
Timed π-Calculus

Neda Saeedloei(B) and Gopal Gupta

University of Texas at Dallas, Dallas, TX, USA
{neda.saeedloei,gupta}@utdallas.edu

Abstract. We extend π-calculus with real-time by adding clocks and
assigning time-stamps to actions. The resulting formalism, timed π-
calculus, provides a simple and novel way to annotate transition rules of
π-calculus with timing constraints. Timed π-calculus is an expressive way
of describing mobile, concurrent, real-time systems in which the behavior
of systems is modeled by finite or infinite sequences of timed events. We
develop an operational semantics as well as a notion of timed bisimilarity
for the proposed language. We present the properties of timed bisimilar-
ity; in particular, expansion theorem for real-time, concurrent, mobile
processes is investigated.

1 Introduction

The π-calculus was introduced by Milner et al. [12] with the aim of modeling
concurrent/mobile processes. The π-calculus provides a conceptual framework
for describing systems whose components interact with each other. It contains
an algebraic language for describing processes in terms of the communication
actions they can perform. Theoretically, the π-calculus can model mobility, con-
currency and message exchange between processes as well as infinite computation
(through the infinite replication operator ‘!’).

In many cases, processes run on controllers that control physical devices;
therefore, they have to deal with physical quantities such as time, distance,
pressure, acceleration, etc. Examples include communicating controller systems
in cars (Anti-lock Brake System, Cruise Controllers, Collision Avoidance, etc.),
automated manufacturing, smart homes, etc. Properties of such systems, which
are termed cyber-physical systems (CPS) [6,9], cannot be fully expressed within
π-calculus. In a real-time/cyber-physical system the correctness of the system’s
behavior depends not only on the tasks that the system is designed to perform,
but also on the time instants at which these tasks are performed. While π-
calculus can handle mobility and concurrency, it is not equipped to model real-
time systems or CPS and support reasoning about their behavior related to time
and other physical quantities. We extend π-calculus with real time so that these
systems can be modeled and reasoned about.

Several extensions of π-calculus with time have been proposed [2,4,5,10]; all
these approaches discretize time rather than represent it faithfully as a contin-
uous quantity. Discretizing means that time is represented through finite time
intervals. As a result, infinitesimally small time intervals cannot be represented

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 119–135, 2014.
DOI: 10.1007/978-3-319-05119-2 8, c© Springer International Publishing Switzerland 2014

120 N. Saeedloei and G. Gupta

or reasoned about in these approaches. In practical real-time systems, e.g., a
nuclear reactor, two or more events can occur within an infinitesimally small
interval. Discretizing time can miss the modeling of such behavior which may
be wholly contained within this infinitesimally small interval. In our approach
for extending π-calculus with time, time is faithfully modeled as a continuous
quantity. The most notable work on extending π-calculus with real time is the
work of Chen [3]; however, the replication operator of the original π-calculus is
not considered in this work. Therefore, it is unable to model infinite processes.
In our approach the infinite behavior of timed precesses is modeled through the
infinite replication operator ‘!’ as in original π-calculus.

We consider the extension of π-calculus with continuous time by adding
finitely many real-valued clocks and assigning time-stamps to actions. The result-
ing formalism can be used for describing concurrent, mobile, real-time systems
and CPS and reasoning about their behaviors.1 In contrast to other extensions,
in our work the notion of time and clocks is adopted directly from the well-
understood formalism of timed automata [1]. For simplicity, the behavior of a
real-time system is understood as a sequence (finite or infinite) of timed events,
not states. The times of events are real numbers, which increase monotonically
without bound.

2 Timed π-Calculus

2.1 Design Decisions

We define our timed π-calculus as an extension of the original π-calculus [12]
with (local) clocks, clock operations and time-stamps. As in π-calculus, timed
π-calculus processes use names (including clock names) to interact, and pass
names to one another. These processes are identical to processes in π-calculus
except that they have access to clocks which they can manipulate.

We assume an infinite set N of names (channel names and names passing
through channels), an infinite set Γ of clock names (disjoint from N) and an
infinite set Θ of variables representing time-stamps (disjoint from N and Γ).
When a process outputs a name through a channel, it also sends the time-stamp
of the name and the clock that is used to generate the time-stamp. Inspired by
the notion of name transmission in π-calculus, we can treat time-stamps and
clocks just as other names and transmit them through/with channels. Just as
channel transmission results in dynamic configuration of processes, clock and
time-stamp transmission can result in dynamic temporal behavior of processes.
Thus, messages are represented by triples of the form 〈m, tm, c〉, where m is
a name in N , tm is the time-stamp on m, and c is the clock that is used to
generate tm. It is important for the process to send its clock that is used to
generate the time-stamp of the name, because the time-stamp of the incoming
1 While we only focus on extending the π-calculus with continuous time, our method

serves as a model for extending the π-calculus with other continuous quantities. An
instance of this, though not in the context of π-calculus, can be found in [16].

Timed π-Calculus 121

name in conjunction with the clock received is used by the receiving process to
reason about timing requirements of the system as well as channel delays.

In our timed π-calculus all the clocks are local clocks; however, their scope
is changed as they are sent among processes. This will become clear when we
explain how clock passing is performed in Sect. 2.5. Keeping the clocks local
results in a considerably simpler design of the timed π-calculus without sacrific-
ing its practical applicability. Note that all the clocks advance at the same rate.
A clock can be set to zero simultaneously with any transition (transitions are
defined formally in Sect. 2.4). At any instant, the reading of a clock is equal to
the time that has elapsed since the last time the clock was reset. Following the
semantics of timed automata [1], we only consider non-Zeno behaviors, that is,
only a finite number of transitions can happen within a finite amount of time.

2.2 Clock Operations and Clock Interpretations

We consider two types of clock operations: resetting a clock and checking satis-
faction of a clock constraint. Resetting a clock is used to remember the time at
which a particular action in the system has taken place. Clock resets are repre-
sented by γ in the syntax of timed π-calculus. Clock constraints, denoted by δ,
indicate timing constraints between actions that occur in the system. Note that
if δ contains more than one constraint, then the conjunction of all constraints
must be considered. δ and γ are defined by the following syntactic rules, in which
c and ci, 1 ≤ i ≤ n, are clock names, r is a constant in R≥0, t is a time-stamp
and ∼∈ {<,>,≤,≥,=}. ε represents an empty clock constraint or clock reset.

δ ::=(c ∼ r)δ
∣
∣ (c − t ∼ r)δ

∣
∣ (t − c ∼ r)δ

∣
∣ ε

γ ::=(c1 := 0) . . . (cn := 0)
∣
∣ ε

There are two ways to measure the passing of time while checking for a clock
constraint. It can be measured and reasoned about against (i) the last time a
clock was reset: e.g., a constraint (c < 2) on sending m indicates that m must be
sent out within two units of time since the clock c was reset, or (ii) the last time
a clock c was reset in conjunction with a time-stamp t of a name. Note that in
this case, the time-stamp t must be generated by clock c. For instance, suppose
that a process P sends two consecutive names that are two units of time apart; if
the time-stamp of the first name, generated by clock c is t1, then the expression
c − t1 = 2 can be used to express this constraint.

For a process P , we define c(P) to be the set of clock names in P . For every
two processes P and Q we assume c(P) ∩ c(Q) = ∅, initially. This property is
also maintained all the time as transitions take place. A clock interpretation I
for a set Γ of clocks is a mapping from Γ to R≥0. It assigns a real value to each
clock in Γ. A clock interpretation I for Γ satisfies a clock constraint δ over Γ iff
the expression obtained by applying I to δ evaluates to true. For t ∈ R≥0, I + t
denotes the clock interpretation which maps every clock c to the value I(c) + t.
For γ ⊆ Γ, [γ �→ t]I denotes the clock interpretation for Γ which assigns t to
each c ∈ γ, and agrees with I over the rest of the clocks.

122 N. Saeedloei and G. Gupta

2.3 Syntax

The set of timed π-calculus processes is defined by the following syntactic rules
in which, P , P ′, M and M ′ range over processes, x, y and z range over names
in N , c and d range over clock names in Γ, and ty represents a time-stamp.

M ::=δγx̄〈y, ty, c〉.P ∣
∣ δγx(〈y, ty, c〉).P ∣

∣ δγτ.P
∣
∣ 0

∣
∣ M + M ′

P ::=M
∣
∣ (P | P ′)

∣
∣ !P

∣
∣ (z) P

∣
∣ [x = y]P

∣
∣ [c = d] P

The expression δγx̄〈y, ty, c〉.P represents a process that is capable of outputting
name y on channel x. This process generates a time-stamp ty using clock c and
sends ty and c along with y via the channel x, and evolves to P . The time-stamp
ty is the reading of clock c at the time of transition. The assignment of a time-
stamp to y and sending y is an atomic operation. The clock constraint δ must
be satisfied by the current value of clocks at the time of transition. γ specifies
the clocks to be reset with this transition.

Example 1. The process P = (c < 2)x̄〈y, ty, c〉.P ′ is capable of sending name
y on channel x within two units of time since clock c was last reset. Note that
the time-stamp of y is the reading of clock c when the output takes place. Since
the output can happen only within two units of time since c was last reset, then
time-stamp ty is a positive real number less than two (ty < 2). ty and c are both
sent along with y through channel x.

The expression δγx(〈y, ty, c〉).P stands for a process which is waiting for a
message on channel x. When a message arrives, the process will behave like
P{z/y, tz/ty, d/c} (substitution is formally defined in Definition 2) where z is
the name received; tz is the time-stamp of z; and d is the clock of the sending
process that is used to generate tz. The time-stamp tz must satisfy the clock
constraint expressed by δ; γ specifies the clocks to be reset with the transition.

Example 2. Assume process Q = (e > 5)(d− tz ≤ 3)x(〈z, tz, d〉).Q′ is the receiv-
ing process in Example 1. The received name, along with its time-stamp and
the accompanying clock will be substituted for z, tz and d, respectively. After
substitution takes place, the constraint c− ty ≤ 3 specifies how long the received
name was on transit. Any delay greater than three is not acceptable and cause
the input action to not take place. Note that e is another local clock of Q. Both
constraints e > 5 and (d − tz ≤ 3) must be satisfied by the current value of
clocks for the input action to take place.

Note that time-stamps are put on names only by the sending processes, that
is no time-stamps are assigned to received names upon arrival. The value of a
time-stamp generated by process P on sending name y, is the value of P ’s local
clock c at the time of output. This value is generated such that it satisfies the
clock constraint corresponding to the output action. Note that in Example 2,
tz gets bound to the time-stamp of the incoming name, as we do not assign
time-stamps to the received names.

Timed π-Calculus 123

The expression δγτ.P stands for a process that takes an internal action and
evolves to P , and in doing so resets the clocks specified by γ, if the clock con-
straint δ is satisfied.

In each of three processes explained above, if the clock constraint δ is not
satisfied by the value of clocks at the time of transition, then, the process becomes
inactive. An inactive process, represented by 0, is a process that does nothing.

The operators + and | are used for nondeterministic choice and composition
of processes, just as in π-calculus [12]. The replication !P , represents an infinite
composition P | P | . . . , just as in π-calculus. The restriction (z)P, z ∈ N ,
behaves as P with z local to P . Therefore, z cannot be used as a channel over
which to communicate with other processes or the environment. [x = y]P, x, y ∈
N ∪Γ, evolves to P if x and y are the same name; otherwise, it becomes inactive.

Example 3. The timed π-calculus expression x(〈m, tm, c〉).(c− tm ≤ 5)ȳ〈n, tn, c〉
represents a process that is waiting for a message on channel x. The process
upon receiving a name m with time-stamp tm and its accompanying clock c on
channel x, sends a name n with time-stamp tn on channel y with the delay of at
most 5 units of time since the time-stamp of m. The process will use the clock
c to choose a time tn on c such that c − tm ≤ 5.

In a process of the form δγx(〈y, t, c〉).P the occurrences of y, t and c are binding
occurrences, and the scope of the occurrences is P . In (n)P, n ∈ N the occurrence
of n is a binding occurrence, and the scope of the occurrence is P .

Definition 1. An occurrence of a (non-clock) name n in a process is free if it
does not lie within the scope of a binding occurrence of n. An occurrence of a
(non-clock) name in a process is bound if it is not free. All occurrences of a clock
c in a process P are bound. The set of bound names of P , bn(P), contains all
names which occur bound in P . The set of names occurring free in P is denoted
fn(P). We write n(P) for the set fn(P) ∪ bn(P) of names of P .

Intuitively, the free (non-clock) names of a process, represent its (public) links
to other processes. For instance, if processes P and Q share the same free name
x, then, the channel x is shared between these two processes.

Example 4. Let P = x(〈y, t, c〉).0 and Q = (d > 1)(d < 5)x̄〈z, t′, d〉.0. Then,
fn(P) = {x}, bn(P) = {y, t, c}, fn(Q) = {x, z, t′}, and bn(Q) = {d}. x is a
channel that is shared between P and Q. This behavior can be represented for
example in the parallel composition of P and Q: (P | Q).

Definition 2. [12] A substitution is a function θ from a set of names N to N .
If xiθ = yi for all i with 1 ≤ i ≤ n (and xθ = x for all other names x), we write
{y1/x1, . . . , yn/xn} for θ.

The effect of applying a substitution θ to a process P is to replace each free
occurrence of each name x in P by xθ, with change of bound names to avoid
name capture (to preserve the distinction of bound names from the free names).
Substitution for time-stamps can be defined similarly.

124 N. Saeedloei and G. Gupta

Definition 3. A clock substitution is a function θc from a set of clock names Γ
to Γ. If ciθc = di for all i with 1 ≤ i ≤ n (and cθc = c for all other clock names
c), we write {d1/c1, . . . , dn/cn} for θc.

The effect of applying a substitution θc to a process P , Pθc, is to replace all
occurrences of each clock name c in P by cθc.

Definition 4. Given a clock c, the function θf creates a fresh copy, f , of c (f
does not appear in any process) and updates the interpretation with I(f) = I(c).
The application of θf to c is represented by cθf .

Definition 5. A clock renaming θr is a clock substitution {f1/c1, . . . , fn/cn} in
which fi = ciθf , 1 ≤ i ≤ n.

The effect of applying a clock renaming θr = {f1/c1, . . . , fn/cn} to process P ,
Pθr, is to replace all occurrences of each name c in P by cθr.

2.4 Operational Semantics

First, we define actions by the following syntactic rule:

α::=x̄〈y, t, c〉 ∣
∣ x̄〈(y), t, c〉 ∣

∣x(〈y, t, c〉) ∣
∣ τ

The first two actions are the bound output actions. Bound output actions are
used to carry names out of their scope. x̄〈y, t, c〉 is used for sending a name y,
time-stamp of y, t, and the (local) clock that is used to generate t, via channel x.
The process that gives rise to this action can be of the form x̄〈y, t, d〉.P, c = dθf .
In this action x, y and t are free and c is bound; c is the fresh copy of d. The
expression x̄〈(y), t, c〉 is used by a process for sending its private name y (y is
bound in the process) and its (local) clock c. The process that gives rise to this
action can be of the form: (y)x̄〈y, t, d〉.P, c = dθf . In this action x and t are free,
while y and c are bound2; c is a fresh copy of d.

As we mentioned before all the clocks in the calculus are local clocks: the
clocks of a process P are accessible only by P . However, the scope of the clocks
is extended as they are sent to other processes. If d is sent to process Q by P ,
then both P and Q will have access to d. As a result, they both can reset d as
part of their future transitions. To prevent processes interfering with each other
by resetting a shared clock, P must create a fresh copy of d, let us call it c, and
send c to Q. This is the reason of creating fresh copies of clocks in both output
actions.

The third action is the input action x(〈y, t, c〉). This action is used for receiv-
ing any name z with its time-stamp tz, and a clock d via x. y, t and c are place
holders in the receiving process for values that will be received as inputs. In this
action x is free, while y, t and c are bound names.
2 Since all the clocks are local clocks and all clock names are bound, we do not use

parenthesis as we do for regular names to distinguish them from free names.

Timed π-Calculus 125

The last action is the silent action τ , which is used to express performing
an internal action. Silent actions can naturally arise from processes of the form
τ.P , or from communications within a process (e.g., rule COM in Table 1).

We use fn(α) for set of free names of α, bn(α) for set of bound names of α,
and n(α) for the union of fn(α) and bn(α). Note that fn(τ) = ∅ and bn(τ) = ∅.

A transition in timed π-calculus is of the form P
〈δ,α,γ〉−−−−→ P ′. This transition

is understood as follows: if δ is satisfied by the current values of clocks, P evolves
into P ′, and in doing so performs the action α and resets the clocks specified by

Table 1. Timed π-calculus transition rules

y /∈ fn((z)P)

δγx(〈z, t, c〉).P 〈δ{t′/t,d/c},x(〈y,t′,d〉),γ{d/c}〉−−−−−−−−−−−−−−−−−−−−→ P{y/z, t′/t, d/c}
d = cθf

δγx̄〈y, t, c〉.P 〈δ,x̄〈y,t,d〉,γ〉−−−−−−−−→ P δγτ.P
〈δ,τ,γ〉−−−−→ P

P
〈δ,α,γ〉−−−−→ P ′

bn(α) ∩ fn(Q) = ∅
(P | Q)

〈δ,α,γ〉−−−−→ (P ′ | Q)

P
〈δ,α,γ〉−−−−→ P ′

P + Q
〈δ,α,γ〉−−−−→ P ′

P
〈δ,x̄〈z,t,c〉,γ〉−−−−−−−−→ P ′ Q

〈δ′,x(〈z,t,c〉),γ′〉−−−−−−−−−−→ Q′

(P | Q)
〈δδ′,τ,γγ′〉−−−−−−−→ (P ′ | Q′)

P
〈δ,x̄〈y,t,c〉,γ〉−−−−−−−−→ P ′

y �= x ∧ u /∈ fn((y)P ′)
(y)P

〈δ,x̄〈(u),t,c〉,γ〉−−−−−−−−−→ P ′{u/y}

P
〈δ,x̄〈(z),t,c〉,γ〉−−−−−−−−−→ P ′ Q

〈δ′,x(〈z,t,c〉),γ′〉−−−−−−−−−−→ Q′

(P | Q)
〈δδ′,τ,γγ′〉−−−−−−−→ (z)(P ′ | Q′)

P
〈δ,α,γ〉−−−−→ P ′

z /∈ n(α), z ∈ N
(z)P

〈δ,α,γ〉−−−−→ (z)P ′

P
〈δ,α,γ〉−−−−→ P ′

x ∈ N x ∈ Γ
[x = x]P

〈δ,α,γ〉−−−−→ P ′
P

〈δ,α,γ〉−−−−→ P ′

!P
〈δ,α,γ〉−−−−→ (P ′θr | !P)

P
〈δ,x̄〈z,t,c〉,γ〉−−−−−−−−→ P ′ P

〈δ′,x(〈z,t,c〉),γ′〉−−−−−−−−−−→ P ′′

!P
〈δδ′,τ,γγ′〉−−−−−−−→ ((P ′θ′

r | P ′′θ′′
r) | !P)

P
〈δ,x̄〈(z),t,c〉,γ〉−−−−−−−−−→ P ′ P

〈δ′,x(〈z,t,c〉),γ′〉−−−−−−−−−−→ P ′′

!P
〈δδ′,τ,γγ′〉−−−−−−−→ ((z)(P ′θ′

r | P ′′θ′′
r) | !P)

126 N. Saeedloei and G. Gupta

γ. With abuse of notation, we have used γ as a set of clocks to be reset. We call
the triple 〈δ, α, γ〉 a timed action. The set of transition rules of timed π-calculus
are represented in Table 1. These rules are labeled by timed actions.

In rule IN the incoming clock and time-stamp must satisfy the clock con-
straint in the receiving process, for transition to take place. The incoming clock
might get reset upon arrival in the receiving process. These requirements are
specified in the timed action for IN where t′ and d (the received time-stamp
and clock) are substituted for t and c, respectively. In rule OUT, d is a fresh
copy of clock c which is created and sent along name y on outputting the name.
The rule for COM is similar to that of original π-calculus; however, the clock c
communicated between P and Q is a fresh clock name generated by rule OUT
(the premise of COM).

The joint use of two rules OPEN and CLOSE is used for scope-extrusion of
bound names (including clock names). A bound output combines with an input
action, and once the bound name has been received, a restriction will be extended
to the receiving process. This means the received name is still bound although
its scope has grown. However, this restriction should not bind occurrences of
free names in the receiving process. This is the reason for changing the name
y to a fresh name u before sending y, as in the original π-calculus. Note that
the OPEN rule does not changes the clock name c, as c is a fresh clock name
generated by the rule OUT (the premise of OPEN).

Note that in the rule for REP the set of clock names in P ′ are replaced by
fresh clock names by applying the renaming θr to P ′. Similarly, in the rules for
REP-COM and REP-CLOSE the clock names in the replicated processes are
replaced by fresh clock names using θ′

r and θ′′
r. Note also that there are two

more rules for SUM and PAR where the process Q takes an action. These rules
are symmetric to SUM and PAR rules of Table 1 and are eliminated.

Example 5. Using OUT and OPEN we can derive:

(y)x̄〈y, t, c〉.P 〈ε,x̄〈(u),t,d〉,ε〉−−−−−−−−−→ P{u/y}

For all u such that u is y or u /∈ fn(P) and d = cθf . Using IN we have that

x(〈z, tz, e〉).Q 〈ε,x(〈u,t,d〉),ε〉−−−−−−−−−→ Q{u/z, t/tz, d/e}

For all u such that u is z or u /∈ fn(Q). By applying CLOSE we derive

((y)x̄〈y, t, c〉.P | x(〈z, tz, e〉).Q)
〈ε,τ,ε〉−−−−→ (u)(P{u/y} | Q{u/z, t/tz, d/e})

Next, we formally define the operational semantics of timed π-calculus and how
the transitions change the interpretation.

Definition 6. [1] A time sequence w = w1w2 . . . is a finite or infinite sequence
of time values wi ∈ R with wi > 0, satisfying the following constraints:

Timed π-Calculus 127

– Monotonicity: w increases strictly monotonically; that is, wi < wi+1 for all
i ≥ 1.

– Progress: For every w ∈ R, there is some i ≥ 1 such that wi ≥ w.

A system specified by set of timed π-calculus processes starts with all the clocks
initialized to 0. Moreover, for every two processes P and Q, c(P) ∩ c(Q) = ∅,
initially. As time advances the value of all clocks advances, reflecting the elapsed
time. At time wi, a process Pi−1 takes a timed action 〈δi, αi, γi〉 and evolves to
Pi, if the current values of clocks satisfy δi. The clocks specified by γi are reset
to 0, and thus start counting time with respect to it. This behavior is captured
by defining runs of timed π-calculus processes. A run for a process P , records
the state (process expression) and the values of all the clocks at the transition
points. For a time sequence w = w1w2 . . . we define w0 = 0.

Definition 7. A run r, denoted by (P̄ , Ī), of a timed π-calculus process P , is a
finite or an infinite sequence of the form

〈P0, I0〉 〈δ1,α1,γ1〉−−−−−−→
w1

〈P1, I1〉 〈δ2,α2,γ2〉−−−−−−→
w2

〈P2, I2〉 〈δ3,α3,γ3〉−−−−−−→
w3

. . .

where Pi is a process and Ii ∈ [Γ → R≥0], for all i ≥ 0, satisfying the following
requirements:

– Initiation: P0 is the initial process expression, and I0(c) = 0 for all c ∈ Γ.

– Consecution: for all i ≥ 1, there is a transition of the form Pi−1
〈δi,αi,γi〉−−−−−−→ Pi

such that (Ii−1 + wi − wi−1) satisfies δi and Ii = [λi �→ 0](Ii−1 + wi − wi−1).

Along a run r = (P̄ , Ī), the values of the clocks at time wi ≤ w ≤ wi+1 are given
by the interpretation (Ii +w −wi). When the transition from Pi to Pi+1 occurs,
the value (Ii + wi+1 − wi) is used to check the clock constraint. At time wi+1,
the value of a clock that gets reset is defined to be 0.

When the transition from Pi = δγx(〈z, t, c〉).P to Pi+1 = P{y/z, t′/t, d/c}
occurs (〈y, t′, d〉 is the received name), we check the satisfiability of the clock
constraint δ{d/c, t′/t}, similarly we reset the clocks specified by γ{d/c}. Intu-
itively, this means that the values of the received clock and time-stamp should
satisfy the constraint δ for the transition to take place. Moreover, the incoming
clock might get reset upon arrival. These requirements are specified in the timed
action of rule IN in Table 1. When the transition from Pi = δγx̄〈y, t, c〉.P to
Pi+1 = P occurs in which, the timed action 〈δ, x̄〈y, t, d〉, γ〉, d = cθf takes place,
the time-stamp t in x̄〈y, t, d〉 gets bound to (Ii(c)+wi+1 −wi). Note that at this
point Ii+1(d) = Ii+1(c).

2.5 Passing Clocks and Channels

Link (channel) passing in timed π-calculus is handled in exactly the same manner
as in π calculus, in the sense that a process P can send a public channel x to
a process Q. However, if Q already has access to a private channel x before the

128 N. Saeedloei and G. Gupta

Table 2. Axioms of structural congruence

transition, the latter must be renamed to avoid confusion: this is called scope
intrusion [12]. If P has a private link x that it sends to Q, the scope of restriction
will be extended, this is called scope extrusion [12]. In this case, if Q already
has access to a public link x, then the name of the private link must be changed
before the transition (these are reflected in rules OPEN and CLOSE).

All clocks in timed π-calculus are local clocks; moreover, processes access
disjoint sets of clocks. When a process P sends its (local) clock c to another
process Q, it creates a fresh copy of c and sends this copy to Q.

Assume that P = δγȳ〈x, tx, c〉.P ′ and Q = δ′γ′y(〈z, tz, d〉).Q′. Furthermore,
assume that P sends 〈x, tx, c〉 to process Q. This behavior can be captured by
the following timed π-calculus transition.

(P
∣
∣ Q)

〈δδ′,τ,γγ′〉−−−−−−−→ (P ′ | Q′{x/z, tx/tz, e/d}), e = cθf

Next, we define the structural congruence for proposed timed π-calculus.

2.6 Structural Congruence

The notion of structural congruence for timed π-calculus processes is identical to
that of original π-calculus [12]. Two timed π-calculus processes are structurally
congruent if they are identical up to structure. Structural congruence, ≡, is the
least equivalence relation preserved by the process constructs that satisfy the
axioms in Table 2.

2.7 Timed Bisimulation

We would like to identify two processes which cannot be distinguished by an
observer. We assume that the observer is able to observe all kinds of actions and
moreover, it can observe the times at which the actions are taken place.

Definition 8. A binary relation S on timed π-calculus processes is a (strong)
timed simulation if PSQ implies that:

Timed π-Calculus 129

1. If 〈P, I〉 〈δ,τ,γ〉−−−−→
w

〈P ′, I ′〉, then for some Q′, 〈Q, I〉 〈δ,τ,γ〉−−−−→
w

〈Q′, I ′〉 and P ′ S Q′,

2. If 〈P, I〉 〈δ,x̄〈y,t,c〉,γ〉−−−−−−−−→
w

〈P ′, I ′〉, then for some Q′, 〈Q, I〉 〈δ,x̄〈y,t,c〉,γ〉−−−−−−−−→
w

〈Q′, I ′〉
and P ′ S Q′,

3. If 〈P, I〉 〈δ,x̄〈(y),t,c〉,γ〉−−−−−−−−−→
w

〈P ′, I ′〉 and y /∈ n(P,Q), then for some Q′,

〈Q, I〉 〈δ,x̄〈(y),t,c〉,γ〉−−−−−−−−−→
w

〈Q′, I ′〉 and P ′ S Q′,

4. If 〈P, I〉 〈δ,x(〈y,t,c〉),γ〉−−−−−−−−−→
w

〈P ′, I ′〉 and y /∈ n(P,Q), then for some Q′,

〈Q, I〉 〈δ,x(〈y,t,c〉),γ〉−−−−−−−−−→
w

〈Q′, I ′〉 and for all z, P ′{z/y} S Q′{z/y}.

The relation S is a (strong) timed bisimulation if both S and its inverse are timed
simulation. The relation ∼̇, (strong) bisimilarity, on timed processes is defined
by P ∼̇Q if and only if there exists a timed bisimulation S such that PSQ.

Example 6. Assume P is a timed π-calculus process defined as:

(c < 2)(c := 0)x̄〈y, ty, c〉 | (d := 0)z(〈w, tw, d〉)

in which, x �= z. Then,

P ∼̇ (c < 2)(c := 0)x̄〈y, ty, c〉.(d := 0)z(〈w, tw, d〉)+
(d := 0)z(〈w, tw, d〉).(c < 2)(c := 0)x̄〈y, ty, c〉

Analogous to strong bisimilarity in π-calculus, ∼̇ is not in general preserved by
substitution of names. It follows that (strong) timed bisimilarity is not preserved
by input prefix. As a result, (strong) timed bisimilarity is not a congruence.

Example 7. Assume P is defined as in Example 6, and Q = u(〈z, tz, e〉).(P)
Then,

Q ˙�∼ u(〈z, tz, e〉).((c < 2)(c := 0)x̄〈y, ty, c〉.(d := 0)z(〈w, tw, d〉)+
(d := 0)z(〈w, tw, d〉).(c < 2)(c := 0)x̄〈y, ty, c〉)

The reason is that, if z is instantiated to x (the channel name received in u is
x), then P{x/z} will have a τ transition which cannot be simulated by the right
hand side of the equation.

Definition 9. If x �= y, then δγx̄〈(y), t, c〉.P means (y) δγx̄〈y, t, c〉.P , and the
prefix x̄〈(y), t, c〉 is called a derived prefix.

A collection of algebraic laws for (strong) timed bisimilarity, which are extensions
of algebraic laws for bisimilarity in π-calculus [12], is presented in Table 3. Note
that ρ in proposition 5(d) denotes a prefix, including a derived prefix.

130 N. Saeedloei and G. Gupta

Table 3. Timed bisimilarity algebraic laws

Proposition 7 Expansion
Let P ≡ ∑

i δiγiρi.Pi and Q ≡ ∑

j ηjλjφj .Qj where δi and ηj are constraints, γi

and λj specify the set of clocks to be reset and ρi and φj are prefixes; bn(ρi) ∩
fn(Q) = ∅ for all i, and bn(φj) ∩ fn(P) = ∅ for all j; then

P | Q ∼̇
∑

i

δiγiρi.(Pi | Q)+

∑

j

ηjλjφj .(P | Qj) +
∑

ρicompφj

δiηjγiλjτ.Rij

The relation ρi comp φj (ρi complements φj) holds in the following four cases,
which also defines Rij :

1. ρi is x̄〈u, t, c〉 and φj is x(〈v, tv, d〉); then Rij is (Pi|Qj{u/v, t/tv, e/d}) where
e = cθf ,

2. ρi is x̄〈(u), t, c〉 and φj is x(〈v, tv, d〉); then Rij is (w)(Pi{w/u}|
Qj{w/v, t/tv, e/d}) where w is not free in (u)Pi or in (v)Qj and e = cθf ,

3. ρi is x(〈v, tv, d〉) and φj is x̄〈u, t, c〉; then Rij is (Pi{u/v, t/tv, e/d}|Qj) where
e = cθf ,

4. ρi is x(〈v, tv, d〉) and φj is x̄〈(u), t, c〉; then Rij is (w)(Pi{w/v, t/tv, e/d}
|Qj{w/u}) where w is not free in (v)Pi or in (u)Qj and e = cθf .

Timed π-Calculus 131

Proofs of above propositions are extensions of the proofs for untimed π-
calculus processes [12] (these extensions take clocks into account) which are not
presented here due to lack of space.

3 Example: The Railroad Crossing Problem

The generalized railroad crossing (GRC) problem [7] describes a railroad crossing
system with several tracks and an unspecified number of trains traveling through
the tracks. The gate at the railroad crossing should be operated in a way that
guarantees the safety and utility properties. The safety property stipulates that
the gate must be down while there is a train in the crossing. The utility property
states that the gate must be up (or going up) when there is no train in the
crossing. The system is composed of three components: train, controller and gate.
The components of the system which are specified via three timed automata in
Fig. 1, communicate by sending and receiving signals. We specify the components
of the system in timed π-calculus.

The controller at the railroad crossing might receive various signals from
trains in different tracks. In order to avoid signals from different trains being
mixed, each train communicates through a private channel with the controller.
A new channel is established for each approaching train to the crossing area
through which the communication between the train and the controller takes
place. For simplicity of presentation we consider only one track in this example.

In our modeling of railroad crossing problem in timed π-calculus each com-
ponent of the system is considered as a timed π-calculus process. This model is
presented in Table 4. Note that the design of the railroad crossing problem shown
in Fig. 1 (originally from [1]) does not account for the delay between the sending
of approach (exit) signal by a train and receiving it by the controller. Similarly
the delay between sending lower (raise) by the controller and receiving it by the
gate is not taken into account. Arguably, in a correct design, the delay before
approach is received by the controller should be taken into account. The lower
signal must be sent within one unit of time since the time-stamp of the original
approach but not the time at which the controller receives the signal (note that
the controller resets its clock to remember the time it receives approach). In con-
trast, in our specification of the railroad crossing problem in timed π-calculus,

Fig. 1. Timed automata for train, controller, and gate in the railroad crossing problem

132 N. Saeedloei and G. Gupta

Table 4. The timed π-calculus expressions for components of the railroad crossing
problem)

train ≡ controller ≡
!(ch)ch1〈ch, tc, t〉 !ch1(〈y, ty, d〉).y(〈x, tx, c〉).
(t := 0)ch〈approach, ta, t〉. ([x = approach](c = 1)(e := 0)ch2〈lower, tl, e〉+
(t > 2)τ.τ. [x = exit](c − tx < 1)(e := 0)ch2〈raise, tr, e〉)
(t < 5)ch〈exit, te, t〉)

gate ≡
!ch2(〈x, tx, g〉).
([x = lower](g < 1)τ + [x = raise](g > 1)(g < 2)τ)

main ≡ train
∣
∣ controller

∣
∣ gate

we are considering the delays; therefore, all the time-related reasoning in the
system is performed against train’s clock and the time-stamp of approach signal
(sent by train to controller).

Note that in the π-calculus expression for train specified in Table 3, t is
the local clock of train and the two consecutive τ actions correspond to train’s
internal actions in and out. In the expression for controller, c is a place holder
for the received clock t from train; while, e is the controller’s clock that is reset
before it is sent to gate. In the expression for gate, g is a place holder for the
received clock e from controller and the two τ actions correspond to gate’s
internal actions; the first τ represents down; while the second τ represents up.

Timed π-calculus allows the railroad crossing problem to be modeled more
faithfully. Additionally, significantly more complex systems can be modeled. The
timed π-calculus specification can be used for verification of the system as well
as generating the implementation [15].

4 Discussions

Our proposed timed π-calculus extends the original π-calculus of Milner, while
preserving the algebraic properties of the original π-calculus. The notion of timed
bisimilarity and expansion in our calculus are also simple extensions of those
found in the original π-calculus. Our calculus is a simple and powerful calculus
which annotates the transitions of π-calculus with timing constraints. Our effort
was driven by our desire to keep the design simple. The two most critical and
fundamental assumptions/decisions made in this paper are discussed next.

First, on outputting a name we submit a clock and also the time-stamp of the
name generated by the clock. Without time-stamps, precisely reasoning about
channel delays becomes much more complex, if not impossible. As an example
consider a scenario in which process P takes an action α and resets its clock
c at the time of action in order to remember when the action took place. Let
us assume that after t units of time (t is measured by c) have elapsed since α’s
occurrence, P sends a name n (along with clock c and time-stamp tn generated

Timed π-Calculus 133

by c) to process Q. Note that P did not reset the clock before this output, as it
continues to need to measure the time since the occurrence of α. At this point
if we wanted to know for how long the name n was in transit, we could not
calculate it without tn. However, on receiving n on Q, the expression c − tn
could be used to calculate the exact time for which the name n was in transit.

The second fundamental design decision in our calculus is our choice of local
clocks and how clocks are treated. Initially, processes have access to distinct
set of clocks. Later, after transitions take place, the scope of local clocks may
grow; however, we keep the distinction between clocks of different processes. We
achieve this by having processes create fresh copies of their own clocks (and
updating the interpretation accordingly) and sending these copies instead of
their original clocks. Adopting this convention prevents processes from resetting
each others’ clocks, as the sending process may keep using (possibly resetting)
the clock that was sent for measuring other subsequent events. Our choice of
clocks and our careful treatment of clocks enabled us to extend the transition
rules of the original π-calculus naturally in order to obtain the transition rules
of our timed π calculus. It also made our expansion theorem an straightforward
extension of the original one.

5 Conclusions and Related Work

Since the π-calculus was proposed by Milner et al. [12], many researchers have
extended it for modeling distributed real-time systems. Berger has introduced
timed π-calculus (πt-calculus) [2], asynchronous π-calculus with timers and a
notion of discrete time, locations, and message failure, and explored some of its
basic properties. Olarte has studied temporal CCP (tcc) as a model of concur-
rency for mobile, timed reactive systems in his Ph.D thesis [13]. He has developed
a process calculus called universal temporal CCP (utcc). His work can be seen
as adding mobile operation to the tcc. In utcc, like tcc, time is conceptually
divided into time intervals (or time units); therefore it is discretized. Lee et al.
[10] introduced another timed extension of π-calculus called real-time π-calculus
(πRT-calculus). They have introduced the time-out operator and considered a
global clock, single observer as part of their design, as is common in other (sta-
tic) real-time process algebras. They have used the set of natural numbers as
the time domain, i.e., time is discrete and is strictly increasing. Ciobanu et al.
[4] have introduced a model called timed distributed π-calculus in which they
have considered timers for channels, by which they restrict access to channels.
They use decreasing timers, and time is discretized in their approach also. Many
other timed calculi have similar constructs which also discretize time [5,8,11].
In summary, all these approaches share some common features; they use a dis-
crete time-stepping function or timers to increase/decrease the time-stamps after
every action (they assume that every action takes exactly one unit of time). In
contrast, our approach for extending π-calculus with time faithfully treats time
as continuous.

Posse et al. [14] have proposed πklt-calculus as a real-time extension of π-
calculus and study a notion of time-bounded equivalence. They have developed

134 N. Saeedloei and G. Gupta

an abstract machine for the calculus and developed an implementation based on
this abstract machine for the πklt-calculus in a language called kiltera. The
replication operator of the original π-calculus is missing in this work.

The work of Yi [17] shows how to introduce time into Milner’s CCS to model
real-time systems. An extra variable t is introduced which records the time delay
before a message on some channel α is available, and also a timer for calculating
delays. The idea is to use delay operators to suspend activities. In our opinion, it
is much harder to specify real-time systems using delays. Our approach provides
a more direct way of modeling time in π-calculus via clocks, and also can be
used to elegantly reason about delays.

The proposed timed π-calculus is an expressive, natural model for describing
real-time, mobile, concurrent processes. It preserves the algebraic rules of the
original π-calculus, while keeps the expansion theorem simple.

With respect to future work, we would like to extend our timed π-calculus
with other continuous quantities; so that more complex systems as well as CPS
can be expressed. While we have used our calculus for modeling and verifying the
railroad crossing problem [15], we would like to model the generalized railroad
crossing (GRC) problem in our calculus and use it for verifying properties of the
system.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Berger, M.: Towards abstractions for distributed systems. Technical report, Impe-
rial College London (2004)

3. Chen, J.: Timed extensions of π calculus. Theor. Comput. Sci. 11(1), 23–58 (2006)
4. Ciobanu, G., Prisacariu, C.: Timers for distributed systems. Electr. Notes Theor.

Comput. Sci. 164(3), 81–99 (2006)
5. Degano, P., Loddo, J.V., Priami, C.: Mobile processes with local clocks. In: Dam,

M. (ed.) LOMAPS-WS 1996. LNCS, vol. 1192, pp. 296–319. Springer, Heidelberg
(1997)

6. Gupta, R.: Programming models and methods for spatiotemporal actions and rea-
soning in cyber-physical systems. In: NSF Workshop on CPS (2006)

7. Heitmeyer, C., Lynch, N.: The generalized railroad crossing: a case study in formal
verification of real-time systems. In: IEEE Real-Time Systems Symposium, pp.
120–131. IEEE Computer Society Press, Los Alamitos (1994)

8. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.)
FoSSaCS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)

9. Lee, E.A.: Cyber physical systems: design challenges. In: IEEE Symposium on
Object Oriented Real-Time Distributed Computing, ISORC ’08. IEEE Computer
Society, Washington (2008)

10. Lee, J.Y., Zic, J.: On modeling real-time mobile processes. Aust. Comput. Sci.
Commun. 24(1), 139–147 (2002)

11. Mazzara, M.: Timing issues in web services composition. In: Bravetti, M., Kloul, L.,
Zavattaro, G. (eds.) EPEW/WS-EM 2005. LNCS, vol. 3670, pp. 287–302. Springer,
Heidelberg (2005)

Timed π-Calculus 135

12. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts i and ii.
Inf. Comput. 100(1), 1–77 (1992)

13. Olate, C.: Universal temporal concurrent constraint programming. Ph.D thesis,
LIX, Ecole Polytechnique (2009)

14. Posse, E., Dingel, J.: Theory and implementation of a real-time extension to the π-
calculus. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE 2010, Part II. LNCS,
vol. 6117, pp. 125–139. Springer, Heidelberg (2010)

15. Saeedloei, N.: Modeling and verification of real-time and cyber-physical systems.
Ph.D. thesis, University of Texas at Dallas, Richardson, Texas (2011)

16. Saeedloei, N., Gupta, G.: A logic-based modeling and verification of CPS. SIGBED
Rev. 8, 31–34 (2011). http://doi.acm.org/10.1145/2000367.2000374

17. Yi, W.: CCS + time = an interleaving model for real time systems. In: Albert,
J.L., Monien, B., Artalejo, M.R. (eds.) ICALP 1991. LNCS, vol. 510, pp. 217–228.
Springer, Heidelberg (1991)

	Timed -Calculus
	1 Introduction
	2 Timed -Calculus
	2.1 Design Decisions
	2.2 Clock Operations and Clock Interpretations
	2.3 Syntax
	2.4 Operational Semantics
	2.5 Passing Clocks and Channels
	2.6 Structural Congruence
	2.7 Timed Bisimulation

	3 Example: The Railroad Crossing Problem
	4 Discussions
	5 Conclusions and Related Work
	References

