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Abstract. A novel, scalable, on-the-fly model-checking procedure is pre-
sented to verify bounded PCTL properties of selected individuals in the
context of very large systems of independent interacting objects. The
proposed procedure combines on-the-fly model checking techniques with
deterministic mean-field approximation in discrete time. The asymptotic
correctness of the procedure is shown and some results of the applica-
tion of a prototype implementation of the FlyFast model-checker are pre-
sented.
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1 Introduction

Model checking has been widely recognised as a powerful approach to the auto-
matic verification of concurrent and distributed systems. It consists of an efficient
procedure that, given an abstract model M of the system, decides whether M
satisfies a logical formula Φ, typically drawn from a temporal logic. Despite the
success of model-checking procedures, their scalability have always been a con-
cern due to the potential combinatorial explosion of the state space that needs
to be searched.

The main contribution of this paper is a novel model-checking procedure,
based on an original combination of local, on-the-fly model-checking techniques
and mean field approximation in discrete time [26]. The procedure can be used
to verify bounded PCTL [18] properties of selected individuals in the context
of systems consisting of a large number of similar but independent interacting
objects. It is scalable in the sense that it is insensitive to the size of the popu-
lation the system consists of. The asymptotic correctness of the model-checking
procedure is proven and a prototype implementation of the model-checker, Fly-
Fast, is applied to a bench-mark example from computer epidemics that was
also studied extensively in [7], to which we refer for a detailed discussion. To
the best of our knowledge, this is the first implementation of an on-the-fly mean
field model-checker for discrete time, probabilistic, time-synchronous models.
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Following the approach in [26] we consider a model for interacting objects,
where the evolution of each object is given by a finite state discrete time Markov
chain. The transition matrix of each object may depend on the distribution of
states of all objects in the system. Each object can be in one of its local states
at any point in time and all objects proceed in discrete time and in a clock-
synchronous fashion. When the number of objects is large, the overall behaviour
of the system in terms of its ‘occupancy measure’, i.e. the fraction of objects
that are in a particular local state at a particular time, can be approximated
by the (deterministic) solution of a difference equation which is called the ‘mean
field’1. This convergence result has been extended in [26] to obtain a ‘fast’ way
to stochastically simulate the evolution of a selected, limited number of specific
objects in the context of the overall behaviour of the population.

We show that the deterministic iterative procedure of [26], to compute the
average overall behaviour of the system and that of individual objects in the con-
text of the overall system, combines well with an on-the-fly probabilistic model-
checking procedure for the verification of bounded PCTL formulas addressing
selected objects of interest2. An on-the-fly recursive approach also provides a
natural way to address nested path formulae and time-varying truth values of
such formulae. The algorithm presented in this paper is parametric w.r.t. the
semantic interpretation of the language. In particular we present two different
interpretations; one based on the standard, exact probabilistic semantics of a
simple probabilistic population description language, and the other one on the
mean-field approximation in discrete time of such a semantics. The latter is
the main contribution of the current paper. The considered PCTL formulae can
be extended along the lines proposed in [21,22] with properties that address the
overall status of the system. We show a simple instance of that.

The models we consider are also known as SIO-models (System of Inde-
pendent Objects) [7]. These are time-synchronous models in which each object
performs a probabilistic step in each discrete time unit, possibly looping to the
same state. This is a class of models that is frequently encountered in various
research disciplines ranging from telecommunication to computational biology.
The objects interact in an indirect way via the global state of the overall system.

2 Related Work

Traditionally, model checking approaches are divided into two broad categories:
global approaches that determine the set of all states in M that satisfy Φ, and
local approaches that, given a state s in M, determine whether s satisfies Φ [5,11].

1 The term ‘mean field’ has its origin in statistical physics and is sometimes used with
slightly different meaning in the literature. Here we intend the meaning as defined
in [26].

2 Note that the transition probabilities of these selected objects at time t may depend
on the occupancy measure of the system at t and therefore also the truth-values of
the formulas may vary with time.
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Global symbolic model checking algorithms are popular because of their com-
putational efficiency and can be found in many model checkers, both in a quali-
tative (see e.g. [10]) and in a stochastic setting (see e.g. [2,23]). The set of states
that satisfy a formula is constructed recursively in a bottom-up fashion following
the syntactic structure of the formula. Depending on the particular formula to
verify, usually the underlying model can be reduced to fewer states before the
algorithm is applied. Moreover, as is shown e.g. in [2] for stochastic model check-
ing, the model checking algorithm can be reduced to combinations of existing
well-known and optimised algorithms for CTMCs such as transient analysis.

Local model checking algorithms have been proposed to mitigate the state
space explosion problem using a so called ‘on-the-fly’ approach (see e.g. [5,11,
15,20]). On-the-fly algorithms are following a top-down approach that does not
require global knowledge of the complete state space. For each state that is
encountered, starting from a given state, the outgoing transitions are followed
to adjacent states, constructing step by step local knowledge of the state space
until it is possible to decide whether the given state satisfies the formula. For
qualitative model checking, local model-checking algorithms have been shown
to have the same worst-case complexity as the best existing global procedures
for the above mentioned logics. However, in practice, they have better perfor-
mance when only a subset of the system states need to be analysed to determine
whether a system satisfies a formula. Furthermore, local model-checking may
still provide some results in case of systems with a very large or even infinite
state space where global model checking approaches would be impossible to use.
In the context of stochastic model checking several on-the-fly approaches have
been proposed, among which [13] and [17]. The former is a probabilistic model
checker for bounded PCTL formulas. The latter uses an on-the-fly approach
to detect a maximal relevant search depth in an infinite state space and then
uses a global model-checking approach to verify bounded CSL [1,2] formulas in
a continuous time setting on the selected subset of states. An on-the-fly app-
roach by itself however, does not solve the challenging scalability problems that
arise in truly large parallel systems, such as collective adaptive systems, e.g.,
gossip protocols [9], self-organised collective decision making [28], computer epi-
demics [8] and foreseen smart urban transportation systems and decentralised
control strategies for smart grids.

To address this type of scalability challenges in probabilistic model-checking,
recently, several approaches have been proposed. In [16,19] approximate proba-
bilistic model-checking is introduced. This is a form of statistical model-checking
that consists in the generation of random executions of an a priori established
maximal length. On each execution the property of interest is checked and sta-
tistics are performed over the outcomes. The number of executions required for
a reliable result depends on the maximal error-margin of interest. The approach
relies on the analysis of individual execution traces rather than a full state space
exploration and is therefore memory-efficient. However, the number of execu-
tion traces that may be required to reach a desired accuracy may be large and
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therefore time-consuming. The approach works for general models, i.e., not nec-
essarily populations of similar objects, but is not independent of the number of
objects involved.

To analyse properties of large scale mobile communication networks mean
field approximations in discrete time have also been used e.g., in Bakshi et al. [3].
In that work an automatised method is proposed and applied to the analysis
of dynamic gossip networks. A general convergence result to a deterministic
difference equation is used, similar to that in [26], but not its extension to analyse
individual behaviour in the context of a large population, nor its exploitation in
model-checking algorithms.

In Chaintreau et al. [9], mean field convergence in continuous time is used
to analyse the distribution of the age of information that objects possess when
using a mix of gossip and broadcast for information distribution in situations
where objects are not homogeneously distributed in space. An overview of mean
field interaction models for computer and communication systems by Benäım et
al. can be found in [4].

Preliminary ideas on the exploitation of mean field convergence in continuous
time for model-checking mean field models, and in particular for an extension
of the logic CSL, were informally sketched in a presentation at QAPL 2012 [21],
but no model-checking algorithms were presented. Follow-up work on the above
mentioned approach can be found in [22] which relies on earlier results on fluid
model checking by Bortolussi and Hillston [6]. In the latter a global CSL model-
checking procedure is proposed for the verification of properties of a selection
of individuals in a population. This work is perhaps the most closely related
to our work, however their procedure exploits mean field convergence and fast
simulation [12,14] in a continuous time setting rather than in a discrete time
setting and is based on an interleaving model of computation, rather than a
clock-synchronous one; furthermore, a global model-checking approach, rather
than an on-the-fly approach, is followed. The modelling language used in [6] is
PEPA. Earlier work by Stefanek et al. [29] on the use of mean field convergence
in continuous time for grouped PEPA has investigated the quality of the conver-
gence results when the related differential equations are derived directly from the
process algebraic model. Potential issues with accuracy were found concerning
the parallel composition operator of PEPA that involves a (non-linear) mini-
mum function applied to rates originating from synchronising populations. This
could, in some circumstances, give rise to inaccuracies in the approximation. It
is however possible to detect such situations.

3 Time Bounded PCTL and On-the-fly Model-Checking

In this section we recall the definition of the time bounded fragment of PCTL3

and we present an on-the-fly model-checking algorithm. The algorithm is para-
metric in the sense that it can be used for different languages and semantic
3 For notational simplicity we call the fragment PCTL as well.
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Table 1. Satisfaction relation for Time Bounded PCTL.

s |=M a iff a ∈ �(s)

s |=M ¬Φ iff not s |=M Φ

s |=M Φ1 ∨ Φ2 iff s |=M Φ1 or s |=M Φ2

s |=M P��p(ϕ) iff P{σ ∈ PathsM(s) | σ |=M ϕ} �� p

σ |=M X Φ iff σ[1] |=M Φ

σ |=M Φ1 U≤k Φ2 iff ∃ 0 ≤ h ≤ k s.t. σ[h] |=M Φ2 ∧ ∀ 0 ≤ i < h . σ[i] |=M Φ1

interpretations. In this paper we use two instantiations of the algorithm; one is
on a DTMC semantics of a simple language of object populations (Sect. 4) and
the other is on a mean-field approximation semantics of the same language, for
“fast model-checking” (Sect. 5). For the sake of readability, we present only a
schema of the algorithm for time bounded PCTL, that is the same as that pro-
posed in [13]. The interested reader is referred to [25] where a novel algorithm
is defined and implemented for the full logic.

3.1 Time Bounded PCTL

Given a set P of atomic propositions, the syntax of PCTL is defined below,
where a ∈ P, k ≥ 0 and ��∈ {≥, >,≤, <}:

Φ:: = a | ¬Φ | Φ ∨ Φ | P��p(ϕ) where ϕ:: = X Φ | ΦU≤k Φ.

PCTL formulae are interpreted over state labelled DTMCs. A state labelled
DTMC is a pair 〈M, �〉 where M is a DTMC with state set S and �:S → 2P

associates each state with a set of atomic propositions; for each state s ∈ S, �(s)
is the set of atomic propositions true in s. In the following, we assume P be the
one step probability matrix for M; we abbreviate 〈M, �〉 with M, when no con-
fusion can arise. A path σ over M is a non-empty sequence of states s0, s1, · · ·
where Psi,si+1 > 0 for all i ≥ 0. We let PathsM(s) denote the set of all infinite
paths over M starting from state s. By σ[i] we denote the i-th element si of
path σ. Finally, in the sequel we will consider DTMCs equipped with an initial
state s0, i.e. the probability mass is initially all in s0. For any such a DTMC M,
and for all t ∈ N we let the set LM(t) = {σ[t] | σ ∈ PathsM(s0)}.

We define the satisfaction relation on M and the logic in Table 1.

3.2 On-the-fly PCTL Model-Checking Algorithm

In this section we introduce a local on-the-fly model-checking algorithm for time-
bounded PCTL formulae. The basic idea of an on-the-fly algorithm is simple:
while the state space is generated in a stepwise fashion from a term s of the lan-
guage, the algorithm considers only the relevant prefixes of the paths while they
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Table 2. Function Check

1 Check( s : proc, Φ : formula)=
2 match Φ
3 with
4 | a → (lab eval s a)
5 | ¬Φ1 → ¬Check(s, Φ1)
6 | Φ1 ∨ Φ2 → Check(s, φ1) ∨ Check(s, Φ2)
7 | P〈relop〉p

(ϕ) → CheckPath(s, ϕ)〈relop〉p

are generated. For each of them it updates the information about the satisfaction
of the formula that is checked. In this way, only that part of the state space is
generated that can provide information on the satisfaction of the formula and
irrelevant parts are not taken into consideration.

In the case of probabilistic process population languages, for large popula-
tions, a mean-field approximated semantics can be defined. In Sect. 5 we show
how a drastic reduction of the state space can be obtained, by using the same
algorithm on such semantic models. We call such a combined use of on-the-
fly model-checking and mean-field semantics “Fast model-checking” after “Fast
simulation”, introduced in [26].

The algorithm abstracts from any specific language and different semantic
interpretations of a language. We only assume an abstract interpreter function
that, given a generic process term, returns a probability distribution over the set
of terms. Below, we let proc be the (generic) type of probabilistic process terms
while we let formula and path formula be the types of state- and path- PCTL
formulae. Finally, we use lab to denote the type of atomic propositions.

The abstract interpreter can be modelled by means of two functions: next and
lab eval. Function next associates a list of pairs (proc, float) to each element of
type proc. The list of pairs gives the terms, i.e. states, that can be reached in one
step from the given state and their one-step transition probability. We require
that for each s of type proc it holds that 0 < p′ ≤ 1, for all (s′, p′) ∈ next(s)
and

∑
(s′,p′)∈next(s) p′ = 1. Function lab eval returns for each element of type

proc a function associating a bool to each atomic proposition a in lab. Each
instantiation of the algorithm consists in the appropriate definition of next and
lab eval, depending on the language at hand and its semantics.

The local model-checking algorithm is defined as a function, Check, shown
in Table 2. On atomic state-formulae, the function returns the value of lab eval;
when given a non-atomic state-formula, Check calls itself recursively on sub-
formulae, in case they are state-formulae, whereas it calls function CheckPath,
in case the sub-formula is a path-formula. In both cases the result is a Boolean
value that indicates whether the state satisfies the formula.

Function CheckPath, shown in Table 3, takes a state s ∈ proc and a PCTL
path-formula ϕ ∈ path formula as input. As a result, it produces the probability
measure of the set of paths, starting in state s, which satisfy path-formula ϕ.
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Table 3. Function CheckPath

1 CheckPath( s : proc , ϕ : path formula )=
2 match ϕ with
3 | X Φ → let p = 0.0 and lst = next(s) in
4 for (s′, p′) ∈ lst do i f Check(s′, Φ) then p ← p + p′

5 done ;
6 p

7 | Φ1 U≤k Φ2 → i f Check(s, Φ2) then 1 .0
8 else i f Check(s, ¬Φ1) then 0 .0
9 else i f k > 0 then

10 begin
11 let p = 0.0 and lst = next(s) in
12 for (s′, p′) ∈ lst do

13 p ← p + p′ ∗ CheckPath(s′, Φ1 U≤k−1 Φ2)
14 done ;
15 p
16 end
17 else 0 .0

Following the definition of the formal semantics of PCTL, two different cases
can be distinguished. If ϕ has the form X Φ then the result is the sum of the
probabilities of the transitions from s to those next states s′ that satisfy Φ.
To verify the latter, function Check is recursively invoked on such states. If ϕ
has the form Φ1 U≤k Φ2 then we first check if s satisfies Φ2, then 1 is returned,
since ϕ is trivially satisfied. If s does not satisfy Φ1 then 0 is returned, since
ϕ is trivially violated. For the remaining case we need to recursively invoke
CheckPath for the states reachable in one step from s, i.e. the states in the set
{s′|∃p′ : (s′, p′) ∈ next(s)}. Note that these invocations of CheckPath are made
on ϕ′ = Φ1 U≤k−1 Φ2 if k > 0. If k ≤ 0 then the formula is trivially not satisfied
by s and the value 0 is returned.

Let s be a term of a probabilistic process language and M the complete
discrete time stochastic process associated with s by the formal semantics of the
language. The following theorem is easily proved by induction on Φ [25].

Theorem 1. s |=M Φ if and only if Check(s, Φ) = true. •

4 Modelling Language

In this section we define a simple population description language. The language
is essentially a textual version of the graphical notation used in [26]. A system
is defined as a population of N identical interacting processes or objects4. At
any point in time, each object can be in any of its finitely many states and the
evolution of the system proceeds in a clock-synchronous fashion: at each clock
4 In [26] object is used instead of process. We consider the two terms synonyms here.
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tick each member of the population must either execute one of the transitions
that are enabled in its current state, or remain in such a state.5

Syntax. Let A be a denumerable non-empty set of actions, ranged over by
a, a′, a1, . . . and S be a denumerable non-empty set of state constants, ranged
over by C,C ′, C1, . . . An object specification Δ is a set {Di}i∈I , for finite index
set I, where each state definition Di has the form Ci :=

∑
j∈Ji

aij .Cij , with
Ji a finite index set, states Ci, Cij ∈ S, and aij ∈ A, for i ∈ I and j ∈ Ji.
Intuitively, the notation

∑
j∈Ji

aij .Cij is to be intended as the n-ary extension
of the standard process algebraic binary non-deterministic choice operator. We
require that aij 
= aij′ , for j 
= j′ and that for each state constant Cij occurring
in the r.h.s. of a state definition Di of Δ there is a unique k ∈ I such that Cij is
the l.h.s. of Dk.

Example 1 (An epidemic model [7]). We consider a network of computers that
can be infected by a worm. Each node in the network can acquire infection from
two sources, i.e. by the activity of a worm of an infected node (inf sus) or by
an external source (inf ext). Once a computer is infected, the worm remains
latent for a while, and then activates (activate). When the worm is active, it
tries to propagate over the network by sending messages to other nodes. After
some time, an infected computer can be patched (patch), so that the infection
is recovered. New versions of the worm can appear; for this reason, recovered
computers can become susceptible to infection again, after a while (loss). The
object specification of the epidemic model is the following:

S := inf ext.E + inf sus.E
E := activate.I
I := patch.R
R := loss.S

The set of all actions occurring in object specification Δ is denoted by
AΔ. Similarly, the set of states is denoted by SΔ, ranged over by c, c′, c1 · · · .
In Example 1, we have AEM = {inf ext, inf sus, activate, patch, loss} and
SEM = {S, E, I, R}. A system is assumed composed of N interacting instances of
an object. Interaction among objects is modelled probabilistically, as described
below. Each action in AΔ is assigned a probability value, that may depend on
the global state of the system. This is achieved by means of a probability func-
tion definition, that takes the following form: a::E, where a ∈ AΔ and E is an
expression, i.e. an element of Exp, defined according to the following grammar:

E:: = v | frcC | 〈uop〉E |E 〈bop〉E | (E)

where v ∈ [0, 1] and for each state C, frcC denotes the fraction of objects, over
the total number of objects N , in the system, that are currently in state C.
Operators 〈uop〉 and 〈bop〉 are standard arithmetic unary and binary operators.

Example 2 (Probability function definitions). For the epidemic model of Exam-
ple 1 we assign the following probability function definitions:
5 For the purpose of the present paper, language expressivity is not a main concern.
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inf ext :: αe;
inf sus :: αi ∗ (frc I);
activate :: αa;
patch :: αr;
loss :: αs;

where αe, αi, αa, αr and αs are model parameters in [0, 1], with αe + αi ≤ 1.

A system specification is a triple 〈Δ,A,C0〉(N) where Δ is an object specification,
A is a set of probability function definitions containing exactly one definition for
each a ∈ AΔ, and C0 = 〈c01 , . . . , c0N 〉 is the initial system state, with c0n ∈ SΔ,
for n = 1 . . . N ; we say that N is the population size6; in the sequel, we will omit
the explicit indication of the size N in 〈Δ,A,C0〉(N), and elements thereof or
related functions, writing simply 〈Δ,A,C0〉, when this cannot cause confusion.

Semantics. Let 〈Δ,A,C0〉 be a system specification. We associate with Δ the
Labelled Transition System (LTS) 〈SΔ,AΔ,�〉, where SΔ and AΔ are the states
and labels of the LTS, respectively, and the transition relation �⊆ SΔ×AΔ×SΔ

is the smallest relation induced by rule (1).

C :=
∑

j∈J aj .Cj k ∈ J

C
ak� Ck

(1)

In the following we let US = {m ∈ [0, 1]S |∑S
i=1 m[i] = 1} be the unit

simplex of dimension S; furthermore, we let c, c′, C, C ′ . . . range over SΔ and for
generic vector v = 〈v1, . . . , vr〉 we let v[j] denote the j-th component vj of v, for
j = 1, . . . , r. A (system) global state is a tuple C(N) ∈ SN

Δ . W.l.g., we assume
that SΔ = {C1, . . . , CS} and that a total order is defined on state constants
C1, . . . , CS so that we can unambiguously associate each component of a vector
m = 〈m1, . . . ,mS〉 ∈ US with a distinct element of {C1, . . . , CS}. With each
global state C(N) an occupancy measure vector M(N)(C(N)) ∈ US is associated
where M(N)(C(N)) = 〈M (N)

1 , . . . ,M
(N)
S 〉 with

M
(N)
i =

1
N

N∑

n=1

1{C(N)
[n] =Ci}

for i = 1, . . . , S, and the value of 1{α=β} is 1, if α = β, and 0 otherwise.
A probability function definition a::E associates a real value to action a by

evaluating E in the current global state, via the interpretation function E . In
practice the occupancy measure representation of the state is used in E .

The expressions interpretation function E : Exp → US → R is defined as
usual:

E [[v]]m = v
E [[frcCi]]m = m[i]

6 Appropriate syntactical shorthands can be introduced for describing the initial state,
e.g. 〈S[2000], E[100], I[200], R[0]〉 for 2000 objects initially in state S etc.
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E [[〈uop〉E]]m = 〈uop〉 (E [[E]]m)
E [[E1 〈bop〉E2]]m = (E [[E1]]m) 〈bop〉 (E [[E2]]m)
E [[(E)]]m = (E [[(E)]]m)

The set A of probability function definitions characterises a function π with type
US → AΔ → R as follows: for each a::E in A, we have π(m, a) = E [[E]]m.

For a system specification of size N , we define the object transition matrix
as follows: K(N) : US × SΔ × SΔ → R, with

K(N)(m)c,c′ =
{∑

a:c
a�c′ π(m, a), if c 
= c′,

1 − ∑
a∈I(c) π(m, a), if c = c′. (2)

where I(c) = {a ∈ AΔ|∃c′ ∈ SΔ : c
a� c′ 
= c}. We say that a state c ∈ SΔ

is probabilistic in m if 0 ≤ ∑
a∈I∗(c) π(m, a) ≤ 1 where set I∗(c) is defined as

follows: I∗(c) = I(c) ∪ {a ∈ AΔ|c a� c}. Note that whenever all states in SΔ are
probabilistic in m, matrix K(N)(m) is a one step transition probability matrix.
We define the (system) global state transition matrix S(N) : US ×SN

Δ ×SN
Δ → R,

as
S(N)(m)C,C′ = ΠN

n=1K
(N)(m)C[n],C

′
[n]

.

Note that whenever all states in SΔ are probabilistic in m, matrix SN (m) is a one
step transition probability matrix modelling a possible single step of the system
as result of the parallel execution of a single step of each of the N instances of
the object. In this case, the SN × SN matrix P(N) with

P(N)
C,C′ = S(N)(M(N)(C))C,C′ (3)

is the one-step transition matrix of a (finite state) DTMC, namely the DTMC of
the system composed on N objects specified by Δ. In this case, we let X(N)(t)
denote the Markov process with transition probability matrix P(N) as above and
X(N)(0) = C(N)

0 , i.e. with initial probability distribution δ
C

(N)
0

, where C(N)
0 is

the initial system state and δ
C

(N)
0

is the Dirac distribution with the total mass

on C(N)
0 . With a little bit of notational overloading, we define the ‘occupancy

measure DTMC’ as M(N)(t) = M(N)(X(N)(t)); for m = M(N)(C), for some
state C of DTMC X(t), we have:

P{M(N)(t + 1) = m′ | M(N)(t) = m} =
∑

C′:M(N)(C′)=m′

P(N)
C,C′ (4)

Note that the above definition is a good definition; in fact, if M(N)(C) =
M(N)(C′′), then C and C′′ are just two permutations of the same local states.
This implies that for all C′ we have P(N)

C,C′ = P(N)
C′′,C′ .

PCTL local Model-checking. For the purpose of expressing system properties
in PCTL, we partition the set of atomic propositions P into sets P1and Pg.
Given system specification 〈Δ,A,C(N)

0 〉(N), we extend it with a state labelling
function definition that associates each state c ∈ SΔ with a (possibly empty)
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finite set �1(c) of propositions from P1. We extend �1 to global states with
�1(〈c1, . . . , cN 〉) = �1(c1); this way, we can express local properties of the first
object in the system, in the context of the complete population7. In order to
express also (a limited class of) global properties of the population, we use set Pg.
The system specification is further enriched by associating labels a ∈ Pg with
expressions bexp in the class BExp of restricted boolean expressions. We assume
a sublanguage of function specifications be given8 and for function symbol F ,
E [[F ]]m : [0, 1]q �→ R continuous in [0, 1]q, with E [[F ]]m = E [[F ]]m′ for all m,m′ ∈
US ; then BExp is the set of expressions of the form F (E1, . . . , Eq) 〈relop〉 r, where
each Ej is of the form frcC, 〈relop〉 ∈ {>,<}, r ∈ R and E [[F (E1, . . . , Eq)]]m =
E [[F ]]m(E [[E1]]m, . . . ,E [[Eq]]m).

We define the state global labelling function �g as

�g(〈c1, . . . , cN 〉) = {a ∈ Pg | E [[bexpa]]M(N)(〈c1,...,cN 〉) = tt}.

We obtain the state labelled DTMC D(N)(t) from X(N)(t), with transition
matrix P(N) above, by enriching it with labelling function �D(N) such that
�D(N)(C) = �1(C) ∪ �g(C).

The definition of PathsD(N)(C(N)) as well as that of the satisfaction relation
|=D(N) are obtained by instantiating those given in Sect. 3.1 to D(N). For σ ∈
PathsD(N)(C(N)), σ[j][n] denotes the n-th local state of global state σ[j].
For model-checking a system specification 〈Δ,A,C(N)

0 〉(N) we instantiate proc
with9 SN

Δ and lab with P1 ∪ Pg. Function next is instantiated to the function
nextD(N) , where

nextD(N)(C) = [(C′, p′) | P(N)
C,C′ = p′ > 0].

Given a vector C, nextD(N)(C) computes a list corresponding to the positive
elements of the row of matrix P(N) associated with C. Of course, only those
elements of P(N) that are necessary for nextD(N) are actually computed. Function
lab eval is instantiated with the function lab evalD(N) : SN

Δ × AΔ → B with
lab evalD(N)(C, a) = a ∈ �D(N)(C).

Example 3 (Properties). For the epidemic model of Example 1 we can consider
the following properties, where i, e, r ∈ P1 are labelling states I, E and R,
respectively, and LowInf ∈ Pg is defined as (frc I) < 0.25:

7 Of course, the choice of the first object is purely conventional. Furthermore, all the
results which in the present paper are stated w.r.t. the first object of a system, are
easily extended to finite subsets of objects in the system. For the sake of notation,
in the rest of the paper, we stick to the first object convention.

8 The specific features of the sublanguage are not relevant for the purposes of the
present paper and we leave their treatment out for the sake of simplicity.

9 Strictly speaking, the relevant components of the algorithm are instantiated to repre-
sentations of the terms, sets and functions mentioned in this section. For the sake of
notational simplicity, we often use the same notation both for mathematical objects
and for their representations.
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Fig. 1. Exact model-checking results (left) and verification time (right).

P1 the worm will be active in the first component within k steps with a proba-
bility that is at most p: P≤p( true U≤k i );

P2 the probability that the first component is infected, but latent, in the next
k steps while the worm is active on less then 25% of the components is at
most p: P≤p(LowInf U≤k e );

P3 the probability to reach, within k steps, a configuration where the first com-
ponent is not infected but the worm will be activated with probability greater
than 0.3 within 5 steps is at most p:

P≤p( true U≤k (!e∧!i ∧ P>0.3( true U≤5 i ))).

In Fig. 1 the result of exact PCTL model-checking of Example 1 is reported. On
the left the probability of the set of paths that satisfy the path-formulae used in
the three formulae above is shown for a system composed of eight objects each
in initial state S, for k from 0 to 70. On the right the time needed to perform the
analysis using PRISM [23] and using exact on-the-fly PCTL model checking are
presented10, showing that the latter has comparable performance. Worst-case
complexity of both algorithms are also comparable. The local model-checker has
been instantiated with the model defined by the (exact) operational semantics
of the language, where each state C ∈ SN

Δ is a global system state. In Sect. 5 we
instantiate the procedure with the mean-field, approximated, semantics of the
language, leading to a scalable, ‘fast’, model-checker, insensitive to the popula-
tion size.

5 Fast Mean-Field Model-Checking

Given a system specification 〈Δ,A,C(N)
0 〉(N) with initial state C0, we want to

focus on the behaviour of the first object, starting in the initial state C0[1],

10 We use a 1.86GHz Intel Core 2 Duo with 4 GB. State space generation time of
PRISM is not counted. The experiments are available at http://rap.dsi.unifi.it/
∼loreti/OFPMC/).

http://rap.dsi.unifi.it/~loreti/OFPMC/
http://rap.dsi.unifi.it/~loreti/OFPMC/
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when in execution with all the other objects for (very) large population size
N . We define a mapping H(N) : SN

Δ → (SΔ × US) such that H(N)(C(N)) =
〈C(N)

[1] ,M(N)(C(N))〉. Note that H(N) and D(N)(t) together define a state labelled
DTMC, denoted HD(N)(t), and defined as H(N)(X(N)(t)), with �1(〈c,m〉) =
�1(c), �g(〈c,m〉) = {a ∈ Pg | E [[bexpa]]m = tt}, and �HD(N)(〈c,m〉) defined as
�1(〈c,m〉) ∪ �g(〈c,m〉), where P1,Pg and bexpa are defined in a similar way
as in Sect. 4. The one-step matrix of HD(N)(t) is:

H(N)
〈c,m〉,〈c′,m′〉 =

∑

C′:H(N)(C′)=〈c′,m′〉
P(N)

C,C′ (5)

where C is such that H(N)(C) = 〈c,m〉.11 The definitions of paths for state
〈c,m〉 of HD(N), PathsHD(N)(〈c,m〉), of LHD(N)(t) and of the satisfaction rela-
tion |=HD(N) of PCTL formulas against HD(N)(t), are obtained by instantiating
the relevant definitions of Sect. 3.1 to the model HD(N)(t). Furthermore, we let
LHD(N)(t, c) = {〈c′,m′〉 ∈ �LHD(N)(t) | c′ = c}.

We extend mapping H(N) to sets and paths in the obvious way: for set X
of states, let H(N)(X) = {H(N)(x) | x ∈ X}, and for σ ∈ PathsD(N)(C(N)), let
H(N)(σ) = H(N)(σ[0])H(N)(σ[1])H(N)(σ[2]) · · ·

The following lemma relates the two interpretations of the logic, and can be
easily proved by induction on formulae Φ [24].

Lemma 1. For all N > 0, states C(N) and formulas Φ the following holds:
C(N) |=D(N) Φ iff H(N)(C(N)) |=HD(N) Φ. •

We now consider the stochastic process HD(t) defined below, for c0, c, c
′ ∈

SΔ, μ0,m,m′ ∈ US and function K(m)c,c′ , continuous in m:

P{HD(0) = 〈c,m〉} = δ〈c0,µ0〉(〈c,m〉),
P{HD(t + 1)=〈c′,m′〉 |HD(t) = 〈c,m〉}=

{
K(m)c,c′ , if m′ = m · K(m)
0, otherwise.

(6)

The definition of the labeling function �HD is the same as that of �HD(N) . Note
that HD is a DTMC with initial state 〈c0,μ0〉; memoryless-ness as well as time
homogeneity directly follow from the definition of the process (6). The definitions
of paths for state 〈c,m〉 of HD, PathsHD(〈c,m〉), of LHD(t) and of the satisfac-
tion relation |=HD of PCTL formulas against HD(t) are obtained by instantiat-
ing the relevant definitions of Sect. 3.1 to the model HD(t). Furthermore, define
function μ(t) as follows: μ(0) = μ0 and μ(t+1) = μ(t) ·K(μ(t)); then, for t ≥ 0
and for 〈c,m〉 ∈ LHD(t) we have m = μ(t).

In the following we use the fundamental result stated below, due to Le Boudec
et al. [26].

Theorem 4.1 of [26] Assume that for all c, c′ ∈ SΔ, there exists function
K(m)c,c′ , continuous in m, such that, for N → ∞, K(N)(m)c,c′ converges

11 With a similar argument as for definition (4), noting that M(N)(C) = M(N)(C′′)
and C[1] = C′′

[1], it can be easily seen that also definition (5) is a good definition.
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uniformly in m to K(m)c,c′ . Assume, furthermore, that there exists
μ0 ∈ US such that M(N)(C(N)

0 ) converges almost surely to μ0. Define
function μ(t) of t as follows: μ(0) = μ0 and μ(t + 1) = μ(t) · K(μ(t)).
Then, for any fixed t, almost surely limN→∞ M(N)(t) = μ(t). •

Remark 1. We observe that, as direct consequence of Theorem 4.1 of [26] and
of the restrictions on the definition of BExp, for any fixed t and for all ε > 0,
there exists N̄ such that, for all N ≥ N̄ , almost surely

| E [[bexp]]m − E [[bexp]]µ(t) |< ε

for all 〈c,m〉 ∈ LHD(N)(t) and bexp ∈ BExp. In other words, for N large
enough and 〈c,m〉 ∈ LHD(N)(t), �g(〈c,m〉) = �g(〈c,μ(t)〉), and, consequently,
�(〈c,m〉) = �(〈c,μ(t)〉). •
In the rest of the paper we will focus on sequences

(〈Δ,A,C0〉(N)
)
N≥N0

of system
specifications, for some N0 > 0. In particular, we will consider only sequences
(HD(N)(t)

)
N≥N0

such that for all N ≥ N0, C0
(N)
[1] = C0

(N0)
[1] ; in other words we

want the population size increase with N , while the (initial state of the) first
object of the system is left unchanged.

Let us now go back to process HD(t), where, in Eq. (6) we use function
K(m)c,c′ of the hypothesis of the theorem recalled above; similarly, for the initial
distribution we use δ〈C(N)

0[1] ,µ(0)〉.

The following is a corollary of Theorem 4.1 and Theorem 5.1 (Fast simulation)
presented in [26], when considering sequences

(HD(N)(t)
)
N≥N0

as above (see also
Remark 1):

Corollary 1. Under the assumptions of Theorem 4.1 of [26], for any fixed t,
almost surely, limN→∞ HD(N)(t) = HD(t). •
Remark 2. A consequence of Corollary 1 is that, under the assumptions of The-
orem 4.1 of [26], for any fixed t, almost surely, for N to ∞, we have that,
for all 〈c,m〉 ∈ LHD(N)(t, c) and c′ ∈ SΔ,

∑
〈c′,m′〉:LHD(N) (t+1,c′) H

(N)
〈c,m〉,〈c′,m′〉

approaches K(μ(t))c,c′ , i.e. for all ε > 0 there exists N0 s.t. for all N ≥ N0

∣
∣
∣
∣
∣
∣

⎛

⎝
∑

〈c′,m′〉:LHD(N) (t+1,c′)

H(N)
〈c,m〉,〈c′,m′〉

⎞

⎠ − K(μ(t))c,c′

∣
∣
∣
∣
∣
∣
< ε

•
In the sequel we state the main theorem of the present paper, that relies on

the notion of formulae safety, with w.r.t. HD(t): a formula Φ is safe for a model
M iff for all sub-formulae Φ′ of Φ and states s of M, if Φ′ is of the form P��p(ϕ)
then P{η ∈ PathsM(s) | η |=M ϕ} 
= p.

The theorem, together with Theorem 1 and Lemma 1, establishes the for-
mal relationship between the satisfaction relation on the exact semantics of the
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language and that on its mean-field approximation, thus justifying the fast local
model-checking instantiation we will show in the sequel.

Theorem 2. Under the assumptions of Theorem 4.1 of [26], for all safe formu-
las Φ, for any fixed t and H(N)(C

(N)
) ∈ LHD(N)(t), almost surely, for N large

enough, H(N)(C
(N)

) |=HD(N) Φ iff 〈C(N)

[1] ,μ(t)〉 |=HD Φ. •
Proof. The proof is carried out by induction on Φ; in the proof we write C
instead of C(N) for the sake of readability.

For brevity, we show only the case for P��p(X Φ); for the complete proof we refer
to [24]. By definition of |=HD(N) and |=HD, we have to show that, for any fixed
t and H(N)(C) ∈ LHD(N)(t), a.s., for N large enough,

P{ρ ∈ PathsHD(N)(H(N)(C)) | ρ |=HD(N) X Φ} �� p

iff
P{η ∈ PathsHD(〈C[1],μ(t)〉) | η |=HD X Φ} �� p.

Below, we actually prove that, for any fixed t and H(N)(C) ∈ LHD(N)(t), a.s.,
for N large enough, the probabilities of the two sets of paths are approaching
each other, which implies the assert.

P{ρ ∈ PathsHD(N)(H(N)(C)) | ρ |=HD(N) X Φ} is defined as

p
(N)
H =

∑

H(N)(C′):H(N)(C′)|=HD(N)Φ

H(N)

H(N)(C),H(N)(C′) (7)

and P{η ∈ PathsHD(〈C[1],μ(t)〉) | η |=HD X Φ} is defined as

p(t)K =
∑

C′
[1]:〈C′

[1],µ(t+1)〉|=HDΦ

K(μ(t))C[1],C
′
[1]

. (8)

The I.H. ensures that, a.s., for N ≥ N̄C′ , H(N)(C′) |=HD(N) Φ if and only if
〈C′

[1],μ(t + 1)〉 |=HD Φ, with H(N)(C′) ∈ LHD(N)(t + 1). In particular, it holds
that, for any specific value c̄ of C′

[1] above and H(N)(C′) ∈ LHD(N)(t + 1, c̄),
H(N)(C′) |=HD(N) Φ if and only if 〈c̄,μ(t+1)〉 |=HD Φ, that is: either all elements
of LHD(N)(t + 1, c̄) satisfy Φ or none of them does it. Furthermore, for such c̄,
by Corollary 1, for all εc̄ > 0 there exists Nc̄ s.t. for all N ≥ Nc̄

∣
∣
∣
∣
∣
∣

⎛

⎝
∑

〈c̄,m〉:LHD(N) (t+1,c̄)

H(N)

H(N)(C),〈c̄,m〉

⎞

⎠ − K(μ(t))C[1],c̄

∣
∣
∣
∣
∣
∣
< εc̄

(see Remark 2). So, for any ε > 0 there exists an N̂ larger than any of such N̄C′

and Nc̄, such that for all N ≥ N̂
∣
∣
∣p

(N)
H − p(t)K

∣
∣
∣ < ε i.e. the value p

(N)
H of sum (7)
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approaches the value p(t)K of sum (8). Finally, safety of P��p(X Φ), implies that
the value p(t)K of (8) is different from p. If p(t)K > p then we can choose ε small
enough that also p

(N)
H > p and, similarly, if p(t)K < p, we get also p

(N)
H < p,

which proves the assert. �

Finally, using Lemma 1 we get the following

Corollary 2. Under the assumptions of Theorem 4.1 of [26], for all safe for-
mulas Φ, for any fixed t and C

(N) ∈ LD(N)(t), almost surely, for N large enough
C

(N) |=D(N) Φ iff 〈C(N)

[1] ,μ(t)〉 |=HD Φ. •
Fast local model-checking. On-the-fly fast PCTL model-checking on the limit
DTMC HD(t) is obtained by instantiating proc with SΔ × US and lab with
P1 ∪ Pg; next is instantiated with nextHD defined as follows:

nextHD(〈c,m〉) = [(〈c′,m · K(m)〉, p′) | K(m)c,c′ = p′ > 0],

with K(m)c,c′ as in Theorem 4.1 of [26]; lab eval is instantiated as expected:
lab evalHD(〈c,m〉, a) = a ∈ �HD(〈c,m〉). The instantiation is implemented in
FlyFast.

Remark 3. Although in the hypothesis of the theorem we require formulae safety,
for all practical purposes, it is actually sufficient to require that

P{η ∈ PathsHD(s′) | η |=HD ϕ} 
= p

for all formulae P��p(ϕ) and states s′ such that CheckPath(s′, ϕ) is computed
during the execution of Check(s, Φ) (see Table 2). This (weaker) safety check is
readily added to the algorithm. •
Example 4 (FlyFast results). Figure 2 shows the result of FlyFast on the model of
Example 1 for the first object of a large population of objects, each initially in
state S. In Fig. 2 (left) the same properties are considered as in Example 3. The
analysis takes less than a second and is insensitive to the total population size.
Fig. 2 (right) shows how the probability measure of the set of paths satisfying
formula true U≤k (!e∧!i∧P>0.3( true U≤5 i )) of property P3 on page 12, (for
k = 3), changes for initial time t0 varying from 0 to 10.
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Fig. 2. Fast model-checking results.
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6 Conclusions and Future Work

In this paper we have presented a fast PCTL model-checking approach that
builds upon local, on-the-fly model-checking and mean-field approximation, allow-
ing for scalable analysis of selected objects in the context of very large systems.
The model-checking algorithm is parametric w.r.t. the specific semantic model of
interest. We presented related correctness results, an example of application of a
prototype implementation and briefly discussed complexity of the algorithm. The
results can be trivially extended in order to consider multiple selected objects.
Following approaches similar to those presented in [26], we plan to extend our
work to heterogeneous systems and systems with memory. We are interested in
extensions that address spatial distribution of objects as well as more expressive
logics, combining local and global properties, and languages (e.g. [22,27]) and to
study the exact relation between mean field convergence results for continuous
interleaving models and discrete, time-synchronous ones.
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