Martin Abadi
Alberto Lluch Lafuente (Eds.)

Trustworthy
Global Computing

8th International Symposium, TGC 2013
Buenos Aires, Argentina, August 30-31, 2013
Revised Selected Papers

LNCS 8358

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Ziirich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

For further volumes:
http://www.springer.com/series/7407

8358

http://www.springer.com/series/7407

Martin Abadi - Alberto Lluch Lafuente (Eds.)

Trustworthy
Global Computing

8th International Symposium, TGC 2013
Buenos Aires, Argentina, August 30-31, 2013
Revised Selected Papers

@ Springer

Editors

Martin Abadi Alberto Lluch Lafuente

Microsoft Research IMT Institute for Advanced Studies
Mountain View, CA Lucca

USA Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)

ISBN 978-3-319-05118-5 ISBN 978-3-319-05119-2 (eBook)

DOI 10.1007/978-3-319-05119-2
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014933391

LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (Www.springer.com)

Preface

This volume contains the proceedings of TGC 2013, the 8th International Symposium
on Trustworthy Global Computing. The symposium was held in Buenos Aires,
Argentina, during August 30-31, 2013. It was co-located with CONCUR, QEST, and
FORMATS, as part of the Buenos Aires Concurrency and Dependability Week.
Informal pre-proceedings were available in electronic form to the participants. The
papers in this volume have been further improved by the authors, in response to
helpful feedback received at the symposium.

The Symposium on Trustworthy Global Computing is an international annual
venue dedicated to safe and reliable computation in the so-called global computers,
i.e., those computational abstractions emerging in large-scale infrastructures such as
service-oriented architectures, autonomic systems, and cloud computing systems. It
focuses on frameworks, tools, algorithms, and protocols for open-ended, large-scale
systems and applications, and on rigorous reasoning about their behavior and prop-
erties. The underlying models of computation incorporate code and data mobility over
distributed networks that connect heterogeneous devices, often with dynamically
changing topologies.

The first TGC event took place in Edinburgh in 2005, with the co-sponsorship of
IFIP TC-2, as part of ETAPS 2005. TGC 2005 was the evolution of the previous Global
Computing I workshops held in Rovereto in 2003 and 2004 (see LNCS vol. 2874) as
well as of the workshops on Foundation of Global Computing held as satellite events of
ICALP and CONCUR (see ENTCS vol. 85). Four editions of TGC were co-located
with the reviews of the EU-funded projects AEOLUS, MOBIUS, and SENSORIA
within the FP6 initiative. They were held in Lucca, Italy (TGC 2006, LNCS vol. 4661);
in Sophia Antipolis, France (TGC 2007, LNCS vol. 4912); in Barcelona, Spain (TGC
2008, LNCS vol. 5474); and in Munich, Germany (TGC 2010, LNCS vol. 6084).
Further editions of TGC were held in Aachen, Germany (TGC 2011, LNCS vol. 7173)
and in Newcastle upon Tyne, UK (TGC 2012, LNCS vol. 8191).

TGC 2013 solicited contributions in all areas of global computing, including (but
not limited to) theories, languages, models, and algorithms; language concepts and
abstraction mechanisms; security, trust, privacy, and reliability; resource usage and
information flow policies; software development and software principles; model
checkers, theorem provers, and static analyzers.

TGC 2013 carried out a fruitful collaboration with CONCUR 2013. Concurrent
submissions to CONCUR and TGC were allowed, with the reviewing schedule of
TGC slightly delayed with respect of that of CONCUR. Reviews were shared between
CONCUR and TGC. Submissions accepted by CONCUR were automatically with-
drawn from TGC. In all, 18 papers were concurrently submitted to CONCUR and
TGC, out of which four were accepted by CONCUR and 14 were subject to further
evaluation by TGC. Several of the papers rejected by CONCUR were found suitable
for TGC, in part because of differences in evaluation criteria, and in part because the

VI Preface

timeline of TGC gave authors several additional months to produce final versions of
their work.

In addition to those concurrent submissions, TGC 2013 received 15 TGC-only
submissions. In order to guarantee the fairness and quality of the selection process,
each submission received at least three reviews.

The Program Committee selected 15 papers to be included in this volume and be
presented at the symposium. The program was structured in sessions named
“Security,” “Pi-calculus,” “Information Flow,” “Models,” “Specifications, and
Proofs,” and “Quantitative Analysis,” chaired by Ugo Montanari, Mohammad Reza
Mousavi, Herndn Melgratti, and Joost-Pieter Katoen.

Additionally, the program included three invited lectures:

i

— Luca de Alfaro (UC Santa Cruz, USA)
— Nobuko Yoshida (Imperial College London, UK)
— Jane Hillston (University of Edinburgh, UK)

All the invited speakers were encouraged to contribute a paper related to their
lectures for these proceedings.

We would like to thank the Steering Committee of TGC for inviting us to chair the
conference; the Program Committee members and external referees, for their detailed
reports and the stimulating discussions during the review phase; the authors of sub-
mitted papers, the invited speakers, the session chairs, and the attendees, for con-
tributing to the success of the event. We are also grateful to the providers of the
EasyChair system, which was used to manage the submissions; to Microsoft Research,
for sponsoring the event; and to Herndn Melgratti, Pedro D’ Argenio, and the rest of
the organizers of the Buenos Aires Concurrency and Dependability Week.

December 2013 Martin Abadi
Alberto Lluch Lafuente

Organization

Steering Committee

Gilles Barthe

Rocco De Nicola
Christos Kaklamanis
Ugo Montanari
Davide Sangiorgi
Don Sannella
Vladimiro Sassone
Martin Wirsing

IMDEA Software, Madrid, Spain

IMT Institute for Advanced Studies Lucca, Italy
University of Patras, Greece

University of Pisa, Italy

University of Bologna, Italy

University of Edinburgh, UK

University of Southampton, UK

LMU University of Munich, Germany

Program Committee Chairs

Martin Abadi

Alberto Lluch Lafuente

Microsoft Research and UC Santa Cruz, USA
IMT Institute for Advanced Studies Lucca, Italy

Program Committee

Gul Agha

Myrto Arapinis
Luis Caires Caires
Rocco De Nicola
José Luiz Fiadeiro
Andy Gordon
Radha Jagadeesan
Matteo Maffei
Sergio Maffeis
Catuscia Palamidessi
Frank Pfenning
Sriram Rajamani
Tamara Rezk
Alejandro Russo
Davide Sangiorgi
Carolyn Talcott
Emilio Tuosto
Sebastian Uchitel

Martin Wirsing

University of Illinois at Urbana-Champaign, USA
University of Birmingham, UK

Universidade Nova de Lisboa, Portugal

IMT Institute for Advanced Studies Lucca, Italy
Royal Holloway, University of London, UK

Microsoft Research and University of Edinburgh, UK

DePaul University, USA

Saarland University, Germany
Imperial College London, UK

Inria and Ecole Polytechnique, France
Carnegie Mellon University, USA
Microsoft Research, India

Inria, France

Chalmers University of Technology, Sweden
University of Bologna, Italy

SRI International, USA

University of Leicester, UK

University of Buenos Aires and Imperial College London,

Argentina/UK
LMU University of Munich, Germany

VIII Organization

Additional Reviewers

Castellani, Ilaria
Charalambides, Minas
Giachino, Elena
Hennessy, Matthew

Mohsen, Rabih
Vandin, Andrea
Viswanathan, Mahesh

Contents

Invited Papers

Content-Driven Reputation for Collaborative Systems. 3
Luca de Alfaro and Bo Adler

Challenges for Quantitative Analysis of Collective Adaptive Systems. 14
Jane Hillston

The Scribble Protocol Language. 22
Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng
Security

Dynamic Measurement and Protected Execution: Model and Analysis 45
Shiwei Xu, lan Batten, and Mark Ryan

Security Correctness for Secure Nested Transactions. 64
Dominic Duggan and Ye Wu
n-Calculus

Types for Resources in -calculi 83
Hans Hiittel

A Sorted Semantic Framework for Applied Process Calculi

(Extended Abstract) e 103
Johannes Borgstrom, Ramiinas Gutkovas, Joachim Parrow,
Bjorn Victor, and Johannes Aman Pohjola

Timed m-Calculus. 119
Neda Saeedloei and Gopal Gupta

Towards Static Deadlock Resolution in the n-Calculus 136
Marco Giunti and Anténio Ravara

Information Flow

Fine-Grained and Coarse-Grained Reactive Noninterference 159
Pejman Attar and Ilaria Castellani

Information Flow Analysis for Valued-Indexed Data Security Compartments. .. 180
Luisa Lourenco and Luis Caires

http://dx.doi.org/10.1007/978-3-319-05119-2_1
http://dx.doi.org/10.1007/978-3-319-05119-2_2
http://dx.doi.org/10.1007/978-3-319-05119-2_3
http://dx.doi.org/10.1007/978-3-319-05119-2_4
http://dx.doi.org/10.1007/978-3-319-05119-2_5
http://dx.doi.org/10.1007/978-3-319-05119-2_6
http://dx.doi.org/10.1007/978-3-319-05119-2_6
http://dx.doi.org/10.1007/978-3-319-05119-2_7
http://dx.doi.org/10.1007/978-3-319-05119-2_7
http://dx.doi.org/10.1007/978-3-319-05119-2_8
http://dx.doi.org/10.1007/978-3-319-05119-2_8
http://dx.doi.org/10.1007/978-3-319-05119-2_9
http://dx.doi.org/10.1007/978-3-319-05119-2_9
http://dx.doi.org/10.1007/978-3-319-05119-2_10
http://dx.doi.org/10.1007/978-3-319-05119-2_11

X Contents

A Library for Removing Cache-Based Attacks in Concurrent

Information Flow Systems 199
Pablo Buiras, Amit Levy, Deian Stefan, Alejandro Russo,
and David Maziéres

Models, Specifications, and Proofs

Specification of Asynchronous Component Systems
with Modal I/O-Petri Nets 219
Serge Haddad, Rolf Hennicker, and Mikael H. Mgller

A Formal Model for the Deferred Update Replication Technique. 235
Andrea Corradini, Leila Ribeiro, Fernando Dotti,
and Odorico Mendizabal

Studying Operational Models of Relaxed Concurrency 254
Gustavo Petri

Certificates and Separation Logic 273
Martin Nordio, Cristiano Calcagno, and Bertrand Meyer
Quantitative Analysis

On-the-fly Fast Mean-Field Model-Checking 297
Diego Latella, Michele Loreti, and Mieke Massink

Group-by-Group Probabilistic Bisimilarities and Their Logical
Characterizationst it e 315
Marco Bernardo, Rocco De Nicola, and Michele Loreti

Author Index e 331

http://dx.doi.org/10.1007/978-3-319-05119-2_12
http://dx.doi.org/10.1007/978-3-319-05119-2_12
http://dx.doi.org/10.1007/978-3-319-05119-2_13
http://dx.doi.org/10.1007/978-3-319-05119-2_13
http://dx.doi.org/10.1007/978-3-319-05119-2_14
http://dx.doi.org/10.1007/978-3-319-05119-2_15
http://dx.doi.org/10.1007/978-3-319-05119-2_16
http://dx.doi.org/10.1007/978-3-319-05119-2_17
http://dx.doi.org/10.1007/978-3-319-05119-2_18
http://dx.doi.org/10.1007/978-3-319-05119-2_18

Invited Papers

Content-Driven Reputation
for Collaborative Systems

Luca de Alfaro!®) and Bo Adler?

! Department of Computer Science, University of California, Santa Cruz, USA
2 Facebook Inc., Menlo Park, USA
luca@ucsc.edu

Abstract. We consider collaborative editing systems in which users
contribute to a set of documents, so that each document evolves as
a sequence of versions. We describe a general technique for endowing
such collaborative systems with a notion of content-driven reputation,
in which users gain or lose reputation according to the quality of their
contributions, rather than according to explicit feedback they give on
one another. We show that content-driven reputation systems can be
obtained by embedding the document versions in a metric space with a
pseudometric that is both effort preserving (simple changes lead to close
versions) and outcome preserving (versions that users perceive as sim-
ilar are close). The quality of each user contribution can be measured
on the basis of the pseudometric distances between appropriately cho-
sen versions. This leads to content-driven reputation systems where users
who provide contributions of positive quality gain reputation, while those
who provide contributions of negative quality lose reputation. In the pres-
ence of notification schemes that prevent the formation of “dark corners”
where closed groups of users can collaborate without outside interference,
these content-driven reputation systems can be made resistent to a wide
range of attacks, including attacks based on fake identities or specially-
crafted edit schemes.

1 Introduction

In many collaborative systems, users can edit or modify the documents in the
system, giving rise to a sequence of evolving versions for each document. We
call such systems collaborative editing systems. The most prominent example
of collaborative editing systems is wikis, but other systems can be similarly
described. For instance, in Google Maps users can edit business listings, giving
rise to a series of versions for the listings’ content. A non-textual example consists
in the process of uploading and revising 3D models to the Trimble 3D Warehouse
[3]. Open software repositories and collaboration on shared documents are other
examples.

We describe a general technique for developing content-driven reputation sys-
tems for collaborative editing systems. The idea behind content-driven reputa-
tion is simple: judge users by their actions, rather than by the word of other users.

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 3-13, 2014.
DOI: 10.1007/978-3-319-05119-2_1, (© Springer International Publishing Switzerland 2014

4 L. de Alfaro and B. Adler

In a content-driven reputation system, users gain or lose reputation according to
how their contributions fare: users who contribute content that is preserved, or
built-upon, by later users gain reputation; users whose work is undone lose rep-
utation. Thus, content-driven reputation systems do not require users to express
judgements on one another.

Reputation systems for collaboration provide an incentive for users to con-
tribute constructively to the system. The power of reputation in motivating users
is evident in many sites, such as Stack Overflow [4]. Another use of reputation is
to help predict the future behavior of users; the predictive power of reputation
has been demonstrated in the Wikipedia in [7,11]. Indeed, each time we use rep-
utation to grant privileges to users, such as the ability to perform specific system
actions, we trust in part the predictive power of reputation: if we did not believe
that users who contributed greatly in the past are likely to continue to provide
useful contributions, there would be little reason to grant such users additional
privileges. A third use of reputation is to estimate content quality and identify
vandalism [6,8,9].

Content-driven reputation systems have several advantages over systems that
rely primarily on user feedback [7]. User-generated rating information can be
quite sparse, especially in young editing systems. Gathering the feedback and
ratings requires the implementation of user interfaces that are secondary to the
goal of collaboration, and can be distracting or ineffective. Content-driven repu-
tation comes “for free”: it can be computed from content evolution information
that is always present, without need for additional feedback or rating mecha-
nisms. In content-driven reputation systems every user is turned into an active
evaluator of other users’ work, by the simple act of contributing to the system.
By deriving the reputation signals from content evolution, rather than separate
ratings, content-driven reputation prevents schemes such as badmouthing: a user
cannot keep a contribution, while giving poor feedback on its author. Indeed,
content-driven reputation systems can be made resistant to broad categories of
attacks [11].

To endow a collaborative editing system with a notion of content-driven rep-
utation, it suffices to provide a pseudometric on the space of document versions.
A pseudometric is a function that satisfies the same axioms as a distance (pos-
itivity, symmetry, triangular inequality), except that distinct elements of the
metric space (distinct versions, in our case) can have distance 0. The pseudo-
metric between versions should satisfy two natural requirements:

— Outcome preserving. If two versions look similar to users, the pseudometric
should consider them close. In particular, the pseudometric should assign
distance 0 to versions that look identical or that are functionally identical.

— Effort preserving. If a user can transform one version of a document into
another via a simple transformation, the pseudometric should consider the
two versions close.

These two requirements are stated in an approximate way, and meeting
them perfectly in a concrete collaborative editing system may not be possible.

Content-Driven Reputation for Collaborative Systems 5

However, the closer we get to satisfying these requirements, the higher-quality
and harder-to-game the resulting reputation system will be.

For wikis, the outcome-preserving requirement means that the version pseudo-
metric should be insensitive to differences in markup language that do not alter
the way a wiki page is rendered. The effort-preserving requirement means that
text that is moved from one place to the other in a document should yield a
smaller pseudometric distance than separate, unrelated deletions and insertions
of text. Pseudometrics suited to wikis have been analyzed in depth in [5].

Devising a suitable pseudometric is not necessarily trivial. Once a suitable
pseudometric is available, however, we can use it to measure the quality of edits,
by measuring how much the edits are preserved in future versions of the doc-
uments. We attribute positive quality to edits that bring the document closer
to how it will be in the future, and negative quality to edits that make the
document more different from how it will be in the future (these edits are thus
reverted). This yields the foundation of the content-driven reputation system:
users whose edits have positive quality gain reputation, while users whose edits
have negative quality lose reputation.

We present and justify in detail the connection between version pseudometric
distance and edit quality, and we describe how the resulting reputation system
can be made resistant to broad types of attacks. The results we present are a
synthesis of results from [5,7,11]. In those papers, the results were presented in
the special context of text documents such as wikis. Here, we put the results
in a general context, removing side-issues and complications that are particular
to wikis, and showing how content-driven reputation systems can be adapted to
broad classes of collaborative editing systems.

2 Collaborative Editing Systems

A collaborative editing system (CES) consists of a set D = {D;, D3, Ds,...}
of documents, where each document D; € D is composed of a series v, vi, v, ...,
vly, of versions. The version v} is a null version, indicating that the document
has not been created yet. Each subsequent version v,ic, for 0 < k < N,, is obtained
from ri_l via an edit e}; : ”12—1 — v,i. We denote by a(v) the author of version v,
and for brevity, we denote by aj, a%,ab, ... the authors a(vd),a(vt), a(vi),. ... In
the following, we will often omit the superscript ¢ denoting the document when
clear from the context, or when not relevant.

We assume that the versions of the documents of the CES belong to a metric
space M = (V,d), where V is the set of all possible versions, and d : V x V —
IR>¢ is a pseudometric that is symmetrical and satisfies the inequality properties:
for all u,v,w €V,

d(u,u) =0
d(u,v) = d(v,u)

d(u,v) + d(v,w) < d(u,w).

6 L. de Alfaro and B. Adler

We ask that d be a pseudometric, rather than a distance, because we do not
require that d(u,v) > 0 for all distinct u,v € V,u # v. Indeed, we will see that
one of the desirable properties of the pseudometric d is that it assigns distance 0
to versions that are indistinguishable to users of the system.

The model of collaborative editing systems was inspired by wikis [7], but
it can be widely applied to collaborative systems. For instance, the editing of
business listings on Google Maps [2] and the editing of SketchUp models in the
Trimble 3D Warehouse [3] can also be modeled as collaborative editing systems.

Wiki pages and their versions directly correspond to the documents and
versions in a CES. As a pseudometric, we can use one of several notions of
edit distance that satisfy the triangular inequality; see [5,18] for an in-depth
discussion.

In the case of Google Maps, a business listing is comprised of various fields
(title, categories, location, phone, and url, among others). Users can create new
listings, and they can edit the values of the fields. The set of documents consists
in the set of all business listings, and the user edits give rise to the sequence of
versions. As pseudometric between fields, we can use the sum of the pseudomet-
rics distances of the individual fields, perhaps using scaling factors that weigh
the relative importance of each field. The physical distance between places on
the Earth surface can be used as metric for locations; suitable distances for
phone numbers and URLSs consists in defining d(u,v) = 27%™, where a > 0 and
m is the length of the longest common prefix of v and v. Distances for sets of
categories are not difficult to define. These distances for the individual fields can
then be combined in an overall distance for entire listings.

In the case of the 3D Warehouse of SketchUp models, the documents cor-
respond to the designs that have been contributed by users. Users can upload
updated versions of the designs, giving rise to the sequence of versions for each
design. We can measure the distance between models by considering the edit
distance between text descriptions of the vertices, planes, surfaces, textures, etc,
comprising the designs.

In the next section, we describe some requirements of the psedumetrics that
lead to useful measures of edit quality.

3 Measuring the Quality of Contributions

As a first step towards a reputation system for contributors to collaborative edit-
ing systems, we consider the problem of measuring the quality of each individual
edit. We follow the idea that the quality of an edit can be measured by how long
the edit survives in the subsequent history of the document [7]. To make this
precise, we measure the quality of an edit e; : v;_1 — v; with the help of two
versions: the previous version v;_i, and a judge version vy, where j < k. We
define the quality q(v; | vj—1,vk) of vj, with respect to judge v and reference
vj_1, as follows:

d(vj—1,vk) — d(vj, vg)
d(vj-1,v;)

: (1)

q(vj | vj-1,vk) =

Content-Driven Reputation for Collaborative Systems 7

(v, vp) - d(v,. v,)

Fig. 1. The triangle of versions used to compute edit quality.

To understand this definition, it might help to refer to Fig.1, and consider
the situation from the point of view of the author ay, of vg. Clearly, the author ay
prefers version v to any previous version of the document, since a contributed
vi. Thus, it is natural to assume that a; will regard positively changes that bring
the current version closer to vy, and negatively changes that make the document
more different from vg. The quantity (1) captures this idea. The numerator
d(vj_1,vg) — d(vj,v,) measures how much closer the version has become to vy
due to edit e;. The denominator d(v;_1, v;) measures the total change caused by
e;. Their ratio ¢(v; | v;_1, vx) measures thus how much of the change introduced
by e; contributes to bringing the document closer to .

From the triangular inequality, we have ¢(v; | vj_1,vx) € [—1,1] for all
versions v;, Uk.

— The maximum quality 1 is achieved when d(v;_1, vy) = d(vj_1,v;) +d(v;, vk),
which corresponds to Fig.2(a). In this case, all the change done going from
v;—1 to v; is preserved in going to vy.

— The minimum quality —1 is achieved when d(v;, vi)=d(vj, vj_1)+d(vj—1, Vg),
which corresponds to Fig.2(b). In this case, all the change from v;_; to v,
is undone in the subsequent change from v; to v.: this corresponds to a
reversion.

Choice of pseudometric. The definition of edit quality relies on a choice of pseudo-
metric on the versions of the documents. To obtain a useful measure of edit
quality, the pseudometric must be effort-preserving and outcome-preserving.

A pseudometric d is effort preserving if the distance between versions that
can be easily obtained one from the other is small. An example of pseudometric
that is not effort preserving is the text edit distance, measured according to the
text diff tools commonly included in text revision systems, such as cvs or git [1].
The text differences computed by such tools do not model text transposition:
when a block of text is moved, the resulting difference is large, even though the
act of moving the text does not require much effort.

A pseudometric d is outcome preserving if versions that are similar to users
are close in distance. In wikis, many changes to the whitespace (spaces, newlines,
and so forth) do not result in visible changes of the corresponding document.
If a user make changes to the whitespace of a document, these changes, having

8 L. de Alfaro and B. Adler

i1 /

V.

J

v, Vi~ Yk
@) q(vj | vj—1,vk) = 1 ®) q(v; | vj—1,v) = —1

Fig. 2. Edits having good and bad quality.

no effect, are unlikely to be reverted, even though they might not serve any
purpose. If such whitespace changes resulted in non-negligible distance, they
would provide users with an artificial opportunity for doing positive quality
edits, while not contributing in any meaningful way to the wiki.

For wikis, the question of appropriate pseudometrics has been studied in
depth in [5], where the quality of pseudometrics is measured according to the
ability of the resulting reputation system to predict the quality of the future work
of users. The pseudometrics that perform best are all insensitive to whitespace
changes that do not affect the way in which the markup is rendered into HTML,
in accordance with the outcome-presering requirement. Furthermore, unlike the
Unix diff command, the pseudometrics that perform well track the movement
of blocks of text across versions, and distinguish between text that is inserted
and deleted, from text that is moved to another location in the document. This is
in compliance with the effort preserving requirement: since block moves are easy
to perform via cut-and-paste, they should give rise to small distances. Indeed,
the best pseudometrics experimentally are those that explain the change from
one version to the other via an edit list that contains a minimal amount of text
insertion, deletion, and displacement: these functions measure thus the minimum
amount of edit work required to go from one version to the other [5].

It is not difficult to devise appropriate pseudometrics for business listings, as
previously mentioned. On the other hand, devising appropriate pseudometrics
for complex domains, such as the 3D solids generated in SketchUp, is not an
easy problem. The main difficulty lies in meeting the outcome preserving cri-
terion, which requires the metric to consider close the designs that are visually
similar.

4 Content-Driven Reputation

To construct our content-driven reputation system, we associate a reputation
r(a) € R>(with every author a. The initial value of user reputations corresponds

Content-Driven Reputation for Collaborative Systems 9

to the amount of reputation we can accord to users whom we have never seen in
the system before, and it depends on how difficult it is to create
new user accounts. In Wikipedia, where there are no restrictions to the cre-
ations of user accounts, WikiTrust gives new users reputation equal to 0: if we
gave new users any larger amount r > 0, users whose reputation fell below
r could simply open another account to get back to reputation r. In systems
where users cannot easily create many accounts, we can afford giving new users
some amount of reputation. This is akin to social interaction: when we deal with
a perfect stranger hiding behind a nickname on the internet, we usually accord
very little trust to the stranger, since obtaining such fake identities is essentially
free. When we deal with a real person, whose name we know, we usually accord
to that person some trust, since we know that the person cannot easily change
identity if the person breaks our trust.

We update user reputation as follows. For each edit e; : vj_; — v; done
by a;j, we measure the quality of e; with respect to set F; C {vj41,...,on5} of
future versions; the precise rule for choosing F; will be discussed later. For each
version v € F};, we update the reputation of a; via:

r(a;) = r(a;) +q(v; [vj—1,0) d(vj-1,05) f(r(a(v))), (2)

where f : IR>9 — IR>(is a monotonic function. Thus, the reputation of the
author of e; is incremented in proportion to the amount d(v;_1,v;) of work
done, multiplied by its quality ¢(v; | vj_1,v), and multiplied by the reputation
of the author of the reference revision v, rescaled according to a function f(-).

In (2), the version v has the role of “judge” in measuring the quality of
the edit: the factor f(r(a(v))) ensures that the higher the reputation of the
author of v, the higher the weight we give to the quality judgement that uses
v as reference. We rescale the reputation r(a(v)) using a monotonic function f
to limit the influence of high-reputation users over the overall system. In most
collaborative systems, including the Wikipedia, there is a group of long-term
users who are responsible for a large fraction of the work; these users tend to
accumulate large amounts of reputation. If in (2) we used r(a(v)) directly, this
would give these top users an outsized influence over the reputation system. In
the Wikipedia, we rescale reputations via f(z) = log(1 + max{0, e + z}), where
€ > 0 allows us to tune the amount of influence of new users on the system. Such
a logarithmic rescaling function is a natural choice when the user contribution
amounts and reputations follow a power-law distribution [10,13,15], and worked
well in practice for Wikipedia editions in different languages [6,7].

In order to choose the set F} of reference versions, we first remove from
Vj41,Vj4+2,Vjt2, ... all the versions by the same author as v;: we do not want a
user to be a judge of his or her own work. Let 0j = v} 1,0],5,0]3,... be the
resulting sequence. One choice for F}; consists in taking the first K revisions of o;
for some fixed K > 0; this is the choice followed in WikiTrust [7]. Another choice
consists in taking F; to be the whole o, using geometrically-decaying weights
for reference revisions farther in the future, to ensure that each edit causes a

10 L. de Alfaro and B. Adler

bounded change in the user’s reputation. Under this choice, (2) becomes:

ra;) =r(a;) + Y (1—a)o? *q(v; | vj_1,v) d(vj-1,v;) f(r(a(v))) (3)

k>j+1

for a geometric decay factor 0 < a < 1.

4.1 Truthfulness

A reputation system based on (2) or (3) is a truthful mechanism in the game-
theoretic meaning of the term: if a user wants to modify a document, a dom-
inating strategy (an optimal strategy for the user) consists in performing the
modification as a single edit [11,17]. Users have no incentive to play complicated
strategies in which the modification is broken up into a sequence of edits having
the same cumulative effect. This property is fundamental in a reputation system.
If users derived more reputation by breaking up edits into many small steps, or
by performing every edit by first deleting the entire document, then replacing it
with the new version, the evolution of the content in the collaborative system
could be severely disrupted by users trying to maximize their reputation.

To prove the truthfulness of the reputation systems based on (2) or (3), we
consider the case of an edit e; : v;_; — v; being split into two edits having
the same cumulative effect: €} : v;_1 — v" and €} : v — v;; the general case
is analogous. We analyze the case for (2); the same argument works also for
(3). Consider a fixed version v € F} used to judge e;, and let ¢ = f(r(a(v))).
For the edit ej, the total amount of reputation gained by the author of e; from
judge v is:

d(vj-1,v) — d(vj,v)
d(vj-1,v5)
= c[d(vj_l,v) — d(vy, v)] (4)

When the edit e; is split into €, €7/, the total amount of reputation gained
due to judge v is:

cq(vj | vj—1,v)d(vj_1,v;) = ¢ d(vj-1,v;)

c[q(v" | vj-1,v)d(vj-1,0") + q(v; | V', v) d(v', v))]
= c[[d(vj_l,v) —d(v',v)] + [d(v,v) — d(vj,v)]]
= c[d(vj_1,v) — d(v;,v)]. (5)

The result follows by comparing (4) and (5).

4.2 Resistance to Attacks and Dark Corners in Collaboration

The content-driven reputation defined by (2) or (3) is susceptible to attacks in
which a user controls several user accounts, and coordinates the actions of these

Content-Driven Reputation for Collaborative Systems 11

accounts in order to increase the reputation of a subset of these accounts; these
attacks are broadly known as Sybil attacks or, less formally, sock-puppet attacks
[11,12,14,16]. The accounts that are controlled by a user in order to enhance
the reputation of the user’s main account are known as sock-puppet accounts.

A detailed description of defense mechanisms that can be used in content-
driven reputation systems against Sybil attacks appeared in [11]. We survey here
the main idea, which consists in limiting the amount of reputation that can be
gained from an interaction with other users, unless the contribution itself has
stood the test of time.

The technique is applicable to the Wikipedia, and to other collaborative
systems that, like the Wikipedia, have no “dark corners”: all edits are viewed
in timely fashion by honest users. More precisely, we say that a collaborative
system has no dark corners within time constant 7" if there is a set U of good
users such that, for every version v, v has been viewed by a user in U with
probability at least 1 —e~*/T, where t is the time since the version was created.
This set of good users must consists of users who are both well-intentioned, and
willing to repair vandalism or damage to documents via edits. The Wikipedia,
with its recent-changes patrol (or RC patrol), feeds of recent edits and page
creations, and editors who subscribe to notifications to changes in pages, has no
dark corners within a time constant of less than a day. When a collaborative
system has no dark corners, a group of users cannot work at length in secrecy,
hidden from view: every edit is eventually subjected to the judgement of users
that do not belong to the select group.

In collaborative systems with no dark corners, the technique advocated in
[11] calls for the author of a version v; gaining reputation from a future reference
version v, via (2), only in two cases:

— the reputation of the author of v is greater than the reputation of the author
of vj;

— the amount of time elapsed between v; and v is longer than a pre-determined
amount 7', and for all versions v;, vy separated from v by less than time T,
and with ¢ < j < k, we have ¢(v; | v;,vg) > 0.

These conditions ensure that a user can gain reputation only from users of
higher reputation, or if no other users objected to the edits performed, for a
pre-determined length of time 7. Under these two conditions, [11] showed that
if a user controls a set V' of accounts, the user cannot raise the reputation of
any account in U above the maximum max{r(u) | u € V'} already held, without
performing work that is recognized as useful also by the broader community of
users.

This result indicates how patrolling mechanisms such as notification feeds
and the RC patrol contribute to the quality of a collaborative system, and how
content-driven reputation can leverage such mechanisms and achieve resistance
to Sybil attacks.

12 L. de Alfaro and B. Adler

5 Conclusions

Content-driven notions of edit quality and reputation are well suited to a large
class of collaborative editing systems, in which content evolves as a sequence
of versions, each version produced by a user edit. These collaborative editing
systems are common: examples include wikis, but also contributing to on-line
shared documents, contributing to software repositories, collaboratively design-
ing 3D objects, and editing business listings in Google Maps. Content-driven
reputation systems provide a notion of user reputation that can be computed
objectively, from the evolution of the content itself, without need for asking users
for feedback on other user’s work.

Two main requirements are needed for obtaining robust content-driven repu-
tation systems. The first requirement is the ability to embed document versions
in a metric space, so that the distance between versions is both effort-preserving
(easy to do changes lead to close versions) and outcome-preserving (similar ver-
sions are close). Suitable metrics are available for text, and we believe can be
developed in a great number of collaborative systems. The second requirement
is the presence of patrolling mechanisms that ensure that the system does not
have “dark corners” where users can work for a long time in secret, using various
schemes to unduly raise their reputation. Under these two conditions, content-
driven reputation systems can reward contributors whose work is preserved in
the system, and are robust with respect to large categories of attacks, including
Sybil attacks.

There is much research that needs to be done in furthering the use of content-
driven reputation. One direction of work consists in identifying suitable notions
of distance for more general collaborative editing domains. Another direction
of work consists in studying the social consensus dynamics that the systems
induce. For instance, the reputation-rescaling function f in (2) is used to prevent
a class of users from deriving such high values of reputation, that their opinion
trumps that of everyone else — creating a “reputation oligarchy”. It would be
of high interest to study under what conditions systems develop dominating sets
of users, who cannot be replaced in spite of the constant influx of new users.
A third direction of work consists in studying how to best integrate content-
driven reputation with information derived from user-provided feedback and
ratings.

References

http://git-scm.com

http://maps.google.com

http://sketchup.google.com/3dwarehouse/

http://stackoverflow.com

Adler, B.T.: WikiTrust: content-driven reputation for the Wikipedia. Ph.D. Thesis,
University of California, Santa Cruz (2012)

6. Adler, B.T., Chatterjee, K., de Alfaro, L., Faella, M., Pye, I.: Assigning trust to
Wikipedia content. In: WikiSym 08: Proceedings of the International Symposium
on Wikis. ACM Press, New York (2008)

G W=

http://git-scm.com
http://maps.google.com
http://sketchup.google.com/3dwarehouse/
http://stackoverflow.com

10.

11.

12.

13.

14.

15.

16.

17.

18.

Content-Driven Reputation for Collaborative Systems 13

Adler, B.T., de Alfaro, L.: A content-driven reputation system for the Wikipedia.
In: Proceedings of the 16th International World Wide Web Conference (WWW
2007). ACM Press, New York (2007)

Adler, B.T., de Alfaro, L., Mola-Velasco, S.M., Rosso, P., West, A.G.: Wikipedia
vandalism detection: combining natural language, metadata, and reputation fea-
tures. In: Gelbukh, A. (ed.) CICLing 2011, Part II. LNCS, vol. 6609, pp. 277-288.
Springer, Heidelberg (2011)

Adler, B.T., de Alfaro, L., Pye, I.: Detecting Wikipedia vandalism using Wik-
iTrust. In: PAN Lab Report, CLEF (Conference on Multilingual and Multimodal
Information Access Evaluation) (2010)

Barabasi, A.-L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509-512 (1999)

Chatterjee, K., de Alfaro, L., Pye, I.: Robust content-driven reputation. In: First
ACM Workshop on AISec, ACM Press, New York (2008)

Cheng, A., Friedman, E.: Sybilproof reputation mechanisms. In: Proceedings of the
ACM SIGCOMM Workshop on Economics of Peer-to-Peer Systems. ACM Press,
New York (2005)

Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical
data. SIAM Rev. 51(4), 661-703 (2009)

Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251-260. Springer, Heidelberg (2002)
Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Nat. Acad. Sci. 99(12), 7821-7826 (2002)

Levine, B.N., Shields, C., Margolin, N.B.: A survey of solutions to the sybil attack.
Technical Report 2006052, University of Massachussets Amherst (2006)
Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

Sankoff, D., Kruskal, J.B. (eds.): Time Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison. CSLI Publications, Stanford
(1999)

Challenges for Quantitative Analysis
of Collective Adaptive Systems

Jane Hillston®)

LFCS, School of Informatics, University of Edinburgh, Scotland, UK
jane.hillston@ed.ac.uk

1 Introduction

We are surrounded by both natural and engineered collective systems. Such
systems include many entities, which interact locally and, without necessarily
having any global knowledge, nevertheless work together to create a system
with discernible characteristics at the global level; a phenomenon sometimes
termed emergence. Examples include swarms of bees, flocks of birds, spread of
disease through a population, traffic jams and robot swarms. Many of these
systems are also adaptive in the sense that the constituent entities can respond
to their perception of the current state of the system at large, changing their
behaviour accordingly. Since the behaviour of the system is comprised of its
constituent entities this brings about a change in the system, thus creating a
feedback loop. For example, when a disease is spreading epidemically people
adjust their behaviour to reduce contact with others; consequently the spread of
the disease may diminish.

Increasingly IT systems are being build from large numbers of autonomous or
semi-autonomous components which, together with a large population of users,
makes a collective system. For example, in Edinburgh bus are equipped with GPS
sensors, and bus stops have display boards, which inform users of the likely arrival
time of the next bus on various routes. Bus users can choose which route to take
for their journey based on the given information. As in this example, collective
IT systems are often embedded in our environment and need to operate without
centralised control or direction. Moreover when conditions within the system
change it may not be feasible to have human intervention to adjust behaviour
appropriately. For example, it would be desirable for a major traffic incident
that re-routes some buses to be indicated on the information boards. For this to
happen in general systems must be able to adapt autonomously.

What we are starting to witness is the establishment of what Robin Milner
called the informatics environment, in which pervasive computing elements are
embedded in the human environment, invisibly providing services and respond-
ing to requirements [20]. Such systems are now becoming the reality, and many
form collective adaptive systems, in which large numbers of computing elements
collaborate to meet the human need. The smart bus system described above
is one example, and there are many others in the realm of “Smart Cities”

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 14-21, 2014.
DOI: 10.1007/978-3-319-05119-2_2, (© Springer International Publishing Switzerland 2014

Challenges for Quantitative Analysis of Collective Adaptive Systems 15

where information flows to and from users to enhance access and efficient use of
resources.

Performance modelling aims to construct models of the dynamic behaviour of
systems in order to support the fair and timely sharing of resources. Performance
problems typically arise when there is contention for resources and this can
impede the smooth running of a system and lead to user dissatisfaction. In
the informatic environment, where the system itself is often almost invisible
to the user, it is essential that the possible behaviour is thoroughly explored
before systems are deployed. Performance analysis appears in many guises and
may more generally be termed quantitative analysis, as it encompasses many
quantified questions about the dynamic behaviour of systems. For example:

Capacity Planning: how many clients can the existing server support and still
maintain reasonable response times? or how many buses do I need in order
to maintain service at peak time in a smart urban transport system.

System Configuration: in a mobile phone network how many frequencies do
I need in order to keep the blocking probability for new calls low? or what
capacity do I need at the stations in a bike sharing scheme in order to
minimise the extent to which bikes have to be relocated by truck to meet
user demand?

System Tuning: in a flexible manufacturing system, what speed of conveyor
belt will minimise robot idle time and maximum throughput whilst avoiding
damaged goods? or what strategy can I use to maintain supply-demand
balance within a smart electricity grid?

Markovian-based discrete event models have been applied to the performance
prediction of computer systems since the mid-1960s and communication systems
since the early 20th century. Originally queueing networks were primarily used
to construct models, and sophisticated analysis techniques were developed. This
approach is challenged by features of modern distributed systems, and there
has been a shift towards the use of formal methods, in which formal language
are enhanced with quantitative information such as durations and probabilities.
Examples include Generalised Stochastic Petri Nets [1], and Stochastic Process
Algebras such as EMPA [2], IMC [11] and PEPA [12]. From these high-level sys-
tem descriptions the underlying mathematical model (Continuous Time Markov
Chain (CTMC)) can be automatically generated via the formal semantics.

2 Progress in Recent Years

A key feature of collective systems is the existence of populations of entities who
share certain characteristics. Attempts to model such systems without high-level
modelling support are likely to be time-consuming and error-prone. In contrast,
high-level modelling formalisms allow this repetition to be captured at the high-
level rather than explicitly, and often support hierarchical and compositional
development of models.

In particular process algebras are well-suited for constructing models of col-
lective adaptive systems (CAS):

16 J. Hillston

— These formal languages were originally developed to represent concurrent
behaviour compositionally and CAS are highly concurrent systems.

— The compositional structure of the process algebra allows the interactions
between individuals to be captured explicitly. In the context of CAS indi-
viduals of the same type may be regarded as a subpopulation with limited
interaction between entities but all sharing the same pattern of interaction
with other populations.

— Stochastic process algebras (SPAs) provide extensions of classical process alge-
bras that allow the dynamics of system behaviour to be captured; moreover
there are established mechanisms to automatically generate an underlying
mathematical model from the process algebra description.

— In SPAs such as PEPA, state-dependent functional rates mean that the rate
or probability with which an event occurs may depend on the current state of
the system and this can allow adaptation to be captured [14].

— The languages are equipped with formal apparatus for reasoning about the
behaviour of systems, including equivalence relations, formally defined abstrac-
tion mechanisms and mappings to model checkers such as PRISM [16].

As originally defined, an SPA model is equipped with a structured operational
semantics which facilitates the automatic generation of a CTMC. In this case
the global state of the system is the composition of the local states of all the
participating components. When the size of the state space is not too large the
CTMC is represented explicitly as an infinitesimal generator matrix, which is
an N x N matrix, where N is the number of distinct states. Based on this
matrix and linear algebra the CTMC can be subjected to a numerical solution
which determines a steady state or transient probability distribution over all
possible states. From this, performance indices such as throughput, utilisation
and response time can be derived.

Alternatively the CTMC may be studied using stochastic simulation. This
avoids the explicit construction of the entire state space, as states are generated
on-the-fly as the simulation runs. Each run generates a single trajectory through
the state space. Now, performance indices are derived from measurement of the
behaviour of the simulation model and many runs are needed in order to obtain
statistically meaningful estimates of performance measures.

Like all discrete state representations, performance modelling formalisms and
CTMCs suffer from the problem of state space explosion: the mathematical struc-
tures required to analyse the system become so large that it is infeasible to carry
out the analysis. As the size of the state space becomes large it becomes infeasi-
ble to carry out numerical solution of the CTMC and extremely time-consuming
to conduct stochastic simulation. This poses a severe challenge for the analysis
of collective systems, which by their nature typically contain very large numbers
of entities.

The discrete state interpretation of SPA models is focussed on treating the
instances of components as individuals. An alternative, more compact repre-
sentation can be obtained if we move away from capturing each individual but
instead work at the level of the subpopulations. This is clearly an abstraction,

Challenges for Quantitative Analysis of Collective Adaptive Systems 17

a) b)
¢) d)

Fig.1. Schematic representation showing the counting abstraction: a)—
b)subpopulations are identified within the CAS; c)-d) rather than explicit counts,
these are represented as proportions of the population as a whole.

and some information is lost, but it has the advantage that substantially larger
systems can be considered.

The first step of our approach to analysing collective behaviour is to make a
counting abstraction and view the system not in terms of the individual compo-
nents but in terms of proportions within the subpopulations [15]. This is shown
schematically in Fig. 1.

Initially this produces a state aggregation: a more compact discrete repre-
sentation of the system. A further shift in perspective leads us to consider the
evolution of the system as continuous rather than discrete. In this case the events
in the system are aggregated, and captured by ordinary differential equations
which represent the average behaviour of the system, in terms of the propor-
tions of components which exhibit each possible local behaviour or state and
how these proportions vary over time [13]. This is termed a fluid or mean field
approzimation [4].

Just as the discrete representation of the CTMC can be automatically gener-
ated from the structured operational semantics of PEPA models [12], the ODEs
which give the fluid approximation of a PEPA model can similarly be derived
from structured operational semantics [22]. Moreover the derived vector field
F(x), gives an approximation of the expected count for each population over
time and fluid rewards, from which performance indices can be derived, can
be safely calculated from the fluid expectation trajectories [21]. Furthermore,
vector fields have been defined to approximate higher moments [9], such as vari-
ance and skew, allowing more accurate estimates of the performance of a system
to be derived and more sophisticated measures, such as passage times, can be
approximated in an analogous way [10].

18 J. Hillston

This approach is ideally suited to the analysis of collective systems, which
would typically overwhelm existing techniques — the necessary state space could
not even be expressed, never mind analysed. Examples of systems which have
been studied using this approach include an emergency egress system [18], smart
buildings [19], data flows in wireless sensor networks [8], swarm robots [17], and
internet worm attacks [6].

3 Remaining Challenges

The fluid approximation approach coupled with formal model description in
terms of a stochastic process algebra has opened new opportunities for quantified
formal analysis of collective systems. This work provides a basic framework and
firm foundation for the modelling of systems with collective behaviour. Neverthe-
less, there remain a number of challenges, especially when we consider systems
which also consider adaptive behaviour. In particular, based on our experiences
of modelling smart city applications within the QUANTICOL project! we would
highlight:

— Spatial aspects;
— Richer forms of interaction and adaptation; and
— Extending model checking capabilities.

3.1 Modelling Space

Whilst fluid approximation of SPA models has been successfully used to model
collective systems, it should be recognised that there is an implicit assumption
within the approach that all components are co-located. This means that all
components have the opportunity to interact if their specified behaviour allows it.

However, many collective systems, particularly in the context of smart cities,
have behaviour which is partially governed by the spatial arrangement of the
components. Interactions may only be allowed for entities which are within a
certain physical distance of each other, or space may be segmented in such a
way that even physically close entities are unable to communicate. Furthermore
movement can be a crucial aspect of the behaviour of entities within the system.
Capturing and analysing systems with characteristics like these require that
space must be included explicitly within the modelling formalism, and the same
component in different locations will be distinguished. This poses significant
challenges both of model expression and model solution. There is a danger that
as we distinguish subpopulations by their location, we no longer have a large
enough population to justify the fluid approximation.

Initial work is exploring the use of time scale decompositions, partial differ-
ential equations and diffusion models but much more work is needed.

! www.quanticol.eu

www.quanticol.eu

Challenges for Quantitative Analysis of Collective Adaptive Systems 19

3.2 Richer Forms of Interaction and Adaptation

The current work on collective system modelling with stochastic process algebras
has made limited use of functional rates to capture adaptation. For example, in
the modelling of emergency egress a functional rate is used to represent how occu-
pants might alter their planned route out of the building when they encounter
congestion in a stairwell. As this illustrates, a functional rate is able to model
adaptation in the form of adjusting the rate or probability of certain events to
reflect the current situation. However this is only a limited form of adaptation.

In general, real collective adaptive systems, especially those with emergent
behaviour, embody rich forms of interaction, often based on asynchronous com-
munication. An example of this is the pheromone trail left by a social insects
such as an ant. In this case the message (pheromone) left by one ant will affect
the behaviour of another ant in the same location at a later time. Moreover,
the patterns of communication, who can communicate with whom, may change
over time according to the state of the system. Languages like SCEL offer these
richer communication patterns [7]. In SCEL components include a knowledge
store which can be manipulated by the component itself and other components.
Communication can then be attribute-based, meaning that a message is sent to
all components that have a given value for an attribute.

Again this differentiation through attributes poses a risk to fluid approxi-
mation. Accuracy in the fluid approximation relies on having a large enough
subpopulation with shared characteristics. Allowing components to have dis-
tinct attribute values creates distinguishing features amongst the members of
the subpopulations. Within the QUANTICOL project we are exploring ways to
overcome these problems.

3.3 Extending Model Checking Capabilities

Whilst many performance measures can be derived using the techniques of fluid
rewards, more sophisticated interrogation of a model can be achieved through
model checking. In stochastic model checking a suitably enhanced logic, CSL,
specifies the query, and leads to a modification of the given CTMC. A naive
approach based on fluid approximation would work directly with the vector
field, but as this is deterministic this is amenable only to LTL model checking,
and gives no indication of the inherent stochasticity in the system.

Recent work on fluid model checking develops an analogous approach for col-
lective systems [3]. CSL properties related to a single component can be checked
with respect to a population. In this approach the single component is left dis-
crete and combined with a fluid approximation of the rest of the population,
giving rise to a inhomogeneous time CTMC. This is then modified as in sto-
chastic model checking, and solved numerically. Whilst effective, this approach
can only be used to check the properties of one element of a population. In an
alternative approach, based on a central limit approximation, the fraction of a
population that satisfies a property expressed as a one-clock deterministic timed
automaton can be checked [5]. Future work will seek to extend these to find
scalable approaches to model checking global properties of collective systems.

20

4

J. Hillston

Conclusions

Collective Adaptive Systems are an interesting and challenging class of systems
to design and construct. Their role within infrastructure, such as within smart
cities, make it essential that quantitive aspects of behaviour are taken into con-
sideration, as well as functional correctness. Fluid approximation based analysis
offers hope for scalable quantitative analysis techniques, but there remain many
interesting and challenging problems to be solved.

Acknowledgement. This work is partially supported by the EU project QUANTI-
COL, 600708.

References

10.

11.

12.

13.

. Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic Petri

nets for the performance evaluation of multiprocessor systems. ACM Trans. Com-
put. Syst. 2(2), 93-122 (1984)

. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: a theory of concurrent processes

with nondeterminism, priorities, probabilities and time. Theor. Comput. Sci.
202(1-2), 1-54 (1998)

Bortolussi, L., Hillston, J.: Checking individual agent behaviours in Markov popu-
lation models by fluid approximation. In: Bernardo, M., de Vink, E.; Di Pierro, A.,
Wiklicky, H. (eds.) SFM 2013. LNCS, vol. 7938, pp. 113-149. Springer, Heidelberg
(2013)

Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of
collective system behaviour: A tutorial. Perform. Eval. 70(5), 317-349 (2013)
Bortolussi, L., Lanciani, R.: Model checking Markov population models by central
limit approximation. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 123-138. Springer, Heidelberg (2013)

Bradley, J.T., Gilmore, S.T., Hillston, J.: Analysing distributed Internet worm
attacks using continuous state-space approximation of process algebra models. J.
Comput. Syst. Sci. 74(6), 1013-1032 (2008)

De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A language-based approach
to autonomic computing. In: Beckert, B., Bonsangue, M.M. (eds.) FMCO 2011.
LNCS, vol. 7542, pp. 25-48. Springer, Heidelberg (2012)

Guenther, M.C., Bradley, J.T.: Mean-field analysis of data flows in wireless sensor
networks. In: ACM/SPEC International Conference on Performance, Engineering,
ICPE’13, pp. 51-62 (2013)

Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a Markovian process
algebra. Theor. Comput. Sci. 411(22-24), 2260-2297 (2010)

Hayden, R.A., Stefanek, A., Bradley, J.T.: Fluid computation of passage-time dis-
tributions in large Markov models. Theor. Comput. Sci. 413(1), 106-141 (2012)
Hermanns, H. (ed.): Interactive Markov Chains: The Quest for Quantified Quality.
LNCS, vol. 2428. Springer, Heidelberg (2002)

Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (2005)

Hillston, J.: Fluid flow approximation of PEPA models. In: 2nd International Con-
ference on the Quantitative Evaluaiton of Systems (QEST 2005), pp. 33-43 (2005)

14.

15.

16.

17.

18.

19.

20.

21.

22.

Challenges for Quantitative Analysis of Collective Adaptive Systems 21

Hillston, J., Kloul, L.: Formal techniques for performance analysis: blending SAN
and PEPA. Formal Aspects Comput. 19(1), 3-33 (2007)

Hillston, J., Tribastone, M., Gilmore, S.: Stochastic process algebras: from individ-
uals to populations. Comput. J. 55(7), 866-881 (2012)

Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: probabilistic model checking
for performance and reliability analysis. SSIGMETRICS Perform. Eval. Rev. 36(4),
40-45 (2009)

Massink, M., Brambilla, M., Latella, D., Dorigo, M., Birattari, M.: On the use of
Bio-PEPA for modelling and analysing collective behaviours in swarm robotics.
Swarm Intell. 7(2-3), 20-228 (2013)

Massink, M., Latella, D., Bracciali, A., Harrison, M.D., Hillston, J.: Scalable
context-dependent analysis of emergency egress models. Formal Aspects Comput.
24(2), 267-302 (2012)

Massink, M., Harrison, M.D., Latella, D.: Scalable analysis of collective behaviour
in smart service systems. In: Proceedings of the 2010 ACM Symposium on Applied
Computing (SAC), pp. 1173-1180 (2010)

Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press, Cambridge (2009)

Tribastone, M., Ding, J., Gilmore, S., Hillston, J.: Fluid rewards for a stochastic
process algebra. IEEE Trans. Softw. Eng. 38(4), 861-874 (2012)

Tribastone, M., Hillston, J., Gilmore, S.: Scalable differential analysis of process
algebra models. IEEE Trans. Softw. Eng. 38(1), 205-219 (2012)

The Scribble Protocol Language

Nobuko Yoshida®, Raymond Hu, Rumyana Neykova, and Nicholas Ng

Imperial College London, London, UK
n.yoshida@imperial.ac.uk

Abstract. This paper describes a brief history of how Kohei Honda ini-
tiated the Scribble project, and summarises the current status of Scribble.

1 Introduction

Scribble is a language to describe application-level protocols amongm communi-
cating systems. A protocol represents an agreement on how participating systems
interact with each other [37,41]. Scribble was born in Paris in December 2006
Kohei Honda took his six month sabbatical. He started writing a seventy-page
document of the first version of Scribble [17], based on his experiences as an
invited expert for the W3 Web Services Choreography Description (WS-CDL)
Working Group [8]. Since 2003, Kohei and the first author (Nobuko Yoshida) had
been working for formalising WS-CDL in the 7-calculus to guarantee deadlock-
free communications by session types. Later, Marco Carbone joined the academic
team of WS-CDL. Unexpectedly, it took more than five years for us to under-
stand and formalise their core technologies due to complexity of the description:
for example, to describe just a‘“hello world” protocol, WS-CDL requires the def-
inition of Participant Types, Rolem Types, Relationship Types, Channel Types,
Information Types, Tokens, Token Locators and finally Sequences with an Inter-
action and Exchange. During this work, Kohei proposed a much simpler, abstract
version of choreography, which only focuses on signatures (or types) of CDLs.
This is the origin of Scribble. He sent his first seventy-page draft to his close
industry colleagues by e-mail together with his motivation:

Scribbling is necessary for architects, either physical or computing, since
all great ideas of architectural construction come from that unconscious
moment, when you do not realise what it is, when there is no concrete
shape, only a whisper which is not a whisper, an image which is not an
image, somehow it starts to urge you in your mind, in so small a voice
but how persistent it is, at that point you start scribbling.

This draft encouraged two of the members of WS-CDL WG, Gary Brown and
Steve-Ross Talbot, to design and implement Scribble through Pi4 Technologies
Foundations [35], collaborating with Kohei. The second version of Scribble doc-
ument was written in collaboration with Brown in October 2007.

Interestingly, Scribble gave clues to solving the main theoretical open prob-
lem of the session type theory repeatedly posed by researchers and industry

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 22-41, 2014.
DOI: 10.1007/978-3-319-05119-2_3, (© Springer International Publishing Switzerland 2014

The Scribble Protocol Language 23

partners at that time: that is whether original binary sessions [20,39] can be
extended to multiparty sessions. This is a natural question since most business
protocols and parallel computations in practice involve multiparty communica-
tions. Honda, Yoshida and Carbone formalised the essence of Scribble as the
multiparty session type theory (MPST) in the m-calculus, and published in [22].
Since then Kohei has worked with several standardisation bodies [2,42] and open
source communities [34,38]. Red Hat opened a new JBoss Project, Scribble [37].
More details about a history of his collaborations with the industry partners
can be found in [19,21]. His last paper, which was mostly written by himself, is
about Scribble [18].

The aims of this paper are to record his first draft [17] and to show the cur-
rent status of Scribble project. Section 2 summarises the first version of Scribble
draft; Sect. 3 outlines Scribble framework and its Python implementation; Sect. 4
discusses an extension of Scribble for subprotocols and interrupts; Sect. 5 shows
another extension of Scribble for high-performance computations; Sect. 6 gives
future works and Sect. 7 concludes.

2 Preamble of the First Scribble Document

This section presents extracts from the preamble of the first Scribble document
as originally written in [17], and remarks how these initial ideas have been carried
out.

2.1 Conversations and Protocols

This document presents concrete description examples of various interaction sce-
narios written in the first layer of Scribble (from [17, Sect. 1.1]). Scribble is a lan-
guage for describing the structures and behaviours of communicating processes
at a high level of abstraction, offering an intuitive and expressive syntax built
on a rigorous mathematical basis. While the language can potentially be used
for many purposes, our initial primary application area is description, validation
and execution of the whole class of financial protocols and applications which
use them.

Our central philosophy in designing Scribble, as a high-level language for
describing communication-centred applications, is to enable description which is
free from implementation details but which allows efficient and flexible imple-
mentation. The key idea to achieve these seemingly contradictory requirements
is the use of the unit of abstraction called “conversation,” known as session in
the literature on theories of processes and programming languages.

A conversation in the present context means a series of interactions among
two or more participants which follow a prescribed scenario of interactions. This
scenario is the type (signature) of that conversation which we call protocol. A pro-
tocol is a minimal structure which guarantees type-safety of conversations, and
has been known as session. type [7,14,20,25,43] in theories of processes which in
turn is based on theories of types for programming languages [36]. At runtime,

24 N. Yoshida et al.

a conversation is established among its participants, and the participants get
engaged in communications in its context following a stipulated protocol.

A single distributed application may be engaged in two or more conversa-
tions, even simultaneously. For example, during a commercial transaction, an
application running for a merchant may be engaged in two conversations at the
same time, one for a credit transfer and another for a debit transfer protocol.
Another example is a travel agency who interacts with its customer electronically
following a certain protocol and, to meet the demands of the customer, interacts
with other service providers (for example airline companies), each following a
distinct protocol. The agency’s conversation with its customer and those with
other services will interleave.

We specify a protocol using a type language of Scribble (just as types in ML
are specified using a type language of ML). This type language constitutes the
most abstract level of the description layers in Scribble. On its basis, the immedi-
ately upper layer of description defines what we call conversation models (which
correspond to class models in UML). Conversation models serve many purposes
including a foundation for a design-by-contract (DBC) framework, which starts
from augmenting conversation models with assertions written in a logical lan-
guage. Further we have languages for describing detailed behaviour, reaching
executable descriptions, some of which may as well take the form of integration
with existing programming languages. These languages as a whole contribute
to flexible and comprehensive descriptions of the structure of message exchange
(choreography) among communicating agents. Example descriptions in some of
these languages will be treated in the sequels to the present note.

The language for protocols is the most abstract and terse: at the same time,
it is also a rich description language for conversation scenarios, as well as offering
a basis for the remaining layers. Protocols are also a basis of diverse forms of
static and dynamic validation. Thus understanding this language is the key to
understanding the present description framework as a whole.

2.2 Applications

The first and foremost objectives of Scribble is to allow scribbling of structures
of interactions intuitively and unambiguously (from [17, Sect.1.2]). Just like
we are sure what is the intended behaviour of our programs and models for
sequential computation, we want to be sure what our description for interactional
applications means in a simple and intuitive syntax.

Scribble is based on theories of processes, in particular the w-calculus [27—
29]. This is not a place to discuss the nature of this theoretical basis but it
is worth noting that this theory enables us to mathematically identify what
is the (interactional) “behaviour” embodied in a given description. Thus we
can rigorously stipulate what each description means. While the meaning of
sequential programs is relatively intuitive to capture, this may not be so for
interactional software: thus this theory pins down the tenet of descriptions of
interactional behaviour, bootstrapping all endeavours in the present enterprise.

The Scribble Protocol Language 25

Another theoretical underpinning of the design of Scribble is the study on
session types [7,14,20,25,43] mentioned already, which present in-depth study
of type languages for conversations and their use in static validation, abstraction
concerns and runtime architecture.

Starting from clarity and precision in description, Scribble (together with its
theoretical basis) is intended to be used for several purposes, some of which we
summarise in the following.

e Describe protocols of conversations for applications clearly, intuitively and
precisely; statically validate if the resulting descriptions are consistent; with
unambiguous shared understanding on the meaning of resulting descriptions.

e Generate code prototypes and associated runtime parameters (e.g. an FSA
(Finite State Machines) for monitoring) from stipulated protocols, with a for-
mal guarantee that code/data exactly conform to the protocols.

e Describe conversation scenarios of a distributed application which use these
protocols, as conversation models. Statically validate if the resulting models
use protocols correctly, as well as other significant properties.

e Elaborate protocols and conversation models with assertions (logical formulae)
to specify their properties, for enriched behavioural constraints/models.

e Develop (and debug) endpoint applications which realise given conversation
models with incremental validation that the resulting programs conform to
the stipulated protocols and conversation models.

e Statically validate if the applications have specific desirable properties (such
as deadlock-freedom) leveraging high-level conversation structures.

e Dynamically validate (monitor) if runtime message exchanges of an application
precisely follow the stipulated protocols/models: with a formal guarantee that
all and only violations of the stipulated scenario are detected; automatically
generate such a monitor from protocols/conversation models.

o Offer a tractable and unambiguous specification of software tools and
infrastructure needed for achieving these goals.

We note that the central point of having a theoretical basis in Scribble is first of
all to allow these ideas themselves (for example validation) to “make sense”: we
can share clearly what they mean and what they do not mean. And all of this
should be built on the clarity of the behavioural description in the first place.

2.3 Remarks on the Preamble

The preamble ends with a “Caution” subsection. Kohei explicitly noted that
“this compilation only lists signatures (or types) for conversations, not direct
behavioural description. While it may look we are describing dynamic behaviour,
what is indeed described is the static structure underlying dynamic behaviour,
just as signature in class models extracts the static core of dynamic behaviour of
objects.” This became the basis for establishing a theory of multiparty session
types [22]. In the rest of the document, the presentation is organised centring
on concrete examples (use cases) described in Scribble. There are 29 divided

26 N. Yoshida et al.

into 11: the last section treats fairly complex examples from real world financial
protocols. Many examples were obtained from his industry partners working in
financial IT, which became valuable sources to not only implement Scribble but
also extend the original theory [22]. For example, the work on exceptions [6],
subsessions [10], dynamic multiroles [11] and asynchronous messaging optimisa-
tion [30] directly tackled the examples in [17]. Their results are reflected in the
subsequent designs and updates of Scribble, as discussed in the next section.
From the list of the applications in Sect.2.2, we can observe that Kohei had a
clear vision how Scribble should be used in future: in 2007, Kohei had even not
known the Ocean Observatories Initiative [34] (cf. Sect. 3), but he had already an
idea to apply Scribble for dynamic verification via generations of FSAs. About
code generation, the Scribble team is currently working for generating type-safe,
deadlock-free parallel algorithm implementations from Scribble (cf. Sect.5). A
conversation model mentioned in Sect.2.1 is formalised as the DBC of MPST's
in [5] and its application to Scribble is on-going (cf. Logical Annotations in
Sect. 6). The rest of the paper explains how the Scribble team has been working
and developing Scribble, following his initial predictions.

3 Scribble

This section first describes the stages of the Scribble framework, explaining
the design challenges of applying session types to practice and recent research
threads motivated by this work. We then illustrate an example protocol specifi-
cation in the Scribble language, and list a couple of extensions.

3.1 The Scribble Framework

The Scribble project [18,19,37,41] is a collaboration between session types
researchers and architects and engineers from industry [26, 38] towards the appli-
cation of session types principles and techniques to current engineering practices.
Building on the theory of multiparty session types [3,22] (MPST), this ongoing
work tackles the challenges of adapting and implementing session types to meet
real-world usage requirements. This section gives an overview of the current ver-
sion of the Scribble framework for the MPST-based development of distributed
software. In the context of Scribble, we use the terms session and conversation
interchangeably.

The main elements of the Scribble framework, outlined in Fig.1, are as
follows.

The Scribble Language is a platform-independent description language for the
specification of asynchronous, multiparty message passing protocols [18,19,
40]. Scribble may be used to specify protocols from both the global (neutral)
perspective and the local perspective of a particular participant (abstracted
as a role); at heart, the Scribble language is an engineering incarnation of
the notation for global and local types in formal MPST systems and their
correctness conditions.

The Scribble Protocol Language 27

Global Protocol

Specification
(Scribble) Projection
3
Local Local Local
Protocol Protocol Protocol
[
Implementation (Python, Java, ...)
1
Endpoint Endpoint Endpoint
Dynamic Code Code Code
Verification Conversation Conversation Conversation|
Runtime Runtime Runtime
— Monitor Monitor Monitor

Safe Network

Fig. 1. The Scribble framework for distributed software development Scribble method-
ology from global specification to local runtime verification

The Scribble Conversation API provides the local communication operations
for implementing the endpoint programs for each role natively in various
mainstream languages. The current version of Scribble supports Java [37] and
Python [26] Conversation APIs with both standard socket-like and event-
driven interfaces for initiating and conducting conversations.

The Scribble Runtime is a local platform library for executing Scribble endpoint
programs written using the Conversation API. The Runtime includes a con-
versation monitoring service for dynamically verifying [4,24,31] the interac-
tions performed by the endpoint against the local protocol for its role in
the conversation. In addition to internal monitors at the endpoints, Scribble
also supports the deployment of external conversation monitors within the
network [9].

3.2 Development Challenges of Scribble

The Scribble development workflow starts from the explicit specification of the
required global protocols, similarly to the existing, informally applied approaches
based on prose documentation, such as Internet protocol RFCs, and common
graphical notations, such as UML and sequence diagrams. Designing an engineer-
ing language from the formal basis of MPST types faces the following
challenges.

— To developers, Scribble is a new language to be learned and understood,
particularly since most developers are not accustomed to formal protocol

28

N. Yoshida et al.

specification in this manner. For this reason, we have worked closely with
our collaborators towards making Scribble protocols easy to read, write and
maintain. Aside from the core interaction constructs that are grounded in the
original theory, Scribble features extensions for the practical engineering and
maintenance of protocol specifications, such as subprotocol abstraction and
parameterised protocols [18] (demonstrated in the examples below).

As a development step (as opposed to a higher-level documentation step),
developers face similar coding challenges in writing formal protocol descrip-
tions as in the subsequent implementation steps. IDE support for Scribble
and integration with other development tools, such as the Java-based tooling
in [37], are thus important for developer uptake.

Although session types have proven to be sufficiently expressive for the spec-
ification of protocols in a variety of domains, including standard Internet
applications [23], parallel algorithms [33] and Web services [8], the evaluation
of Scribble through our collaboration use cases has motivated the development
of new multiparty session type constructs, such as asynchronous conversation
interrupts [24] (demonstrated below) and subsession nesting [10], which were
not supported by the pre-existing theory.

The Scribble framework combines the elements discussed before to promote
the MPST-based methodology for distributed software development depicted

in

Fig. 1. Scribble resources are available from the project home pages [37,41].

3.3 Online Travel Agency Example

To demonstrate Scribble as a multiparty session types language, Fig. 2 lists the
Scribble specification of the global protocol for an Online Travel Agency example

(a

use case from [1]).
In this example, there are three interacting roles, named Customer, Agency

and Service, that establish a session.

1.

Customer is planning a trip through a Travel Agency. Each query from Cus-
tomer includes the journey details, abstracted as a message of type String,
to which the Agency answers with the price of the journey, abstracted as a
message of type Int. This query is repeated until Customer decides either
ACCEPT or REJECT the quote.

. If Customer decides to ACCEPT a travel quote from Agency, Agency relays

a confirmation to Service, which represents the transport service being bro-
kered by Agency. Then Customer and Service exchanges the address details
(a message of type String) and the ticket dispatch date (a message of type
Date).

If Customer decides to REJECT a travel quote from Agency, Agency sends a
termination signal to Service to end the interaction.

The Scribble Protocol Language 29

module TravelAgency;

1
2
3 type <py> "types.IntType" from "types.py" as Int;

4 type <py> "types.StringType" from "types.py" as String;
5 type <py> "travelagency.Date" from "Date.py" as Date;
6

7

8

9

global protocol BookJourney(role Customer as C,
role Agency as A, role Service as S) {

rec LOOP {
10 choice at C {
11 query(journey:String) from C to A;
12 price(Int) from A to C;
13 info(String) from A to S;
14 continue LOOP;
15 } or {
16 choice at C {
17 ACCEPT() from C to A;
18 ACCEPT() from A to S;
19 Address(String) from C to S;
20 (Date) from S to C;
21 } or {
22 REJECT() from C to A;
23 REJECT() from A to S;
24 + + 1} }

Fig. 2. A Scribble specification of a global protocol for the Online Travel Agency use
case

The Scribble is read as follows:

— The first line declares the Scribble module name. Although this example is
self-contained within a single module, Scribble code may be organised into a
conventional hierarchy of packages and modules. Importing payload type and
protocol declarations between modules is useful for factoring out libraries of
common payload types and subprotocols.

— The design of the Scribble language focuses on the specification of proto-
col structures. With regards to the payload data that may be carried in the
exchanged messages, Scribble is designed to work orthogonally with external
message format specifications and data types from other languages. The type
declaration on Line 3 a payload type using the Python data format, specifi-
cally the IntType definition from the file types.py, aliased as Int within this
Scribble module. Data type formats from other languages, as well as XML
or various IDL based message formats, may be used similarly. A single pro-
tocol definition may feature a mixture of message types defined by different
formats.

— Lines 7-8 the signature of a global protocol called BookJourney. This proto-
col involves three roles, Customer, Agency and Service, aliased as C, A and 8,
respectively.

30 N. Yoshida et al.

— Lines 9-24 the interaction structure of the protocol. Line 11 a basic message
passing action. query(journey:String) is a message signature for a message
with header (label) journey, carrying one payload element within the paren-
theses. A payload element is an (optional) annotation followed by a colon and
the payload type, e.g. journey details are recorded in a String. This message
is to be dispatched by C to be received by A.

— The outermost construct of the protocol body is the rec block with label Loop.
Similarly to labelled blocks in e.g. Java, the occurrence of a continue for the
same label within the block causes the flow of the protocol to return to the
start of the block. The first choice within the rec, decided by C, is to obtain
another quote (lines 11-14: send A the query details, receive a price, and
continue back to the start), or to accept/reject a quote. The latter is given
by the inner choice, with C sending ACCEPT to A in the first case and REJECT in
the second. In the case of ACCEPT (lines 17-20), A forwards the confirmation to
S before € and S exchange Address and Date messages; otherwise, A forwards
the REJECT to S instead.

3.4 Scribble Projection and Verification

After the specification of the global protocols, the next step of the Scribble
framework (Fig. 1) is the projection of local protocols from the global protocol
for each role. In comparison to languages implemented from binary session types,
such as Sing# [16] and SJ [23], this additional step is required to derive local
specifications for the endpoint implementation of each role process from the cen-
tral global protocol specification. Scribble projection follows the standard MPST
algorithmic projections, with extensions for the additional features of Scribble,
such as the subprotocols and conversation interrupts mentioned above [40].

Figure 3 lists the local protocol generated by the Scribble tools [41] as the
projection of the BookJourney for the Customer role, as identified in the local pro-
tocol. signature. Projection preserves the dependencies of the global protocol,
such as the payload types used, and the core interaction structures in which the
target role is involved, e.g. the rec and choice blocks, as well as payload anno-
tations and similar protocol details. The well-formedness conditions on global
protocols allow the projection to safely discard all message actions not involving
C (i.e. messages between A and S).

As for the binary session languages cited above, it is possible to statically
type check role implementations written in endpoint languages with appropriate
MPST programming primitives against the local protocols following the standard
MPST theory: if the endpoint program for every role is correct, then the cor-
rectness of the whole multiparty system is guaranteed. The endpoint languages
used in the Scribble industry projects, however, are mainstream engineering lan-
guages like Java and Python that lack the features, such as first-class communi-
cation channels with linear resource typing or object alias restriction, required
to make static session typing feasible. In Scribble practice, the Conversation API
(see Sect. 3.5) is used to perform the relevant conversation operations natively
in these languages, making static MPST type checking intractable. In general,

The Scribble Protocol Language 31

1 module TravelAgency_BookJourney_Customer;

2

3 type <py> "types.IntType" from "types.py" as Int;

4 type <py> "types.StringType" from "types.py" as String;

5 type <py> "travelagency.Date" from "Date.py" as Date;

6

7 local protocol BookJourney_Customer at Customer

8 (role Customer as C, role Agency as A,

9 role Service as S) { N (String)

10 rec LOOP { ey R AIREJECTO)
11 choice at C { OOé—’@
12 query(journey:String) to A; A?price(Int) \

13 price(Int) from A; AYACCEPTO)
14 continue LOOP;

15 }or { Q

16 choice at C { S!Address(String)
17 ACCEPT() to A;

18 Address(String) to S; ()

19 (Date) from S; "

” } or { S?(Date)

21 REJECT() to A;

22 }}}} @

Fig. 3. (a) Scribble local protocol for Customer projected from the BookJourney global
protocol, and (b) the FSA generated from the local protocol by the Scribble conversa-
tion monitor

distributed systems are often implemented in a mixture of languages, includ-
ing dynamically typed languages (e.g. Python), and techniques such as event-
driven programming, for which the static verification of strong safety properties
is acknowledged to be difficult.

For these reasons, the Scribble framework, differently to the above session lan-
guages, is designed to focus on dynamic verification of endpoint behaviour [24].
Endpoint monitoring by the local Conversation Runtime is performed by con-
verting local protocols to communicating finite state automata, for which the
accepted languages correspond to the I/O action traces permitted by the pro-
tocol. The conversion from syntactic Scribble local protocols to FSA extends
the algorithm in [12] to support subprotocols and interrupts, and to use nested
FSM (Finite State Machine) for parallel conversation threads to avoid the poten-
tial state explosion from constructing their product. Figure 3 depicts the FSA
generated by the monitor from the Customer local protocol. The FSA encodes
the control flow of the protocol, with transitions corresponding to the valid 1/O
actions that ¢ may perform at each state of the protocol.

Analogously to the static typing scenario, if every endpoint is monitored to
be correct, the same communication-safety property is guaranteed [4]. In addi-
tion, since the monitor verifies both messages dispatched by the endpoint into
the network and the messages inbound to the endpoint from the network, each
conversation monitor is able to protect the local endpoint within an untrusted

32 N. Yoshida et al.

network and vice versa. The internal monitors embedded into each Conversa-
tion runtime function perform synchronous monitoring (the actions of the end-
point are verified synchronously as they are performed); Scribble supports mixed
configurations between internal endpoint monitors and asynchronous, external
monitors deployed within the network (as well as statically verified endpoints,
where possible) [9].

3.5 Conversation API

This subsection describes Python endpoint implementation of Scribble. The
Python conversation API offers a high level interface for safe conversation pro-
gramming and maps basic session calculus primitives to lower-level communi-
cation actions on a concrete transport. In short, the API provides functionality
for (1) session initiation and joining and (2) basic send/receive. Figure4 illus-
trates the conversation API by presenting an implementation in Python of the
Customer role.

Conversation Initiation. Line 5 initialises a new session, using the class named
Conversation. When creating a session, we specify the protocol name BookJourney
and a configuration file, holding the network addresses for all roles.
Conversation.create creates a fresh conversation id and sends an invitation
message for each role specified in the protocol. The invitation mechanism is
needed to map the role names to concrete addressable entities on the network
and to propagate this mapping to all participants. In Line 6, after initialisation,
the process joins (joins) the session as Customer role. By conv. join, it returns a

1 class Customer:

2 customer, A, S = [’customer’, ’agency’, ’service’]
3

4 def book_journey(self):

5 conv = Conversation.create(’BookJourney’, ’config.yml’)
6 with conv.join(customer, "\\address...") as c:

7 for place in self.destinationms:

8 c.send(A, ’query’, place)

9 msg = c.recv(A)

10

11 if msg.value<=self.budget()

12 c.send(A, ’ACCEPT’)

13 c.send(A, ’Address’, ’SE2 6UF’)

14 date = c.recv(S)

15 self.save_the_day(date)

16 return

17

18 c.send(A, ’REJECT’)

Fig. 4. Python implementation of Customer role

The Scribble Protocol Language 33

communication channel c to be used for the message exchange during the session.
The explicit use of a conversation channel c in the program makes it possible
to build the application logic with a clear understanding on the session control
flow.

The next part of the code iterates over a list of travel destinations, following
the interaction flow specified in the BookJourney protocol in Fig. 3. In each itera-
tion Customer sends a message to A (line 8) and then it receives a reply (line 9)
from A with the price for the booking. Then Customer can end the session in two
ways: (1) tf the price for a place (msg.value) is acceptable (line 11), Customer
completes the booking by sending an ACCEPT message (line 12) to 4; (2) if none
of the prices are good, Customer sends REJECT message (line 18) to A and the
session ends.

Conversation Message Passing. The primitives for sending and receiving
specify the name of the sender and receiver role respectively. All messages are
sent or received as a tuple of an operation and a payload, accessible via the
message attributes op and value. The API does not mandate how the operation
field should be treated and allows the runtime freedom to interpret the operation
name in various ways, e.g. as a plain message label, an RMI method name, etc..
A syntactic sugar such as an automatic dispatch on method calls based on the
message operation is possible. The sending operation is asynchronous, meaning
that a basic send does not block on the corresponding receive; however, the basic
receive does block until the complete message has been received.

4 Extensions of Scribble: Subprotocols and Interrupts

The following gives two further examples to demonstrate additional features of
Scribble motivated by application in practice.

The first example demonstrates the abstraction of protocol declarations as
subprotocols, and the related feature of protocol declarations parameterised on
payload types and message signatures. Figureb gives an alternative specifica-
tion for the Travel Agency example that is decomposed into four smaller global
protocols.

ServiceCall specifies a generic call-return pattern between a Client and a Server.
The message signatures of the two communications are abstracted by the Arg
and Res parameters, declared by the sig keyword inside the angle brackets
of the protocol signature.

Forward specifies a generic forwarding pattern between three roles, from X to Y
and then Y to Z. The intent is for Y to forward a copy of the same message,
so the signatures of the two communications are abstracted by the same M
parameter.

CustomerOptions is the main protocol in this version of the Travel Agency spec-
ification, with the same signature as BookJourney in Fig. 2. It starts with the
choice of C to get another quote, to accept a quote or reject. The main inter-
actions are now built by composing instances of the Forward and ServiceCall

34

10
11
12
13

14

16
17
18
19
20
21
22
23

24

26
27
28

29

N. Yoshida et al.

global protocol CustomerOptions
(role Customer as C, role Agency as A, role Service as S) {
choice at C {
do GetQuote(C as Customer, A as Agency);
}or {
do Forward<ACCEPT()>(C as X, A as Y, S as Z);
do ServiceCall<Address(String), (Date)>(C as Client, S as Server);
}or {
do Forward<REJECT()>(C as X, A as Y, S as Z);
+}

global protocol GetQuote
(role Customer as C, role Agency as A, role Service as S) {
do ServiceCall<query(String), price(Int)>
(C as Client, A as Server);
info(String) from A to S;
do CustomerOptions(C as Customer, A as Agency, S as Service);

}

global protocol ServiceCall<sig Arg, sig Res>
(role Client as C, role Server as S) {
Arg from C to S;
Res from S to C;
}

global protocol Forward<sig M>(role X, role Y, role Z) {
M from X to Y;
M from Y to Z;

}

Fig. 5. Decomposition of the BookJourney global protocol using subprotocols with
message signature parameters

subprotocols. For example, do Forward<ACCEPT()>(C as X, A as Y, S as Z)
on Line 6 states that the Forward protocol should be performed with the
target roles X, Y and Z played by C, A and S, respectively, and ACCEPT() as the
concrete message signature in place of the M parameter; C sends ACCEPT to A,
who forwards it to 8. After this, C and S engage in a ServiceCall subprotocol
to exchange the Address and Date messages.

GetQuote performs the quote query case of the choice between C and A, and loops

back to the overall start of the protocol. The quote exchange is specified by
instantiating the ServiceCall with the appropriate role and message signa-
ture parameters. To return to the start of the protocol, we recursively do
the main protocol CustomerOptions. The loop is thus specified by the mutual
recursion between these two protocol declarations.

The final example demonstrates the Scribble feature for asynchronously

interruptible conversations. Unlike the previous features, which involve the

The Scribble Protocol Language 35

global protocol InterruptServiceCall(role Client as C, role Server as S) {
Arg from C to S;
interruptible {
Res from S to C;
} with {
cancel() by C;
3

N o o oA W N =

Fig. 6. Revision of the ServiceCall global protocol with a request cancel interrupt

integration of session types with useful, general programming language features
(code abstraction and parameterisation), conversation interrupts require exten-
sions to the core design of session types [24]. The motivation for interrupts
comes from our collaboration use cases, featuring patterns such as asynchro-
nously interruptible streams and interaction timeouts [26], which could not be
directly expressed in the standard MPST formulations.

Figure 6 gives a very simple revision of the ServiceCall protocol that allows
the Client to cancel the call by interrupting the Server’s reply. A key design
point is that interruptible conversation segments do not incur any additional
synchronisation over the explicit messaging actions (i.e. interrupts are them-
selves communicated as regular messages). Due to asynchrony between C and 8,
the interrupt can cause various communication race conditions to arise, e.g. C
sending cancel before S processes the initial Arg or after S has already dispatched
the Res. The Scribble Runtime is designed to handle these issues by tracking the
progress of the local endpoint through the protocol (as part of the monitoring
service). This allows the Runtime to resolve the communication races by dis-
carding messages that are no longer relevant due to the local role raising an
interrupt or receiving an interrupt message from another role.

5 Extensions of Scribble: Parameterised Scribble

This section presents Parameterised Scribble (Pabble) [32]. Pabble extends
Scribble roles with indices, such that each role can represent multiple Scrib-
ble participants, and each of the participants can be addressed by its index.
This extension is a result of applying Scribble to parallel programming, where
programs are designed in a way that they can be scaled up to any number of par-
ticipants, depending on parameters supplied at execution time. Figure7 shows
a simple Map-Reduce protocol in Pabble. This protocol distributes data from
one participant (Worker[0]) to all other participants (Workers, which is a group
role shorthand for Worker[0..N1), followed by a parallel reduction on the Sum
operation. The results are sent to Worker [0].

Parallel programming with Pabble starts by defining the global protocol.
The global protocol is projected into endpoint protocols. However, in contrast
to Scribble endpoint protocols, where a single global protocol will be projected to
the same number of endpoint protocols as the number of participants, a Pabble

36 N. Yoshida et al.

global protocol MapReduce(role Worker[0..N], group Workers={Worker[0..N]}){
rec MOREDATA {
Map(int) from Worker[0] to Workers;
Sum(int) from Workers to Worker[0];
continue MOREDATA;
}}

o v ok W N =

Fig. 7. MapReduce protocol in Pabble.

1 int main(int argc, char *argv([])

2 o

3 int rank, size;

4 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

5 MPI_Comm_size(MPI_COMM_WORLD, &size); /* = N+1 */

6 // ... Setting up of data and custom communicators ...
7 MPI_Init(&argc, &argv);

8 while (/* moreData() */) {

9 MPI_Scatter (sndbufO, sndcntO, MPI_INT,

10 rcvbufO, rcvcntO, MPI_INT,

11 0/*Worker[0]*/, Workers_COMM) ;

12 MPI_Reduce(sndbufi, rcvbufl, countl,

13 MPI_INT, MPI_SUM, O0/*Worker[0]*/, Workers_COMM) ;
14 }

15 MPI_Finalize();

16 // ... Freeing memory and destroying custom communicators ...
17 return EXIT_SUCCESS;

18 }

Fig. 8. MapReduce protocol in MPI.

global protocol will convert to a single endpoint protocol. The endpoint protocol
represents multiple endpoints grouped together. The details of the projection
algorithm are explained in [32].

Then endpoint protocols are used to generate MPI (Message-Passing Inter-
face) code, which makes up communication parts of the parallel application.
An example MPI backbone c