ≤ 1
2ω

,
so that the necessary energy �ω is within the theoretically allowed uncertainty

�E ≥ �

2�t
≥ �ω. (1.60)

Without going into detail here, we just state the result that these “virtual” photons
do exist and are called vacuum fluctuations. In a classical picture this explanation
is not possible as the time �t ≤ 1

2ω
does not allow a full oscillation to occur.

An experimental proof of the vacuum fluctuations, e.g., the Casimir force, an ad-
ditional attractive force component between two uncharged parallel metallic plates
placed close to each other. It can be explained by the fact that between the plates
only those vacuum fluctuations occur that are consistent with the allowed standing
modes, see illustration in Fig. 1.9, whilst in the outer space all vacuum fluctuations
occur. Thus an external pressure is created that pushes the two plates together.

Now that we know that the physical vacuum is no “quiet” space, but that vacuum
fluctuations occur, we can understand the spontaneous emission in a much more
fundamental way. By using the quantum nature of the electromagnetic field, being
present in the form of modes that are occupied by a number of photons, we can
separate this electromagnetic field into a real part consisting of real photons, and a
virtual part, consisting of the virtual photons of the vacuum fluctuations. Therefore,
we can describe the spontaneous emission process as a stimulated emission process,
triggered by a virtual photon from the vacuum fluctuations. As in standard stim-
ulated emission triggered from a real photon, the emitted photon here is an exact
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Fig. 1.9 Casimir force
between two metallic plates

copy of the input virtual photon. However, no real photon amplification occurs as
the virtual photon has to disappear after the process to obey Eq. (1.59). The sta-
tistical behaviour of the vacuum fluctuations, i.e. the random nature of the time of
creation of the virtual photon as well as the mode in which it occurs, is therefore,
transferred on to the whole emission process, explaining the statistical nature of the
spontaneous emission. As a result of this more fundamental view, we find that any
state of a quantum-mechanical system that couples to the electromagnetic field, and
which is not the ground state of the system, will show spontaneous emission towards
the energetically lower lying states.

1.4 Cross Sections and Broadening of Spectral Lines

We will introduce in this section the spectroscopic properties that describe a laser
medium as well as the line broadening mechanisms that influence the spectral be-
haviour and the efficiency of a laser. This allows us to quantify the different proper-
ties of the optical transitions in a laser medium and results in a general mathematical
description of lasers that will be presented in Chap. 2.

1.4.1 Cross Sections of Absorption and Emission

When an electromagnetic wave propagates in an absorbing medium along the z-
axis, its intensity I (z) will be attenuated during propagation. In this process each
frequency or wavelength component of the radiation may suffer from a different
absorption strength. Therefore, we introduce the spectral intensity Ĩ (z, λ), which is
defined by

I (z) =
∫

Ĩ (z, λ)dλ. (1.61)

By passing an infinitesimal propagation distance dz each wavelength component is
attenuated proportional to the incident spectral intensity according to

dĨ (z, λ)

dz
= −α(λ)Ĩ (z, λ), (1.62)

as shown in Fig. 1.10.
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Fig. 1.10 Absorption of light
in a medium and geometrical
interpretation of the cross
section in an absorption
process of particles

Integrating this equation under the assumption of a spatially constant absorption
coefficient α(λ) leads to the Lambert-Beer law of absorption

Ĩ (z, λ) = Ĩ (0, λ)e−α(λ)z. (1.63)

In the important case in which the absorption is caused by an optical transition from
a lower state |1〉 to an upper state |2〉, as described by Eq. (1.4), the absorption
coefficient is proportional to the number density N1 of atoms, ions, molecules or
other laser species in state |1〉 and can be written as

α(λ) = σa(λ)N1. (1.64)

The proportionality constant σa(λ) is the absorption cross section. It has a dimen-
sion of an area and can be interpreted as an effective “cross-sectional area” attached
to, e.g., an atom that absorbes the incident photons as shown in Fig. 1.10. However,
depending on the strength of the transition it can vary for different transitions in one
atom and one should not confuse it with the geometrical size of the atom itself.

In the same way also the stimulated emission can be described as an amplification
of the incident light according to

dĨ (z, λ)

dz
= γ (λ)Ĩ (z, λ), (1.65)

resulting in

Ĩ (z, λ) = Ĩ (0, λ)eγ (λ)z. (1.66)

In analogy to the absorption coefficient, the emission coefficient is proportional to
the number density N2 of atoms in the upper state

γ (λ) = σe(λ)N2, (1.67)

for which the proportionality constant σe(λ) is the emission cross section. Taking
both processes together leads to the total evolution of the spectral intensity given by

Ĩ (z, λ) = Ĩ (0, λ)e(σe(λ)N2−σa(λ)N1)z (1.68)

In the special case of the two-level system in Fig. 1.2, where Ni denote the pop-
ulation densities of the two levels |i〉, it follows from Eq. (1.12) that the emis-
sion and absorption cross sections related to the intrinsic transition are equal,
i.e. σe(λ) = σa(λ). They are, therefore, called intrinsic cross sections. However,
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as we will see in Chap. 2, more complex level schemes exist, especially for ionic
levels in solids. Then the levels are split up by the Stark effect and create mani-
folds, for which it is easier to refer to Ni as the total manifold population and to
include e.g. the thermal population distributions within one manifold into the exter-
nally measured spectroscopic cross sections, for which σe(λ) and σa(λ) are usually
different. This will be explained in more detail in Chap. 2.

To connect this spectroscopic description to the Einstein coefficients, the emit-
ted spectral power density per volume resulting from stimulated emission in the
medium of volume dV = dAdz is investigated. Therefore, we use the description
of Eq. (1.5) and assume that each emission process emits the energy of one photon
hν into the propagating mode. The photon energies itself are taken to be distributed
around hν0 = E2 − E1, given by a normalized distribution ρf (ν) describing this
fluorescence, with ∫

ρf (ν)dν = 1. (1.69)

ρf (ν) thus determines which frequencies are amplified by the stimulated emission.
Then the emitted spectral power density per volume is given by

∂P̃

∂V
= −hνρf (ν)

∂N2

∂t
= hνρf (ν)B21u(ν)N2. (1.70)

The spectroscopic view on the other hand results in

∂P̃

∂V
= ∂Ĩ

∂z
= γ (ν)Ĩ (ν) = N2σe(ν)

c

n
u(ν) (1.71)

Therein, it was assumed that Ĩ (ν) describes a collimated homogeneous beam, which
is related to the energy density by Ĩ (ν) = c

n
u(ν) and describes that the energy

“flows” with the velocity of light c
n

in a medium with a refractive index n.
Comparing Eq. (1.70) and Eq. (1.71) results in the relation

σe(ν) = hνn

c
B21ρf (ν). (1.72)

By using the relation for the Einstein coefficients Eq. (1.14) and Eq. (1.12), which
in a medium with a refractive index n changes owing to the changed mode density
of Eq. (1.46) to

A21 = 8πhν3n3

c3
B21, (1.73)

the important relation

σe(ν) = c2

8πn2ν2τ21,sp
ρf (ν) (1.74)
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Fig. 1.11 Measurement setup for the determination of absorption and emission cross sections,
e.g. of an Er3+:YAG sample

results. Therein, it has been explicitly written that the A21 coefficient is related to
the spontaneous decay with a decay time τ21,sp as

A21 = 1

τ21,sp
. (1.75)

Thus, the spectral distribution ρf (ν) of the light emitted from the volume dV is
closely linked to the spectroscopic emission cross section σe(ν). Finally, by exploit-
ing the normalization of ρf (ν) a relation between the upper state lifetime and the
integral emission cross section can be deduced,

1

τ21,sp
= 8πn2

c2

∫
σe(ν)ν2dν = 8πn2c

∫
σe(λ)

λ4
dλ. (1.76)

In the last step we used |dν| = c

λ2 |dλ|.
Equation (1.76) is called Füchtbauer-Ladenburg relation, for which it has to be

noted that it is also valid for spectroscopic cross sections and that λ always refers to
vacuum wavelengths. It allows the calculation of the spontaneous emission lifetime
τ21,sp, also called radiative lifetime, from measured spectra, or, in the reverse sense,
the calibration of measured spectral intensities Ĩ (λ) to deduce the absolute values
of the emission cross section σe(λ).

For this application, the spectral fluorescence is recorded from an excited sample
and the emission cross section is then calculated by

σe(λ) = λ4Ĩ (λ)

8πn2cτ21,sp
∫

Ĩ (λ)dλ
. (1.77)

A scheme of this measurement setup is shown in Fig. 1.11. An Er3+:YAG sample
is excited by the emission from a Ti:sapphire laser and its fluorescence is recorded
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by a 1−m spectrometer. As the number of fluorescence photons that are captured by
the spectrometer is often low, the excitation beam is modulated at a frequency fmod ,
so that only the detected signal with this frequency component is recorded using a
lock-in technique. This enables an increase in signal-to-noise ratio, especially when
low cross sections are to be determined. In order to measure the absorption cross
section, a broad-spectrum tungsten lamp is used as the source and the spectrometer
records the spectrum of the intensity transmitted by the sample. After correcting
the data for the spectral emission characteristics of the lamp (cf. Planck’s law), the
absorption cross section can be calculated by the relative intensity change using

σa(λ) = − 1

LN1
ln

It (λ)

I0,t (λ)
. (1.78)

Therein, N1 equals the Er3+ ion density as the excitation power from the lamp is
chosen to be low enough in order not to bleach the ground state, L is the length of
the sample, It (λ) the transmitted intensity signal and I0,t (λ) the reference recorded
with an undoped sample in place.

1.4.2 Natural Line Width and Broadening of Spectral Lines

As a result of the Heisenberg uncertainty principle, Eq. (1.59), a transition between
two quantum-mechanical levels cannot be infinitely sharp when the corresponding
upper level has a finite lifetime τ , i.e. the corresponding cross sections σe(ν) and
σa(ν) as well as the fluorescence distribution ρf (ν) discussed previously are no
δ-functions. As shown in Sect. 1.3.2, each level above the ground state will at least
have its natural lifetime that is determined by the spontaneous emission, and thus,
by the vacuum fluctuations. Therefore, any optical transition will show a minimum
line width, called the natural line width of the transition and the spectral line can be
represented by its line form function g(ν), which is identical with the fluorescence
distribution ρf (ν).

The fact that a laser medium usually consists of many identical absorption and
emission systems, i.e. the atoms, ions or molecules, divides the interaction between
them and the electromagnetic field into two cases that define the two different line
broadening mechanisms:

• Homogeneous line broadening: In this case all systems show the same transi-
tion frequency ν0, line width �ν and form function g(ν). Therefore, they all con-
tribute to the emission or absorption of a photon of energy hν in the same way,
i.e. with the same probability. They can be described by processes that reduce
the upper level lifetime in a homogeneous way for all the systems, thus caus-
ing an equal broadening of all systems around the same resonance frequency ν0,
e.g. spontaneous emission (natural line width), lattice vibrations (phonons) of
the crystal matrix in solid-state lasers causing multi-phonon relaxation, atomic
collisions in gas lasers causing collisional relaxation (pressure broadening).
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• Inhomogeneous line broadening: In this case, the transition frequency of the
different systems varies, resulting in different interaction probabilities between
a photon of energy hν and the different systems. This inhomogeneous distri-
bution of the resonance frequencies over the different systems may be tempo-
rally constant as e.g. in ion-doped amorphous solids as fibers, in which the Stark
effect shifts the energy levels by a fixed amount for a given ion but varies from
site to site in the glass matrix. It can also be time dependent for a given system as
e.g. the Doppler-shift in gas lasers, which depends on the local velocity of an atom
or molecule (Doppler broadening). Thus, the atom itself changes its resonance
frequency over time resulting from its collisions and the corresponding changes
in velocity and direction. However, for the ensemble, a constant effective average
results from the Maxwell distribution.

Homogeneous Broadening

To find the line width function of a homogeneously broadened line g(ν) we will
investigate a classical example [6]. The spontaneous emission can be explained by
a suddenly emitted electric field oscillating at the resonance �ω0 = hν0 = E2 −
E1 with an exponentially decaying amplitude with a time constant of 2τ (the time
constant τ corresponds to the intensity I ∝ E2),

E(t) =
{

0 for t ≤ 0
E0e

− t
2τ cosω0t for t > 0

=
{

0 for t ≤ 0
E0
2 e− t

2τ

(
eiω0t + e−iω0t

)
for t > 0

.

(1.79)
The spectral components of this electric field are given by its Fourier transformation

E(ν) =
∫ ∞

−∞
E(t)e−i2πνtdt = i

E0

4π

(
1

ν0 − ν + i
4πτ

− 1

ν0 + ν − i
4πτ

)
, (1.80)

resulting in the spectral intensity given by a Lorentzian function

Ĩ (ν) = Ig(ν) =
√

ε0

μ0

∣∣E(ν)
∣∣2 = I

2

π

�ν

4(ν − ν0)2 + (�ν)2
. (1.81)

Therein, �ν = 1
2πτ

is the natural line width, given as the full width at half maximum
(FWHM) of the line.

Inhomogeneous Broadening

The most important broadening process in gas lasers is Doppler broadening, which
will be described here as an example for inhomogeneous broadening. In a gas the
different atoms or ions will show a kinetic velocity distribution with respect to one
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propagation direction, e.g. the z-axis, that is given by the normalized Maxwell dis-
tribution [6]

P(vz) =
√

m

2πkBT
e
− mv2

z
2kBT . (1.82)

Therein, m is the mass of the atom, vz its velocity component along the z-axis and
T the kinetic gas temperature. While the atoms itself still have the same resonance
frequency ν0 in their local rest frame, an external observer looking along the z-axis,
however, will see the Doppler shifted frequency

ν = ν0

(
1 + vz

c

)
, (1.83)

which is taken here in the non-relativistic limit. As the velocity distribution directly
determines the probability of that velocity component in the gas, the line form func-
tion can be directly deduced as

g(ν) = 2
√

π ln 2

π�νD

e
−(2

ν−ν0
�νD

)2 ln 2
, (1.84)

with a Doppler line width of

�νD = ν0

√
8kBT ln 2

mc2
. (1.85)

In contrast to the homogeneous broadening, the form function of the inhomogenous
Doppler broadening is a Gaussian function.

Simultaneous Broadening Processes

In the case of different homogeneous broadening processes acting simultaneously,
e.g. spontaneous emission and multi-phonon relaxation in a solid-state laser, each
process contributes to the total decay of the upper level and can be described by its
own lifetime or decay constant. In this example, they are the spontaneous lifetime
τsp and the non-radiative relaxation lifetime τr , that both contribute to the decay of
the upper level as

dN2

dt
= −N2

τsp
− N2

τr

= −N2

τ
. (1.86)

Therefore, for different homogeneous broadening processes the different lifetimes
add inversely to the total lifetime τ like the parallel connection of resistors,

1

τ
=

∑
i

1

τi

, (1.87)
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Fig. 1.12 Fundamental
Lorentzian and Gaussian line
shape functions and their
convolution, the Voigt profile

and the corresponding line widths add directly like the parallel connection of capac-
itors,

�ν =
∑

i

�νi . (1.88)

The line shape function g(ν) of the combined line shape is again a Lorentzian func-
tion.

For the case of two inhomogeneous processes with line form functions g1(ν) and
g2(ν), or a mixing between a homogeneous and an inhomogeneous process, the total
line form function is in general given by the convolution of the line form functions
of the different processes [6],

g(ν) =
∫ ∞

−∞
g1

(
ν′)g2

(
ν − ν′)dν′. (1.89)

Two Gaussian line shapes thus result in a new Gaussian line shape with the line
width

�ν =
√

�ν2
1 + �ν2

2 , (1.90)

while for a mixing between a Lorentzian and a Gaussian line form function the
convolution cannot be solved analytically and results in the Voigt profile. All three
line shapes are shown for comparison in Fig. 1.12.
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