
A
badi · Lluch Lafuente (E

ds.)
Trustw

orthy Global Com
puting

Martín Abadi
Alberto Lluch Lafuente (Eds.)

LN
CS

 8
35

8

8th International Symposium, TGC 2013
Buenos Aires, Argentina, August 30–31, 2013
Revised Selected Papers

Trustworthy
Global Computing

TGC

2013

Lecture Notes in Computer Science 8358

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

For further volumes:
http://www.springer.com/series/7407

http://www.springer.com/series/7407

Martín Abadi • Alberto Lluch Lafuente (Eds.)

Trustworthy
Global Computing

8th International Symposium, TGC 2013
Buenos Aires, Argentina, August 30–31, 2013
Revised Selected Papers

123

Editors
Martín Abadi
Microsoft Research
Mountain View, CA
USA

Alberto Lluch Lafuente
IMT Institute for Advanced Studies
Lucca
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-319-05118-5 ISBN 978-3-319-05119-2 (eBook)
DOI 10.1007/978-3-319-05119-2
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014933391

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of TGC 2013, the 8th International Symposium
on Trustworthy Global Computing. The symposium was held in Buenos Aires,
Argentina, during August 30–31, 2013. It was co-located with CONCUR, QEST, and
FORMATS, as part of the Buenos Aires Concurrency and Dependability Week.
Informal pre-proceedings were available in electronic form to the participants. The
papers in this volume have been further improved by the authors, in response to
helpful feedback received at the symposium.

The Symposium on Trustworthy Global Computing is an international annual
venue dedicated to safe and reliable computation in the so-called global computers,
i.e., those computational abstractions emerging in large-scale infrastructures such as
service-oriented architectures, autonomic systems, and cloud computing systems. It
focuses on frameworks, tools, algorithms, and protocols for open-ended, large-scale
systems and applications, and on rigorous reasoning about their behavior and prop-
erties. The underlying models of computation incorporate code and data mobility over
distributed networks that connect heterogeneous devices, often with dynamically
changing topologies.

The first TGC event took place in Edinburgh in 2005, with the co-sponsorship of
IFIP TC-2, as part of ETAPS 2005. TGC 2005 was the evolution of the previous Global
Computing I workshops held in Rovereto in 2003 and 2004 (see LNCS vol. 2874) as
well as of the workshops on Foundation of Global Computing held as satellite events of
ICALP and CONCUR (see ENTCS vol. 85). Four editions of TGC were co-located
with the reviews of the EU-funded projects AEOLUS, MOBIUS, and SENSORIA
within the FP6 initiative. They were held in Lucca, Italy (TGC 2006, LNCS vol. 4661);
in Sophia Antipolis, France (TGC 2007, LNCS vol. 4912); in Barcelona, Spain (TGC
2008, LNCS vol. 5474); and in Munich, Germany (TGC 2010, LNCS vol. 6084).
Further editions of TGC were held in Aachen, Germany (TGC 2011, LNCS vol. 7173)
and in Newcastle upon Tyne, UK (TGC 2012, LNCS vol. 8191).

TGC 2013 solicited contributions in all areas of global computing, including (but
not limited to) theories, languages, models, and algorithms; language concepts and
abstraction mechanisms; security, trust, privacy, and reliability; resource usage and
information flow policies; software development and software principles; model
checkers, theorem provers, and static analyzers.

TGC 2013 carried out a fruitful collaboration with CONCUR 2013. Concurrent
submissions to CONCUR and TGC were allowed, with the reviewing schedule of
TGC slightly delayed with respect of that of CONCUR. Reviews were shared between
CONCUR and TGC. Submissions accepted by CONCUR were automatically with-
drawn from TGC. In all, 18 papers were concurrently submitted to CONCUR and
TGC, out of which four were accepted by CONCUR and 14 were subject to further
evaluation by TGC. Several of the papers rejected by CONCUR were found suitable
for TGC, in part because of differences in evaluation criteria, and in part because the

timeline of TGC gave authors several additional months to produce final versions of
their work.

In addition to those concurrent submissions, TGC 2013 received 15 TGC-only
submissions. In order to guarantee the fairness and quality of the selection process,
each submission received at least three reviews.

The Program Committee selected 15 papers to be included in this volume and be
presented at the symposium. The program was structured in sessions named
‘‘Security,’’ ‘‘Pi-calculus,’’ ‘‘Information Flow,’’ ‘‘Models,’’ ‘‘Specifications, and
Proofs,’’ and ‘‘Quantitative Analysis,’’ chaired by Ugo Montanari, Mohammad Reza
Mousavi, Hernán Melgratti, and Joost-Pieter Katoen.

Additionally, the program included three invited lectures:

– Luca de Alfaro (UC Santa Cruz, USA)
– Nobuko Yoshida (Imperial College London, UK)
– Jane Hillston (University of Edinburgh, UK)

All the invited speakers were encouraged to contribute a paper related to their
lectures for these proceedings.

We would like to thank the Steering Committee of TGC for inviting us to chair the
conference; the Program Committee members and external referees, for their detailed
reports and the stimulating discussions during the review phase; the authors of sub-
mitted papers, the invited speakers, the session chairs, and the attendees, for con-
tributing to the success of the event. We are also grateful to the providers of the
EasyChair system, which was used to manage the submissions; to Microsoft Research,
for sponsoring the event; and to Hernán Melgratti, Pedro D’Argenio, and the rest of
the organizers of the Buenos Aires Concurrency and Dependability Week.

December 2013 Martín Abadi
Alberto Lluch Lafuente

VI Preface

Organization

Steering Committee

Gilles Barthe IMDEA Software, Madrid, Spain
Rocco De Nicola IMT Institute for Advanced Studies Lucca, Italy
Christos Kaklamanis University of Patras, Greece
Ugo Montanari University of Pisa, Italy
Davide Sangiorgi University of Bologna, Italy
Don Sannella University of Edinburgh, UK
Vladimiro Sassone University of Southampton, UK
Martin Wirsing LMU University of Munich, Germany

Program Committee Chairs

Martín Abadi Microsoft Research and UC Santa Cruz, USA
Alberto Lluch Lafuente IMT Institute for Advanced Studies Lucca, Italy

Program Committee

Gul Agha University of Illinois at Urbana-Champaign, USA
Myrto Arapinis University of Birmingham, UK
Luís Caires Caires Universidade Nova de Lisboa, Portugal
Rocco De Nicola IMT Institute for Advanced Studies Lucca, Italy
José Luiz Fiadeiro Royal Holloway, University of London, UK
Andy Gordon Microsoft Research and University of Edinburgh, UK
Radha Jagadeesan DePaul University, USA
Matteo Maffei Saarland University, Germany
Sergio Maffeis Imperial College London, UK
Catuscia Palamidessi Inria and École Polytechnique, France
Frank Pfenning Carnegie Mellon University, USA
Sriram Rajamani Microsoft Research, India
Tamara Rezk Inria, France
Alejandro Russo Chalmers University of Technology, Sweden
Davide Sangiorgi University of Bologna, Italy
Carolyn Talcott SRI International, USA
Emilio Tuosto University of Leicester, UK
Sebastian Uchitel University of Buenos Aires and Imperial College London,

Argentina/UK
Martin Wirsing LMU University of Munich, Germany

Additional Reviewers

Castellani, Ilaria
Charalambides, Minas
Giachino, Elena
Hennessy, Matthew

Mohsen, Rabih
Vandin, Andrea
Viswanathan, Mahesh

VIII Organization

Contents

Invited Papers

Content-Driven Reputation for Collaborative Systems 3
Luca de Alfaro and Bo Adler

Challenges for Quantitative Analysis of Collective Adaptive Systems 14
Jane Hillston

The Scribble Protocol Language . 22
Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng

Security

Dynamic Measurement and Protected Execution: Model and Analysis 45
Shiwei Xu, Ian Batten, and Mark Ryan

Security Correctness for Secure Nested Transactions. 64
Dominic Duggan and Ye Wu

p-Calculus

Types for Resources in w-calculi . 83
Hans Hüttel

A Sorted Semantic Framework for Applied Process Calculi
(Extended Abstract) . 103

Johannes Borgström, Ramūnas Gutkovas, Joachim Parrow,
Björn Victor, and Johannes Åman Pohjola

Timed p-Calculus . 119
Neda Saeedloei and Gopal Gupta

Towards Static Deadlock Resolution in the p-Calculus 136
Marco Giunti and António Ravara

Information Flow

Fine-Grained and Coarse-Grained Reactive Noninterference 159
Pejman Attar and Ilaria Castellani

Information Flow Analysis for Valued-Indexed Data Security Compartments . . . 180
Luísa Lourenço and Luís Caires

http://dx.doi.org/10.1007/978-3-319-05119-2_1
http://dx.doi.org/10.1007/978-3-319-05119-2_2
http://dx.doi.org/10.1007/978-3-319-05119-2_3
http://dx.doi.org/10.1007/978-3-319-05119-2_4
http://dx.doi.org/10.1007/978-3-319-05119-2_5
http://dx.doi.org/10.1007/978-3-319-05119-2_6
http://dx.doi.org/10.1007/978-3-319-05119-2_6
http://dx.doi.org/10.1007/978-3-319-05119-2_7
http://dx.doi.org/10.1007/978-3-319-05119-2_7
http://dx.doi.org/10.1007/978-3-319-05119-2_8
http://dx.doi.org/10.1007/978-3-319-05119-2_8
http://dx.doi.org/10.1007/978-3-319-05119-2_9
http://dx.doi.org/10.1007/978-3-319-05119-2_9
http://dx.doi.org/10.1007/978-3-319-05119-2_10
http://dx.doi.org/10.1007/978-3-319-05119-2_11

A Library for Removing Cache-Based Attacks in Concurrent
Information Flow Systems . 199

Pablo Buiras, Amit Levy, Deian Stefan, Alejandro Russo,
and David Mazières

Models, Specifications, and Proofs

Specification of Asynchronous Component Systems
with Modal I/O-Petri Nets . 219

Serge Haddad, Rolf Hennicker, and Mikael H. Møller

A Formal Model for the Deferred Update Replication Technique 235
Andrea Corradini, Leila Ribeiro, Fernando Dotti,
and Odorico Mendizabal

Studying Operational Models of Relaxed Concurrency 254
Gustavo Petri

Certificates and Separation Logic . 273
Martin Nordio, Cristiano Calcagno, and Bertrand Meyer

Quantitative Analysis

On-the-fly Fast Mean-Field Model-Checking . 297
Diego Latella, Michele Loreti, and Mieke Massink

Group-by-Group Probabilistic Bisimilarities and Their Logical
Characterizations . 315

Marco Bernardo, Rocco De Nicola, and Michele Loreti

Author Index . 331

X Contents

http://dx.doi.org/10.1007/978-3-319-05119-2_12
http://dx.doi.org/10.1007/978-3-319-05119-2_12
http://dx.doi.org/10.1007/978-3-319-05119-2_13
http://dx.doi.org/10.1007/978-3-319-05119-2_13
http://dx.doi.org/10.1007/978-3-319-05119-2_14
http://dx.doi.org/10.1007/978-3-319-05119-2_15
http://dx.doi.org/10.1007/978-3-319-05119-2_16
http://dx.doi.org/10.1007/978-3-319-05119-2_17
http://dx.doi.org/10.1007/978-3-319-05119-2_18
http://dx.doi.org/10.1007/978-3-319-05119-2_18

Invited Papers

Content-Driven Reputation
for Collaborative Systems

Luca de Alfaro1(B) and Bo Adler2

1 Department of Computer Science, University of California, Santa Cruz, USA
2 Facebook Inc., Menlo Park, USA

luca@ucsc.edu

Abstract. We consider collaborative editing systems in which users
contribute to a set of documents, so that each document evolves as
a sequence of versions. We describe a general technique for endowing
such collaborative systems with a notion of content-driven reputation,
in which users gain or lose reputation according to the quality of their
contributions, rather than according to explicit feedback they give on
one another. We show that content-driven reputation systems can be
obtained by embedding the document versions in a metric space with a
pseudometric that is both effort preserving (simple changes lead to close
versions) and outcome preserving (versions that users perceive as sim-
ilar are close). The quality of each user contribution can be measured
on the basis of the pseudometric distances between appropriately cho-
sen versions. This leads to content-driven reputation systems where users
who provide contributions of positive quality gain reputation, while those
who provide contributions of negative quality lose reputation. In the pres-
ence of notification schemes that prevent the formation of “dark corners”
where closed groups of users can collaborate without outside interference,
these content-driven reputation systems can be made resistent to a wide
range of attacks, including attacks based on fake identities or specially-
crafted edit schemes.

1 Introduction

In many collaborative systems, users can edit or modify the documents in the
system, giving rise to a sequence of evolving versions for each document. We
call such systems collaborative editing systems. The most prominent example
of collaborative editing systems is wikis, but other systems can be similarly
described. For instance, in Google Maps users can edit business listings, giving
rise to a series of versions for the listings’ content. A non-textual example consists
in the process of uploading and revising 3D models to the Trimble 3D Warehouse
[3]. Open software repositories and collaboration on shared documents are other
examples.

We describe a general technique for developing content-driven reputation sys-
tems for collaborative editing systems. The idea behind content-driven reputa-
tion is simple: judge users by their actions, rather than by the word of other users.

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 3–13, 2014.
DOI: 10.1007/978-3-319-05119-2 1, c© Springer International Publishing Switzerland 2014

4 L. de Alfaro and B. Adler

In a content-driven reputation system, users gain or lose reputation according to
how their contributions fare: users who contribute content that is preserved, or
built-upon, by later users gain reputation; users whose work is undone lose rep-
utation. Thus, content-driven reputation systems do not require users to express
judgements on one another.

Reputation systems for collaboration provide an incentive for users to con-
tribute constructively to the system. The power of reputation in motivating users
is evident in many sites, such as Stack Overflow [4]. Another use of reputation is
to help predict the future behavior of users; the predictive power of reputation
has been demonstrated in the Wikipedia in [7,11]. Indeed, each time we use rep-
utation to grant privileges to users, such as the ability to perform specific system
actions, we trust in part the predictive power of reputation: if we did not believe
that users who contributed greatly in the past are likely to continue to provide
useful contributions, there would be little reason to grant such users additional
privileges. A third use of reputation is to estimate content quality and identify
vandalism [6,8,9].

Content-driven reputation systems have several advantages over systems that
rely primarily on user feedback [7]. User-generated rating information can be
quite sparse, especially in young editing systems. Gathering the feedback and
ratings requires the implementation of user interfaces that are secondary to the
goal of collaboration, and can be distracting or ineffective. Content-driven repu-
tation comes “for free”: it can be computed from content evolution information
that is always present, without need for additional feedback or rating mecha-
nisms. In content-driven reputation systems every user is turned into an active
evaluator of other users’ work, by the simple act of contributing to the system.
By deriving the reputation signals from content evolution, rather than separate
ratings, content-driven reputation prevents schemes such as badmouthing: a user
cannot keep a contribution, while giving poor feedback on its author. Indeed,
content-driven reputation systems can be made resistant to broad categories of
attacks [11].

To endow a collaborative editing system with a notion of content-driven rep-
utation, it suffices to provide a pseudometric on the space of document versions.
A pseudometric is a function that satisfies the same axioms as a distance (pos-
itivity, symmetry, triangular inequality), except that distinct elements of the
metric space (distinct versions, in our case) can have distance 0. The pseudo-
metric between versions should satisfy two natural requirements:

– Outcome preserving. If two versions look similar to users, the pseudometric
should consider them close. In particular, the pseudometric should assign
distance 0 to versions that look identical or that are functionally identical.

– Effort preserving. If a user can transform one version of a document into
another via a simple transformation, the pseudometric should consider the
two versions close.

These two requirements are stated in an approximate way, and meeting
them perfectly in a concrete collaborative editing system may not be possible.

Content-Driven Reputation for Collaborative Systems 5

However, the closer we get to satisfying these requirements, the higher-quality
and harder-to-game the resulting reputation system will be.

For wikis, the outcome-preserving requirement means that the version pseudo-
metric should be insensitive to differences in markup language that do not alter
the way a wiki page is rendered. The effort-preserving requirement means that
text that is moved from one place to the other in a document should yield a
smaller pseudometric distance than separate, unrelated deletions and insertions
of text. Pseudometrics suited to wikis have been analyzed in depth in [5].

Devising a suitable pseudometric is not necessarily trivial. Once a suitable
pseudometric is available, however, we can use it to measure the quality of edits,
by measuring how much the edits are preserved in future versions of the doc-
uments. We attribute positive quality to edits that bring the document closer
to how it will be in the future, and negative quality to edits that make the
document more different from how it will be in the future (these edits are thus
reverted). This yields the foundation of the content-driven reputation system:
users whose edits have positive quality gain reputation, while users whose edits
have negative quality lose reputation.

We present and justify in detail the connection between version pseudometric
distance and edit quality, and we describe how the resulting reputation system
can be made resistant to broad types of attacks. The results we present are a
synthesis of results from [5,7,11]. In those papers, the results were presented in
the special context of text documents such as wikis. Here, we put the results
in a general context, removing side-issues and complications that are particular
to wikis, and showing how content-driven reputation systems can be adapted to
broad classes of collaborative editing systems.

2 Collaborative Editing Systems

A collaborative editing system (CES) consists of a set D = {D1,D2,D3, . . .}
of documents, where each document Di ∈ D is composed of a series vi

0, v
i
1, v

i
2, . . . ,

vi
Ni

of versions. The version vi
0 is a null version, indicating that the document

has not been created yet. Each subsequent version vi
k, for 0 < k ≤ Ni, is obtained

from ri
k−1 via an edit ei

k : vi
k−1 → vi

k. We denote by a(v) the author of version v,
and for brevity, we denote by ai

0, a
i
1, a

i
2, . . . the authors a(vi

0), a(vi
1), a(vi

2), In
the following, we will often omit the superscript i denoting the document when
clear from the context, or when not relevant.

We assume that the versions of the documents of the CES belong to a metric
space M = (V, d), where V is the set of all possible versions, and d : V × V ⊥→
IR≥0 is a pseudometric that is symmetrical and satisfies the inequality properties:
for all u, v, w ∈ V ,

d(u, u) = 0
d(u, v) = d(v, u)
d(u, v) + d(v, w) ≤ d(u,w).

6 L. de Alfaro and B. Adler

We ask that d be a pseudometric, rather than a distance, because we do not
require that d(u, v) > 0 for all distinct u, v ∈ V, u ↔= v. Indeed, we will see that
one of the desirable properties of the pseudometric d is that it assigns distance 0
to versions that are indistinguishable to users of the system.

The model of collaborative editing systems was inspired by wikis [7], but
it can be widely applied to collaborative systems. For instance, the editing of
business listings on Google Maps [2] and the editing of SketchUp models in the
Trimble 3D Warehouse [3] can also be modeled as collaborative editing systems.

Wiki pages and their versions directly correspond to the documents and
versions in a CES. As a pseudometric, we can use one of several notions of
edit distance that satisfy the triangular inequality; see [5,18] for an in-depth
discussion.

In the case of Google Maps, a business listing is comprised of various fields
(title, categories, location, phone, and url, among others). Users can create new
listings, and they can edit the values of the fields. The set of documents consists
in the set of all business listings, and the user edits give rise to the sequence of
versions. As pseudometric between fields, we can use the sum of the pseudomet-
rics distances of the individual fields, perhaps using scaling factors that weigh
the relative importance of each field. The physical distance between places on
the Earth surface can be used as metric for locations; suitable distances for
phone numbers and URLs consists in defining d(u, v) = 2−αm, where α > 0 and
m is the length of the longest common prefix of u and v. Distances for sets of
categories are not difficult to define. These distances for the individual fields can
then be combined in an overall distance for entire listings.

In the case of the 3D Warehouse of SketchUp models, the documents cor-
respond to the designs that have been contributed by users. Users can upload
updated versions of the designs, giving rise to the sequence of versions for each
design. We can measure the distance between models by considering the edit
distance between text descriptions of the vertices, planes, surfaces, textures, etc,
comprising the designs.

In the next section, we describe some requirements of the psedumetrics that
lead to useful measures of edit quality.

3 Measuring the Quality of Contributions

As a first step towards a reputation system for contributors to collaborative edit-
ing systems, we consider the problem of measuring the quality of each individual
edit. We follow the idea that the quality of an edit can be measured by how long
the edit survives in the subsequent history of the document [7]. To make this
precise, we measure the quality of an edit ej : vj−1 → vj with the help of two
versions: the previous version vj−1, and a judge version vk, where j < k. We
define the quality q(vj | vj−1, vk) of vj, with respect to judge vk and reference
vj−1, as follows:

q(vj | vj−1, vk) =
d(vj−1, vk) − d(vj , vk)

d(vj−1, vj)
. (1)

Content-Driven Reputation for Collaborative Systems 7

vj-1

vj

vk

d(vj-1 , vk) - d(vj , vk)

d(vj-1 , vj)

Fig. 1. The triangle of versions used to compute edit quality.

To understand this definition, it might help to refer to Fig. 1, and consider
the situation from the point of view of the author ak of vk. Clearly, the author ak

prefers version vk to any previous version of the document, since ak contributed
vk. Thus, it is natural to assume that ak will regard positively changes that bring
the current version closer to vk, and negatively changes that make the document
more different from vk. The quantity (1) captures this idea. The numerator
d(vj−1, vk) − d(vj , vk) measures how much closer the version has become to vk

due to edit ej . The denominator d(vj−1, vj) measures the total change caused by
ej . Their ratio q(vj | vj−1, vk) measures thus how much of the change introduced
by ej contributes to bringing the document closer to vk.

From the triangular inequality, we have q(vj | vj−1, vk) ∈ [−1, 1] for all
versions vj , vk.

– The maximum quality 1 is achieved when d(vj−1, vk) = d(vj−1, vj)+ d(vj , vk),
which corresponds to Fig. 2(a). In this case, all the change done going from
vj−1 to vj is preserved in going to vk.

– The minimum quality −1 is achieved when d(vj , vk)=d(vj , vj−1)+d(vj−1, vk),
which corresponds to Fig. 2(b). In this case, all the change from vj−1 to vj

is undone in the subsequent change from vj to vk: this corresponds to a
reversion.

Choice of pseudometric. The definition of edit quality relies on a choice of pseudo-
metric on the versions of the documents. To obtain a useful measure of edit
quality, the pseudometric must be effort-preserving and outcome-preserving.

A pseudometric d is effort preserving if the distance between versions that
can be easily obtained one from the other is small. An example of pseudometric
that is not effort preserving is the text edit distance, measured according to the
text diff tools commonly included in text revision systems, such as cvs or git [1].
The text differences computed by such tools do not model text transposition:
when a block of text is moved, the resulting difference is large, even though the
act of moving the text does not require much effort.

A pseudometric d is outcome preserving if versions that are similar to users
are close in distance. In wikis, many changes to the whitespace (spaces, newlines,
and so forth) do not result in visible changes of the corresponding document.
If a user make changes to the whitespace of a document, these changes, having

8 L. de Alfaro and B. Adler

x
l/3

x
l

x
m

q(vj | vj−1, vk) = 1

x
l

x
l/3
"?"x

m

q(vj | vj−1, vk) = −1

Fig. 2. Edits having good and bad quality.

no effect, are unlikely to be reverted, even though they might not serve any
purpose. If such whitespace changes resulted in non-negligible distance, they
would provide users with an artificial opportunity for doing positive quality
edits, while not contributing in any meaningful way to the wiki.

For wikis, the question of appropriate pseudometrics has been studied in
depth in [5], where the quality of pseudometrics is measured according to the
ability of the resulting reputation system to predict the quality of the future work
of users. The pseudometrics that perform best are all insensitive to whitespace
changes that do not affect the way in which the markup is rendered into HTML,
in accordance with the outcome-presering requirement. Furthermore, unlike the
Unix diff command, the pseudometrics that perform well track the movement
of blocks of text across versions, and distinguish between text that is inserted
and deleted, from text that is moved to another location in the document. This is
in compliance with the effort preserving requirement: since block moves are easy
to perform via cut-and-paste, they should give rise to small distances. Indeed,
the best pseudometrics experimentally are those that explain the change from
one version to the other via an edit list that contains a minimal amount of text
insertion, deletion, and displacement: these functions measure thus the minimum
amount of edit work required to go from one version to the other [5].

It is not difficult to devise appropriate pseudometrics for business listings, as
previously mentioned. On the other hand, devising appropriate pseudometrics
for complex domains, such as the 3D solids generated in SketchUp, is not an
easy problem. The main difficulty lies in meeting the outcome preserving cri-
terion, which requires the metric to consider close the designs that are visually
similar.

4 Content-Driven Reputation

To construct our content-driven reputation system, we associate a reputation
r(a) ∈ IR≥0 with every author a. The initial value of user reputations corresponds

Content-Driven Reputation for Collaborative Systems 9

to the amount of reputation we can accord to users whom we have never seen in
the system before, and it depends on how difficult it is to create
new user accounts. In Wikipedia, where there are no restrictions to the cre-
ations of user accounts, WikiTrust gives new users reputation equal to 0: if we
gave new users any larger amount r > 0, users whose reputation fell below
r could simply open another account to get back to reputation r. In systems
where users cannot easily create many accounts, we can afford giving new users
some amount of reputation. This is akin to social interaction: when we deal with
a perfect stranger hiding behind a nickname on the internet, we usually accord
very little trust to the stranger, since obtaining such fake identities is essentially
free. When we deal with a real person, whose name we know, we usually accord
to that person some trust, since we know that the person cannot easily change
identity if the person breaks our trust.

We update user reputation as follows. For each edit ej : vj−1 → vj done
by aj , we measure the quality of ej with respect to set Fj ⊆ {vj+1, . . . , vN} of
future versions; the precise rule for choosing Fj will be discussed later. For each
version v ∈ Fj , we update the reputation of aj via:

r(aj) := r(aj) + q(vj | vj−1, v) d(vj−1, vj) f(r(a(v))), (2)

where f : IR≥0 ⊥→ IR≥0 is a monotonic function. Thus, the reputation of the
author of ej is incremented in proportion to the amount d(vj−1, vj) of work
done, multiplied by its quality q(vj | vj−1, v), and multiplied by the reputation
of the author of the reference revision v, rescaled according to a function f(·).

In (2), the version v has the role of “judge” in measuring the quality of
the edit: the factor f(r(a(v))) ensures that the higher the reputation of the
author of v, the higher the weight we give to the quality judgement that uses
v as reference. We rescale the reputation r(a(v)) using a monotonic function f
to limit the influence of high-reputation users over the overall system. In most
collaborative systems, including the Wikipedia, there is a group of long-term
users who are responsible for a large fraction of the work; these users tend to
accumulate large amounts of reputation. If in (2) we used r(a(v)) directly, this
would give these top users an outsized influence over the reputation system. In
the Wikipedia, we rescale reputations via f(x) = log(1 + max{0, ε + x}), where
ε ≥ 0 allows us to tune the amount of influence of new users on the system. Such
a logarithmic rescaling function is a natural choice when the user contribution
amounts and reputations follow a power-law distribution [10,13,15], and worked
well in practice for Wikipedia editions in different languages [6,7].

In order to choose the set Fj of reference versions, we first remove from
vj+1, vj+2, vj+2, . . . all the versions by the same author as vj : we do not want a
user to be a judge of his or her own work. Let σj = v≤

j+1, v
≤
j+2, v

≤
j+3, . . . be the

resulting sequence. One choice for Fj consists in taking the first K revisions of σj

for some fixed K > 0; this is the choice followed in WikiTrust [7]. Another choice
consists in taking Fj to be the whole σj , using geometrically-decaying weights
for reference revisions farther in the future, to ensure that each edit causes a

10 L. de Alfaro and B. Adler

bounded change in the user’s reputation. Under this choice, (2) becomes:

r(aj) := r(aj) +
∑

k≥j+1

(1 − α)αj−k+1q(vj | vj−1, vk) d(vj−1, vj) f(r(a(v))) (3)

for a geometric decay factor 0 < α < 1.

4.1 Truthfulness

A reputation system based on (2) or (3) is a truthful mechanism in the game-
theoretic meaning of the term: if a user wants to modify a document, a dom-
inating strategy (an optimal strategy for the user) consists in performing the
modification as a single edit [11,17]. Users have no incentive to play complicated
strategies in which the modification is broken up into a sequence of edits having
the same cumulative effect. This property is fundamental in a reputation system.
If users derived more reputation by breaking up edits into many small steps, or
by performing every edit by first deleting the entire document, then replacing it
with the new version, the evolution of the content in the collaborative system
could be severely disrupted by users trying to maximize their reputation.

To prove the truthfulness of the reputation systems based on (2) or (3), we
consider the case of an edit ej : vj−1 → vj being split into two edits having
the same cumulative effect: e≤

j : vj−1 → v≤ and e≤≤
j : v≤ → vj ; the general case

is analogous. We analyze the case for (2); the same argument works also for
(3). Consider a fixed version v ∈ Fj used to judge ej , and let c = f(r(a(v))).
For the edit ej , the total amount of reputation gained by the author of ej from
judge v is:

c q(vj | vj−1, v) d(vj−1, vj) = c
d(vj−1, v) − d(vj , v)

d(vj−1, vj)
d(vj−1, vj)

= c
[
d(vj−1, v) − d(vj , v)

]
. (4)

When the edit ej is split into e≤
j , e

≤≤
j , the total amount of reputation gained

due to judge v is:

c
[
q(v≤ | vj−1, v) d(vj−1, v

≤) + q(vj | v≤, v) d(v≤, vj)
]

= c
[[

d(vj−1, v) − d(v≤, v)
]
+

[
d(v≤, v) − d(vj , v)

]]

= c
[
d(vj−1, v) − d(vj , v)

]
. (5)

The result follows by comparing (4) and (5).

4.2 Resistance to Attacks and Dark Corners in Collaboration

The content-driven reputation defined by (2) or (3) is susceptible to attacks in
which a user controls several user accounts, and coordinates the actions of these

Content-Driven Reputation for Collaborative Systems 11

accounts in order to increase the reputation of a subset of these accounts; these
attacks are broadly known as Sybil attacks or, less formally, sock-puppet attacks
[11,12,14,16]. The accounts that are controlled by a user in order to enhance
the reputation of the user’s main account are known as sock-puppet accounts.

A detailed description of defense mechanisms that can be used in content-
driven reputation systems against Sybil attacks appeared in [11]. We survey here
the main idea, which consists in limiting the amount of reputation that can be
gained from an interaction with other users, unless the contribution itself has
stood the test of time.

The technique is applicable to the Wikipedia, and to other collaborative
systems that, like the Wikipedia, have no “dark corners”: all edits are viewed
in timely fashion by honest users. More precisely, we say that a collaborative
system has no dark corners within time constant T if there is a set U of good
users such that, for every version v, v has been viewed by a user in U with
probability at least 1 − e−t/T , where t is the time since the version was created.
This set of good users must consists of users who are both well-intentioned, and
willing to repair vandalism or damage to documents via edits. The Wikipedia,
with its recent-changes patrol (or RC patrol), feeds of recent edits and page
creations, and editors who subscribe to notifications to changes in pages, has no
dark corners within a time constant of less than a day. When a collaborative
system has no dark corners, a group of users cannot work at length in secrecy,
hidden from view: every edit is eventually subjected to the judgement of users
that do not belong to the select group.

In collaborative systems with no dark corners, the technique advocated in
[11] calls for the author of a version vj gaining reputation from a future reference
version v, via (2), only in two cases:

– the reputation of the author of v is greater than the reputation of the author
of vj ;

– the amount of time elapsed between vj and v is longer than a pre-determined
amount T , and for all versions vi, vk separated from v by less than time T ,
and with i < j < k, we have q(vj | vi, vk) > 0.

These conditions ensure that a user can gain reputation only from users of
higher reputation, or if no other users objected to the edits performed, for a
pre-determined length of time T . Under these two conditions, [11] showed that
if a user controls a set V of accounts, the user cannot raise the reputation of
any account in U above the maximum max{r(u) | u ∈ V } already held, without
performing work that is recognized as useful also by the broader community of
users.

This result indicates how patrolling mechanisms such as notification feeds
and the RC patrol contribute to the quality of a collaborative system, and how
content-driven reputation can leverage such mechanisms and achieve resistance
to Sybil attacks.

12 L. de Alfaro and B. Adler

5 Conclusions

Content-driven notions of edit quality and reputation are well suited to a large
class of collaborative editing systems, in which content evolves as a sequence
of versions, each version produced by a user edit. These collaborative editing
systems are common: examples include wikis, but also contributing to on-line
shared documents, contributing to software repositories, collaboratively design-
ing 3D objects, and editing business listings in Google Maps. Content-driven
reputation systems provide a notion of user reputation that can be computed
objectively, from the evolution of the content itself, without need for asking users
for feedback on other user’s work.

Two main requirements are needed for obtaining robust content-driven repu-
tation systems. The first requirement is the ability to embed document versions
in a metric space, so that the distance between versions is both effort-preserving
(easy to do changes lead to close versions) and outcome-preserving (similar ver-
sions are close). Suitable metrics are available for text, and we believe can be
developed in a great number of collaborative systems. The second requirement
is the presence of patrolling mechanisms that ensure that the system does not
have “dark corners” where users can work for a long time in secret, using various
schemes to unduly raise their reputation. Under these two conditions, content-
driven reputation systems can reward contributors whose work is preserved in
the system, and are robust with respect to large categories of attacks, including
Sybil attacks.

There is much research that needs to be done in furthering the use of content-
driven reputation. One direction of work consists in identifying suitable notions
of distance for more general collaborative editing domains. Another direction
of work consists in studying the social consensus dynamics that the systems
induce. For instance, the reputation-rescaling function f in (2) is used to prevent
a class of users from deriving such high values of reputation, that their opinion
trumps that of everyone else — creating a “reputation oligarchy”. It would be
of high interest to study under what conditions systems develop dominating sets
of users, who cannot be replaced in spite of the constant influx of new users.
A third direction of work consists in studying how to best integrate content-
driven reputation with information derived from user-provided feedback and
ratings.

References

1. http://git-scm.com
2. http://maps.google.com
3. http://sketchup.google.com/3dwarehouse/
4. http://stackoverflow.com
5. Adler, B.T.: WikiTrust: content-driven reputation for the Wikipedia. Ph.D. Thesis,

University of California, Santa Cruz (2012)
6. Adler, B.T., Chatterjee, K., de Alfaro, L., Faella, M., Pye, I.: Assigning trust to

Wikipedia content. In: WikiSym 08: Proceedings of the International Symposium
on Wikis. ACM Press, New York (2008)

http://git-scm.com
http://maps.google.com
http://sketchup.google.com/3dwarehouse/
http://stackoverflow.com

Content-Driven Reputation for Collaborative Systems 13

7. Adler, B.T., de Alfaro, L.: A content-driven reputation system for the Wikipedia.
In: Proceedings of the 16th International World Wide Web Conference (WWW
2007). ACM Press, New York (2007)

8. Adler, B.T., de Alfaro, L., Mola-Velasco, S.M., Rosso, P., West, A.G.: Wikipedia
vandalism detection: combining natural language, metadata, and reputation fea-
tures. In: Gelbukh, A. (ed.) CICLing 2011, Part II. LNCS, vol. 6609, pp. 277–288.
Springer, Heidelberg (2011)

9. Adler, B.T., de Alfaro, L., Pye, I.: Detecting Wikipedia vandalism using Wik-
iTrust. In: PAN Lab Report, CLEF (Conference on Multilingual and Multimodal
Information Access Evaluation) (2010)

10. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

11. Chatterjee, K., de Alfaro, L., Pye, I.: Robust content-driven reputation. In: First
ACM Workshop on AISec, ACM Press, New York (2008)

12. Cheng, A., Friedman, E.: Sybilproof reputation mechanisms. In: Proceedings of the
ACM SIGCOMM Workshop on Economics of Peer-to-Peer Systems. ACM Press,
New York (2005)

13. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical
data. SIAM Rev. 51(4), 661–703 (2009)

14. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

15. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Nat. Acad. Sci. 99(12), 7821–7826 (2002)

16. Levine, B.N., Shields, C., Margolin, N.B.: A survey of solutions to the sybil attack.
Technical Report 2006–052, University of Massachussets Amherst (2006)

17. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

18. Sankoff, D., Kruskal, J.B. (eds.): Time Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison. CSLI Publications, Stanford
(1999)

Challenges for Quantitative Analysis
of Collective Adaptive Systems

Jane Hillston(B)

LFCS, School of Informatics, University of Edinburgh, Scotland, UK
jane.hillston@ed.ac.uk

1 Introduction

We are surrounded by both natural and engineered collective systems. Such
systems include many entities, which interact locally and, without necessarily
having any global knowledge, nevertheless work together to create a system
with discernible characteristics at the global level; a phenomenon sometimes
termed emergence. Examples include swarms of bees, flocks of birds, spread of
disease through a population, traffic jams and robot swarms. Many of these
systems are also adaptive in the sense that the constituent entities can respond
to their perception of the current state of the system at large, changing their
behaviour accordingly. Since the behaviour of the system is comprised of its
constituent entities this brings about a change in the system, thus creating a
feedback loop. For example, when a disease is spreading epidemically people
adjust their behaviour to reduce contact with others; consequently the spread of
the disease may diminish.

Increasingly IT systems are being build from large numbers of autonomous or
semi-autonomous components which, together with a large population of users,
makes a collective system. For example, in Edinburgh bus are equipped with GPS
sensors, and bus stops have display boards, which inform users of the likely arrival
time of the next bus on various routes. Bus users can choose which route to take
for their journey based on the given information. As in this example, collective
IT systems are often embedded in our environment and need to operate without
centralised control or direction. Moreover when conditions within the system
change it may not be feasible to have human intervention to adjust behaviour
appropriately. For example, it would be desirable for a major traffic incident
that re-routes some buses to be indicated on the information boards. For this to
happen in general systems must be able to adapt autonomously.

What we are starting to witness is the establishment of what Robin Milner
called the informatics environment, in which pervasive computing elements are
embedded in the human environment, invisibly providing services and respond-
ing to requirements [20]. Such systems are now becoming the reality, and many
form collective adaptive systems, in which large numbers of computing elements
collaborate to meet the human need. The smart bus system described above
is one example, and there are many others in the realm of “Smart Cities”

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 14–21, 2014.
DOI: 10.1007/978-3-319-05119-2 2, c© Springer International Publishing Switzerland 2014

Challenges for Quantitative Analysis of Collective Adaptive Systems 15

where information flows to and from users to enhance access and efficient use of
resources.

Performance modelling aims to construct models of the dynamic behaviour of
systems in order to support the fair and timely sharing of resources. Performance
problems typically arise when there is contention for resources and this can
impede the smooth running of a system and lead to user dissatisfaction. In
the informatic environment, where the system itself is often almost invisible
to the user, it is essential that the possible behaviour is thoroughly explored
before systems are deployed. Performance analysis appears in many guises and
may more generally be termed quantitative analysis, as it encompasses many
quantified questions about the dynamic behaviour of systems. For example:

Capacity Planning: how many clients can the existing server support and still
maintain reasonable response times? or how many buses do I need in order
to maintain service at peak time in a smart urban transport system.

System Configuration: in a mobile phone network how many frequencies do
I need in order to keep the blocking probability for new calls low? or what
capacity do I need at the stations in a bike sharing scheme in order to
minimise the extent to which bikes have to be relocated by truck to meet
user demand?

System Tuning: in a flexible manufacturing system, what speed of conveyor
belt will minimise robot idle time and maximum throughput whilst avoiding
damaged goods? or what strategy can I use to maintain supply-demand
balance within a smart electricity grid?

Markovian-based discrete event models have been applied to the performance
prediction of computer systems since the mid-1960s and communication systems
since the early 20th century. Originally queueing networks were primarily used
to construct models, and sophisticated analysis techniques were developed. This
approach is challenged by features of modern distributed systems, and there
has been a shift towards the use of formal methods, in which formal language
are enhanced with quantitative information such as durations and probabilities.
Examples include Generalised Stochastic Petri Nets [1], and Stochastic Process
Algebras such as EMPA [2], IMC [11] and PEPA [12]. From these high-level sys-
tem descriptions the underlying mathematical model (Continuous Time Markov
Chain (CTMC)) can be automatically generated via the formal semantics.

2 Progress in Recent Years

A key feature of collective systems is the existence of populations of entities who
share certain characteristics. Attempts to model such systems without high-level
modelling support are likely to be time-consuming and error-prone. In contrast,
high-level modelling formalisms allow this repetition to be captured at the high-
level rather than explicitly, and often support hierarchical and compositional
development of models.

In particular process algebras are well-suited for constructing models of col-
lective adaptive systems (CAS):

16 J. Hillston

– These formal languages were originally developed to represent concurrent
behaviour compositionally and CAS are highly concurrent systems.

– The compositional structure of the process algebra allows the interactions
between individuals to be captured explicitly. In the context of CAS indi-
viduals of the same type may be regarded as a subpopulation with limited
interaction between entities but all sharing the same pattern of interaction
with other populations.

– Stochastic process algebras (SPAs) provide extensions of classical process alge-
bras that allow the dynamics of system behaviour to be captured; moreover
there are established mechanisms to automatically generate an underlying
mathematical model from the process algebra description.

– In SPAs such as PEPA, state-dependent functional rates mean that the rate
or probability with which an event occurs may depend on the current state of
the system and this can allow adaptation to be captured [14].

– The languages are equipped with formal apparatus for reasoning about the
behaviour of systems, including equivalence relations, formally defined abstrac-
tion mechanisms and mappings to model checkers such as PRISM [16].

As originally defined, an SPA model is equipped with a structured operational
semantics which facilitates the automatic generation of a CTMC. In this case
the global state of the system is the composition of the local states of all the
participating components. When the size of the state space is not too large the
CTMC is represented explicitly as an infinitesimal generator matrix, which is
an N × N matrix, where N is the number of distinct states. Based on this
matrix and linear algebra the CTMC can be subjected to a numerical solution
which determines a steady state or transient probability distribution over all
possible states. From this, performance indices such as throughput, utilisation
and response time can be derived.

Alternatively the CTMC may be studied using stochastic simulation. This
avoids the explicit construction of the entire state space, as states are generated
on-the-fly as the simulation runs. Each run generates a single trajectory through
the state space. Now, performance indices are derived from measurement of the
behaviour of the simulation model and many runs are needed in order to obtain
statistically meaningful estimates of performance measures.

Like all discrete state representations, performance modelling formalisms and
CTMCs suffer from the problem of state space explosion: the mathematical struc-
tures required to analyse the system become so large that it is infeasible to carry
out the analysis. As the size of the state space becomes large it becomes infeasi-
ble to carry out numerical solution of the CTMC and extremely time-consuming
to conduct stochastic simulation. This poses a severe challenge for the analysis
of collective systems, which by their nature typically contain very large numbers
of entities.

The discrete state interpretation of SPA models is focussed on treating the
instances of components as individuals. An alternative, more compact repre-
sentation can be obtained if we move away from capturing each individual but
instead work at the level of the subpopulations. This is clearly an abstraction,

Challenges for Quantitative Analysis of Collective Adaptive Systems 17

)b)a

)d)c

Fig. 1. Schematic representation showing the counting abstraction: a)–
b)subpopulations are identified within the CAS; c)–d) rather than explicit counts,
these are represented as proportions of the population as a whole.

and some information is lost, but it has the advantage that substantially larger
systems can be considered.

The first step of our approach to analysing collective behaviour is to make a
counting abstraction and view the system not in terms of the individual compo-
nents but in terms of proportions within the subpopulations [15]. This is shown
schematically in Fig. 1.

Initially this produces a state aggregation: a more compact discrete repre-
sentation of the system. A further shift in perspective leads us to consider the
evolution of the system as continuous rather than discrete. In this case the events
in the system are aggregated, and captured by ordinary differential equations
which represent the average behaviour of the system, in terms of the propor-
tions of components which exhibit each possible local behaviour or state and
how these proportions vary over time [13]. This is termed a fluid or mean field
approximation [4].

Just as the discrete representation of the CTMC can be automatically gener-
ated from the structured operational semantics of PEPA models [12], the ODEs
which give the fluid approximation of a PEPA model can similarly be derived
from structured operational semantics [22]. Moreover the derived vector field
F(x), gives an approximation of the expected count for each population over
time and fluid rewards, from which performance indices can be derived, can
be safely calculated from the fluid expectation trajectories [21]. Furthermore,
vector fields have been defined to approximate higher moments [9], such as vari-
ance and skew, allowing more accurate estimates of the performance of a system
to be derived and more sophisticated measures, such as passage times, can be
approximated in an analogous way [10].

18 J. Hillston

This approach is ideally suited to the analysis of collective systems, which
would typically overwhelm existing techniques — the necessary state space could
not even be expressed, never mind analysed. Examples of systems which have
been studied using this approach include an emergency egress system [18], smart
buildings [19], data flows in wireless sensor networks [8], swarm robots [17], and
internet worm attacks [6].

3 Remaining Challenges

The fluid approximation approach coupled with formal model description in
terms of a stochastic process algebra has opened new opportunities for quantified
formal analysis of collective systems. This work provides a basic framework and
firm foundation for the modelling of systems with collective behaviour. Neverthe-
less, there remain a number of challenges, especially when we consider systems
which also consider adaptive behaviour. In particular, based on our experiences
of modelling smart city applications within the QUANTICOL project1 we would
highlight:

– Spatial aspects;
– Richer forms of interaction and adaptation; and
– Extending model checking capabilities.

3.1 Modelling Space

Whilst fluid approximation of SPA models has been successfully used to model
collective systems, it should be recognised that there is an implicit assumption
within the approach that all components are co-located. This means that all
components have the opportunity to interact if their specified behaviour allows it.

However, many collective systems, particularly in the context of smart cities,
have behaviour which is partially governed by the spatial arrangement of the
components. Interactions may only be allowed for entities which are within a
certain physical distance of each other, or space may be segmented in such a
way that even physically close entities are unable to communicate. Furthermore
movement can be a crucial aspect of the behaviour of entities within the system.
Capturing and analysing systems with characteristics like these require that
space must be included explicitly within the modelling formalism, and the same
component in different locations will be distinguished. This poses significant
challenges both of model expression and model solution. There is a danger that
as we distinguish subpopulations by their location, we no longer have a large
enough population to justify the fluid approximation.

Initial work is exploring the use of time scale decompositions, partial differ-
ential equations and diffusion models but much more work is needed.
1 www.quanticol.eu

www.quanticol.eu

Challenges for Quantitative Analysis of Collective Adaptive Systems 19

3.2 Richer Forms of Interaction and Adaptation

The current work on collective system modelling with stochastic process algebras
has made limited use of functional rates to capture adaptation. For example, in
the modelling of emergency egress a functional rate is used to represent how occu-
pants might alter their planned route out of the building when they encounter
congestion in a stairwell. As this illustrates, a functional rate is able to model
adaptation in the form of adjusting the rate or probability of certain events to
reflect the current situation. However this is only a limited form of adaptation.

In general, real collective adaptive systems, especially those with emergent
behaviour, embody rich forms of interaction, often based on asynchronous com-
munication. An example of this is the pheromone trail left by a social insects
such as an ant. In this case the message (pheromone) left by one ant will affect
the behaviour of another ant in the same location at a later time. Moreover,
the patterns of communication, who can communicate with whom, may change
over time according to the state of the system. Languages like SCEL offer these
richer communication patterns [7]. In SCEL components include a knowledge
store which can be manipulated by the component itself and other components.
Communication can then be attribute-based, meaning that a message is sent to
all components that have a given value for an attribute.

Again this differentiation through attributes poses a risk to fluid approxi-
mation. Accuracy in the fluid approximation relies on having a large enough
subpopulation with shared characteristics. Allowing components to have dis-
tinct attribute values creates distinguishing features amongst the members of
the subpopulations. Within the QUANTICOL project we are exploring ways to
overcome these problems.

3.3 Extending Model Checking Capabilities

Whilst many performance measures can be derived using the techniques of fluid
rewards, more sophisticated interrogation of a model can be achieved through
model checking. In stochastic model checking a suitably enhanced logic, CSL,
specifies the query, and leads to a modification of the given CTMC. A naive
approach based on fluid approximation would work directly with the vector
field, but as this is deterministic this is amenable only to LTL model checking,
and gives no indication of the inherent stochasticity in the system.

Recent work on fluid model checking develops an analogous approach for col-
lective systems [3]. CSL properties related to a single component can be checked
with respect to a population. In this approach the single component is left dis-
crete and combined with a fluid approximation of the rest of the population,
giving rise to a inhomogeneous time CTMC. This is then modified as in sto-
chastic model checking, and solved numerically. Whilst effective, this approach
can only be used to check the properties of one element of a population. In an
alternative approach, based on a central limit approximation, the fraction of a
population that satisfies a property expressed as a one-clock deterministic timed
automaton can be checked [5]. Future work will seek to extend these to find
scalable approaches to model checking global properties of collective systems.

20 J. Hillston

4 Conclusions

Collective Adaptive Systems are an interesting and challenging class of systems
to design and construct. Their role within infrastructure, such as within smart
cities, make it essential that quantitive aspects of behaviour are taken into con-
sideration, as well as functional correctness. Fluid approximation based analysis
offers hope for scalable quantitative analysis techniques, but there remain many
interesting and challenging problems to be solved.

Acknowledgement. This work is partially supported by the EU project QUANTI-
COL, 600708.

References

1. Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic Petri
nets for the performance evaluation of multiprocessor systems. ACM Trans. Com-
put. Syst. 2(2), 93–122 (1984)

2. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: a theory of concurrent processes
with nondeterminism, priorities, probabilities and time. Theor. Comput. Sci.
202(1–2), 1–54 (1998)

3. Bortolussi, L., Hillston, J.: Checking individual agent behaviours in Markov popu-
lation models by fluid approximation. In: Bernardo, M., de Vink, E., Di Pierro, A.,
Wiklicky, H. (eds.) SFM 2013. LNCS, vol. 7938, pp. 113–149. Springer, Heidelberg
(2013)

4. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of
collective system behaviour: A tutorial. Perform. Eval. 70(5), 317–349 (2013)

5. Bortolussi, L., Lanciani, R.: Model checking Markov population models by central
limit approximation. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 123–138. Springer, Heidelberg (2013)

6. Bradley, J.T., Gilmore, S.T., Hillston, J.: Analysing distributed Internet worm
attacks using continuous state-space approximation of process algebra models. J.
Comput. Syst. Sci. 74(6), 1013–1032 (2008)

7. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A language-based approach
to autonomic computing. In: Beckert, B., Bonsangue, M.M. (eds.) FMCO 2011.
LNCS, vol. 7542, pp. 25–48. Springer, Heidelberg (2012)

8. Guenther, M.C., Bradley, J.T.: Mean-field analysis of data flows in wireless sensor
networks. In: ACM/SPEC International Conference on Performance, Engineering,
ICPE’13, pp. 51–62 (2013)

9. Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a Markovian process
algebra. Theor. Comput. Sci. 411(22–24), 2260–2297 (2010)

10. Hayden, R.A., Stefanek, A., Bradley, J.T.: Fluid computation of passage-time dis-
tributions in large Markov models. Theor. Comput. Sci. 413(1), 106–141 (2012)

11. Hermanns, H. (ed.): Interactive Markov Chains: The Quest for Quantified Quality.
LNCS, vol. 2428. Springer, Heidelberg (2002)

12. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (2005)

13. Hillston, J.: Fluid flow approximation of PEPA models. In: 2nd International Con-
ference on the Quantitative Evaluaiton of Systems (QEST 2005), pp. 33–43 (2005)

Challenges for Quantitative Analysis of Collective Adaptive Systems 21

14. Hillston, J., Kloul, L.: Formal techniques for performance analysis: blending SAN
and PEPA. Formal Aspects Comput. 19(1), 3–33 (2007)

15. Hillston, J., Tribastone, M., Gilmore, S.: Stochastic process algebras: from individ-
uals to populations. Comput. J. 55(7), 866–881 (2012)

16. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: probabilistic model checking
for performance and reliability analysis. SIGMETRICS Perform. Eval. Rev. 36(4),
40–45 (2009)

17. Massink, M., Brambilla, M., Latella, D., Dorigo, M., Birattari, M.: On the use of
Bio-PEPA for modelling and analysing collective behaviours in swarm robotics.
Swarm Intell. 7(2–3), 20–228 (2013)

18. Massink, M., Latella, D., Bracciali, A., Harrison, M.D., Hillston, J.: Scalable
context-dependent analysis of emergency egress models. Formal Aspects Comput.
24(2), 267–302 (2012)

19. Massink, M., Harrison, M.D., Latella, D.: Scalable analysis of collective behaviour
in smart service systems. In: Proceedings of the 2010 ACM Symposium on Applied
Computing (SAC), pp. 1173–1180 (2010)

20. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press, Cambridge (2009)

21. Tribastone, M., Ding, J., Gilmore, S., Hillston, J.: Fluid rewards for a stochastic
process algebra. IEEE Trans. Softw. Eng. 38(4), 861–874 (2012)

22. Tribastone, M., Hillston, J., Gilmore, S.: Scalable differential analysis of process
algebra models. IEEE Trans. Softw. Eng. 38(1), 205–219 (2012)

The Scribble Protocol Language

Nobuko Yoshida(B), Raymond Hu, Rumyana Neykova, and Nicholas Ng

Imperial College London, London, UK
n.yoshida@imperial.ac.uk

Abstract. This paper describes a brief history of how Kohei Honda ini-
tiated the Scribble project, and summarises the current status of Scribble.

1 Introduction

Scribble is a language to describe application-level protocols amongm communi-
cating systems. A protocol represents an agreement on how participating systems
interact with each other [37,41]. Scribble was born in Paris in December 2006
Kohei Honda took his six month sabbatical. He started writing a seventy-page
document of the first version of Scribble [17], based on his experiences as an
invited expert for the W3 Web Services Choreography Description (WS-CDL)
Working Group [8]. Since 2003, Kohei and the first author (Nobuko Yoshida) had
been working for formalising WS-CDL in the π-calculus to guarantee deadlock-
free communications by session types. Later, Marco Carbone joined the academic
team of WS-CDL. Unexpectedly, it took more than five years for us to under-
stand and formalise their core technologies due to complexity of the description:
for example, to describe just a“hello world” protocol, WS-CDL requires the def-
inition of Participant Types, Rolem Types, Relationship Types, Channel Types,
Information Types, Tokens, Token Locators and finally Sequences with an Inter-
action and Exchange. During this work, Kohei proposed a much simpler, abstract
version of choreography, which only focuses on signatures (or types) of CDLs.
This is the origin of Scribble. He sent his first seventy-page draft to his close
industry colleagues by e-mail together with his motivation:

Scribbling is necessary for architects, either physical or computing, since
all great ideas of architectural construction come from that unconscious
moment, when you do not realise what it is, when there is no concrete
shape, only a whisper which is not a whisper, an image which is not an
image, somehow it starts to urge you in your mind, in so small a voice
but how persistent it is, at that point you start scribbling.

This draft encouraged two of the members of WS-CDL WG, Gary Brown and
Steve-Ross Talbot, to design and implement Scribble through Pi4 Technologies
Foundations [35], collaborating with Kohei. The second version of Scribble doc-
ument was written in collaboration with Brown in October 2007.

Interestingly, Scribble gave clues to solving the main theoretical open prob-
lem of the session type theory repeatedly posed by researchers and industry

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 22–41, 2014.
DOI: 10.1007/978-3-319-05119-2 3, c© Springer International Publishing Switzerland 2014

The Scribble Protocol Language 23

partners at that time: that is whether original binary sessions [20,39] can be
extended to multiparty sessions. This is a natural question since most business
protocols and parallel computations in practice involve multiparty communica-
tions. Honda, Yoshida and Carbone formalised the essence of Scribble as the
multiparty session type theory (MPST) in the π-calculus, and published in [22].
Since then Kohei has worked with several standardisation bodies [2,42] and open
source communities [34,38]. Red Hat opened a new JBoss Project, Scribble [37].
More details about a history of his collaborations with the industry partners
can be found in [19,21]. His last paper, which was mostly written by himself, is
about Scribble [18].

The aims of this paper are to record his first draft [17] and to show the cur-
rent status of Scribble project. Section 2 summarises the first version of Scribble
draft; Sect. 3 outlines Scribble framework and its Python implementation; Sect. 4
discusses an extension of Scribble for subprotocols and interrupts; Sect. 5 shows
another extension of Scribble for high-performance computations; Sect. 6 gives
future works and Sect. 7 concludes.

2 Preamble of the First Scribble Document

This section presents extracts from the preamble of the first Scribble document
as originally written in [17], and remarks how these initial ideas have been carried
out.

2.1 Conversations and Protocols

This document presents concrete description examples of various interaction sce-
narios written in the first layer of Scribble (from [17, Sect. 1.1]). Scribble is a lan-
guage for describing the structures and behaviours of communicating processes
at a high level of abstraction, offering an intuitive and expressive syntax built
on a rigorous mathematical basis. While the language can potentially be used
for many purposes, our initial primary application area is description, validation
and execution of the whole class of financial protocols and applications which
use them.

Our central philosophy in designing Scribble, as a high-level language for
describing communication-centred applications, is to enable description which is
free from implementation details but which allows efficient and flexible imple-
mentation. The key idea to achieve these seemingly contradictory requirements
is the use of the unit of abstraction called “conversation,” known as session in
the literature on theories of processes and programming languages.

A conversation in the present context means a series of interactions among
two or more participants which follow a prescribed scenario of interactions. This
scenario is the type (signature) of that conversation which we call protocol. A pro-
tocol is a minimal structure which guarantees type-safety of conversations, and
has been known as session. type [7,14,20,25,43] in theories of processes which in
turn is based on theories of types for programming languages [36]. At runtime,

24 N. Yoshida et al.

a conversation is established among its participants, and the participants get
engaged in communications in its context following a stipulated protocol.

A single distributed application may be engaged in two or more conversa-
tions, even simultaneously. For example, during a commercial transaction, an
application running for a merchant may be engaged in two conversations at the
same time, one for a credit transfer and another for a debit transfer protocol.
Another example is a travel agency who interacts with its customer electronically
following a certain protocol and, to meet the demands of the customer, interacts
with other service providers (for example airline companies), each following a
distinct protocol. The agency’s conversation with its customer and those with
other services will interleave.

We specify a protocol using a type language of Scribble (just as types in ML
are specified using a type language of ML). This type language constitutes the
most abstract level of the description layers in Scribble. On its basis, the immedi-
ately upper layer of description defines what we call conversation models (which
correspond to class models in UML). Conversation models serve many purposes
including a foundation for a design-by-contract (DBC) framework, which starts
from augmenting conversation models with assertions written in a logical lan-
guage. Further we have languages for describing detailed behaviour, reaching
executable descriptions, some of which may as well take the form of integration
with existing programming languages. These languages as a whole contribute
to flexible and comprehensive descriptions of the structure of message exchange
(choreography) among communicating agents. Example descriptions in some of
these languages will be treated in the sequels to the present note.

The language for protocols is the most abstract and terse: at the same time,
it is also a rich description language for conversation scenarios, as well as offering
a basis for the remaining layers. Protocols are also a basis of diverse forms of
static and dynamic validation. Thus understanding this language is the key to
understanding the present description framework as a whole.

2.2 Applications

The first and foremost objectives of Scribble is to allow scribbling of structures
of interactions intuitively and unambiguously (from [17, Sect. 1.2]). Just like
we are sure what is the intended behaviour of our programs and models for
sequential computation, we want to be sure what our description for interactional
applications means in a simple and intuitive syntax.

Scribble is based on theories of processes, in particular the π-calculus [27–
29]. This is not a place to discuss the nature of this theoretical basis but it
is worth noting that this theory enables us to mathematically identify what
is the (interactional) “behaviour” embodied in a given description. Thus we
can rigorously stipulate what each description means. While the meaning of
sequential programs is relatively intuitive to capture, this may not be so for
interactional software: thus this theory pins down the tenet of descriptions of
interactional behaviour, bootstrapping all endeavours in the present enterprise.

The Scribble Protocol Language 25

Another theoretical underpinning of the design of Scribble is the study on
session types [7,14,20,25,43] mentioned already, which present in-depth study
of type languages for conversations and their use in static validation, abstraction
concerns and runtime architecture.

Starting from clarity and precision in description, Scribble (together with its
theoretical basis) is intended to be used for several purposes, some of which we
summarise in the following.

• Describe protocols of conversations for applications clearly, intuitively and
precisely; statically validate if the resulting descriptions are consistent; with
unambiguous shared understanding on the meaning of resulting descriptions.

• Generate code prototypes and associated runtime parameters (e.g. an FSA
(Finite State Machines) for monitoring) from stipulated protocols, with a for-
mal guarantee that code/data exactly conform to the protocols.

• Describe conversation scenarios of a distributed application which use these
protocols, as conversation models. Statically validate if the resulting models
use protocols correctly, as well as other significant properties.

• Elaborate protocols and conversation models with assertions (logical formulae)
to specify their properties, for enriched behavioural constraints/models.

• Develop (and debug) endpoint applications which realise given conversation
models with incremental validation that the resulting programs conform to
the stipulated protocols and conversation models.

• Statically validate if the applications have specific desirable properties (such
as deadlock-freedom) leveraging high-level conversation structures.

• Dynamically validate (monitor) if runtime message exchanges of an application
precisely follow the stipulated protocols/models: with a formal guarantee that
all and only violations of the stipulated scenario are detected; automatically
generate such a monitor from protocols/conversation models.

• Offer a tractable and unambiguous specification of software tools and
infrastructure needed for achieving these goals.

We note that the central point of having a theoretical basis in Scribble is first of
all to allow these ideas themselves (for example validation) to “make sense”: we
can share clearly what they mean and what they do not mean. And all of this
should be built on the clarity of the behavioural description in the first place.

2.3 Remarks on the Preamble

The preamble ends with a “Caution” subsection. Kohei explicitly noted that
“this compilation only lists signatures (or types) for conversations, not direct
behavioural description. While it may look we are describing dynamic behaviour,
what is indeed described is the static structure underlying dynamic behaviour,
just as signature in class models extracts the static core of dynamic behaviour of
objects.” This became the basis for establishing a theory of multiparty session
types [22]. In the rest of the document, the presentation is organised centring
on concrete examples (use cases) described in Scribble. There are 29 divided

26 N. Yoshida et al.

into 11: the last section treats fairly complex examples from real world financial
protocols. Many examples were obtained from his industry partners working in
financial IT, which became valuable sources to not only implement Scribble but
also extend the original theory [22]. For example, the work on exceptions [6],
subsessions [10], dynamic multiroles [11] and asynchronous messaging optimisa-
tion [30] directly tackled the examples in [17]. Their results are reflected in the
subsequent designs and updates of Scribble, as discussed in the next section.
From the list of the applications in Sect. 2.2, we can observe that Kohei had a
clear vision how Scribble should be used in future: in 2007, Kohei had even not
known the Ocean Observatories Initiative [34] (cf. Sect. 3), but he had already an
idea to apply Scribble for dynamic verification via generations of FSAs. About
code generation, the Scribble team is currently working for generating type-safe,
deadlock-free parallel algorithm implementations from Scribble (cf. Sect. 5). A
conversation model mentioned in Sect. 2.1 is formalised as the DBC of MPSTs
in [5] and its application to Scribble is on-going (cf. Logical Annotations in
Sect. 6). The rest of the paper explains how the Scribble team has been working
and developing Scribble, following his initial predictions.

3 Scribble

This section first describes the stages of the Scribble framework, explaining
the design challenges of applying session types to practice and recent research
threads motivated by this work. We then illustrate an example protocol specifi-
cation in the Scribble language, and list a couple of extensions.

3.1 The Scribble Framework

The Scribble project [18,19,37,41] is a collaboration between session types
researchers and architects and engineers from industry [26,38] towards the appli-
cation of session types principles and techniques to current engineering practices.
Building on the theory of multiparty session types [3,22] (MPST), this ongoing
work tackles the challenges of adapting and implementing session types to meet
real-world usage requirements. This section gives an overview of the current ver-
sion of the Scribble framework for the MPST-based development of distributed
software. In the context of Scribble, we use the terms session and conversation
interchangeably.

The main elements of the Scribble framework, outlined in Fig. 1, are as
follows.

The Scribble Language is a platform-independent description language for the
specification of asynchronous, multiparty message passing protocols [18,19,
40]. Scribble may be used to specify protocols from both the global (neutral)
perspective and the local perspective of a particular participant (abstracted
as a role); at heart, the Scribble language is an engineering incarnation of
the notation for global and local types in formal MPST systems and their
correctness conditions.

The Scribble Protocol Language 27

Global Protocol

Local
Protocol

Local
Protocol

Local
Protocol

Endpoint
Code

Endpoint
Code

Endpoint
Code

Conversation
Runtime

Conversation
Runtime

Conversation
Runtime

Monitor Monitor Monitor

Safe Network

Projection

.

Implementation (Python, Java, . . .)

.
Dynamic
Verification

Specification
(Scribble)

Fig. 1. The Scribble framework for distributed software development Scribble method-
ology from global specification to local runtime verification

The Scribble Conversation API provides the local communication operations
for implementing the endpoint programs for each role natively in various
mainstream languages. The current version of Scribble supports Java [37] and
Python [26] Conversation APIs with both standard socket-like and event-
driven interfaces for initiating and conducting conversations.

The Scribble Runtime is a local platform library for executing Scribble endpoint
programs written using the Conversation API. The Runtime includes a con-
versation monitoring service for dynamically verifying [4,24,31] the interac-
tions performed by the endpoint against the local protocol for its role in
the conversation. In addition to internal monitors at the endpoints, Scribble
also supports the deployment of external conversation monitors within the
network [9].

3.2 Development Challenges of Scribble

The Scribble development workflow starts from the explicit specification of the
required global protocols, similarly to the existing, informally applied approaches
based on prose documentation, such as Internet protocol RFCs, and common
graphical notations, such as UML and sequence diagrams. Designing an engineer-
ing language from the formal basis of MPST types faces the following
challenges.

– To developers, Scribble is a new language to be learned and understood,
particularly since most developers are not accustomed to formal protocol

28 N. Yoshida et al.

specification in this manner. For this reason, we have worked closely with
our collaborators towards making Scribble protocols easy to read, write and
maintain. Aside from the core interaction constructs that are grounded in the
original theory, Scribble features extensions for the practical engineering and
maintenance of protocol specifications, such as subprotocol abstraction and
parameterised protocols [18] (demonstrated in the examples below).

– As a development step (as opposed to a higher-level documentation step),
developers face similar coding challenges in writing formal protocol descrip-
tions as in the subsequent implementation steps. IDE support for Scribble
and integration with other development tools, such as the Java-based tooling
in [37], are thus important for developer uptake.

– Although session types have proven to be sufficiently expressive for the spec-
ification of protocols in a variety of domains, including standard Internet
applications [23], parallel algorithms [33] and Web services [8], the evaluation
of Scribble through our collaboration use cases has motivated the development
of new multiparty session type constructs, such as asynchronous conversation
interrupts [24] (demonstrated below) and subsession nesting [10], which were
not supported by the pre-existing theory.

The Scribble framework combines the elements discussed before to promote
the MPST-based methodology for distributed software development depicted
in Fig. 1. Scribble resources are available from the project home pages [37,41].

3.3 Online Travel Agency Example

To demonstrate Scribble as a multiparty session types language, Fig. 2 lists the
Scribble specification of the global protocol for an Online Travel Agency example
(a use case from [1]).

In this example, there are three interacting roles, named Customer, Agency
and Service, that establish a session.

1. Customer is planning a trip through a Travel Agency. Each query from Cus-
tomer includes the journey details, abstracted as a message of type String ,
to which the Agency answers with the price of the journey, abstracted as a
message of type Int . This query is repeated until Customer decides either
ACCEPT or REJECT the quote.

2. If Customer decides to ACCEPT a travel quote from Agency, Agency relays
a confirmation to Service, which represents the transport service being bro-
kered by Agency. Then Customer and Service exchanges the address details
(a message of type String) and the ticket dispatch date (a message of type
Date).

3. If Customer decides to REJECT a travel quote from Agency, Agency sends a
termination signal to Service to end the interaction.

The Scribble Protocol Language 29

1 module TravelAgency;
2

3 type <py> "types.IntType" from "types.py" as Int;
4 type <py> "types.StringType" from "types.py" as String;
5 type <py> "travelagency.Date" from "Date.py" as Date;
6

7 global protocol BookJourney(role Customer as C,
8 role Agency as A, role Service as S) {
9 rec LOOP {

10 choice at C {
11 query(journey:String) from C to A;
12 price(Int) from A to C;
13 info(String) from A to S;
14 continue LOOP;
15 } or {
16 choice at C {
17 ACCEPT() from C to A;
18 ACCEPT() from A to S;
19 Address(String) from C to S;
20 (Date) from S to C;
21 } or {
22 REJECT() from C to A;
23 REJECT() from A to S;
24 } } } }

Fig. 2. A Scribble specification of a global protocol for the Online Travel Agency use
case

The Scribble is read as follows:

– The first line declares the Scribble module name. Although this example is
self-contained within a single module, Scribble code may be organised into a
conventional hierarchy of packages and modules. Importing payload type and
protocol declarations between modules is useful for factoring out libraries of
common payload types and subprotocols.

– The design of the Scribble language focuses on the specification of proto-
col structures. With regards to the payload data that may be carried in the
exchanged messages, Scribble is designed to work orthogonally with external
message format specifications and data types from other languages. The type

declaration on Line 3 a payload type using the Python data format, specifi-
cally the IntType definition from the file types.py, aliased as Int within this
Scribble module. Data type formats from other languages, as well as XML
or various IDL based message formats, may be used similarly. A single pro-
tocol definition may feature a mixture of message types defined by different
formats.

– Lines 7–8 the signature of a global protocol called BookJourney. This proto-
col involves three roles, Customer, Agency and Service, aliased as C, A and S,
respectively.

30 N. Yoshida et al.

– Lines 9–24 the interaction structure of the protocol. Line 11 a basic message
passing action. query(journey:String) is a message signature for a message
with header (label) journey, carrying one payload element within the paren-
theses. A payload element is an (optional) annotation followed by a colon and
the payload type, e.g. journey details are recorded in a String. This message
is to be dispatched by C to be received by A.

– The outermost construct of the protocol body is the rec block with label Loop.
Similarly to labelled blocks in e.g. Java, the occurrence of a continue for the
same label within the block causes the flow of the protocol to return to the
start of the block. The first choice within the rec, decided by C, is to obtain
another quote (lines 11–14: send A the query details, receive a price, and
continue back to the start), or to accept/reject a quote. The latter is given
by the inner choice, with C sending ACCEPT to A in the first case and REJECT in
the second. In the case of ACCEPT (lines 17–20), A forwards the confirmation to
S before C and S exchange Address and Date messages; otherwise, A forwards
the REJECT to S instead.

3.4 Scribble Projection and Verification

After the specification of the global protocols, the next step of the Scribble
framework (Fig. 1) is the projection of local protocols from the global protocol
for each role. In comparison to languages implemented from binary session types,
such as Sing# [16] and SJ [23], this additional step is required to derive local
specifications for the endpoint implementation of each role process from the cen-
tral global protocol specification. Scribble projection follows the standard MPST
algorithmic projections, with extensions for the additional features of Scribble,
such as the subprotocols and conversation interrupts mentioned above [40].

Figure 3 lists the local protocol generated by the Scribble tools [41] as the
projection of the BookJourney for the Customer role, as identified in the local pro-
tocol. signature. Projection preserves the dependencies of the global protocol,
such as the payload types used, and the core interaction structures in which the
target role is involved, e.g. the rec and choice blocks, as well as payload anno-
tations and similar protocol details. The well-formedness conditions on global
protocols allow the projection to safely discard all message actions not involving
C (i.e. messages between A and S).

As for the binary session languages cited above, it is possible to statically
type check role implementations written in endpoint languages with appropriate
MPST programming primitives against the local protocols following the standard
MPST theory: if the endpoint program for every role is correct, then the cor-
rectness of the whole multiparty system is guaranteed. The endpoint languages
used in the Scribble industry projects, however, are mainstream engineering lan-
guages like Java and Python that lack the features, such as first-class communi-
cation channels with linear resource typing or object alias restriction, required
to make static session typing feasible. In Scribble practice, the Conversation API
(see Sect. 3.5) is used to perform the relevant conversation operations natively
in these languages, making static MPST type checking intractable. In general,

The Scribble Protocol Language 31

1 module TravelAgency_BookJourney_Customer;
2

3 type <py> "types.IntType" from "types.py" as Int;
4 type <py> "types.StringType" from "types.py" as String;
5 type <py> "travelagency.Date" from "Date.py" as Date;
6

7 local protocol BookJourney_Customer at Customer
8 (role Customer as C, role Agency as A,
9 role Service as S) {

10 rec LOOP {
11 choice at C {
12 query(journey:String) to A;
13 price(Int) from A;
14 continue LOOP;
15 } or {
16 choice at C {
17 ACCEPT() to A;
18 Address(String) to S;
19 (Date) from S;
20 } or {
21 REJECT() to A;
22 } } } }

A!REJECT()

A!ACCEPT()

S!Address(String)

S?(Date)

A!query(String)

A?price(Int)

Fig. 3. (a) Scribble local protocol for Customer projected from the BookJourney global
protocol, and (b) the FSA generated from the local protocol by the Scribble conversa-
tion monitor

distributed systems are often implemented in a mixture of languages, includ-
ing dynamically typed languages (e.g. Python), and techniques such as event-
driven programming, for which the static verification of strong safety properties
is acknowledged to be difficult.

For these reasons, the Scribble framework, differently to the above session lan-
guages, is designed to focus on dynamic verification of endpoint behaviour [24].
Endpoint monitoring by the local Conversation Runtime is performed by con-
verting local protocols to communicating finite state automata, for which the
accepted languages correspond to the I/O action traces permitted by the pro-
tocol. The conversion from syntactic Scribble local protocols to FSA extends
the algorithm in [12] to support subprotocols and interrupts, and to use nested
FSM (Finite State Machine) for parallel conversation threads to avoid the poten-
tial state explosion from constructing their product. Figure 3 depicts the FSA
generated by the monitor from the Customer local protocol. The FSA encodes
the control flow of the protocol, with transitions corresponding to the valid I/O
actions that C may perform at each state of the protocol.

Analogously to the static typing scenario, if every endpoint is monitored to
be correct, the same communication-safety property is guaranteed [4]. In addi-
tion, since the monitor verifies both messages dispatched by the endpoint into
the network and the messages inbound to the endpoint from the network, each
conversation monitor is able to protect the local endpoint within an untrusted

32 N. Yoshida et al.

network and vice versa. The internal monitors embedded into each Conversa-
tion runtime function perform synchronous monitoring (the actions of the end-
point are verified synchronously as they are performed); Scribble supports mixed
configurations between internal endpoint monitors and asynchronous, external
monitors deployed within the network (as well as statically verified endpoints,
where possible) [9].

3.5 Conversation API

This subsection describes Python endpoint implementation of Scribble. The
Python conversation API offers a high level interface for safe conversation pro-
gramming and maps basic session calculus primitives to lower-level communi-
cation actions on a concrete transport. In short, the API provides functionality
for (1) session initiation and joining and (2) basic send/receive. Figure 4 illus-
trates the conversation API by presenting an implementation in Python of the
Customer role.

Conversation Initiation. Line 5 initialises a new session, using the class named
Conversation. When creating a session, we specify the protocol name BookJourney

and a configuration file, holding the network addresses for all roles.
Conversation.create creates a fresh conversation id and sends an invitation

message for each role specified in the protocol. The invitation mechanism is
needed to map the role names to concrete addressable entities on the network
and to propagate this mapping to all participants. In Line 6, after initialisation,
the process joins (joins) the session as Customer role. By conv.join, it returns a

1 Customer:
2 customer, A, S = [’customer’, ’agency’, ’service’]
3

4 book_journey(self):
5 conv = Conversation.create(’BookJourney’, ’config.yml’)
6 conv.join(customer, "\\address...") c:
7 place self.destinations:
8 c.send(A, ’query’, place)
9 msg = c.recv(A)

10

11 msg.value<=self.budget()
12 c.send(A, ’ACCEPT’)
13 c.send(A, ’Address’, ’SE2 6UF’)
14 date = c.recv(S)
15 self.save_the_day(date)
16

17

18 c.send(A, ’REJECT’)

return

if

for
with

def

class

as
in

Fig. 4. Python implementation of Customer role

The Scribble Protocol Language 33

communication channel c to be used for the message exchange during the session.
The explicit use of a conversation channel c in the program makes it possible
to build the application logic with a clear understanding on the session control
flow.

The next part of the code iterates over a list of travel destinations, following
the interaction flow specified in the BookJourney protocol in Fig. 3. In each itera-
tion Customer sends a message to A (line 8) and then it receives a reply (line 9)
from A with the price for the booking. Then Customer can end the session in two
ways: (1) tf the price for a place (msg.value) is acceptable (line 11), Customer
completes the booking by sending an ACCEPT message (line 12) to A; (2) if none
of the prices are good, Customer sends REJECT message (line 18) to A and the
session ends.

Conversation Message Passing. The primitives for sending and receiving
specify the name of the sender and receiver role respectively. All messages are
sent or received as a tuple of an operation and a payload, accessible via the
message attributes op and value. The API does not mandate how the operation
field should be treated and allows the runtime freedom to interpret the operation
name in various ways, e.g. as a plain message label, an RMI method name, etc..
A syntactic sugar such as an automatic dispatch on method calls based on the
message operation is possible. The sending operation is asynchronous, meaning
that a basic send does not block on the corresponding receive; however, the basic
receive does block until the complete message has been received.

4 Extensions of Scribble: Subprotocols and Interrupts

The following gives two further examples to demonstrate additional features of
Scribble motivated by application in practice.

The first example demonstrates the abstraction of protocol declarations as
subprotocols, and the related feature of protocol declarations parameterised on
payload types and message signatures. Figure 5 gives an alternative specifica-
tion for the Travel Agency example that is decomposed into four smaller global
protocols.

ServiceCall specifies a generic call-return pattern between a Client and a Server.
The message signatures of the two communications are abstracted by the Arg

and Res parameters, declared by the sig keyword inside the angle brackets
of the protocol signature.

Forward specifies a generic forwarding pattern between three roles, from X to Y

and then Y to Z. The intent is for Y to forward a copy of the same message,
so the signatures of the two communications are abstracted by the same M

parameter.
CustomerOptions is the main protocol in this version of the Travel Agency spec-

ification, with the same signature as BookJourney in Fig. 2. It starts with the
choice of C to get another quote, to accept a quote or reject. The main inter-
actions are now built by composing instances of the Forward and ServiceCall

34 N. Yoshida et al.

1 global protocol CustomerOptions
2 (role Customer as C, role Agency as A, role Service as S) {
3 choice at C {
4 do GetQuote(C as Customer, A as Agency);
5 } or {
6 do Forward<ACCEPT()>(C as X, A as Y, S as Z);
7 do ServiceCall<Address(String), (Date)>(C as Client, S as Server);
8 } or {
9 do Forward<REJECT()>(C as X, A as Y, S as Z);

10 } }
11

12 global protocol GetQuote
13 (role Customer as C, role Agency as A, role Service as S) {
14 do ServiceCall<query(String), price(Int)>
15 (C as Client, A as Server);
16 info(String) from A to S;
17 do CustomerOptions(C as Customer, A as Agency, S as Service);
18 }
19

20 global protocol ServiceCall<sig Arg, sig Res>
21 (role Client as C, role Server as S) {
22 Arg from C to S;
23 Res from S to C;
24 }
25

26 global protocol Forward<sig M>(role X, role Y, role Z) {
27 M from X to Y;
28 M from Y to Z;
29 }

Fig. 5. Decomposition of the BookJourney global protocol using subprotocols with
message signature parameters

subprotocols. For example, do Forward<ACCEPT()>(C as X, A as Y, S as Z)

on Line 6 states that the Forward protocol should be performed with the
target roles X, Y and Z played by C, A and S, respectively, and ACCEPT() as the
concrete message signature in place of the M parameter; C sends ACCEPT to A,
who forwards it to S. After this, C and S engage in a ServiceCall subprotocol
to exchange the Address and Date messages.

GetQuote performs the quote query case of the choice between C and A, and loops
back to the overall start of the protocol. The quote exchange is specified by
instantiating the ServiceCall with the appropriate role and message signa-
ture parameters. To return to the start of the protocol, we recursively do

the main protocol CustomerOptions. The loop is thus specified by the mutual
recursion between these two protocol declarations.

The final example demonstrates the Scribble feature for asynchronously
interruptible conversations. Unlike the previous features, which involve the

The Scribble Protocol Language 35

1 global protocol InterruptServiceCall(role Client as C, role Server as S) {
2 Arg from C to S;
3 interruptible {
4 Res from S to C;
5 } with {
6 cancel() by C;
7 } }

Fig. 6. Revision of the ServiceCall global protocol with a request cancel interrupt

integration of session types with useful, general programming language features
(code abstraction and parameterisation), conversation interrupts require exten-
sions to the core design of session types [24]. The motivation for interrupts
comes from our collaboration use cases, featuring patterns such as asynchro-
nously interruptible streams and interaction timeouts [26], which could not be
directly expressed in the standard MPST formulations.

Figure 6 gives a very simple revision of the ServiceCall protocol that allows
the Client to cancel the call by interrupting the Server’s reply. A key design
point is that interruptible conversation segments do not incur any additional
synchronisation over the explicit messaging actions (i.e. interrupts are them-
selves communicated as regular messages). Due to asynchrony between C and S,
the interrupt can cause various communication race conditions to arise, e.g. C

sending cancel before S processes the initial Arg or after S has already dispatched
the Res. The Scribble Runtime is designed to handle these issues by tracking the
progress of the local endpoint through the protocol (as part of the monitoring
service). This allows the Runtime to resolve the communication races by dis-
carding messages that are no longer relevant due to the local role raising an
interrupt or receiving an interrupt message from another role.

5 Extensions of Scribble: Parameterised Scribble

This section presents Parameterised Scribble (Pabble) [32]. Pabble extends
Scribble roles with indices, such that each role can represent multiple Scrib-
ble participants, and each of the participants can be addressed by its index.
This extension is a result of applying Scribble to parallel programming, where
programs are designed in a way that they can be scaled up to any number of par-
ticipants, depending on parameters supplied at execution time. Figure 7 shows
a simple Map-Reduce protocol in Pabble. This protocol distributes data from
one participant (Worker[0]) to all other participants (Workers, which is a group
role shorthand for Worker[0..N]), followed by a parallel reduction on the Sum

operation. The results are sent to Worker[0].
Parallel programming with Pabble starts by defining the global protocol.

The global protocol is projected into endpoint protocols. However, in contrast
to Scribble endpoint protocols, where a single global protocol will be projected to
the same number of endpoint protocols as the number of participants, a Pabble

36 N. Yoshida et al.

1 global protocol MapReduce(role Worker[0..N], group Workers={Worker[0..N]}){
2 rec MOREDATA {
3 Map() from Worker[0] to Workers;
4 Sum() from Workers to Worker[0];
5 continue MOREDATA;
6 } }

Fig. 7. MapReduce protocol in Pabble.

1 main(argc, *argv[])
2 {
3 rank, size;
4 MPI_Comm_rank(, &rank);
5 MPI_Comm_size(, &size); /* = N+1 */
6 // ... Setting up of data and custom communicators ...
7 MPI_Init(&argc, &argv);
8 (/* moreData() */) {
9 MPI_Scatter(sndbuf0, sndcnt0, ,

10 rcvbuf0, rcvcnt0, ,
11 0/*Worker[0]*/, Workers_COMM);
12 MPI_Reduce(sndbuf1, rcvbuf1, count1,
13 , , 0/*Worker[0]*/, Workers_COMM);
14 }
15 MPI_Finalize();
16 // ... Freeing memory and destroying custom communicators ...
17 EXIT_SUCCESS;
18 }

Fig. 8. MapReduce protocol in MPI.

global protocol will convert to a single endpoint protocol. The endpoint protocol
represents multiple endpoints grouped together. The details of the projection
algorithm are explained in [32].

Then endpoint protocols are used to generate MPI (Message-Passing Inter-
face) code, which makes up communication parts of the parallel application.
An example MPI backbone code generated from the MapReduce protocol is given
in Fig. 8. In Fig. 8, Workers_COMM is a custom MPI communicator, which groups
together all processes from process id (called rank) 0 to N. This is declared in
the Pabble protocol on Line 1, group Workers = {Worker[0..N]}. Line 9 of Fig. 8
corresponds to a map operation, which distributes data from the process with
rank 0 (7 parameter of MPI_Scatter) to all other processes in Workers_COMM. Sim-
ilarly, Line 12 of Fig. 8 is the reduction operation, collecting results of applying
MPI_SUM to pairs of participants to the process with rank 0 (6th parameter of
MPI_Reduce).

The significance of Pabble lies in the ability to represent scalable protocols,
thus it is very useful in representing protocols used in high performance com-

The Scribble Protocol Language 37

puting, involving hundreds of thousands process units (or participants) with
relatively little effort. In Fig. 7, the protocol is designed such that Worker can
be an arbitrary number of participants (N). In the generated implementation in
Fig. 8, size on Line 5 represents the total number of processes, and this number
is given at execution time by the MPI environment via a command line argu-
ment. The rest of the program body adapts based on size during the execution,
for example, MPI_Scatter distributes data to all N processes, whatever the value
of N is.

6 Future Work

The development of the Scribble framework and its application in real-world use
cases is ongoing work. The two main use case projects mentioned above are:

Savara [38] is JBoss project developed by Red Hat and employed in a com-
mercial setting by a Cognizant business unit [15]. Savara relies on Scribble
as an intermediate language for representing protocols, to which high-level
notations, such as BPMN2, are translated to perform endpoint projections
and various refactoring tasks. Savara provides a suite of tools for testing of
service specifications against the initial project requirements. The testing is
based on simulations between the former, represented in Scribble, and the
latter, expressed as sequence diagram traces.

The Ocean Observatories Initiative [34] is an NSF-funded project to
develop the infrastructure for the remote, real-time acquisition and deliv-
ery of data from a large sensor network deployed in ocean environments to
users at research institutions. The Scribble framework, including Conversa-
tion Runtime monitoring, has been integrated into the Python-based OOI
platform. So far, the OOI cyberinfrastructure is mainly running on an RPC-
based architecture. The current Scribble integration is accordingly primarily
used for the specification of RPC service and application protocols, and the
dynamic verification of the Python client/server endpoints.

Below, we summarise some of the active threads in regards to these projects.

Expressivity The Savara project is examining formal encodings between the
specification languages commonly used in practice and Scribble (the cur-
rent translation by Savara is not yet formalised), which is motivating further
extensions to Scribble, such as dynamic introduction of roles during a conver-
sation and fork-join conversation patterns. In general, adapting MPST and
Scribble to graphical representations will increase the expressiveness of the
protocol specification language. Using the native semantics of formal graph-
ical formats for concurrency, such as communication automata [12,13] and
Petri nets, to provide global execution models of conversations is an inter-
esting direction for integrating Scribble protocol specifications with specifi-
cations of other system aspects, such as internal endpoint workflows.

38 N. Yoshida et al.

Logical Annotations The current phase of the OOI project includes the devel-
opment of a framework for actor-based interactions over the existing service
infrastructure. To support the specification and verification of higher-level
application properties above the core message passing protocol, Scribble is
being extended with a framework for annotating protocols with assertions
and policies in third-party languages. Annotations may be associated to indi-
vidual messages, interaction steps, control flow structures, roles or protocols
as a whole; examples range from basic constraints on specific message values
and control flow (e.g. recursion bounds) to more complicated logics for secu-
rity or contractual obligations of roles. The Scribble framework will accept
plugins for parsing and projecting the annotation language, and evaluating
the annotations at run-time. This allows the Scribble tools and monitors to
be extended modularly with application- and domain-specific annotations,
and the dynamic verification approach enables the enforcement of properties
that would be difficult or impossible to verify statically without conservative
restrictions.

Endpoint Implementations The Savara and OOI use cases implement the
Scribble language, meaning the syntax, well-formedness (valid protocol) con-
ditions and projections, as defined by the central language reference [41].
Both implementations also necessarily conform to baseline communication
model of Scribble, namely asynchronous but reliable and role-to-role ordered
messaging. The Scribble project is currently working on defining an accom-
panying Conversation Runtime specification. This will provide the reference
for Scribble runtime libraries and platforms, including the specification of the
key system protocols for conversation initiation, message formats (conversa-
tion and monitoring message meta data) and more advanced features such
as conversation delegations [25]. This work is towards full interoperability
of Scribble endpoints running on different platforms, such as the Java and
Python platforms of the above use cases, supported by platform-independent
monitoring. This interoperability will also extend to safely combining dynam-
ically and statically verified endpoints within conversations.

7 Conclusion

While the Scribble project is actively proceeding with our collaborators, it is
hardly believable that Kohei Honda cannot work anymore in this project. We
conclude our paper with some words from Ocean Observatories Initiative Cyber
Infrastructure Team (OOI-CI) [34] to Kohei:

A Rare Cluster of Qualities: Kohei has lead us deep into the nature of
communication and processing. His esthetics, precision and enthusiasm for our
mutual pursuit of formal Session (Conversation) Types and specifically for our
OOI collaboration to realize this vision in very concrete terms were, as penned
by Henry James, lessons in seeing the nuances of both beauty and craft, through
a rare cluster of qualities – curiosity, patience and perception; all at the perfect
pitch of passion and expression.

The Scribble Protocol Language 39

Acknowledgements. We thank Gary Brown for his comments. The work has been
partially sponsored by the Ocean Observatories Initiative, VMware, EPSRC KTS under
Cognizant, and EPSRC EP/K011715/1, EP/K034413/1 EP/G015635/1.

References

1. Web Services Choreography Description Language: Primer 1.0. http://www.w3.
org/TR/ws-cdl-10-primer/

2. Advanced Message Queueing Protocols. www.amqp.org/confluence/display/
AMQP/Advanced+Message+Queuing+Protocol

3. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–
433. Springer, Heidelberg (2008)

4. Bocchi, L., Chen, T.-C., Demangeon, R., Honda, K., Yoshida, N.: Monitoring net-
works through multiparty session types. In: Beyer, D., Boreale, M. (eds.) FMOOD-
S/FORTE 2013. LNCS, vol. 7892, pp. 50–65. Springer, Heidelberg (2013)

5. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for
distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010)

6. Capecchi, S., Giachino, E., Yoshida, N.: Global escape in multiparty sessions. In:
FSTTCS 2010. LIPIcs, vol. 8, pp. 338–351. Schloss Dagstuhl (2010)

7. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2–17. Springer, Heidelberg (2007)

8. W3C Web Services Choreography Description Language. http://www.w3.org/
2002/ws/chor/

9. Chen, T.-C., Bocchi, L., Deniélou, P.-M., Honda, K., Yoshida, N.: Asynchronous
distributed monitoring for multiparty session enforcement. In: Bruni, R., Sassone,
V. (eds.) TGC 2011. LNCS, vol. 7173, pp. 25–45. Springer, Heidelberg (2012)

10. Demangeon, R., Honda, K.: Nested protocols in session types. In: Koutny, M.,
Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 272–286. Springer, Hei-
delberg (2012)

11. Deniélou, P.-M., Yoshida, N.: Dynamic multirole session types. In: POPL, pp.
435–446. ACM (2011)

12. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012)

13. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating
automata: characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol.
7966, pp. 174–186. Springer, Heidelberg (2013)

14. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session types
for object-oriented languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 328–352. Springer, Heidelberg (2006)

15. Qualit e Cognizant business unit. Zero Deviation Life Cycle. http://0deviation.
com/

16. Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G., Larus, J.R.,
Levi, S.: Language support for fast and reliable message-based communication in
singularity OS. In : Proceedings of EuroSys’06, pp. 177–190. ACM (2006)

http://www.w3.org/TR/ws-cdl-10-primer/
http://www.w3.org/TR/ws-cdl-10-primer/
www.amqp.org/confluence/display/AMQP/Advanced+Message+Queuing+Protocol
www.amqp.org/confluence/display/AMQP/Advanced+Message+Queuing+Protocol
http://www.w3.org/2002/ws/chor/
http://www.w3.org/2002/ws/chor/
http://0deviation.com/
http://0deviation.com/

40 N. Yoshida et al.

17. Honda, K.: Scribble Examples: (1) Protocols (2007)
18. Honda, K., Hu, R., Neykova, R., Chen, T.-C., Demangeon, R., Deniélou, P.-M.,

Yoshida, N.: Structuring communication with session types. In: COB’12. LNCS,
Springer (to appear)

19. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling
interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011)

20. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disciplines
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 22–138. Springer, Heidelberg (1998)

21. Honda, Kohei, Yoshida, Nobuko, Carbone, Marco: Web services, mobile processes
and types. EATCS Bull. 91, 160–188 (2007)

22. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL ’08, pp. 273–284. ACM (2008)

23. Hu, R., Kouzapas, D., Pernet, O., Yoshida, N., Honda, K.: Type-safe eventful
sessions in Java. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 329–
353. Springer, Heidelberg (2010)

24. Hu, R., Neykova, R., Yoshida, N., Demangeon, R., Honda, K.: Practical interrupt-
ible conversations: distributed dynamic verification with session types and Python.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 130–148. Springer,
Heidelberg (2013)

25. Hu, R., Yoshida, N., Honda, K.: Session-based distributed programming in Java. In:
Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidelberg
(2008)

26. Ocean Observatories Initiative. Scribble OOI derivalables.
https://confluence.oceanobservatories.org/display/CIDev/
Identify+required+Scribble+extensions+for+advanced+scenarios+of+R3+COI

27. Milner, R.: The polyadic π-calculus: a tutorial. In: Proceedings of the International
Summer School on Logic Algebra of Specification, Marktoberdorf (1992)

28. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

29. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Parts I and II.
Inf. Comp. 100(1), 1–40 (1992)

30. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially commu-
tative asynchronous sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502,
pp. 316–332. Springer, Heidelberg (2009)

31. Neykova, R., Yoshida, N., Hu, R.: SPY: local verification of global protocols. In:
Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 358–363. Springer,
Heidelberg (2013)

32. Ng, N., Yoshida, N.: Pabble: parameterised scribble for parallel programming. In:
PDP, IEEE (2014, to appear)

33. Ng, N., Yoshida, N., Honda, K.: Multiparty session C: safe parallel programming
with message optimisation. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS,
vol. 7304, pp. 202–218. Springer, Heidelberg (2012)

34. OOI. The Ocean Observatories Initiative. http://oceanobservatories.org/
35. Pi4tech home page. http://www.pi4tech.com
36. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
37. Red Hat JBoss. JBoss Community Scribble homepage. http://www.jboss.org/

scribble
38. JBoss Savara. JBoss Savara Project homepage. http://www.jboss.org/savara

https://confluence.oceanobservatories.org/display/CIDev/Identify+required+Scribble+extensions+for+advanced+scenarios+of+R3+COI
https://confluence.oceanobservatories.org/display/CIDev/Identify+required+Scribble+extensions+for+advanced+scenarios+of+R3+COI
http://oceanobservatories.org/
http://www.pi4tech.com
http://www.jboss.org/scribble
http://www.jboss.org/scribble
http://www.jboss.org/savara

The Scribble Protocol Language 41

39. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing
system. PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994)

40. Scribble Team. Scribble Language Reference. https://github.com/scribble/
scribble-spec

41. Scribble Team. Scribble Project github homepage. http://www.scribble.org
42. UNIFI. International Organization for Standardization 20022 UNIversal Financial

Industry message scheme. http://www.iso20022.org (2002)
43. Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for struc-

tured communication-based programming revisited: two systems for higher-order
session communication. Electr. Notes Theor. Comput. Sci. 171(4), 73–93 (2007)

https://github.com/scribble/scribble-spec
https://github.com/scribble/scribble-spec
http://www.scribble.org
http://www.iso20022.org

Security

Dynamic Measurement and Protected
Execution: Model and Analysis

Shiwei Xu1, Ian Batten2(B), and Mark Ryan2

1 Wuhan Digital Engineering Institute, Wuhan, China
2 School of Computer Science, University of Birmingham, West Midlands, UK

igb986@cs.bham.ac.uk

Abstract. Useful security properties arise from sealing data to specific
units of code. Modern processors featuring Intel’s TXT and AMD’s SVM
achieve this by a process of measured and protected execution. Only
code which has the correct measurement can access the data, and this
code runs in an environment protected from observation and interfer-
ence. We present a modelling language with primitives for protected
execution, along with its semantics. We characterise an attacker who has
access to all the capabilities of the hardware. In order to achieve auto-
matic analysis of systems using protected execution without attempting
to search an infinite state space, we define transformations that reduce
the number of times the attacker needs to use protected execution to
a pre-determined bound. Given reasonable assumptions we prove the
soundness of the transformation: no secrecy attacks are lost by applying
it. We then describe using the StatVerif extensions to ProVerif to model
the bounded invocations of protected execution. We show the analysis of
realistic systems, for which we provide case studies.

1 Introduction

Modern hardware often includes security features that support the ability to seal
data to program code. This allows a data owner to impose a policy (embodied as
code) about how their data is to be processed: the hardware guarantees that the
policy will be enforced. Sealing data to code is a very powerful mechanism that
enables a wide variety of applications, in mobile computing and cloud computing
alike. For example, mobiles can store cryptographic keys for exclusive use by
certain applications, such as payment or banking applications. In the cloud,
servers can guarantee to remote users that the data they uploaded is being
processed only in accordance with their wishes.

This paper aims to analyse the specific mechanisms for sealing data to
code provided on commodity processors from AMD and Intel. These processors
already ship with off-the-shelf computers and are becoming ubiquitous. They
allow code to be executed in a protected environment outside the influence
of malware or untrusted software (including the operating system) that may
be present on the host computer. Specifically, we analyse the architecture and
mechanisms provided by Flicker [11]. The idea of Flicker is to define very small

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 45–63, 2014.
DOI: 10.1007/978-3-319-05119-2 4, c© Springer International Publishing Switzerland 2014

46 S. Xu et al.

programs that handle security-sensitive data, and are run in protected execution
mode directly under the control of the hardware security features. The bulk of
the software which is security-insensitive runs on top of an operating system,
as usual. For example [11], a certificate authority could be structured as a small
secure base that handles the signing key, along with a bigger untrusted part that
deals with I/O, the user interface, etc.

The hardware mechanisms which support this architecture are Intel’s trusted
execution technology (TXT), or the roughly-equivalent secure virtual machine
(SVM) technology from AMD. Both of these technologies rely on the presence
of a trusted platform module to store and use cryptographic keys. Our analysis
therefore involves cryptographic protocols; and since the TPM uses persistent
state registers called platform configuration registers (PCRs), it also involves
statefulness.

For these reasons, we wish to use StatVerif [2] for our analysis; it is an
extension of ProVerif which can deal with protocols that have persistent state.
Unfortunately, StatVerif does not reliably terminate when the state space is
infinite, such as in the case studies we are using in this paper. We therefore have
to develop appropriate abstractions. There are two sources of infinite state in
our application. The first one arises from an operation called PCR extension. We
already found a suitable abstraction in earlier work [6], and we re-use it here. The
second source of infinite state arises because an attacker can unboundedly often
reset the hardware and invoke a new session that uses the hardware primitives.
This paper is devoted to developing an abstraction to overcome this obstacle to
the analysis; the details of our analysis are available as a technical report.

1.1 Contribution

A platform with a TPM and a processor that implements TXT or SVM supports
protected execution and the ability to seal data to program code. We provide
a formal model of this protected execution so that we can prove the security
properties it offers. Specifically:

– We define TXML, a language with primitives for protected execution.
– We formalise a model for an adversary who is attacking protected execution.
– We state and prove a theorem that allows us to restrict attention to finite

attacker strategies, paving the way to automated verification.
– We briefly describe the use of StatVerif [2] (which is an extension of ProVerif)

to model some applications that use protected execution from the litera-
ture [11].

– We demonstrate that the applications indeed satisfy the security goals, in the
context of our attacker model.

1.2 Attacker Model

Our attacker is a powerful attacker, inspired by the capabilities against a network
protocol of a Dolev-Yao attacker. The attacker can:

Dynamic Measurement and Protected Execution: Model and Analysis 47

– Perform arbitrary offline computation using their own resources in order to
plan their strategy.

– Execute arbitrary code on the system they are attacking, including using
supervisor, kernel or other privileged modes. This includes running either their
own or the defender’s code in a protected execution environment.

– Access the TPM as though they were the owner of the TPM, with full knowl-
edge of the authorisation data.

The restrictions we impose exclude low-level hardware attacks on the plat-
form, and assume that the hardware correctly implements the hardware design.
We also assume that the cryptographic primitives are sound. Our attacker
therefore cannot:

– Extract keys or other information from the TPM other than by using the
published API. This excludes hardware attacks on the TPM, and assumes
that the TPM correctly implements the API.

– Bypass the published protections of TXT/SVM by, for example, attacking the
memory controller on the platform.

– Successfully guess cryptographic keys, perform offline decryption given only
the cipher text, find collisions in hash functions.

1.3 Related Work

There have been previous formal analyses of TPM and dynamic measurement.
Lin [10] uses the theorem prover Otter and the model finder Alloy to analyse
the security of the TPM when presented with invalid sequences of API calls.
Lin considered modelling PCR state, but was unable to do this with Otter.
Gurgens et al. [9] describe an analysis of the TPM API using a finite state
automata, but the model fragment given does not appear to consider PCR state
and the analysis in the paper is predominantly informal. Coker et al. [3] focus
on the analysis of TPM APIs for remote attestation, but their SAL model is not
yet publicly available. Delaune et al. [5] analyse a fragment of the TPM, using
the applied pi calculus as a modelling language and using the ProVerif tool to
automate their verification, but they too do not consider PCR state.

Much of the previous formal work on dynamic measurement is abstract.
Millen [12] uses LTL to model the roles and trust relationships in a dynamic
measurement system; Datta [4] proposes a logic for reasoning about secure sys-
tems built on dynamic measurement; Fournet and Planul [7] reason in the cryp-
tographic model about the security of sealed data. Our methods complement
those of [4,7], because they are automatic and scalable. We demonstrate this
with our case studies.

Arapinis et al. [2] extend the process language of ProVerif to allow the mod-
elling of global state. Their work allows the description of the TPM and dynamic
measurement in a process language with state, and the automatic generation of
Horn clauses from this model. However, ProVerif will not terminate on these
clauses. To assist termination, Delaune et al. [6] show a first-order model based

48 S. Xu et al.

on Horn clauses. This model focuses on PCR state and related API commands.
They place an upper bound on the number of times a PCR needs to be extended
between two resets. They show that if there is an attack using an unlimited num-
ber of extensions, then there is also an attack which requires a bounded number
of PCR extensions. They also show that this upper bound is small enough to
be tractable using ProVerif. Their model solves the non-termination problem
caused by PCR extension; however, in some applications further termination
problems are caused by multiple PCR resets as the result of multiple invoca-
tions of dynamic measurement. Bounding the number of PCR extensions does
not solve the problem caused by multiple PCR resets, which we characterise and
solve in this paper.

2 Background to Trusted Computing

Hardware Primitives. A TPM can provide evidence that a system is running
in a particular configuration through the use of platform configuration registers
(PCRs). The TPM only allows the PCRs to be reset to initial values by privileged
instructions or at system reset. They can however be extended at any time.
Extension involves hashing the current value of the PCR with another value; a
PCR containing value p is extended with x by concatenating p with x, hashing
the result and making this the new value of the PCR.

When a software module is loaded, its measurement, conventionally consist-
ing of a secure hash of the code, can be extended into a PCR. A sequence of
such extensions will result in a PCR value that is unique to the set of modules so
measured, and the order in which they were measured, starting from an initial
measure of trusted code loaded at boot-time.

Secret information can be sealed against a set of PCR values. The TPM
encrypts the information using a key that the TPM controls, and the TPM will
perform the matching decryption if and only if the PCRs are in the state against
which the data has been sealed.

Only the loading of a unique sequence of modules will produce a particular
PCR. Any change to any one of the modules will produce a different value. In
practice, this limits the measurement of the whole configuration; the process
of booting a general purpose operating system from initial power-on to user
login has too many variable elements, and changes too frequently. Addition-
ally, because code is measured at the point of loading, an attacker who can
access memory (which is usually a reasonable assumption) can overwrite already-
measured code without altering the PCR value.

To address these issues, version 1.2 of the TPM specification introduced the
concept of a dynamic root of trust. Rather than tracing execution back to power-
on, a privileged instruction can be used to reset PCRs in a new bank (17–22),
which were initialised at power-on to all-ones (u1), directly to all-zeroes (u0).
These resetable PCRs are then available to be extended with measurements from
the reset onwards, rather than from power-on. This functionality is the basis for
dynamic measurement technology, such as Intel’s Trusted Execution Technology
(TXT) [8] and AMD’s Secure Virtual Machine (SVM) [1].

Dynamic Measurement and Protected Execution: Model and Analysis 49

As the Intel and AMD technologies operate in a similar fashion, for simplicity
we only consider the AMD SVM technology; the differences do not affect our
argument in any material way. SVM provides a privileged command SKINIT,
which creates a protected environment in which code can execute free from
external influences. The unit of code to be executed with this protection is
called a Secure Loader Block (SLB). When the SKINIT instruction is executed,
interrupts and DMA are disabled to prevent access to the SLB and the resetable
PCRs are reset. The SLB is sent to the TPM for measurement (using a hash
function) and the result is extended into PCR17. The SLB is then executed.

Flicker Architecture. Flicker [11] provides a mechanism for executing pieces of
code with specific guarantees of privacy and integrity by making use of dynamic
measurement. It uses Intel TXT or AMD SVM technology to measure and pro-
tect an SLB, which consists of initialisation and clean-up (SLB Core) and appli-
cation functionality (Pieces of Application Logic, PAL); the measurement allows
the SLB to unseal private data, while the protection prevents interference or
observation with manipulation of the private data. Appropriate kernel services
are made available to enable execution.

Although their use is not mandatory, the standard SLB template provides
some additional features. Firstly, it provides a standard mechanism for passing
arguments in to the PAL and passing out results. Secondly, after execution of
the PAL has completed, but before the SLB exits, the SLB measures the inputs
and the outputs of the PAL and extends their value into PCR17, and then
extends a fixed public constant into PCR17. One effect of this is to leave the
PCRs in a state which is of no use to an attacker who is attempting to unseal
confidential data; the extension with the fixed public constant leaves a value
against which no data will have been sealed. It also provides a verifiable chain
to prove the execution: PCR17 is left as the result of successively extending an
initial u0 with the measurements of the SLB, any inputs, any outputs and finally
the fixed public constant. A later TPM Quote operation on PCR17 provides an
attestation as a verifiable link between the inputs, the outputs and the SLB for
a verifier.

3 A Model of Protected Execution

In this section, we model the functionality of dynamic measurement and the
TPM. We introduce a modelling language, TXML, along with its semantics.
We describe a theorem that allows us to bound the length of traces such that
models can be verified with available tools. To illustrate our model, we introduce
a simple Flicker-based decryption oracle. We then formally define our model.

3.1 Simplifications and Abstractions

We simplify both Flicker and the TPM, but in ways which grant additional
powers to the attacker. If the attacker cannot compromise our simplified system,
he also cannot compromise the full system.

50 S. Xu et al.

– We omit TPM authdata, normally required to authenticate access to the TPM.
Permitting access to the TPM without authdata is equivalent to assuming
that the attacker can obtain the authdata from the running machine; this is
in keeping with our attacker model.

– We assume that all keys used in the model have been created and are perma-
nently loaded in the TPM. This does not alter the power of the attacker but
simplifies the model substantially.

– For simplicity, we consider a TPM with only PCR17, as it is sufficient to model
the facilities we are using.

– Finally, as we are analysing the secrecy properties of the system rather than
the correctness of attestations, we omit the SLB’s extension of its input and
output into PCR17. This allows the attacker to replay previous executions as
though they were fresh.

3.2 An Introductory Example

Our introductory example is a decryption oracle implemented as an SLB. Any
object supplied to the SLB is decrypted using symKey and returned to the user.
The intent is that symKey is never revealed outside the oracle. In order to prevent
the oracle being used to decrypt arbitrary ciphertexts, a check is made for the
presence of a pre-arranged tag. Our concern is the privacy of the decryption key
in the face of a powerful attacker, so the tag is made available to the attacker.

We represent the oracle SLB as slbD which receives as input the sealed symKey
and an object which is to be treated as ciphertext. slbD attempts to unseal
symKey. If that succeeds it uses symKey to decrypt the cipher-text. If that suc-
ceeds, and the tag is found in the plaintext, the plaintext is output. Finally, the
public fixed constant fpc is extended into PCR17 to revoke access to the secrets.

Assuming the correctness of the TPM unsealing function, symKey can only
be unsealed when PCR17 value is h(u0, slbD). Due to the operation of dynamic
measurement, PCR17 can be set to h(u0, slbD) only by the execution of slbD
with an SKINIT instruction. slbD itself uses, but does not output, symKey. Con-
sequently, symKey is not exposed outside the decryption oracle.

3.3 Trusted Execution Modelling Language

We present a formal model of protected execution. This models a machine
equipped with a simplified TPM which offers sealing, unsealing, resetting, read-
ing and extension of the PCR. The machine also allows users to execute programs
in the protected execution environment provided by dynamic measurement.

We introduce the syntax and semantics of a language, TXML1. This lan-
guage describes actions that can be taken either by the attacker, as part of a
strategy to attack the security properties of the defender’s system, or by the
defender, in order to implement protected execution. We model the decryption
oracle example to show its use in describing a defender’s SLB. We then define
1 Trusted eXecution Modelling Language.

Dynamic Measurement and Protected Execution: Model and Analysis 51

transformations from one strategy, which is used to model a list of commands
in TXML, to another strategy. We show that the result of this transformation
is both equivalent to the original and tractable for analysis.

TXML is not a complete language. It lacks any looping constructs, and has
only rudimentary conditionals. The attacker would not design an attack strategy
using TXML. However, any sequence of actions the attacker carries out can be
retrospectively expressed in TXML. Any sequence of operations that involves
loops or conditionals can be expressed, once the number of iterations in each
loop and the outcome of each conditional has been determined, by a simpler
sequence of operations that does not involve loops and conditionals, starting
from the same initial state. The attacker is given the ability to perform arbitrary
offline computation; this allows him to construct one or more sequences of TXML
commands to perform their attack.

Syntax. Suppose sets N of names including 0, 1, skSrk (the storage root key of
the TPM), tpmPf (the TPM Proof inserted into a seal so that the TPM can
confirm that it was sealed on this TPM), . . .; V of variables with typical ele-
ments x, y, z, The letters u, v, w, . . . range over V ∈ N. Typical constructor
function symbols, including at least h/2, senc/2, aenc/3, pk/1 and measure/1,
are represented as f . These represent respectively the SHA1 hash function, sym-
metric and asymmetric encryption, the derivation of a public key from a private
key, and the measurement with SHA1 of a fragment of program text. Typical
destructor function symbols, including at least sdec/2 and adec/2, are repre-
sented as g. These represent respectively symmetric and asymmetric decryp-
tion. We define terms t1,t2,. . . over V ∈ N in the usual way. The rewrite rules
t1 ≤ t2 where t1,t2 are over variables include at least sdec(x, senc(x, y)) ≤ y
and adec(x, aenc(pk(x), y, z)) ≤ z, linking associated encryption and decryption
operations.

The syntax of TXML is shown in Fig. 1 and described as follows:

– x := f(u1, . . . , un) and x := g(u1, . . . , un) are applications of constructors and
destructors.

– x := seal(u, v), x := unseal(u), extend(u) and reset are the actions of sealing
and unsealing data, extending a PCR and resetting the TPM.

– check u = v confirms the equality of two terms.
– skip is the null action.
– x := SKINIT{list(statement); rtnu} is a list of statements that are executed

protected by SKINIT, which return u.
– x := SUBR{list(statement); rtnu} is analogous to x := SKINIT{. . . ; rtnu}.

However, it does not modify the PCR value. SUBR is not available to the pro-
grammer or the attacker, and cannot appear in the definition of an
SLB; it is present in TXML as a technical convenience that we use during
transformation.

Semantics. We will be using TXML as the basis for our proof that we can
bound the number of SKINITs used by the attacker. We therefore need to define
its semantics. We consider configurations (K, p), where the attacker’s knowledge

52 S. Xu et al.

statement ::=
x := f(u1, . . . , un) |
x := g(u1, . . . , un) |
x := seal(u, v) |
x := unseal(u) |
extend(u) | reset |
check u = v | skip

command ::=
statement |
x := SKINIT{list(statement); rtnu} |
x := SUBR{list(statement); rtnu}

program ::=
list(command)

Fig. 1. Syntax of TXML

base K : V ≤ ground terms is a partial function and p is a ground term. We
assume K is extended to V∈N, as the identity function on N. The initial configu-
ration is (Kinit, 1). Transitions between configurations are labelled by programs.
We assume side conditions that K(x) is defined and r is non-deterministically
chosen whenever we write K(x) and r. We also assume an injective function
measure : TXML≥ ≤ N taking a sequence of TXML commands and returning a
name.

(K, p) C−≤ (K≤, p≤) means that when the knowledge base is K and the PCR
value is p, and the attacker performs command C, his new knowledge base
will be K≤, and the new PCR value will be p≤. The relations C≤, which relates
to individual commands, and S→, which relates to sequences of commands, are
defined in Fig. 2. A PCR value of ⊥ represents a PCR value against which no
blob is sealed.

Figure 2 shows the semantics of each command in TXML. We clarify some
of the more complex rules:

– A sealed blob consists of the encryption of (tpmPf, p, t), where tpmPf is a
constant known only to the TPM, p is the PCR state which must be current
for an unsealing operation to succeed, and t is the data which has been sealed.
The encryption is done with a public key, whose private part is available
only within the TPM. The rules for unseal add the secret t to the attacker’s
knowledge base if the required PCR value in the sealed blob matches the
current PCR value.

– In the rule for SKINIT{L; rtnu}, we first compute the effect of L when run
from knowledge base K and a PCR value reflecting the measurement of L.

– SUBR is similar to SKINIT, except that the final PCR value is p rather than
p≤. As mentioned, SUBR is not used in source TXML programs; we use it in
our transformation.

Modelling the Introductory Example. Two objects are supplied to the
decryption oracle: a sealed blob containing the symmetric key pre-sealed against
PCR17 with the value of u0 extended with the measurement of the decryption
oracle’s program, and some atomic message encrypted with the symmetric key.

Dynamic Measurement and Protected Execution: Model and Analysis 53

(K, p)
skip−−→ (K, p)

(K, p)
x:=f(u1,...,un)−−−−−−−−−→ (K[x → f(K(u1), . . . ,K(un))], p)

(K, p)
x:=g(u1,...,un)−−−−−−−−−−→ (K[x → t], p) if g(t1, . . . , tn) → tn+1 is a reduc and

K(ui) = tiσ and t = tn+1σ

(K, p)
x:=seal(u,v)−−−−−−−→ (K[x → aenc(pk(skSrk), r, (tpmPf,K(u),K(v)))], p) if K(u) ←= ⊥

(K, p)
x:=unseal(u)−−−−−−−→ (K[x → t], p) if p ←= ⊥ and K(u) = aenc(pk(skSrk), r, (tpmPf, p, t))

(K, p)
extend(u)−−−−−→ (K, h(p,K(u))) if p ←= ⊥

(K, ⊥)
extend(u)−−−−−→ (K, ⊥)

(K, p)
reset−−→ (K, 1)

(K, p)
check u=v−−−−−−→ (K, p) if K(u) = K(v)

(K, p)
x:=SKINIT{L;rtnu}−−−−−−−−−−−−→ (K[x → K≤(u)], p≤) if (K, h(0,measure(L)))

L
=⇒ (K≤, p≤)

(K, p)
x:=SUBR{L;rtnu}−−−−−−−−−−−→ (K[x → K≤(u)], p) if (K, h(0,measure(L)))

L
=⇒ (K≤, p≤)

Fig. 2. This defines the relation
C→. Let S be a TXML program. The relation

S⇒ is

defined as (K, p)
∅
=⇒ (K, p) in the case that S is the null program. In other cases,

(K, p)
C;S
==⇒ (K≤, p≤) if (K, p)

C−→ (K≤≤, p≤≤) and (K≤≤, p≤≤) S
=⇒ (K≤, p≤).

Therefore, the initial knowledge base is:

Kinit DO = {xsdata = aenc(pk(skSrk), r, (tpmPf, h(0,measure(slbD)), symKey)),
xEncBlob = senc(symKey,message)}

where slbD is the program:

result := SKINIT {
xSymKey := unseal(xSData);
xMessage := sdec(xSymKey, xEncBlob);
extend(fpc);
rtn xMessage;

}.

The security property we are checking is the secrecy of the symmetric key
symKey. To attempt to obtain the key, the attacker can adopt any strategy, as
described in Sect. 1.2. The desired security property is therefore that there is no
TXML program S, knowledge base K≤, PCR values p, p≤ and variable x such
that (Kinit DO, p)

S=→ (K≤, p≤) and K≤(x) = symKey.

Transformations of Strategies. The security property above requires reason-
ing over all possible TXML programs S. We show that it is sufficient to consider
only programs involving a bounded number of SKINITs and resets. To achieve
this, we transform any strategy S into a new strategy S≤ that is equivalent to
S and has a number of SKINITs and resets which is bounded by a value deriv-
able from the initial knowledge base. This allows us to use automatic tools to

54 S. Xu et al.

search for strategies that achieve a certain goal and model at most this number
of SKINITs and resets; if none are found, we may conclude that there are no
longer strategies that achieve the goal.

The transformation performs two changes. First, unseal operations that are
not necessary are replaced by an equivalent assignment. An unseal operation is
not necessary if there is another variable in the knowledge base that has the
value of the unsealed item. Second, operations that reset the PCR, namely, reset
and SKINIT, are removed if there is no necessary unseal operation between the
current point and the next reset or SKINIT. This reflects the fact that PCR values
are required to be correct only in order for unseals to work. The transformation
uses configurations (K, p) as before, but with the extension that p may take the
special value ⊥ which signifies that any value will do; the PCR value is not
needed. The transformation is such that p = ⊥ if and only if there is no unseal
between the current position in the program and the next reset or SKINIT.

The result of this transformation does not weaken the attacker. The attacker
can perform computation with the defender SLB using any number of inputs.
The attacker can run arbitrary code with the PCR in the state left by the
execution of the defender SLB. The attacker can attempt to unseal data sealed
by the defender. The attacker already knows the contents of sealed data sealed
by the attacker. If the attacker wishes to obtain more results from the defender
SLB, these are available to him from the transformed strategy.

The transformations we use are shown in Fig. 3. In the definition of C′
−≤
C

, the

truth or falsity of p = ⊥ enforces a global constraint on the way the transfor-
mation works, and makes the transformation deterministic. The two rules for
each of SKINIT and reset appear to be non-deterministic, but in fact only one
of them may be chosen; which one is chosen depends on whether there is an
unseal before the next SKINIT or reset, as expressed by the rule for unseal which
requires p ↔= ⊥. The apparent free choice of whether q = p or q = ⊥ in the
rule for unseal is similarly constrained by the remainder of the program S being
transformed.

SUBR is introduced into S≤ by the second rule for SKINIT, which is invoked
if and only if there is no unseal between now and the next SKINIT or reset, as
indicated by the ⊥ value on the right hand side.

Bounding the Number of SKINITs and Resets. The ability to seal data
against arbitrary PCR values is very flexible, and can lead to situations more
complex than the simple sealing of one piece of data against one set of PCR
values. A piece of data sealed against one set of PCR values can contain another
piece of data sealed against another set of values. A piece of data may be sealed
against an SLB which will only release the decrypted version once some other
conditions are met. To reach a state where these conditions are true might include
the decrementing of a counter, or transition through some state machine.

We define data as boundedly sealed if there is a finite bound to the number
of SKINITs required to extract it.

Dynamic Measurement and Protected Execution: Model and Analysis 55

(K, p)
skip−−→
skip

(K, p)

(K, p)
x:=f(u1,...,un)−−−−−−−−−→
x:=f(u1,...,un)

(K[x → f(K(u1), . . . ,K(un))], p)

(K, p)
x:=g(u1,...,un)−−−−−−−−−−→
x:=g(u1,...,un)

(K[x → t], p) if g(t1, . . . , tn) → tn+1is a reduc and

K(ui) = tiσ and t = tn+1σ

(K, p)
x:=seal(u,v)−−−−−−−→
x:=seal(u,v)

(K[x → aenc(pk(skSrk), r, (tpmPf,K(u),K(v)))], p)

(K, p)
x:=unseal(u)−−−−−−−→

x:=y
(K[x → K(y)], p) if K(u) = aenc(pk(skSrk), r, (tpmPf, p≤,K(y)))

(K, p)
x:=unseal(u)−−−−−−−→
x:=unseal(u)

(K[x → t], q) otherwise, if K(u) = aenc(pk(skSrk), r, (tpmPf, p, t))

and p ←= ⊥ and (q = p or q = ⊥)

(K, p)
extend(u)−−−−−→
extend(u)

(K, h(p,K(u))) if p ←= ⊥

(K, ⊥)
extend(u)−−−−−→
extend(u)

(K, ⊥)

(K, ⊥)
reset−−→
reset

(K, 1)

(K, ⊥)
reset−−→
skip

(K, ⊥)

(K, p)
check u=v−−−−−−→
check u=v

(K, p) if K(u) = K(v)

Suppose (K, h(0,measure(P)))
P−→
P′ (K≤, p≤) .

If P is a defender SLB:

(K, ⊥)
x:=SKINIT{P;rtnu}−−−−−−−−−−−−→
x:=SKINIT{P;rtnu}

(K[x → K≤(u)], p≤)

(K, ⊥)
x:=SKINIT{P;rtnu}−−−−−−−−−−−−→
x:=SUBR{P;rtnu}

(K[x → K≤(u)], ⊥)

Suppose P is an attacker SLB:

(K, p)
x:=SKINIT{P;rtnu}−−−−−−−−−−−−→
x:=SUBR{P’;rtnu}

(K[x → K≤(u)], ⊥)

The relation (K, p)
C−→
C′ (K≤, p≤) indicates that when in configuration (K, p) the execution

of command C yields the new configuration (K≤, p≤) and adds the command C≤ to the
transformed strategy.

Fig. 3. Given a knowledge base Kinit, a strategy S is transformed to S≤ if (Kinit, 1)
S

=⇒
S′

(K,⊥) for some K, where the relation
S

=⇒
S′ (S and S≤ are strategies) is defined from

C−→
C′

above as follows: (K, p)
∅
=⇒
∅

(K, p) where ∅ is the empty strategy; (K, p)
C;S

===⇒
C′;S′ (K≤≤, p≤≤) if

there exists (K≤, p≤) such that (K, p)
C−→
C′ (K≤, p≤) and (K≤, p≤) S

=⇒
S′ (K≤≤, p≤≤).

Definition 1. 1. A piece of sealed data B is sealed against program P if

B = aenc(pk(skSrk), r, (tpmPf, p, t))

and
p = h(. . . h(h(0,measure(P)), t2), . . . tn).

56 S. Xu et al.

2. A knowledge base K produces K≤ using P if

K≤ = K ∈ {B | on inputs from K, P can output B}
3. We then define

K =
⋃

K produces* K’

K≤.

where produces* is the reflexive transitive closure of produces.
K has only bounded seals if the number of sealed blobs in K is finite.

Theorem 1. Suppose knowledge base K has only bounded seals. Let m be the
number of sealed blobs in K, as in the Definition 1. Let S be any strategy, and
suppose that (K,⊥) S=→

S′
(K≤,⊥). We have the following properties:

1. (K,⊥) S=→ (K≤, p) implies ⊆S≤.(K,⊥) S=→
S′

(K≤,⊥).

2. S≤ simulates S; that is, (K,⊥) S=→
S′

(K≤,⊥) implies ⊆q.(K,⊥) S′
=→ (K≤, q).

3. S≤ uses only the data present in S that is, every name in S≤ is in S.
4. The number of SKINITs plus the number of resets in S≤ is at most m.

The proof of the theorem is given in Appendix A.
This theorem enables us to undertake practical verification of systems that

use protected execution. Without the theorem, we would need to consider
attacker strategies of unbounded length, or accept weak results based on a sig-
nificantly weakened attacker who can only use strategies of a fixed length. Our
theorem removes these restrictions.

The theorem allows us to bound the number of SKINIT operations that need
to be considered to give the attacker access to the full range of PCR states.
However, a typical SLB will perform some unsealing, and will leave the PCR
in some new state, but it performs these operations in order to enable some
calculation which returns a result. If we bound the attacker’s ability to perform
these calculations, then we substantially reduce their capability.

We therefore introduce the SUBR operation. Although it does not modify
the PCR state (because we have shown that we can bound the number of such
modifications we need to consider) it returns the same result as the corresponding
SKINIT. So in the typical case where data is simply sealed so that we need only
consider one SKINIT, the attacker can nonetheless make unlimited use of the
SUBR to get results from the defender’s SLB. Our theorem shows that it is sound
to transform a strategy that uses an arbitrary number of SKINIT operations into
a strategy which performs some bounded number of SKINIT operations, together
with an arbitrary number of uses of the SUBR.

We are now in a position to verify the security properties of our decryption
oracle. We have one piece of sealed data in our knowledge base, and by Definition
1 it is boundedly sealed: no sealed blobs are added to the knowledge base by
the operation of the SLB. Kinit DO therefore contains only one seal, xsdata. We
apply Theorem 1 to Kinit DO, with m = 1.

Dynamic Measurement and Protected Execution: Model and Analysis 57

A StatVerif model was constructed, which includes:

– A process modelling a TPM, complete with PCR state and seal, unseal, reset
and extend operations;

– A process modelling the use of the SLB via SKINIT, which leave the PCR
values in a deterministic state;

– A process modelling the use of the SLB via SUBR, which leave the PCR
values in an indeterminate state.

This model is then bounded appropriately and run to test the secrecy prop-
erty of the symmetric key. The property is confirmed.

4 Case Study: Password Authentication for SSH

Description. An additional authentication mechanism for OpenSSH is pro-
posed by McCune et al. [11]. The goal is to prevent any malicious code on the
server from learning the user’s password, even if the server is compromised. The
prevents an attacker from making use of the password to pose as the legitimate
user.

A keypair is shared between the authentication SLB and the client. The
private part of the keypair (skSlb) is sealed against PCR17 with the value u0
extended with the measurement slbA. The public part is conveyed to the user in
a way which allows him to confirm the key generation was done correctly (see
[11] Sect. 6.3.1 for details).

An authentication proceeds as follows. A nonce is generated by the server
and sent to the client. The client encrypts this nonce and their password (pwd)
using the public key that they hold and sends it to the server. The server sends
the nonce and the cipher text to the SLB, together with the sealed key and the
salt (salt) extracted from the password file.

The server invokes the SLB using SKINIT. The SLB unseals the private part
of the keypair, and uses that to decrypt the message from the client. The nonce
contained in that message is compared with the nonce supplied by the server to
confirm freshness. The password extracted from the message is hashed together
with the salt provided by the server to form a value that the server can compare
with the copy of the hash from the password file. The plaintext of the password
is not available outside the SLB; the hash is available more widely.

As with the decryption oracle, we can see that no sealed data is output.
Although the output is not plaintext (it is the hash of a password together with
some salt) it will does not contain the TPM proof and is not encrypted.

Modelling. We model the SSH password authentication application in TXML.
As well as the salt and the public part of all keys, we assume that the attacker
has the private part of skSlb sealed against u0 extended with the measurement
of slbA.

58 S. Xu et al.

Kinit SSH = {xsalt = salt,
xpksrk = pk(skSrk),
xpkslb = pk(skSlb),
xsdata = aenc(pk(skSrk), r, (tpmPf, h(0,measure(slbA)), skSlb)) }

where slbA is the program:

result := SKINIT {
xsk_Slb := unseal(xSdata);
xTemp := adec(xsk_Slb, xCipher);
xPwd := fst2(xTemp);
xNonce’ := snd2(xTemp);
check xNonce = xNonce’;
hash := md5(xSalt,xPwd);
extend(fpc);
rtn hash;

}.

Result of Our Analysis. Because slbA does not output any seals (it only
outputs an MD5 hash), Kinit SSH contains only one seal (xsdata from the initial
knowledge). Therefore, we can apply Theorem 1 to Kinit SSH with m = 1.

We wrote a StatVerif model based on the above description. As previously
stated, the SLB cannot output a sealed blob, as its only output is a hash of the
password. We can bound the number bof extensions with the results in [6], and
our theorem allows us to bound the number of resets and SKINITs. The complete
StatVerif code for these examples, along with some supporting scripts to simplify
the running of ProVerif and StatVerif, a description of the methodology used and
some further background information, is available for download. The location is
given in the bibliography.

5 Case Study: A Certification Authority

Description. This certification authority example is also taken from [11]. It
consists of two SLBs, one to perform key generation, the other to perform key
signing.

The key generation SLB constructs a keypair (skSignKey) suitable for use in
signing other keys, and the private part of skSignKey is sealed against u0 extended
with the measurement of the second SLB.

For the signing SLB (slbC), the client forms a certificate signing request
(CSR) containing a public key along with details of the client’s identity. The
client submits this to the key signing SLB, which has access to the sealed form
of its own private key. The SLB checks the signing policy, then unseals its private
part of the keypair in order to sign the CSR. The result is returned to the client.

Modelling. We model the CA application in TXML, after making some abstrac-
tions. Firstly, we check that the signing SLB maintains the secrecy of any signing

Dynamic Measurement and Protected Execution: Model and Analysis 59

key with which it is used. This allows us to leave the key-generation SLB unmod-
elled and use a simple process that produces sealed keys instead. Secondly, as
the required security property is the secrecy of the CA’s signing key rather than
the authenticity of the CSRs, the signing policy is not modelled.

We assume that the attacker has the public parts of the storage root key and
the signing key skSignKey. We also assume that the attacker has the private part
of skSignKey sealed against u0 extended with the measurement of slbC.

As in the previous example, we are able to determine that m = 1, as the
application does not output any new sealed objects.

Kinit CA = {
xpksrk = pk(skSrk),
xpkSignKey = pk(skSignKey),
xsdata = aenc(pk(skSrk), r,

(tpmPf, h(0,measure(slbC)), skSignKey))
}

where slbC is the program:

result := SKINIT {
xskSignKey := unseal(xSdata);
xCert := sign(xskSignKey,xCSR);
extend(fpc);
rtn xCert;

}.

Result of Our Analysis. The security property we are checking is the secrecy
of the CA signing key skSignKey. As a partial check that the model is correct we
also check for the existence of certificates signed by skSignKey. The queries are
written in the StatVerif calculus as follows:

query att(u, skSignKey) (F5)
query att(u, sign(skSignKey, xCSR)) (F6)

We bound the number of PCR extensions as in Sect. 4. ProVerif then termi-
nates with F6 reachable, which shows that the model does in fact produce signed
certificates, and F5 unreachable, which shows that there are no short attacks on
the secrecy of the CA signing key skSignKey. Based on Kinit CA and slbC, the model
conforms to the conditions of Theorem 1. Therefore there is no attack on the
secrecy of skSignKey.

6 Conclusion

Protected execution on x86 platforms involves a stateful model with a state
space that in unbounded in two ways. First, a PCR value may be extended with
arbitrary data an arbitrary number of times. Second, the PCR value is reset
each time a protected execution session is begun, and this too can happen an

60 S. Xu et al.

arbitrary number of times. We proved that it is nonetheless sound to consider
only attacker strategies that are bounded in both these senses. This allows us
to use StatVerif to analyse protected execution, which we have done for some
examples.

Hardware-based security mechanisms, such as TPM, TXT, virtualisation and
Hardware Security Modules are an important part of defending computing plat-
forms. Formal analyses of their often complicated APIs are therefore timely.
Developing abstractions of the kind described in this paper is a step in extend-
ing the ProVerif methodology to hardware-based security mechanisms. In future
work, we intend to explore some more of these mechanisms.

The StatVerif files corresponding to our experiments are available for down-
load at:

http://markryan.eu/research/projects/ProtectedExecution/

A Proof of Theorem 1

Suppose K contains B1, B2, . . . , Bn. Let m be the number of sealed blobs in K,
as in Definition 1. Let S be a strategy such that (K,⊥) S=→ (K ≤, p). Then:

1 ⊆S≤ such that (K,⊥) S=→
S′

(K ≤,⊥).

2 S≤ simulates S; that is ⊆q such that (K,⊥) S′
=→ (K ≤, q).

3 S≤ uses only data present in S, i.e. names(S≤) ≥ names(S).

4 The number of SKINITs plus the number of resets in S≤ is at most m.
We first prove a number of lemmas.

Lemma 1. (K,⊥) S=→ (K ≤, p≤) implies ∀p⊆p≤≤(K, p) S=→ (K ≤, p≤≤).

Proof. We show this by induction on S.

Base case S = ∅. The proof is obvious, setting p≤≤ = p.

Inductive case S = C;S1. We have (K,⊥) C−≤ (K ≤, p≤) S1=→ (K ≤≤, p≤≤≤). Take any p.

Taking each case of C

skip, x := f(), x := g(), x := seal(u, v), check u = v We have p≤ = ⊥, and
(K, p) C−≤ (K ≤, p). Apply IH with p to obtain p≤≤, and we have (K, p) C−≤ (K ≤, p) S1=→
(K ≤≤, p≤≤), i.e. (K, p) S=→ (K ≤≤, p≤≤).

unseal(v) This situation is impossible.

http://markryan.eu/research/projects/ProtectedExecution/

Dynamic Measurement and Protected Execution: Model and Analysis 61

extend(v) We have p≤ = ⊥ and (K, p) C−≤ (K ≤, h(p, v)). Apply IH with h(p, v) to
obtain p≤≤, and we then have (K, p) C−≤ (K ≤, h(p, v)) S1=→ (K ≤≤, p≤≤) i.e. (K, p) S=→
(K ≤, p≤≤).

reset,SKINIT{P ; rtnu} We have p≤ = 1 and (K, p) C−≤ (K ≤, 1), and (K, p) C−≤
(K ≤, 1) S1=→ (K ≤≤, p≤≤≤), i.e. set p≤≤ = p≤≤≤ and we have (K, p) S=→ (K ≤, p≤≤).

Lemma 2. (K, p) C−≤ (K ≤, p≤) implies ⊆C ≤.(K, p) C−≤
C′

(K ≤, p≤).

Proof. Consider each case of C in turn.

Lemma 3. (K, p) C−≤ (K ≤, p≤) implies ⊆C ≤.(K, p) C−≤
C′

(K ≤,⊥) or (K,⊥) C−≤
C′

(K ≤,⊥).

Proof. Consider each case of C in turn. For unseal, we prove the left disjunct.
For all other cases, we prove the right disjunct.

Lemma 4. If p ↔= ⊥ then (K, p) C−≤
C′

(K ≤, p≤) implies (K, p) C′
−≤ (K ≤, p≤).

Proof. Consider each case of C in turn.

Lemma 5. (K, p) C−≤
C′

(K ≤,⊥) implies p ↔= ⊥, (K, p) C′
−≤ (K ≤, p) or ⊆p≤.(K, p) C′

−≤
(K ≤, p≤).

Proof. Consider each case of C in turn. For unseal, we prove the left disjunct.
For all other cases, we prove the right disjunct.

Part 1 of Theorem 1

(K,⊥) S=→ (K ≤, p≤) implies ⊆S≤.(K,⊥) S=→
S′

(K ≤,⊥).

Proof. We prove something more general:
(K, p) S=→ (K ≤, p≤) implies ⊆S≤.(K, p) S=→

S′
(K ≤,⊥) or (K,⊥) S=→

S′
(K ≤,⊥).

Base case S = ∅ is obvious.

Inductive case S = C;S1

Suppose (K, p) S=→ (K ≤, p≤≤). RTP ⊆S≤.(K, p) S=→
S′

(K ≤,⊥) or (K,⊥) S=→
S′

(K ≤,⊥).

Expanding: (K, p) C−≤ (K ≤, p≤) S1=→ (K ≤≤, p≤≤). By inductive hypothesis, ⊆S≤
1.

– either (K, p≤) S1=→
S′
1

(K ≤,⊥). From (K, p) C−≤ (K ≤, p≤), by Lemma 2, ⊆C ≤.

(K, p) C−≤
C′

(K ≤, p≤). So set S≤ = C ≤;S≤
1. Then (K, p) S−≤

S′
(K ≤,⊥).

– or (K,⊥) S1=→
S′
1

(K ≤,⊥). From (K, p) C−≤ (K ≤, p≤), by Lemma 3, either (K, p) C−≤
C′

(K ≤,⊥), so (K, p) S=→
S′

(K ≤,⊥), or (K,⊥) C−≤
C′

(K ≤,⊥), so (K,⊥) S=→
S′

(K ≤,⊥)

where again, S≤ = C ≤;S≤
1.

62 S. Xu et al.

Part 2 of Theorem 1

(K,⊥) S=→
S′

(K ≤,⊥) implies ⊆p≤.(K,⊥) S′
=→ (K, p≤).

Proof. We prove something stronger:

(K, p) S=→
S′

(K ≤,⊥) implies ⊆p≤.(K, p) S′
=→ (K ≤, p≤).

We prove this using induction on S.

Base case S = ∅ is obvious.

Inductive case S = C;S1. Inductive hypothesis: (K,⊥) S1=→
S′
1

(K ≤,⊥) implies

⊆p≤.(K,⊥)
S′
1=→ (K ≤, p≤).

We want to prove (K, p) S=→
S′

(K ≤,⊥) i.e. (K, p) C−≤
C′

(K ≤, p≤) S1=→
S′
1

(K ≤≤,⊥).

– Either p≤ = ⊥
• either p = ⊥: (K,⊥) C−≤

C′
(K ≤,⊥) S1=→

S′
1

(K ≤≤,⊥), so by Lemma 4 and IH

⊆p≤≤.(K,⊥) C′
−≤ (K ≤,⊥)

S′
1=→ (K ≤≤, p≤≤), i.e. (K,⊥) S′

=→ (K ≤≤, p≤≤).
• or p ↔= ⊥: (K, p) C−≤

C′
(K ≤,⊥) S1=→

S′
1

(K ≤≤,⊥). by Lemma 5 and IH ⊆p≤≤.

∗ either (K, p) C′
−≤ (K ≤, p), (K,⊥) S′

=→ (K ≤≤, p≤≤), Then by Lemma 1,

⊆p≤≤≤.(K, p) C′
−≤
C′

(K ≤, p)
S′
1=→ (K ≤≤≤, p≤≤≤), i.e. (K, p) S′

=→ (K ≤≤≤, p≤≤≤).

∗ or ⊆p≤
1.(K, p) C′

−≤ (K ≤, p≤
1), (K

≤,⊥)
S′
1=→ (K ≤≤, p≤≤). Then by Lemma 1,

⊆p≤≤≤.(K, p) C′
−≤ (K ≤, p)

S′
1=→ (K ≤≤, p≤≤≤), i.e. (K, p) S′

=→ (K ≤≤, p≤≤≤).
– or p≤ ↔= ⊥ then (K, p) C′

−≤ (K ≤, p≤) by Lemma 4, and so by IH

⊆p≤≤.(K, p≤)
S′
1=→ (K ≤, p≤≤), i.e. (K, p) S′

=→ (K ≤≤, p≤≤).

Part 3 of Theorem 1

S≤ uses only the data present in S that is, every name in S≤ is in S.
Part 3 of the theorem is readily proved by inspection of the transformation.

Part 4 of Theorem 1

The number of SKINITs plus the number of resets in S≤ is at most m.
Part 4 follows from the facts that:

– at most m plaintext-distinct sealed blobs can be produced from the initial
data;

– the transformed strategy S≤ runs at most one SKINIT for each blob sealed to
a PCR value rooted in 0 (other invocations are run as SUBRs);

– the transformed strategy S≤ runs at most one reset for each sealed blob rooted
in 1 (other resets are transformed into skips).

Dynamic Measurement and Protected Execution: Model and Analysis 63

References

1. Advanced Micro Devices: Secure Virtual Machine Architecture Reference Manual.
Advanced Micro Devices (2005)

2. Arapinis, M., Ritter, E., Ryan, M.D.: Statverif: verification of stateful processes.
In: Proceedings of the 24th IEEE Computer Security Foundations Symposium, pp.
33–47. IEEE Computer Society Press (2011)

3. Coker, G., Guttman, J., Loscocco, P., Herzog, A., Millen, J., O’Hanlon, B., Rams-
dell, J., Segall, A., Sheehy, J., Sniffen, B.: Principles of remote attestation. Int. J.
Inf. Secur. 10(2), 63–81 (2011)

4. Datta, A., Franklin, J., Garg, D., Kaynar, D.: A logic of secure systems and its
application to trusted computing. In: Proceedings of the 30th IEEE Symposium
on Security and Privacy, pp. 221–236. IEEE Computer Society Press (2009)

5. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: A formal analysis of authentication
in the TPM. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol.
6561, pp. 111–125. Springer, Heidelberg (2011)

6. Delaune, S., Kremer, S., Ryan, M., Steel, G.: Formal analysis of protocols based
on TPM state registers. In: Proceedings of the 24th IEEE Computer Security
Foundations Symposium. IEEE Computer Society Press (2011)

7. Fournet, C., Planul, J.: Compiling information-flow security to minimal trusted
computing bases. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 216–235.
Springer, Heidelberg (2011)

8. Grawrock, D.: Dynamics of a Trusted Platform: A Building Block Approach. Intel
Press, Hillsboro (2009)

9. Gürgens, S., Rudolph, C., Scheuermann, D., Atts, M., Plaga, R.: Security evalua-
tion of scenarios based on the TCG’s TPM specification. In: Biskup, J., López, J.
(eds.) ESORICS 2007. LNCS, vol. 4734, pp. 438–453. Springer, Heidelberg (2007)

10. Lin, A.: Automated analysis of security APIs. Ph.D. thesis, MIT (2005)
11. McCune, J., Parno, B., Perrig, A., Reiter, M., Isozaki, H.: Flicker: an execution

infrastructure for TCB minimization. ACM SIGOPS Operating Syst. Rev. 42(4),
315–328 (2008)

12. Millen, J., Guttman, J., Ramsdell, J., Sheehy, J., Sniffen, B.: Analysis of a mea-
sured launch. http://www.mitre.org/work/tech papers/tech papers 07/07 0843/
07 0843.pdf (2007). Accessed 7 Dec 2011

http://www.mitre.org/work/tech_papers/tech_papers_07/07_0843/07_0843.pdf
http://www.mitre.org/work/tech_papers/tech_papers_07/07_0843/07_0843.pdf

Security Correctness for Secure Nested
Transactions

Extended Abstract

Dominic Duggan1(B) and Ye Wu2,3

1 Department of Computer Science, Stevens Institute of Technology,
Hoboken, NJ 07030, USA
dduggan@stevens.edu

2 Tencent, Kejizhongyi Avenue, Hi-tech Park, Nanshan District, Shenzhen, China
wuye01@baidu.com

3 Baidu Inc, 23F, MaoYe Time Square, Nanshan District, Shenzhen 518000, China

Abstract. Secure nested transactions have been introduced as a synthe-
sis of two long-standing lines of research in computer security: security
correctness for multilevel databases, and language-based security. The
motivation is to consider information flow control for certain classes of
concurrent applications. This article describes a noninterference result
for secure nested transactions, based on observational equivalence.
A semantics for secure nested transactions is provided based on an exten-
sion of the pi-calculus with nested transactions, the TauOne calculus.
A novelty of this semantics is a constrained labelled transition system,
where local transition rules place logical constraints on the global state
of the transactional context. This context is described by a notion of logs,
an abstraction for factoring transactional state out of the usual descrip-
tion of concurrent processes. An advantage of this approach is that it
allows the consideration of security properties such as noninterference
independently of transactional properties such as serializability.

1 Introduction

The approach of secure nested transactions considers the synthesis of information
flow control in databases and in programming languages [7]. In the realm of
multilevel databases, correct information flow has been defined defined in terms
of noninterference for transactional execution. Consider for example the following
program, that contains a high transaction T1 and a low transaction T2:

intLow X, Y, Z;

THigh
1 : lock(X); while (1) ;

T Low
2 : (lock(X); Z=0;) → (lock(Y); Z=1)

Preventing the writing of sensitive information to a “low” database variable is
insufficient, since the use of locks to synchronize accesses to the database provides
a covert channel. In this example, T1 signals to T2 by locking X but not Y. In
multilevel databases, this leak is prevented by allowing the low transaction to

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 64–79, 2014.
DOI: 10.1007/978-3-319-05119-2 5, c© Springer International Publishing Switzerland 2014

Security Correctness for Secure Nested Transactions 65

implicitly pre-empt the high transaction when the latter holds a resource that
the former requires [2].

In the realm of programming languages, Volpano and Smith [24] noted that
the certification of multilevel secrecy in programs [6] could be formulated as a
type system, and this idea has been adopted by many researchers [21]. The key
insight in this work is that noninterference can be related to the control flow in
a program, so that indirect leaks through the control flow may be prevented via
a type-based control flow analysis.

Ensuring noninterference in concurrent and distributed systems is still a
challenge, as indicated by the example above. The approach of secure nested
transactions [7] combines the language-based and database-based approaches to
information flow control, using the framework of nested transactions [16]. The
temporary shifting of security levels (the main concept in language-based infor-
mation flow control for sequential languages) is modelled by nested of
transactions, with potentially different levels. As with multilevel databases, syn-
chronization leaks are prevented by allowing lower security level transactions to
preempt higher security level transactions. The main point of interest is the use
of retroactive abort to allow a high child transaction to be rolled back after it
has committed, though before all of its ancestor transactions have committed.

This article considers a method for verifying noninterference for a system of
secure nested transactions. Noninterference is defined in terms of observational
equivalence, allowing it to be verified independently of transactional properties
such as serializability. The main innovation is a constrained operational seman-
tics where transitions in the semantics place logical constraints on the transac-
tional state of the context.

Section 2 provides an informal introduction to TauOne, a formal language for
describing the semantics of nested transactions with retroactive abort. Section 3
presents the semantics of TauOne. We verify noninterference for this nested
transactional calculus in Sect. 4. We consider related work and conclusions in
Sect. 5. Further details and proofs are provided in the full version of the paper [8].

2 Logs for Transactional State

In this section, we provide the syntax of our transactional language, and consider
the most salient innovation in this language, the use of logs to record transaction
state. We refer to the calculus of secure nested transactions presented here as
TauOne.

We base our language on the asynchronous pi-calculus. This calculus must
support communication paths from low to high processes, so the latter can
receive data from the former. It might be assumed that with asynchronous
message-passing, it is safe to allow low processes to “write up” by sending low
security level messages to high processes. However as noted by Pottier [17], it
is then possible for high processes to signal indirectly to low processes by con-
suming messages of low security level. There are alternatives to observational
equivalence for process equality, that can allow messages to be transmitted asyn-
chronously from low to high processes. For example the may-testing equivalence

66 D. Duggan and Y. Wu

used by Hennessy and Riely [12] accomodates such communication. However
may-testing equivalence is a weak notion of process equivalence that equates to
trace equivalence, and does not consider the deadlock behavior of processes. We
choose observational equivalence to avoid controversy.

Synchronization in message-passing calculi is usually implemented using
message-passing. Because of the aforesaid issues with traffic analysis in message-
passing, we add a special form of message, that we refer to as “locks1.” Our
notion of locks serves two purposes:

1. It represents the most familiar form of synchronization in distributed trans-
actions to the lay reader, the one that is used in the description of nested
transactions in every textbook on distributed systems.

2. As we have seen above, with a suitably refined notion of observational equiv-
alence, we cannot allow “low” messages to be received by “high” processes,
since this would allow leaks based on traffic analysis. “Locks” provide a safe
form of communication, based on messages that the runtime ensures are han-
dled linearly. This linearity in message-passing is also the key to ensuring
noninterference for secure type systems

The extension of the pi-calculus with logs is intended to separate the mechan-
ics of the language runtime from the conditions that are required for correct
transactional execution. These conditions are defined as logical constraints
entailed by log entries. This approach avoids defining a system that overspecifies
the implementation of retroactive abort. Checking of conditions with respect to
the logs in turn can be combined with two-phase commit, as is done in practice
for distributed systems.

The syntax of the language is provided in Fig. 1. We assume the following
spaces of variables and names:

a, b, c, . . . ,∈ Channel name
x, y, z, w ∈ Variable−≤
t ∈ Transaction id

k ∈ Event id

The only values in the language are channel names, represented by constants
a, b, c, As mentioned, some channels have special significance in their use as
locks: they have the property that they are always released by a transaction,
whether that transaction commits or aborts. Channels and locks have security
levels, as explained in Sect. 4 when we introduce the type system. These security
levels stratify channels into high and low channels, with high channels only usable
by high processes and similarly for low channels and low processes. Locks are
similarly stratified into high and low, but low locks may be acquired by high
processes.
1 Even if lock-based concurrency control is replaced by some other notion, such as opti-
mistic concurrency control, we will still require messages from low to high processes
to be handled in a special, linear fashion. Therefore we will still need a construct
similar to these messages, whether we call them locks or something else.

Security Correctness for Secure Nested Transactions 67

Fig. 1. TauOne syntax

68 D. Duggan and Y. Wu

We assume the definition of metafunctions bn() and fn() for computing the
set of bound and free names, respectively, in a syntactic term. We also assume
the definition of the metafunction fv() for computing the set of free variables
in a syntactic term.

Each transaction is identified by a sequence of transaction identifiers
−≤
t =

(t1, . . . , tk) for some k. Here t1 is intended to be the root transaction, and the
complete path identifies a nested transaction and all of its ancestors. We denote
the prefix relation between sequences by →, so we have:

−≤
t1 → −≤

t2 iff
−≤
t2 =

−≤
t1 .

−≤
t≥1

where the period denotes sequence concatenation. Note that
−≤
t1 → −≤

t2 means that
the former transaction is an ancestor of the latter. This is used extensively in
what follows.

The syntax of types is provided in Fig. 1. We assume a security type system
to prevent information flow leaks, by classifying data as High or Low. The details
of this type system are provided in the full version of the paper [8]. These
security levels α decorate the types of message channels (

−≤
C)α and locks Lock(

−≤
C)α,

and reflect restrictions on information that can be exchanged as a result of
synchronization. Transactions are either “high” or “low,” as reflected by their
types, and can only have effects (sending and receiving of messages) based on
their allowed security level. Whereas in sequential languages, a low thread can
raise its security level to high in order to make high side effects, in our language
a low transaction must spawn a high child transaction to have high effects. The
most salient aspect of the type system is that we have the inclusion: Lock(

−≤
C)α1 ⊥

Lock(
−≤
C)α2 if α1 ⊥ α2. Thus it is possible for both high and low transactions to

compete for “low” locks, if we consider them as “low” messages whose security
level can be elevated to “high.” This is only safe because of the special handling
of lock messages by the semantics. Ordinary message channels do not have this
inclusion.

There are various forms of log rules added during evaluation:

1. A log entry of the form k::
−≤
t â−≤c requires the sending of a message or gener-

ation of a lock. If the former, the message is sent by a transaction operating
within the transaction

−≤
t . If the latter, the type system requires that the lock

be generated at top-level, outside the scope of any transaction (| −≤
t |= 0).

2. A log entry of the form k::
−≤
t ǎ−≤c records the receipt of a message or acquisition

of a lock by a process executing in the transaction
−≤
t .

3. A log entry of the form k1 ↔ k2 relates a receive event k2 to the corresponding
send event k1. It has several purposes. One is to establish a failure dependency
from the sending to the receiving transaction: If the former is aborted, the
latter is required in turn to abort. Another purpose is to relate a receive
event to the corresponding send event, so that if the latter is undone in the
process of aborting a transaction, the corresponding message to be restored
is identified.

Security Correctness for Secure Nested Transactions 69

4. A log entry of the form k undone denotes that the action logged with event
identifier k in the logs has been undone. This corresponds to a message receive
or lock acquisition event that has been undone because the corresponding
transaction has aborted. This type of log entry is used to ensure that message
receives are only undone once in the event that a transaction aborts.

5. A log entry of the form k2 � k1 denotes that the lock acquired in the event
labelled with k2 has been released (or “anti-inherited”) from a transaction
to one of its ancestor transactions, as a result of the former transaction hav-
ing committed. The lock was then acquired by a descendant of that ancestor
transaction, in a lock acquisition event labelled k1. The actual anti-inheritance
of locks up the transaction tree is implicit in the committal of ancestor trans-
actions, and fresh log entries for a lock are only added when descendant of
one of these ancestors (a “cousin” transaction) acquires the lock. A log entry
reflecting the ownership of this lock by the cousin transaction is recorded in
the logs with an event identifier k1. It is the counterpart to the k2 ↔ k1, but
where the lock has already been acquired in the transaction tree and now its
ownership is being transferred within that tree.

Consider the following example (we insert semi-colons for readability):

A0 = (â | t1(ǎ; (â | �)) | t2(ǎ; (â | �)) | t3(ǎ; (â | �)))

where t1, t2 and t3 are top-level transactions. Assume that a is an ordinary
communication channel. In this case, none of the transactions are nested.

This agent expression may evolve to the following:

A1 = (t2(ǎ; (â | �)) | t3(ǎ; (â | �)) | [[L1]])
L1 = k0::â ⊆ k1::t1ǎ ⊆ k0 ↔ k1 ⊆ t1�

and then to:
A2 = (t3(ǎ; (â | �)) | [[L2]])

L2 = L1 ⊆ k≥
1::â ⊆ k2::t2ǎ ⊆ k≥

1 ↔ k2 ⊆ t2�
and finally to an empty agent expression A3 = [[L3]], with

L3 = L2 ⊆ k≥
2::â ⊆ k3::t3ǎ ⊆ k≥

2 ↔ k3 ⊆ t3 � .

The logs record the receipt of a message by t1, the receipt of an unrelated
message by t2, and the receipt of yet another unrelated message by t3. Although
these messages are unrelated, they establish failure dependencies between oth-
erwise unrelated transactions. Since a transactions messages not visible until
it commits, these failure dependencies are somewhat pointless at this point. A
transaction can only establish a failure dependency on a transaction that has
already committed.

Consider now the same example, but where a is a lock rather than a message
channel. None of the transactions can “send” on the lock channel, since locks
can only be sent at top-level, outside the scope of a transaction. Instead, by
committing, they implicitly make the lock they have acquired available to other

70 D. Duggan and Y. Wu

transactions, by anti-inheritance to their parent or to the top-level. So we rewrite
the example as follows:

A0 = (â | t1(ǎ;�) | t2(ǎ;�) | t3(ǎ;�))

This agent expression may evolve to the following:

A1 = (t2(ǎ;�) | t3(ǎ;�) | [[L1]])
L1 = k0::â ⊆ k1::t1ǎ ⊆ k0 ↔ k1 ⊆ t1�

and then to:
A2 = (t3(ǎ;�) | [[L2]])

L2 = L1 ⊆ k2::t2ǎ ⊆ k1 � k2 ⊆ t2�
and finally to an empty agent expression A3, with A3 = [[L3]], with

L3 = L2 ⊆ k3::t3ǎ ⊆ k2 � k3 ⊆ t3 � .

The logs record the acquisition of the lock by t1, transfer of the lock from t1 to
t2, and then to t3. This is tracing the history of the transfer of ownership of a
single lock through the system.

A crucial point to note here is that acquisition of a lock by a transaction
does not induce a failure dependency from transaction owning the lock to the
transaction acquiring the lock. In the example in Fig. 2, if

−≤
t1 acquires a lock

from
−≤
t0 ,then the abort of

−≤
t0 does not induce the abort of

−≤
t1 . This is due to

the restricted access to locks provided to transactions: a transaction cannot
duplicate or destroy a lock. The type rules require that locks are generated at
the top level, outside any transaction. Once acquired, a log entry records the
holding of the lock by the transaction, until abort or commit of that transaction
makes it available to other transactions. The release of the lock is guaranteed by
the semantics of abort and commit of transactions. In effect we guarantee that
locks are handled in a linear fashion: once acquired, a lock is always released.

Fig. 2. Failure dependencies with retroactive abort

Security Correctness for Secure Nested Transactions 71

Table 1. Log judgements

V ,L ← k::A Identifiable log entry
V ,L ← A Anonymous log entry
V ,L ← k1 ⊥ k2 Mesg or lock acquired
V ,L ← k1 � k2 Lock released
V ,L ← k undone Action undone

V ,L ← −⇒
t running Transaction still running

V ,L ← −⇒
t aborted Transaction aborted

V ,L ← −⇒
t committed

−⇒
t0 Transaction committed

V ,L ← k::A terminal Terminal lock ownership
V ,L ← k::A undoable Undoable receive

V ,L ← k::A transferable
−⇒
t Transferable lock

V ,L ← k::A preemptible
−⇒
t2 �

−⇒
t1 Preemptible trans

V ,L ← k1 � k2 Failure dependency

V ,L ← k1
∗

� k2 Transfer of ownership

Rather than relying on linear types to statically enforce the linear handling of
locks, we rely on the semantics of transactions to enforce this handling.

The operational semantics of TauOne uses various judgements to check pre-
conditions by reference to the log, as summarized in Table 1. The first five
judgements correspond to simply looking up a log entry, while the remaining
judgements are based on inferences drawn from the contents of the log. Further
explanation for these judgements, including a inference system for infererences
that can be drawn from logs, is provided in the full version of the article [8].

3 Constrained Operational Semantics

In this section, we consider the operational semantics of TauOne. An obvious
and straightforward way to make use of logs is add preconditions to some of
the operational semantics rules that check the logs for certain conditions. For
example, a transaction should no longer be able to receive messages from other
transactions if it has committed or aborted.

The complication is with our decision to use observational equivalence to
reason about noninterference in the presence of concurrent processes with syn-
chronization. We are forced to treat logs as local and distributed among the
processes, rather than parameterizing the semantics by a single global log,
because compositional reasoning about processes includes the ability to encap-
sulate local channel names within a process, preventing their “leakage” to out-
side processes unless they are explicitly communicated. Scope extrusion in the
process equivalence rules is a fundamental aspect of the pi-calculus. Some log
entries contain reference to channel names, so they cannot simply be globalized.
Since transaction state, as represented by logs, is now local, compositional rea-
soning in turns requires some mechanism for constraining the possible contexts.

72 D. Duggan and Y. Wu

For example, if we allow a transaction to make progress because we assume it
is still running, we must constrain the surrounding context to prevent any log
entries that record it as committed or aborted, or record any causal dependencies
on transactions that are committed or aborted.

The purpose of an LTS here is to give definitions of the reduction rules
for the semantics that are purely local. The labels in the transition rules then
specify logical conditions that must be satisfied by any context with which a
process performing such an action is composed. For example, if a reduction rule
requires as a precondition that a transaction is still running, then any context
surrounding the application of that reduction rule must satisfy the conditions:

1. There are no log entries for abort of any transactions upon which that trans-
action is failure dependent.

2. No ancestor of that transaction can have committed.

We define a logic in which these conditions are specified, and statements in
this logic are used as labels in the LTS to constrain contexts surrounding the
application of the reduction rules of the semantics:

FA ::=
−≤
t1 � −≤

t2 | k1
≤
� k2 | k::

−≤
t â−≤c | k::

−≤
t ǎ−≤c |

−≤
t [�] | k undone | k1 = k2

F ::= true | F1 ⊆ F2 | F1 ≥ F2 |
∀X:T.F | ∅X:T.F | FA | ¬FA

We furthermore distinguish the positive and negative constraints:

F+ ::= true | F+
1 ⊆ F+

2 | ∅X:T.F+ | FA

F− ::= true | F−
1 ⊆ F−

2 | ∀X:T.F | ¬FA

Define:

FA
1 ∗ F2 ≡ ¬FA

1 ≥ F2

Positive constraints require the presence of particular log entries. Once satis-
fied, a positive constraint may be discharged. Negative constraints on the other
hand prevent certain conditions from becoming true in the logs. They typically
contain both universal quantifiers (quantifying over all log entries) and negative
conditions (sometimes constraining the domain of a universal quantifier, and
sometimes requiring that certain forms of log entries be absent). Since they are
intended to constrain all expansions of the logs, it is not possible to discharge
them. The key observation is that constraints concerning messages (k::

−≤
t â−≤c and

k::
−≤
t ǎ−≤c) are always positive constraints, and thus can eventually be discharged.

With transaction identifiers and event identifiers always globally defined, this
allows local scoping of message channel and lock names. The latter in turn is
important for reasoning about noninterference.

The use of negative conditions is restricted to checking the absence of log
entries of particular forms (including failure and ownership dependency). This

Security Correctness for Secure Nested Transactions 73

Fig. 3. Mapping log judgements to constraints

is sufficient for encoding the negative conditions that are required for some of
the reduction rules in the semantics. We define the mapping from judgements
of the log inference logic to logical preconditions in this constrained reduction
semantics, in Fig. 3.

Given an agent expression A, then A≤ denotes the logs underlying this agent
expression, i.e., all log entries that are contained in log expressions in the agent
expression.

The constrained semantics are specified using reduction rules of the form:

V ♦ A
F=⇒ A≥

and using reaction rules of the form:

(V , A) F−≤ (V ≥, A≥)

The former rules denote “internal” reduction steps within a process expression,
while the latter reaction rules denote computational steps that involve interac-
tions with the surrounding context. In both forms of rules, the set V records
type bindings of global channels, the agent expression A denotes the redex, and
the agent expression A≥ denotes the reduct. The reaction rules include a con-
straint on the surrounding logs in the context, as already explained. We use{

V ♦ A =⇒ A≥

(V , A) −≤ (V ≥, A≥)

}
as an abbreviation for

{
V ♦ A

true=⇒ A≥

(V , A) true−≤ (V , A≥)

}

The definition of a context C is given by:

C ::= [] | (C | A) | (εa:C)C

An expression of the form C [A] denotes instantiating a context with an agent.

74 D. Duggan and Y. Wu

We also have a notion of contextual constraint entailment. We use the judge-
ment form

V ,L ♦ C [A] � F1 ∗ C [F2].

The idea is that a computation step may have occurred with the agent A, in
the context C . The original set of constraints required to justify this compu-
tation step was F2. The constraint set F1 represents the result of simplifying
these constraints under the context C . For example, a positive constraint in F2

requiring the presence of a particular log entry may be discharged if that log
entry is present in A. If the remaining constraints F1 are satisfied by the agent
C [A], augmented by the log entries L , then the original set of constraints F2

is satisfiable by the logs in A, the log entries added by the context C , and the
log entries L .

Finally we have the following notion of repeated computation:

(V , A) ≤F−
===⇒ (V ≥, A≥)iffV = V0, A = A0,V ≥ = Vn, A≥ = An,

(Vj , Aj)
F−

j−−−≤ (Vj+1, Aj+1) for j = 0, . . . , n − 1

and F− ≡ F−
0 ⊆ · · · ⊆ F−

n−1,

Once a reduction step has taken place, a negative condition may no longer be
true in the resulting configuration. For example, once the receipt of a message
by an aborted transaction has been undone, the absence of a log entry recording
this undoing is no longer true. However the constraints on the reduction steps
are intended to constrain the observer rather than the computation (once the
positive constraints have been discharged). An allowable observer context is one
in which all of the undischarged negative constraints are satisfied. Any changes
to the logs that invalidates one of these constraints is internal to the process
being observed.

4 Noninterference

In this section, we verify noninterference for the calculus of nested transactions,
based on the security type system presented in the previous section. The veri-
fication is based on the observable behavior of processes. Because our calculus
is asynchronous, we only consider observables arising from messages sent, since
the receiving of messages cannot be observed directly.

Messages offered to the environment are defined in terms of barbs. Our defi-
nition of barbs differs from the normal case in certain important regards:

1. The definition of barbs is relativized to the transactional level at which an
observation may be made. For example, a message cannot be observed at a
certain level

−≤
t until that message has become visible due to being committed

by lower level transactions.
2. Barbs include a constraint on the context for the output to be offered. For

example, a process may only offer a message to the context if any tranaction
of which it is a part is still running.

Security Correctness for Secure Nested Transactions 75

3. Barbs may be offered not just by outputting messages, but also by relin-
quishing locks. Such locks are not manipulated explicitly by the processes,
but are recorded in the logs and manipulated implicitly by commit and abort
operations, and lock acquisition by other processes.

4. Barbs may be implicitly available, if they correspond to locks that are held
by high-level processes that may be preempeted by low-level processes.

Definition 1 (Strong Barbs). Define that the agent A in the environment
V offers the strong barb

−≤
t a with constraint F , written (V , A) ↓F−→

t a
, if V ♦

A
F−

1===⇒ A≥ for some A≥ and F−
1 , and there is a context C such that one of the

following cases holds:

1. A≥ = C [
−≤
t0 â−≤c] and F2 = F (

−≤
t0 committed

−≤
t); or for some

−≤
t0 ,−≤c ; or

2. A≥ = C [
−≤
t0 [[L]]] and L ≡ L ≥⊆k::

−≤
t0 ǎ−≤c and F2 = F (k::

−≤
t0 ǎ−≤c transferable

−≤
t)

for some
−≤
t0 ,−≤c ; or

3. A≥ = C [
−≤
t (ǎ−≤x P1 + P2)] and F2 = F (k0::

−≤
t1 ǎ−≤c preemptible

−≤
t2 �

−≤
t) ⊆

F (
−≤
t running), and lev(V ,

−≤
t) = Low and lev(V ,

−≤
t2) = High.

Furthermore we must have

V , true ♦ A≥ � F−
2 ∗ F2

for some F−
2 such that F ≡ F−

1 ⊆ F−
2 .

This last condition states the log constraint F2 must be derivable from the
agent expression A≥ (which may include log entries) and the remaining con-
straints F−

2 that arise from internal processing before the barb is offered.

Lemma 1. Suppose V ♦ A1
F−

===⇒ A2. Then (V , A2) ↓F
−
2−→

t a
if and only if

(V , A1) ↓F
−
1−→

t a
, for some F−

1 ≡ F− ⊆ F−
2 .

Definition 2 (Barbs). Define (V , A) ⇓F−
−→
t a

if (V , A)
≤F−

1===⇒ (V ≥, A≥) and

(V ≥, A≥) ↓F
−
2−→

t a
, and F− ≡ F−

1 ⊆ F−
2 .

Definition 3 (Barbed Bisimulation). Define that a relation R is a barbed
bisimulation if R is symmetric and, whenever (A1, A2) ∈ R, we have:

1. If for some V and F−
1 we have (V , A1)

F−
1−−−≤ (V ≥

1, A
≥
1), then (V , A2)

≤F−
2===⇒

(V ≥
2, A

≥
2) for some V ≥

2, A
≥
2,F

−
2 such that F−

1 ≡ F−
2 and (A≥

1, A
≥
2) ∈ R.

2. If for some V and F−
1 we have (V , A1) ↓F

−
1−→

t a
, then (V , A2) ⇓F−

2−→
t a

, for some
F−

2 such that F−
1 ≡ F−

2 .

Define that A1 and A2 are bisimilar, written A1
•≈ A2, if (A1, A2) ∈ R for some

bisimulation R.

76 D. Duggan and Y. Wu

A context C is a (V1, α1)-(V2, α2)-context if V2 ♦ C agentα2 is derivable from
V1 ♦ [] agentα1 . An environment V is closed if it only binds names, and event
and transaction identifiers. In particular it does not bind program variables.

Definition 4 (Barbed Congruence). Define the barbed congruence ≈V ,α by:
A1 ≈V ,α A2 if

1. V ♦ A1 agentα,
2. V ♦ A2 agentα, and
3. for any closed V ≥ and secrecy level α≥, for any (V , α)-(V ≥, α≥)-context C , we

have C [A1]
•≈ C [A2].

Our main tool for reasoning about noninterference is an erasure of processes
of high security level. We then show that any barbed congruences among low
processes are unaffected by the erasure of the high processes. The complication
with this is that there may be interactions between high and low processes. For
example, a low process may acquire a lock that was released by a high process
after it committed. The key insight is that erasure must be defined in such a
way that it modifies the logs to remove any references to logs of high processes.

Recall the following example:

A0 = (â | t1(ǎ;�) | t2(ǎ;�) | t3(ǎ;�))

where we assume now that t1 and t3 are low transactions, and t2 is high. Assume
that a is a low-level lock, of type Lock()Low. As we have seen, this agent expres-
sion may evolve to A3 = [[L3]], with

L3 = L2 ⊆ k3::t3ǎ ⊆ k2 � k3 ⊆ t3 � .

The logs record the acquisition of the lock by t1, transfer of the lock from t1
to t2, and then to t3. In the erasure of the logs, we remove the dependency of
the low transaction t3 on the high transaction t1 by rewriting the log entries to
a dependency on t1 instead:

E L
V ,L (L3) = E L

V ,L (L1) ⊆ k3::t3ǎ ⊆ k1 � k3 ⊆ t3 � .

In the erasure, the logs for any high transactions have been removed, and the
logs of any low transactions have been modified where necessary to remove any
dependencies on the erased high transactions.

Consider now the above example where it is the transaction t1, that initially
acquires the lock, that is high. Both t2 and t3 are low. In the final configuration,
we have the logs:

E L
V ,L (L2) = k0::â ⊆ k2::t2ǎ ⊆ k0 ↔ k2 ⊆ t2 � .

E L
V ,L (L3) = E L

V ,L (L2) ⊆ k3::t3ǎ ⊆ k2 � k3 ⊆ t3 � .

In this case, the logs for t1 have been erased. These logs contain entries k1::t1ǎ
and k0 ↔ k1. In the erasure, the log entry k1 � k2 for t2 is translated to k0 ↔ k2.
The transfer of the a lock from t1 to t2 is translated in the log entries into the
acquisition of the lock at top level by t2.

Security Correctness for Secure Nested Transactions 77

Theorem 1 (Noninterference). Suppose V is a low-level environment,
and C0 is a (V0,High)-(V , α) environment. If V0 ♦ A1 agentHigh and V0 ♦
A2 agentHigh, then C0[A1] ≈V ,α C0[A2].

5 Related Work and Conclusions

A great deal of work on information flow control has been done in the concur-
rency community. Hennessy and Riely [11,12] develop a security σ-calculus for
which they study noninterference properties with respect to may and must test-
ing. Honda and Yoshida [14] design a sophisticated system with linear and affine
types for σ-calculus to investigate noninterference expressed in terms of bisimu-
lation. Boudol and Castellani [4] present a simple imperative language extended
with parallelism to explore noninterference in a probabilistic setting. Ryan and
Schneider characterize the absence of information flow in CSP [18] based on the
notion of process equivalence. Piazza et al. [1] generalize an unwinding framework
for the definition of a security property that entails a noninterference principle
described in a simple concurrent language. Similar approach related to this line
of work can also be found in [5]. Most of these works are focused on strong non-
interference properties usually characterized by a partial equivalence relation in
a typed process language.

To avoid termination leaks in concurrency, Smith and Vopano [22] investi-
gated noninterference in a constrained multi-threaded language that does not
allow high guard in while loops. Later, Smith, and independently, Boudol and
Castellani [4] relaxed this constraint by allowing such a statement if only fol-
lowed by a high statement, if any. Sabefeld [19] simulates such while loops as
an effect of synchronization, in addition to the restriction above. High to low
process synchronization is impossible due to the confinement of semaphores. In
all these multi-threaded languages, variant conservative security type systems
are constructed to rule out potential termination leak by restricting programs
to certain behaviors. To enhance expressiveness, Sabefeld and Mantel [20] intro-
duce encryption and more communication primitives in their multi-threaded
language. In security process calculi, Hennessy identifies a similar problem in
designing multi-security levels in [11], where the strong noninterference prop-
erty cannot be achieved, because contention on different security level channels
reveals distinct timing behavior to observers. Focardi et al. [9,10] propose a
program transformation approach to mask such activity by including execution
possibilities. Another trend in permitting secure communication such as synchro-
nization and deadlock-freedom is to relieve the restrictions, such as in [11,12,17],
where linear type systems are designed to enforce security properties. The goal of
secure nested transactions is to provide a relatively simple and familiar type sys-
tem, with the dynamic semantics enforcing properties that would in the aforesaid
approaches be enforced using type-checking [13–15,25]. The relationship between
our work and these other works is demonstrated by for example the fact that our
proof technique for noninterference follows the technique used by Kobayashi for
a system with linear types [15], where the latter is in turn based on the approach
of Pottier [17].

78 D. Duggan and Y. Wu

Bertino et al. [3] consider noninterference for nested transactions. They are
principally concerned with the issue of starvation of high transactions in multi-
level databases. That work does not consider “mixed” nested transactions, con-
sisting of both high and low transactions combined in a nested transaction. This
consideration is central to the current article, proposed as the natural general-
ization of security-typed sequential languages to the concurrent, transactional
context.

Stefan et al. [23] propose an alternative, mitigation-based approach to hande
termination channels such as those motivating this work. Their approach relies
on moving the computation would potentially view the leaked information to
a separate thread, and dynamically raising the security level of that thread if
information would otherwise leak. Both approaches share a philosophy of supple-
menting static type-based analysis with dynamic mechanisms (transaction-based
pre-emption, thread-based mitigation) to prevent termination leaks in concur-
rent systems.

In related work [7], we have developed a “global” version of this seman-
tics, where all logs are used at “top-level.” This semantics is greatly simplified
by avoiding the need for logical constraints on reaction rules in the seman-
tics. Instead the logs are tested directly for preconditions. This simplification
is possible because in the global system we are not concerned about reason-
ing compositionally about observational equivalence for the purpose of verifying
noninterference. Using this system, we are able to verify serializability result,
and to relate that global system to the local system presented here.

References

1. Piazza, C., Bossi, A., Rossi, S.: Compositional information flow security for con-
current programs. J. Comput. Secur. 15(3), 373–416 (2007)

2. Atluri, V., Jajodia, S., George, B.: Multilevel Secure Transaction Processing.
Kluwer Academic, Boston (1999)

3. Bertino, E., Catania, B., Ferrari, E.: A nested transaction model for multilevel
secure database management systems. ACM Trans. Inf. Syst. Secur. 4, 321–370
(2001)

4. Boudol, G., Castellani, I.: Noninterference for concurrent programs and thread
systems. Theor. Comput. Sci. 281(1–2), 109–130 (2002)

5. Crafa, S., Rossi, S.: A theory of noninterference for the π-calculus. In: De Nicola,
R., Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705, pp. 2–18. Springer, Heidelberg
(2005)

6. Denning, D.E., Denning, P.J.: Certifications of programs for secure information
flow. Commun. ACM 20(7), 504–513 (1977)

7. Duggan, D., Wu, Y.: Transactional correctness for secure nested transactions. In:
Bruni, R., Sassone, V. (eds.) TGC 2011. LNCS, vol. 7173, pp. 179–196. Springer,
Heidelberg (2012)

8. Duggan, D., Wu, Y.: Security correctness for secure nested transactions. Technical
Report 2013–4, Stevens Institute of Technology. http://www.jeddak.org/Results/
Stevens-CS-TR-2013-4.pdf (2013)

http://www.jeddak.org/Results/Stevens-CS-TR-2013-4.pdf
http://www.jeddak.org/Results/Stevens-CS-TR-2013-4.pdf

Security Correctness for Secure Nested Transactions 79

9. Focardi, R., Gorrieri, R.: Classification of security properties (part i: information
flow). In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 331–
396. Springer, Heidelberg (2001)

10. Focardi, R., Rossi, S.: Information flow security in dynamic contexts. In: Computer
Security Foundations Workshop, pp. 307–319. IEEE Press (2002)

11. Hennessy, M.: The security picalculus and non-interference. J. Logic Algebraic
Program. 63, 3–34 (2004)

12. Hennessy, M., Riely, J.: Information flow vs resource access in the asynchronous
pi-calculus. TOPLAS 24(5), 566–591 (2002)

13. Honda, K., Vasconcelos, V.T., Yoshida, N.: Secure information flow as typed
process behaviour. In: Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782, pp. 180–
199. Springer, Heidelberg (2000)

14. Honda, K., Yoshida, N.: A uniform type structure for secure information flow. In:
POPL, pp. 81–92. ACM (2002)

15. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta Inf.
(2003)

16. Moss, E.B.: Nested transactions: an approach to reliable distributed computing.
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (1981)

17. Pottier, F.: A simple view of type-secure information flow in the pi-calculus. In:
Proceedings of the 15th IEEE Computer Security Foundations Workshop, pp. 320–
330 (2002)

18. Ryan, P.Y.A., Schneider, S.A.: Process algebra and non-interference. In: CSFW
’99: Proceedings of the 12th IEEE Workshop on Computer Security Foundations,
p. 214. IEEE Computer Society, Washington, DC (1999)

19. Sabelfeld, A.: Semantic models for the security of sequential and concurrent pro-
grams. Ph.D. thesis, Chalmers University of Technology and Gothenburg Univer-
sity, Gothenburg, Sweden, May 2001

20. Sabelfeld, A., Mantel, H.: Static confidentiality enforcement for distributed pro-
grams. In: Hermenegildo, M., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp.
376–394. Springer, Heidelberg (2002)

21. Sabelfeld, A., Myers, A.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

22. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative
language. In: Proceedings of ACM Symposium on Principles of Programming Lan-
guages, pp. 19–21 (1998)

23. Stefan, D., Russo, A., Buiras, P., Levy, A., Mitchell, J.C., Mazières, D.: Addressing
covert termination and timing channels in concurrent information flow systems.
In: Proceedings of ACM International Conference on Functional Programming.
Association for Computing Machinery (2012)

24. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis.
J. Comput. Secur. 4(3), 167–187 (1996)

25. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Proceedings of the 16th IEEE Computer Security Foundations Work-
shop, pp. 29–43 (2003)

p-Calculus

Types for Resources in ψ-calculi

Hans Hüttel(B)

Department of Computer Science, Aalborg University, Aalborg, Denmark
hans@cs.aau.dk

Abstract. Several type systems have been proposed for characterizing
resource usage in process calculi, starting with the work on linear and
unbounded names in the π-calculus by Kobayashi, Pierce and Turner.
In this paper we use the general framework of ψ-calculi proposed by
Bengtson, Parrow et al. to provide a general theory of type systems of this
kind. We present a general type system that allows for a subject reduction
property generalizing that of Kobayashi et al. and show how existing,
quite different type systems for resource control can be expressed within
our general type system. These are the original type system for linear
names in the π-calculus, the graph types for strong normalization in
the π-calculus due to Honda, Yoshida and Berger, a type system for
termination in a value-passing calculus due to Deng and Sangiorgi and
a type system for allocation and deallocation of generated names due to
de Vries, Francalanza and Hennessy.

1 Introduction

Notions of resource usage are important in the study of program behaviour, and
one that has been of particular interest is that of linearity. A resource is linear
in a program if it will be used exactly once during any execution of the program.

In the setting of process calculi, several type systems have been proposed
for characterizing linear resource usage. For the α-calculus, a first important
contribution is the work on linear and unbounded names due to Kobayashi,
Pierce and Turner [14]. Later work by Giunti and Vasconcelos [9] makes an
explicit separation between the two ends of a channel and uses a simple notion
of session types to give an account of linearity. More recently, the type system
of Honda and Demangeon [5] introduces a notion of subtyping to the setting of
a resource-conscious type system.

There is also work on resource-conscious type systems for other process calculi
that extend the α-calculus. In the work by Maffei et al. [2] the authors introduce a
notion of linearity which extends existing type systems for refinement types. And
in work by Francalanza et al. [4] the authors consider the problem of resource-
aware name generation using a version of the α-calculus with notions of allocation
and deallocation.

All of these type systems have a rule for parallel composition of the form

ε1 ∈ P1 ε2 ∈ P2

ε ∈ P1 | P2
ε = ε1 + ε2 (1)

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 83–102, 2014.
DOI: 10.1007/978-3-319-05119-2 6, c© Springer International Publishing Switzerland 2014

84 H. Hüttel

where we assume that the type environment ε is partitioned into subenviron-
ments ε1 and ε2 for typing the parallel components P1 and P2, respectively.
This rule corresponds to the introduction rule for multiplicative conjunction in
linear logic [8].

Just as type systems abound, so do process calculi with notions of names. In
their seminal work, Bengtson et al. introduced σ-calculi as a general account of
the many extensions of the α-calculus that have been proposed [1].

The goal of the present paper is to use this general account of nominal process
calculi to provide a general theory of resource-conscious type systems such as
those mentioned above,

In an earlier paper [13], we showed how to use a general type system for
σ-calculi to give a general account of some seemingly very diverse type systems
for variants of the α-calculus. In this paper we take a similar approach by using
a resource-aware type system for σ-calculi to give a general account of resource-
aware type systems for variants of the α-calculus. Among the rules of our system
is a general variant of (1).

We show how our type system subsumes the type system of [14] but is also
able to capture certain liveness properties, including that of termination in the
strongly normalizing α-calculus of Honda, Yoshida and Berger. To achieve this,
we use the notion of assertions in the σ-calculus framework to represent the
graph types introduced in this setting. We also consider the allocation α-calculus
due to Hennessy and Francalanza [4] and a type system for termination in a
value-passing calculus inspired by Deng and Sangiorgi [6]. Every instantiation
of our type system will satisfy a subject reduction property which generalizes
that of [14].

The remainder of our paper is structured as follows. In Sect. 2 we present
the syntax and semantics of σ-calculi. In Sect. 3 we describe the type system.
Sect. 4 describes the soundness result that holds for the type system, and sect. 5
presents a collection of instances of the type system.

2 Ψ -calculi

We here present the syntax and semantics of a typed version of the σ-calculi
introduced in [1].

2.1 Nominal Datatypes

Names are central to σ-calculi, and the account of name bindings makes use of
nominal sets. Informally, a nominal set is a set whose members can be affected
by names being bound or swapped. If x is an element of a nominal set and
a ≤ N , we write a#x to denote that a is fresh for x; the notion extends to sets
of names in the expected way.

In particular, we consider nominal data types. A nominal data type is a
nominal set with additional internal structure. If Σ is a signature, a nominal
data type over Σ is a Σ-algebra, whose carrier set is a nominal set (for the

Types for Resources in ψ-calculi 85

precise definition, see [7]). For our nominal data types we use simultaneous term
substitution X[z := Y]. This is to be read as the substitution in which the terms
in Y replace the names in z in X.

2.2 Syntax

A σ-calculus has a set of processes, ranged over by P,Q, Processes con-
tain occurrences of terms and both processes and terms can contain names. We
assume a countably infinite set of names N ranged over by a, b, . . . x, y, . . . , m, n,
. . . , u, v, The set of names that appear in patterns (defined below) is called
the set of variable names NV and is ranged over by x, y The set of other
names, N \ NV is ranged over by a, b, . . . , m, n

For any process P , we let n(P) denote the support of P , i.e. the names of P ,
and let fn(P) denote the set of free names in P . These notions are also defined
for terms.

Terms M,N . . . are elements of a nominal data type T, assertions Ψ come
from a nominal data type A and conditions ϕ belong to the nominal data type
C. These data types have the following operations:

→ : A × A ⊥ A composition ↔̇ : T × T ⊥ C channel equivalence
1 ≤ A unit |=⊆ A × C entailment

Terms. We assume that terms are built according to the following formation
rules:

M ::=b | f(M1, . . . , Mk)

In the above, b ranges over a set of basic terms that includes the set of names.
A term f(M1, . . . , Mk) is a composite term in which f is a term constructor of
arity k.

Assertions. For assertions, composition is assumed to satisfy the following axioms
and rules.

Ψ1 → Ψ2 ≥ Ψ2 → Ψ1 Ψ1 → (Ψ2 → Ψ3) ≥ (Ψ1 → Ψ2) → Ψ3

Ψ → 1 ≥ Ψ Ψ ≥ Ψ ≥ ∀ Ψ → Ψ1 ≥ Ψ ≥ → Ψ1

We say that an assertion Ψ is idempotent if Ψ → Ψ ≥ Ψ .
We can define a preorder on assertions.

Definition 1. We write Ψ1 ∅ Ψ2 if there exists a Ψ such that Ψ1 → Ψ ≥ Ψ2. We
write Ψ1 < Ψ2 if Ψ1 ∗≥ Ψ2.

We require this ordering to be a partial ordering up to ≥ for all instances of our
type system.

Finally, for every assertion Ψ and name x we assume the existence of the
largest subassertion Ψ \ x not containing occurrences of x.

86 H. Hüttel

Conditions. The entailment relation |= describes when conditions are true, given
a set of assertions, and is needed to describe the behaviour of a conditional
process.

Channel equivalence. Channel equivalence tells us which terms represent the
same communication channel; ↔̇ therefore appears in the rule describing com-
munication. Note that we may have M ∗↔̇M ; ↔̇ is only assumed symmetric and
transitive.

Processes. We here present a typed version of the formation rules for processes.

P ::=M(λx)x.P | MN.P | P1 | P2 | (ρn : T)P |!P
| case ϕ1 : P1, . . . , ϕk : Pk | (|Ψ |)

The formation rules are typed, as the restriction operator (ρn : T)P assumes
that the local name n is given type T ; types are defined in Sect. 3.1. Most of the
process constructs are similar to those of the α-calculus; an important difference
is that, in a prefix, the object M can be an arbitrary term. Another important
difference is found in the input construct M(λx)N.P , where the subject (λx)N is
a pattern whose variable names x can occur free in N and P . Any term received
on channel M has to match this pattern; a term N1 matches the pattern (λx)N
if N1 can be found by instantiating the variable names x in N with terms.
Finally note that assertions (see below) can also be used as processes in their
own right.

2.3 Operational Semantics

We here give a typed, annotated semantics with labels. Transitions are of the
form

Ψ � P
α−⊥ P ≥

As every input or output action will consume resources, this is also the case for
a communication. We therefore annotate action with the terms involved. In this
way we can determine the resource usage involved in internal communications.
The label set is

αV ::= M(ρa : T)N | MN

α ::= αV | τ@(ρb : T)(α1
V , α2

V)

In the label M(ρa : T)N the names in a are extruded using N . A composite
label τ@(ρb : T)(α1

V , α2
V) should be read as stating that there was an inter-

nal communication in which the names in b were used in the subject channel,
contributing with the resources T .

For labels we define bn((ρb : T)MN) = b, bn(τ@(ρb : T)(α1
V , α2

V)) = b ≡
bn(α1

V) ≡ bn(α2
V) and bn(α) = ♦ otherwise (Table 1).

Types for Resources in ψ-calculi 87

Table 1. Annotated labelled transition rules

In some of the rules, we need to extract the assertion information of a process
P in the form of its qualified frame F(P) = 〈EP , ΨP ↓, where ΨP is the compo-
sition of assertions in P and EP records the types of the names local to ΨP .

Because types may contain names and appear in restrictions, in (Open) we
write ρa : T , b : T to denote the typed sequence ρa1 : T1, . . . , ρan : Tn (with
a1, . . . , an = a) extended with b : T and we extend the side condition of [1] to
cover the case where an extruded name appears in the type.

There are two rules for restriction. In (Scope-2) the silent action involves
terms that contain the bound name b. We therefore subtract some resources T ≥

from the type annotation T ; this T ≥ must be a minimal resource component from
T . Subtraction of types is defined in Sect. 3.1.

88 H. Hüttel

3 A Type System

We now describe our type system.

3.1 Types and Type Environments

In what follows, our set of types T is assumed to be a nominal datatype, since
this will allow names to appear in types.

In our type system, types describe resources; we assume that resources have
an additive structure. More precisely, we assume that a summation operation on
types is defined, such that the set of types forms a type structure in the sense of
Honda [11]. In a type structure, types are identified up to Kleene equality; we
write T

.= T ≥ if either T1 and T2 are both undefined or T1 = T2.

Definition 2 (Type structure [11]). A type structure is a set of types T

together with a partial binary operation + on T such that T1 +T2
.= T2 +T1 and

(T1 + T2) + T3
.= T1 + (T2 + T3) for all T1, T2, T3 ≤ T.

We write T1 ∅ T2 if either T1 = T2 or there exists a T such that T1 +T = T2.
We write T1 ∅min T2 if T1 is a least type T such that T ∅ T2. Finally, we write
T1 − T2 for the type T3 such that T3 + T2 = T1.

A type T is unlimited if T +T = T , that is, if T is idempotent under addition.
This notion originates in the similar notion used by Kobayashi et al. [14]. Here,
the idea was that a type T is unlimited if it is non-linear in one of two ways:
names of an ω-type T can be used arbitrarily often, while names of a nullary
type cannot be used at all.

We allow types to contain type environments; for a type T we let εT denote
the type environment associated with T .

Definition 3 (Type environment). A type environment ε is a finite map
from names to types.

We only consider well-formed type environments, i.e. ones in which all names
mentioned are assigned types exactly once.

Definition 4 (Well-formed environment). A type environment ε is well-
formed if whenever ε (x) = T then ⇓y ≤ dom(εT) ≈ dom(ε).εT (y) = ε (y) and
⇓z ≤ n(T) \ dom(εT).z ≤ dom(ε ≥).

Addition of type environments is a partial operation defined in a pointwise
fashion.

Definition 5 (Addition of type environments [11]). Let ε1 and ε2 be well-
formed type environments. The sum of ε1 and ε2 is defined as the type environ-
ment ε1 + ε2 that is given by

(ε1 + ε2)(x) =

⎧
⎪⎨

⎪⎩

ε1(x) x ≤ dom(ε1) \ dom(ε2)
ε2(x) x ≤ dom(ε2) \ dom(ε1)
ε1(x) + ε2(x) otherwise

Addition is only defined if the resulting environment is well-formed.

Types for Resources in ψ-calculi 89

Note that this notation makes it easy to express that type information can
be extended. If x ∗≤ dom(ε), then ε extended with the binding x : T , written
ε, x : T , is simply ε +x : T . We write ε1 −ε2 for the type environment ε which
satisfies that ε2 + ε = ε1.

A type environment ε is unlimited if ε + ε = ε .
As in the case of types, we can define an ordering on type environments. We

require this ordering to be a partial order.

Definition 6 (Ordering of type environments). ε1 ∅ ε2 if there exists a
ε such that ε1 + ε = ε2.

A minimal type judgement is one that uses the least resources and assertions.

Definition 7 (Minimal type judgement). Minimality of term and pattern
judgements is defined by

1. ε, Ψ ∈min M : T if ε, Ψ ∈ M : T and for every ε ≥ ∅ ε and Ψ ≥ < Ψ we have
ε ≥, Ψ ≥ ∗∈ M : T .

2. ε, Ψ ∈min (λx)N : T ⊥ Uo if ε, Ψ ∈ (λx)N : T ⊥ Uo and for every ε ≥ ∅ ε
and Ψ ≥ < Ψ we have ε ≥, Ψ ≥ ∗∈ (λx)N : T ⊥ Uo.

3.2 Typing Assertions, Conditions and Terms

Our type judgments are all relative to a type environment ε and a global asser-
tion Ψ . Type judgments for assertions and conditions are of the form

ε, Ψ1 ∈ Ψ and ε, Ψ1 ∈ ϕ

Type judgments for terms are of the form

ε, Ψ ∈ M : T

In the above, T denotes the type of M .
We always assume that the global assertion is well-formed, that is that n(Ψ) ⊆

dom(Ψ).
Since arbitrary terms can be used as channels, we need to assume that some

natural conditions hold for channel types.
For channel equality, we require that equivalent channels have the same type

in environment ε and wrt. assertion Ψ , if they are equivalent under Ψ :

If ε, Ψ ∈ M : T and Ψ |= M↔̇N then ε, Ψ ∈ N : T (2)

Finally, we introduce a notion of channel compatibility. This is a predicate that
describes which types of values can be carried by channels of a given types. We
distinguish between output compatibility �+ and input compatibility �−. If
T1 �+ T2 and T1 �− T2 we write T1 � T2.

Since terms received by an input are instantiations of patterns, we introduce
the following type rule for message patterns:

90 H. Hüttel

(pattern)
ε,x : T , Ψ ∈ M : U

ε, Ψ ∈ (λx)M : T ⊥ U

When an input abstraction has type T ⊥ U , it can receive any term of type
U if this term contains pattern variables of types corresponding to T .

3.3 Criteria for Type Rules

We require the following conditions to hold for any instance of our type system.
We let J range over all judgements in our type system.

Firstly, we require assertion invariance for typing. In other words, whenever
we have a valid type judgement ε, Ψ ∈ J and Ψ ≥ Ψ ≥, then the type judgement
ε, Ψ ≥ ∈ J is also valid.

Secondly, we require substitutivity.

Property 1 (Substitution property for judgements). Suppose ε + x : T , Ψ ∈ J
with x ≈ dom(ε) = ♦, fn(J) ⊆ x, and εi, Ψi ∈ Mi : Ti for all i ≤ [1, |x|]. Then
ε0, Ψ0 ∈ J [x := M] where ε0 = ε +

∑
1≤i≤|x| εi and Ψ0 = Ψ → ⊗

1≤i≤|x| Ψi.

And finally, in σ-calculi, the empty assertion 1 serves as the empty process.
We therefore require that ε ∈ 1 if and only if ε is unlimited. In other words, an
empty process cannot consume resources.

3.4 Type Rules for Processes

Type judgments for processes are of the form

ε, Ψ ∈ P

The type rules defining them are found in Table 2; we here explain the most
important ones.

For a parallel composition, the rule (T-par) describes that resources (typed
names and assertions) are distributed among the parallel components. This rule
is essentially that of [14]; our side conditions Ψ ≥

P1
∅ ΨP1 and Ψ ≥

P2
∅ ΨP2 express

that it is possible (but not required) to use the assertions found in other parallel
components.

Likewise, the rules (T-in) and (T-out) are resource-conscious (and are also
inspired by [14]) in that resources are distributed between the prefix and the
continuation.

For (T-res) we require that the assertion of the conclusion must not contain
free occurrences of x and that subassertions containing x are removed from Ψ ,
resulting in the new assertion Ψ \ x.

The rule (T-rep) states that for a replicated process, all resources must be
unlimited for the process to be well-typed.

We also allow for non-structural rules for weakening assertions. This is cap-
tured by (T-Weak), which is a schema for finitely many rules that allow us to
add additional assertions whenever the assertion Ψ satisfies a criterion wrt. P
that is specific to the concrete instantiation of the σ-calculus.

Types for Resources in ψ-calculi 91

Table 2. Type rules for processes

4 Safety Results for the Type System

The main result about our type system is that it provides a safe approximation
of the use of resources: the result generalizes the subject reduction result of [14].

92 H. Hüttel

4.1 A Subject Reduction Result

The subject reduction theorem tells us that whenever a labelled transition ema-
nating from a well-typed process has a well-typed label with minimal resource
usage, then the remaining resources can be used to type the continuation process.

We therefore need to define what it means for a label to be well-typed.

Definition 8 (Well-typed label). We say that ε, Ψ ∈ α if

– Whenever α = (ρa : T)MN , then ε1, Ψ1 ∈ M : Uo and ε2,a : T , Ψ2 ∈ N : Us

and Uo �+ Us for some ε = ε1 + ε2 and Ψ = Ψ1 → Ψ2.
– Whenever α = KN{x := M} then for some ε = ε1 + ε2 +

∑
1≤i≤|x| ε

i
3 and

Ψ = Ψ1 → Ψ2 → ⊗
1≤i≤|x| Ψ

i
3 we have that ε1, Ψ1 ∈ K : Uo and ε2, Ψ2 ∈ N :

T ⊥ Us with Uo �− Us and ε i
3, Ψ

i
3 ∈ Mi : Ti for all 1 ∅ i ∅ |x|.

– If α = τ@(ρb : U)((ρa : T)MN1,KN2) then there exist ε1, ε2, ε3, ε4 and
Ψ1, Ψ2, Ψ3, Ψ4 such that

ε = ε1 + ε2 + ε3 + ε4 Ψ = Ψ1 → Ψ2 → Ψ3 → Ψ4

and such that

ε1, b : U , Ψ1 ∈ M : Us ε2,a : T , Ψ2 ∈ N1 : Uo

ε3, b : U , Ψ1 ∈ K : Us ε4,a : T , Ψ1 ∈ N2 : Uo

with Us � Uo.

We write ε, Ψ ∈min α if the type judgments for the subject and object terms of
α as given above are minimal in the sense of Definition 7.

Note that the clause for well-typed τ -labels states that the subject types
agree. The name bindings b : U describe types of the bound names that were
needed for typing the subject channel, whereas the name bindings a : T describe
the types of the bound names that were extruded.

Theorem 1. Subject reduction. Suppose that Ψ0 � P
α−⊥ P ≥ and that ε, Ψ ∈ P

for some Ψ ∅ Ψ0 and that ε1, Ψ1 ∈min α for some ε1 ∅ ε and Ψ1 ∅ Ψ . Then
there exists a Ψ ≥ such that ε ≥, Ψ ≥ ∈ P ≥ where ε ≥ = (ε − ε1) + εα.

5 Instances of the Type System

In this section we describe some instances of our type system. These instances
show how the type structure and the assertions can be used to control the use
of resources. In all instances, the substitution property Property 1 is easily seen
to hold.

Types for Resources in ψ-calculi 93

5.1 Linear Channels

We first consider the type system by Kobayashi, Pierce and Turner [14] for linear
channel usage in a polyadic α-calculus with replicated input. The formation rules
for processes are

P ::= x(y).P1 | x〈y↓.P1 |!x(y).P1 | P1 | P2

| (ρx : T)P1 | 0 | if x = y then P1 else P2

The only form of replication is thus that of replicated input. In the type system
every type is equipped with a capability p that tells us if names of this type can
be used for input, output, both or neither and a multiplicity m that tells us if
names of this type are linear (1) or unlimited (ω).

The formation rules for types are

T ::=pmT

p ::=♦ | {!} | {?} | {!, ?}
m ::=1 | ω

As in [14], addition is defined by (where either m = ω or p ≈ q = ♦ and m = 1):

pmT + qmT
def= p ≡ qmT

The unlimited types in this system are thus those with multiplicity ω or capa-
bility ♦.

The syntax of [14] is easily represented in our type system, and the same
holds for the type rules. In particular, the type rule for replicated input

ε,y : T ∈ P ε unlimited
ε + x :?ωT ∈!x(y).P

can be expressed as a derived rule in our type system using (T-rep) and (T-in).
Let ∈≥ denote the typability relation of [14] and let [[P]] denote our represen-

tation of process P . The following representation result is immediate.

Theorem 2. Suppose dom(ε) = fn(P). Then

ε ≥ ∈≥ P ⇐∀ ε,0 ∈ [[P]]

5.2 Control in the π-calculus

In a series of papers Berger, Honda and Yoshida use an asynchronous α-calculus
to encode the simply typed λ-calculus [16,17]. The goal is to show strong normal-
ization for this calculus by using a α-calculus type system that soundly charac-
terizes of strong normalization together with a typed version of Milner’s encoding
of the λ-calculus.

We adopt their formulation from [16], in which type judgments are of the
form ε ∈ P � A, where A is a so-called action type. An action type should be
thought of as a finite directed graph whose vertices are polarized names px and
whose edges describe the causal input/output dependencies between names.

94 H. Hüttel

Polarities and Action Types The underlying idea of the type system is
to ensure strong normalization by ensuring that action types do not have cyclic
dependencies between inputs and outputs and that inputs and outputs alternate.

We have the polarities
p::= ↓ | ↑ | ! | ?

Here ↓ denotes linear input, ↑ denotes linear output, ! denotes replicated input
and ? denotes an output to a replicated input. We use ⊥ to indicate that a linear
channel is capable of both input and output. The polarities have duals, such that
↑ =↓ and ! =?.

Since inputs and outputs should alternate, types are given by the formation
rules

α ::=〈T, T ↓ TI ::=(TO)→ | (TO)!

T ::=TI | TO TO ::=(TI)↑ | (TI)?

In the above, T is the dual type of T , found by dualizing all capabilities in T .
Action types are defined by the following formation rules.

A ::=!x ⊥?y |↓⊥↑ y | px | A1, A2

We write px ≤ A if A contains a vertex px. An action type A is well-formed if no
name in it occurs twice. If px occurs in A we say that x is active in A if there is
no y on which x depends, i.e. there is no edge qy ⊥ px. We let A \ x denote the
action type found by removing all nodes whose names are in x. Also let A ≡ B
denote the graph union of A and B.

Action types can be composed as follows. First, define composition of polar-
ities by ↓ � ↑def= ⊥ and ?�? def=? and !�? def= ! and let us say that action types A
and B are composable, written A � B, if whenever px ≤ A and qx ≤ B, then
p�q is defined, and there are no circular dependencies in the union of edges from
A and B, i.e. if p1x1 ⊥ p2x2.p2x2 ⊥ p3x3, . . . , pnxn ⊥ pn+1xn+1 ≤ A ≡ B, then
x1 ∗= xn. Then whenever A � B, the action type A � B is defined as follows:

– The vertices are given by: px ≤ A � B if either px ≤ A and x ∗≤ fn(B) and
vice versa, or qx ≤ A and rx ≤ B with p = q � r.

– The edges are given by: px ⊥ qy ≤ A�B if px, qy ≤ A�B and px = r1z1 ⊥
r2z2, r2z2 ⊥ r3z3, . . . , rnzn+1 = qy

In other words, the edges of the composed action type correspond to the paths
that can be followed by causally dependent communications.

Table 3 shows the original type rules of [16]. In the rules A � B denotes the
action type that corresponds to the disjoint union of the underlying graphs of A
and B.

Representing the Type System. In the original type system, all linearity
information is kept in assertions, so in our version the additive structure of types
is trivial; we let T + T = T for every type T .

Types for Resources in ψ-calculi 95

Table 3. Type rules of the type system for strong normalization in [16]

The first central insight is that we can represent type graphs as assertions
and define the composition operator in the appropriate fashion. Thus, a type
judgment ε ∈ P � A is represented by the judgment ε, ΨA ∈ P where ΨA is the
assertion corresponding to the type graph A.

The second central insight is that only action types of certain shapes appear
in the type system.

The assertions are given by the formation rules

Ψ ::= ↓⊥ k |↑ x |!x ⊥ k |?x | px ⊥ qy | Ψ1, Ψ2 | (k)Ψ1

where k ≤ N. The idea is that these numbers act as unique root connectors, such
that e.g. ↓⊥ k → (k)Ψ1 denotes that ↓⊥ can only be connected to the root of
the graph represented by Ψ1. We say that a number k is fresh for an assertion if
it does not occur in it.

96 H. Hüttel

Composing assertions. We define assertion composition as the free algebraic
structure closed under the composition axioms and use the assertions to encode
action types as follows.

The following translation is defined relative to a type environment ε . The
final clause applies to the cases not cover by the first four.

[[(↓ x ⊥ A1) � A2]] = ↓ x ⊥ k → (k)[[A1]]
where ε (x) = y, k fresh, A \ y =↑ A1 � A2

[[A2� ↑ x]] = ↑ x → [[A1]]
where ε (x) = y, A1 \ y = A2, A2 �↑ x

[[!x ⊥ A2]] =!x ⊥ k → (k)[[A]]
where ε (x) = y, A \ y =?A2, k fresh

[[A2�?x]] =?x → [[A1]]
where ε (x) = y, A1 \ y = A2, A2 �?x

[[A1 � A2]] =
⎛

px,qy∈A1∀A2,px=r1z1∼r2z2,r2z2∼r3z3,...,rnzn+1=qy

px ⊥ qy

Type rules for messages. The only message terms are names; there are four type
rules for names seen i Table 4.

Table 4. Type rules for names

(Lin-Out) Γ, → x ← x : T if Γ (x) = (T)↑

(Lin-In) Γ, ⊥ x ⇒ • ← x : T if Γ (x) = (T)↓

(Unlim-Out) Γ, ?x ← x : T if Γ (x) = (T)?

(Unlim-In) Γ, !x ⇒ • ← x : T if Γ (x) = (T)!

Other rules. The assertion weakening rules are captured by the non-structural
weakening rules that we allow.

For the structural rules, we must take into account the notion of asynchronous
output. A derived type rule would be

ε1, Ψ1 ∈ x : Ch(T) ε2, Ψ2 ∈ y : T

ε1 + ε2, Ψ1 � Ψ2 ∈ x(y)

Theorem 3. Let ∈≥ denote the typability relation in [16]. Then

ε ∈≥ P � A ⇐∀ ε, [[A]] ∈ [[P]]

Types for Resources in ψ-calculi 97

5.3 A Type System for Value-Passing

We next describe a type system similar to those of Deng and Sangiorgi [6]
which guarantees termination in a value-passing process calculus without name-
passing.

In the σ-calculus that we consider, terms have the syntax

M ::=x | f(M)

Again, we shall assume that the calculus uses replicated input only.
The underlying idea of the type system is that every composite term is typed

by its constructor depth. The only possible source of non-termination is that of
replicated input; termination is guaranteed by the requirement that underneath
a replicated input, we only encounter outputs of terms that have strictly lower
constructor depth.

A syntactic constraint that will be ensured by the type system is that all
channels are names – that is, subjects of inputs and outputs are always names.

The types of names are given by the formation rules

T ::= Chn | n | c

so terms either have channel type, carrying terms of type n, are terms of index
n ≤ N or terms of constant type c, where c ≤ N. The additive structure of types
is again the trivial one: for every type we let T + T = T .

Assertions are closed intervals of natural numbers.

Ψ ::=[m,n] where m,n ≤ N

For terms we let judgments have the form

ε, [l, r] ∈ M : T

Composition of assertions is defined as the least encompassing interval:

[0, r] → [0, r] = [0, r]
[l1, r1] → [l2, r2] = [l3, r3] otherwise

where l3 = min(l1, l2), r3 = max(r1 + 1, r2 + 1)

This operation is easily seen to be commutative and associative.
We then let channels be typed in one-point intervals only, as seen from rule

(Chan). Other terms are typable in intervals of length 1.
We always type a process in the interval [0, n] for some n ≤ N. The compat-

ibility relation tells us that Chn � n; that is, channels of type Chn can carry
terms of index n.

The type rules for terms are given below; they introduce a notion of simple
subtyping. The rules guarantee that ε, Ψ ∈ M : n if the depth of M is at
most n.

98 H. Hüttel

(Name) ε, [n − 1, n] ∈ x : Tifε (x) = T

(Chan) ε, [n, n] ∈ x : Chn+1 if ε (x) = Chn

(Comp-1)
ε, [ni − 1, ni] ∈ Mi : ni 1 ∅ i ∅ |M |

ε, [n − 1, n] ∈ f(M) : n≥

where n ≥ n≥ ≥ 1 + max
1≤i≤|M |

(ni)

In type judgements for processes, ε, Ψ ∈ P , we have that Ψ is a bound on
the channel type depth.

A replicated input is now typed as follows (this is a derived rule):

ε1, [n1, n1] ∈ M : Chn1 ε2 + x : n1, [0, n1 − 1] ∈ P

ε, [0, n1] ∈!M(x).P

Note that the definition of assertion composition ensures that all terms in the
continuation must have types less than that of the subject M .

Theorem 4. If ε, n ∈ P then every transition sequence of P terminates.

The proof that the type system ensures termination uses the following propo-
sition.

Lemma 1. ε, n ∈ P and Ψ � P
α−⊥ then ε, n ∈ s(α) : n, where s(α) is the term

communicated by α.

In other words, every labelled transition will communicate a term of con-
structor depth at most n. Together with Theorem 1 this ensures termination.

5.4 A π-calculus for Allocation and Deallocation

In [4] de Vries, Hennessy and Francalanza consider the Resource α-Calculus, a
process calculus with notions of allocation and deallocation.

The syntax of the Resource α-Calculus is given by the formation rules

P ::= u(x).P | u〈v↓.P | 0 |!P | P1 | P2 | if u = v then P else Q | (ρc : s)P
| alloc(x).P | free u.P

s ::=⊂ | ⊥
The syntax mentions names (u, v . . .) which can be channels (c, d, . . .) or variables
(x, y, . . .). The state s describes if a channel is allocated (⊂) or deallocated (⊥).

In the reduction semantics of the Resource α-Calculus configurations, a func-
tion φ : Chans ⇀ {⊂,⊥} describes the allocation state of free channels. The new
reduction rules are

(alloc) φ � alloc(x).P ⊥ φ � (ρc : ⊂)P{c/x} where c ∗≤ dom(φ)
(free) φ, c �⊥ ⊂ � free u.P ⊥ φ, c �⊥ ⊥ � P

Types for Resources in ψ-calculi 99

The type system uses types whose formation rules are

T ::=[T]a

where T denotes the types of names carried on channels of this type and a
denotes the multiplicity. A multiplicity can be 1 (which here means affine), (•, i)
(meaning that a name of this type will be uniquely allocated after i steps) or ω
(unbounded). A name of type (•, 0) is a name that is uniquely determined now.

A simply notion of subtyping is assumed, defined by

(•, i) <: (•, i + 1) (•, i) <: ω

ω <: 1
a1 <: a2

[T]a1 <: [T]a2

Some of the central typing rules are

(In)
ε, u : [T]a−1,x : T

ε, u : [T]a ∈ u(x).P
(Rev)

ε, u : [T2]• ∈ P

ε, u : [T1]• ∈ P

(Alloc)
ε, x : [T]• ∈ P

ε ∈ alloc(x).P (Free)
ε ∈ P

ε, u : [T]• ∈ free u.P

The rule (Rev) states that any name whose name is fixed now can be
assumed to have any other type as well.

We can represent all this in our σ-calculus setting as follows.
The idea is that assertions are used to track the allocation state of channels.

Our assertions are given by the formation rules

Ψ ::=c@x �⊥ ⊂ | c �⊥ ⊥ | 0 | c@1 | Ψ1, Ψ1

and composition is given by

c@x �⊥ ⊂ → c �⊥ ⊥ = c@1 0 → 0 = 0
Ψ1 → Ψ2 = Ψ1, Ψ2 otherwise

Our conditions are of the form u = v and we define Ψ |= u = u for all names
u. Channel equivalence is defined by

Ψ |= c↔̇c if c@x �⊥ ⊂ ∅ Ψ, c �⊥ ⊥ ∗= Ψ

The new constructions are represented by

[[alloc(x).P]] def= (ρc : Tx)(c@x �⊥ ⊂ | [[P]]{c/x})

[[free c.P]] def= (c �⊥ ⊥ | [[P]])

100 H. Hüttel

The types are given by the formation rules

T ::=Cha(T) | Tx

We define addition of multiplicities by

ω + ω = ω (•, i) = 1 + (•, i + 1)

and addition of types is defined by Cha(T) + Ch1(T) = Cha+1(T).
Subtyping is captured by defining a notion of subarities:

(•, i) ∅ (i, i + 1) (•, i + 1) ∅ ω
ω ∅ 1

Below we present two of the rules for terms. The first, (Psi-Rev), is our
representation of the (Rev) rule. The second, (Psi-Sub-1) is one of the rules
that captures the subtype relation.

(Psi-Rev)
ε, Ψ ∈ u : Ch((•, 0))T2

ε, Ψ ∈ u : Ch((•, 0))T1

(Psi-Sub-1)
ε, Ψ ∈ u : Ch(a1)T1

ε, Ψ ∈ u : Ch(a1)T2
a1 <: a2

For assertions, the interesting rule is that for the assertion 0.

(Nil) ♦ ∈ 0

The type rules for processes in our representation of the Resource α-calculus are
instances of our general rules. The rule (In) is represented directly using our rule
(T-in) because of the definition of addition of types. Also note that assertions
play no part in any of the original rules and are therefore also of no importance
in our representation.

Theorem 5. Let ε ≥ be a type environment as in [4] and let ε be given by
ε (x) = [[ε ≥(x)]] for all x ≤ dom(ε ≥). Then ε ≥ ∈≥ P ⇐∀ ε,0 ∈ [[P]].

6 Conclusions and Further Work

In this paper we have presented a resource-conscious type system for σ-calculi.
The type system satisfies a subject reduction property which describes how
resources will be consumed by well-typed transitions.

The study of properties of bisimilarity is a next topic to consider. In their
original work, Kobayashi et al. [14] described how to develop a theory of barbed
congruence for their linear type system for the asynchronous α-calculus. It would

Types for Resources in ψ-calculi 101

be interesting to see to what extent the results of [1] carry over to our setting
and if we can give a general account of the results on confluence and determinacy
described in [14].

Another important topic to be studied is that of notions of behavioural types.
This includes the notions of usages employed by Kobayashi in his work on type
systems for deadlock freedom [15] and, notably, the work on dyadic session types
[10,12]. In the setting of session types for σ-calculi one would expect the calculus
syntax to be enriched with the usual session primitives of session channel genera-
tion, selection and branching. More interestingly, the notion of duality of session
types must be dealt with for channels that can be composite terms. Moreover, a
theory of session types for σ-calculi should offer a smooth generalization of the
type system presented here.

The notion of linearized types is of special interest here; a linearized type T
occurring in a reduction sequence has the property that at any given configu-
ration of the sequence there is precisely one term occurrence that has type T .
However, unlike the case for linear types, there may be several distinct terms of
type T that appear during the computation. As was already pointed out in [14],
this notion is a special case of that of session types. As Dardha et al. have shown
[3], it is now possible to encode session types directly in a linear type system.
We would therefore expect any reasonable representation of session types for
σ-calculi to satisfy a similar, more general property.

References

1. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for
mobile processes with nominal data and logic. Logical Meth. Comput. Sci. 7(1),
11 (2011)

2. Bugliesi, M., Calzavara, S., Eigner, F., Maffei, M.: Resource-aware authorization
policies for statically typed cryptographic protocols. In: Proceedings of CSF 2011,
pp. 83–98. IEEE Computer Society (2011)

3. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: Proceedings
of PPDP, pp. 139–150. ACM, New York (2012)

4. de Vries, E., Francalanza, A., Hennessy, M.: Uniqueness typing for resource man-
agement in message-passing concurrency. In: LINEARITY. EPTCS, vol. 22, pp.
26–37 (2009)

5. Demangeon, R., Honda, K.: Full Abstraction in a Subtyped pi-calculus with Linear
Types. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
280–296. Springer, Heidelberg (2011)

6. Deng, Y., Sangiorgi, D.: Ensuring termination by typability. Inf. Comput. 204(7),
1045–1082 (2006)

7. Gabbay, M.J., Mathijssen, A.: Nominal (universal) algebra: equational logic with
names and binding. J. Logic Comput. 19(6), 1455–1508 (2009)

8. Girard, J.-Y.: Linear logic. Theoret. Comput. Sci. 50, 1–102 (1987)
9. Giunti, M., Vasconcelos, V.T.: A linear account of session types in the Pi calculus.

In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 432–446.
Springer, Heidelberg (2010)

10. Honda, K.: Types for dynamic interaction. In: Best, E. (ed.) CONCUR 1993.
LNCS, vol. 715, pp. 509–523. Springer, Heidelberg (1993)

102 H. Hüttel

11. Honda, K.: Composing processes. In: Proceedings of POPL 1996, pp. 344–357
(1996)

12. Kähkönen, K., Kindermann, R., Heljanko, K., Niemelä, I.: Experimental compar-
ison of concolic and random testing for Java card applets. In: Pol, J., Weber, M.
(eds.) Model Checking Software. LNCS, vol. 6349, pp. 22–39. Springer, Heidelberg
(2010)

13. Hüttel, H.: Typed ψ-calculi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011.
LNCS, vol. 6901, pp. 265–279. Springer, Heidelberg (2011)

14. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM
Trans. Program. Lang. Syst. 21(5), 914–947 (1999)

15. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, Ch.,
Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer,
Heidelberg (2006)

16. Yoshida, N., Berger, M., Honda, K.: Strong normalisation in the π-calculus. In:
Proceedings of LICS 2001, pp. 311–322. IEEE (2001)

17. Yoshida, N., Berger, M., Honda, K.: Genericity and the π-calculus. Acta Inf.
42(2/3), 83–141 (2005)

A Sorted Semantic Framework for Applied
Process Calculi (Extended Abstract)

Johannes Borgström(B), Ramūnas Gutkovas, Joachim Parrow, Björn Victor,
and Johannes Åman Pohjola

Department of Information Technology, Uppsala University, Uppsala, Sweden
johannes.borgstrom@it.uu.se

Abstract. Applied process calculi include advanced programming con-
structs such as type systems, communication with pattern matching,
encryption primitives, concurrent constraints, nondeterminism, process
creation, and dynamic connection topologies. Several such formalisms,
e.g. the applied pi calculus, are extensions of the the pi-calculus; a grow-
ing number is geared towards particular applications or computational
paradigms.

Our goal is a unified framework to represent different process calculi
and notions of computation. To this end, we extend our previous work
on psi-calculi with novel abstract patterns and pattern matching, and
add sorts to the data term language, giving sufficient criteria for sub-
ject reduction to hold. Our framework can accommodate several existing
process calculi; the resulting transition systems are isomorphic to the
originals up to strong bisimulation. We also demonstrate different notions
of computation on data terms, including cryptographic primitives and a
lambda-calculus with erratic choice. Substantial parts of the meta-theory
of sorted psi-calculi have been machine-checked using Nominal Isabelle.

1 Introduction

There is today a growing number of high-level constructs in the area of con-
currency. Examples include type systems, communication with pattern match-
ing, encryption primitives, concurrent constraints, nondeterminism, and dynamic
connection topologies. Combinations of such constructs are included in a variety
of application oriented process calculi. For each such calculus its internal con-
sistency, in terms of congruence results and algebraic laws, must be established
independently. Our aim is a framework where many such calculi fit and where
such results are derived once and for all, eliminating the need for individual
proofs about each calculus.

Our effort in this direction is the framework of psi-calculi [1], which pro-
vides machine-checked proofs that important meta-theoretical properties, such
as compositionality of bisimulation, hold in all instances of the framework. In
this paper we introduce a novel generalization of pattern matching, decoupled
from the definition of substitution, and introduce sorts for data terms and names.

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 103–118, 2014.
DOI: 10.1007/978-3-319-05119-2 7, c© Springer International Publishing Switzerland 2014

104 J. Borgström et al.

The generalized pattern matching is a new contribution that holds general inter-
est; here it allows us to directly capture computation on data in advanced process
calculi, without elaborate encodings. We evaluate our framework by providing
instances that are isomorphic to standard calculi, and by representing several dif-
ferent notions of computation. This is an advance over our previous work, where
we had to resort to nontrivial encodings with unclear formal correspondence to
the standard calculi.

1.1 Background: Psi-calculi

A psi-calculus has a notion of data terms, ranged over by K,L,M,N , and we
write M N .P to represent an agent sending the term N along the channel M
(which is also a data term), continuing as the agent P . We write K(λx̃)X .Q to
represent an agent that can input along the channel K, receiving some object
matching the pattern X, where x̃ are the variables bound by the prefix. These
two agents can interact under two conditions. First, the two channels must be
channel equivalent, as defined by the channel equivalence predicate M

.∈ K.
Second, N must match the pattern X.

Formally, a transition is of kind Ψ � P
α−≤ P ≥, meaning that in an environ-

ment represented by the assertion Ψ the agent P can do an action α to become
P ≥. An assertion embodies a collection of facts used to infer conditions such as
the channel equivalence predicate .∈. To continue the example, if N = X[x̃ := L̃]

we will have Ψ � M N .P | K(λx̃)X .Q
τ−≤ P | Q[x̃ := L̃] when additionally

Ψ → M
.∈ K, i.e. when the assertion Ψ entails that M and K represent the

same channel. In this way we may introduce a parametrised equational theory
over a data structure for channels. Conditions, ranged over by ϕ, can be tested
in the if construct: we have that Ψ � if ϕ then P α−≤ P ≥ when Ψ → ϕ and
Ψ � P

α−≤ P ≥. In order to represent concurrent constraints and local knowl-
edge, assertions can be used as agents: �Ψ� stands for an agent that asserts Ψ
to its environment. Assertions may contain names and these can be scoped; for
example, in P | (νa)(�Ψ� | Q) the agent Q uses all entailments provided by Ψ ,
while P only uses those that do not contain the name a.

Assertions and conditions can, in general, form any logical theory. Also the
data terms can be drawn from an arbitrary set. One of our major contributions
has been to pinpoint the precise requirements on the data terms and logic for
a calculus to be useful in the sense that the natural formulation of bisimulation
satisfies the expected algebraic laws (see Sect. 2). It turns out that it is neces-
sary to view the terms and logics as nominal [2]. This means that there is a
distinguished set of names, and for each term a well defined notion of support,
intuitively corresponding to the names occurring in the term.

1.2 Extension: Generalized Pattern Matching

In our original definition of psi-calculi [1] (called “the original psi-calculi” below),
patterns are just terms and pattern matching is defined by substitution in the

A Sorted Semantic Framework for Applied Process Calculi 105

usual way: the output object N matches the pattern X with binders x̃ iff N =
X[x̃ := L̃]. In order to increase the generality we now introduce a function match
which takes a term N , a sequence of names x̃ and a pattern X, returning a set
of sequences of terms; the intuition is that if L̃ is in match(N, x̃,X) then N

matches the pattern X by instantiating x̃ to L̃. The receiving agent K(λx̃)X .Q

then continues as Q[x̃ := L̃].
As an example we consider a term algebra with two function symbols: enc

of arity three and dec of arity two. Here enc(N,n, k) means encrypting N with
the key k and a random nonce n and and dec(N, k) represents symmetric key
decryption, discarding the nonce. Suppose an agent sends an encryption, as in
M enc(N,n, k) . P . If we allow all terms to act as patterns, a receiving agent
can use enc(x, y, z) as a pattern, as in c(λx, y, z)enc(x, y, z) . Q, and in this way
decompose the encryption and extract the message and key. Using the encryption
function as a destructor in this way is clearly not the intention of a cryptographic
model. With the new general form of pattern matching, we can simply limit
the patterns to not bind names in terms at key position. Together with the
separation between patterns and terms, this allows to directly represent dialects
of the spi-calculus as in Examples 4 and 5 in Sect. 3.

Moreover, the generalization makes it possible to safely use rewrite rules such
as dec(enc(M,N,K),K) ≤ M . In the psi-calculi framework such evaluation is
not a primitive concept, but it can be part of the substitution function, with
the idea that with each substitution all data terms are normalized according to
rewrite rules. Such evaluating substitutions are dangerous for two reasons. First,
in the original psi-calculi they can introduce ill-formed input prefixes. The input
prefix M(λx̃)N is well-formed when x̃ ⊥ n(N), i.e. the names x̃ must all occur
in N ; a rewrite of the well-formed M(λy)dec(enc(N, y, k), k) . P to M(λy)N .P
yields an ill-formed agent when y does not appear in N . Such ill-formed agents
could also arise from input transitions in some original psi-calculi; with the
current generalization preservation of well-formedness is guaranteed.

Second, in the original psi-calculi there is a requirement that a substitution
of L̃ for x̃ in M must yield a term containing all names in L̃ whenever x̃ ⊥ n(M).
The reason is explained at length in [1]; briefly put, without this requirement the
scope extension law is unsound. If rewrites such as dec(enc(M,N,K),K) ≤ M
are performed by substitutions this requirement is not fulfilled, since a substi-
tution may then erase the names in N and K. However, a closer examination
reveals that this requirement is only necessary for some uses of substitution. In
the transition

M(λx̃)N.P
K N [x̃:=˜L]−−−−−−−≤ P [x̃ := L̃]

the non-erasing criterion is important for the substitution above the arrow
(N [x̃ := L̃]) but unimportant for the substitution after the arrow (P [x̃ := L̃]).
In the present paper, we replace the former of these uses by the match function,
where a similar non-erasing criterion applies. All other substitutions may safely
use arbitrary rewrites, even erasing ones.

106 J. Borgström et al.

1.3 Extension: Sorting

Applied process calculi often make use of a sort system. The applied pi-calculus
[3] has a name sort and a data sort; terms of name sort must not appear as
subterms of terms of data sort. It also makes a distinction between input-bound
variables (which may be substituted) and restriction-bound names (which may
not). The pattern-matching spi-calculus [4] uses a sort of patterns and a sort of
implementable terms; every implementable term can also be used as a pattern.

To represent such calculi, we admit a user-defined sort system on names,
terms and patterns. Substitutions are only well-defined if they conform to the
sorting discipline. To specify which terms can be used as channels, and which
values can be received on them, we use compatibility predicates on the sorts
of the subject and the object in input and output prefixes. The conditions for
preservation of sorting by transitions (subject reduction) are very weak, allowing
for great flexibility when defining instances.

The restriction to well-sorted substitution also allows to avoid “junk”: terms
that exist solely to make substitutions total. A prime example is representing
the polyadic pi-calculus as a psi-calculus. The terms that can be transmitted
between agents are tuples of names. Since a tuple is a term it can be substituted
for a name, even if that name is already part of a tuple. The result is that the
terms must admit nested tuples of names, which do not occur in the original
calculus.

1.4 Related Work

Pattern-matching is in common use in programming languages (e.g. Lisp, ML).
LINDA [5] uses pattern-matching when receiving from a tuple space. The
pattern-matching spi-calculus limits which variables may be binding in a pattern
in order to match encrypted messages without binding unknown keys (cf. Exam-
ple 5). In all these cases, the pattern matching is defined by substitution in the
usual way. In more recent languages, such as Scala and F#, pattern matching
may involve computation, similarly to this paper.

The Kell calculus [6] also uses pattern languages equipped with a match
function. However, in the Kell calculus the channels are single names and appear
as part of patterns, patterns may match multiple communications simultaneously
(à la join calculus), and pattern variables only match names (not composite
messages) making forwarding and partial decomposition impossible.

Sorts for the pi-calculus were first described by Milner [7]. Hüttel’s typed
psi-calculi [8] admit a family of dependent type systems, capable of capturing a
wide range of earlier type systems for pi-like calculi formulated as instances of
psi-calculi. However, the term language of typed psi-calculi is required to be a
free term algebra (and without name binders); it uses only the standard notions
of substitution and matching, and does not admit any computation on terms.
The sophisticated type system of typed psi-calculi is intended for fine-grained
control of the behaviour of processes, while we focus on an earlier step: the
creation of a calculus that is as close to the modeller’s intent as possible. Indeed,

A Sorted Semantic Framework for Applied Process Calculi 107

sorted psi-calculi gives a formal account of the separation between variables
and names in typed psi-calculi, and Hüttel’s claim that “the set of well-[sorted]
terms is closed under well-[sorted] substitutions, which suffices”. Furthermore, we
prove meta-theoretical results including preservation of well-formedness under
structural equivalence; no such results exist for typed psi-calculi.

In the applied pi-calculus [3] the data language is a term algebra modulo an
equational logic, which is suitable for modelling deterministic computation only.
ProVerif [9] is a specialised tool for security protocol verification in an extension
of applied pi, including a pattern matching construct. Its implementation allows
pattern matching of tagged tuples modulo a user-defined rewrite system; this
is strictly less general than the psi-calculus pattern matching described in this
paper (cf. Example 2).

Fournet et al. [10] add a general authentication logic to a process calculus
with destructor matching; the authentication logic is only used to specify pro-
gram correctness, and do not influence the operational semantics in any way.
A comparison of expressiveness to calculi with communication primitives other
than binary directed communication, such as the concurrent pattern calculus [11]
and the join-calculus [12], would be interesting. We here inherit positive results
from the pi calculus, such as the encoding of the join-calculus.

1.5 Results and Outline

In Sect. 2 we define psi-calculi with the above extensions and explain the neces-
sary change to the semantics. A formal account of the whole operational seman-
tics and bisimulations can be found in an appendix. Our results are the usual
algebraic properties of bisimilarity, preservation of well-formedness, and subject
reduction.

We demonstrate the expressiveness of our generalization in Sect. 3 by directly
representing calculi with advanced data structures and computations on them,
even nondeterministic reductions.

2 Definitions

Psi-calculi are based on nominal data types. A nominal data type is similar to
a traditional data type, but can also contain binders and identify alpha-variants
of terms. Formally, the only requirements are related to the treatment of the
atomic symbols called names as explained below. In this paper, we consider
sorted nominal datatypes, where names may have different sorts.

We assume a set of sorts S. Given a countable set of sorts for names SN ⊥ S,
we assume countably infinite pair-wise disjoint sets of atomic names Ns, where
s ↔ SN . The set of all names, N = ⊆sNs, is ranged over by a, b, . . . , x, y, z. We
write x̃ for a tuple of names x1, . . . , xn and similarly for other tuples, and x̃
stands for the set of names {x1, . . . , xn} if used where a set is expected.

A sorted nominal set [2,13] is a set equipped with name swapping functions
written (a b), for any sort s and names a, b ↔ Ns, i.e. name swappings must

108 J. Borgström et al.

respect sorting. An intuition is that for any member T it holds that (a b) ·T is T
with a replaced by b and b replaced by a. The support of a term, written n(T), is
intuitively the set of names affected by name swappings on T . This definition of
support coincides with the usual definition of free names for abstract syntax trees
that may contain binders. We write a#T for a ≥↔ n(T), and extend this to finite
sets and tuples by conjunction. A function f is equivariant if (a b)(f(T)) =
f((a b)T) always. A nominal data type is a nominal set together with some
functions on it, for instance a substitution function.

2.1 Original Psi-calculi Parameters

Sorted psi-calculi is an extension of the original psi-calculi framework [1].

Definition 1 (Original psi-calculus parameters). The psi-calculus parame-
ters from the original psi-calculus include three nominal data types: (data) terms
M,N ↔ T, conditions ϕ ↔ C, and assertions Ψ ↔ A; and four equivariant opera-
tors: channel equivalence .∈ : T×T ≤ C, assertion composition ∀ : A×A ≤ A,
the unit assertion 1, and the entailment relation → ⊥ A × C.

The binary functions .∈,∀ and the relation → above will be used in infix form.
Two assertions are equivalent, written Ψ ∅ Ψ ≥, if they entail the same condi-

tions, i.e. for all ϕ we have that Ψ → ϕ ∗ Ψ ≥ → ϕ. We impose certain requisites
on the sets and operators. In brief, channel equivalence must be symmetric and
transitive, the assertions with (∀,1) must form an abelian monoid modulo ∅,
and ∀ must be compositional w.r.t. ∅ (i.e. Ψ1 ∅ Ψ2 =≡ Ψ ∀ Ψ1 ∅ Ψ ∀ Ψ2). For
details see [1].

2.2 New Parameters for Generalized Pattern-Matching

To the parameters of the original psi-calculi we add patterns X,Y , that are
used in input prefixes, a function vars which yields the possible combinations of
binding names in the pattern, and a pattern-matching function match, which is
used when the input takes place. Intuitively, an input pattern (λx̃)X matches a
message N if there are L̃ ↔ match(N, x̃,X); the receiving agent then continues
after substituting L̃ for x̃. If match(N, x̃,X) = ♦ then (λx̃)X does not match N ;
if |match(N, x̃,X)| > 1 then one of the matches will be non-deterministically
chosen. Below, we use “variable” for names that can be bound in a pattern.

Definition 2 (Psi-calculus parameters for pattern-matching). The psi-
calculus parameters for pattern-matching include the nominal data type X of
(input) patterns, ranged over by X,Y , and the two equivariant operators

match : T × N ≤ × X ≤ Pfin(T≤) Pattern matching
vars : X ≤ Pfin(Pfin(N)) Pattern variables

The vars operator gives the possible (finite) sets of names in a pattern which
are bound by an input prefix. For example, an input prefix with a pairing pat-
tern 〈x, y↓ may bind both x and y, only one of them, or none, so vars(〈x, y↓) =

A Sorted Semantic Framework for Applied Process Calculi 109

{{x, y}, {x}, {y}, {}}. This way, we can let the input prefix c(λx)〈x, y↓ only
match pairs where the second argument is the name y. To model a calculus
where input patterns cannot be selective in this way, we may instead define
vars(〈x, y↓) = {{x, y}}. This ensures that input prefixes that use the pattern
〈x, y↓ must be of the form M(λx, y)〈x, y↓, where both x and y are bound. Another
use for vars is to exclude the binding of terms in certain positions, such as the
keys of cryptographic messages (cf. Example 5).

Requirements on vars and match are given below in Definition 5. Note that
the four data types T, C, A and X are not required to be disjoint. In most of
the examples in this paper, the patterns X is a subset of the terms T.

2.3 New Parameters for Sorting

To the parameters defined above we add a sorting function and four sort com-
patibility predicates.

Definition 3 (Psi-calculus parameters for sorting). The psi-calculus para-
meters for sorting include the sorting function sort : N ⇓ T ⇓ X ≤ S, and the
four compatibility predicates

≈ ⊥ S × S Can be used to receive
≈ ⊥ S × S Can be used to send
� ⊥ S × S Can be substituted by

Sν ⊥ S Can be bound by name restriction

The sort operator gives the sort of a name, term or pattern; on names we
require that sort(a) = s iff a ↔ Ns. The sort compatibility predicates are used
to restrict where terms and names of certain sorts may appear in processes.
Terms of sort s can be used to send values of sort t if s ≈ t. Dually, a term of
sort s can be used to receive with a pattern of sort t if s ≈ t. A name a can
be used in a restriction (νa) if sort(a) ↔ Sν . If sort(a) � sort(M) we can
substitute the term M for the name a. In most of our examples, � is a subset of
the equality relation. These predicates can be chosen freely, although the set of
well-formed substitutions depends on �, as detailed in Definition 4 below.

2.4 Substitution and Matching

We require that each datatype is equipped with an equivariant substitution func-
tion, which intuitively substitutes terms for names. The requisites on substitution
differ from the original psi-calculi as indicated in the Introduction. Substitutions
must preserve or refine sorts, and bound pattern variables must not be removed
by substitutions.

We define a subsorting preorder ⇐ on S as s1 ⇐ s2 if s1 can be used as a
channel or message whenever s2 can be: formally s1 ⇐ s2 iff ∀t ↔ S.(s2 ≈ t ≡
s1 ≈ t) ↑ (s2 ≈ t ≡ s1 ≈ t) ↑ (t ≈ s2 ≡ t ≈ s1) ↑ (t ≈ s2 ≡ t ≈ s1). This
relation compares sorts of terms, and so does not have any formal relationship
to � (which relates the sort of a name to the sort of a term).

110 J. Borgström et al.

Definition 4 (Substitution). If ã is a sequence of distinct names and Ñ is
an equally long sequence of terms such that sort(ai) � sort(Ni) for all i, we
say that [ã := Ñ] is a substitution. Substitutions are ranged over by σ.

For each data type among T,A,C we define substitution on elements T of
that data type as follows: we require that Tσ is an element of the same data
type, and that if (ã b̃) is a (bijective) name swapping such that b̃#T, ã then
T [ã := Ñ] = ((ã b̃).T)[̃b := Ñ] (alpha-renaming of substituted variables). For
terms we additionally require that sort(Mσ) ⇐ sort(M).

For substitution on patterns X ↔ X, we require that if x̃ ↔ vars(X) and x̃#σ
then Xσ ↔ X and sort(Xσ) ⇐ sort(X) and x̃ ↔ vars(Xσ) and alpha-
renaming of substituted variables (as above) holds.

Intuitively, the requirements on substitutions on patterns ensure that a sub-
stitution on a pattern with binders ((λx̃)X)σ with x̃ ↔ vars(X) and x̃#σ yields
a pattern (λx̃)Y with x̃ ↔ vars(Y). As an example, consider the pair patterns
discussed above with X = {〈x, y↓ : x ≥= y} and vars(〈x, y↓) = {{x, y}}. We can
let 〈x, y↓σ = 〈x, y↓ when x, y#σ. Since vars(〈x, y↓) = {{x, y}} the pattern 〈x, y↓
in a well-formed agent will always occur directly under the binder (λx, y), i.e. in
(λx, y)〈x, y↓, and here a substitution for x or y will have no effect. It therefore
does not matter what e.g. 〈x, y↓[x := M] is, since it will never occur in deriva-
tions of transitions of well-formed agents. We could think of substitutions as
partial functions which are undefined in such cases; formally, since substitutions
are total, the result of this substitution can be assigned an arbitrary value.

Matching must be invariant under renaming of pattern variables, and the
substitution resulting from a match must not contain any names that are not
from the matched term or the pattern:
Definition 5 (Generalized pattern matching). For the function match we
require that if x̃ ↔ vars(X) are distinct and Ñ ↔ match(M, x̃,X) then it must
hold that [x̃ := Ñ] is a substitution, that n(Ñ) ⊥ n(M)⊆ (n(X)\ x̃), and that for
all name swappings (x̃ ỹ) we have Ñ ↔ match(M, ỹ, (x̃ ỹ)X) (alpha-renaming
of matching).

In the original psi-calculi equivariance of matching is imposed as a require-
ment on substitution on terms, but there is no requirement that substitutions
preserve pattern variables. For this reason, the original psi semantics does not
preserve the well-formedness of agents (an input prefix M(λx̃)N .P is well-
formed when x̃ ⊥ n(N)), although this is assumed by the operational seman-
tics [1]. In contrast, the semantics of pattern-matching psi-calculi does preserve
well-formedness, as shown below in Theorem 1.

In many process calculi, and also in the symbolic semantics of psi [14], the
input construct binds a single variable. This is a trivial instance of pattern
matching where the pattern is a single bound variable, matching any term.

Example 1 Given values for the other requisites, we can take X = N with
vars(a) = {a}, meaning that the pattern variable must always occur bound,
and match(M,a, a) = {M} if sort(a) � sort(M). On patterns we define sub-
stitution as aσ = a when a#σ.

A Sorted Semantic Framework for Applied Process Calculi 111

2.5 Agents

Definition 6 (Agents). The agents, ranged over by P,Q, . . ., are of the fol-
lowing forms.

M N.P Output
M(λx̃)X.P Input
case ϕ1 : P1 [] · · · [] ϕn : Pn Case
(νa)P Restriction
P | Q Parallel
!P Replication
�Ψ� Assertion

In the Input any name in x̃ binds its occurrences in both X and P , and in
the Restriction a binds in P. An assertion is guarded if it is a subterm of an
Input or Output. An agent is well-formed if, for all its subterms, in a replication
!P there are no unguarded assertions in P , and in case ϕ1 : P1 [] · · · [] ϕn : Pn

there are no unguarded assertion in any Pi. Substitution on agents is defined
inductively on their structure, using the substitution function of each datatype
based on syntactic position, avoiding name capture.

In comparison to [1] we restrict the syntax of well-formed agents by imposing
requirements on sorts: the subjects and objects of prefixes must have compatible
sorts, and restrictions may only bind names of a sort in Sν .

Definition 7. In sorted psi-calculi, an agent is well-formed if additionally the
following holds for all its subterms. In an Output M N.P we require that sort(M)
≈ sort(N). In an Input M(λx̃)X.P we require that x̃ ↔ vars(X) is a tuple of
distinct names and sort(M) ≈ sort(X). In a Restriction (νa)P we require that
sort(a) ↔ Sν .

The output prefix M N.P sends N on a channel that is equivalent to M . Dually,
M(λx̃)X.P receives a message matching the pattern X from a channel equivalent
to M . A non-deterministic case statement case ϕ1 : P1 [] · · · [] ϕn : Pn executes
one of the branches Pi where the corresponding condition ϕi holds, discarding
the other branches. Restriction (νa)P scopes the name a in P ; the scope of a may
be extruded if P communicates a data term containing a. A parallel composition
P | Q denotes P and Q running in parallel; they may proceed independently or
communicate. A replication !P models an unbounded number of copies of the
process P . The assertion �Ψ� contributes Ψ to its environment. We often write
if ϕ then P for case ϕ : P , and nothing or 0 for the empty case statement
case.

2.6 Semantics and Bisimulation

The semantics of a psi-calculus is defined inductively as a structural operation
semantics yielding a labelled transition relation. The full definition can be found

112 J. Borgström et al.

in our earlier work [1]. We here only comment on the one change necessary to
accommodate the generalized pattern matching. The original input rule reads

Ψ → M
.∈ K

Ψ � M(λỹ)X.P
K X[ỹ:=˜L]−−−−−−−≤ P [ỹ := L̃]

and means that the instantiating substitution [ỹ := L̃] is applied both in the
transition label and in the agent after the transition. Our new input rule is

Ψ → M
.∈ K L̃ ↔ match(N, ỹ,X)

Ψ � M(λỹ)X.P
K N−−−≤ P [ỹ := L̃]

Here the matching with the transition label and the substitution applied to the
following agent may be different. The match predicate determines both the
former (by designating the term N) and the latter (by designating the substitu-
tion), but there is no requirement on how they relate. As explained in Sect. 1.2
this means we can introduce evaluation of terms in the substitution or in the
matching.

Theorem 1 (Preservation of well-formedness). If P is well-formed, then

Pσ is well-formed, and if Ψ � P
α−≤ P ≥ then P ≥ is well-formed.

Proof The first part is by induction on P . The interesting case is input M(λx̃)
X.Q: assume that Q is well-formed, that x̃ ↔ vars(X), that sort(M) ≈ sort(X)
and that x̃#σ. By induction Qσ is well-formed. By sort preservation we get
sort(Mσ) ⇐ sort(M), so sort(Mσ) ≈ sort(X). By preservation of patterns
by non-capturing substitutions we have that x̃ ↔ vars(Xσ) and sort(Xσ) ⇐
sort(X), so sort(Mσ) ≈ sort(Xσ). The second part is by induction on the
transition rules, using part 1 in the In rule.

Note that well-formedness implies conformance to the sorting discipline; there-
fore this theorem shows a kind of subject reduction property.

The definition of strong and weak bisimulation and their algebraic properties
are unchanged from our previous work [1]. The results can be summarized as
follows:

Theorem 2 (Properties of bisimulation). All results on bisimulation estab-
lished in [1] and [15] still hold in sorted psi-calculi with generalized matching.

Theorem 2 has been formally verified in Isabelle/Nominal by adapting our
existing proof scripts. The main difference is in the input cases of inductive
proofs. This represents no more than two days of work, with the bulk of the effort
going towards proving a crucial technical lemma stating that transitions do not
invent new names with the new pattern matching. We have also machine-checked
the proof of Theorem 1. Unfortunately, in Isabelle/Nominal there are currently
no facilities to reason parametrically over the set of name sorts. Therefore the
mechanically checked proofs only apply to psi-calculi with a trivial sorting (a
single sort that is admitted everywhere); we complement them with manual
proofs to extend these to arbitrary sortings.

A Sorted Semantic Framework for Applied Process Calculi 113

3 Examples

Several well-known process algebras can be directly represented as a sorted psi-
calculus by instantiating the parameters in the right way. With this we mean
that the syntax is isomorphic and that the operational semantics is exactly
preserved in a strong operational correspondence modulo strong bisimulation.
There is no need for elaborate coding schemes and the correspondence proofs
are straightforward.
Theorem 3 (Process algebra representations). CCS with value passing
[16], the unsorted and the sorted polyadic pi-calculus [7,17], and the polyadic syn-
chronization pi-calculus [18] can all be directly represented as sorted psi-calculi.

The list can certainly be made longer, though each process algebra currently has
a separate definition and therefore requires a separate formal proof. For example,
a version of LINDA [5] can easily be obtained as a variant of the polyadic pi-
calculus. To illustrate the technique, the only difference between polyadic pi-
calculus and polyadic synchronization pi-calculus is about admitting tuples of
names in prefix subjects.

More interestingly we demonstrate that we can accommodate a variety of
structures for communication channels; in general these can be any kind of data,
and substitution can include any kind of computation on these structures. This
indicates that the word “substitution” may be a misnomer — a better word may
be “effect” — though we keep it to conform with our earlier work. The examples
below use default values for the parameters where A = {1}, C = {�,⊥} and
M

.∈ N = � iff M = N , otherwise ⊥. We let 1 → � and 1 ≥→ ⊥. We also let
≈ = ≈ = S × S, Sν = SN , and let � be the identity on S, unless otherwise
defined. Finally we let match(M, x̃,X) = ♦ where not otherwise defined, we
write � for the subterm (non-strict) partial order, and we use the standard
notion of simultaneous substitution unless otherwise stated.
Example 2 (Convergent rewrite system on terms). We here consider determin-
istic computations specified using a rewrite system on terms containing names.
This example highlights how a notion of substitution restricts the possible choices
for vars(X); see Examples 3 and 4 for two concrete instances.

Let Σ be a sorted signature, and · ⇓ be normalization with respect to a
convergent rewrite system on the nominal term algebra over N generated by
the signature Σ. We write ρ for sort-preserving capture-avoiding simultaneous
substitutions {˜M/̃a} where every Mi is in normal form; here n(ρ) = n(M̃, ã).
A pattern (term) X is stable if for all ρ, Xρ⇓ = Xρ. The patterns include the
stable patterns Y and all instances X thereof (i.e., where X = Y ρ); such an X
can bind any names occurring in Y but not in ρ.

REWRITE(⇓)
T = X = range(⇓)
M [ỹ := L̃] = M{˜L/̃y}⇓
vars(X) =

⋃{P(n(Y) \ n(ρ)) : Y stable ↑ X = Y ρ}
match(M, x̃,X) = {L̃ : M = X{˜L/̃x}}

114 J. Borgström et al.

As a simple instance of Example 2, we may consider Peano arithmetic.

Example 3 (Peano arithmetic). Let S = SN = {nat, chan}. We take the signa-
ture consisting of the function symbols zero : nat, succ : nat ≤ nat and plus :
nat × nat ≤ nat. The rewrite rules plus(K, succ(M)) ≤ plus(succ(K),M)
and plus(K, zero) ≤ K induce a convergent rewrite system ⇓Peano.

The stable terms are those that do not contain any occurrence of plus. The
construction of Example 2 yields that x̃ ↔ vars(X) if x̃ = ε (which matches
only the term X itself), or if x̃ = a and X = succn(a).

Writing i for succi(zero), the agent (νa)(a 2 | a(λy)succ(y) . c plus(3, y))
of REWRITE(⇓Peano) has one visible transition, with the label c 4. In partic-
ular, the object of the label is plus(3, y)[y := 1] = plus(3, y){1/y}⇓Peano = 4.

Example 4 (Symmetric encryption). We can also consider variants on the con-
struction in Example 2, such as a simple Dolev-Yao style [19] cryptographic mes-
sage algebra for symmetric cryptography, where we ensure that the encryption
keys of received encryptions can not be bound in input patterns, in agreement
with cryptographic intuition.

Let S = SN = {message, key}, and consider the term algebra over the signa-
ture with the two function symbols enc, dec of sort message × key ≤ message.
The rewrite rule dec(enc(M,K),K) ≤ M induces a convergent rewrite system
⇓enc, where the terms not containing dec are stable.

The construction of Example 2 yields that x̃ ↔ vars(X) if x̃ ⊥ n(X) are
pair-wise different and no xi occurs as a subterm of a dec in X. This construc-
tion would permit to bind the keys of an encrypted message upon reception,
e.g. a(λm, k)enc(m, k) . P would be allowed although it does not make crypto-
graphic sense. Therefore we further restrict vars(X) to those sets not containing
names that occur in key position in X, thus disallowing the binding of k above.

SYMSPI
As REWRITE(⇓enc), except
vars(X) = P(n(X) \ {a : a � dec(Y1, Y2) � X ∨

(a � Y2 ↑ enc(Y1, Y2) � X)})

As an example, the agent (νa, k)(a enc(enc(M, l), k) | a(λy)enc(y, k) . c dec(y, l))
has a visible transition with label c M .

Example 5 (Pattern-matching spi-calculus). A more advanced version of Exam-
ple 4 is the treatment of data in the pattern-matching spi-calculus [4], to which
we refer for more examples and motivations of the definitions below. Features
of the calculus includes a non-homomorphic definition of substitution that does
not preserve sorts, and a sophisticated way of computing permitted pattern vari-
ables. This example highlights the flexibility of sorted psi-calculi in that such a
specialized modelling language can be directly represented, in a form that is very
close to the original.

A Sorted Semantic Framework for Applied Process Calculi 115

We start from the term algebra TΣ over the unsorted signature Σ consist-
ing of the function symbols (), (·, ·), eKey(·), dKey(·), enc(·, ·) and enc−1(·, ·).
The operation enc−1 is “encryption with the inverse key”, which is only per-
mitted to occur in patterns. We add a sort system on TΣ where impl denotes
implementable terms not containing enc−1, and pat those that may only be used
in patterns. The sort ⊥ denotes ill-formed terms, which do not occur in well-
formed processes. Substitution is defined homomorphically on the term algebra,
except for enc−1(M1,M2)σ which is enc(M1σ, eKey(N)) when M2σ = dKey(N),
and enc−1(M1σ,M2σ) otherwise. We let � ⊂ P(TΣ) × P(TΣ) be deducibility in
the Dolev-Yao message algebra (for the precise definition, see [4]). The definition
of vars(X) below allows to bind only those names that can be deduced from
X and the other names occurring in X. This excludes binding an unknown key,
like in Example 4.

PMSPI
T = X = TΣ

SN = {impl} S = {impl, pat,⊥}
� = ≈ = {(impl, impl)}
≈ = {(impl, impl), (impl, pat)}
sort(M) = impl if ∀N1, N2. enc−1(N1, N2) ≥� M
sort(M) = ⊥ if ∃N1, N2. enc−1(N1, dKey(N2)) � M
sort(M) = pat otherwise
match(M, x̃,X) = {L̃ : M = X[x̃ := L̃]}
vars(X) = {S ⊥ n(X) : ((n(X) \ S) ⊆ {X}) � S}

As an example, consider the following transitions in PMSPI:

(νa, k, l)(a enc(dKey(l), eKey(k)).a enc(M, eKey(l))

| a(λy)enc(y, eKey(k)) . a(λz)enc−1(z, y) . c z)
τ−≤ (νa, k, l)(a enc(M, eKey(l)) | a(λz)enc(z, eKey(l)) . c z)

τ−≤ (νa, k, l)c M.

Note that σ = [y := dKey(l)] resulting from the first input changed the sort of
the second input pattern: sort(enc−1(z, y)) = pat, but sort(enc−1(z, y)σ) =
sort(enc(z, eKey(l))) = impl. However, this is permitted by Definition 4, since
impl ⇐ pat.

Example 6 (Nondeterministic computation). The previous examples considered
total deterministic notions of computation on the term language. Here we con-
sider a data term language equipped with partial non-deterministic evaluation: a
lambda calculus with the erratic choice operator ·�·. Due to the non-determinism
and partiality, evaluation cannot be part of the substitution function. Instead,
the match function collects all evaluations of the received term, which are

116 J. Borgström et al.

non-deterministically selected from by the In rule. This example also highlights
the use of object languages with binders, a common application of nominal logic.

We let substitution on terms be the usual capture-avoiding syntactic replace-
ment, and define reduction contexts R ::= [] | R M | (λx.M) R. Reduction ≤
is the smallest pre-congruence for reduction contexts that contain the rules for
β-reduction (λx.M N ≤ M [x := N]) and · � · (namely M1 � M2 ≤ Mi if i ↔
{1, 2}). We use the single-name patterns of Example 1, but include evaluation in
matching.

NDLAM
SN = S = {s} X = N
M ::= a | M M | λx.M | M � M

where x binds into M in λx.M
match(M,x, x) = {N : M ≤≤ N ≥≤}

As an example, the agent (νa)(a(y) . c y .0 | a ((λx.x x) � (λx.x)) .0) has two
visible transitions, with labels c λx.x x and c λx.x.

4 Conclusions and Further Work

We have described two features that taken together significantly improve the
precision of applied process calculi: generalised pattern matching and substitu-
tion, which allow us to model computations on an arbitrary data term language,
and a sort system which allows us to remove spurious data terms from con-
sideration and to ensure that channels carry data of the appropriate sort. The
well-formedness of processes is thereby guaranteed to be preserved by transitions.
We have given examples of these features, ranging from the simple polyadic pi-
calculus to the highly specialized pattern-matching spi-calculus, in the psi-calculi
framework.

The meta-theoretic results carry over from the original psi formulations, and
many have been machine-checked in Isabelle. We have also developed a tool
for sorted psi-calculi [20], the Psi-calculi Workbench (Pwb), which provides an
interactive simulator and automatic bisimulation checker. Users of the tool need
only implement the parameters of their psi-calculus instances, supported by a
core library.

Future work includes developing a symbolic semantics with pattern matching.
For this, a reformulation of the operational semantics in the late style, where
input objects are not instantiated until communication takes place, is necessary.
We also aim to extend the use of sorts and generalized pattern matching to
other variants of psi-calculi, including higher-order psi calculi [21] and reliable
broadcast psi-calculi [22]. As mentioned in Sect. 2.6, further developments in
Nominal Isabelle are needed for mechanizing theories with arbitrary but fixed
sortings.

A Sorted Semantic Framework for Applied Process Calculi 117

References

1. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for
mobile processes with nominal data and logic. LMCS 7(1:11) (2011)

2. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput.
186, 165–193 (2003)

3. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proceedings of POPL, pp. 104–115. ACM, January 2001

4. Haack, C., Jeffrey, A.: Pattern-matching spi-calculus. Inf. Comput. 204(8), 1195–
1263 (2006)

5. Gelernter, D.: Generative communication in Linda. ACM TOPLAS 7(1), 80–112
(1985)

6. Schmitt, A., Stefani, J.-B.: The KELL calculus: a family of higher-order distributed
process calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp.
146–178. Springer, Heidelberg (2005)

7. Milner, R.: The polyadic π-calculus: a tutorial. In: Bauer, F.L., Brauer, W.,
Schwichtenberg, H. (eds.) Logic and Algebra of Specification. NATO ASI,
vol. 94, pp. 203–246. Springer, Heidelberg (1993)

8. Hüttel, H.: Typed ψ-calculi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011.
LNCS, vol. 6901, pp. 265–279. Springer, Heidelberg (2011)

9. Blanchet, B.: Using Horn clauses for analyzing security protocols. In Cortier, V.,
Kremer, S., eds.: Formal Models and Techniques for Analyzing Security Protocols.
Cryptology and Information Security Series, vol. 5, pp. 86–111. IOS Press (2011)

10. Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization policies.
In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 141–156. Springer, Heidelberg
(2005)

11. Given-Wilson, T., Gorla, D., Jay, B.: Concurrent pattern calculus. In: Calude,
C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 244–258. Springer,
Heidelberg (2010)

12. Fournet, C., Gonthier, G.: The reflexive CHAM and the join-calculus. In: Proceed-
ings of the POPL, pp. 372–385 (1996)

13. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable bind-
ing. Formal Aspects Comput. 13, 341–363 (2001)

14. Johansson, M., Victor, B., Parrow, J.: Computing strong and weak bisimulations
for psi-calculi. J. Logic Algebraic Program. 81(3), 162–180 (2012)

15. Johansson, M., Bengtson, J., Parrow, J., Victor, B.: Weak equivalences in psi-
calculi. In: Proceedings of LICS 2010, pp. 322–331. IEEE (2010)

16. Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle
River (1989)

17. Sangiorgi, D.: Expressing mobility in process algebras: first-order and higher-order
paradigms. Ph.D thesis, University of Edinburgh, CST-99-93 (1993)

18. Carbone, M., Maffeis, S.: On the expressive power of polyadic synchronisation in
π-calculus. Nord. J. Comput. 10(2), 70–98 (2003)

19. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theor. 29(2), 198–208 (1983)

20. Borgström, J., Gutkovas, R., Rodhe, I., Victor, B.: A parametric tool for applied
process calculi. In: Proceedings of the 13th International Conference on Application
of Concurrency to System Design (ACSD’13). IEEE (2013)

21. Parrow, J., Borgström, J., Raabjerg, P., Åman Pohjola, J.: Higher-order psi-calculi.
Mathematical Structures in Computer Science FirstView (June 2013)

118 J. Borgström et al.

22. Åman Pohjola, J., Borgström, J., Parrow, J., Raabjerg, P., Rodhe, I.: Negative
premises in applied process calculi. Technical Report 2013-014, Department of
Information Technology, Uppsala University (2013)

Timed π-Calculus

Neda Saeedloei(B) and Gopal Gupta

University of Texas at Dallas, Dallas, TX, USA
{neda.saeedloei,gupta}@utdallas.edu

Abstract. We extend π-calculus with real-time by adding clocks and
assigning time-stamps to actions. The resulting formalism, timed π-
calculus, provides a simple and novel way to annotate transition rules of
π-calculus with timing constraints. Timed π-calculus is an expressive way
of describing mobile, concurrent, real-time systems in which the behavior
of systems is modeled by finite or infinite sequences of timed events. We
develop an operational semantics as well as a notion of timed bisimilarity
for the proposed language. We present the properties of timed bisimilar-
ity; in particular, expansion theorem for real-time, concurrent, mobile
processes is investigated.

1 Introduction

The α-calculus was introduced by Milner et al. [12] with the aim of modeling
concurrent/mobile processes. The α-calculus provides a conceptual framework
for describing systems whose components interact with each other. It contains
an algebraic language for describing processes in terms of the communication
actions they can perform. Theoretically, the α-calculus can model mobility, con-
currency and message exchange between processes as well as infinite computation
(through the infinite replication operator ‘!’).

In many cases, processes run on controllers that control physical devices;
therefore, they have to deal with physical quantities such as time, distance,
pressure, acceleration, etc. Examples include communicating controller systems
in cars (Anti-lock Brake System, Cruise Controllers, Collision Avoidance, etc.),
automated manufacturing, smart homes, etc. Properties of such systems, which
are termed cyber-physical systems (CPS) [6,9], cannot be fully expressed within
α-calculus. In a real-time/cyber-physical system the correctness of the system’s
behavior depends not only on the tasks that the system is designed to perform,
but also on the time instants at which these tasks are performed. While α-
calculus can handle mobility and concurrency, it is not equipped to model real-
time systems or CPS and support reasoning about their behavior related to time
and other physical quantities. We extend α-calculus with real time so that these
systems can be modeled and reasoned about.

Several extensions of α-calculus with time have been proposed [2,4,5,10]; all
these approaches discretize time rather than represent it faithfully as a contin-
uous quantity. Discretizing means that time is represented through finite time
intervals. As a result, infinitesimally small time intervals cannot be represented

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 119–135, 2014.
DOI: 10.1007/978-3-319-05119-2 8, c© Springer International Publishing Switzerland 2014

120 N. Saeedloei and G. Gupta

or reasoned about in these approaches. In practical real-time systems, e.g., a
nuclear reactor, two or more events can occur within an infinitesimally small
interval. Discretizing time can miss the modeling of such behavior which may
be wholly contained within this infinitesimally small interval. In our approach
for extending α-calculus with time, time is faithfully modeled as a continuous
quantity. The most notable work on extending α-calculus with real time is the
work of Chen [3]; however, the replication operator of the original α-calculus is
not considered in this work. Therefore, it is unable to model infinite processes.
In our approach the infinite behavior of timed precesses is modeled through the
infinite replication operator ‘!’ as in original α-calculus.

We consider the extension of α-calculus with continuous time by adding
finitely many real-valued clocks and assigning time-stamps to actions. The result-
ing formalism can be used for describing concurrent, mobile, real-time systems
and CPS and reasoning about their behaviors.1 In contrast to other extensions,
in our work the notion of time and clocks is adopted directly from the well-
understood formalism of timed automata [1]. For simplicity, the behavior of a
real-time system is understood as a sequence (finite or infinite) of timed events,
not states. The times of events are real numbers, which increase monotonically
without bound.

2 Timed π-Calculus

2.1 Design Decisions

We define our timed α-calculus as an extension of the original α-calculus [12]
with (local) clocks, clock operations and time-stamps. As in α-calculus, timed
α-calculus processes use names (including clock names) to interact, and pass
names to one another. These processes are identical to processes in α-calculus
except that they have access to clocks which they can manipulate.

We assume an infinite set N of names (channel names and names passing
through channels), an infinite set Γ of clock names (disjoint from N) and an
infinite set ε of variables representing time-stamps (disjoint from N and Γ).
When a process outputs a name through a channel, it also sends the time-stamp
of the name and the clock that is used to generate the time-stamp. Inspired by
the notion of name transmission in α-calculus, we can treat time-stamps and
clocks just as other names and transmit them through/with channels. Just as
channel transmission results in dynamic configuration of processes, clock and
time-stamp transmission can result in dynamic temporal behavior of processes.
Thus, messages are represented by triples of the form ∈m, tm, c≤, where m is
a name in N , tm is the time-stamp on m, and c is the clock that is used to
generate tm. It is important for the process to send its clock that is used to
generate the time-stamp of the name, because the time-stamp of the incoming
1 While we only focus on extending the π-calculus with continuous time, our method

serves as a model for extending the π-calculus with other continuous quantities. An
instance of this, though not in the context of π-calculus, can be found in [16].

Timed π-Calculus 121

name in conjunction with the clock received is used by the receiving process to
reason about timing requirements of the system as well as channel delays.

In our timed α-calculus all the clocks are local clocks; however, their scope
is changed as they are sent among processes. This will become clear when we
explain how clock passing is performed in Sect. 2.5. Keeping the clocks local
results in a considerably simpler design of the timed α-calculus without sacrific-
ing its practical applicability. Note that all the clocks advance at the same rate.
A clock can be set to zero simultaneously with any transition (transitions are
defined formally in Sect. 2.4). At any instant, the reading of a clock is equal to
the time that has elapsed since the last time the clock was reset. Following the
semantics of timed automata [1], we only consider non-Zeno behaviors, that is,
only a finite number of transitions can happen within a finite amount of time.

2.2 Clock Operations and Clock Interpretations

We consider two types of clock operations: resetting a clock and checking satis-
faction of a clock constraint. Resetting a clock is used to remember the time at
which a particular action in the system has taken place. Clock resets are repre-
sented by σ in the syntax of timed α-calculus. Clock constraints, denoted by Σ,
indicate timing constraints between actions that occur in the system. Note that
if Σ contains more than one constraint, then the conjunction of all constraints
must be considered. Σ and σ are defined by the following syntactic rules, in which
c and ci, 1 → i → n, are clock names, r is a constant in R≥0, t is a time-stamp
and ⊥↔ {<,>,→,⊆,=}. Ψ represents an empty clock constraint or clock reset.

Σ ::=(c ⊥ r)Σ
∣∣ (c − t ⊥ r)Σ

∣∣ (t − c ⊥ r)Σ
∣∣ Ψ

σ ::=(c1 := 0) . . . (cn := 0)
∣∣ Ψ

There are two ways to measure the passing of time while checking for a clock
constraint. It can be measured and reasoned about against (i) the last time a
clock was reset: e.g., a constraint (c < 2) on sending m indicates that m must be
sent out within two units of time since the clock c was reset, or (ii) the last time
a clock c was reset in conjunction with a time-stamp t of a name. Note that in
this case, the time-stamp t must be generated by clock c. For instance, suppose
that a process P sends two consecutive names that are two units of time apart; if
the time-stamp of the first name, generated by clock c is t1, then the expression
c − t1 = 2 can be used to express this constraint.

For a process P , we define c(P) to be the set of clock names in P . For every
two processes P and Q we assume c(P) ≥ c(Q) = ∀, initially. This property is
also maintained all the time as transitions take place. A clock interpretation I
for a set Γ of clocks is a mapping from Γ to R≥0. It assigns a real value to each
clock in Γ. A clock interpretation I for Γ satisfies a clock constraint Σ over Γ iff
the expression obtained by applying I to Σ evaluates to true. For t ↔ R≥0, I + t
denotes the clock interpretation which maps every clock c to the value I(c) + t.
For σ ∅ Γ, [σ ∗≡ t]I denotes the clock interpretation for Γ which assigns t to
each c ↔ σ, and agrees with I over the rest of the clocks.

122 N. Saeedloei and G. Gupta

2.3 Syntax

The set of timed α-calculus processes is defined by the following syntactic rules
in which, P , P ≤, M and M ≤ range over processes, x, y and z range over names
in N , c and d range over clock names in Γ, and ty represents a time-stamp.

M ::=Σσx̄∈y, ty, c≤.P ∣∣ Σσx(∈y, ty, c≤).P ∣∣ Σσϕ.P
∣∣ 0

∣∣ M + M ≤

P ::=M
∣∣ (P | P ≤)

∣∣ !P
∣∣ (z) P

∣∣ [x = y]P
∣∣ [c = d] P

The expression Σσx̄∈y, ty, c≤.P represents a process that is capable of outputting
name y on channel x. This process generates a time-stamp ty using clock c and
sends ty and c along with y via the channel x, and evolves to P . The time-stamp
ty is the reading of clock c at the time of transition. The assignment of a time-
stamp to y and sending y is an atomic operation. The clock constraint Σ must
be satisfied by the current value of clocks at the time of transition. σ specifies
the clocks to be reset with this transition.

Example 1. The process P = (c < 2)x̄∈y, ty, c≤.P ≤ is capable of sending name
y on channel x within two units of time since clock c was last reset. Note that
the time-stamp of y is the reading of clock c when the output takes place. Since
the output can happen only within two units of time since c was last reset, then
time-stamp ty is a positive real number less than two (ty < 2). ty and c are both
sent along with y through channel x.

The expression Σσx(∈y, ty, c≤).P stands for a process which is waiting for a
message on channel x. When a message arrives, the process will behave like
P{z/y, tz/ty, d/c} (substitution is formally defined in Definition 2) where z is
the name received; tz is the time-stamp of z; and d is the clock of the sending
process that is used to generate tz. The time-stamp tz must satisfy the clock
constraint expressed by Σ; σ specifies the clocks to be reset with the transition.

Example 2. Assume process Q = (e > 5)(d− tz → 3)x(∈z, tz, d≤).Q≤ is the receiv-
ing process in Example 1. The received name, along with its time-stamp and
the accompanying clock will be substituted for z, tz and d, respectively. After
substitution takes place, the constraint c− ty → 3 specifies how long the received
name was on transit. Any delay greater than three is not acceptable and cause
the input action to not take place. Note that e is another local clock of Q. Both
constraints e > 5 and (d − tz → 3) must be satisfied by the current value of
clocks for the input action to take place.

Note that time-stamps are put on names only by the sending processes, that
is no time-stamps are assigned to received names upon arrival. The value of a
time-stamp generated by process P on sending name y, is the value of P ’s local
clock c at the time of output. This value is generated such that it satisfies the
clock constraint corresponding to the output action. Note that in Example 2,
tz gets bound to the time-stamp of the incoming name, as we do not assign
time-stamps to the received names.

Timed π-Calculus 123

The expression Σσϕ.P stands for a process that takes an internal action and
evolves to P , and in doing so resets the clocks specified by σ, if the clock con-
straint Σ is satisfied.

In each of three processes explained above, if the clock constraint Σ is not
satisfied by the value of clocks at the time of transition, then, the process becomes
inactive. An inactive process, represented by 0, is a process that does nothing.

The operators + and | are used for nondeterministic choice and composition
of processes, just as in α-calculus [12]. The replication !P , represents an infinite
composition P | P | . . . , just as in α-calculus. The restriction (z)P, z ↔ N ,
behaves as P with z local to P . Therefore, z cannot be used as a channel over
which to communicate with other processes or the environment. [x = y]P, x, y ↔
N ♦Γ, evolves to P if x and y are the same name; otherwise, it becomes inactive.

Example 3. The timed α-calculus expression x(∈m, tm, c≤).(c− tm → 5)ȳ∈n, tn, c≤
represents a process that is waiting for a message on channel x. The process
upon receiving a name m with time-stamp tm and its accompanying clock c on
channel x, sends a name n with time-stamp tn on channel y with the delay of at
most 5 units of time since the time-stamp of m. The process will use the clock
c to choose a time tn on c such that c − tm → 5.

In a process of the form Σσx(∈y, t, c≤).P the occurrences of y, t and c are binding
occurrences, and the scope of the occurrences is P . In (n)P, n ↔ N the occurrence
of n is a binding occurrence, and the scope of the occurrence is P .

Definition 1. An occurrence of a (non-clock) name n in a process is free if it
does not lie within the scope of a binding occurrence of n. An occurrence of a
(non-clock) name in a process is bound if it is not free. All occurrences of a clock
c in a process P are bound. The set of bound names of P , bn(P), contains all
names which occur bound in P . The set of names occurring free in P is denoted
fn(P). We write n(P) for the set fn(P) ♦ bn(P) of names of P .

Intuitively, the free (non-clock) names of a process, represent its (public) links
to other processes. For instance, if processes P and Q share the same free name
x, then, the channel x is shared between these two processes.

Example 4. Let P = x(∈y, t, c≤).0 and Q = (d > 1)(d < 5)x̄∈z, t≤, d≤.0. Then,
fn(P) = {x}, bn(P) = {y, t, c}, fn(Q) = {x, z, t≤}, and bn(Q) = {d}. x is a
channel that is shared between P and Q. This behavior can be represented for
example in the parallel composition of P and Q: (P | Q).

Definition 2. [12] A substitution is a function λ from a set of names N to N .
If xiλ = yi for all i with 1 → i → n (and xλ = x for all other names x), we write
{y1/x1, . . . , yn/xn} for λ.

The effect of applying a substitution λ to a process P is to replace each free
occurrence of each name x in P by xλ, with change of bound names to avoid
name capture (to preserve the distinction of bound names from the free names).
Substitution for time-stamps can be defined similarly.

124 N. Saeedloei and G. Gupta

Definition 3. A clock substitution is a function λc from a set of clock names Γ
to Γ. If ciλc = di for all i with 1 → i → n (and cλc = c for all other clock names
c), we write {d1/c1, . . . , dn/cn} for λc.

The effect of applying a substitution λc to a process P , Pλc, is to replace all
occurrences of each clock name c in P by cλc.

Definition 4. Given a clock c, the function λf creates a fresh copy, f , of c (f
does not appear in any process) and updates the interpretation with I(f) = I(c).
The application of λf to c is represented by cλf .

Definition 5. A clock renaming λr is a clock substitution {f1/c1, . . . , fn/cn} in
which fi = ciλf , 1 → i → n.

The effect of applying a clock renaming λr = {f1/c1, . . . , fn/cn} to process P ,
Pλr, is to replace all occurrences of each name c in P by cλr.

2.4 Operational Semantics

First, we define actions by the following syntactic rule:

ρ::=x̄∈y, t, c≤ ∣∣ x̄∈(y), t, c≤ ∣∣x(∈y, t, c≤) ∣∣ ϕ

The first two actions are the bound output actions. Bound output actions are
used to carry names out of their scope. x̄∈y, t, c≤ is used for sending a name y,
time-stamp of y, t, and the (local) clock that is used to generate t, via channel x.
The process that gives rise to this action can be of the form x̄∈y, t, d≤.P, c = dλf .
In this action x, y and t are free and c is bound; c is the fresh copy of d. The
expression x̄∈(y), t, c≤ is used by a process for sending its private name y (y is
bound in the process) and its (local) clock c. The process that gives rise to this
action can be of the form: (y)x̄∈y, t, d≤.P, c = dλf . In this action x and t are free,
while y and c are bound2; c is a fresh copy of d.

As we mentioned before all the clocks in the calculus are local clocks: the
clocks of a process P are accessible only by P . However, the scope of the clocks
is extended as they are sent to other processes. If d is sent to process Q by P ,
then both P and Q will have access to d. As a result, they both can reset d as
part of their future transitions. To prevent processes interfering with each other
by resetting a shared clock, P must create a fresh copy of d, let us call it c, and
send c to Q. This is the reason of creating fresh copies of clocks in both output
actions.

The third action is the input action x(∈y, t, c≤). This action is used for receiv-
ing any name z with its time-stamp tz, and a clock d via x. y, t and c are place
holders in the receiving process for values that will be received as inputs. In this
action x is free, while y, t and c are bound names.
2 Since all the clocks are local clocks and all clock names are bound, we do not use

parenthesis as we do for regular names to distinguish them from free names.

Timed π-Calculus 125

The last action is the silent action ϕ , which is used to express performing
an internal action. Silent actions can naturally arise from processes of the form
ϕ.P , or from communications within a process (e.g., rule COM in Table 1).

We use fn(ρ) for set of free names of ρ, bn(ρ) for set of bound names of ρ,
and n(ρ) for the union of fn(ρ) and bn(ρ). Note that fn(ϕ) = ∀ and bn(ϕ) = ∀.

A transition in timed α-calculus is of the form P
→α,ω,ν↑−−−−≡ P ≤. This transition

is understood as follows: if Σ is satisfied by the current values of clocks, P evolves
into P ≤, and in doing so performs the action ρ and resets the clocks specified by

Table 1. Timed π-calculus transition rules

y /→ fn((z)P)

δγx(←z, t, c⊥).P ≤δ{t′/t,d/c},x(≤y,t′,d∅),γ{d/c}∅−−−−−−−−−−−−−−−−−−−−⇒ P{y/z, t∼/t, d/c}
d = cθf

δγx̄←y, t, c⊥.P ≤δ,x̄≤y,t,d∅,γ∅−−−−−−−−⇒ P δγτ.P
≤δ,τ,γ∅−−−−⇒ P

P
≤δ,α,γ∅−−−−⇒ P ∼

bn(α) ∅ fn(Q) = ∪
(P | Q)

≤δ,α,γ∅−−−−⇒ (P ∼ | Q)

P
≤δ,α,γ∅−−−−⇒ P ∼

P + Q
≤δ,α,γ∅−−−−⇒ P ∼

P
≤δ,x̄≤z,t,c∅,γ∅−−−−−−−−⇒ P ∼ Q

≤δ′,x(≤z,t,c∅),γ′∅−−−−−−−−−−⇒ Q∼

(P | Q)
≤δδ′,τ,γγ′∅−−−−−−−⇒ (P ∼ | Q∼)

P
≤δ,x̄≤y,t,c∅,γ∅−−−−−−−−⇒ P ∼

y ◦= x ∧ u /→ fn((y)P ∼)
(y)P

≤δ,x̄≤(u),t,c∅,γ∅−−−−−−−−−⇒ P ∼{u/y}

P
≤δ,x̄≤(z),t,c∅,γ∅−−−−−−−−−⇒ P ∼ Q

≤δ′,x(≤z,t,c∅),γ′∅−−−−−−−−−−⇒ Q∼

(P | Q)
≤δδ′,τ,γγ′∅−−−−−−−⇒ (z)(P ∼ | Q∼)

P
≤δ,α,γ∅−−−−⇒ P ∼

z /→ n(α), z → N
(z)P

≤δ,α,γ∅−−−−⇒ (z)P ∼

P
≤δ,α,γ∅−−−−⇒ P ∼

x → N x → Γ
[x = x]P

≤δ,α,γ∅−−−−⇒ P ∼
P

≤δ,α,γ∅−−−−⇒ P ∼

!P
≤δ,α,γ∅−−−−⇒ (P ∼θr | !P)

P
≤δ,x̄≤z,t,c∅,γ∅−−−−−−−−⇒ P ∼ P

≤δ′,x(≤z,t,c∅),γ′∅−−−−−−−−−−⇒ P ∼∼

!P
≤δδ′,τ,γγ′∅−−−−−−−⇒ ((P ∼θ∼

r | P ∼∼θ∼∼
r) | !P)

P
≤δ,x̄≤(z),t,c∅,γ∅−−−−−−−−−⇒ P ∼ P

≤δ′,x(≤z,t,c∅),γ′∅−−−−−−−−−−⇒ P ∼∼

!P
≤δδ′,τ,γγ′∅−−−−−−−⇒ ((z)(P ∼θ∼

r | P ∼∼θ∼∼
r) | !P)

126 N. Saeedloei and G. Gupta

σ. With abuse of notation, we have used σ as a set of clocks to be reset. We call
the triple ∈Σ, ρ, σ≤ a timed action. The set of transition rules of timed α-calculus
are represented in Table 1. These rules are labeled by timed actions.

In rule IN the incoming clock and time-stamp must satisfy the clock con-
straint in the receiving process, for transition to take place. The incoming clock
might get reset upon arrival in the receiving process. These requirements are
specified in the timed action for IN where t≤ and d (the received time-stamp
and clock) are substituted for t and c, respectively. In rule OUT, d is a fresh
copy of clock c which is created and sent along name y on outputting the name.
The rule for COM is similar to that of original α-calculus; however, the clock c
communicated between P and Q is a fresh clock name generated by rule OUT
(the premise of COM).

The joint use of two rules OPEN and CLOSE is used for scope-extrusion of
bound names (including clock names). A bound output combines with an input
action, and once the bound name has been received, a restriction will be extended
to the receiving process. This means the received name is still bound although
its scope has grown. However, this restriction should not bind occurrences of
free names in the receiving process. This is the reason for changing the name
y to a fresh name u before sending y, as in the original α-calculus. Note that
the OPEN rule does not changes the clock name c, as c is a fresh clock name
generated by the rule OUT (the premise of OPEN).

Note that in the rule for REP the set of clock names in P ≤ are replaced by
fresh clock names by applying the renaming λr to P ≤. Similarly, in the rules for
REP-COM and REP-CLOSE the clock names in the replicated processes are
replaced by fresh clock names using λ≤

r and λ≤≤
r. Note also that there are two

more rules for SUM and PAR where the process Q takes an action. These rules
are symmetric to SUM and PAR rules of Table 1 and are eliminated.

Example 5. Using OUT and OPEN we can derive:

(y)x̄∈y, t, c≤.P →Σ,x̄→(u),t,d↑,Σ↑−−−−−−−−−≡ P{u/y}

For all u such that u is y or u /↔ fn(P) and d = cλf . Using IN we have that

x(∈z, tz, e≤).Q →Σ,x(→u,t,d↑),Σ↑−−−−−−−−−≡ Q{u/z, t/tz, d/e}

For all u such that u is z or u /↔ fn(Q). By applying CLOSE we derive

((y)x̄∈y, t, c≤.P | x(∈z, tz, e≤).Q)
→Σ,τ,Σ↑−−−−≡ (u)(P{u/y} | Q{u/z, t/tz, d/e})

Next, we formally define the operational semantics of timed α-calculus and how
the transitions change the interpretation.

Definition 6. [1] A time sequence w = w1w2 . . . is a finite or infinite sequence
of time values wi ↔ R with wi > 0, satisfying the following constraints:

Timed π-Calculus 127

– Monotonicity: w increases strictly monotonically; that is, wi < wi+1 for all
i ⊆ 1.

– Progress: For every w ↔ R, there is some i ⊆ 1 such that wi ⊆ w.

A system specified by set of timed α-calculus processes starts with all the clocks
initialized to 0. Moreover, for every two processes P and Q, c(P) ≥ c(Q) = ∀,
initially. As time advances the value of all clocks advances, reflecting the elapsed
time. At time wi, a process Pi−1 takes a timed action ∈Σi, ρi, σi≤ and evolves to
Pi, if the current values of clocks satisfy Σi. The clocks specified by σi are reset
to 0, and thus start counting time with respect to it. This behavior is captured
by defining runs of timed α-calculus processes. A run for a process P , records
the state (process expression) and the values of all the clocks at the transition
points. For a time sequence w = w1w2 . . . we define w0 = 0.

Definition 7. A run r, denoted by (P̄ , Ī), of a timed α-calculus process P , is a
finite or an infinite sequence of the form

∈P0, I0≤ →α1,ω1,ν1↑−−−−−−≡
w1

∈P1, I1≤ →α2,ω2,ν2↑−−−−−−≡
w2

∈P2, I2≤ →α3,ω3,ν3↑−−−−−−≡
w3

. . .

where Pi is a process and Ii ↔ [Γ ≡ R≥0], for all i ⊆ 0, satisfying the following
requirements:

– Initiation: P0 is the initial process expression, and I0(c) = 0 for all c ↔ Γ.

– Consecution: for all i ⊆ 1, there is a transition of the form Pi−1
→αi,ωi,νi↑−−−−−−≡ Pi

such that (Ii−1 + wi − wi−1) satisfies Σi and Ii = [λi ∗≡ 0](Ii−1 + wi − wi−1).

Along a run r = (P̄ , Ī), the values of the clocks at time wi → w → wi+1 are given
by the interpretation (Ii +w −wi). When the transition from Pi to Pi+1 occurs,
the value (Ii + wi+1 − wi) is used to check the clock constraint. At time wi+1,
the value of a clock that gets reset is defined to be 0.

When the transition from Pi = Σσx(∈z, t, c≤).P to Pi+1 = P{y/z, t≤/t, d/c}
occurs (∈y, t≤, d≤ is the received name), we check the satisfiability of the clock
constraint Σ{d/c, t≤/t}, similarly we reset the clocks specified by σ{d/c}. Intu-
itively, this means that the values of the received clock and time-stamp should
satisfy the constraint Σ for the transition to take place. Moreover, the incoming
clock might get reset upon arrival. These requirements are specified in the timed
action of rule IN in Table 1. When the transition from Pi = Σσx̄∈y, t, c≤.P to
Pi+1 = P occurs in which, the timed action ∈Σ, x̄∈y, t, d≤, σ≤, d = cλf takes place,
the time-stamp t in x̄∈y, t, d≤ gets bound to (Ii(c)+wi+1 −wi). Note that at this
point Ii+1(d) = Ii+1(c).

2.5 Passing Clocks and Channels

Link (channel) passing in timed α-calculus is handled in exactly the same manner
as in α calculus, in the sense that a process P can send a public channel x to
a process Q. However, if Q already has access to a private channel x before the

128 N. Saeedloei and G. Gupta

Table 2. Axioms of structural congruence

transition, the latter must be renamed to avoid confusion: this is called scope
intrusion [12]. If P has a private link x that it sends to Q, the scope of restriction
will be extended, this is called scope extrusion [12]. In this case, if Q already
has access to a public link x, then the name of the private link must be changed
before the transition (these are reflected in rules OPEN and CLOSE).

All clocks in timed α-calculus are local clocks; moreover, processes access
disjoint sets of clocks. When a process P sends its (local) clock c to another
process Q, it creates a fresh copy of c and sends this copy to Q.

Assume that P = Σσȳ∈x, tx, c≤.P ≤ and Q = Σ≤σ≤y(∈z, tz, d≤).Q≤. Furthermore,
assume that P sends ∈x, tx, c≤ to process Q. This behavior can be captured by
the following timed α-calculus transition.

(P
∣∣ Q)

→αα′,τ,νν′↑−−−−−−−≡ (P ≤ | Q≤{x/z, tx/tz, e/d}), e = cλf

Next, we define the structural congruence for proposed timed α-calculus.

2.6 Structural Congruence

The notion of structural congruence for timed α-calculus processes is identical to
that of original α-calculus [12]. Two timed α-calculus processes are structurally
congruent if they are identical up to structure. Structural congruence, ≡, is the
least equivalence relation preserved by the process constructs that satisfy the
axioms in Table 2.

2.7 Timed Bisimulation

We would like to identify two processes which cannot be distinguished by an
observer. We assume that the observer is able to observe all kinds of actions and
moreover, it can observe the times at which the actions are taken place.

Definition 8. A binary relation S on timed α-calculus processes is a (strong)
timed simulation if PSQ implies that:

Timed π-Calculus 129

1. If ∈P, I≤ →α,τ,ν↑−−−−≡
w

∈P ≤, I ≤≤, then for some Q≤, ∈Q, I≤ →α,τ,ν↑−−−−≡
w

∈Q≤, I ≤≤ and P ≤ S Q≤,

2. If ∈P, I≤ →α,x̄→y,t,c↑,ν↑−−−−−−−−≡
w

∈P ≤, I ≤≤, then for some Q≤, ∈Q, I≤ →α,x̄→y,t,c↑,ν↑−−−−−−−−≡
w

∈Q≤, I ≤≤
and P ≤ S Q≤,

3. If ∈P, I≤ →α,x̄→(y),t,c↑,ν↑−−−−−−−−−≡
w

∈P ≤, I ≤≤ and y /↔ n(P,Q), then for some Q≤,

∈Q, I≤ →α,x̄→(y),t,c↑,ν↑−−−−−−−−−≡
w

∈Q≤, I ≤≤ and P ≤ S Q≤,

4. If ∈P, I≤ →α,x(→y,t,c↑),ν↑−−−−−−−−−≡
w

∈P ≤, I ≤≤ and y /↔ n(P,Q), then for some Q≤,

∈Q, I≤ →α,x(→y,t,c↑),ν↑−−−−−−−−−≡
w

∈Q≤, I ≤≤ and for all z, P ≤{z/y} S Q≤{z/y}.

The relation S is a (strong) timed bisimulation if both S and its inverse are timed
simulation. The relation ⊥̇, (strong) bisimilarity, on timed processes is defined
by P ⊥̇Q if and only if there exists a timed bisimulation S such that PSQ.

Example 6. Assume P is a timed α-calculus process defined as:

(c < 2)(c := 0)x̄∈y, ty, c≤ | (d := 0)z(∈w, tw, d≤)

in which, x ↓= z. Then,

P ⊥̇ (c < 2)(c := 0)x̄∈y, ty, c≤.(d := 0)z(∈w, tw, d≤)+
(d := 0)z(∈w, tw, d≤).(c < 2)(c := 0)x̄∈y, ty, c≤

Analogous to strong bisimilarity in α-calculus, ⊥̇ is not in general preserved by
substitution of names. It follows that (strong) timed bisimilarity is not preserved
by input prefix. As a result, (strong) timed bisimilarity is not a congruence.

Example 7. Assume P is defined as in Example 6, and Q = u(∈z, tz, e≤).(P)
Then,

Q ˙↓⊥ u(∈z, tz, e≤).((c < 2)(c := 0)x̄∈y, ty, c≤.(d := 0)z(∈w, tw, d≤)+
(d := 0)z(∈w, tw, d≤).(c < 2)(c := 0)x̄∈y, ty, c≤)

The reason is that, if z is instantiated to x (the channel name received in u is
x), then P{x/z} will have a ϕ transition which cannot be simulated by the right
hand side of the equation.

Definition 9. If x ↓= y, then Σσx̄∈(y), t, c≤.P means (y) Σσx̄∈y, t, c≤.P , and the
prefix x̄∈(y), t, c≤ is called a derived prefix.

A collection of algebraic laws for (strong) timed bisimilarity, which are extensions
of algebraic laws for bisimilarity in α-calculus [12], is presented in Table 3. Note
that τ in proposition 5(d) denotes a prefix, including a derived prefix.

130 N. Saeedloei and G. Gupta

Table 3. Timed bisimilarity algebraic laws

Proposition 7 Expansion
Let P ≡ ∑

i Σiσiτi.Pi and Q ≡ ∑
j ωjλjφj .Qj where Σi and ωj are constraints, σi

and λj specify the set of clocks to be reset and τi and φj are prefixes; bn(τi) ≥
fn(Q) = ∀ for all i, and bn(φj) ≥ fn(P) = ∀ for all j; then

P | Q ⊥̇
∑

i

Σiσiτi.(Pi | Q)+

∑

j

ωjλjφj .(P | Qj) +
∑

ρicompφj

Σiωjσiλjϕ.Rij

The relation τi comp φj (τi complements φj) holds in the following four cases,
which also defines Rij :

1. τi is x̄∈u, t, c≤ and φj is x(∈v, tv, d≤); then Rij is (Pi|Qj{u/v, t/tv, e/d}) where
e = cλf ,

2. τi is x̄∈(u), t, c≤ and φj is x(∈v, tv, d≤); then Rij is (w)(Pi{w/u}|
Qj{w/v, t/tv, e/d}) where w is not free in (u)Pi or in (v)Qj and e = cλf ,

3. τi is x(∈v, tv, d≤) and φj is x̄∈u, t, c≤; then Rij is (Pi{u/v, t/tv, e/d}|Qj) where
e = cλf ,

4. τi is x(∈v, tv, d≤) and φj is x̄∈(u), t, c≤; then Rij is (w)(Pi{w/v, t/tv, e/d}
|Qj{w/u}) where w is not free in (v)Pi or in (u)Qj and e = cλf .

Timed π-Calculus 131

Proofs of above propositions are extensions of the proofs for untimed α-
calculus processes [12] (these extensions take clocks into account) which are not
presented here due to lack of space.

3 Example: The Railroad Crossing Problem

The generalized railroad crossing (GRC) problem [7] describes a railroad crossing
system with several tracks and an unspecified number of trains traveling through
the tracks. The gate at the railroad crossing should be operated in a way that
guarantees the safety and utility properties. The safety property stipulates that
the gate must be down while there is a train in the crossing. The utility property
states that the gate must be up (or going up) when there is no train in the
crossing. The system is composed of three components: train, controller and gate.
The components of the system which are specified via three timed automata in
Fig. 1, communicate by sending and receiving signals. We specify the components
of the system in timed α-calculus.

The controller at the railroad crossing might receive various signals from
trains in different tracks. In order to avoid signals from different trains being
mixed, each train communicates through a private channel with the controller.
A new channel is established for each approaching train to the crossing area
through which the communication between the train and the controller takes
place. For simplicity of presentation we consider only one track in this example.

In our modeling of railroad crossing problem in timed α-calculus each com-
ponent of the system is considered as a timed α-calculus process. This model is
presented in Table 4. Note that the design of the railroad crossing problem shown
in Fig. 1 (originally from [1]) does not account for the delay between the sending
of approach (exit) signal by a train and receiving it by the controller. Similarly
the delay between sending lower (raise) by the controller and receiving it by the
gate is not taken into account. Arguably, in a correct design, the delay before
approach is received by the controller should be taken into account. The lower
signal must be sent within one unit of time since the time-stamp of the original
approach but not the time at which the controller receives the signal (note that
the controller resets its clock to remember the time it receives approach). In con-
trast, in our specification of the railroad crossing problem in timed α-calculus,

Fig. 1. Timed automata for train, controller, and gate in the railroad crossing problem

132 N. Saeedloei and G. Gupta

Table 4. The timed π-calculus expressions for components of the railroad crossing
problem)

train ≡ controller ≡
!(ch)ch1←ch, tc, t⊥ !ch1(←y, ty, d⊥).y(←x, tx, c⊥).
(t := 0)ch←approach, ta, t⊥. ([x = approach](c = 1)(e := 0)ch2←lower, tl, e⊥+
(t > 2)τ.τ. [x = exit](c − tx < 1)(e := 0)ch2←raise, tr, e⊥)
(t < 5)ch←exit, te, t⊥)

gate ≡
!ch2(←x, tx, g⊥).
([x = lower](g < 1)τ + [x = raise](g > 1)(g < 2)τ)

main ≡ train
∣
∣ controller

∣
∣ gate

we are considering the delays; therefore, all the time-related reasoning in the
system is performed against train’s clock and the time-stamp of approach signal
(sent by train to controller).

Note that in the α-calculus expression for train specified in Table 3, t is
the local clock of train and the two consecutive ϕ actions correspond to train’s
internal actions in and out. In the expression for controller, c is a place holder
for the received clock t from train; while, e is the controller’s clock that is reset
before it is sent to gate. In the expression for gate, g is a place holder for the
received clock e from controller and the two ϕ actions correspond to gate’s
internal actions; the first ϕ represents down; while the second ϕ represents up.

Timed α-calculus allows the railroad crossing problem to be modeled more
faithfully. Additionally, significantly more complex systems can be modeled. The
timed α-calculus specification can be used for verification of the system as well
as generating the implementation [15].

4 Discussions

Our proposed timed α-calculus extends the original α-calculus of Milner, while
preserving the algebraic properties of the original α-calculus. The notion of timed
bisimilarity and expansion in our calculus are also simple extensions of those
found in the original α-calculus. Our calculus is a simple and powerful calculus
which annotates the transitions of α-calculus with timing constraints. Our effort
was driven by our desire to keep the design simple. The two most critical and
fundamental assumptions/decisions made in this paper are discussed next.

First, on outputting a name we submit a clock and also the time-stamp of the
name generated by the clock. Without time-stamps, precisely reasoning about
channel delays becomes much more complex, if not impossible. As an example
consider a scenario in which process P takes an action ρ and resets its clock
c at the time of action in order to remember when the action took place. Let
us assume that after t units of time (t is measured by c) have elapsed since ρ’s
occurrence, P sends a name n (along with clock c and time-stamp tn generated

Timed π-Calculus 133

by c) to process Q. Note that P did not reset the clock before this output, as it
continues to need to measure the time since the occurrence of ρ. At this point
if we wanted to know for how long the name n was in transit, we could not
calculate it without tn. However, on receiving n on Q, the expression c − tn
could be used to calculate the exact time for which the name n was in transit.

The second fundamental design decision in our calculus is our choice of local
clocks and how clocks are treated. Initially, processes have access to distinct
set of clocks. Later, after transitions take place, the scope of local clocks may
grow; however, we keep the distinction between clocks of different processes. We
achieve this by having processes create fresh copies of their own clocks (and
updating the interpretation accordingly) and sending these copies instead of
their original clocks. Adopting this convention prevents processes from resetting
each others’ clocks, as the sending process may keep using (possibly resetting)
the clock that was sent for measuring other subsequent events. Our choice of
clocks and our careful treatment of clocks enabled us to extend the transition
rules of the original α-calculus naturally in order to obtain the transition rules
of our timed α calculus. It also made our expansion theorem an straightforward
extension of the original one.

5 Conclusions and Related Work

Since the α-calculus was proposed by Milner et al. [12], many researchers have
extended it for modeling distributed real-time systems. Berger has introduced
timed α-calculus (αt-calculus) [2], asynchronous α-calculus with timers and a
notion of discrete time, locations, and message failure, and explored some of its
basic properties. Olarte has studied temporal CCP (tcc) as a model of concur-
rency for mobile, timed reactive systems in his Ph.D thesis [13]. He has developed
a process calculus called universal temporal CCP (utcc). His work can be seen
as adding mobile operation to the tcc. In utcc, like tcc, time is conceptually
divided into time intervals (or time units); therefore it is discretized. Lee et al.
[10] introduced another timed extension of α-calculus called real-time α-calculus
(αRT-calculus). They have introduced the time-out operator and considered a
global clock, single observer as part of their design, as is common in other (sta-
tic) real-time process algebras. They have used the set of natural numbers as
the time domain, i.e., time is discrete and is strictly increasing. Ciobanu et al.
[4] have introduced a model called timed distributed α-calculus in which they
have considered timers for channels, by which they restrict access to channels.
They use decreasing timers, and time is discretized in their approach also. Many
other timed calculi have similar constructs which also discretize time [5,8,11].
In summary, all these approaches share some common features; they use a dis-
crete time-stepping function or timers to increase/decrease the time-stamps after
every action (they assume that every action takes exactly one unit of time). In
contrast, our approach for extending α-calculus with time faithfully treats time
as continuous.

Posse et al. [14] have proposed αklt-calculus as a real-time extension of α-
calculus and study a notion of time-bounded equivalence. They have developed

134 N. Saeedloei and G. Gupta

an abstract machine for the calculus and developed an implementation based on
this abstract machine for the αklt-calculus in a language called kiltera. The
replication operator of the original α-calculus is missing in this work.

The work of Yi [17] shows how to introduce time into Milner’s CCS to model
real-time systems. An extra variable t is introduced which records the time delay
before a message on some channel ρ is available, and also a timer for calculating
delays. The idea is to use delay operators to suspend activities. In our opinion, it
is much harder to specify real-time systems using delays. Our approach provides
a more direct way of modeling time in α-calculus via clocks, and also can be
used to elegantly reason about delays.

The proposed timed α-calculus is an expressive, natural model for describing
real-time, mobile, concurrent processes. It preserves the algebraic rules of the
original α-calculus, while keeps the expansion theorem simple.

With respect to future work, we would like to extend our timed α-calculus
with other continuous quantities; so that more complex systems as well as CPS
can be expressed. While we have used our calculus for modeling and verifying the
railroad crossing problem [15], we would like to model the generalized railroad
crossing (GRC) problem in our calculus and use it for verifying properties of the
system.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Berger, M.: Towards abstractions for distributed systems. Technical report, Impe-
rial College London (2004)

3. Chen, J.: Timed extensions of π calculus. Theor. Comput. Sci. 11(1), 23–58 (2006)
4. Ciobanu, G., Prisacariu, C.: Timers for distributed systems. Electr. Notes Theor.

Comput. Sci. 164(3), 81–99 (2006)
5. Degano, P., Loddo, J.V., Priami, C.: Mobile processes with local clocks. In: Dam,

M. (ed.) LOMAPS-WS 1996. LNCS, vol. 1192, pp. 296–319. Springer, Heidelberg
(1997)

6. Gupta, R.: Programming models and methods for spatiotemporal actions and rea-
soning in cyber-physical systems. In: NSF Workshop on CPS (2006)

7. Heitmeyer, C., Lynch, N.: The generalized railroad crossing: a case study in formal
verification of real-time systems. In: IEEE Real-Time Systems Symposium, pp.
120–131. IEEE Computer Society Press, Los Alamitos (1994)

8. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.)
FoSSaCS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)

9. Lee, E.A.: Cyber physical systems: design challenges. In: IEEE Symposium on
Object Oriented Real-Time Distributed Computing, ISORC ’08. IEEE Computer
Society, Washington (2008)

10. Lee, J.Y., Zic, J.: On modeling real-time mobile processes. Aust. Comput. Sci.
Commun. 24(1), 139–147 (2002)

11. Mazzara, M.: Timing issues in web services composition. In: Bravetti, M., Kloul, L.,
Zavattaro, G. (eds.) EPEW/WS-EM 2005. LNCS, vol. 3670, pp. 287–302. Springer,
Heidelberg (2005)

Timed π-Calculus 135

12. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts i and ii.
Inf. Comput. 100(1), 1–77 (1992)

13. Olate, C.: Universal temporal concurrent constraint programming. Ph.D thesis,
LIX, Ecole Polytechnique (2009)

14. Posse, E., Dingel, J.: Theory and implementation of a real-time extension to the π-
calculus. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE 2010, Part II. LNCS,
vol. 6117, pp. 125–139. Springer, Heidelberg (2010)

15. Saeedloei, N.: Modeling and verification of real-time and cyber-physical systems.
Ph.D. thesis, University of Texas at Dallas, Richardson, Texas (2011)

16. Saeedloei, N., Gupta, G.: A logic-based modeling and verification of CPS. SIGBED
Rev. 8, 31–34 (2011). http://doi.acm.org/10.1145/2000367.2000374

17. Yi, W.: CCS + time = an interleaving model for real time systems. In: Albert,
J.L., Monien, B., Artalejo, M.R. (eds.) ICALP 1991. LNCS, vol. 510, pp. 217–228.
Springer, Heidelberg (1991)

Towards Static Deadlock Resolution in the
π-Calculus

Marco Giunti(B) and António Ravara(B)

CITI and DI-FCT, Universidade Nova de Lisboa, Lisbon, Portugal
m.giunti@campus.fct.unl.pt, aravara@fct.unl.pt

Abstract. Static analysis techniques based on session types discern con-
current programs that ensure the fidelity of protocol sessions – for each
input (output) end point of a session there is exactly an output (input)
end point available – being expressive enough to represent the stan-
dard π-calculus and several typing disciplines. More advanced type sys-
tems, enforcing properties as deadlock-freedom or even progress, sensibly
reduce the set of typed processes, thus mining the expressiveness of the
analysis. Herein, we propose a first step towards a compromise solution to
this problem: a session based type checking algorithm that releases some
deadlocks (when co-actions on the same channel occur in sequence in a
thread). This procedure may help the software development process: the
typing algorithm detects a deadlock, but instead of rejecting the code,
fixes it by looking into the session types and producing new safe code
that obeys the protocols and is deadlock-free.

1 Introduction

Background and related work. Session types, introduced for a dialect of the α-
calculus of Milner et al. [1], allow a concise description of protocols by detailing
the sequence of messages involved in each particular run of the protocol [2–5]. A
key property is type-safety, which ensures that well-typed processes cannot go
wrong in the sense that they do not reach neither the usual data errors, as those
produced in this case by the use of base values as channels, nor communication
errors, as those generated by two parallel processes waiting in input on a same
session channel, or sending in output on the same session channel. An important
feature is session delegation — the capacity to pass on the processing of a session.
This is relevant for many purposes, e.g. it permits to design a FTP server that
requires the presence of a daemon and of a pool of threads that will serve the
client’s request picked by the daemon [3].

While many session typing systems require a means to distinguish the two
ends of a session channel in order to preserve type soundness [6–8], recently the
first author and Vasconcelos have developed a session typing system [9,10] on top
of the standard α-calculus. The main benefit is expressiveness: session delegation
is described by the α-calculus communication mechanism; type-disciplines based
on session [3,7] and linear [11] types can be embedded in the framework.

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 136–155, 2014.
DOI: 10.1007/978-3-319-05119-2 9, c© Springer International Publishing Switzerland 2014

Towards Static Deadlock Resolution in the π-Calculus 137

A drawback of most of these systems is accepting processes that exhibit vari-
ous forms of deadlocks — although type safety is guaranteed, they do not ensure
deadlock-freedom. For that aim, several proposals appeared recently, guarantee-
ing progress by inspecting causality dependencies in the processes [12–16]. Not
surprisingly, these systems reduce the set of typed processes, rejecting (as usual
in static analysis, which is not complete) deadlock-free processes.

Motivating example. To illustrate the problem that we are tackling in this paper,
consider a synchronous α-calculus with session-based communication channels
and boolean values. Take a process which behaviour consists in testing a boolean
variable and, on success, in acknowledging the result on a received channel and
then continuing the computation, like a(x).b(z).if z thenx∈true≤.P ≥. The process is
well behaved and our type-system accepts it, but, the interaction with a process
sending channel b can cause a runtime deadlock; in fact, several systems in the
literature reject the process P below

P
def= (εa, b)(a(x).b(z).if z thenx∈true≤.P ≥ | a∈b≤.a∈false≤)

since
P → (εa, b)(b(z).if z then b∈true≤.P ≥ | a∈false≤)

The well-known problem of delegating a linear channel already in use by the
receiver (cf. [8]) is avoided a priori ; as a (unfortunate) by-product, legitimate
processes of the form below are rejected as well:

LP
def= (εa, b)(a(x).d∈b≤.x∈true≤ | a∈b≤ | P ≥≥)

The approach that we take is radically different: we aim at both type check P
and at transform it in a process that is deadlock-free. To type P , we assign
to a a pair type of the form (?T1.?bool.end, !T1.!bool.end), where the left entry
says that an end point of a (actually, the one in the left thread of P) is used
linearly to first receive a value of type T1, and then to receive a boolean, while
the right entry describes the dual behaviour of first sending a value of type T1

and then a boolean, which occurs in the right thread. We assign to b the type
T

def= (?bool.end, !bool.end); that is, we split T into T1
def= (end, !bool.end) and

T2
def= (?bool.end, end), and let T1 be delegated over a, and T2 be used to type the

input on b. The key idea towards the transformation of P into a deadlock-free
process is to exploit the structure of the session type T , and check whether the
end point channels described respectively by T1 and T2 are used sequentially,
rather than in parallel.

In this paper, we still not deal with process P , but we handle processes
resulting from it by a linear scan, using a constraint-based rewriting procedure.1

Q
def= (εa, b)(a(x).x(z).if z thenx∈true≤.P ≥ | a∈b≤.a∈false≤)

1 The procedure is still at an experimental stage; we do not discuss it here.

138 M. Giunti and A. Ravara

Process Q above, resulting from P using the procedure, is typed by assigning to
a the type (?T.end, !T.end). What is important is that our type checking algo-
rithm, while typing Q and inferring that the variable x bound by the input on a
has type T , detects that the two linear endpoints of x described respectively by
T1 and T2 are used sequentially in i/o, and proposes a “fix”. We generate new
code for Q that mimics the behaviour described by the session type T , which,
in principle, is the desired behaviour of (the communication channel of) Q. The
type-assisted compositional translation [[·]] maps the typed sequential continua-
tion Q≥ def= x(z).if z thenx∈true≤.P ≥ in a parallel process, using a forwarder (r)
and a semaphore (m) (to impose, in the source and in the translated processes,
the same order of communication); note that v = true is a parameter of the
translation, obtained by a linear scan of Q.

[[Q≥]]v
def= (εr,m)(x(y).r∈y≤ | r(z).if z thenm∈true≤.P ≥ | x∈v≤.m(w))

After some confluent reduction steps, the channel sent over a is forwarded to the
receiver, which can finally successfully pass the boolean test:

(εa, b)(a(x).[[Q≥]]v | a∈b≤.a∈false≤) →≤ (εm)(if true thenm∈true≤.P ≥ | m(w) | a∈false≤)
Note that the type checking algorithm does not apply any transformation to

the legitimate (rewriting of) process LP (defined above), because the endpoint
of channel x that corresponds to T2 is not used in i/o (it is indeed delegated).

Contribution. Distributed programming is known to be very hard and one makes
mistakes by not taking into consideration all possible executions of the code.
Therefore, to assist in the software developing process, instead of simply reject-
ing a process that may contain a resource self-holding deadlock (RSHDF , i.e.,
one or more input and output on the same channel occur in sequence in a given
thread, an instance of Wait For deadlocks [17,18]), we devise a type checking
algorithm that produces a fix for this kind of deadlocked processes by a program
transformation. We show that our program transformation is both RSHDF -
deadlock-free and error-free. These properties are achieved by relying on auto-
matic decoration of typed channels, and on light-weight verification of the format
of decorations, thus avoiding the use of type contexts and systems.

Plan of the paper. In Sect. 2, we introduce a typed α-calculus with sessions obey-
ing a linear discipline, and review the safety properties of the typing system. In
Sect. 3, we define the class of resource-holding and of deadlock-free processes,
showing the latter closed under reduction. In Sect. 4, we present an untyped α-
calculus with decorated channels: as decorations are based on types, we do not
need to rely on typing information to identify safe processes. In Sect. 5, we devise
a split-free type checking algorithm that projects typed processes into decorated
ones. The aim is two-fold: (i) assess the typability of a typed process given a
context; and (ii) generate untyped, resource-deadlock free code. We conclude
presenting the main results of the algorithm: it accepts processes typed by the
split-based type system; and any process generated by the algorithm: (i) does
not reach errors during the computation; (ii) is resource-holding deadlock-free.
The proofs of the results presented herein are in a technical report (cf. [19]).

Towards Static Deadlock Resolution in the π-Calculus 139

2 The Source Language: π-Calculus with Session Types

We present the syntax and the (static and dynamic) semantics of the monadic,
choice-free, synchronous α-calculus, equipped with session types, our source lan-
guage. Then we state the main properties ensured by the type system.

Syntax of processes and types. Let P,Q range over the set of processes P, T range
over types T and R,S over session types, and σ range over typing contexts (or
environments) G, which are maps from variables x, y, z to types; values v, w are
variables and the boolean constants true and false. The grammar in Fig. 1 defines
the language, which is standard (cf. [1], but uses type annotations in restriction).
We consider types T composed by channel types of the form (R,S), where R and
S are session types, each describing an end point of a session, and the boolean
type. An end point of a session S finishes with the type end. A type of the form
!T.S describes a channel that is used exactly once to send a value of type T ,
and then is used as prescribed by S, following a linear discipline. Similarly, ?T.S
describes a channel that is used exactly once to receive a value of type T , and
then is used as imposed by S. The type end describes an end point of a session
on which no further interaction is possible.

Considering the usual notions of free and bound variables, Σ-conversion, as
well as of substitution, cf. [20], we use fv(P) and bv(P) to indicate respectively
the set of free and bound variables of P , which we assume disjoint by following
Barendregt’s variable convention [21], and let var(P) be the union of fv(P) and
bv(P). A process P is closed whenever var(P) = bv(P).

The processes of our language are thus synchronous output and input
processes, in the forms x∈v≤.P and x(y).P : the former sends a value v over
channel x to P , the latter waits on x for a value v that will substitute the bound
occurence of y in P , noted P [v/y]. Notice that substitution is not a total function;
it is not defined, e.g., for (y∈false≤)[true/y]. When writing P [v/y] we assume that
the substitution operation involved is defined. The restricted process (εy : T)P
creates a variable y decorated with the type T ; the occurrences of y in P are
bound. Boolean values are contrasted using if-then-else. The remaining processes
are parallel composition, replication, and inaction. We ignore trailing 0’s and
write (εx̃ : T̃)P as a shortcut for (εx̃1 : T1) · · · (εx̃n : Tn)P , with n ⊥ 0.

Dynamic semantics: reduction. Following standard lines, we describe the opera-
tional semantics of processes through a reduction relation, and allow to rearrange
processes with structural congruence. The congruence rules are standard; we note
that the second rule in the second line allows to remove a restriction provided
that the session type has been consumed.

The reduction rules are also standard. The only variation is that we record,
as a label of the reduction arrow, the variable where the (free) synchronisation
takes place (similarly to [7,11]); this is convenient, and has no semantic impact,
allowing to represent the progression of type decorations in restricted processes
through the next operator over types. Let μ range over variables x, y and the
symbol Ψ , which we assume reserved (not occurring in the syntax of processes).

140 M. Giunti and A. Ravara

Syntax of typed processes

T ::= Types P, Q sessecorP=::

(S, S) session x→v←.P output

bool boolean x(y).P input

S ::= End point (πy : T)P restriction

?T.S input if v thenP elseQ conditional

!T.S output (P | Q) composition

end termination !P replication

v ::= Values 0 inaction

true, false constant

x, y variable

Operator for type progression

next(?T.S) = S next(!T.S) = S next(end) = end next((S1, S2)) = (next(S1), next(S2))

Rules for structural congruence

(P | Q) ⊥ (Q | P) ((P1 | P2) | P3) ⊥ (P1 | (P2 | P3)) (P | 0) ⊥ P !P ⊥ (P |!P)

((πy : T)P | Q) ⊥ (πy : T)(P | Q), if y /⇒ fv(Q) (πy : (end, end))0 ⊥ 0

(πy1 : T1)(πy2 : T2)P ⊥ (πy2 : T2)(πy1 : T1)P P ⊥ Q, if P =α Q

Rules for reduction

(x→v←.P | x(y).Q)
x−∅ (P | Q[v/y]) [R-Com]

P
y−∅ P ≤ next(T) = T ≤

(πy : T)P
τ−∅ (πy : T ≤)P ≤

P
μ−∅ P ≤ μ ∪= y

(πy : T)P
μ−∅ (πy : T)P ≤

[R-ResB],[R-Res]

if true thenP elseQ
τ−∅ P if false thenP elseQ

τ−∅ Q [R-IfT],[R-IfF]

P
μ−∅ P ≤

(P | Q)
μ−∅ (P ≤ | Q)

P ⊥ Q Q
μ−∅ Q≤ Q≤ ⊥ P ≤

P
μ−∅ P ≤

[R-Par],[R-Struct]

Fig. 1. Typed π-calculus

Moreover, let ↔ indicate the reflexive and transitive closure of
μ−−→, whenever

the labels are irrelevant.

Static semantics: type system. The type system uses a notion of type and con-
text split (cf. Walker’s chapter in Pierce’s book [22]), noted ⊆, defined in Fig. 2.
Formally, split is a three-argument relation. We write σ1 ⊆ σ2 to refer to a type
environment σ such that σ = σ1 ⊆ σ2. Figure 3 contains a typing system with
judgements of the form σ ≥ P , where we assume that fv(P) ∀ dom(σ) and
bv(P) ∅ dom(σ) = ∗. We make use of predicates on types and contexts, bal-
anced and terminated (noted respectively bal and term). Balancing relies on the
standard duality notion of session types; we let S be the dual of S:

?T.S =!T.S !T.S =?T.S end = end bal((S, S))

Towards Static Deadlock Resolution in the π-Calculus 141

Type split rules

S = S ◦ end S = end ◦ S

R = R1 ◦ R2 S = S1 ◦ S2

(R, S) = (R1, S1) ◦ (R2, S2)
bool = bool ◦ bool

Context split rules

∧ = ∧ ◦ ∧ Γ = Γ1 ◦ Γ2 T = T1 ◦ T2

Γ, x : T = (Γ1, x : T1) ◦ (Γ2, x : T2)

Fig. 2. Type and context split

Typing rules for values

term(Γ)

Γ ≡ true, false : bool

term(Γ)

Γ, x : T ≡ x : T
[T-Bool],[T-Var]

Typing rules for processes

Γ, x : (S, R), y : T ≡ P

Γ, x : (?T.S, R) ≡ x(y).P

Γ1 ≡ v : T Γ2, x : (S, R) ≡ P

Γ1 ◦ (Γ2, x : (!T.S, R)) ≡ x→v←.P [T-In-l],[T-Out-l]

Γ1 ≡ v : bool Γ2 ≡ P Γ2 ≡ Q

Γ1 ◦ Γ2 ≡ if v thenP elseQ
[T-If]

Γ, x : T ≡ P bal(T)

Γ ≡ (πx : T)P

Γ ≡ P term(Γ)

Γ ≡!P
[T-Res],[T-Repl]

Γ1 ≡ P1 Γ2 ≡ P2

Γ1 ◦ Γ2 ≡ P1 | P2

term(Γ)

Γ ≡ 0
[T-Par],[T-Inact]

Fig. 3. Type system

Note that booleans are not balanced, as we do not consider open processes of the
form if y thenP elseQ, or closed processes of the form (εx : bool)P . The terminated
types are (end, end) and bool: term((end, end)) term(bool).

The typing rules are inspired by the system of Giunti and Vasconcelos [9],
and represent a subsystem of its recent re-formulation [10], to which we refer for
all details. We note that (a) we have left and right rules for typing input and
output processes, corresponding to the cases whether the type for the prefix is
on the left or on the right: for compactness, we only indicate left rules; (b) Rule
[T-Out-l] allow session delegation by means of context split: for instance, if
σ ≥ P with σ = σ1 ⊆ (σ2, x : (!T1.S,R)), then v is both sent at type T1 and used
at type T2 in the continuation, whereas σ (v) = T1 ⊆ T2.

Results. The type system guarantees the usual type preservation and safety prop-
erties — basic values are not used as channels (for synchronisation) and channels
are always used linearly — when considering balanced contexts, i.e., contexts

142 M. Giunti and A. Ravara

mapping variables to balanced types (processes must send and receive values of
the same type on both end points of a same channel). The proof of these results
can be found in a recent work of Giunti [23].

Theorem 1 (Subject Reduction). Let σ be balanced. If σ ≥ P and P ↔ P ≥

then there is σ ≥ balanced such that σ ≥ ≥ P ≥.

The main result of this section is that typed processes do not reach errors during
the computation. Besides basic errors of the form x∈true≤.P | x(y).y(z).P , where
true can be send through [R-Com] but the substitution is not defined, we consider
errors due to non-linear use of channels, as in the parallel compositions x∈v≤.P1 |
x∈w≤.P2 and x(y).P1 | x(y).P2.

Definition 1 (Error Process). A process R is a error, if it is of the form
R ≡ (εz̃ : T̃)(P | Q), for some x, v and w, where (i) P = x∈v≤.P1 | x∈w≤.P2, or
(ii) P = x(y).P1 | x(z).P2.

Theorem 2 (Type Safety). If σ ≥ P with σ balanced, and P ↔ Q, then Q is
not an error.

In short, although session type systems accept processes with non-deter-
ministic behaviour (due to the behaviour of parallel composition), the behaviour
of each session is deterministic, as communication channels (used for synchro-
nisation) must be used linearly. In particular, a session type system rules out a
process like a(x).0 | a∈v≤.a(x).0 | a∈u≤, since the communication order cannot
be guaranteed, but accepts deadlocks like a∈v≤.a(x).0, a(x).a∈x≤, or even like
a(x).b∈u≤ | b(x).a∈v≤.

3 Resource-Holding Deadlocks

The aim now is to introduce a syntactic (untyped) characterisation of processes
that do not contain deadlocks due to the self-holding of resources; this is a sim-
plified variant of Hold and Wait or Resource-Holding deadlocks. Our formulation
of the property is such that it is preserved by reduction, and it has a simple,
decidable, proof technique to verify if the property holds for a given process. In
Sect. 6 we discuss how we envision to tackle the general deadlock resolution prob-
lem for the α-calculus. We motivate first the formal definition through examples.
Then present it rigourously and develop the proof technique.

Resource self-holding deadlocks: motivation. In the following we analyse balanced,
typable, self-hold and wait deadlocks while leaving type decorations implicit. Dead-
locked processes like (εa)(εb)(a(x).b∈true≤ | b(y).a∈false≤) are not resource self-
holding deadlocks, and are not addressed by our analysis technique. Intuitively, a
process exhibits a resource self-holding deadlock if both ends of a (private) chan-
nel appear in sequence — communication on that channel is not possible. The
basic examples2 are the processes (εa) a∈true≤.a(y) and (εa) a(y).a∈true≤, which
2 While most of the examples do not require the use of restriction, we limit the scope

of channels to help the comprehension of the reader.

Towards Static Deadlock Resolution in the π-Calculus 143

contain a resource self-holding deadlock, since no communication on a can occur,
as the co-actions appear in sequence, instead of in parallel. More intricate resource
self-holding deadlocks include processes of the form (εa)(εb)(b∈false≤.(a(x).b(y) |
a∈true≤)), or of the form

(εa)(εb)(a(x).b(y).x∈true≤ | a∈b≤) (1)
a(x).b(y).a∈y≤.(x(z) | x∈true≤) | b∈c≤ (2)

Process (1) is a simple variant of the process P of the introduction which dele-
gates one end point of a session; process (2) describes a delicate situation involv-
ing binders. Our algorithm still not deal with these class of processes: in (1) we
should predict that the left thread will receive b, while in (2) we cannot simply
put the output on a in parallel, as the variable y would escape its scope. In
Sect. 6 we envision how we could tackle these deadlocks.

Resource self-holding deadlocks: formally. We consider the following auxiliary
notions on multisets, and let � be multiset intersection, � multiset union, �
multiset inclusion, and \ multiset difference. The subject variables of P , noted
subjv(P), is the multiset with the occurrences of x ♦ var(P) identified by the
rules (1) subjv(x(y).P) = {x} � subjv(P), and (2) subjv(x∈v≤.P) = {x} �
subjv(P), the remaining productions being homomorphic. The x-variables of P ,
noted x(P), is the subset identified by {x, x, · · · } � subjv(P), where {x, x, . . . }
is a countably infinite multiset of x.

Definition 2 (Sequential and Parallel Variables). The sequential variables
of a process P , noted sv(P), is the submultiset of subjv(P) identified by the rules
(the remaining cases are homomorphic):

1. sv(x(y).P) = {x} � sv(P)
2. sv(x∈v≤.P) = {x} � sv(P)
3. sv(P | Q) = sv(P) � sv(Q)\((sv(P) � sv(Q)) � (sv(P) � sv(Q)))
4. sv(if v thenP elseQ) = sv(P) � sv(Q)

The parallel variables of a process P , noted pv(P), is pv(P)
def
= subjv(P)\ sv(P).

Parallel variables are those that occur as subjects in different threads. A process
does not contain resource-holding deadlocks if every channel has a matching pair
in another thread, giving it a chance to interact.

Definition 3 (Resource Self-Holding Deadlock Freedom). A process P is
Resource Self-Holding Deadlock-Free (RSHDF), if sv(P) = ∗, or, equivalently,
if subjv(P) = pv(P).

Examples of (balanced typed) RSHDF processes include:

1. a∈b≤.d∈c≤.a(x) | a(y).a∈true≤ | d(z) and
2. (εa)(εb)(a(x).(x∈true≤ | b(z).x(y)) | b∈true≤.a∈c≤) .

144 M. Giunti and A. Ravara

Processes containing sequential variables (typed or not), and thus notRSHDF ,
are for instance:

1. (εa)a∈true≤ | b(y), or a∈b≤ | a(x).(x∈true≤ | c(y)), or even (εa)(a∈b≤ | c∈a≤);
2. if true then a∈b≤ | a(y) else a∈b≤.a(y).

We do not consider processes not typable by a balanced environment like:

1. a∈b≤.d∈c≤.a(x) | a∈true≤.a(y) | d(z), or a∈true≤ | a∈false≤, or even
2. a(x).P1 | a∈true≤.P2 | a(y).P3,

which are RSHDF .
The main result of this section is that RSHDF is closed under reduction.

Theorem 3 (RSHDF preservation). If σ ≥ P with σ and P balanced, P is
RSHDF, and P ↔ P ≥, then P ≥ is RSHDF.

Strongly-balanced processes and environments. It is useful to analyse the shape
of types of our interest. The invariant we rely on is that if a session type provides
for sending/receiving a variable, then the type of the payload is balanced (i.e.,
when a process outputs a channel with an “active” session, it is forced to delegate
both end points). We call such processes (types and type environments) strongly-
balanced. In fact, processes of the form (1) above are not strongly-balanced, and
are (still) not tackled by our analysis.

We have seen that balanced types guarantee subject reduction and type
safety. Still, a balanced type permits to type a input process that waits for an
unbalanced variable, what is useless since the process cannot receive such variable
from a balanced process. To refine our analysis on type derivation trees, since
in the forthcoming developments we work in an untyped setting, we identify the
class of strongly-balanced types, processes and contexts, noted sbal.

4 The Target Language: Decorated π-Calculus

We use this new language in the type-checking and deadlock resolution algo-
rithm. We adopt a constructive approach: the algorithm takes a typing context
and a process and while building the type derivation creates a new process in
the target language, decorating the channels with the types used up until that
point. In fact, it transforms linearly used session channels into linear channels
that synchronise in the same order, guaranteeing absence of races, as one session
channel is mapped into a tuple of linear channels.

When, during type checking, the algorithm detects a (possible) deadlock, it
launches the deadlock release function on the decorated version of the original
process. Since we deal with sequential threads locally, transferring information
from the global typing context to the channels occurring in that thread, the
algorithm is compositional and linear in the size of the input process.

Syntax and semantics of the decorated α-calculus. In this section we introduce a
variant of the polyadic α-calculus [20] where channels are decorated with session

Towards Static Deadlock Resolution in the π-Calculus 145

Syntax of decorated processes

σ, ρ ::= Decoration Types H, K sessecorP=::

bool boolean φ→ω←.H output

S end point φ(yσ1 , . . . , yσn).H input

� top (πyσ1 , . . . , yσn)H restriction

φ, ϕ sexfierP=:: ifω thenH elseK conditional

xσ decoration (H | K) composition

ω, ψ seulaV=:: !H replication

xσ1 , . . . , xσn tuple 0 inaction

true, false constant

Rules for reduction (extends Fig. 1)

S1 = S2 φ̃ = yσ1 , . . . , yσn |ω| = |φ̃|
(xS1→ω←.H | xS2(φ̃).K)

xS1−−−∅ (H | K[ω/φ̃])

[R-DCom]

1 ≤ i < j ≤ n σi = S σj = S H
yS−−∅ H ≤

(πyσ1 , . . . , yσn)H
τ−∅ (πyσ1 , . . . , yσi−1 , yσi+1 , . . . , yσj−1 , yσj+1 , . . . yσn)H ≤

[R-DResL]

Fig. 4. Target language

types. The algorithm projects typed processes into decorated processes, as we
explain ahead. We use polyadic channels to map a channel of type (?T.S, !T.S)
into a tuple of the form x?T.S , xS , . . . , x!T.S , xS , . . . , x→, where � def= (end, end).

The set of decorated processes H, ranged by H,K, is defined in Fig. 4 by
adorning processes of Fig. 1 with end point types S. There is a small difference,
that is that we will never use end to decorate channels, and rely on � to decorate
channels carrying void capabilities. We define free and bound variables of a
process, noted respectively fv(H) and bv(H), in terms of multisets, and count
the occurrences of a same decorated variable by means of a function occurs :
F → N , where we let F be the set of decorated variables, ranged by ϕ, λ. We
indicate tuples of prefixes with ϕ̃. We use “\” to remove all occurrences of an
entry in a multiset. For space limitations, we omit all the details and note that,
for instance, bv((εyσ, . . . , yρ)P) = {yσ, . . . , yρ} � ({yσ, . . . , yρ} � fv(P)) � bv(P)
= bv(xS(yσ, . . . , yρ).P). We assume that alpha-conversion preserve decorations,
and define the usual rules for structural congruence, but for the axiom for the
null process: (εy→)0 ≡ 0.

The main change to the α-calculus semantics [20] is the communication rule,
[R-DCom]: two processes exchange a value only if the two end points of the
channel are decorated with dual types; this is akin to the polarity-based commu-
nication [7], and can be easily implemented by pattern matching of decorations.
Substitution of a prefix ϕ with a value ρ of the same arity is noted as [ρ/ϕ]:

146 M. Giunti and A. Ravara

whenever ρ = xσ1 , . . . xσn
and ϕ̃ = ϕ1, . . . , ϕn, we write P [ρ/ϕ̃] to indicate the

process P [xσ1/ϕ1, . . . , xσn
/ϕn]. As in Fig. 1, we record the prefix ϕ on the arrow,

which is of help for practical purposes and has no semantic impact. We use η
to range over ϕ and Ψ actions, and write H → K when the label is irrelevant.
Rule [R-DResL] describes a reduction on a couple of dually decorated prefixes
that are restricted, and its continuation where the two dual end point chan-
nels have been removed from the restriction declaration. This rule is meant to
describe linear processes where a decoration S appears only once, as we will
introduce below; for this very reason, the restriction can be removed after a
synchronisation.

Sound decorations. Instead of relying on a type system to ensure safety, we
exploit the decoration of variables to characterise processes that do not reach
errors during the computation (henceforth called sound processes). This char-
acterisation leads to a static, syntax-directed checking system. As we will show
later, our algorithm converts well-typed processes into sound processes, as one
would expect, so we do not need a static type system for decorated processes.

Sound processes H such that zend ↓♦ var(H), for any z, are determined through
four syntactic conditions. First, we mimic the type system in Fig. 1 and enforce
send and receive of values of the expected types by using a coherence inference
system. The system not only checks the consistency between subject and object
types, but also guarantees balanced payload types. However, it is not equivalent
to the type system, since sequential and linear behaviour are checked separately
Second, we check that processes have valid decorations for the same variable,
i.e., types must form a chain (enforcing the sequential behaviour prescribed by
the session types). Third, we check that each channel decorated with a type S is
used exactly once. Fourth, we check that the order of the exchanges prescribed
by the decorations are preserved. We omit the formal definition of sound process
and refer the reader to the technical report [19] for all details.

The main result of this section says that sound processes do not reach errors,
which are processes containing two processes prefixed with the same variable
that do not synchronise.

Theorem 4. If H is a sound process and H ↔ K, then K is not of the form:

1. (ελ̃)(xS∈ρ≤.K1 | xR∈τ≤.K2 | K3), for some xS , xR, ρ and τ
2. (ελ̃)(xS(ϕ̃).K1 | xR(ϕ̃).K2 | K3), for some xS and xR

3. (ελ̃)(xS∈ρ≤.K1 | xR(ϕ̃).K2 | K3), for some xS , xR, ρ such that R ↓= S

In the decorated setting, the notion of resource self-holding deadlock freedom
is quite intuitive: prefixes with dual decorations must run in parallel. To this aim,
we define a notion of set3 intersection modulo dual type decorations, noted ⇓:
({xS}≈A)⇓ ({xS}≈B) = {xS , xS}≈ (A⇓B), xS ⇓xR = ∗ if R ↓= S, xS ⇓yR = ∗
if x ↓= y, and extend the definition of sequential variables as expected, e.g.
sv(H | K) = sv(H) ≈ sv(K)\(sv(H) ⇓ sv(K)).

3 The subject variables of a sound process is indeed a set.

Towards Static Deadlock Resolution in the π-Calculus 147

Definition 4. A sound process H is Resource Self-Holding Deadlock-Free (or
RSHDF) if sv(H) = ∗.
Theorem 5. If H is RSHDF and H → K then K is RSHDF .

Canonical representation In this section we show that (strongly-balanced) typed
α-calculus processes have a canonical representation in decorated α-calculus, and
that this representation both preserves the operational semantics and is sound.

First, we formalise trough function dec the projection of a α-calculus vari-
able having a strongly-balanced type T , or type bool, into a tuple of decorated
variables. This assumption is needed to ensure that all type decorations gen-
erated by the projection are sound (cf. Theorem 7). The formal definition of
strongly-balanced types and processes is in [19].

dec(y, (?T.S, !T.S)) = {y?T.S , y!T.S} � dec(y, (S, S)) dec(y, bool) = ybool

dec(y, (!T.S, ?T.S)) = {y!T.S , y?T.S} � dec(y, (S, S)) dec(y, (end, end)) = y→

Definition 5. Let σ ≥ Q with σ and Q strongly-balanced. The canonical repre-
sentation of Q w.r.t. σ , noted dec(σ,Q), is obtained by

1. dec(x(y).P) = x?T.S(dec(y, T)).dec(σ ≥, P) whenever σ (x) = (?T.S, !T.S) or
σ (x) = (!T.S, ?T.S), and σ ≥ ≥ P is a sub-tree of σ ≥ x(y).P ;

2. dec(x∈y≤.P) = x!T.S(dec(y, T)).dec(σ ≥, P) whenever σ (x) = (!T.S, ?T.S) or
σ (x) = (?T.S, !T.S), and σ ≥ ≥ P is a sub-tree of σ ≥ x∈y≤.P ;

3. dec((εx : T)P) = (ε dec(x, T))dec((σ, x : T), P).

The remaining cases are homomorphic.

Theorem 6 (Operational Correspondence). Let σ ≥ P with σ and P
strongly-balanced.

1. if P → P ≥ and σ ≥ ≥ P ≥ then dec(σ, P) → dec(σ ≥, P ≥)
2. if dec(σ, P) → H then there are σ ≥, P ≥ such that P → P ≥ and H = dec(σ ≥, P ≥)

Theorem 7 (Soundness). If σ ≥ P with σ and P strongly-balanced, then
dec(σ, P) is sound.

5 Deadlock Resolution Algorithm

We finally present the type checking and disentangling algorithm that releases
deadlocks from typed processes through a process transformation. This algo-
rithm is implemented using an inductive function that projects couples in G ×P
of Sect. 2 into decorated processes in H of Sect. 4. For clarity, the implementa-
tion of this function is presented by means of pattern analysis rules: we note that
the algorithmic rules do not rely on type and context split, which is inherently
non-deterministic.

Our procedure resolves multiple, nested deadlocks, possibly on the same
channel. It works in one linear pass (when analysing a sequential process) and it

148 M. Giunti and A. Ravara

Top-level call

sbal(Γ) Γ ; (Γ �) ≡A P
 Γ1; Δ1; H term(Γ1) term(Δ1)

Γ �A P
 H

Patterns for variables

T = (S1, S2)

Γ, x : T ≡A x : T
 Γ, x : �
T = (S1, S2)

Γ, x : T ≡A x : �
 Γ, x : T
[A-Session],[A-Top]

Patterns for output processes (excerpt)

Γ ≡A y : T
 Γ1 Γ1, x : (S, end); Δ1, x : (start, !T.S) ≡A P
 Γ2, x : �; Δ2, x : (start, R); H (∗)

Γ, x : (!T.S, !T.S); Δ1, x : ∨ ≡A x→y←.P
 Γ2, x : (end, R); Δ2, x : ∨; K
[A-OutInit-l]

Γ ≡A y : T
 Γ1 Γ1, x : (S, end); Δ1, x : (start, R) ≡A P
 Γ2; Δ2; H (∗∗)

Γ, x : (!T.S, end); Δ1, x : (start, R) ≡A x→y←.P
 Γ2; Δ2; K
[A-OutEnv-l]

Γ ≡A y : T
 Γ1 Γ1, x : (end, R); Δ1, x : (S, start) ≡A P
 Γ2; Δ2; H (∗ ∗ ∗)

Γ, x : (end, R); Δ1, x : (!T.S, start) ≡A x→y←.P
 Γ2; Δ2; K
[A-OutProj-l]

(∗) if R = !T.S then K := x!T.S→dec(y, T)←.H else

if R = end then K := [[x!T.S→dec(y, T)←.H]]false else raise fail

(∗∗) if Δ2(x) = (start, R) then K := x!T.S→dec(y, T)←.H else K := [[x!T.S→dec(y, T)←.H]]false

(∗∗∗) if Γ2(x) = (end, R) then K := x!T.S→dec(y, T)←.H else K := [[x!T.S→dec(y, T)←.H]]false

Fig. 5. Type checking function (part 1)

is compositional (with respect to parallel threads). We stress again that the class
of deadlocks we disentangle is restricted to the sequential use of both end points
of a channel in a given thread. Moreover, we consider herein only finite sessions
(actually, we enforce total consumption of a session type when type-checking).

The top-level call of the algorithm, defined in Fig. 5, has the form σ �A P ωH,
meaning that given in input a strongly-balanced environment σ (cf. sbal) and
a α-calculus process P , when the call is successful a decorated process H is
returned in output; this implies that σ ≥ P (cf. Fig. 3), as we will show. In the
rest of the presentation, let the ω symbol be the separator between the input (on
the left) and the output (on the right) of the function. Note that the strongly-
balanced hypothesis crucially permits to obtain deterministic and exhaustive
pattern matching, as each free and bound variable is matched by an init pattern
with a channel type formed by dual endpoints: balanced environments do not
enforce this invariant for bound variables. However, we may need to use back-
tracking (see below). Strongly-balanced (decoration) types also ease the program
transformation and the proof of its soundness. The top level call �A makes use of

Towards Static Deadlock Resolution in the π-Calculus 149

Patterns for input processes (excerpt)

Γ1, x : (S, end), y : T ; Δ1, x : (start, R), y : ∨ ≡A P
 Γ2, x : �, y : �; Δ2, x : (start, R), y : A; H term(A) (�)

Γ1, x : (?T.S, R); Δ1, x : ∨ ≡A x(y).P
 Γ2, x : (end, R); Δ2, x : ∨; K
[A-InInit-l]

Γ1, x : (S, end), y : T ; Δ1, x : (start, R), y : ∨ ≡A P
 Γ2, y : �; Δ2, y : A; H term(A) (��)

Γ1, x : (?T.S, end); Δ1, x : (start, R) ≡A x(y).P
 Γ2; Δ2; K
[A-InEnv-l]

Γ1, x : (end, R), y : T ; Δ1, x : (S, start), y : ∨ ≡A P
 Γ2, y : �; Δ2, y : A; H term(A) (���)

Γ1, x : (end, R); Δ1, x : (?T.S, start) ≡A x(y).P
 Γ2; Δ2; K
[A-InProj-l]

(�) if R = ?T.S then K := x?T.S(dec(y, T)).H else if R = end then Snippet else raise fail

(��) if Δ2(x) = (start, R) then K := x?T.S(dec(y, T)).H else Snippet

(���) if Γ2(x) = (end, R) then K := x?T.S(dec(y, T)).H else Snippet

Snippet if e = findValue(x!T.S , (Γ1, x : �), H) && e ∪= 0 then K := [[x?T.S(dec(y, T)).H]]e

else K := x?T.S(dec(y, T)).H

Fig. 6. Type checking function (part 2)

the function ≥A, which is the core of the type-checking and disentangling4 mech-
anism. The formal definition of function ≥A is in Figs. 5, 6, and 7, where the rules
are assumed to be executed in the given order. We introduce left rules for ≥A

where the matched type for the subject does appear in the left of a type (S1, S2);
the right rules follow the same schema. The inner call ≥A is a function with the
following signature: ≥A : G ×D×P → G ×D×H. The set D contains projections
φ mapping variables to types A def= T ≈ {(S, start), (start, S), (start, start)}; start
is a new end-point type which plays a role “dual” to end. We use � as a short for
(end, end), and ⇐ as a short for (start, start). At the bootstrap, a projection φ is
generated from a type environment σ by means of a casting function, noted � ,
which maps all types (S1, S2) in range(σ) to type (start, start), and is idempotent
over type bool. The top-level call �A is then successful whenever the inner call ≥A

returns σ and φ such that both are terminated, where we let any combination
of end and start to form a terminated type.

Projections are used in ≥A to detect whether two end points of a same session
are used sequentially, rather than in parallel. That is, in a projection a variable
starts with type (start, start) and then it can possibly have assigned a type of
the form (S, start) or (start, S), meaning that one of the two end points have
been used sequentially. If at the end of the call the variable has a type of the
form (end, start) or (start, end), we know that type S have been consumed, and we
launch our program transformation by signalling where the deadlock may occur.
While useful, projections are source of (light) non-determinism; for instance
during type checking we may have σ , φ and x such that σ (x) = (?T1.S1, end)

4 When convenient, we will say “type disentangle” to mean resolution of a (typed)
wait-for sequential deadlock.

150 M. Giunti and A. Ravara

Patterns for processes (excerpt)

Γ1; Δ1 ≡A P
 Γ2; Δ2; H Γ2; Δ2 ≡A Q
 Γ3; Δ3; K

Γ1; Δ1 ≡A P | Q
 Γ3; Δ3; H | K
[A-Par]

sbal(T) Γ1, x : T ; Δ1, x : � ≡A P
 Γ2, x : ∨; Δ2, x : A; H term(A)

Γ1; Δ1 ≡A (πx : T)P
 Γ2; Δ2; (πdec(x, T))H
[A-Res]

Γ1; Δ1 ≡A y : bool
 Γ2; Δ2 Γ2; Δ2 ≡A P
 Γ2; Δ2; H Γ2; Δ2 ≡A Q
 Γ2; Δ2; K

Γ1; Δ1 ≡A if y thenP elseQ
 Γ2; Δ2; if ybool thenH elseK
[A-If]

Γ ; Δ ≡A P
 Γ ; Δ; H

Γ ; Δ ≡A!P
 Γ ; Δ; !H
Γ ; Δ ≡A 0
 Γ ; Δ;0 [A-Repl],[A-Inact]

Fig. 7. Type checking function (part 3)

and φ(x) = (start, ?T2.S2). In this case we use backtracking, and first try to use
(?T1.S1, end), and then, if an exception is raised, try to use (start, ?T2.S2).

We can now analyse the patterns of function ≥A. The patterns for variables
have the form σ1 ≥A x : T ω σ2 where σ1, x and T are respectively a context, a
variable and a type received in input, and σ2 is a context returned in output.
The patterns for processes σ1;φ1 ≥A P1 ω σ2;φ2;H2 follow in the same figure.
For each input and output there are six rules: three matching the end point type
on the left and three matching the end point type on the right. Consider one of
the (six) rules for output, rule [A-OutInit-l]. The rule describes the pattern
matched by the identified first, second and third parameter; the body invokes
type-checking of variable y at the expected type by passing context σ taken from
the first parameter, and obtains as result σ1; a recursive call on the continuation
is then invoked by “split” the continuation type of x in the context — (S, !T.S)
— between the context and the projection. To enforce termination of sessions, we
check that the type of x in the return environment is �. To see if x is deadlocked
in P , we check the type (start, R) of x in the return projection: if R is different
from !T.S, then it has been used, and we invoke the disentangling function [[·]]
(cf. Fig. 8) passing as arguments the decorated process x!T.S∈dec(y, T)≤.H, where
H is the return process, and the boolean constant false, which, in this case, is
ignored: this second parameter will be used in the clauses for input. We can
now read the side condition (∗) and understand the result forwarded in output:
K := x!T.S∈dec(y, T)≤.H when R = !T.S, and K := [[x!T.S∈dec(y, T)≤.H]]false

when R = end. Note the failure when R ↓= !T.S, ↓= end, meaning that !T.S is
partially consumed.

Pattern [A-OutEnv-l] is matched when the environment assigns to the
output channel x a type of the form (!T.S, end). The right end point type is
equal to end since the channel has been used before (in input or output): in
fact the type of x in the projection is (start, R), which is different from ⇐. We
type check the variable and launch the call for the continuation by passing the

Towards Static Deadlock Resolution in the π-Calculus 151

Type disentangling encoding [[·]] : H × V ∅ H
(R =!T.S, IT def

= ?T.end, OT =!T.end, yT and zT defined accordingly)

[[xR→ω←.H]]ψ
def
= (πrOT , rIT , r∅ () ∗)

(xR→ω←.→→H←←x
R

r
IT

| xR(yT).rOT →yT ←)

[[xR(yU).H]]ψ
def
= (πrOT , rIT , r∅)(πmO� , mI� , m∅ () ∗∗)

((xR(zT).rOT →zT ← | rIT (yU).→→H←←xR
m

O� | xR→ψ←.mI�()))

(∗) {rOT , rIT , r∅, yT }∇fv(H) = ∧ (∗∗) {rOT , rIT , r∅, mO� , mI� , m∅, zT }∇fv(H) = ∧

Auxiliary function for processes, →→·←← : H × F × F ∅ H
→→xR(yU).H←←x

R
ϕ = ϕ(yU).H

→→φ(yU).H←←ψ
ϕ = φ(yU).→→H←←ψ

ϕ φ ∪= ψ

→→xR→ω←.H←←xR
ϕ = ϕ→←.H

→→φ→ω←.H←←ψ
ϕ = φ→ω←.→→H←←ψ

ϕ φ ∪= ψ

The remaining cases are homomorphic

Fig. 8. Transformation of decorated processes

entry x : (!T.S, end) for the environment and by forwarding the same projection
received in input. Condition (**) is similarly to condition (∗) of [A-OutInit-l]
and permit to check the shape of the return projection φ in order to launch the
code for disentangling: if φ(x) is unchanged then we return the decorated process
x!T.S∈dec(y, T)≤.H, otherwise we invoke disentangling on x!T.S∈dec(y, T)≤.H.

Pattern [A-OutProj-l] is matched when the type of the output channel x
in the projection is of the form (!T.S, start). In this case we invoke type check-
ing for the continuation (after contrasting the variable) by passing the same
environment received in input and by passing the entry x : (S, start) for the pro-
jection. Dually to [A-OutEnv-l], in (∗∗∗) we control the return environment σ
in order to launch disentangling: if σ (x) is unchanged then we forward in output
x!T.S∈dec(y, T)≤.H, otherwise we return [[x!T.S∈dec(y, T)≤.H]]false.

The rules for input, [A-InInit-l], [A-InEnv-l] and [A-InProj-l], follow
in Fig. 6 and are analogous respectively to [A-OutInit-l], [A-OutEnv-l] and
[A-OutProj-l] in Fig. 5. The main differences are:

(a) there is no variable to type-check;
(b) in the call for the continuation the variable y bound by the input is added

to the context at the payload type of the channel, and to the projection
at type ⇐; the type of y must be terminated in both the return context

152 M. Giunti and A. Ravara

and environment (cf. condition term(A)), to enforce a linear discipline for y
whenever its type is different from bool and �;

(c) function [[·]] in Fig. 8 is invoked after checking that the value ρ sent over
the sequential output corresponding to the input prefix satisfies certain
conditions (cf. Snippet). This is implemented through a linear scan func-
tion findValue (see below) which, when successful, returns a value different
from 0. When successful, we invoke function [[·]] by passing as arguments
x?T.S(dec(y, T)).H and ρ, otherwise, we return x?T.S(dec(y, T)).H.

Function findValue : F × G × H → V ≈ {0} takes in input a prefix xS ♦ F , an
environment σ ♦ G, and a decorated process H ♦ H, and scans the structure
of H to find the value ρ sent over xS . The function returns ρ whenever ρ is a
boolean value, or is equal to the tuple xσ1 , . . . , xσn

, for some x ♦ dom(σ), and 0
otherwise. See the technical report [19] for the formal definition.

In Fig. 7 we have rules for compositional processes. The interesting rule is
the one for parallel composition, [A-Par]. The first call on the left returns a
triple (σ2,φ2,H), where σ2 and φ2 are obtained by setting to end the session
end points used in P , and H is obtained by disentangling (the decoration of)
P , through function [[·]]. The second call on the right uses the return context σ2

and the projection φ2 to generate the triple (σ3,φ3,K), where K is obtained
by disentangling Q, using the same schema. Note that the deadlocks of P and
Q are fixed compositionally: we detect whether P is deadlocked before analysing
Q, and return the triple (σ3,φ3,H | K).

Program Transformation. The encoding [[·]] in Fig. 8 maps decorated input and
output processes in H into decorated processes in H, given a parameter in V.
The partial operation [[·]] is called only with prefixed arguments: when invoked,
it disentangles the first prefix encountered. To this aim, it uses the auxiliary
total function ∈∈ · ≤≤ which takes a decorated process and two prefixes and returns
a process. In the output first case of [[·]] (first line) we rely on a fresh (triple of)
forwarder(s) r to carry the result to be received by the input prefix of x, now put
in parallel; the deadlocked input occurrence of x is renamed to r by ∈∈ · ≤≤ . Note
that we ignore the τ parameter; it is useful only in the case below. The input
first case of [[·]] (second line) follows a similar idea but is more elaborate, because
of variable binding; in this case we need both a (triple of) forwarder(s) r and
a (triple of) semaphore(s) m, to preserve the order of exchanges: the call ∈∈ · ≤≤
renames the deadlocked output occurrence of x in H with m, while the output
on x is put in parallel by instantiating the tuples of values to be sent with the
actual parameter of [[·]], that is τ. As introduced, this parameter is found (before
invoking [[·]]) trough function findValue: the function searches for the occurrence
of an output prefix in a decorated process and returns the values sent in output,
when these are a boolean constant or a tuple of free prefixes.

Results. The first result guarantees that the algorithm succeeds only when type-
checking succeeds, that is when the process is accepted by the system in Fig. 3.
The construction of the proof of the theorem is similar to the one in [23], as the
process returned in output by �A is ignored.

Towards Static Deadlock Resolution in the π-Calculus 153

Theorem 8 (Typability). If σ �A P ω H then σ ≥ P .

The second result is the main one of the paper: it ensures that the process
returned by the algorithm is sound and RSHDF .

Theorem 9 (Deadlock Freedom). If σ �A P ω H then H is RSHDF .

We have a stronger result for the sequential variables of P : such variables
run in parallel at the same level in the process returned by the algorithm.

Theorem 10 (Mismatch Freedom). If σ �A P ω H and x ♦ sv(P), then for
all xs ♦ var(H): H==↔ Kxs

with Kxs
≡ (ελ̃)(xS∈ρ≤.K1 | xS(ϕ̃).K2 | K3).

6 Conclusions

We propose a new approach to tackle an old dilemma: can we do something to
assist the programmer instead of simply reject code that does not type check?
Founding on the α-calculus [1] and on a recent formulation of session types [9,10],
we devised a type-checking algorithm that, when finds a particular form of dead-
locks, which we refer to as resource self-holding deadlocks, automatically gener-
ates new type safe deadlock free code that mimics the original process intended
behaviour as described by session types. We assessed the feasibility of our app-
roach by implementing the algorithm (the code is available online, see [19]) and
by analysing several examples of self-holding deadlocks. We believe that our app-
roach is interesting since it can be used to release deadlocks in systems based on
session and linear types, e.g. [3,7,11], which are represented by the type system
of [10]. Moreover, we ensure deadlock freedom for well-typed processes not by
restricting the set of typable processes, but by “fixing” those that exhibit the
problem. If adapted to session based type systems of high-level languages, it may
be an useful tool to assist the programmer in the software developing process,
by (automatically) repairing program errors that can lead to runtime deadlocks.
Our long-term goal is deadlock resolution for untyped processes, leaving the
session type construction as a blackbox: the programmer writes the code; the
algorithm infers the types, resolves the deadlocks, and provides error-free code.

For what concerns the limitations of our approach, we note that our notion
of deadlock seems to be a specific instance of resource holding or Hold and Wait
deadlocks [17,18], which is identified by considering resources (interpreted as
α-calculus channels) blocked by the same thread; this notion is thus insensi-
tive to the presence of cycles in waiting/releasing a resource. Specifically, there
are four unmanaged classes of processes that we want to deal with: (1) we do
not tackle processes of the form a(x).x∈true≤.b(z) | a∈b≤ (which reduces in one
step to the basic example b∈true≤.b(z)), because the type of x is not balanced,
which follows from a not having a strongly-balanced type; (2) we do not tackle
processes like a(x).c(z).a∈z≤.(x∈true≤ | x(y)) | c∈b≤, because the actual object
of the output on a is bound; (3) we do not tackle branching processes of the
form a(x).ifx then a∈true≤ else a∈false≤, i.e. they do not (algorithmically) type check,

154 M. Giunti and A. Ravara

because we cannot resolve the non-determinism caused by the test; (4) we do
not tackle processes with circular deadlocks like a(x).b∈true≤ | b(y).a∈false≤. To
solve (1) and (2), we plan to enhance function findValue and collect a series of
constraints of the form x = v, (when possible) meaning that the (bound) vari-
able x should be instantiated with v, before executing the algorithm. We can
then pass as further parameter the constraints to be instantiated, e.g. (1) x = b,
and (2) z = b, and re-use the pattern rules presented in this paper.

Issue (3) could be solved by considering the α-calculus with a non-
deterministic choice operator, or by devising a communication protocol that
implements a similar behaviour (cf. [24]), to transform the blocked processes by
putting in parallel the choice a∈true≤+a∈false≤. The issue (4) seems orthogonal to
our approach, and would require techniques to detect dependencies and circu-
larities in message passing, similarly to many recent works (e.g. [12]). We leave
this for future work, as well as a behavioural theory to relate the source and the
resulting process of our tool.

Acknowledgments. This work is partially supported by the Portuguese Fundação
para a Ciência e a Tecnologia via project “CITI/FCT/UNL 2011-2012” — grant
PEst-OE/EEI/UI0527/2011 and project “Liveness, statically” — grant PTDC/EIA-
CCO/117513/2010, and by the COST Action IC1201: Behavioural Types for Reliable
Large-Scale Software Systems (BETTY). We would like to thank Adrian Francalanza
for fruitful discussions and illuminating examples, and the anonymous reviewers for
their careful reading and constructive criticisms.

References

1. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts I and II.
Inf. Comput. 100(1), 1–77 (1992)

2. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993)

3. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

4. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994)

5. Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and session types: an overview.
In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 1–28. Springer,
Heidelberg (2010)

6. Dezani-Ciancaglini, M., Drossopoulou, S., Mostrous, D., Yoshida, N.: Objects and
session types. Inf. Comput. 207(5), 595–641 (2009)

7. Gay, S.J., Hole, M.J.: Subtyping for session types in the pi calculus. Acta Infor-
matica 42(2/3), 191–225 (2005)

8. Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for struc-
tured communication-based programming revisited: two systems for higher-order
session communication. In: SecReT. ENTCS, vol. 171(4), pp. 73–93 (2007)

Towards Static Deadlock Resolution in the π-Calculus 155

9. Giunti, M., Vasconcelos, V.T.: A linear account of session types in the pi calculus.
In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 432–446.
Springer, Heidelberg (2010)

10. Giunti, M., Vasconcelos, V.T.: Linearity, session types and the pi calculus. Math.
Struct. Comput. Sci. (2013, in press)

11. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM
Trans. Program. Lang. Syst. 21(5), 914–947 (1999)

12. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–
433. Springer, Heidelberg (2008)

13. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010)

14. Caires, L., Vieira, H.T.: Conversation types. Theoret. Comput. Sci. 411(51–52),
4399–4440 (2010)

15. Wadler, P.: Propositions as sessions. In: ICFP, pp. 273–286. ACM (2012)
16. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous

global programming. In: POPL, pp. 263–274. ACM Press (2013)
17. Coffman, E.G., Elphick, M., Shoshani, A.: System deadlocks. ACM Comput. Surv.

3(2), 67–78 (1971)
18. Knapp, E.: Deadlock detection in distributed databases. ACM Comput. Surv.

19(4), 303–328 (1987)
19. Giunti, M.: (LockRes: a session type checker resolving deadlocks) http://ctp.di.

fct.unl.pt/∼mgiunti/lockres. The web page contains the SML/NJ prototype of the
algorithm presented in this paper and the technical report.

20. Milner, R.: Communicating and Mobile Systems: The Pi-Calculus. Cambridge Uni-
versity Press, New York (1999)

21. Barendregt, H.: The Lambda Calculus - Its Syntax and Semantics, 1st edn. North-
Holland, Amsterdam (1981, revised 1984)

22. Walker, D.: Substructural type systems. In: Pierce, B.C. (ed.) Advanced Topics in
Types and Programming Languages, pp. 3–44. MIT Press, Cambridge (2005)

23. Giunti, M.: Algorithmic type checking for a pi-calculus with name matching and
session types. J. Logic Algebraic Program. 82(8), 263–281 (2013)

24. Nestmann, U., Pierce, B.C.: Decoding choice encodings. Inf. Comput. 163(1), 1–59
(2000)

http://ctp.di.fct.unl.pt/~mgiunti/lockres
http://ctp.di.fct.unl.pt/~mgiunti/lockres

Information Flow

Fine-Grained and Coarse-Grained
Reactive Noninterference

Pejman Attar and Ilaria Castellani(B)

INRIA, 2004 route des Lucioles,
06902 Sophia Antipolis, France

{pejman.attar,ilaria.castellani}@inria.fr

Abstract. We study bisimilarity and the security property of noninter-
ference in a core synchronous reactive language that we name CRL.

In the synchronous reactive paradigm, programs communicate by
means of broadcast events, and their parallel execution is regulated by
the notion of instant. Within each instant, programs may emit events
and get suspended while waiting for events emitted by other programs.
They may also explicitly return the control to the scheduler, thereby
suspending themselves until the end of the instant. An instant is thus a
period of time during which all programs compute until termination or
suspension.

In CRL there is no memory, and the focus is on the control struc-
ture of programs. An asymmetric parallel operator is used to implement
a deterministic scheduling. This scheduling is fair – in the sense that it
gives its turn to each parallel component – if all components are cooper-
ative, namely if they always return the control after a finite number of
steps.

We first prove that CRL programs are indeed cooperative. This result
is based on two features of the language: the semantics of loops, which
requires them to yield the control at each iteration of their body; and a
delayed reaction to the absence of events, which ensures the monotonicity
of computations (viewed as I/O functions on event sets) during instants.
Cooperativeness is crucial as it entails the reactivity of a program to its
context, namely its capacity to input events from the context at the start
of instants, and to output events to the context at the end of instants.

We define two bisimulation equivalences on programs, formalising
respectively a fine-grained observation of programs (the observer is viewed
as a program) and a coarse-grained observation (the observer is viewed as
part of the context). As expected, the latter equivalence is more abstract
than the former, as it only compares the I/O behaviours of programs at
each instant, while the former also compares their intermediate results.

Based on these bisimulations, two properties of reactive noninter-
ference (RNI) are proposed. Both properties are time-insensitive and
termination-insensitive. Coarse-grained RNI is more abstract than fine-
grained RNI, because it views the parallel operator as commutative and
abstracts away from repeated emissions of the same event during an
instant.

Work partially supported by the french ANR 08-EMER-010 grant PARTOUT.

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 159–179, 2014.
DOI: 10.1007/978-3-319-05119-2 10, c© Springer International Publishing Switzerland 2014

160 P. Attar and I. Castellani

Finally, a type system guaranteeing both security properties is pre-
sented. Thanks partly to a design choice of CRL, which offers two sep-
arate constructs for loops and iteration, this type system allows for a
precise treatment of termination leaks, which are an issue in parallel
languages.

1 Introduction

Many systems of widespread use, such as web browsers and web applications,
may be modelled as reactive programs, that is programs that listen and react to
their environment in a continuous way, by means of events. Since the environment
may include mutually distrusting parties, such as a local user and a remote web
server, reactive programs should be able to protect the confidentiality of the
data they manipulate, by ensuring a secure information flow from the inputs
they receive from one party to the outputs they release to another party.

Secure information flow is often formalised via the notion of noninterference
(NI), expressing the absence of dependency between secret inputs and public
outputs (or more generally, between inputs of some confidentiality level to out-
puts of lower or incomparable level). Originally introduced in [12], NI has been
studied for a variety of languages, ranging from standard imperative and func-
tional languages [16,18] to process calculi based on CCS or the pi-calculus [11].
On the other hand, little attention has been paid to noninterference for reactive
programs, with the notable exception of [2,13] and [7].

We shall focus here on a particular brand of reactive programming, namely
the synchronous one, which was first embodied in the synchronous language
SL [9], an offspring of Esterel [6], and later incorporated into various program-
ming environments, such as C, Java, Caml and Scheme. In the synchronous
paradigm, the parallel execution of programs is regulated by a notion of instant.
The model of SL departs from that of Esterel in that it assumes the reaction
to the absence of an event to be postponed until the end of the instant. This
assumption helps disambiguating programs and simplifying the implementation
of the language. It is also essential to ensure the monotonicity of programs and
their reactivity to the environment.

In this work, we will not explicitly model the interaction of a reactive program
with the environment (this could be easily done but it would not bring any
further insight). Instead, we concentrate on the interaction within a reactive
program, making sure it regularly converges to a stable state (end of instant),
in which the program is ready to interact with the environment. We call this
property cooperativeness [1] or internal reactivity. In the sequel, we shall abandon
the distinction between internal reactivity (among the components of a program)
and external reactivity (towards the environment), to focus on the former.

This paper attempts to explore “secure reactive programming in a nutshell”.
To this end, we concentrate on a minimal reactive language without memory,
consisting of standard sequential operators, an asymmetric parallel operator �

(formalising a kind of coroutine parallelism under a deterministic scheduling),
together with four typical reactive constructs, which we briefly describe next.

Fine-Grained and Coarse-Grained Reactive Noninterference 161

In our Core Reactive Language CRL, programs are made of parallel compo-
nents s, s≥ – also called “threads” for simplicity in the following – combined with
the operator s � s≥ and communicating by means of broadcast events. Threads
may emit events, via a generate ev instruction, and get suspended while waiting
for events to be emitted by other threads, through an await ev instruction. They
may also explicitly yield the control to the scheduler, via a cooperate instruc-
tion, thereby suspending themselves until the end of the current instant. An
instant is therefore a period of time during which all threads compute until ter-
mination or suspension. Clearly, this is a logical rather than a physical notion of
instant, since the termination of instants is determined by the collective behav-
iour of threads rather than by some physical clock. At the end of an instant,
all threads are inactive and share the same view of emitted events. At instant
change, a preemption construct do s watching ev allows some suspended parts
of threads to be pruned off, thus implementing a time-out mechanism. Interac-
tion with the environment is limited to the start and the end of instants: the
environment injects events at the start of instants and collects them at the end.

The starting point of our work is the paper [2], which laid the basis for the
study of noninterference in a synchronous reactive language. The present work
improves on [2] in several respects, which we summarise below.

The language examined in [2] is similar to CRL but strictly more expressive,
including imperative constructs, local declarations and a memory. Indeed, our
asymmetric parallel operator � , which gives priority to its left component, is
inspired by that of [2]. Here, however, we adopt a slightly different semantics
for s � s≥, which preserves the position of threads within a program, while
the semantics of [2] swapped the positions of s and s≥ in s � s≥ in case s was
suspended, reducing it to s≥

� s. This simple change forces the scheduler in CRL
to serve the same thread at the start of each instant, thus avoiding the so-called
scheduling leaks of [2], and allowing for a more relaxed typing rule for �, which
is just the standard rule for symmetric parallel composition.

Moreover, reactivity was not a concern in [2]: as soon as they contained while
loops, programs were not guaranteed to terminate or suspend within an instant.
Hence, it only made sense to consider a fine-grained notion of noninterference. By
contrast, in CRL all programs are reactive, thanks to a clear separation between
the loop construct loop s and the iteration construct repeat exp do s, and to our
semantics for loops, which requires them to yield the control at each iteration of
their body. This makes it possible to define a notion of coarse-grained reactive
noninterference (RNI), which accounts only for the I/O behaviour of programs
within each instant. The coarse-grained RNI property has an advantage over the
fine-grained one: it exploits in a more direct way the structure of reactive com-
putations, and it recovers the flavour of big-step semantics within each instant,
offering a more abstract NI notion for reactive programs.

Finally, our type system is more permissive than that of [2], thanks to the
relaxed typing rule for parallel composition and to refined typing rules for the
conditional. Both improvements are made possible by design choices of CRL.

162 P. Attar and I. Castellani

The main contributions of this paper are: (1) the reactivity result, (2) the
definition of two bisimulation equivalences for synchronous reactive programs,
of different granularity. To our knowledge, semantic equivalences for reactive
programs have only been studied previously by Amadio [4]; (3) the proposal of
two properties of reactive noninterference, based on the above bisimulations, and
(4) the presentation of a type system ensuring both noninterference properties.

The rest of the paper is organised as follows. Sections 2 and 3 present the
syntax and the semantics of the language CRL. Section 4 is devoted to proving
reactivity of CRL programs. Section 5 introduces the two bisimulation equiva-
lences and gives some properties of them. In Sect. 6 we define our two NI proper-
ties. Section 7 presents the security type system and the proof of its soundness.
Finally, future and related work are briefly discussed in Sect. 8.

The proofs of the results are mostly omitted and may be found in [5].

2 Syntax

In this section we introduce the syntax of CRL. Let V al be a set of values,
ranged over by v, v≥, V ar a set of variables, ranged over by x, y, z, and Events a
set of events, ranged over by ev, ev≥. A fixed valuation function V : Var ∈ Val
for open terms is assumed, which however will be left implicit until Sect. 6.

Expressions. An expression exp ≤ Exp may be a basic value, a variable, or
the value returned by a function. Letting −∈exp denote a tuple of expressions
exp1, . . . , expn, the syntax of expressions is:

exp ≤ Exp ::= v | x | f(−→exp)

The evaluation of a function call f(−∈exp) is assumed to be instantaneous, and
therefore so is the evaluation of an expression exp, denoted by exp � v, which
is formally defined by the three rules:

v � v

V (x) = v

x � v

→i ≤ {1, . . . , n} . expi � vi f(v1, . . . , vn) = v

f(−∈exp) � v

Programs. We now present the syntax of CRL programs. Alongside with typi-
cal sequential operators, CRL includes four operators that are commonly found
in reactive languages, cooperate, generate ev, await ev and do s watching ev,
as well as a binary asymmetric parallel operator, denoted by �, which performs a
deterministic scheduling on its components. This operator is very close to that
used in [2] and, earlier on, in the implementation of SugarCubes [10]. However,
while in [2] and [10] each parallel component was executing as long as possi-
ble, our operator � implements a form of prioritised scheduling, where the first
component yields the control only when terminating or suspending (late cooper-
ation), while the second yields it as soon as it generates an event that unblocks
the first component (early cooperation). The syntax of programs is given by:

Fine-Grained and Coarse-Grained Reactive Noninterference 163

s ≤ Programs ::= nothing | s; s | (s � s) |
cooperate | generate ev | await ev | do s watching ev |
(loop s) | (repeat exp do s) | (if exp then s else s)

Note that our language includes two different constructs for loops and itera-
tion, in replacement of the standard while loop operator. This allows for a clear
separation between nonterminating behaviours and iterative behaviours.

3 Semantics

This section presents the operational semantics of CRL. Programs proceed
through a succession of instants, transforming sets of events. There are two
transition relations, both defined on configurations of the form ⊥s,E↔, where s is
a program and E ⊆ Events is an event environment, i.e. a set of present events.

Let us first give the general idea of these two transition relations:

1. The small-step transition relation describes the step-by-step execution of a
configuration within a an instant. The general format of a transition is:

⊥s,E↔ ∈ ⊥s≥, E≥↔
where:

– s is the program to execute and s≥ is the residual program;
– E is the starting event environment and E≥ is the resulting event envi-

ronment: E≥ coincides with E if the transition does not generate any new
event; otherwise E≥ = E ≥ {ev}, where ev is the new generated event.

2. The tick transition relation describes the passage from one instant to the
next, and applies only to suspended configurations. A transition of this kind
has always the form: ⊥s,E↔ α∈ ⊥[s]E , ∀↔
where the resulting event environment is empty and [s]E is a “reconditioning”
of program s for the next instant, possibly allowing it to resume execution at
the next instant even without the help of new events from the environment.

Before formally defining ∈ and α∈ , we introduce the suspension predicate
⊥s,E↔‡, which holds when s is suspended in the event environment E, namely
when all threads in s are waiting for events not contained in E, or have delib-
erately yielded the control for the current instant by means of a cooperate
instruction.

The rules defining the predicate ‡ and the relations ∈ and α∈ are given in
Fig. 1. The reconditioning function [s]E prepares s for the next instant: it erases
all guarding cooperate instructions, as well as all guarding do s≥ watching ev
instructions whose time-out event ev belongs to E (i.e. has been generated).

We assume programs are well-typed with respect to a standard type system
that ensures that in the commands if exp then s1 else s2 and repeat exp do s
the expression exp evaluates respectively to a boolean and to an integer n ∅ 1.

164 P. Attar and I. Castellani

←cooperate, E⊥‡ (coop)
ev /⇒ E

←await ev, E⊥‡
(waits)

←s, E⊥‡
←do s watching ev, E⊥‡

(watchs)

←s1, E⊥‡
←s1; s2, E⊥‡

(seqs)
←s1, E⊥ ‡ ←s2, E⊥‡

←s1 � s2, E⊥‡
(pars)

←s, E⊥‡
←s, E⊥ σ→ ←[s]E , ∅⊥

(tick)

Suspension Predicate and Tick Transition Rule

[cooperate]E = nothing [do s watching ev]E =

{

nothing if ev ⇒ E

do [s]E watching ev otherwise

[await ev]E = await ev [s1; s2]E = [s1]E ; s2 [s1 � s2]E = [s1]E � [s2]E

Reconditioning Function

←s1, E⊥ → ←s′
1, E

′⊥
←s1; s2, E⊥ → ←s′

1; s2, E
′⊥

(seq1) ←nothing ; s, E⊥ → ←s, E⊥ (seq2)

←s1, E⊥ → ←s′
1, E

′⊥
←s1 � s2, E⊥ → ←s′

1 � s2, E
′⊥

(par1) ←nothing � s, E⊥ → ←s, E⊥ (par2)

←s1, E⊥ ‡ ←s2, E⊥ → ←s′
2, E

′⊥
←s1 � s2, E⊥ → ←s1 � s′

2, E
′⊥

(par3)
←s, E⊥‡

←s � nothing, E⊥ → ←s, E⊥
(par4)

←generate ev, E⊥ → ←nothing, E ∪ {ev}⊥ (gen)
ev ⇒ E

←await ev, E⊥ → ←nothing, E⊥
(wait)

←s, E⊥ → ←s′, E′⊥
←do s watching ev, E⊥ → ←do s′ watching ev, E′⊥

(watch1)

←do nothing watching ev, E⊥ → ←nothing, E⊥ (watch2)

←loop s, E⊥ → ←(s � cooperate); loop s, E⊥ (loop)

exp � n

←repeat exp do s, E⊥ → ← s; . . . ; s
︸ ︷︷ ︸

n times

, E⊥
(repeat)

exp � tt

←if exp then s1 else s2, E⊥ → ←s1, E⊥
(if1)

exp � ff

←if exp then s1 else s2, E⊥ → ←s2, E⊥
(if2)

Small-step Transition Rules

Fig. 1. Operational Semantics of CRL

Fine-Grained and Coarse-Grained Reactive Noninterference 165

Let us comment on the most interesting transition rules. The execution of
a parallel program always starts with its left branch (Rule (par1)). Once the
left branch is over, the program reduces to its right branch (Rule (par2)). If
the left branch is suspended, then the right branch executes (Rule (par3)) until
unblocking the left branch. Thus early cooperation is required in the right branch.
To avoid nondeterminism, a terminated right branch can only be eliminated if
the left branch is suspended (Rule (par4)). A loop s program executes its body
cyclically: a cooperate instruction is systematically added in parallel to its body
to avoid instantaneous loops, i.e. divergence within an instant1 (Rule (loop)).
A do s watching ev program executes its body until termination or suspension
(Rule (watch1)), reducing to nothing when its body terminates (Rule (watch2)).

The small-step transition relation satisfies two simple properties.

Proposition 1 (Determinism).
Let s ≤ Programs and E ⊆ Events. Then:

s ∗= nothing ≡ either ⊥s,E↔ ‡ or ♦ ! s≥, E≥ . ⊥s,E↔ ∈ ⊥s≥, E≥↔

Proof By inspecting the suspension and transition rules, it is immediate to see
that at most one transition rule applies to each configuration ⊥s,E↔.
Proposition 2 (Event persistence).

Let s ≤ Programs and E ⊆ Events. Then: ⊥s,E↔ ∈ ⊥s≥, E≥↔ ≡ E ⊆ E≥

Proof Straightforward, since the only transition rule that changes the event envi-
ronment E is the rule for generate ev, which adds the event ev to E.

We define now the notion of instantaneous convergence, which is at the basis
of the reactivity property of CRL programs. Let us first introduce some notation.

The timed multi-step transition relation ⊥s,E↔ ≡n ⊥s≥, E≥↔ is defined by:

⊥s,E↔ ≡0 ⊥s,E↔
⊥s,E↔ ∈ ⊥s≥, E≥↔ ∧ ⊥s≥, E≥↔ ≡n ⊥s≥≥, E≥≥↔ ≡ ⊥s,E↔ ≡n+1 ⊥s≥≥, E≥≥↔

Then the multi-step transition relation ⊥s,E↔ ≡ ⊥s≥, E≥↔ is given by:

⊥s,E↔ ≡ ⊥s≥, E≥↔ ↓ ♦n . ⊥s,E↔ ≡n ⊥s≥, E≥↔
Note that the relation ≡ could also be defined as ∈α.
The immediate convergence predicate is defined by:

⊥s,E↔ ‡
� ↓ ⊥s,E↔ ‡ ⇓ s = nothing

We may now define the relations and predicates of instantaneous convergence
and instantaneous termination:
1 In general, we shall call “instantaneous” any property that holds within an instant.

166 P. Attar and I. Castellani

Definition 1 (Instantaneous convergence).

⊥s,E↔ ≈ ⊥s≥, E≥↔ if ⊥s,E↔ ≡ ⊥s≥, E≥↔ ∧ ⊥s≥, E≥↔ ‡
�

⊥s,E↔ ≈ if ♦s≥, E≥ . ⊥s,E↔ ≈ ⊥s≥, E≥↔

Definition 2 (Instantaneous termination).

⊥s,E↔ −≈ E≥ if ⊥s,E↔ ≈ ⊥nothing, E≥↔
⊥s,E↔ −≈ if ♦E≥ . ⊥s,E↔ −≈ E≥

The timed versions ≈n and−≈n of ≈ and −≈ are defined in the expected way.
The relation ⊥s,E↔ ≈ ⊥s≥, E≥↔ defines the overall effect of the program s

within an instant, starting with the set of events E. Indeed, ≈ may be viewed as
defining the big-step semantics of programs within an instant2. As an immediate
corollary of Proposition 1, the relation ≈ is a function.

In the next section we prove that every configuration ⊥s,E↔ instantaneously
converges. This property is called reactivity.

4 Reactivity

In this section we present our first main result, the reactivity of CRL programs.
In fact, we shall prove a stronger property than reactivity, namely that every
configuration ⊥s,E↔ instantaneously converges in a number of steps which is
bounded by the instantaneous size of s, denoted by size(s). The intuition for
size(s) is that the portion of s that sequentially follows a cooperate instruction
should not be taken into account, as it will not be executed in the current instant.
Moreover, if s is a loop, size(s) should cover a single iteration of its body.

To formally define the function size(s), we first introduce an auxiliary func-
tion dsize(s) (where“d” stands for “decorated”) that assigns to each program an
element of (Nat × Bool). Then size(s) will be the first projection of dsize(s).
Intuitively, if dsize(s) = (n, b), then n is an upper bound for the number of steps
that s can execute within an instant; and b is tt or ff depending on whether or
not a cooperate instruction is reached within the instant. For conciseness, we
let n≤ stand for (n, tt), n stand for (n,ff), and n→ range over {n≤, n}.

The difference between n≤ and n will essentially show when computing the
size of a sequential composition: if the decorated size of the first component has
the form n≤, then a cooperate has been met and the counting will stop; if it has
the form n, then n will be added to the decorated size of the second component.

Definition 3 (Instantaneous size).
The function size : Programs ∈ Nat is defined by:

size(s) = n if (dsize(s) = n ⇓ dsize(s) = n≤)

2 A direct definition of the big-step arrow ◦ by a set of structural rules would be slightly
more involved, as it would require calculating the output set E′ as a fixpoint.

Fine-Grained and Coarse-Grained Reactive Noninterference 167

where the function dsize : Programs ∈ (Nat × Bool) is given inductively by:

dsize(nothing) = 0 dsize(cooperate) = 0≤

dsize(generate ev) = dsize(await ev) = 1

dsize(s1; s2) =

⎧
n1

≤ if dsize(s1) = n1
≤

(1 + n1 + n2)→ if dsize(s1) = n1 ∧ dsize(s2) = n2
→

dsize(s1 � s2) =

⎪
⎨⎩

⎨

(1 + n1 + n2)≤ if dsize(s1) = n1
≤ ∧ dsize(s2) = n2

(1 + n1 + n2)≤ if dsize(s1) = n1 ∧ dsize(s2) = n2
≤

(1 + n1 + n2)→ if dsize(s1) = n1
→ ∧ dsize(s2) = n2

→

dsize(repeat exp do s) = (m + (m × n))→ if dsize(s) = n→ ∧ exp � m
dsize(loop s) = (2 + n)≤ if dsize(s) = n→

dsize(do s watching ev) = (1 + n)→ if dsize(s) = n→

dsize(if exp then s1 else s2) =

⎪
⎨⎩

⎨

(1 + max{n1, n2})≤, if dsize(si) = ni
≤,

(1 + max{n1, n2}), if for i ∗= j

dsize(si) = ni ∧ dsize(sj) = nj
→

The following lemma establishes that size(s) decreases at each step of a
small-step execution:

Lemma 1 (Size reduction within an instant).

→s→E (⊥s,E↔ ∈ ⊥s≥, E≥↔ ≡ size(s≥) < size(s))

The proof of this result is not entirely straightforward because of the use of the
decorated size dsize in the definition of size(s). The proof may be found in [5].

We are now ready to prove our main result, namely that every program s
instantaneously converges in a number of steps that is bounded by size(s).

Theorem 1 (Reactivity). →s,→E (♦n ⇐ size(s) ⊥s,E↔ ≈n)

The proof proceeds by simultaneous induction on the structure and on the size
of s. Induction on the size is needed for the case s = s1 � s2. The detailed proof
may be found in [5].

5 Fine-Grained and Coarse-Grained Bisimilarity

We now introduce two bisimulation equivalences (aka bisimilarities) on pro-
grams, which differ for the granularity of the underlying notion of observa-
tion. The first bisimulation formalises a fine-grained observation of programs:
the observer is viewed as a program, which is able to interact with the observed
program at any point of its execution. The second reflects a coarse-grained obser-
vation of programs: here the observer is viewed as part of the environment, which
interacts with the observed program only at the start and the end of instants.

168 P. Attar and I. Castellani

Let us start with an informal description of the two bisimilarities:

1. Fine-grained bisimilarity ≈ fg . In the bisimulation game, each small step must
be simulated by a (possibly empty) sequence of small steps, and each instant
change must be simulated either by an instant change, in case the continuation
is observable (in the sense that it affects the event environment), or by an
unobservable behaviour otherwise.

2. Coarse-grained bisimilarity ≈ cg . Here, each converging sequence of steps must
be simulated by a converging sequence of steps, at each instant. For instant
changes, the requirement is the same as for fine-grained bisimulation.

As may be expected, the latter equivalence is more abstract than the former,
as it only compares the I/O behaviours of programs (as functions on sets of
events) at each instant, while the former also compares their intermediate results.

Let us move now to the formal definitions of the equivalences ≈ fg and ≈ cg .
We first extend the reconditioning function to the program nothing as follows:

Notation. �s�E
def=

⎧
[s]E if ⊥s,E↔‡
s if s = nothing

Definition 4 (Fine-grained bisimulation).
A symmetric relation R on programs is a fg-bisimulation if s1 R s2 implies, for
any E ⊆ Events:

1) ⊥s1, E↔ ∈ ⊥s≥
1, E

≥↔ ≡ ♦ s≥
2 . (⊥s2, E↔ ≡ ⊥s≥

2, E
≥↔ ∧ s≥

1 R s≥
2)

2) ⊥s1, E↔‡ ≡ ♦ s≥
2 . (⊥s2, E↔ ≈ ⊥s≥

2, E↔ ∧ �s1�E R �s≥
2�E)

Then s1, s2 are fg-bisimilar, s1 ≈ fg s2, if s1 R s2 for some fg-bisimulation R.

The bisimilarity ≈ fg is weak, in the terminology of process calculi, since it allows
a single small step to be simulated by a (possibly empty) sequence of small steps.
In the terminology of language-based security, an equivalence that abstracts away
from the number of steps, thus allowing internal moves to be ignored, is called
time-insensitive. Typically we have:

nothing ; generate ev ≈ fg generate ev

if tt then s1 else s2 ≈ fg s1

The equivalence ≈ fg is also termination-insensitive, as it cannot distinguish
proper termination from suspension nor from internal divergence (recall that no
divergence is possible within an instant and thus the execution of a diverging
program always spans over an infinity of instants). For instance we have:

nothing ≈ fg cooperate ≈ fg loop nothing

Indeed, for any E the suspended behaviour ⊥cooperate, E↔‡ of the middle pro-
gram can be simulated by the empty computation ⊥nothing, E↔ ≈ ⊥nothing, E↔
of the left-hand program and by the two-step computation ⊥loop nothing, E↔ ∈

Fine-Grained and Coarse-Grained Reactive Noninterference 169

⊥(nothing � cooperate) ; loop nothing, E↔ ∈ ⊥cooperate ; loop nothing, E↔‡
of the right-hand program, since �cooperate�E = nothing = �nothing�E , and
�cooperate ; loop nothing�E = loop nothing.

The last example shows that, while it weakly preserves small-step transitions,
≈ fg does not preserve tick transitions. On the other hand, it detects the instant
in which events are generated. In other words, it is sensitive to the clock-stamp
of events. For instance, we have:

nothing ; generate ev ∗≈ fg cooperate ; generate ev

because in the left-hand program ev is generated in the first instant, while in
the right-hand program it is generated in the second instant. Incidentally, this
example shows that ≈ fg is not preserved by sequential composition (as was to
be expected given that ≈ fg is termination-insensitive).

On the other hand, we conjecture that ≈ fg is compositional, that is, preserved
by parallel composition, because in the bisimulation game the quantification on
the event environment is renewed at each step, thus mimicking the generation
of events by a parallel component.

Finally, ≈ fg is sensitive to the order of generation of events and to repeated
emissions of the same event (“stuttering”). Typical examples are:

(generate ev1 � generate ev2) ∗≈ fg (generate ev2 � generate ev1)

generate ev ∗≈ fg (generate ev ; generate ev)

In the last example, note that after generating the first event ev the right-hand
program may be launched again in the event environment E = ∀, producing
once more E≥ = {ev}. This cannot be mimicked by the left-hand program.

Definition 5 (Coarse-grained bisimulation).
A symmetric relation R on programs is a cg-bisimulation if s1 R s2 implies, for
any E ⊆ Events:

⊥s1, E↔ ≈ ⊥s≥
1, E

≥↔ ≡ ♦ s≥
2 . (⊥s2, E↔ ≈ ⊥s≥

2, E
≥↔ ∧ �s≥

1�E′ R �s≥
2�E′)

Then s1, s2 are cg-bisimilar, s1 ≈ cg s2, if s1 R s2 for some cg-bisimulation R.

The bisimilarity ≈ cg compares the overall effect of two programs at every instant.
Therefore, one may argue that ≈ cg makes full sense when coupled with reactivity.
Indeed, if ≈ cg were applied to programs that diverge within the first instant (or
to programs that are bisimilar for the first k instants and diverge in the following
instant), it would trivially equate all of them. In the absence of reactivity, it
would seem preferable to focus on a fine-grained bisimilarity such as ≈ fg , which
is able to detect intermediate results of instantaneously diverging computations.

Like ≈ fg , the bisimilarity ≈ cg is both time-insensitive and termination-
insensitive. Indeed, as will be established by Theorem 2, ≈ fg implies ≈ cg . More-
over, ≈ cg is generation-order-insensitive and stuttering-insensitive. Typically:

170 P. Attar and I. Castellani

(generate ev1 � generate ev2) ≈ cg (generate ev2 � generate ev1)

generate ev ≈ cg (generate ev ; generate ev)

More generally, we can show that the equivalence ≈ cg views the left-parallel
composition � as a commutative operator:

Proposition 3 (Commutativity of � up to ≈ cg).

→s1, s2 . s1 � s2 ≈ cg s2 � s1

On the other hand, � is associative modulo both equivalences ≈ fg and ≈ cg .

Proposition 4 (Associativity of � up to ≈ fg and ≈ cg).

→s1, s2, s3 . s1 � (s2 � s3)
≈ fg

≈ cg (s1 � s2) � s3

Let us recall that the asymmetric parallel operator � of [2] was not associative
up to fine-grained semantics (a simple example was given in [2]).

We show now that ≈ fg is strictly included in ≈ cg (the strictness of the
inclusion being witnessed by the examples given above):

Theorem 2 (Relation between the bisimilarities).

≈ fg ↑ ≈ cg

Proof To prove ≈ fg ⊆ ≈ cg , it is enough to show that ≈ fg is a cg-bisimulation.
Let s1 ≈ fg s2. Suppose that ⊥s1, E↔ ≈ ⊥s≥

1, E
≥↔. This means that there exists

n ∅ 0 such that:

⊥s1, E↔ = ⊥s01, E0↔∈ ⊥s11, E1↔ ∈ · · · ∈ ⊥sn
1 , En↔ = ⊥s≥

1, E
≥↔ ‡

�

Since s1 ≈ fg s2, by Clauses 1 and 2 of Definition 4 we have correspondingly:

⊥s2, E↔ = ⊥s02, E0↔ ≡ ⊥s12, E1↔ ≡ · · · ≡ ⊥sn
2 , En↔ ≈ ⊥s≥

2, E
≥↔ (∗)

where si
1 ≈ fg si

2 for every i < n and �s≥
1�E′ ≈ fg �s≥

2�E′ . Then we may conclude
since (∗) can be rewritten as ⊥s2, E↔ ≈ ⊥s≥

2, E
≥↔.

Coarse-grained bisimilarity is very close to the semantic equivalence proposed by
Amadio in [4] for a slightly different reactive language, equipped with a classical
nondeterministic parallel operator. By contrast, the noninterference notion of [2]
was based on a fine-grained bisimilarity (although bisimilarity was not explicitly
introduced in [2], it was de facto used to define noninterference) which, however,
was stronger than ≈ fg , since it acted as a strong bisimulation on programs with
an observable behaviour (i.e. affecting the event environment).

Fine-Grained and Coarse-Grained Reactive Noninterference 171

As argued previously, coarse-grained bisimilarity is a natural equivalence to
adopt when reactivity is guaranteed. It allows one to recover the flavour of
big-step semantics within instants. On the other hand, fine-grained bisimilarity
seems a better choice when reactivity is not granted. Note that reactivity was
not a concern in either [2] or [4]. Nevertheless, it had been thoroughly studied
in previous work by Amadio et al. [3].

Finally, it should be noted that, since our left-parallel composition operator
� is deterministic, we could as well have used trace-based equivalences rather
than bisimulation-based ones. However, defining traces is not entirely obvious for
computations proceeding through instants, as it requires annotating with clock-
stamps the events or event sets that compose a trace (depending on whether
the trace is fine-grained or coarse-grained). Moreover, bisimulation provides a
convenient means for defining noninterference in our concurrent setting, allowing
the notion of clock-stamp to remain implicit. Lastly, as we aim to extend our
study to a fully-fledged distributed reactive language, including a notion of site
and asynchronous parallelism between sites, for which determinism would not
hold anymore, we chose to adopt bisimulation-based equivalences from the start.

This concludes our discussion on semantic equivalences. We turn now to the
definition of noninterference, which is grounded on that of bisimulation.

6 Security Property

In this section we define two noninterference properties for programs, which
are based on the two bisimilarities introduced in Sect. 5. As usual when dealing
with secure information flow, we assume a finite lattice (S,⇐) of security levels,
ranged over by ε, σ, Σ. We denote by � and � the join and meet operations on
the lattice, and by ⊥ and � its minimal and maximal elements.

In CRL, the objects that are assigned a security level are events and variables.
An observer is identified with a downward-closed set of security levels (for short,
a dc-set), i.e. a set L ⊆ S satisfying the property: (ε ≤ L ∧ ε ≥ ⇐ ε) ≡ ε ≥ ≤ L.

A type environment Ψ is a mapping from variables and events to their types,
which are just security levels ε, σ. Given a dc-set L, a type environment Ψ and
an event environment E, the subset of E to which Ψ assigns security levels in L
is called the L-part of E under Ψ . Similarly, if V : Var ∈ Val is a valuation, the
subset of V whose domain is given levels in L by Ψ is the L-part of V under Ψ .

Two event environments E1, E2 or two valuations V1, V2 are =ω
L-equal, or

indistinguishable by a L-observer, if their L-parts under Ψ coincide:

Definition 6 (ΨL-equality of event environments and valuations).
Let L ⊆ S be a dc-set, Ψ a type environment and V a valuation. Define:

E1 =ω
L E2 if → ev ≤ Events (Ψ (ev) ≤ L ≡ (ev ≤ E1 ↓ ev ≤ E2))

V1 =ω
L V2 if →x ≤Var (Ψ (x) ≤ L ≡ V1(x) = V2(x))

Let ∈V ,≡V ,≈V denote our various semantic arrows under the valuation V .
Then we may define the indistinguishability of two programs by a fine-grained or

172 P. Attar and I. Castellani

coarse-grained L-observer, for a given Ψ , by means of the following two notions
of ΨL-bisimilarity:

Definition 7 (Fine-grained ΨL-bisimilarity).
A relation R on programs is a fg-ΨL-V1V2-bisimulation if s1 R s2 implies, for
any E1, E2 such that E1 =ω

L E2:

(1) ⊥s1, E1↔ ∈V1⊥s≥
1, E

≥
1↔ ≡ ♦ s≥

2, E
≥
2 . (⊥s2, E2↔ ≡V2⊥s≥

2, E
≥
2↔ ∧ E≥

1 =ω
L E≥

2 ∧ s≥
1 R s≥

2)
(2) ⊥s1, E1↔‡ ≡ ♦ s≥

2, E
≥
2 . (⊥s2, E2↔ ≈V2 ⊥s≥

2, E
≥
2↔ ∧ E1 =ω

L E≥
2 ∧ �s1�E1 R �s≥

2�E′
2
)

(3) and (4) : Symmetric to (1) and (2) for ⊥s2, E2↔ under valuation V2.

Then programs s1, s2 are fg-ΨL-bisimilar, s1 ≈ fg
ωL s2, if for any V1, V2 such that

V1 =ω
L V2, s1 R s2 for some fg-ΨL-V1V2-bisimulation R.

The fg-ΨL-bisimilarity weakly preserves small-step transitions and convergence,
while maintaining the ΨL-equality on event environments. Note that, while in
the definition of fg-bisimilarity it was possible to leave the valuation implicit, we
need to make it explicit in the definition of fg-ΨL-bisimilarity, as variables have
security levels and are allowed to have different values if their level is not in L.
The reason why a fg-ΨL-V1V2-bisimulation is parameterised on two valuations
V1 and V2, and the quantification on valuations in ≈ fg

ωL is only performed at
the beginning of the bisimulation game, rather than at each step as for event
environments, is that programs have no means to change the valuation. In a more
expressive language where the valuation could change, it would be necessary to
include the valuation in the environment that is quantified at each step.

Definition 8 (Coarse-grained ΨL-bisimilarity).
A relation R on programs is a cg-ΨL-V1V2-bisimulation if s1 R s2 implies, for
any E1, E2 such that E1 =ω

L E2:
(1) ⊥s1, E1↔ ≈V1 ⊥s≥

1, E
≥
1↔ ≡ ♦ s≥

2, E
≥
2 . (⊥s2, E2↔ ≈V2 ⊥s≥

2, E
≥
2↔ ∧ E≥

1 =ω
L E≥

2 ∧
�s≥

1�E′
1

R �s≥
2�E′

2
)

(2) Symmetric to 1) for ⊥s2, E2↔ under valuation V2.
Two programs s1, s2 are cg-ΨL-bisimilar, s1 ≈ cg

ωL s2, if for any V1, V2 such that
V1 =ω

L V2, s1 R s2 for some cg-ΨL-V1V2-bisimulation R.

Our reactive noninterference (RNI) properties are now defined as follows:

Definition 9 (Fine-grained and Coarse-grained RNI).
A program s is fg-secure in Ψ if s ≈ fg

ωL s for every dc-set L.
A program s is cg-secure in Ψ if s ≈ cg

ωL s for every dc-set L.

The following example, where the superscripts indicate the security levels of
variables and events, illustrates the difference between fg-security and cg-security.

Example 1. The following program is cg-secure but not fg-secure:

s = if x↑ = 0 then generate ev ∈
1 � generate ev ∈

2

else generate ev ∈
2 � generate ev ∈

1

Fine-Grained and Coarse-Grained Reactive Noninterference 173

If we replace the second branch of s by generate ev ∈
1 ; generate ev ∈

2 , then we
obtain a program s≥ that is both fg-secure and cg-secure.

In general, from all the equivalences/inequivalences in page 11 we may obtain
secure/insecure programs for the corresponding RNI property by plugging the
two equivalent/inequivalent programs in the branches of a high conditional.

As expected, fine-grained security is stronger than coarse-grained security:

Theorem 3 (Relation between the RNI properties).

Lets ≤ Programs. If s is fg−secure then s is cg−secure.

Proof. The proof consists in showing that for any Ψ and L, we have ≈ fg
ωL ⊆ ≈ cg

ωL.
To this end, it is enough to show that for any pair of valuations V1 and V2, any
fg-ΨL-V1V2-bisimulation R is also a cg-ΨL-V1V2-bisimulation. The reasoning
closely follows that of Theorem 2 and is therefore omitted.

We conclude this section with an informal discussion about scheduling leaks.
We speak of scheduling leak when the position of the scheduler at the start of an
instant may depend on secrets tested in previous instants. We have mentioned
already that, unlike the “swapping” operator � of [2], our operator � preserves
the spatial structure of programs. As a consequence, the same parallel component
is scheduled at the beginning of each instant, and the position of the scheduler
is independent of any previous test. Thus the scheduling leaks arising with the
operator � , which implied a severe constraint in the type system of [2] (the
addition of the condition σi ⇐ εj in Rule (Par)), cannot occur anymore with
� . In particular, it may be shown that the scheduling leak example given in [2]
does not arise if we replace � by � . This point is explained in detail in [5].

7 Type System

We present now our security type system for CRL, which is based on those
introduced in [8] and [17] for a parallel while language and already adapted to
a reactive language in [2]. The originality of these type systems is that they
associate pairs (ε, σ) of security levels with programs, where ε is a lower bound
on the level of “writes” and σ is an upper bound on the level of “reads”. This
allows the level of reads to be recorded, and then to be used to constrain the level
of writes in the remainder of the program. In this way, it is possible to obtain a
more precise treatment of termination leaks3 than in standard type systems.

Recall that a type environment Ψ is a mapping from variables and events
to security levels ε, σ. Moreover, Ψ associates a type of the form −∈ε ∈ ε to
functions, where −∈ε is a tuple of types ε1, . . . , εn. Type judgements for expressions
and programs have the form Ψ ⊂ exp : ε and Ψ ⊂ s : (ε, σ) respectively.
3 Leaks due to different termination behaviours in the branches of a conditional. In

classical parallel while languages, termination leaks may also arise in while loops.
This is not possible in CRL, given the simple form of the loop construct. On the
other hand, new termination leaks may originate from the possibility of suspension.

174 P. Attar and I. Castellani

The intuition for Ψ ⊂ exp : ε is that ε is an upper bound on the levels of
variables occurring in exp. According to this intuition, subtyping for expressions
is covariant. The intuition for Ψ ⊂ s : (ε, σ) is that ε is a lower bound on the
levels of events generated in s (the “writes”of s), and σ is an upper bound on the
levels of events awaited or watched in s and of variables tested in s (the “reads”
or guards of s, formally defined in Definition 11). Accordingly, subtyping for
programs is contravariant in its first component, and covariant in the second.

The typing rules for expressions and programs are presented in Fig. 2. The
rules that increase the guard type are (Await), (Watching), (Repeat) and
(Cond1), and those that check it against the write type of the continuation
are (Seq), (Repeat) and (Loop). Note that there are two more rules for the
conditional, factoring out the cases where either both branches terminate in
one instant or both branches are infinite: indeed, in these cases no termination
leaks can arise and thus it is not necessary to increase the guard level. In Rule
(Cond2), FIN denotes the set of programs terminating in one instant, namely
those built without using the constructs await ev, cooperate and loop. In Rule
(Cond3), INF denotes the set of infinite or nonterminating programs, defined
inductively as follows4:

– loop s ≤ INF ;
– s ≤ INF ≡ repeat exp do s ≤ INF ;
– s1 ≤ INF ⇓ s2 ≤ INF ≡ s1; s2 ≤ INF ∧ s1 � s2 ≤ INF
– s1 ≤ INF ∧ s2 ≤ INF ≡ if exp then s1 else s2 ≤ INF

Note that FIN ≥ INF ↑ Programs. Examples of programs that are nei-
ther in FIN nor in INF are: await ev, if exp then nothing else (loop s), and
do (loop s) watching ev.

Definition 10 (Safe conditionals).
A conditional if exp then s1 else s2 is safe if s1, s2 ≤ FIN or s1, s2 ≤ INF .

The reason for calling such conditionals “safe” is that they cannot introduce
termination leaks, since their two branches have the same termination behaviour.

Note that the two sets FIN and INF only capture two specific termination
behaviours of CRL programs, namely termination in one instant and nontermina-
tion. We could have refined further this classification of termination behaviours.
Indeed, while only two termination behaviours are possible within each instant,
due to reactivity (namely, proper termination and suspension), across instants
there is an infinity of possible termination behaviours for programs: termination
in a finite number k of instants, for any possible k, and nontermination. In other
words, we could have defined a set FINk for each k and replaced Rule (Cond2)
by a Rule Schema (Condk). The idea would remain the same: conditionals with
uniform termination behaviours need not raise their guard level. For simplicity,
we chose to focus on FIN and INF , leaving the finer analysis for future work.

We now prove that typability implies security via the classical steps:
4 Recall that in a repeat exp do s program, exp is supposed to evaluate to some n ∧ 1.

Fine-Grained and Coarse-Grained Reactive Noninterference 175

(Val) ψ ≡ v : ⊥ (Var)
ψ (x) = θ

ψ ≡ x : θ
(SubExp)

ψ ≡ exp : τ, τ ≤ τ′

ψ ≡ exp : τ′

ψ ≡ −→exp : −→θ , ψ (f) = −→θ → θ, ∗i . θi ≤ θ

ψ ≡ f(−→exp) : θ

Typing rules for expressions

(Nothing) ψ ≡ nothing : (∨, ⊥) (Cooperate) ψ ≡ cooperate : (∨, ⊥)

(Seq)
ψ ≡ s1 : (θ1, τ1), ψ ≡ s2 : (θ2, τ2), τ1 ≤ θ2

ψ ≡ s1 ; s2 : (θ1 ∇ θ2, τ1 � τ2)

(Par)
ψ ≡ s1 : (θ1, τ1), ψ ≡ s2 : (θ2, τ2)

ψ ≡ s1 � s2 : (θ1 ∇ θ2, τ1 � τ2)

(Generate)
ψ (ev) = θ

ψ ≡ generate ev : (θ, ⊥)
(Await)

ψ (ev) = τ

ψ ≡ await ev : (∨, τ)

(Watching)
ψ (ev) = α, ψ ≡ s : (θ, τ), α ≤ θ

ψ ≡ do s watching ev : (θ, α � τ)

(Loop)
ψ ≡ s : (θ, τ), τ ≤ θ

ψ ≡ loop s : (θ, τ)
(Repeat)

ψ ≡ exp : α, ψ ≡ s : (θ, τ), α � τ ≤ θ

ψ ≡ repeat exp do s : (θ, α � τ)

(Cond1)
ψ ≡ exp : α, ψ ≡ si : (θ, τ), i = 1, 2, α ≤ θ

ψ ≡ if exp then s1 else s2 : (θ, α � τ)

(Cond2)
ψ ≡ exp : α, (ψ ≡ si : (θ, τ) ∧ si ⇒ FIN, i = 1, 2), α ≤ θ

ψ ≡ if exp then s1 else s2 : (θ, τ)

(Cond3)
ψ ≡ exp : α, (ψ ≡ si : (θ, τ) ∧ si ⇒ INF, i = 1, 2), α ≤ θ

ψ ≡ if exp then s1 else s2 : (θ, τ)

(SubProg)
ψ ≡ s : (θ, τ), θ ′ ≤ θ, τ ≤ τ′

ψ ≡ s : (θ ′, τ′)

Typing rules for programs

Fig. 2. Security type system

176 P. Attar and I. Castellani

Lemma 2 (Subject Reduction).
Let Ψ ⊂ s : (ε, σ). Then ⊥s,E↔ ∈ ⊥s≥, E≥↔ implies Ψ ⊂ s≥ : (ε, σ), and ⊥s,E↔‡
implies Ψ ⊂ [s]E : (ε, σ).

Definition 11 (Guards and Generated Events).
(1) For any s, Guards(s) is the union of the set of events ev such that s contains
an await ev or a do s≥ watching ev instruction (for some s≥), together with the
set of variables x that occur in s as argument of a function or in the control
expression exp of an instruction repeat exp do s≥ or of an unsafe conditional
if exp then s1 else s2 in s.
(2) For any s, Gen(s) is the set of events ev such that generate ev occurs in s.

The following Lemma establishes that if Ψ ⊂ s : (ε, σ), then ε is a lower
bound on the levels of events in Gen(s) and σ is an upper bound on the levels of
events and variables in Guards(s).

Lemma 3 (Guard Safety and Confinement).

1. If Ψ ⊂ s : (ε, σ) then Ψ (g) ⇐ σ for every g ≤ Guards(s);
2. If Ψ ⊂ s : (ε, σ) then ε ⇐ Ψ (ev) for every ev ≤ Gen(s).

We now state the main result of this section, namely the soundness of the type
system for fine-grained reactive noninterference (and thus, by Theorem 3, also
for coarse-grained reactive noninterference). The proof involves some additional
definitions and preliminary results, which are not given here but reported in [5].

Theorem 4 (Typability ≡ Fine-grained RNI).
Let s ≤ Programs. If s is typable in Ψ then s is fg-secure in Ψ .

Note that programs s, s≥ of Example 1 are not typable (although cg-secure).

Example 2. The following programs are not typable and not secure, for any of
the two security properties:

await ev↑
1 ; generate ev∈

2

loop (generate ev∈
2 ; await ev↑

1)
repeat x↑ do generate ev∈

(repeat x↑ do cooperate) ; generate ev∈

do (cooperate ; generate ev∈
2) watching ev↑

1

The insecure flows in the first two programs are termination leaks, due to the
possibility of suspension. The second program illustrates the need for the condi-
tion σ ⇐ ε in Rule (Loop) (to produce a similar example with repeat we need
at least three security levels). The fourth program shows why the guard level of
repeat should be raised in Rule (Repeat).

We conclude with some examples illustrating the use of the conditional rules.

Fine-Grained and Coarse-Grained Reactive Noninterference 177

Example 3. The following programs si and s are all typable, with the given type:

s1 = if (x↑ = 0) then await ev↑
1 else cooperate type (�,�)

s2 = if (x↑ = 0) then nothing else generate ev↑ type (�,⊥)
s3 = if (x↑ = 0) then nothing else (loop nothing) type (�,�)
s4 = if (x↑ = 0) then (loop nothing) else (loop cooperate) type (�,⊥)
s = generate ev ∈

2 type (⊥,⊥)

Indeed, for all programs si the first component of the type (the write type) must
be � because each of the Rules (Cond1) (Cond2) and (Cond3) prevents a
“level drop” from the tested expression to the branches of the conditional, as
in classical security type systems. On the other hand, the second component
of the type (the guard type) will be ⊥ for the safe conditionals s2 and s4,
typed respectively using Rules (Cond2) and (Cond3), and � for the unsafe
conditionals s1 and s3, typed using Rule (Cond1).
Then s2; s and s4; s are typable but not s1; s nor s3; s.

8 Conclusion and Related Work

We have studied a core reactive language CRL and established a reactivity result
for it, similar to those of [3,10] but based on different design choices. We also
provided a syntactic bound for the length of the converging sequences.

We then proposed two RNI properties for the language, together with a
security type system ensuring them. Our RNI properties rely on two bisimulation
equivalences of different granularity. One of them, coarse-grained bisimilarity, is
reminiscent of the semantic equivalence studied by Amadio in [4], which however
was based on trace semantics. Our RNI properties also bear some analogy with
the notions of reactive noninterference proposed in [7], and particularly with
the termination-insensitive notion of ID-security (see also [15]), although the
underlying assumptions of the model are quite different.

The model of cooperative threads of [1] is close in spirit to the model of CRL,
but it is not concerned with synchronous parallelism. We should stress here that,
to be appropriate for the study of a global computing setting, our synchronous
model is intended to be part of a more general GALS model (Globally Asyn-
chronous, Locally Synchronous), where various “synchronous areas” coexist and
evolve in parallel, interacting with each other in an asynchronous way.

The idea of “slowing down” loops by forcing them to yield the control at
each iteration, which is crucial for our reactivity result, was already used in [10]
for a similar purpose. A similar instrumentation of loops was proposed in [14].
However, while in our work and in [10] a cooperate instruction is added in
parallel with each iteration of the body of the loop, in [14] it is added after each
iteration of the body. In a language that allows a parallel program to be followed
in sequence by another program (which is not the case in [14]), our solution is
more efficient in that it avoids introducing an additional suspension in case the
body of the loop already contains one.

178 P. Attar and I. Castellani

As regards future work, we expect some of our results - determinism, reac-
tivity - to carry over smoothly to CRL extended with memory. However, some
other properties like the commutativity of � will not hold anymore in such setting,
at least if the memory is freely shared among threads. Nevertheless, our bisim-
ilarities and security properties would continue to make sense in such extended
language. In the longer run, we plan to extend our study to a fully-fledged dis-
tributed reactive language, where programs are executed on different sites and
may migrate from one site to the other. In this setting, execution would still be
synchronous and reactive within each site (each site would be a “synchronous
area” within a GALS model), but it would be asynchronous among different
sites. A migrating thread would be integrated in the destination site only when
this would become ready to react to its environment (whence the importance
of local reactivity in each site). In a more expressive language with I/O block-
ing operations or other forms of abnormal termination, the enforcement of the
reactivity property as well as the treatment of termination channels is likely
to become more complex (although the time-out mechanism provided by the
watching statement could be of some help here).

Acknowledgments. We thank Frédéric Boussinot for insightful discussions and feed-
back, and Bernard Serpette for useful comments on a previous version of this paper.
We also thank the anonymous referees for helpful remarks and suggestions.

References

1. Abadi, M., Plotkin, G.: A model of cooperative threads. In: Proceedings POPL
2009, pp. 29–40. ACM Press (2009)

2. Almeida Matos, A., Boudol, G., Castellani, I.: Typing noninterference for reactive
programs. J. Logic Algebraic Program. 72(2), 124–156 (2007)

3. Amadio, R.M., Dabrowski, F.: Feasible reactivity for synchronous cooperative
threads. Electron. Notes Theoret. Comput. Sci. 154(3), 33–43 (2006)

4. Amadio, R.M.: The SL synchronous language, revisited. J. Logic Algebraic Pro-
gram. 70(2), 121–150 (2007)

5. Attar, P., Castellani, I.: Fine-grained and coarse-grained reactive noninterference.
INRIA Research Report (2013)

6. Berry, G., Gonthier, G.: The ESTEREL synchronous programming language:
design, semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

7. Bohannon, A., Pierce, B. C., Sjöberg, V., Weirich, S., Zdancewic, S.: Reactive
noninterference. In: Proceedings of the 16th ACM conference on Computer and
communications security, pp. 79–90. ACM (2009)

8. Boudol, G., Castellani, I.: Noninterference for concurrent programs and thread
systems. Theor. Comput. Sci. 281(1), 109–130 (2002)

9. Boussinot, F., de Simone, R.: The SL synchronous language. Soft. Eng. 22(4),
256–266 (1996)

10. Boussinot, F., Susini, J.F.: The SugarCubes tool box: a reactive Java framework.
Sof. Pract. Experience 28(14), 1531–1550 (1998)

11. Focardi, R., Gorrieri, R.: Classification of security properties. In: Focardi, R., Gor-
rieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 331–396. Springer, Heidelberg
(2001)

Fine-Grained and Coarse-Grained Reactive Noninterference 179

12. Goguen, J. A., Meseguer, J.: Security policies and security models. In: Proceedings
1982 IEEE Symposium on Security and Privacy, pp. 11–20 (1982)

13. Goguen, J. A., Meseguer, J.: Unwinding and inference control. In: Proceedings
1984 IEEE Symposium on Security and Privacy (1984)

14. Russo, A., Sabelfeld, A.: Security for multithreaded programs under cooperative
scheduling. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp.
474–480. Springer, Heidelberg (2007)

15. Russo, A., Zanarini, D., Jaskelioff, M.: Precise enforcement of confidentiality for
reactive systems. In: Proceedings of the 26th IEEE Computer Security Foundations
Symposium. IEEE (2013)

16. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

17. Smith, G.: A new type system for secure information flow. In: Proceedings of the
14th IEEE Computer Security Foundations Workshop. IEEE (2001)

18. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis.
J. Comput. Secur. 4(3), 167–187 (1996)

Information Flow Analysis for Valued-Indexed
Data Security Compartments

Luísa Lourenço(B) and Luís Caires

CITI e Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, Lisboa, Portugal

kikentai@gmail.com, luis.caires@fct.unl.pt

Abstract. Data-intensive applications as popularised by cloud comput-
ing raise many security challenges, due to the large number of remote
users involved and multi-tenancy. Frequently, the security compartment
associated to data stored in shared containers, such as database tables,
is not determined by the static structure of the database schema, but
depends on runtime data values, as required to ensure so-called “row-
level” security. In this paper, we investigate a programming language app-
roach to these issues, based on a π-calculus extended with data manip-
ulation primitives. We develop a type-based information flow analysis
introducing a notion of value-indexed security labels, representing value-
indexed security levels, or compartments. Our results ensure that well-
typed programs do not break confidentiality constraints imposed by a
declared security discipline.

1 Introduction

Data-centricl applications have become a key component of IT infrastructures
and, more recently, in the average user’s daily tasks, due both to the internet’s
popularity and to the proliferation of cloud computing infrastructures on which
most of these applications rely on nowadays. Unfortunately, such infrastructures,
often based in relational database backends, do not provide enough support for
the security requirements posed by such application scenarios. For instance, an
app may inadvertently execute a query to extract sensitive information from
the database and then insert that data in a table any user may read from, thus
creating an insecure information flow, violating confidentiality. Such operation,
however, may be deemed secure in a security model simply based on access
control: a principal may have enough privileges to read the information and
since the second table is public, he also has enough permissions to insert data
there. To prevent such insecure flows, one may, at least in principle, apply to the
application’s code and database interface languages some form of information
flow analysis[12,15,31].

However, data centric systems pose specific challenges on how to ensure con-
fidentiality and integrity in the presence of multi-tenancy and container sharing.
A key issue is that security compartments are not simply attached to the static

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 180–198, 2014.
DOI: 10.1007/978-3-319-05119-2_11, c© Springer International Publishing Switzerland 2014

Information Flow Analysis for Valued-Indexed Data Security Compartments 181

structure of the database schema, but are actually dynamic and dependent on
runtime data, inducing so-called “row-level” security. For a typical example, con-
sider within a social network app a database table holding for each user the list of
her private photos. We would like to consider that the security level of the whole
table is (say) photos, but that the security level of each row is photos(id), where
id is the actual userid value registered on it. Assuming that different userids give
rise to incomparable security levels photos(id), in the security lattice, we would
then like to ensure that the app may never transfer private photos from one
user to another, even if all photos are stored in the same database structure.
A valued indexed security label such as photos(id) denotes a potential security
compartment for each concrete id index value. Notice that since such indexes of
security labels may be obtained by computation, or as the result of queries, they
are not fixed or known at app design or construction time, and the same must
be said of any indexed security label such as photos(id). Nevertheless, our aim
is to statically reason about information flows between the security compart-
ments denoted by such indexed labels, so to invalidate code that break security
policies. For this purpose, we introduce a type-based information flow analysis
for a α-calculus extended with a (SQL-like) data manipulation language (DML).
As in classical approaches (e.g., [1,17]), both a type ε and a security label s are
assigned to expressions by our typing judgment σ ∈ e : ε s, reflecting the fact
that the value of e will only be affected by computations interfering at security
levels ≤ s. However, we are not aware of prior work exploring value-dependent
security labels, as we do here. For example, σ ∈ e : εphotos(joe) states that e
will not return a photo from any user other than joe, even if e may read a
global table containing photos of all users. Value-dependency may be explicit,
as in photos(joe), or implicit, captured by security-label dependent record types,
useful to express row-level security.

We discuss our approach in more detail using a toy example inspired by a
healthcare center software service that manages medical doctors and patients.
The system requires information about doctors and patients, as well as patient’s
clinical records, to be stored in a database, according to the schema

entity Doctors(id_d, name, age, speciality) in
entity Patients(id_p, name, age, address) in
entity Records(id_p, date, clinical_info) in
entity isPatientOf(id_p, id_d) in ...

which can be manipulated through usual SQL-like DML primitives. We are inter-
ested in statically ensuring confidentiality properties for the applications devel-
oped over this database. Suppose that data in the healthcare system is classified
in three security levels L, P, and D where L represents data that can be disclosed to
the general public, P data that patients can see, and D data that only doctors can
observe. As expected, a partial order for these security levels would be L<P<D,
expressing that L is the most permissive level and D the most restrictive. To
describe a data security policy, we classify the database entities fields with these
security levels (we omit data types for now): entity Doctors(id_d: L, name:

L, age: D, speciality: L), which states that a doctor’s profile (represented

182 L. Lourenço and L. Caires

by a tuple in entity Doctors) is public except his age, that should remain secret
and observable only to doctors; entity Patients(id_p: L, name: P, age: P,

address: P), stating a patient’s profile is not public (except his identification
number, which by itself does not disclose whose patient it belongs to), as well as
his clinical record entity Records(id_p: L, date: P, clinical_info: P), both
visible to patients and to doctors (because P<D). A basic goal is then to guaran-
tee that throughout the execution of any code manipulating these entities, the
data stored in containers of security level P and D are not visible in a context with
security level L, that is, this data is not made public. This may be achieved by
an information flow analysis for a programming language with DML primitives,
a first contribution of our work.

Yet, this basic approach is not enough to enforce the needed security policies.
When we say that a patient can see his full profile we are stating something
stronger than that: a patient can see any patient’s full profile. This is clearly
an undesirable limitation of the simple security label model adopted, which is
not expressive enough to talk about individual tuples of an entity. In intuitive
terms, the P security compartment needs to be partitioned (indexed) in many
partitions P(n), one for each patient n, e.g. P(joe), P(mary), etc, where L<P(n)

<P for all n, and P(m) →=P(n) for all n →= m. Now, all patient records are stored in
the same data structure, the entity table Patients. To give to the table a uniform
security type, we then introduce security-label dependent records, allowing us
to express“row-level” security compartments:

entity Doctors(id_d: L, name: L, age: D(id_d), speciality: L) in
entity Patients(id_p:L, name:P(id_p), age:P(id_p), address:P(id_p)) in
entity Records(id_p: L, date: P(id_p), clinical_info: P(id_p)) in
entity isPatientOf(id_p: L, id_d: L) in ...

In a security-label dependent record a field identifier may act as a binding occur-
rence for the value it might hold, and scopes over the security labels of the
remaining fields. So by indexing security level D with the tuple’s field id_d, we are
stating that the age info of doctor with id_d = house belongs to level D(house);
and likewise by indexing security level P with a patient’s identifier id_p, we are
saying that this data is only visible to the patient (and no other patient) and,
eventually, to any doctor (since P<D). Value dependent security labels allows us
to talk about individual tuples and capture fine grained information flows. For
instance, in the following code:

let info = first (from (x in Records)
where x.id_p=42 select x.clinical_info)

in insert [id_p:42, date:today(), clinical_info:info] in Records

value info gets security level P(42) since we are projecting a tuple with id_p value
42. This allows the insert operation to be deemed secure since we are inserting
a tuple with id_p=42, and clinical_info=info and date=today() with security
label P(42) (the latter by up-classification). On the other hand, if we replace the
last line above by insert [id_p:10, date:today(), clinical_info:info] in

Records, an insecure flow must be signalled, since data from patient 42 is being

Information Flow Analysis for Valued-Indexed Data Security Compartments 183

associated to patient 10. In other words, we prevent information from patient
with id_p = 42 to be leaked to another patient’s record. Such a fine grained flow
analysis is possible in our runtime value indexed security label model. Notice
that even if, in this example, labels are indexed by user ids, which may stand
for principals, our model is completely general, as labels may be indexed by
any data (for example, one may label by secret(uid_to,uid_from) the private
message between users of identification numbers uid_to, uid_from in a message
board). Moreover, our analysis is carried out for a higher-order language with a
complete set of DML primitives, allowing stored procedures (higher-order store),
and does not require runtime checks to infer the runtime values in our security
labels.

The main technical contributions of our work are thus the development of a
type-based information flow analysis for a α-calculus extended with DML primi-
tives, based on a useful notion of value-dependent (indexed) security label (Sect. 2
and Sect. 3). Our technical results include type preservation and the (key) non-
interference theorem, which implies that well-typed programs do not break the
confidentiality constraints imposed by the declared information flow discipline
(Sect. 4). We conclude with an overview of related work (Sect. 5) and a final
discussion (Sect. 6).

2 Programming Language

We carry out our development using a core programming language αDB, a typed
α-calculus with (imperative) data manipulation primitives, which we pick as a
reasonable abstraction of commonly used language idioms for data centric pro-
gramming [6,8,21]. The syntax of αDB language is given by the grammar in
Fig. 1 where we assume an infinite set of identifiers (ranged over x, y, t, . . .),
an infinite set of field names (ranged over s, n,m, . . .), and an infinite set of
(store) locations (ranged over l, l≥ . . .). We abbreviate indexed sets, in our syn-
tax, with an overbar. So [m : e] stands for [m1:e1, . . . , mn:en], e stands for
{e1, . . . , en}, and entity t(m:ψ s)in e stands for entity t(m1:ψ

s1
1 , . . . , mn:ψ

sn
n)in e.

Expressions in our language are identifiers, values, field access e.m, application
e1(e2), abstractions α(x:ε s1

1).e, constant declaration, addition of an element to a
list, list iteration, conditional, and primitives for data creation and manipulation.
Values include booleans, unit value (), collections (lists) of values {v1, . . . , vn},
records [m1:v1, . . . , mn:vn], and abstractions α(x:ε s1

1).e. These are as expected.
We assume other basic data types (integers, strings) and associated operations,
such as first(-) and rest(-) for collections (but omit standard details).

The list iterator primitive computes an accumulated value from the list ele-
ments. For example, to compute the sum of all the elements in a list c =
{v1, . . . , vn} of integers we could write foreach(c, 0,x.y.(x + y)). So the first
expression in the list iterator primitive is the list to iterate on, and the sec-
ond represents the initial value, and the third corresponds to the computation
we want to perform on each iteration step. Identifiers x and y are binding
occurrences and represent an element of the list and the current value of the
accumulator, respectively.

184 L. Lourenço and L. Caires

Fig. 1. Syntax

In DML primitives we use the notation x.c or x.e to denote the condition c
or body e under the entity cursor value x (which is bound in c and/or e). These
primitives can be explained as follows: entity t(m1:ψ

s1
1 ,. . .,mn:ψ

sn
n)in e denotes

the allocation of a new database relation named t with attributes m1 to mn;
select(t,x.c,x.e) denotes the projection of a set of attributes e in a relation t
for which condition c holds; insert(t,e) denotes the insertion of a tuple denoted
by expression e in the relation t; update(t, x.e, x.c) denotes the replacement of
each tuple in the relation t for which condition c holds by the tuple expressed
by evaluating e, where x denotes the initial tuple value in c and e. Expression e
is required to produce a tuple of the same type as the table, thus mentioning all
of its fields. This does not limit the generality of the update primitive, since old
values can be reused in the updated fields through x in e. Finally, delete(t,x.c)
denotes the deletion from relation t of the set of tuples for which the condition
c is met.

For readability we sometimes use for DML primitives the natural concrete
syntax adopted in Sect. 1. Logical conditions in syntax fragment c, used for condi-
tionals and DML primitives, are side-effect free (pure). We distinguish a category
of testable values V , used in logical conditions as terms, which denote the val-
ues v of our language plus field access and identifiers, necessary for expressing
conditions in DML primitives. For decidability purposes, we assume intensional
equality between lambda terms.

Information Flow Analysis for Valued-Indexed Data Security Compartments 185

The operational semantics is defined using a reduction relation. Reduction is
defined between configurations of the form (S; e), where S is a store, and e is an
expression. A reduction step of the form (S; e) −⊥ (S≥; e≥) states that expression
e under state S evolves in one computational step to expression e≥ under state
S≥. Store S is a mapping from locations to collections of tuples, representing
database tables. We provide an auxiliary definition for the evaluation of logical
conditions.

Definition 1 (Conditional Expression Semantics). The value of a closed
condition c is given by the interpretation map C:c ⊥ {true, false}, as well as the
auxiliary interpretation function for closed terms T :V ⊥ v as follows:
C[[¬c]] = ¬C[[c]] C[[c1↔c2]] = C[[c1]]↔C[[c2]] C[[V1 = V2]] = (T [[V1]] = T [[V2]])
T [[{V1, . . . , Vn}]] = {T [[V1]], . . . , T [[Vn]]} T [[α(x : ε s1

1).e]] = α(x : ε s1
1).e

T [[[m1:V1, . . . , mn:Vn]]] = [m1:T [[V1]], . . . , mn:T [[Vn]]]
T [[true]] = true T [[false]] = false T [[()]] = ()
T [[V.m]] = field(T [[V]],m) field([. . . , m : v, . . .],m) = v

We now define our reduction relation, denoted as (S; e) −⊥ (S≥; e≥), as being
inductively defined by the rules in Fig. 2 as well as the expected rules of a call-
by-value α-calculus for the non-DML expressions. For the complete definition
see [20].

Rules in Fig. 2 capture the reductions for DML primitives. Rules (foreach-
left) and (foreach-right) reduce the first and second expressions of the list iterator
operator, respectively. These rules, together with rule (foreach), imply an evalu-
ation order from left to right. Rule (entity) reduces to the continuation expres-
sion e and adds a fresh location l to the store, associating it with the empty list
(empty table). Rule (select) states that, in order to evaluate a projection opera-
tion over entity t, we need to evaluate the logical condition c and then filter out
all the rows that do not satisfy the condition. The first step is achieved by first
creating a list of logical conditions, c{ri/x}, obtained by the substitution of all
free occurrences of x in conditional expression c with each record ri of entity t.
Then, since for each conditional expression c{ri/x} corresponds a record ri, the
second step is achieved by creating a new list of expressions, s, that will contain
all records ri for which their respective conditional expression c{ri/x} evaluated
to true. Finally, we state that the projection operation select evaluates to a
list of expressions obtained by replacing all free occurrences of x in e with the
filtered records in s. Rule (insert-left) reduces the expression in an insert opera-
tion while rule (insert) is applied when that expression is a record value, adding
the value to the head of the list of records that represents entity t in the store.
Rule (update-init) starts the computation of updated table contents by start-
ing to compute the updating record e{ri/x} for each source record ri such that
the selecting condition c{ri/x} holds. Notice that the expression updating(l, e),
where e is a collection expression, is not present in the source language and is
only used in the operational semantics to express the (non-atomic) computation
of the updated table contents, expressed by the collection e. When the the state
updating(l, v) is reached, with a final updated collection, the table is updated

186 L. Lourenço and L. Caires

Fig. 2. Reduction rules for DML core

in one step, using rule (update). Rule (delete) removes from the relevant entity
all records r for which condition c{r/x} holds.

3 Type System

In this section we present our type system, which ensures the intended non-
interference property. The syntax of types is defined in Fig. 4. Our types are
annotated with value dependent security labels s, thus always of the form ε s

where ε is a standard type and s is a (possibly indexed) security label.
Security labels, which may be in general value dependent, have the form Σ(v),

where v is a security label index given by the grammar in Fig. 3. A security label

Information Flow Analysis for Valued-Indexed Data Security Compartments 187

Fig. 3. Syntax of label indexes

Fig. 4. Syntax of types

Fig. 5. Subtyping rules

is concrete if its index is a value v, not a field identifier m. A label Σ(m) where m
is a field identifier only makes sense in the scope of a record type declaration, as
explained below. Concrete security labels form a lattice, with ⊆ the top element
(the most restrictive security level), and ≥ the bottom element (the most per-
missive security level), and ∀, ∅, denoting join and meet respectively. The lattice
partial order is noted ≤ and < its strict part; we write s#s≥ to say that neither
s ≤ s≥ nor s≥ ≤ s. We use | · |≤ to denote the concrete upwards approximation of
a label where |Σ(m)|≤ = Σ(⊆) and |Σ(v)|≤ = Σ(v), and | · |→ to denote the concrete
downwards approximation where |Σ(m)|→ = Σ(≥) and |Σ(v)|→ = Σ(v). By conven-
tion, dependent security labels Σ(≥) and Σ(⊆) are interpreted as approximations
to the (standard, non-value dependent) security label Σ. We then require that
for any value v, Σ(≥) ≤ Σ(v) ≤ Σ(⊆) holds in the security lattice L. Apart from
this, we do not pose any extra assumptions of the security lattice, except that
the ordering between labels is well defined and satisfies the lattice property (e.g.,
well defined meets and joins, etc).

188 L. Lourenço and L. Caires

Our type structure includes the boolean type, the unit type, (security-label
dependent) record types, functional types, and collection types. We also assume
other basic types, such as integers and strings, with associated operations, useful
for examples and any practical needs. In a record type [m1:ε s1

1 , . . . , mn:ε sn
n]s

′
any

label si with i > 1 may be dependent on a previous field, and thus be of the form
Σ(mj) with j < i. These are the only allowed occurrences of non-concrete security
labels in types and programs: in the context of security-label dependent records.
Moreover, for every such record type occurring in a valid typing we always have
∀s≥i ≤ s≥, where s≥i is the concrete security level of field mi since a record value
depends on all fields, its security level cannot be lower than the level of any
of its fields. This differs from traditional approaches, [17,25], that classify data
structures with a security level representing the lower bound of the elements’
labels. With our approach, since a projection of a record field may have a lower
security level than its record, we end up having an implicit but controlled form
of declassification. The collection type ε↑s states that each collection element
has type ε s, so security labels of a collection’s elements are homogenous.

The typing judgment is of the form σ ∈r
S e : ε s, stating that expression e

has type ε under typing environment σ, and given the constraint set S. The
label s states that value of expression e does not depend on data classified with
security levels above s or incomparable with s. Thus the type system ensures
that only information flow from a level l to a level h such that l ≤ h is allowed.
Label r expresses the security level of the computational context (cf. the “pro-
gram counter” [22,25]), a standard technical device to capture implicit flows.
Our type system uses a constraint system to approximate runtime values, neces-
sary to eliminate or capture value dependencies in security labels, and approxi-
mate reasoning about runtime values. We restrict constraints to talk about pure
expressions, without side-effects (all non-DML expressions).

Definition 2. A constraint set S is a finite set of constraints of the form e
.= e≥

where e, e≥ are pure expressions. We assume given a decidable and sound equa-
tional theory and write S |= e

.= e≥ to mean that S entails e
.= e≥. We require .= to

be compatible with reduction in the sense that for any e, e≥ pure if (S; e) ⊥ (S; e≥)
then |= e

.= e≥.

We denote by S{x
.= e} the set S ∗ {x

.= e} if e is a pure expression, and S
otherwise. We give some examples of expected equational axioms:

(c → c≤) .
= true ← c

.
= true [. . . , mi:vi, . . .].mi

.
= vi

(x
.
= v) → e

.
= e≤ ← e{v/x} .

= e≤{v/x} v
.
= v

So, for example, {x.m1
.= 2, x.m1

.= y+1} |= y
.= 1. As for any equational theory,

we assume that S |= E and S ∗ {E} |= E≥ implies S |= E≥ (deduction closure).
For our purposes, we abstract away from the particular equational theory used:
the precise formulation of the equational theory is orthogonal to our approach,
as long as a sound and decidable system is adopted (clearly, the more complete
the theory the better). Typing declarations assign types to identifiers x : ε s, and
collection types of record types to locations, t : ε s. A typing environment σ is a
list of typing declarations.

Information Flow Analysis for Valued-Indexed Data Security Compartments 189

Definition 3 (Type System). Typing is expressed by the judgment σ ∈r
S e :

ε s, stating that expression e is well-typed by ε s in environment σ, given con-
straints in S, and concrete context security level r.

Key typing rules are given in Figs. 6 and 7, see [20] for the complete set of rules.
We also define a simple subtyping relation (Fig. 5) denoted <:. Notice the role
of ≤ in subtyping, allowing up-classification. Before discussing our typing rules,
we present some useful notions related to security-label dependent record fields.

Definition 4 (Label approximation). Let S be a constraint set, s a label,
and x an identifier. We define the label approximation Ψx(S, s) to be the concrete
label given by

Ψx(S, Σ(v)) �
{

Σ(v) if v = m and S |= x.m
.= v

|Σ(v)|→ otherwise

Ψx(S, s) approximates (from below) the runtime value associated to the index
of the security label s, given the information provided by the constraints S.
The interesting case is when the index v is a field identifier mi of record x
(typically, is used in typing rules for constructs where x denotes a query or
update cursor of a database entity). In this case, the runtime value v may be
approximated by solving S |= e

.= v for v. For example, Ψx({x.m1
.= 2, x.m2

.=
x.m1 + 3}, Σ(m2)) = Σ(5) because {x.m1

.= 2, x.m2
.= x.m1 + 3} |= x.m2

.= 5.
But Ψx({x.m1

.= 2, x.m2
.= x.m1 + 3}, Σ(m3)) = Σ(≥) since there is no v such

that {x.m1
.= 2, x.m2

.= x.m1 + 3} |= x.m3
.= v.

We now discuss our key typing rules, omitting the standard ones for any typed
α-calculus. Rule (t-refineRecord) can be used to introduce a field dependent
security label for a field mj , given that we can derive that the indexing field
contains a runtime value vj (via relation |=). The converse is achieved with rule
(t-unrefineRecord). In Fig. 7 we present the typing rules for DML primitives.
Type rule (t-entity) adds the entity’s identifier to the type context, assigning to
it a collection type of record types where each field’s type corresponds to the
ones declared, and types the continuation expression with the extended typing
context. To approximate the table record security level, we use |s|≤.

In rule (t-select), to prevent implicit flows, we force the security label of
the conditional expression to be the same as the one for body expression e and
change the computational context label r to the least upper bound between the
current context security label and the conditional expression’s label. Rule (t-
insert) states that an insert primitive is well-typed if the expression has exactly
the same security type as the entity’s elements, this prevents explicit flows from
occurring. Moreover, in order to prevent implicit flows, we check if the current
computational context is lower than or equal to all the fields’ security labels. But
since these labels may mention field identifiers, we use Ψx to approximate the
concrete levels (x fresh in the conclusion). In rules (t-update) and (t-delete) we
apply the same principles of rule (t-insert) to prevent explicit flows, and of rules
(t-select) and (t-insert) to account for implicit flows. In rule (t-update) one needs
to make sure that the least upper bound between the current context security

190 L. Lourenço and L. Caires

Fig. 6. Typing rules for (pure) expressions (sample rules)

label (“program counter” security level) and the conditional expression’s label is
below or equal to the greatest lower bound of the security levels of both the “old”
records and “updated” records, so to make sure only up-flows are allowed. In (t-
update), y is required fresh in the conclusion. As already mentioned, expression
e is required to produce a tuple of the same type as the table elements, updating
all fields. This does not limit the generality of the update primitive, since the old
values may be used in the updated fields through x in e and is in fact convenient
for the expressiveness of our information flow analysis.

4 Type Preservation and Non-Interference

In this section we present the soundness results for our type system, which
ensures that well-typed programs do not leak confidential information to security
compartments unrelated by the assumed security lattice. Main statements are
Theorem 1 (Type Preservation) - types are preserved by the reduction relation
- Theorem 2 (Progress) - well-typed expressions are either a value or have a
reduction step - and 3 (Noninterference) - well-typed expressions satisfy the
noninterference property.

Information Flow Analysis for Valued-Indexed Data Security Compartments 191

Fig. 7. Typing rules for DML core

We now introduce notions of store consistency and well-typed configurations,
and define an expression equivalence relation.

Definition 5 (Store Consistency). Given a typing environment σ and a
store S, we say store S is consistent with respect to typing environment σ,
denoted as σ ∈ S, if dom(S) ≡ dom(σ) and ♦l ∈ dom(S) then σ ∈r

S S(l) : σ(l).

Definition 6 (Well-typed Configuration). A configuration (S; e) is well-
typed in σ if σ ∈ S and σ ∈r

S e : ε s.

To prove type preservation, we introduce the substitution lemma on which it
relies.

Lemma 1 (Substitution Lemma).
If σ∈r

Sv:ε ≥s′ and σ,x:ε ≥s′∈r
Se:ε s then σ∈r

S{v/x}e{v/x}:ε s.
Proof: Induction on the derivation of σ,x:ε ≥s′ ∈r

S e:ε s, see [20].

Theorem 1 states that any reduction step of a well-typed configuration leads to
a well-typed configuration, where the typing of the final configuration is possibly
extended with new locations of entities (via entity) in the state.

Theorem 1 (Type Preservation).
Let σ ∈ S and σ ∈r

S e:ε s. If (S; e) −⊥ (S≥; e≥) then there is σ≥ such that
σ≥ ∈r

S e≥ : ε s, σ≥ ∈ S≥ and σ ≡ σ≥.
Proof: Induction on the derivation of σ ∈r

S e:ε s, see [20].

192 L. Lourenço and L. Caires

Fig. 8. Equivalence of expressions up to level s (sample rules)

The next result says that in a well-typed configuration (S; e) either e is a value,
or e has a reduction step. Theorem 2 says that well-typed programs never get
stuck.

Theorem 2 (Progress).
Let σ ∈r

S e:ε s and σ ∈ S. If e is not a value then (S; e) −⊥ (S≥; e≥).
Proof: Induction on the derivation of σ ∈r

S e : ε s, see [20].

In order to formulate our main result (non-interference), we need to present
some auxiliary definitions, namely store equivalence and expression equivalence
up to a security level. To define store equivalence we use the filter function
filter(σ,S, s) that given store S returns the store obtained from S by redact-
ing (replace by ϕ) all stored values classified at levels above security level s or
incomparable to s (see [20]). Stores S1, S2 such that σ ∈ Si are said equivalent
up to level s if filter(σ,S1, s) = filter(σ,S2, s).

Definition 7 P(Expression Equivalence).
Expression equivalence of e1 and e2 up to s is asserted by σ ∈r

S1,S2
e1 ↓=s e2:ε s′ .

Intuitively, two expressions are equivalent up to level s if they yield the same
result under stores equivalent up to s. Such formulations of equivalence are usual
for expressing non-interference, and always relate expressions at the same type
and security level. Notice that two expressions may be equivalent up to level
s even if they are classified at a different level s≥. Technically, expressions e1
and e2 are equivalent up to level s if they only differ in subexpressions classified
at higher (or incomparable) security levels (so they cannot be distinguished by
attackers constrained to see only up to level s). We show key defining rules for
expression equivalence in Fig. 8 (full set of rules in [20]).

We can, at last, present our final main result: the non-interference theorem.

Theorem 3 (Non-Interference).
Let σ ∈ S1, σ ∈ S2, S1 =s S2, and σ ∈r

S1,S2
e1 ↓=s e2 : ε s′ .

If (S1, e1) −⊥ (S≥
1, e

≥
1), and (S2, e2) −⊥ (S≥

2, e
≥
2) then there is σ≥ such that

σ ≡ σ≥, σ≥ ∈ S≥
1, σ≥ ∈ S≥

2, S≥
1 =s S≥

2, and σ≥ ∈r
S1,S2

e≥
1

↓=s e≥
2 : ε s′ .

Proof: Induction on the derivation of σ ∈r
S1,S2

e1 ↓=s e2 : ε s′ , see [20].

Information Flow Analysis for Valued-Indexed Data Security Compartments 193

The non-interference states that if we execute two equivalent instances of the
same program under stores that differ only on information with higher (or incom-
parable) security level than s, then the resulting stores remain indistinguishable
up to security level s. As a consequence we have

Corollary 1. Assume σ ∈r
S e:ε s′ , σ ∈ S1, σ ∈ S2 and S1 =s S2.

If (S1, e)
↑−⊥(S≥

1, v1), and (S2, e)
↑−⊥(S≥

2, v2) then there is σ≥ such that σ ≡ σ≥,
σ≥ ∈ S≥

1, σ≥ ∈ S≥
2, S≥

1 =s S≥
2 and σ≥ ∈r

S1,S2
v1 ↓=s v2:ε s′ .

Also, for all s if s →< s≥ then v1 = v2.

The above result precisely express the fact that an attacker “located” at secu-
rity level s cannot distinguish between evaluations of a program taking place
in environments that only differ in data that should be considered confidential
for level s, e.g., data classified at any level l such that l →≤ s. To illustrate the
non-interference theorem, we use entity Records (id_p:intL, date:DateP(id_p),

clinical_info:tinfoP(id_p)).
let info= first(from (x in Records)

where x.id_p=42 select x.clinical_info)
in insert [id_p:42, date:today(), clinical_info:info] in Records

Assume P(10)#P(42) Let S1 and S2 be stores such that S1(Records) = {(10,d1,X),

(42,d2, A)} and S2(Records) = {(10,d1,X), (42,d2,B)} with A →= B. We have
S1 =P (10) S2 since the values A and B, classified as P(42), are not visible at
level P(10). We have Δ ⊥r

S1,S2 insert [id_p: 42, date: today(), clinical_info: info] in
Records⇒=P (10)insert [id_p: 42, date: today(), clinical_info: info] in Records:cmd∅.
Consider the reductions (S1;insert [id_p: 42, date: today(), clinical_info: info]
in Records) −⊥(S≥

1; ()) and (S2;insert [id_p: 42,date:today(), clinical_info:info]
in Records) −∅ (S2; ()). Then S1(Records) = {(10,d1,X), (42,d2,A), (42, d3,A)} and
S2(Records)= {(10,d1,X), (42,d2,B), (42,d3,B)} meaning the property is satisfied,
since filter(Δ, S1,P(10)) = {(10,d1,X), (42,Γ,Γ), (42,Γ,Γ)} = filter(Δ, S2,P(10)), that is
S≥
1 =P (10) S≥

2. So, the effects of the above command are not visible at security
level P(10). Now consider the following slight modification of the code above:
let info= first (from (x in Records)

where x.id_p=42 select x.clinical_info)
in insert [id_p: 10, date: today(), clinical_info: info] in Records

We have σ ∈r
S1,S2

insert [id_p: 10, date: today(), clinical_info: info] in
Records↓=P (10) insert [id_p: 10, date: today(), clinical_info: info] in Records:
cmd∈. After reduction steps (S1;insert [id_p:10, date: today(), clinical_info:info]
in Records)−∅(S1; ()) and (S2;insert [id_p:10, date: today(), clinical_info:info] in
Records)−∅ (S2; ()) we have S1(Records)={(10,d1,X), (42,d2, A), (10,d3,A)}
and S2(Records)={(10,d1,X), (42,d2,B), (10,d3,B)}. But now S1 ∪=P (10) S2 since,
upon the insertion of the tuple [id_p: 10, date: today(), clinical_info: info], the
values A and B are observable at level P(10). This is captured by the notion
of store equivalence since filter(Δ, S1,P(10)) = {(10,d1,X), (42,Γ,Γ), (10, d3,A)} and
filter(Δ, S2,P(10)) = {(10,d1,X), (42,Γ,Γ), (10, d3,B)}. Thus, the thesis of the nonin-
terference theorem is not satisfied, and this program is rejected by the type sys-
tem. Clearly, it is not possible to give the appropriate (security-label dependent

194 L. Lourenço and L. Caires

record) type [id_p:intL, date:DateP(id_p), clinical_info:tinfoP(id_p)] to the record
[id_p:10, date: today(), clinical_info:info] (using rule (t-unrefineRecord)) since the
security level of info is P(42) but the value of id_p is 10.

5 Related Work

Our core typed α-calculus equipped with SQL-like DML primitives is inspired
in proposals such as [5,9,21] and provides a natural vehicle to investigate infor-
mation flow security analyses for data-centric software systems. There is a huge
body of work on language-based information flow analysis (see e.g., [25]). Early
works [26,31] focus on simple imperative languages. [17] presents an informa-
tion flow analysis for a α-calculus with references, sums, and product types. The
dependency calculus [1] generalises [17] and is shown to be able to encode the
languages of [17,31], as well as the respective noninterference results.

Several proposals for information flow analysis on web-based or data-centric
applications were put forward. In [2] a dynamic information flow mechanism
for a Javascript-like language based on a notion of faceted values is proposed.
Faceted values offer different views of a value given the execution context’s prin-
cipal. Other recent work [16] proposes a dynamic information flow analysis for a
subset of the ECMA standard for Javascript. In [13] a taint analysis for mobile
applications is proposed, where implicit flows are not taken into account to min-
imise performance overhead, and in [11] a dynamic analysis to prevent insecure
cross-application information flows is developed. The framework presented in
[14] offers confinement mechanisms at both the OS and browser level via both
Mandatory Access Control and information flow analysis. Interestingly, their
security labels (represented by a set of principals) allow for “row-level” policies,
specified through functions from a tuple (of the document whose policy we’re
specifying) to a set of readers. Other works based on dynamic analysis include
[7,19,27,33]. Our work is instead based on static analysis, as we seek to obtain
compile time security guarantees, and avoid possible information leaks due to
exceptional behavior (dynamic security errors).

Several works on static language-based analysis of information flow policies
for web and data-centric software systems have also been proposed. In [18] the
authors present a static type-based information flow analysis for a web scripting
language based on PHP that ensures confidentiality of its data but no formal-
ization of a security result is given. The (seminal) decentralised label model of
[23] supports static analysis of information flow policies based on labelling data
elements with policies that specifies allowed reader and writer principals, but
which cannot easily express value-dependent “row-level” security compartments
as we do. In [10] the authors present a static analysis to enforce label-based secu-
rity policies in the web programming language SELinks. Their analysis is able
to enforce relevant information flow policies in web applications although the
authors do not discuss the noninterference property. Examples of other works
aiming to statically enforce data security on DML-based applications are [8]
and [5]. The approach taken by the former consists in adding program specifi-
cations expressed by SQL-queries which are then typechecked, while the latter

Information Flow Analysis for Valued-Indexed Data Security Compartments 195

uses refinement types and semantic subtyping to enforce properties that may be
relevant for security. Unlike our approach, these works do not provide a value-
dependent information flow analysis leading to non-interference results, as we
have done here. An interesting work tackling dynamic issues within an statically
verified information flow framework is [30], which addresses the manipulation
of runtime first-class representations of principals. In [34] an information flow
analysis is introduced where security labels can actually be changed at runtime
and case-analysed by a conditional-construct. In our work we do not consider
dynamically changing labels but, instead, use runtime values to index security
labels to ensure “row-level” security. In [6] a refinement type-based approach
for data security for a DML, which can handle policies depending on the data-
base state, is proposed. To some extent, the work in this paper can be seen as
recasting some ideas of [6] in the setting of a much more expressive information
flow analysis framework. Several recent works explore applications of refinement
types [3,4] and dependent types [28,29] to language-based security. For instance,
in [28] the authors present a general-purpose language that allows for encodings
of high-level security concerns such as information flow and access control poli-
cies. To formulate the former, a user-defined security lattice must be defined via
a CanFlow relation, as opposed to assuming a security lattice as we do in this
work, and a dependent-type tracked is used to associate security labels to data,
which also records its provenance. A confidentiality result is showed stating that
a program without the correct privileges cannot distinguish values protected by
them, and so, as a corollary, cannot interfere with the behavior of programs with
the right privileges. This result resembles the notion of our non-interference the-
orem, although the authors only take into account side-effect free expressions
(so nothing is said about stored values). Moreover, privileges are principals that
are authorized to access data instead of a security level compartment, as in
our case, but the authors claim to be possible to formulate a non-interference
result. Despite all these works, however, we are not aware of prior work explor-
ing value-dependent security labels within an information flow framework, in the
sense introduced in this paper.

6 Concluding Remarks

We have developed an expressive type-based information flow analysis for a
core α-calculus augmented with SQL-like primitives. Our core language may be
seen as a convenient abstraction for practical data-manipulating programming
languages. A key novelty of our work consists in the introduction of a notion
of value-indexed security label, which allows us to parametrize security com-
partments on the values of computations or on dynamically stored data, thus
enabling the enforcement of so-called “row-level” security policies within shared
containers, relevant to address several realistic security concerns of data-centric
software services. Our main technical results are type preservation and nonin-
terference theorems, which ensure the soundness of our information flow analy-
sis: well-typed programs do not disclose information for security compartments
unauthorised by the security lattice.

196 L. Lourenço and L. Caires

As information flow analysis per se is not enough in general to provide com-
plete security guarantees [24], we would like to combine our value dependent
type-based information flow analysis with a suitable form of role-based access
control. Some of the techniques used in this paper relate to the general notion of
dependent types. It certainly deserves further study and generalisation, namely
regarding its connection with more standard dependent type systems [29,32]. In
particular, the introduction of first-order dependent function types in our lan-
guage, which would add to the expressiveness of our approach, should be further
investigated.

Acknowledgements. We thank the anonymous reviewers for their insightful com-
ments. This work is supported by CITI, and FCT/MEC under grant SFRH/BD/
68801/2010.

References

1. Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.: A core calculus of dependency.
In: Appel, A.W., Aiken, A. (eds.) POPL ’99, pp. 147–160. ACM (1999)

2. Austin, T.H., Flanagan, C.: Multiple facets for dynamic information flow. In: Field,
J., Hicks, M. (eds.) POPL 2012, pp. 165–178. ACM (2012)

3. Baltopoulos, I.G., Borgström, J., Gordon, A.D.: Maintaining database integrity
with refinement types. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp.
484–509. Springer, Heidelberg (2011)

4. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. ACM Trans. Program. Lang. Syst. 33(2), 8
(2011)

5. Bierman, G.M., Gordon, A.D., Hritcu, C., Langworthy, D.E.: Semantic subtyping
with an SMT solver. J. Funct. Program. 22(1), 31–105 (2012)

6. Caires, L., Pérez, J.A., Seco, J.C., Vieira, H.T., Ferrão, L.: Type-based access
control in data-centric systems. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602,
pp. 136–155. Springer, Heidelberg (2011)

7. Cheng, W., Ports, D.R.K., Schultz, D., Popic, V., Blankstein, A., Cowling, J.,
Curtis, D., Shrira, L., Liskov, B.: Abstractions for usable information flow control
in aeolus. In: USENIX Annual Technical Conference (2012)

8. Chlipala, A.: Static checking of dynamically-varying security policies in database-
backed applications. In: Arpaci-Dusseau, R.H., Chen, B. (eds.) OSDI 2010, pp.
105–118. USENIX Association (2010)

9. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: web programming without
tiers. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO
2006. LNCS, vol. 4709, pp. 266–296. Springer, Heidelberg (2007)

10. Corcoran, B.J., Swamy, N., Hicks, M.W.: Cross-tier, label-based security enforce-
ment for web applications. In: Çetintemel, U., Zdonik, S.B., Kossmann, D., Tatbul,
N. (eds.) SIGMOD 2009, pp. 269–282. ACM (2009)

11. Davis, B., Chen, H.: DBTaint: cross-application information flow tracking via data-
bases. In: WebApps’10, p. 12. USENIX Association (2010)

12. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
Commun. ACM 20(7), 504–513 (1977)

Information Flow Analysis for Valued-Indexed Data Security Compartments 197

13. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.:
TaintDroid: an information-flow tracking system for realtime privacy monitoring on
smartphones. In: Arpaci-Dusseau, R.H., Chen, B. (eds.) OSDI 2010, pp. 393–407.
USENIX Association (2010)

14. Giffin, D.B., Levy, A., Stefan, D., Terei, D., Mazières, D., Mitchell, J., Russo, A.
: Hails: protecting data privacy in untrusted web applications. In: OSDI 2012, pp.
47–60. USENIX (2012)

15. Goguen, J. A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

16. Hedin, D., Sabelfeld, A.: Information-flow security for a core of JavaScript. In:
Chong, S. (eds.) CSF 2012, pp. 3–18. IEEE (2012)

17. Heintze, N., Riecke, J.G.: The SLam calculus: programming with secrecy and
integrity. In: MacQueen, D.B., Cardelli, L. (eds.) POPL ’98, pp. 365–377. ACM
(1998)

18. Li, P., Zdancewic, S.: Practical information-flow control in web-based information
systems. In: CSFW 2005, pp. 2–15. IEEE Computer Society (2005)

19. Liu, J., George, M.D., Vikram, K., Qi, X., Waye, L., Myers, A.C.: Fabric: a platform
for secure distributed computation and storage. In: Matthews, J.N., Anderson, T.E.
(eds.) SOSP 2009, pp. 321–334. ACM (2009)

20. Lourenço, L., Caires, L.: Information flow analysis for valued-indexed aata security
compartments. Technical report, UNL. http://ctp.di.fct.unl.pt/luisal/resources/
techreportDLIF13.pdf (2013)

21. Meijer, E., Beckman, B., Bierman, G.M.: LINQ: reconciling object, relations and
XML in the.NET framework. In: Chaudhuri, S., Hristidis, V., Polyzotis, N. (eds.)
Proceedings of the ACM SIGMOD International Conference on Management of
Data, p. 706. ACM (2006)

22. Myers, A.C.: JFlow: practical mostly-static information flow control. In: Appel,
A.W., Aiken, A. (eds) POPL ’99, pp. 228–241. ACM (1999)

23. Myers, A.C., Liskov, B.: A decentralized model for information flow control. In:
SOSP, pp. 129–142 (1997)

24. Nanevski, A., Banerjee, A., Garg, D.: Verification of information flow and access
control policies with dependent types. In: S&P 2011, pp. 165–179. IEEE Computer
Society (2011)

25. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. (Spec. Issue Formal Methods Secur.) 21(1), 5–19 (2003)

26. Sabelfeld, A., Sands, D.: A per model of secure information flow in sequential
programs. Higher-Order Symbolic Comput. 14(1), 59–91 (2001)

27. Schultz, D., Liskov, B., IFDB: decentralized information flow control for databases.
In: Hanzálek, Z., Härtig, H., Castro, M., Kaashoek, M.F. (eds.) EuroSys 2013. ACM
(2013)

28. Swamy, N., Chen, J., Chugh, R.: Enforcing stateful authorization and information
flow policies in fine. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp.
529–549. Springer, Heidelberg (2010)

29. Swamy, N., Chen, J., Fournet, C., Strub, P-Y., Bhargavan, K., Yang, J.: Secure
distributed programming with value-dependent types. In: Chakravarty, M.M.T.,
Hu, Z., Danvy, O. (eds.) ICFP 2011, pp. 266–278. ACM (2011)

30. Tse, S., Zdancewic, S.: Run-time principals in information-flow type systems. ACM
Trans. Program. Lang. Syst. 30(1), 1–44 (2007)

31. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow analy-
sis. J. Comput. Secur. 4(2/3), 167–188 (1996)

http://ctp.di.fct.unl.pt/luisal/resources/techreportDLIF13.pdf
http://ctp.di.fct.unl.pt/luisal/resources/techreportDLIF13.pdf

198 L. Lourenço and L. Caires

32. Xi, H., Pfenning, F.: Dependent types in practical programming. In: Appel, A.W.,
Aiken, A. (eds.) POPL ’99, pp. 214–227. ACM (1999)

33. Zeldovich, N., Boyd-Wickizer, S., Mazières, D.: Securing distributed systems with
information flow control. In: Crowcroft, J., Dahlin, M. (eds.) NSDI 2008, pp. 293–
308. USENIX Association (2008)

34. Zheng, L., Myers, A.C.: Dynamic security labels and static information flow con-
trol. Int. J. Inf. Sec. 6(2–3), 67–84 (2007)

A Library for Removing Cache-Based Attacks
in Concurrent Information Flow Systems

Pablo Buiras1(B), Amit Levy2, Deian Stefan2,
Alejandro Russo1, and David Mazières2

1 Chalmers University of Technology, Göteborg, Sweden
buiras@chalmers.se

2 Stanford University, Stanford, USA

Abstract. Information-flow control (IFC) is a security mechanism con-
ceived to allow untrusted code to manipulate sensitive data without com-
promising confidentiality. Unfortunately, untrusted code might exploit
some covert channels in order to reveal information. In this paper, we
focus on the LIO concurrent IFC system. By leveraging the effects of
hardware caches (e.g., the CPU cache), LIO is susceptible to attacks that
leak information through the internal timing covert channel. We present
a resumption-based approach to address such attacks. Resumptions pro-
vide fine-grained control over the interleaving of thread computations at
the library level. Specifically, we remove cache-based attacks by enforc-
ing that every thread yield after executing an “instruction,” i.e., atomic
action. Importantly, our library allows for porting the full LIO library—
our resumption approach handles local state and exceptions, both fea-
tures present in LIO. To amend for performance degradations due to the
library-level thread scheduling, we provide two novel primitives. First,
we supply a primitive for securely executing pure code in parallel. Sec-
ond, we provide developers a primitive for controlling the granularity of
“instructions”; this allows developers to adjust the frequency of context
switching to suit application demands.

1 Introduction

Popular website platforms, such as Facebook, run third-party applications (apps)
to enhance the user experience. Unfortunately, in most of today’s platforms,
once an app is installed it is usually granted full or partial access to the user’s
sensitive data—the users have no guarantees that their data is not arbitrarily
ex-filtrated once apps are granted access to it [18]. As demonstrated by Hails [9],
information-flow control (IFC) addresses many of these limitations by restrict-
ing how sensitive data is disseminated. While promising, IFC systems are not
impervious to attacks; the presence of covert channels allows attackers to leak
sensitive information.

Covert channels are mediums not intended for communication, which never-
theless can be used to carry and, thus, reveal information [19]. In this work, we
focus on the internal timing covert channel [33]. This channel emanates from the

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 199–216, 2014.
DOI: 10.1007/978-3-319-05119-2 12, c© Springer International Publishing Switzerland 2014

200 P. Buiras et al.

mere presence of concurrency and shared resources. A system is said to have an
internal timing covert channel when an attacker, as to reveal sensitive data, can
alter the order of public events by affecting the timing behavior of threads. To
avoid such attacks, several authors propose decoupling computations manipulat-
ing sensitive data from those writing into public resources (e.g., [4,5,27,30,35]).

Decoupling computations by security levels only works when all shared
resources are modeled. Similar to most IFC systems, the concurrent IFC sys-
tem LIO [35] only models shared resources at the programming language level
and does not explicitly consider the effects of hardware. As shown in [37], LIO
threads can exploit the underlying CPU cache to leak information through the
internal timing covert channel.

We propose using resumptions to model interleaved computations. (We refer
the interested reader to [10] for an excellent survey of resumptions.) A resump-
tion is either a (computed) value or an atomic action which, when executed,
returns a new resumption. By expressing thread computations as a series of
resumptions, we can leverage resumptions for controlling concurrency. Specifi-
cally, we can interleave atomic actions, or “instructions,” from different threads,
effectively forcing each thread to yield at deterministic points. This ensures that
scheduling is not influenced by underlying caches and thus cannot be used to leak
secret data. We address the attacks on the recent version of LIO [35] by imple-
menting a Haskell library which ports the LIO API to use resumptions. Since
LIO threads possess local state and handle exceptions, we extend resumptions
to account for these features.

In principle, it is possible to force deterministic interleaving by means
other than resumptions; in [37] we show an instruction-based scheduler that
achieves this goal. However, Haskell’s monad abstraction allows us to easily
model resumptions as a library. This has two consequences. First, and differ-
ent from [37], it allows us to deploy a version of LIO that does not rely on
changes to the Haskell compiler. Importantly, LIO’s concurrency primitives can
be modularly redefined, with little effort, to operate on resumptions. Second, by
effectively implementing “instruction based-scheduling” at the level of library
primitives, we can address cache attacks not covered by the approach described
in [37] (see Sect. 5).

In practice, a library-level interleaved model of computations imposes perfor-
mance penalties. With this in mind, we provide primitives that allow developers
to execute code in parallel, and means for securely controlling the granularity of
atomic actions (which directly affects performance).

Although our approach addresses internal timing attacks in the presence
of shared hardware, the library suffers from leaks that exploit the termination
channel, i.e., programs can leak information by not terminating. However, this
channel can only be exploited by brute-force attacks that leak data external to
the program—an attacker cannot leak data within the program, as can be done
with the internal timing covert channel.

A Library for Removing Cache-Based Attacks 201

fillCache(highArray)

skip

fillCache(lowArray)

h == 0
Thread A

l := 0

l := 0

l := 1

accessArray(lowArray)

lowArray
in cache?

Thread B Thread C

Fig. 1. Cache attack

2 Cache Attacks on Concurrent IFC Systems

Figure 1 shows an attack that leverages the timing effects of the underlying
cache in order to leak information through the internal timing covert channel.
In isolation, all three threads are secure. However, when executed concurrently,
threads B and C race to write to a public, shared variable l. Importantly, the
race outcome depends on the state of the secret variable h, by changing the
contents of underlying CPU cache according to its value (e.g., by creating and
traversing a large array as to fill the cache with new data).

The attack proceeds as follows. First, thread A fills the cache with the con-
tents of a public array lowArray. Then, depending on the secret variable h, it
evicts data from the cache (by filling it with arbitrary data) or leaves it intact.
Concurrently, public threads B and C delay execution long enough for A to fin-
ish. Subsequently, thread B accesses elements of the public array lowArray, and
writes 0 to public variable l; if the array has been evicted from the cache (h==0),
the amount of time it takes to perform the read, and thus the write to l, will
be much longer than if the array is still in the cache. Hence, to leak the value
of h, thread C simply needs to delay writing 1 to l long enough so that it is
above the case where the cache is full (with the public array), but shorter than
it take to refill the cache with the (public) array. Observing the contents of l,
the attacker directly learns the value of h.

202 P. Buiras et al.

This simple attack has previously been demonstrated in [37], where con-
fidential data from the GitStar system [9], build atop LIO, was leaked. Such
attacks are not limited to LIO or IFC systems; cache-based attacks against
many system, including cryptographic primitives (e.g., RSA and AES), are well
known [1,23,26,40].

The next section details the use of resumptions in modeling concurrency at
the programming language level by defining atomic steps, which are used as
the thread scheduling quantum unit. By scheduling threads according to the
number of executed atoms, the attack in Fig. 1 is eliminated. As in [37], this is
the case because an atomic step runs till completion, regardless of the state of
the cache. Hence, the timing behavior of thread B, which was previously leaked
to thread C by the time of preemption, is no longer disclosed. Specifically, the
scheduling of thread C’s l:=1 does not depend on the time it takes thread B to
read the public array from the cache; rather it depends on the atomic actions,
which do not depend on the cache state. In addition, our use of resumptions
also eliminates attacks that exploit other timing perturbations produced by the
underlying hardware, e.g., TLB misses, CPU bus contention, etc.

3 Modeling Concurrency with Resumptions

In pure functional languages, computations with side-effects are encoded as val-
ues of abstract data types called monads [22]. We use the type m a to denote
computations that produce results of type a and may perform side-effects in
monad m. Different side-effects are often handled by different monads. In Haskell,
there are monads for performing inputs and outputs (monad IO), handling errors
(monad Error), etc. The IFC system LIO simply exposes a monad, LIO , in which
security checks are performed before any IO side-effecting action.

Resumptions are a simple approach to modeling interleaved computations of
concurrent programs. A resumption, which has the form res :: = x | α ε res, is
either a computed value x or an atomic action α followed by a new resumption
res. Using this notion, we can break down a program that is composed of a series
of instructions into a program that executes an atomic action and yields control
to a scheduler by giving it its subsequent resumption. For example, program
P := i1; i2; i3, which performs three side-effecting instructions in sequence, can
be written as resP := i1; i2 ε i3 ε (), where () is a value of a type with just one
element, known as unit. Here, an atomic action α is any sequence of instructions.
When executing resP , instructions i1 and i2 execute atomically, after which it
yields control back to the scheduler by supplying it the resumption res ≥

P := i3ε().
At this point, the scheduler may schedule atomic actions from other threads
or execute res ≥

P to resume the execution of P . Suppose program Q := j1; j2,
rewritten as j1 ε j2 ε (), runs concurrently with P . Our concurrent execution of
P and Q can be modeled with resumptions, under a round-robin scheduler, by
writing it as P ||Q := i1; i2 ε j1 ε i3 ε j2 ε ()ε (). In other words, resumptions allow
us to implement a scheduler that executes i1; i2, postponing the execution of i3,
and executing atomic actions from Q in the interim.

A Library for Removing Cache-Based Attacks 203

data Thread m a where
Done :: a → Thread m a
Atom :: m (Thread m a) → Thread m a
Fork :: Thread m () → Thread m a

→ Thread m a

Fig. 2. Threads as Resumptions

Implementing threads as resumptions. As previously done in [10,11], Fig. 2
defines threads as resumptions at the programming language level. The thread
type (Thread m a) is parametric in the resumption computation value type (a)
and the monad in which atomic actions execute (m)1. (Symbol :: introduces
type declarations and ∈ denotes function types.) The definition has several
value constructors for a thread. Constructor Done captures computed values;
a value Done a represents the computed value a. Constructor Atom captures
a resumption of the form α ε res. Specifically, Atom takes a monadic action of
type m (Thread m a), which denotes an atomic computation in monad m that
returns a new resumption as a result. In other words, Atom captures both the
atomic action that is being executed (α) and the subsequent resumption (res).
Finally, constructor Fork captures the action of spawning new threads; value
Fork res res ≥ encodes a computation wherein a new thread runs resumption res
and the original thread continues as res ≥.2 As in the standard Haskell libraries,
we assume that a fork does not return the new thread’s final value and thus the
type of the new thread/resumption is simply Thread m ().

Programming with resumptions. Users do not build programs based on resump-
tions by directly using the constructors of Thread m a. Instead, they use
the interface provided by Haskell monads: return :: a ∈ Thread m a and
(>>=) :: Thread m a ∈ (a ∈ Thread m b) ∈ Thread m b. The expression
return a creates a resumption which consists of the computed value a, i.e., it
corresponds to Done a. The operator (>>=), called bind, is used to sequence
atomic computations. Specifically, the expression res >>= f returns a resumption
that consists of the execution of the atomic actions in res followed by the atomic
actions obtained from applying f to the result produced by res. We sometimes
use Haskell’s do-notation to write such monadic computations. For example, the
expression res>>=(σa ∈ return (a+1)), i.e., actions described by the resumption
res followed by return (a + 1) where a is the result produced by res, is written
as do a ≤ res; return (a + 1).

Scheduling computations. We use round-robin to schedule atomic actions of dif-
ferent threads. Fig. 3 shows our scheduler implemented as a function from a list of
threads into an interleaved computation in the monad m. The scheduler behaves
1 In our implementation, atomic actions π (as referred as in π ψ res) are actions

described by the monad m.
2 Spawning threads could also be represented by a equivalent constructor Fork ≤ ::

Thread m () → Thread m a, we choose Fork for pedagogical reasons.

204 P. Buiras et al.

sch :: [Thread m ()] → m ()
sch [] = return ()
sch ((Done) : thrds) = sch thrds
sch ((Atom m) : thrds) =

do res ← m; sch (thrds ++ [res])
sch ((Fork res res ≤) : thrds) =

sch ((res : thrds) ++ [res ≤])

Fig. 3. Simple round-robin scheduler

as follows. If there is an empty list of resumptions, the scheduler, and thus the
program, terminates. If the resumption at the head of the list is a computed
value (Done), the scheduler removes it and continues scheduling the remaining
threads (sch thrds). (Recall that we are primarily concerned with the side-effects
produced by threads and not about their final values.) When the head of the list
is an atomic step (Atom m), sch runs it (res ≤ m), takes the resulting resump-
tion (res), and appends it to the end of the thread list (sch (thrds ++ [res])).
Finally, when a thread is forked, i.e., the head of the list is a Fork res res ≥, the
spawned resumption is placed at the front of the list (res : thrds). Observe that
in both of the latter cases the scheduler is invoked recursively—hence we keep
evaluating the program until there are no more threads to schedule. We note
that although we choose a particular, simple scheduling approach, our results
naturally extend for a wide class of deterministic schedulers [28,38].

4 Extending Resumptions with State and Exceptions

LIO provides general programming language abstrations (e.g., state and excep-
tions), which our library must preserve to retain expressiveness. To this end,
we extend the notion of resumptions and modify the scheduler to handle thread
local state and exceptions.

Thread local state. As described in [34], the LIO monad keeps track of a current
label, Lcur. This label is an upper bound on the labels of all data in lexical scope.
When a computation C, with current label LC , observes an object labeled LO,
C’s label is raised to the least upper bound or join of the two labels, written
LC → LO. Importantly, the current label governs where the current computation
can write, what labels may be used when creating new channels or threads,
etc. For example, after reading an object O, the computation should not be
able to write to a channel K if LO is more confidential than LK—this would
potentially leak sensitive information (about O) into a less sensitive channel.
We write LC ⊥ LK when LK at least as confidential as LC and information is
allowed to flow from the computation to the channel.

Using our resumption definition of Sect. 3, we can model concurrent LIO
programs as values of type Thread LIO . Unfortunately, such programs are overly
restrictive—since LIO threads would be sharing a single current label—and do

A Library for Removing Cache-Based Attacks 205

sch ((Atom m) : thrds) =
do res ≤ m

st ≤ get
sch (thrds ++ [put st ↔ res])

sch ((Fork res res ≥) : thrds) =
do st ≤ get

sch ((res : thrds) ++ [put st ↔ res ≥])

Fig. 4. Context-switch of local state

not allow for the implementation of many important applications. Instead, and
as done in the concurrent version of LIO [35], we track the state of each thread,
independently, by modifying resumptions, and the scheduler, with the ability to
context-switch threads with state.

Figure 4 shows these changes to sch. The context-switching mechanism relies
on the fact that monad m is a state monad, i.e., provides operations to retrieve
(get) and set (put) its state. LIO is a state monad,3 where the state contains
(among other things) Lcur. Operation (↔) :: m b ∈ Thread m a ∈ Thread m a
modifies a resumption in such a way that its first atomic step (Atom) is extended
with m b as the first action. Here, Atom consists of executing the atomic step
(res ≤ m), taking a snapshot of the state (st ≤ get), and restoring it when
executing the thread again (put st ↔ res). Similarly, the case for Fork saves the
state before creating the child thread and restores it when the parent thread
executes again (put st ↔ res ≥).

Exception handling. As described in [36], LIO provides a secure way to throw
and catch exceptions—a feature crucial to many real-world applications. Unfor-
tunately, simply using LIO’s throw and catch as atomic actions, as in the case
of local state, results in non-standard behavior. In particular, in the interleaved
computation produced by sch, an atomic action from a thread may throw an
exception that would propagate outside the thread group and crash the program.
Since we do not consider leaks due to termination, this does not impact security;
however, it would have non-standard and restricted semantics. Hence, we first
extend our scheduler to introduce a top-level catch for every spawned thread.

Besides such an extension, our approach still remains quite limiting. Specif-
ically, LIO’s catch is defined at the level of the monad LIO , i.e., it can only
be used inside atomic steps. Therefore, catch-blocks are prevented from being
extended beyond atomic actions. To address this limitation, we lift exception
handling to work at the level of resumptions.

To this end, we consider a monad m that handles exceptions, i.e., a monad
for which throw :: e ∈ m a and catch :: m a ∈ (e ∈ m a) ∈ m a, where e

3 For simplicity of exposition, we use get and set . However, LIO only provides such
functions to trusted code. In fact, the monad LIO is not an instance of MonadState
since this would allow untrusted code to arbitrarily modify the current label—a clear
security violation.

206 P. Buiras et al.

throw e = Atom (LIO .throw e)
catch (Done a) = Done a
catch (Atom a) handler =

Atom (LIO .catch
(do res ≤ a

return (catch res handler))
(λe ∈ return (handler e)))

catch (Fork res res ≥) handler =
Fork res (catch res ≥ handler)

Fig. 5. Exception handling for resumptions

is a type denoting exceptions, are accordingly defined. Function throw throws
the exception supplied as an argument. Function catch runs the action supplied
as the first argument (m a), and if an exception is thrown, then executes the
handler (e ∈ m a) with the value of the exception passed as an argument. If
no exceptions are raised, the result of the computation (of type a) is simply
returned.

Figure 5 shows the definition of exception handling for resumptions. Since
LIO defines throw and catch [36], we qualify these underlying functions with LIO
to distinguish them from our resumption-level throw and catch. When throwing
an exception, the resumption simply executes an atomic step that throws the
exception in LIO (LIO .throw e).

The definitions of catch for Done and Fork are self explanatory. The most
interesting case for catch is when the resumption is an Atom. Here, catch applies
LIO .catch step by step to each atomic action in the sequence; this is necessary
because exceptions can only be caught in the LIO monad. As shown in Fig. 5,
if no exception is thrown, we simply return the resumption produced by m.
Conversely, if an exception is raised, LIO .catch will trigger the exception handler
which will return a resumption by applying the top-level handler to the exception
e. To clarify, consider catching an exception in the resumption α1 ε α2 ε x.
Here, catch executes α1 as the first atomic step, and if no exception is raised, it
executes α2 as the next atomic step; on the other hand, if an exception is raised,
the resumption α2 ε x is discarded and catch, instead, executes the resumption
produced when applying the exception handler to the exception.

5 Performance Tuning

Unsurprisingly, interleaving computations at the library-level introduces perfor-
mance degradation. To alleviate this, we provide primitives that allow devel-
opers to control the granularity of atomic steps—fine-grained atoms allow for
more flexible programs, but also lead to more context switches and thus perfor-
mance degradation (as we spend more time context switching). Additionally, we
provide a primitive for the parallel execution of pure code. We describe these
features—which do not affect our security guarantees—below.

A Library for Removing Cache-Based Attacks 207

Granularity of atomic steps. To decrease the frequency of context switches, pro-
grammers can treat a complex set of atoms (which are composed using monadic
bind) as a single atom using singleAtom :: Thread m a ∈ Thread m a. This
function takes a resumption and “compresses” all its atomic steps into one.
Although singleAtom may seem unsafe, e.g., because we do not restrict threads
from adjust the granularity of atomic steps according to secrets, in Sect. 6 we
show that this is not the case—it is the atomic execution of atoms, regardless of
their granularity, that ensures security.

Parallelism. As in [37], we cannot run one scheduler sch per core to gain perfor-
mance through parallelism. Threads running in parallel can still race to public
resources, and thus vulnerable to internal timing attacks (that may, for exam-
ple, rely on the L3 CPU cache). In principle, it is possible to securely parallelize
arbitrary side-effecting computations if races (or their outcomes) to shared pub-
lic resource are eliminated. Similar to observational low-determinism [41], our
library could allow parallel computations to compute on disjoint portions of the
memory. However, whenever side-effecting computations follow parallel code, we
would need to impose synchronization barriers to enforce that all side-effects
are performed in a pre-determined order. It is precisely this order, and LIO’s
safe side-effecting primitives for shared-resources, that hides the outcome of any
potential dangerous parallel race. In this paper, we focus on executing pure code
in parallel; we leave side-effecting code to future work.

Pure computations, by definition, cannot introduce races to shared resources
since they do not produce side effects.4 To consider such computations, we simply
extend the definition of Thread with a new constructor: Parallel::pure b ∈ (b ∈
Thread m a) ∈ Thread m a. Here, pure is a monad that characterizes pure
expressions, providing the primitive runPure :: pure b ∈ b to obtain the value
denoted by the code given as argument. The monad pure could be instantiated to
Par , a monad that parallelizes pure computations in Haskell [21], with runPure
set to runPar . In a resumption, Parallel p f specifies that p is to be executed
in a separate Haskell thread—potentially running on a different core than the
interleaved computation. Once p produces a value x , f is applied to x to produce
the next resumption to execute.

Figure 6 defines sch for pure computations, where interaction between re-
sumptions and Haskell-threads gets regulated. The scheduler relies on well-
established synchronization primitives called MVars [13]. A value of type MVar
is a mutable location that is either empty or contains a value. Function putMVar
fills the MVar with a value if it is empty and blocks otherwise. Dually, takeMVar
empties an MVar if it is full and returns the value; otherwise it blocks. Our
scheduler implementation sch simply takes the resumption produced by the
sync function and schedules it at the end of the thread pool. Function sync,
internally creates a fresh MVar v and spawns a new Haskell-thread to execute
4 In the case of Haskell, lazy evaluation may pose a challenge since whether or not a

thunk has been evaluate is indeed an effect on a cache [24]. Though our resumption-
based approach handles this for the single-core case, handling this in general is part
of our ongoing work.

208 P. Buiras et al.

sch (Parallel p f : thrds) =
do res ≤ sync (λv ∈ putMVar v (runPure p))

(λv ∈ takeMVar v)
f

sch (thrds ++ [res])

Fig. 6. Scheduler for parallel computations

putMVar v (runPure p). This action will store the result of the parallel com-
putation in the provided MVar. Subsequently, sync returns the resumption res,
whose first atomic action is to read the parallel computation’s result from the
MVar (takeMVar v). At the time of reading, if a value is not yet ready, the
atomic action will block the whole interleaved computation. However, once a
value x is produced (in the separate thread), f is applied to it and the execution
proceeds with the produced resumption (f x).

6 Soundness

In this section, we extend the previous formalization of LIO [34] to model the
semantics of our concurrency library. We present the syntax extensions that we
require to model the behavior of the Thread monad:

Expression: e:: = . . . | sch es | Atom e | Done e | Fork e e | Parallel e e

where es is a list of expressions. For brevity, we omit a full presentation of the
syntax and semantics, since we rely on previous results in order to prove the
security property of our approach. The interested reader is referred to [6].

Expressions are the usual σ-calculus expressions with special syntax for
monadic effects and LIO operations. The syntax node sch es denotes the sched-
uler running with the list of threads es as its thread pool. The nodes Atom e,
Done e, Fork e e and Parallel e e correspond to the constructors of the Thread
data type. In what follows, we will use metavariables x,m, p, t, v and f for dif-
ferent kinds of expressions, namely values, monadic computations, pure compu-
tations, threads, MVars and functions, respectively.

We consider a global environment Σ which contains the current label of
the computation (Σ .lbl), and also represents the resources shared among all
threads, such as mutable references. We start from the one-step reduction rela-
tion5 ⊆Σ , e≥ −∈ ⊆Σ ≥, e ≥≥, which has already been defined for LIO [34]. This
relation represents a single evaluation step from e to e≥, with Σ as the initial
environment and Σ ≥ as the final one. Presented as an extension to the −∈ rela-
tion, Figure 7 shows the reduction rules for concurrent execution using sch. The
configurations for this relation are of the form ⊆Σ , sch ts≥, where Σ is a runtime

5 As in [35], we consider a version of −→ which does not include the operation
toLabeled , since it is susceptible to internal timing attacks.

A Library for Removing Cache-Based Attacks 209

(Done)

⊥σ, sch (Done x : ts)⇒ −→ ⊥σ, sch ts⇒

(Atom)

⊥σ, m⇒ −→∅ ⊥σ≤, (e)LIO⇒
⊥σ, sch (Atom (put σ.lbl >> m) : ts)⇒ −→ ⊥σ≤, sch (ts ++ [put σ.lbl ∅ e])⇒

(Fork)

⊥σ, sch (Fork m1 m2 : ts)⇒ −→ ⊥σ, sch ((m1 : ts) ++ [put σ.lbl ∅ m2])⇒

Fig. 7. Semantics for sch expressions.

(Seq)

⊥σ, e⇒ −→ ⊥σ≤, e≤⇒ P ∪ P ≤

⊥σ, e ◦ P ⇒ ψ→ ⊥σ≤, e≤ ◦ P ≤⇒

(Pure)

P ∪ P ≤ vs fresh MVar s = σ.lbl

⊥σ, sch (Parallel p f : ts) ◦ P ⇒ ψ→
⊥σ, sch (ts ++ [Atom (takeMVar vs >>= f)]) ◦ P ≤ ◦ (putMVar vs (runPure p))s⇒

(Sync)

P ∪ P ≤

⊥σ, sch (Atom (takeMVar vs >>= f) : ts) ◦ (putMVar vs x)s ◦ P ⇒ ψ→
⊥σ, sch (f x : ts) ◦ P ≤⇒

Fig. 8. Semantics for sch expressions with parallel processes.

environment and ts is a list of Thread computations. Note that the computation
in an Atom always begins with either put Σ .lbl for some label Σ .lbl, or with
takeMVar v for some MVar v . Rules (Done), (Atom), and (Fork) basically
behave like the corresponding equations in the definition of sch (see Figs. 3 and
4). In rule (Atom), the syntax node (e)LIO represents an LIO computation that
has produced expression e as its result. Although sch applications should expand
to their definitions, for brevity we show the unfolding of the resulting expressions
into the next recursive call. This unfolding follows from repeated application of
basic σ-calculus reductions.

Figure 8 extends relation −∈ into Σ∈ to express pure parallel computations.
The configurations for this relation are of the form ⊆Σ , sch ts∀P≥, where P is an
abstract process representing a pure computation that is performed in parallel.
These abstract processes would be reified as native Haskell threads. The operator
(∀), representing parallel process composition, is commutative and associative.

As described in the previous section, when a Thread evaluates a Parallel
computation, a new native Haskell thread should be spawned in order to run it.

210 P. Buiras et al.

Rule (Pure) captures this intuition. A fresh MVar vs (where s is the current
label) is used for synchronization between the parent and the spawned thread.
A process is denoted by putMVar vs followed by a pure expression, and it is also
tagged with the security level of the thread that spawned it.

Pure processes are evaluated in parallel with the main threads managed by
sch. The relation ∅ nondeterministically evaluates one process in a parallel
composition and is defined as follows.

runPure p −∈≤ x

(putMVar vs (runPure p))s∀P ∅ (putMVar vs x)s∀P

For simplicity, we consider the full evaluation of one process until it yields a
value as just one step, since the computations involved are pure and therefore
cannot leak data. Rule (Seq) in Fig. 8 represents steps where no parallel forking
or synchronization is performed, so it executes one −∈ step alongside a ∅ step.

Rule (Sync) models the synchronization barrier technique from Sect. 5. When
an Atom of the form (takeMVar vs>>= f) is evaluated, execution blocks until the
pure process with the corresponding MVar vs completes its computation. After
that, the process is removed and the scheduler resumes execution.

Security guarantees. We show that programs written using our library sat-
isfy termination-insensitive non-interference, i.e., an attacker at level L cannot
distinguish the results of programs that run with indistinguishable inputs. This
result has been previously established for the sequential version of LIO [34]. As
in [20,31,34], we prove this property by using the term erasure technique.

In this proof technique, we define function ΨL in such a way that ΨL(e) con-
tains only information below or equal to level L, i.e., the function ΨL replaces
all the information more sensitive than L or incomparable to L in e with a hole
(•). We adapt the previous definition of ΨL to handle the new constructs in the
library. In most of the cases, the erasure function is simply applied homomorphi-
cally (e.g., ΨL(e1 e2) = ΨL(e1) ΨL(e2)). For sch expressions, the erasure function
is mapped into the list; all threads with a current label above L are removed
from the pool (filter (∗≡ •) (map ΨL ts)), where ≡ denotes syntactic equivalence).
Analogously, erasure for a parallel composition consists of removing all processes
using an MVar tagged with a level not strictly below or equal to L. The compu-
tation performed in a certain Atom is erased if the label is not strictly below or
equal than L. This is given by

ΨL(Atom (put s >> m)) =
{• , s ∗⊥ L

put s >> ΨL (m) , otherwise

A similar rule exists for expressions of the form Atom (takeMVar vs >>= f).
Note that this relies on the fact that an atom must be of the form Atom (put s>>
m) or Atom (takeMVar vs >>= f) by construction. For expressions of the form
Parallel p f , erasure behaves homomorphically, i.e. ΨL(Parallel p f) = Parallel
ΨL(p) (ΨL ♦ f).

A Library for Removing Cache-Based Attacks 211

Following the definition of the erasure function, we introduce the a new
evaluation relation Σ∈L as follows: ⊆Σ , t∀P≥ Σ∈L ΨL(⊆Σ ≥, t ≥∀P ≥≥) if ⊆Σ , t∀P≥ Σ∈
⊆Σ ≥, t ≥∀P ≥≥. The relation Σ∈L guarantees that confidential data, i.e., data not
below or equal-to level L, is erased as soon as it is created. We write Σ∈≤

L for the
reflexive and transitive closure of Σ∈L.

In order to prove non-interference, we will establish a simulation relation
between Σ∈≤ and Σ∈≤

L through the erasure function: erasing all secret data and
then taking evaluation steps in Σ∈L is equivalent to taking steps in Σ∈ first, and
then erasing all secret values in the resulting configuration. In the rest of this
section, we consider well-typed terms to avoid stuck configurations.

Proposition 1 (Many-step simulation). If ⊆Σ , sch ts∀P≥ Σ∈≤

⊆Σ ≥, sch t ≥
s∀P ≥≥, then it holds that ΨL(⊆Σ , sch ts∀P≥) Σ∈≤

L ΨL(⊆Σ ≥, sch t ≥
s∀P ≥≥).

The L-equivalence relation ≈L is an equivalence relation between configura-
tions and their parts, defined as the equivalence kernel of the erasure function ΨL:
⊆Σ , sch ts∀P≥ ≈L ⊆Σ ≥, sch rs∀Q≥ iff ΨL(⊆Σ , sch ts∀P≥) = ΨL(⊆Σ ≥, sch rs∀Q≥).

If two configurations are L-equivalent, they agree on all data below or at
level L, i.e., an attacker at level L is not able to distinguish them.

The next theorem shows the non-interference property. The configuration
⊆Σ , sch []≥ represents a final configuration, where the thread pool is empty and
there are no more threads to run.

Theorem 1 (Termination-insensitive non-interference). Given a compu-
tation e, inputs e1 and e2, an attacker at level L, runtime environments Σ1

and Σ2 , then for all inputs e1, e2 such that e1 ≈L e2, if ⊆Σ1 , sch [e e1]≥ Σ∈≤

⊆Σ ≥
1 , sch []≥ and ⊆Σ2 , sch [e e2]≥ Σ∈≤ ⊆Σ ≥

2 , sch []≥, then ⊆Σ ≥
1 , sch []≥≈L ⊆Σ ≥

2 , sch []≥.
This theorem essentially states that if we take two executions from configu-
rations ⊆Σ1 , sch [e e1]≥ and ⊆Σ2 , sch [e e2]≥, which are indistinguishable to
an attacker at level L (e1 ≈L e2), then the final configurations for the exe-
cutions ⊆Σ ≥

1 , sch []≥ and ⊆Σ ≥
2 , sch []≥ are also indistinguishable to the attacker

(⊆Σ ≥
1 , sch []≥ ≈L ⊆Σ ≥

2 , sch []≥). This result generalizes when constructors Done,
Atom, and Fork involve exception handling (see Fig. 5). The reason for this lies
in the fact that catch and throw defer all exception handling to LIO .throw and
LIO .catch, which have been proved secure in [36].

7 Case Study: Classifying Location Data

We evaluated the trade-offs between performance, expressiveness and security
through an LIO case study. We implemented an untrusted application that per-
forms K-means clustering on sensitive user location data, in order to classify
GPS-enabled cell phone into locations on a map, e.g., home, work, gym, etc.
Importantly, this app is untrusted yet computes clusters for users without leak-
ing their location (e.g., the fact that Alice frequents the local chapter of the
Rebel Alliance). K-means is a particularly interesting application for evaluating

212 P. Buiras et al.

our scheduler as the classification phase is highly parallelizable—each data point
can be evaluated independently.

We implemented and benchmarked three versions of this app: (i) A baseline
implementation that does not use our scheduler and parallelizes the computa-
tion using Haskell’s Par Monad [21]. Since in this implementation, the sched-
uler is not modeled using resumptions, it leverages the parallelism features of
Par . (ii) An implementation in the resumption based scheduler, but pinned to
a single core (therefore not taking advantage of parallelizing pure computations).
(iii) A parallel implementation using the resumption-based scheduler. This imple-
mentation expresses the exact same computation as the first one, but is not vul-
nerable to cache-based leaks, even in the face of parallel execution on multiple
cores.

We ran each implementation against one month of randomly generated data,
where data points are collected each minute (so, 43200 data points in total). All
experiments were run ten times on a machine with two 4-core (with hyperthread-
ing) 2.4 Ghz Intel Xeon processors and 48 GB of RAM. The secure, but non-
parallel implementation using resumptions performed extremely poorly. With
mean 204.55 s (standard deviation 7.19 s), it performed over eight times slower
than the baseline at 17.17 s (standard deviation 1.16 s). This was expected since
K-means is highly parallelizable. Conversely, the parallel implementation in the
resumption based scheduler performed more comparably to the baseline, at
17.83 s (standard deviation 1.15 s).

To state any conclusive facts on the overhead introduce by our library, it is
necessary to perform a more exhaustive analysis involving more than a single
case study.

8 Related work

Cryptosystems. Attacks exploiting the CPU cache have been considered by the
cryptographic community [16]. Our attacker model is weaker than the one typi-
cally considered in cryptosystems, i.e., attackers with access to a stopwatch. As a
countermeasure, several authors propose partitioning the cache (e.g., [25]), which
often requires special hardware. Other countermeasures (e.g. [23]) are mainly
implementation-specific and, while applicable to cryptographic primitives, they
do not easily generalize to arbitrary code (as required in our scenario).

Resumptions. While CPS can be used to model concurrency in a functional set-
ting [7], resumptions are often simpler to reason about when considering security
guarantees [10,11]. The closest related work is that of Harrison and Hook [11];
inspired by a secure multi-level operating system, the authors utilize resump-
tions to model interleaving and layered state monads to represent threads. Every
layer corresponds to an individual thread, thereby providing a notion of local
state. Since we do not require such generality, we simply adapt the scheduler
to context-switch the local state underlying the LIO monad. We believe that
authors overlooked the power of resumptions to deal with timing perturbations
produced by the underlying hardware. In [10], Harrison hints that resumptions

A Library for Removing Cache-Based Attacks 213

could handle exceptions; in this work, we consummate his claim by describing
precisely how to implement throw and catch.

Language-based IFC. There is been considerable amount of literature on applying
programming languages techniques to address the internal timing covert chan-
nel (e.g. [28,33,35,39,41]). Many of these works assume that the execution of a
single step, i.e., a reduction step in some transition system, is performed in a
single unit of time. This assumption is often made so that security guarantees
can be easily shown using programming language semantics. Unfortunately, the
presence of the CPU cache (or other hardware shared state) breaks this corre-
spondence, making cache attacks viable. Our resumption approach establishes
a correspondence between atomic steps at the implementation-level and reduc-
tion step in a transition system. Previous approaches can leverage this technique
when implementing systems, as to avoid the reappearance of the internal timing
channel.

Agat [2] presents a code transformation for sequential programs such that
both code paths of a branch have the same memory access pattern. This trans-
formation has been adapted in different works (e.g., [32]). Agat’s approach, how-
ever, focuses on avoiding attacks relying on the data cache, while leaving the
instruction cache unattended.

Russo and Sabelfeld [29] consider non-interference for concurrent while-like-
programs under cooperative and deterministic scheduling. Similar to our work,
this approach eliminates cache-attacks by restricting the use of yields. Differently,
our library targets a richer programming languages, i.e., it supports parallelism,
exceptions, and dynamically adjusting the granularity of atomic actions.

Secure multi-execution [8] preserves confidentiality of data by executing the
same sequential program several times, one for each security level. In this sce-
nario, cache-based attacks can only be removed in specific configurations [14]
(e.g., when there are as many CPU cores as security levels).

Hedin and Sands [12] present a type-system for preventing external timing
attacks for bytecode. Their semantics is augmented to incorporate history, which
enables the modeling of cache effects. Zhang et al. [42] provide a method for
mitigating external events when their timing behavior could be affected by the
underlying hardware. Their semantics focusses on sequential programs, wherein
attacks due to the cache arise in the form of externally visible events. Their
solution is directly applicable to our system when considering external events.

System security. In order to achieve strong isolation, Barthe et al. [3] present a
model of virtualization which flushes the cache upon switching between guest
operating systems. Flushing the cache in such scenarios is common and does
not impact the already-costly context-switch. Although this technique addresses
attacks that leverage the CPU cache, it does not address the case where a shared
resource cannot be controlled (e.g., CPU bus).

Allowing some information leakage, Kopft et al. [17] combines abstract inter-
pretation and quantitative information-flow to analyze leakage bounds for cache
attacks. Kim et al. [15] propose StealthMem, a system level protection against
cache attacks. StealthMem allows programs to allocate memory that does not

214 P. Buiras et al.

get evicted from the cache. StealthMem is capable of enforcing confidentiality for
a stronger attacker model than ours, i.e., they consider programs with access to a
stopwatch and running on multiple cores. However, we suspect that StealthMem
is not adequate for scenarios with arbitrarily complex security lattices, wherein
not flushing the cache would be overly restricting.

9 Conclusion

We present a library for LIO that leverages resumptions to expose concurrency.
Our resumption-based approach and “instruction”- or atom-based scheduling
removes internal timing leaks induced by timing perturbations of the under-
lying hardware. We extend the notion of resumptions to support state and
exceptions and provide a scheduler that context-switches programs with such
features. Though our approach eliminates internal-timing attacks that lever-
age hardware caches, library-level threading imposes considerable performance
penalties. Addressing this, we provide programmers with a safe mean for con-
trolling the context-switching frequency, i.e., allowing for the adjustment of the
“size” of atomic actions. Moreover, we provide a primitive for spawning compu-
tations in parallel, a novel feature not previously available in IFC tools. We prove
soundness of our approach and implement a simple case study to demonstrate
its use. Our techniques can be adapted to other Haskell-like IFC systems beyond
LIO. The library, case study, and details of the proofs can be found at [6].

Acknowledgments. We would like to thank Josef Svenningsson and our colleagues in
the ProSec and Functional Programming group at Chalmers for useful comments. This
work was supported by the Swedish research agency VR, STINT, the Barbro Osher
foundation, DARPA CRASH under contract #N66001-10-2-4088, and multiple gifts
from Google. Deian Stefan is supported by the DoD through the NDSEG Fellowship
Program.

References

1. Aciiçmez, O.: Yet another microarchitectural attack:: exploiting I-cache. In: Pro-
ceedings of the 2007 ACM workshop on Computer security architecture, CSAW
’07. ACM (2007)

2. Agat, J.: Transforming out timing leaks. In: Proceedings of the ACM Symposium
on Principles of Programming Languages, pp. 40–53, January 2000

3. Barthe, G., Betarte, G., Campo, J., Luna, C.: Cache-leakage resilient OS isolation
in an idealized model of virtualization. In: Proceedings of the IEEE Computer
Security Foundations Symposium. IEEE Computer Society, June 2012

4. Boudol, G., Castellani, I.: Noninterference for concurrent programs. In: Orejas, F.,
Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 382–395.
Springer, Heidelberg (2001)

5. Boudol, G., Castellani, I.: Non-interference for concurrent programs and thread
systems. Theor. Comput. Sci. 281(1), 109–130 (2002)

A Library for Removing Cache-Based Attacks 215

6. Buiras, P., Levy, A., Stefan, D., Russo, A., Mazières, D.: A library for removing
cache-based attacks in concurrent information flow systems: Extended version.
http://www.cse.chalmers.se/∼buiras/resLIO.html (2013)

7. Claessen, K.: A poor man’s concurrency monad. J. Funct. Program. 9(3), 313–323
(1999)

8. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: Pro-
ceedings of the 2010 IEEE Symposium on Security and Privacy, SP ’10. IEEE
Computer Society (2010)

9. Giffin, D.B., Levy, A., Stefan, D., Terei, D., Mazières, D., Mitchell, J., Russo, A.:
Hails: protecting data privacy in untrusted web applications. In: Proceedings of
the 10th Symposium on Operating Systems Design and Implementation, October
2012

10. Harrison, B.: Cheap (but functional) threads. J. Funct. Program. http://people.
cs.missouri.edu/∼harrisonwl/drafts/CheapThreads.pdf (2004)

11. Harrison, W.L., Hook, J.: Achieving information flow security through precise con-
trol of effects. In: Proceedings of the IEEE Computer Security Foundations Work-
shop. IEEE Computer Society (2005)

12. Hedin, D., Sands, D.: Timing aware information flow security for a JavaCard-like
bytecode. Electron. Notes Theor. Comput. Sci. 141(1), 163–182 (2005)

13. Jones, S.P., Gordon, A., Finne, S.: Concurrent Haskell. In: Proceedings of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM (1996)

14. Kashyap, V., Wiedermann, B., Hardekopf, B.: Timing- and termination-sensitive
secure information flow: exploring a new approach. In: Proceedings of the IEEE
Symposium on Security and Privacy. IEEE (2011)

15. Kim, T., Peinado, M., Mainar-Ruiz, G.: STEALTHMEM: system-level protec-
tion against cache-based side channel attacks in the cloud. In: Proceedings of the
USENIX Conference on Security Symposium, Security’12. USENIX Association
(2012)

16. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

17. Köpf, B., Mauborgne, L., Ochoa, M.: Automatic quantification of cache side-
channels. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358,
pp. 564–580. Springer, Heidelberg (2012)

18. Krohn, M., Yip, A., Brodsky, M., Morris, R., Walfish, M.: A world wide web
without walls. In: 6th ACM Workshop on Hot Topics in Networking (Hotnets),
Atlanta, November 2007

19. Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613–
615 (1973)

20. Li, P., Zdancewic, S.: Arrows for secure information flow. Theor. Comput. Sci.
411(19), 1974–1994 (2010)

21. Marlow, S., Newton, R., Jones, S.L.P.: A monad for deterministic parallelism. In:
Proceedings of the ACM SIGPLAN Symposium on Haskell (2011)

22. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
23. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the

case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

24. Pablo, B., Russo, A.: Lazy programs leak secrets. In: The Pre-proceedings of the
18th Nordic Conference on Secure IT Systems (NordSec), October 2013

http://www.cse.chalmers.se/~buiras/resLIO.html
http://people.cs.missouri.edu/~harrisonwl/drafts/CheapThreads.pdf
http://people.cs.missouri.edu/~harrisonwl/drafts/CheapThreads.pdf

216 P. Buiras et al.

25. Page, D.: Partitioned cache architecture as a side-channel defence mechanism.
IACR Cryptology ePrint Archive 2005 (2005)

26. Percival, C.: Cache missing for fun and profit. In: Proceedings of BSDCan 2005
(2005)

27. Pottier, F.: A simple view of type-secure information flow in the Δ-calculus. In:
Proceedings of the 15th IEEE Computer Security Foundations Workshop (2002)

28. Russo, A., Sabelfeld, A.: Securing interaction between threads and the scheduler.
In: Proceedings of the IEEE Computer Security Foundations Workshop, July 2006

29. Russo, A., Sabelfeld, A.: Security for multithreaded programs under cooperative
scheduling. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp.
474–480. Springer, Heidelberg (2007)

30. Russo, A., Hughes, J., Naumann, D.A., Sabelfeld, A.: Closing internal timing chan-
nels by transformation. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol.
4435, pp. 120–135. Springer, Heidelberg (2007)

31. Russo, A., Claessen, K., Hughes, J.: A library for light-weight information-flow
security in Haskell. In: Proceedings of the ACM SIGPLAN Symposium on Haskell,
pp. 13–24. ACM Press, September 2008

32. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs.
In: Proceedings of the IEEE Computer Security Foundations Workshop, July 2000

33. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative
language. In: Proceedings of the ACM Symposium on Principles of Programming
Languages, January 1998

34. Stefan, D., Russo, A., Mitchell, J.C., Mazières, D.: Flexible dynamic information
flow control in Haskell. In: Haskell Symposium. ACM SIGPLAN, September 2011

35. Stefan, D., Russo, A., Buiras, P., Levy, A., Mitchell, J.C., Mazières, D.: Addressing
covert termination and timing channels in concurrent information flow systems. In:
The 17th ACM SIGPLAN International Conference on Functional Programming
(ICFP), pp. 201–213. ACM, September 2012

36. Stefan, D., Russo, A., Mitchell, J.C., Mazières, D.: Flexible dynamic information
flow control in the presence of exceptions. Arxiv preprint arXiv:1207.1457 (2012)

37. Stefan, D., Buiras, P., Yang, E.Z., Levy, A., Terei, D., Russo, A., Mazières, D.:
Eliminating cache-based timing attacks with instruction-based scheduling. In: Pro-
ceedings of the European Symposium on Research in Computer Security, pp. 718–
735 (2013)

38. Swierstra, W.: A Functional specification of effects. Ph.D. thesis, University of
Nottingham, November 2008

39. Volpano, D., Smith, G.: Probabilistic noninterference in a concurrent language. J.
Comput. Secur. 7(2–3), 231–253 (1999)

40. Wong, W.H.: Timing attacks on RSA: revealing your secrets through the fourth
dimension. Crossroads 11(3), p. 5 (2005)

41. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Proceedings of the IEEE Computer Security Foundations Workshop,
June 2003

42. Zhang, D., Askarov, A., Myers, A.C.: Language-based control and mitigation of
timing channels. In: Proceedings of PLDI. ACM (2012)

Models, Specifications,
and Proofs

Specification of Asynchronous Component
Systems with Modal I/O-Petri Nets

Serge Haddad1(B), Rolf Hennicker2, and Mikael H. Møller3

1 LSV, ENS Cachan & CNRS & Inria, Cachan, France
haddad@lsv.ens-cachan.fr

2 Ludwig-Maximilians-Universität München, Munich, Germany
3 Aalborg University, Aalborg, Denmark

Abstract. Modal transition systems are an elegant way to formalise the
design process of a system through refinement and composition. Here
we propose to adapt this methodology to asynchronous composition via
Petri nets. The Petri nets that we consider have distinguished labels for
inputs, outputs, internal communications and silent actions and “must”
and “may” modalities for transitions. The input/output labels show the
interaction capabilities of a net to the outside used to build larger nets by
asynchronous composition via communication channels. The modalities
express constraints for Petri net refinement taking into account obser-
vational abstraction from silent transitions. Modal I/O-Petri nets are
equipped with a modal transition system semantics. We show that refine-
ment is preserved by asynchronous composition and by hiding of com-
munication channels. We study compatibility properties which express
communication requirements for composed systems and we show that
these properties are decidable, they are preserved in larger contexts and
also by modal refinement. On this basis we propose a methodology for
the specification of distributed systems in terms of modal I/O-Petri nets
which supports incremental design, encapsulation of components, step-
wise refinement and independent implementability.

1 Introduction

Component-based design is an important field in software engineering. Cru-
cial tasks in the design process concern the stepwise refinement of specifica-
tions towards implementations and the formation of component assemblies by
composition. Many approaches and formalisms have been proposed for rigorous
component-based design supporting different communication styles and different
notions of refinement. Among them particular attention has been attracted by
modal transition systems introduced by Larsen and Thomsen in 1988 [15] which
use distinguished may- and must-transitions to specify allowed and obligatory
behaviour and thus provide a flexible basis for refinement. While refinement con-
cerns the vertical dimension of system development, composition concerns the

This work has been partially sponsored by the EU project ASCENS, 257414.

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 219–234, 2014.
DOI: 10.1007/978-3-319-05119-2 13, c© Springer International Publishing Switzerland 2014

220 S. Haddad et al.

horizontal dimension in which larger systems are built from smaller ones such
that communication requirements must be respected. Communication proper-
ties are important when reasoning about distributed mechanisms, algorithms
and applications (e.g. management of sockets in UNIX, maintaining unicity of a
token in a ring based algorithm, guarantee of email reading, etc).

Petri nets are a natural model for the design of concurrent and distributed
systems. They have received a great attention w.r.t. the composition and refine-
ment issues including communication properties. Composition of nets has been
addressed via several paradigms. The process algebra approach has been inves-
tigated by several works leading to the Petri net algebra [5]. Such an approach is
closely related to synchronous composition. In [20] and [21] asynchronous com-
position of nets is performed via a set of places or, more generally, via a subnet
modelling some medium. Then structural restrictions on the subnets are pro-
posed in order to preserve global properties like liveness or deadlock-freeness.
In [18] a general composition operator is proposed and its associativity is estab-
lished. A closely related concept to composition is the one of open Petri nets
which has been used in different contexts like the analysis of web services [22].
In parallel, very early works have been done for defining and analyzing refine-
ment of nets; see [6] for a survey. Looking at more recent works, [19] (which is
the closest to our contribution) studies the refinement in the context of circuit
design. In [19] a notion of correct implementation is introduced which is shown
to be compositional. Several works also use an abstraction/refinement paradigm
to propose efficient verification methods; see e.g. [8].

In our contribution we want to combine the advantages of modal transition
systems with the ability of Petri nets to represent infinite state systems, with
their decidability potential and with their way how asynchronous composition
is achieved. A natural candidate are modal Petri nets introduced in [7] (and
later in [2] as a special case of Modal Process Rewrite Systems) which studies
modal refinement and decidability results. Surprisingly, to the best of our knowl-
edge, no other approaches to modal Petri nets exist yet. On the other hand, for
asynchronous communication, we have recently introduced in [10] asynchronous
I/O-Petri nets, for which we have analysed several communication properties
from the compositionality and decidability point of view. Hence it is an obvious
goal to combine, adjust and extend the results achieved in [7] and [10] to a rigor-
ous design methodology that supports the vertical and the horizontal dimension
of software development in a uniform and compatible way.

Concerning the vertical dimension we consider modal refinement; for the hor-
izontal dimension we consider asynchronous composition and we focus on the
message consuming and the necessarily message consuming properties which
are important requirements to ensure that previously sent messages can or must
necessarily be consumed by the communication partner. It turns out that the
necessarily message consuming property defined in [10] is in general not pre-
served by modal refinement. This is due to the fact that our refinement notion
supports observational abstraction. Therefore we investigate the new notion of
an observationally weakly fair run and show that necessarily message consuming

Specification of Asynchronous Component Systems 221

is indeed preserved by modal refinement if we restrict the consumption require-
ment to all observational weakly fair runs. Due to the fairness requirement the
necessarily consuming property is also preserved on the horizontal layer when
components are put in compatible contexts. We also show that the new variants
of the communication properties are decidable.

This paper is structured as follows: In Sect. 2, we summarise our proposal by
means of an illustrating example. Section 3 presents the underlying formal defin-
tions of modal asynchronous I/O-Petri nets (MAIOPNs) and their semantics in
terms of modal asynchronous I/O-transition systems (MAIOTSs). In Sect. 4, we
consider modal refinement and show that it is compositional. We also show that
modal refinement is preserved by channel hiding. In Sect. 5, we study (necessar-
ily) message consuming systems and we present the results on the preservation
of the communication properties by composition and by refinement. As a conse-
quence, our framework supports the principle of independent implementability
in the sense of [1]. We finish with some concluding remarks in Sect. 6.

2 Illustrating Example

We introduce an illustrating example to motivate our notions of modal asyn-
chronous I/O-Petri nets (MAIOPNs), their composition, hiding and refinement.
For this purpose we consider a top down approach to the design of a simple com-
pressing system (inspired by [3]) which is able to receive files for compression
and outputs either zip- or jpg-files. We start with an interface specification of
the system modelled by the CompressorInterface in Fig. 1a.

The interface specification is presented by a labelled Petri net with distin-
guished input and output labels and with modalities on the transitions. The label
file suffixed with “?” indicates an input action and the labels comprJpg, comprZip
suffixed with “!” indicate output actions. Following the idea of modal transition
systems introduced by Larsen and Thomsen in [15] transitions are equipped with
“must” or “may” modalities. A must-transition, drawn black, indicates that this
transition is required for any refinement while a may-transition, drawn white,
may also be removed or turned into a must-transition. Models containg only
must-transitions represent implementations. In the example it is required that
input files must always be received and that the option to produce zipped text
files is always available while a refinement may or may not support the produc-
tion of compressed jpg-files for graphical data. Our interface specification models
an infinite state system since an unbounded number of files can be received.

In the next step we propose an architecture for the realisation of the com-
pressing system as shown in Fig. 1b. It is given by an assembly of three connected
components, a Controller component which delegates the compression tasks, a
GifCompressor component which actually performs the compression of gif-files
into jpg-files and a TxtCompressor component which produces zip-files from text
files. The single components are connected by unbounded and unordered chan-
nels gif, jpg, . . . for asynchronous communication.

222 S. Haddad et al.

file?

comprZip!

comprJpg!

(a) CompressorInterface.

Controller

GifCompressor TxtCompressor

gif jpg fail txt zip

file?
comprJpg!

comprZip!

(b) CompressorAssembly (architecture).

file?

gif!

txt!

jpg?

fail?

zip?

comprJpg!

comprZip!

(c) Controller. file?

gif�

txt�

�jpg
�fail

�zip

comprJpg?

comprZip?

�txt zip�

txt zip

�gif fail� jpg�

gif fail jpg

(d) CompressorAssembly.

gif? fail! jpg!

(e) GifCompressor.

txt? zip!

(f) TxtCompressor .

Fig. 1. a CompressorInterface, b Compressor Assembly (architecture), c Controller, d
Compressor Assembly, e GifCompressor, f TxtCompressor.

The behaviour of the single components is modelled by the MAIOPNs shown
in Fig. 1c, e, f. The behaviour of the CompressorAssembly is given by the asyn-
chronous composition of the single Petri nets shown in Fig. 1d. For each pair of
shared input and output actions a new place is introduced, called communication
channel. Transitions with a shared output label a (of a given component) are
connected to the new place a and the transition label is renamed to a� in the com-
position. Similarly the place a is connected to transitions with the corresponding
input label a which is then renamed to �a in the composition. The result of our
composition is very similar to the composition of open Petri nets, see e.g. [16],
which relies on matching of interface places. But our approach is methodologi-
cally different since we introduce the communication places only when the com-
position is constructed. In that way our basic components are not biased to
asynchronous composition but could be used for synchronous composition as
well. In this work we focus on asynchronous composition and we are particularly
interested in the analysis of generic communication properties ensuring that mes-
sages pending on communication channels are eventually consumed. Therefore
our notion of modal asynchronous I/O-Petri net will comprise an explicit discrim-
ination of channel places and, additionally to input/output labels we use, for each
channel a, distinguished communication labels a� for putting messages on the
channel and �a for consuming messages from the channel. If the set of channels

Specification of Asynchronous Component Systems 223

is empty a MAIOPN models an interface or a primitive component from which
larger systems can be constructed by asynchronous composition.

In our example the behaviour of the CompressorAssembly is given by the asyn-
chronous composition Controller ∈pn TxtCompressor ∈pn GifCompressor shown in
Fig. 1d. It models a highly parallel system such that compressing of files can be
executed concurrently and new files can be obtained at the same time. Each
single compressing tool, however, is working sequentially. Its behaviour should
be clear from the specifications. The GifCompressor in Fig. 1e has an optional
behaviour modelled by a may-transition to indicate a compressing failure and
then the controller will submit the file again.

After the assembly has been established we are interested in whether com-
munication works properly in the sense that pending messages on communi-
cation channels will be consumed. We will distinguish between two variants of
consumption requirements (see Sect. 5) expressing that for non-empty channels
there must be a possibility for consumption or, more strongly, that consump-
tion must always happen on each (observationally weakly fair) run. The fairness
assumption is essential to support incremental design (Theorem 9); for instance
we can first check that Controller ∈pn TxtCompressor has the desired communica-
tion properties for the channels {txt, zip}, then we check that the full assembly
has the desired communication properties for its channel subset {gif, jpg, fail}
and from this we can automatically derive that the assembly has the properties
for all its channels.

It remains to show that the CompressorAssembly is indeed a realisation of
the CompressorInterface. For this purpose we consider the black-box behaviour
of the assembly obtained by hiding the communication channels. This is done by
applying our hiding operator to the CompressorAssembly denoted by
CompressorAssembly\pn{gif, jpg, fail, txt, zip}; see Fig. 2. Hiding moves all com-
munication labels a� and �a for the hidden channels a to the invisible action τ .
In this way producing and consuming messages from hidden channels become
silent transitions. Now we have to establish a refinement relation between Com-
pressorAssembly\pn{gif, jpg, fail, txt, zip} and the CompressorInterface by taking
into account the modalities on the transitions such that must-transitions of
the abstract specification must be available in the refinement and all transi-
tions of the refinement must be allowed by corresponding may-transitions of
the abstract specification. In our example the assembly has implemented the
optional jpg compression of the interface by a must-transition. Obviously we
must also deal with silent transitions which, in our example, occur in Compres-
sorAssembly\pn{gif, jpg, fail, txt, zip}. For this purpose we use a modal refinement
relation, denoted by ≤≥

m, which supports observational abstraction. In our case
study this is expressed by the proof obligation (1) in Fig. 2.

Figure 2 illustrates that after the assembly is proven to be a correct realisa-
tion of the interface one can still further refine the assembly by component-wise
refinement of its constituent parts. For instance, we can locally refine the Gif-
Compressor by resolving the may-modality for producing failures. There are basi-
cally two possibilities: Either the failure option is removed or it is turned into

224 S. Haddad et al.

Controller

GifCompressor TxtCompressor

gif jpg fail txt zip

file?
comprJpg!

comprZip!

CompressorAssembly

≤∗ m3)

Controller

GifCompressorRef TxtCompressor

gif jpg fail txt zip

file?
comprJpg!

comprZip!

CompressorAssemblyRef

CompressorInterface

≤∗ m1)

CompressorAssembly
\pn{gif, jpg, fail, txt, zip}

≤∗ m4)

CompressorAssemblyRef
\pn{gif, jpg, fail, txt, zip}

hide

hide

GifCompressor

≤∗ m2)

GifCompressorRef

compose

compose

Fig. 2. System development methodology.

a must-transition. The component GifCompressorRef in Fig. 2 represents such
a refinement of GifCompressor indicated by (2). We will show in Theorem 3.1
that refinement is compositional, i.e. we obtain automatically that the assembly
CompressorAssemblyRef obtained by composition with the new gif compressor
is a refinement of CompressorAssembly indicated by (3) in Fig. 2. As a crucial
result we will also show in Theorem 10 that refinement preserves communication
properties which then can be automatically derived for CompressorAssemblyRef.
Finally, we must be sure that the refined assembly provides a realisation of the
original interface specification CompressorInterface. This can be again automat-
ically achieved since hiding preserves refinement (Theorem 3.2) which leads to
(4) in Fig. 2 and since refinement is transitive.

In the next sections we will formally elaborate the notions discussed above.
We hope that their intended meaning is already sufficiently explained such that
we can keep the presentation short. An exception concerns the consideration of
the message consuming properties in Sect. 5 which must still be carefully studied
to ensure incremental design and preservation by refinement.

3 Modal Asynchronous I/O-Petri Nets

In this section we formalise the syntax of MAIOPNs and we define their tran-
sition system semantics. First we recall some basic definitions for modal Petri
nets and modal transition systems.

3.1 Modal Petri Nets and Modal Transition Systems

In the following we consider labelled Petri nets such that transitions are equipped
with labels of an alphabet Σ or with the symbol τ that models silent transitions.
We write Σα for Σ → {τ}. We assume the reader to be familiar with the basic
notions of labelled Petri nets consisting of a finite set P of places, a finite set
T of transitions, a set of arcs between places and transitions (transitions and

Specification of Asynchronous Component Systems 225

places resp.), formalised by incidence matrices W− and W+, an initial marking
m0 and a labelling function λ : T ⊥ Σα . In [7] we have introduced modal Petri
nets N = (P, T, T �, Σ,W−,W+, λ,m0) such that T � ↔ T is a distinguished

subset of must-transitions. We write m
t���m≤ if a transition t ⊆ T is firable

from a marking m leading to a marking m≤. If t ⊆ T � we write m
t−⊥m≤. If

λ(t) = a we write m
a���m≤ and for t ⊆ T � we write m

a−⊥m≤. The notation is
extended as usual to firing sequences m

ω���m≤ with σ ⊆ T ≥ and to m
ω−⊥m≤ with

σ ⊆ (T �)≥. A marking m is reachable if there exists a firing sequence σ ⊆ T ≥

such that m0 ω���m.
Modal transition systems have been introduced in [15]. We will use them to

provide semantics for modal Petri nets. A modal transition system is a tuple
S = (Σ,Q, q0, ��� ,−⊥), such that Σ is a set of labels, Q is a set of states,
q0 ⊆ Q is the initial state, ��� ↔ Q × Σα × Q is a may-transition relation, and
−⊥ ↔ ��� is a must-transition relation. We explicitly allow the state space Q
to be infinite which is needed to give interpretations to modal Petri nets that
model infinite state systems.

The semantics of a modal Petri net N = (P, T, T �, Σ,W−,W+, λ,m0) is
given by the modal transition system mts(N) = (Σ,Q, q0, ���,−⊥) representing
the reachability graph of the net by taking into account modalities: Q ↔ N

P is
the set of reachable markings of N , ��� = {(m,a,m≤) | a ⊆ Σα and m

a���m≤},
−⊥ = {(m,a,m≤) | a ⊆ Σα and m

a−⊥m≤}, and q0 = m0.
In the sequel we will use the following notations for modal transition systems.

We write may-transitions as q
a��� q≤ for (q, a, q≤) ⊆ ��� and similarly must-

transitions as q
a−⊥ q≤. The notation is extended in the usual way to finite

sequences σ ⊆ Σ≥
α by the notations q

ω���q≤ and q
ω−⊥q≤. The set of reachable

states of S is given by Reach(S) = {q | ≥σ ⊆ Σ≥
α . q0

ω���q}. For a sequence
σ ⊆ Σ≥

α the observable projection obs(σ) ⊆ Σ≥ is obtained from σ by removing all
occurrences of τ . Let a ⊆ Σ be a visible action and q, q≤ ⊆ Q. We write q

a
===>q≤

if q
ω���q≤ with obs(σ) = a and we call q

a
===>q≤ a weak may-transition. Similarly

we write q
a=∀q≤ if all transitions are must-transitions and call q

a=∀q≤ a weak
must-transition. The notation is extended as expected to finite sequences σ ⊆ Σ≥

of visible actions by the notations q
ω

===>q≤ and q
ω=∀q≤. In particular, q

ν
===>q≤

means that there is a (possibly empty) sequence of silent may-transitions from q

to q≤ and similarly q
ν=∀q≤ expresses a finite sequence of silent must-transitions.

3.2 Modal Asynchronous I/O-Petri Nets, Composition and Hiding

In this paper we consider systems which may be open for communication with
other systems and may be composed to larger systems. The open actions are
modelled by input labels (for the reception of messages from the environment)
and output labels (for sending messages to the environment) while communi-
cation inside an asynchronously composed system takes place by removing or
putting messages to distinguished communication channels. Given a finite set C

226 S. Haddad et al.

of channels, an I/O-alphabet over C is the disjoint union Σ = in → out → com of
pairwise disjoint sets of input labels, output labels and communication labels,
such that com = {�a, a� | a ⊆ C}. For each channel a ⊆ C, the label �a repre-
sents consumption of a message from a and a� represents putting a message on a.
A modal asynchronous I/O-Petri net (MAIOPN) N = (C,P, T, T �, Σ,W−,W+,
λ,m0) is a modal Petri net such that C ↔ P is a set of channel places which are
initially empty, Σ = in → out → com is an I/O-alphabet over C, and for all a ⊆ C
and t ⊆ T , there exists an (unweighted) arc from a to t iff λ(t) = �a and there
exists an (unweighted) arc from t to a iff λ(t) = a�.

The asynchronous composition of MAIOPNs works as for asynchronous
I/O-Petri nets considered in [10] by introducing new channel places and appro-
propriate transitions for shared input/output labels. The non-shared input and
output labels remain open in the composition. Moreover, we require that the
must-transitions of the composition are the union of the must-transitions of the
single components. The asynchronous composition of two MAIOPNs N and M
is denoted by N ∈pnM. It is commutative and also associative under appropriate
syntactic restrictions on the underlying alphabets. An example of a composition
of three MAIOPNs is given in Fig. 1d.

We introduce a hiding operator on MAIOPNs which allows us to hide com-
munication channels. In particular, it allows us to compute the black-box behav-
iour of an assembly when all channels are hidden. Let N be a MAIOPN with
I/O-alphabet ΣN = inN → outN → comN , and let H ↔ CN be a subset of
its channels. The channel hiding of H in N is the MAIOPN N \pn H with
channels C = CN \ H, with I/O-alphabet Σ = inN → outN → com such that
com = {�a, a� | a ⊆ C}, and with the labelling function:

λ(t) =

{
τ if ≥a ⊆ H . λN (t) = �a or λN (t) = a�,

λN (a) otherwise.

3.3 Semantics: Modal Asynchronous I/O-Transition Systems

We extend the transition system semantics of modal Petri nets defined in Sect. 3.1
to MAIOPNs. For this purpose we introduce modal asynchronous I/O-transition
system (MAIOTS) S = (C,Σ,Q, q0, ��� ,−⊥ , val) which are modal transition
systems such that C is a finite set of channels, Σ = in → out → com is an I/O-
alphabet over C, and val : Q −⊥ N

C is a channel valuation function which
determines for each state q ⊆ Q how many messages are actually pending on
each channel a ⊆ C. Instead of val(q)(a) we write val(q, a). We require that ini-
tially all channels are empty, i.e. val(q0, a) = 0 for all a ⊆ C, that for each a ⊆ C
putting a� and consuming �a messages from a has the expected behaviour, and
that the open input/output actions have no effect on a channel1, i.e.

1 val(q)[a++] (val(q)[a−−] resp.) denotes the update of val which increments (decre-
ments) the value of a and leaves the values of all other channels unchanged.

Specification of Asynchronous Component Systems 227

q
a�

−⊥ q≤ =∀ val(q≤) = val(q)[a++],

q
�a−⊥ q≤ =∀ val(q, a) > 0 and val(q≤) = val(q)[a − −], and

for all x ⊆ (in ∅ out), q x−⊥ q≤ =∀ val(q≤) = val(q).

The semantics maiots(N) of a modal asynchronous I/O-Petri net N is given
by the transition system semantics of modal Petri nets such that the reachable
markings are the states. Additionally we define the associated channel valu-
ation function val : Q −⊥ N

C such that the valuation of a channel a in a
current state m is given by the number of tokens on a under the marking m,
i.e. val(m,a) = m(a). For instance, the semantics of the CompressorInterface in
Sect. 2 and of the Controller leads to infinite state transition systems; the transi-
tion systems associated with the two compressor components have two reachable
states and the transitions between them correspond directly to their Petri net
representations in Fig. 1e, f.

The asynchronous composition S ∈ T of two MAIOTSs S and T works as
for asynchronous I/O-transition systems in [10] taking additionally care that
must-transitions of S and T induce must-transitions of S ∈ T . The composition
introduces new channels CST = ΣS ∗ ΣT for shared input/output labels. Every
transition with a shared output label a becomes a transition with the communi-
cation label a�, and similarly transitions with input labels a become transitions
with label �a. The state space of the composition is (the reachable part of) the
Cartesian product of the underlying state spaces of S and T together with the
set NCST of valuations for the new channels such that transitions labelled by a�

and �a have the expected effect on the new channels; for details see [10]. The
asynchronous composition of two MAIOTSs is commutative and also associative
under appropriate syntactic restrictions on the underlying alphabets.

We also introduce a hiding operator on MAIOTSs that hides communication
channels and moves all corresponding communication labels to τ . Let S = (CS ,
ΣS , QS , q0S , ���S ,−⊥S , valS) be a MAIOTS with I/O-alphabet ΣS = inS →outS →
comS , and let H ↔ CS be a subset of its channels. The channel hiding of H in
S is the MAIOTS S \ H = (C,Σ,QS , q0S , ���,−⊥, val), such that C = CS \ H,
Σ = inS → outS → com with com = {�a, a� | a ⊆ C}, val(q, a) = valS(q, a) for all
q ⊆ Q, a ⊆ C, and the may-transition relation is given by:

��� = {(q, a, q≤) | a ⊆ (Σα \ {�a, a� | a ⊆ H}) and q
a���Sq≤} ∅

{(q, τ, q≤) | ≥a ⊆ H such that either q
a�
���Sq≤ or q

�a���Sq≤},

The must-transition relation −⊥ is defined analogously.
For the results developed in the next sections it is important that our tran-

sition system semantics is compositional and compatible with hiding as stated
in the next theorem. The proof is given in Appendix A of [11].

Theorem 1. Let N and M be two composable MAIOPNs and let H ↔ CN be
a subset of the channels of N . The following holds:
1. maiots(N ∈pn M) = maiots(N)∈maiots(M) (up to isomorphic state spaces),
2. maiots(N \pn H) = maiots(N) \ H.

228 S. Haddad et al.

4 Modal Refinement

The refinement relation between MAIOPNs will be defined by considering their
semantics, i.e. MAIOTSs. For this purpose we adapt the weak modal refinement
relation for modal transition systems introduced in [13] which is based on a
simulation relation in both directions. It says that must-transitions of an abstract
specification must be preserved by the refinement while may-transitions of a
concrete specification must be allowed by the abstract one. In any case silent
transitions labelled with τ can be inserted, similarly to weak bisimulation, but
respecting modalities. Observational abstraction from silent transitions is indeed
important in many examples; e.g. when relating the encapsulated behaviour of an
assembly to a requirements specification as discussed in Sect. 2. If all transitions
of the abstract specification are must-transitions, modal refinement coincides
with weak bisimulation. Obviously, the modal refinement relation defined as
follows is reflexive and transitive.

Definition 2 (Modal refinement). Let S = (C,Σ,QS , q0S , ���S ,−⊥S , valS)
and T = (C,Σ,QT , q0T , ���T ,−⊥T , valT) be two MAIOTSs with the same I/O-
alphabet Σ over channels C. A relation R ↔ QS × QT is a modal refinement
relation between S and T if for all (qS , qT) ⊆ R and a ⊆ Σ:

1. qT
a−⊥T q≤

T =∀ ≥q≤
S ⊆ QS . qS

a=∀Sq≤
S ≡ (q≤

S , q≤
T) ⊆ R,

2. qT
α−⊥T q≤

T =∀ ≥q≤
S ⊆ QS . qS

ν=∀Sq≤
S ≡ (q≤

S , q≤
T) ⊆ R,

3. qS
a���Sq≤

S =∀ ≥q≤
T ⊆ QT . qT

a
===>T q≤

T ≡ (q≤
S , q≤

T) ⊆ R,
4. qS

α���Sq≤
S =∀ ≥q≤

T ⊆ QT . qT
ν

===>T q≤
T ≡ (q≤

S , q≤
T) ⊆ R.

We say that S is a modal refinement of T , written S ≤≥
m T , if there exists a

modal refinement relation R between S and T such that (q0S , q0T) ⊆ R. We write
qS ≤≥

m qT when (qS , qT) ⊆ R for a modal refinement relation R. ♦
The next theorem shows that modal refinement is preserved by asynchronous

composition and by channel hiding. The compositionality result stems in prin-
ciple from [13] and is proved in Appendix B of [11] in the context of MAIOTS.
The second result is also proved in Appendix B of [11] similarly to a result in [12]
for hiding in synchronous systems.

Theorem 3. Let S, T , E and F be MAIOTSs such that C is the set of channels
of S and of T and let H ↔ C.

1. If S ≤≥
m T , E ≤≥

m F and S and E are composable, then T and F are compos-
able and S ∈ E ≤≥

m T ∈ F .
2. If S ≤≥

m T then S \ H ≤≥
m T \ H.

The refinement definition and results are propagated to modal asynchronous
I/O-Petri nets in the obvious way: A MAIOPN M is a modal refinement of
a MAIOPN N , also denoted by M ≤≥

m N , if maiots(M) ≤≥
m maiots(N). The

counterparts of Theorem 3.1 and 3.2 for MAIOPNs are consequences of the

Specification of Asynchronous Component Systems 229

semantic compatibility results in Theorem 1.1. Examples for modal refinements
of MAIOPNs and applications of the theorem are pointed out in Sect. 2.

The decidability status of the modal refinement problem for MAIOPNs
depends on the kind of Petri nets one considers. Observing that there is a simple
reduction from the bisimilarity problem to the modal refinement problem and
that the former problem is undecidable for Petri nets [14], one gets that the lat-
ter problem is also undecidable; for an evolved discussion see [2]. However when
one restricts Petri nets to be modally weakly deterministic, the modal refine-
ment problem becomes decidable. The modal weak determinism of Petri nets is
a behavioural property which can also be decided (see [7] for both proofs). In
addition, determinism is a desirable feature for a specification (when possible).
For instance modal language specification is an alternative to modal transition
systems that presents such a behaviour [17].

5 Message Consuming Systems

In this section we consider generic properties concerning the asynchronous com-
munication via channels inspired by the various channel properties studied in [10].

We focus on the message consuming and the necessarily message consuming
properties and generalise them to take into account modalities and observational
abstraction w.r.t. silent transitions. Our goal is that the properties scale up to
larger contexts (to support incremental design) and that they are preserved by
modal refinement. Moreover we consider their decidability. For the definitions
we rely on the semantics of MAIOPNs, i.e. on MAIOTSs.

Let us first discuss the message consuming property (a) of Definition 4 for a
MAIOTS S and a subset B of its channels. It requires, for each channel a ⊆ B,
that if in an arbitrary reachable state q of S there is a message on a, then S
must be able to consume it, possibly after some delay caused by the execution of
autonomous must-transitions. All transitions that do not depend on the environ-
ment, i.e. are not related to input labels, are considered to be autonomous. Our
approach follows a “pessimistic” assumption taking into account arbitrary envi-
ronments that can let the system go where it wants and can also stop to provide
inputs at any moment. It is important that we require must-transitions since
the consuming property should be preserved by modal refinement. It is inspired
by the notion of “output compatibility” studied for synchronously composed
transition systems in [12].

A central role when components run in parallel is played by fairness assump-
tions; see, e.g., [4]. First we must define what we mean by a run and then we
will explain our fairness notion. A run is a finite or infinite sequence of state
transitions which satisfies a maximality condition. In principle a run can only
stop when a deadlock is reached. However we must be careful since (1) we are
dealing with open systems whose executions depend on the input from the envi-
ronment, (2) we must take into account that transitions with a may-modality
can be skipped in a refinement, and (3) we must be aware that also silent must-
transitions without successive mandatory visible actions can be omitted in a

230 S. Haddad et al.

refinement; cf. Definition 2, rule 2. In particular divergence in an abstract state
could be implemented by a deadlock. If one of the above conditions holds in a
certain state it is called a potential deadlock state.

Formally, let S = (C,Σ,Q, q0, ��� ,−⊥ , val) be a MAIOTS with Σ = in →
out→com. A state q ⊆ Q is a potential deadlock state if for all a ⊆ (Σ \ in), there
is no state q≤ ⊆ Q such that q

a=∀q≤. A run of S starting in a state q1 ⊆ Q is a
finite or infinite sequence ρ = q1

a1���q2
a2���q3

a3��� · · · with ai ⊆ Σα and qi ⊆ Q
such that, if the sequence is finite, its last state is a potential deadlock state. We
assume that system runs are executed in a runtime infrastructure which follows
a fair scheduling policy. In our context this means that any visible autonomous
action a, that is always enabled by a weak must-transition from a certain state
on, will infinitely often be executed. Formally, a run ρ = q1

a1���q2
a2��� · · · is

called observationally weakly fair if it is finite or if it is infinite and then for all
a ⊆ (Σ \ in) the following holds:

(≥k ≥ 1 . ↓i ≥ k . ≥q≤ . qi
a=∀q≤) =∀ (↓k ≥ 1 . ≥i ≥ k . ai = a).

We denote the set of all observationally weakly fair runs of S starting from q1 by
owfrunS(q1). For instance, for the MAIOPN M in Fig. 3b on page xx an infinite
run which always executes a�, �a, . . . is observationally weakly fair. A (diverging)
run of M which always executes τ from a certain state on is not observationally
weakly fair since �a is then always enabled by a weak must-transition but never
taken.

Note that for our results it is sufficient to use a weak fairness property instead
of strong fairness. We are now ready to define also the necessarily consuming
property 4 which requires that whenever a message is pending on a communica-
tion channel then the message must eventually be consumed on all observation-
ally weakly fair runs.

Definition 4 (Message consuming). Let S = (C,Σ,Q, q0, ��� ,−⊥ , val) be
a MAIOTS with I/O-alphabet Σ = in → out → com and let B ↔ C be a subset of
its channels.

(a) S is message consuming w.r.t. B if for all a ⊆ B and all q ⊆ Reach(S),

val(q, a) > 0 =∀ ≥q≤, q≤≤ ⊆ Q . ≥σ ⊆ (Σ \ in)≥ . q
ω=∀q≤ �a−⊥q≤≤.

(b) S is necessarily message consuming w.r.t. B if for all a ⊆ B, q ⊆ Reach(S),
val(q, a) > 0 =∀ ↓ρ ⊆ owfrunS(q) . �a ⊆ ρ .2

S is (necessarily) message consuming if S is (necessarily) message consuming
w.r.t. C. ♦

In the special case, in which all may-transitions are must-transitions and no
silent transitions occur observationally weakly fair runs coincide with weakly
fair runs and the two consuming properties coincide with the corresponding
properties in [10].
2 i.e. there is a transition in ρ labelled by �a.

Specification of Asynchronous Component Systems 231

Proposition 5. Let S be a MAIOTS. If S is necessarily message consuming
w.r.t B then S is message consuming w.r.t B.

The proof can found in Appendix C of [11]. It is an adoptation of the one in [9].
The definitions and the proposition are propagated to modal asynchronous

I/O-Petri nets in the obvious way. For instance, a MAIOPN N is (necessar-
ily) message consuming if maiots(N) is (necessarily) message consuming. All
MAIOPNs considered in Sect. 2 are necessarily message consuming.

As stated in the introduction, Petri nets are a useful model since (1) they
model infinite state systems and (2) several relevant properties of transition
systems are decidable. The following proposition whose proof is an adaption of
the one in [10] establishes that one can decide both consuming properties. For
sake of completeness, its proof can be found in Appendix C of [11].

Proposition 6. Let N be a MAIOPN and let B ↔ C be a subset of its channels.
The satisfaction by N of the message consuming and the necessarily message
consuming properties w.r.t. B are decidable.

Both message consuming properties are compositional; they are preserved
when systems are put into larger contexts. The proof of the compositionality of
the message consuming property 4 relies on the fact that autonomous executions
of constituent parts (not involving inputs) can be lifted to executions of compo-
sitions. To prove compositionality of the necessarily consuming property 4 one
shows that projections of observationally weakly fair runs to constituent parts
of a composition are again observationally weakly fair runs. Both facts and the
following consequences are proved in Appendix C of [11]. The proof has the same
shape as the proof of Proposition 15 in [10] which is given in [9].

Proposition 7. Let S and T be two composable MAIOTSs such that CS is the
set of channels of S. Let B ↔ CS . If S is (necessarily) consuming w.r.t. B, then
S ∈ T is (necessarily) consuming w.r.t. B.

Proposition 7 leads directly to the desired modular verification result which
allows us to check consuming properties in an incremental manner: To show that
a composed system S ∈ T is (necessarily) message consuming it is sufficient to
know that both constituent parts S and T have this property and to check that
S ∈T is (necessarily) message consuming w.r.t. the new channels established for
the communication between S and T , i.e. that S and T are compatible.

Definition 8 (Compatibility). Two composable MAIOTSs S and T with
shared labels ΣS ∗ΣT are (necessarily) message consuming compatible if S ∈T
is (necessarily) message consuming w.r.t. ΣN ∗ ΣM. ♦
Theorem 9 (Incremental Design). Let S and T be (necessarily) message
consuming compatible. If both S and T are (necessarily) message consuming,
then S ∈ T is (necessarily) message consuming.

232 S. Haddad et al.

All results hold analogously for asynchronous I/O-Petri nets due to the com-
positional semantics of MAIOPNs; see Theorem 1.1 An application of incremen-
tal design has been discussed in Sect. 2.

An important issue concerns the preservation of the message consuming prop-
erties by refinement. We can show that this holds for modal refinement which is
not considered in [10]. The preservation of the message consuming property relies
on the fact that for any “concrete” reachable state there is a related “abstract”
state with the same number of messages on each channel. To prove the preser-
vation of the necessarily consuming property the essential point is to show that
for any observationally weakly fair run of a concrete MAIOTS there is a cor-
responding observationally weakly fair run of the abstract MAIOTS with the
same visible actions. Both facts and the following consequences are proved in
Appendix C of [11].

Theorem 10. Let S, T be two MAIOTSs with channels C and let S ≤≥
m T .

Let B ↔ C. If T is (necessarily) message consuming w.r.t. B, then S is (nec-
essarily) message consuming w.r.t. B. By definition, the theorem propagates to
MAIOPNs.

Example 11. The nets in Fig. 3 show an abstract MAIOPN N and a concrete
MAIOPN M with silent τ -transitions. Both nets have a single channel place a.
Obviously, M ≤≥

m N is a modal refinement. It is also clear that N is necessarily
message consuming. By Theorem 10, M is necessarily message consuming as
well. Indeed, as pointed out above, a diverging run of M which always executes
τ from a certain state on is not observationally weakly fair and therefore needs
not to be considered. This shows also why weakly fair runs are not appropriate
here since a diverging run of M is weakly fair (it always visits a state in which
�a is not immediately enabled) but does not consume.

As a consequence of Theorems 3.1 and 10 our theory supports the principle of
independent implementability in the sense of [1]. This fact is applied in Sect. 2 to
obtain the global refinement (3) in Fig. 2 from the local refinement (2) preserving
the necessarily consuming property.

Corollary 12 (Independent Implementability). Let S, T , E and F be
MAIOTSs. If T and F are (necessarily) message consuming compatible and
S ≤≥

m T and E ≤≥
m F , then S and E are (necessarily) message consuming com-

patible and S ∈ E ≤≥
m T ∈ F . This holds analogously for MAIOPNs.

p

a�
a

�a

(a) Abstract MAIOPN N
p

a�
a

�a q
τ

r

τ

(b) Concrete MAIOPN M

Fig. 3. Necessarily consuming nets and modal refinement

Specification of Asynchronous Component Systems 233

6 Conclusion and Future Work

We have developed a fully integrated approach for the design of asynchronously
composed component systems based on the formalism of MAIOPNs. Our app-
roach ensures that the communication properties are preserved by asynchronous
composition and by modal refinement, the basic ingredients of the design process.
Several continuations of this work are possible. First, it would be interesting to
see how our approach works in larger case studies and concrete applications. The
“Assume/Guarantee” approach is a standard way to substitute a component by
a behavioural interface in order to make easier the compositional verification. We
plan to investigate how this approach can be integrated in our framework. Also
it would be interesting to consider further operators on specifications like quo-
tients. For the latter we would be faced with the problem to find mild conditions
for the existence of quotients in the context of modal refinement which supports
observational abstraction. Finally, broadcasting is an appropriate communica-
tion mechanism in the asynchronous environment. So it would be interesting to
investigate how our approach can be adapted to this communication operator.

References

1. de Alfaro, L., Henzinger, T.A.: Interface-based design. Engineering Theories of
Software-intensive Systems, NATO Science Series: Mathematics, Physics, and
Chemistry, vol. 195. Springer, pp. 83–104 (2005)

2. Beneš, N., Křet́ınský, J.: Modal process rewrite systems. In: Proceedings of the
International Conference on Theoretical Aspects of Computing (ICTAC 2012),
vol. LNCS 7521, pp 120–135, Springer (2012)

3. Bernardo, M., Ciancarini, P., Donatiello, L.: Architecting families of software sys-
tems with process algebras. ACM Trans. Softw. Eng. Meth. 11(4), 386–426 (2002)

4. Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Sch-
noebelen, P.: Systems and Software Verification: Model-Cheking Techniques and
Tools. Springer, Heidelberg (2001)

5. Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. Springer Monographs in
Theoretical Computer Science (2001)

6. Brauer, W., Gold, R., Vogler, W.: A survey of behaviour and equivalence preserving
refinements of Petri nets. Applications and Theory of Petri Nets, pp. 1–46 (1989)

7. Elhog-Benzina, D., Haddad, S., Hennicker, R.: Refinement and asynchronous com-
position of modal Petri Nets. In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) Trans-
actions on Petri Nets and Other Models of Concurrency V. LNCS, vol. 6900, pp.
96–120. Springer, Heidelberg (2012)

8. Ganty, P., Raskin, J.-F., Van Begin, L.: From many places to few: automatic
abstraction refinement for Petri Nets, ATPN 2007. LNCS 4546, 124–143 (2007)

9. Haddad, S., Hennicker, R., Møller, M.H.: Channel properties of asynchronously
composed Petri Nets. In: Colom, J.-M., Desel, J. (eds.) Petri Nets 2013. LNCS,
vol. 7927, pp. 369–388. Springer, Heidelberg (2013)

10. Haddad, S., Hennicker, R., Møller, M.H.: Channel properties of asynchronously
composed Petri Nets. Research Report LSV-13-05, Laboratoire Spécification et
Vérification, ENS Cachan, France (2013)

234 S. Haddad et al.

11. Haddad, S., Hennicker, R., Møller, M.H.: Specification of asynchronous compo-
nent systems with modal I/O-Petri Nets. Research Report LSV-13-16, Laboratoire
Spécification et Vérification. ENS Cachan, France (2013)

12. Hennicker, R., Knapp, A.: Modal interface theories for communication-safe com-
ponent assemblies. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol.
6916, pp. 135–153. Springer, Heidelberg (2011)

13. Hüttel, H., Larsen, K.G.: The use of static constructs in a modal process logic. In:
Logic at Botik 1989, pp. 163–180 (1989)

14. Jancar, P.: Undecidability of bisimilarity for Petri Nets and related problems.
Theor. Comput. Sci. 148, 281–301 (1995)

15. Larsen, K.G., Thomsen, B.; A modal process logic. In: 3rd Annual Symposium on
Logic in Computer Science (LICS), IEEE Computer Society, pp. 203–210 (1988)

16. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

17. Raclet, J.-B.: Residual for component specifications. In: Proceedings of the 4th
International Workshop on Formal Aspects of Component Software (FACS07),
Sophia-Antipolis, France (2007)

18. Reisig, W.: Simple composition of nets. In: Franceschinis, G., Wolf, K. (eds.) Petri
Nets 2009. LNCS, vol. 5606, pp. 23–42. Springer, Heidelberg (2009)

19. Schäfer, M., Vogler, W.: Component refinement and CSC-solving for STG decom-
position. Theor. Comput. Sci. 388(1–3), 243–266 (2007)

20. Souissi, Y.: On liveness preservation by composition of nets via a set of places. In:
11th International Conference on Applications and Theory of Petri Nets, LNCS
524, pp. 277–295 (1990)

21. Souissi, Y., Memmi, G.: Composition of nets via a communication medium. In:
10th International Conference on Applications and Theory of Petri Nets, LNCS
483, pp. 457–470 (1989)

22. Stahl, C., Wolf, K.: Deciding service composition and substitutability using
extended operating guidelines. Data Knowl. Eng. 68(9), 819–833 (2009)

A Formal Model for the Deferred Update
Replication Technique

Andrea Corradini1(B), Leila Ribeiro2,
Fernando Dotti3, and Odorico Mendizabal3

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
andrea@di.unipi.it

2 Instituto de Informática, Universidade Federal do Rio Grande do Sul,
Porto Alegre, Brazil
leila@inf.ufrgs.br

3 Faculdade de Informática, Pontif́ıcia Universidade Católica do Rio Grande do Sul,
Porto Alegre, Brazil

fernando.dotti@pucrs.br, omendizabal@gmail.com

Abstract. Database replication is a technique employed to enhance
both performance and availability of database systems. The Deferred
Update Replication (DUR) technique offers strong consistency (i.e. seri-
alizability) and uses an optimistic concurrency control with a lazy repli-
cation strategy relying on atomic broadcast communication. Due to its
good performance, DUR has been used in the construction of several
database replication protocols and is often chosen as a basic technique
for several extensions considering modern environments. The correctness
of the DUR technique, i.e. if histories accepted by DUR are serializable,
has been discussed by different authors in the literature. However, a more
comprehensive discussion involving the completeness of DUR w.r.t. seri-
alizability was lacking. As a first contribution, this paper provides an
operational semantics of the DUR technique which serves as foundation
to reason about DUR and its derivatives. Second, using this model the
correctness of DUR w.r.t. serializability is shown. Finally, we discuss the
completeness of DUR w.r.t. serializability and show that for any serializ-
able history there is an equivalent history accepted by DUR. Moreover,
we show that transactions aborted by DUR could not be accepted with-
out changing the order of already committed transactions.

1 Introduction

For the past several decades, database management systems have been of para-
mount importance to safely keep users data. A database system is typically
manipulated by concurrent transactions from several users. The common cor-
rectness criterion used to validate consistency in databases is serializability (or
strong consistency) [3,11]. Roughly, an interleaved execution of several concur-
rent transactions is serializable if it has the same effect on a database as some

Partially supported by FAPERGS and CNPq.

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 235–253, 2014.
DOI: 10.1007/978-3-319-05119-2 14, c© Springer International Publishing Switzerland 2014

236 A. Corradini et. al.

serial execution of these transactions. The preservation of database consistency
is one key aspect which is usually ensured by schedulers responsible for the
implementation of concurrency control mechanisms. While early approaches to
assuring database integrity where based on some form of locking, hindering con-
currency and thus transaction throughput, optimistic methods for concurrency
control emerged to take advantage from both the low conflict rate among transac-
tions and the hardware architectures allowing better performance [9]. According
to such methods, a transaction is executed under the optimistic assumption that
no other transaction will conflict with it. At the end of the execution, a validation
phase takes place, in order to either commit or invalidate the transaction [4].

Further seeking to enhance performance, replication techniques for database
systems have been thoroughly studied in past years [3]. Several replication tech-
niques emerged in the database community which can be classified according
to two basic characteristics: where updates take place (primary copy vs. update
anywhere) and kind of interaction for update synchronization (eager vs. lazy)
[7]. While database replication is aimed primarily at performance, in distributed
systems replication has high availability as a major concern. Examples of repli-
cation approaches developed for distributed systems are the primary-backup [5]
and the state machine replication [15] approaches.

The search for highly available and high performance databases leads to con-
sider the combination of replication and optimistic concurrency control. Since
with optimistic concurrency control transactions progress independently and are
validated at the end of the execution, and since in a distributed setting commu-
nication costs and delays are to be avoided, a natural configuration to consider is
the primary copy approach with lazy update. The Deferred Update Replication
(DUR) approach [12] uses these ideas with multiple primary copies. Accord-
ing to DUR, the servers fully replicate the database while clients choose any
server to submit a transaction. Transaction processing at the server takes place
without coordinating with other servers. Upon transaction termination issued
by the client, a certification test is performed to assure database consistency.
The finalization protocol is based on atomic broadcast to submit the modifi-
cations of a local transaction to all other servers in total delivery order. Each
server will receive the same finalization requests in the same order, apply the
same certification tests, leading to the same sequence of coherent modifications
in each server.

The DUR technique is currently being extended in different ways, such as
to support byzantine faults, to enhance throughput of update transactions and
to support in-memory transaction execution [13,16,17]. The correctness of the
basic technique, i.e. if DUR accepted histories are serializable, is discussed by
different authors [6,8,12,13]. In [14] the authors use TLA+ to validate serial-
izability of DUR based protocols. A similar approach is adopted by [1], where
the authors present a formal specification and correctness proof for replicated
database systems using I/O automata.

In this paper we contribute to the analysis of the DUR technique in three
main aspects: (i) We provide an operational semantics of the DUR technique,

A Formal Model for the Deferred Update Replication Technique 237

which serves as a foundation to discuss its correctness and completeness, as well
as a solid contribution for future extensions to represent variations of DUR as
mentioned before; (ii) Based on this model the correctness of DUR is shown
w.r.t. serializability; (iii) Furthermore we show the completeness of DUR w.r.t.
serializable histories: for any serializable history there is an equivalent history
accepted by DUR; moreover it is shown that if a transaction would be aborted by
the execution of DUR, then the history obtained by including this transaction in
a history recasting exactly the execution of the algorithm up to this point would
not be serializable in the strict sense, that is, without changing the order of
already committed transactions. While (ii) is, to some extent, closely related to
previous works, contributions (i) and (iii) bring new elements to the discussion
of DUR and the theory of concurrency control.

This paper is structured as follows: in Sect. 2 we present several concepts
from [3] on serializability theory; in Sect. 3 we present the DUR technique based
on [17]; in Sect. 4 the operational semantics of DUR is presented; in Sect. 5
both correctness and completeness of DUR as mentioned above are discussed;
finally in Sect. 6 we review the results achieved and discuss possible directions
for future work.

2 Serializability Theory

In this section we review some of the main definitions of serializability theory [3].

Definition 1 (Database actions). Given a set of variables X, a database
action may be r[x], a read of variable x ∈ X; w[x], a write on variable
x ∈ X; c, a commit; or a, an abort. The set of actions over variables in X will
be denoted by Act(X). We say that two actions are conflicting is they operate
on the same variable and at least one of them is a write.

Definition 2 (Transaction). A transaction is a pair ≤T,→T ⊥ where T :
Act(X) ↔ N is a multiset of actions mapping each action to the number of
its occurrences; we often identify T with its extension, i.e. with the set

{oi
T[x] | o ∈ {r,w}, x ∈ X, 0 < i → T (o[x])} ⊆ {oi

T | o ∈ {a, c}, 0 < i → T (o)}.
Furthermore, →T ≥ T × T is a finite partial order relation, and the following
conditions must hold:

1. either T (c) = 1 and T (a) = 0, or T (c) = 0 and T (a) = 1;
2. T has at least one read or write action;
3. either c1T or a1T must be maximal wrt →T (we drop this superscript from now

on);
4. if wi

T[x] ∈ T then for any action ok
T[x] that reads or writes variable x, either

ok
T[x] →T wi

T[x] or wi
T[x] →T ok

T[x]

We often denote transaction ≤T,→T ⊥ simply by T , leaving the partial order
understood. We denote by vars(T) the set of variables used in T , namely
vars(T) = {x ∈ X | T (r[x]) + T (w[x]) > 0}. We also introduce the follow-
ing auxiliary notations:

238 A. Corradini et. al.

– T [x] = T ∀ {riT[x],wi
T[x]} is the subset of actions of T involving variable x;

– →x
T = →T ∀ (T [x] × T [x]).

We consider three subsets of vars(T). The set of local variables is defined
as loc(T) = {x | ∅i .wi

T[x] = min(→x
T)}. Intuitively, if the first action over x in

T is a write (often called a “blind write”), then x is handled as a local variable
and its value before T is irrelevant. By the condition on →T , if the minimum of
→x

T is a write then it is unique.
The readset of T is defined as rs(T) = {x | ∅i . riT[x] ∈ min(→x

T)}. Thus the
readset of T consists of all the variables of the transaction whose original value
was read outside T . Note that rs(T) and loc(T) form a partition of vars(T).

The writeset of T is defined as ws(T) = {x | T (w[x]) > 0}, i.e. the set of
variables modified by T . A transaction with an empty writeset is called a read-
only transaction; we shall use the predicate ro defined as ro(T) ∗ (ws(T) =
∅). Note that loc(T) ≥ ws(T).

Histories represent concurrent executions of transactions. Actions of different
transactions can never be the same, but they may act on shared data (variables).
Therefore, a history must carry information about the order in which conflicting
actions shall occur. Moreover, it may define also relationships among other (non-
conflicting) actions.

Definition 3 (History). Given a set of transactions S = {T1, . . . , Tn}, a com-
plete history over S is a partial order ≤H,→⊥ where

1. H =
⋃n

i=1 Ti;
2. → ≡ ⋃n

i=1 →i;
3. for any conflicting actions o1 and o2 in H, either o1 → o2 or o2 → o1.

A history is a prefix of a complete history. A transaction Ti is committed
/ aborted in a history H if cTi

∈ H / aTi
∈ H. If a transaction is neither

committed nor aborted, it is active in a history. The committed projection of
a history H is denoted by C(H) and is obtained by removing from H all actions
that belong to active or aborted transactions. The non-aborted projection of a
history H is denoted by NA(H) and is obtained by removing from H all actions
of aborted transactions.

The set of variables used (written or read) in a history H is denoted by
vars(H). Given a history (H,→H), the induced dependency relation on
transactions →T

H is defined as: T1 →T
H T2 if there are actions o1 ∈ T1 and

o2 ∈ T2 such that o1 →H o2. A history is strict if whenever there are actions
wTj

[x] →H oTi
[x], with Ti, Tj ∈ H and i ♦= j, either aTj

→H oTi
[x] or

cTj
→H oTi

[x].

Strictness implies that if a transaction T writes a variable, no other trans-
action can read/write it before T is terminated. This is commonly required in
applications since histories that are not strict allow serializations that are rather

A Formal Model for the Deferred Update Replication Technique 239

counterintuitive (that would “undo the past”), and also implies recoverability
and avoids cascading aborts.

The following equivalence notion on histories is known as conflict-equivalence,
since it is based on the compatibility between conflicting items of histories. In
this paper we will stick to this kind of equivalence.

Definition 4 (History Equivalence). Given two histories (H1,→H1) and
(H2,→H2), we say that they are equivalent if

1. H1 = H2 (they have the same actions);
2. they order conflicting actions of non-aborted transactions in the same way:

for all o1, o2 ∈ NA(H1) such that o1 and o2 are conflicting, o1 →H1 o2 if and
only if o1 →H2 o2.

Note that this definition of equivalence poses no restriction on the dependen-
cies of non-conflicting actions.

Definition 5 (Serial History). A complete history (H,→H) is serial if for
every two transactions Ti, Tj ∈ H, either for all oi ∈ Ti we have endj →H oi, or
for all oj ∈ Tj it holds endi →H oj, where endj (endi) is the commit or abort
action of Tj (Ti).

Note that the induced dependency relation on transactions of a serial history
is a total order, even if →H does not need to be total.

Definition 6 (Serializable History). A history (H,→H) is (conflict) serial-
izable if there is a serial history (Hs,→Hs

) that is equivalent to the committed
projection C(H).

For a proof of the following theorem, see [3] (Serializability Theorem,
Sect. 2.3).

Theorem 1. Let (H,→H) be a history and G(H) be the graph whose nodes are
the transactions of H and arcs represent the relationship between the conflicting
actions in →H , lifted to the corresponding transactions. A history is serializable
iff G(H) is acyclic.

3 The Deferred Update Replication

The Deferred Update Replication (DUR) technique coordinates transaction
processing on a group of servers that fully replicate the database. It provides
fault-tolerance due to replication while offering good performance. Clients sub-
mit transactions to any server. Servers execute transactions locally, without coor-
dination with other servers, in a so-called execution phase. The concurrency
control strategy is optimistic. When the client requests the transaction’s termi-
nation, the respective server broadcasts updates to all servers which then have
to certify that the transaction can be serialized with other committed trans-
actions that executed concurrently. When the client requests the transaction’s

240 A. Corradini et. al.

commit, it broadcasts its local updates to all servers which then have to certify
that the transaction can be serialized with other committed transactions that
were executed concurrently. The termination phase uses an atomic broadcast
protocol that ensures that all servers receive the same termination messages in
the same order. Since all execute the same certification procedures, they decide
homogeneously, accepting (committing and updating the local states) or not
(aborting) the transaction, and thus progress over the same (replicated) states.
The good performance is achieved since: update transactions progress indepen-
dently in each server during the execution phase; read-only transactions can be
certified locally; communication is restricted to the dissemination of updates for
certification at the end of the transaction (lazy approach) which implies a lower
overhead if compared to propagation of updates during the transaction (eager
approach).

Since in the following sections we provide an operational semantics for DUR,
we adopt and explain here the main DUR algorithms at client and server sides
from [17]. Each transaction t has a unique identifier id, a readset rs keeping
the variables read by t; a writeset ws keeping both the variables and the values
updated by t; and a snapshot identifier st that records the snapshot of the
database when t started reading values.

According to the client algorithm of [17] (see Fig. 1, left), after a transaction
t is initiated (lines 1–4), the client may request a read, a write or a commit
operation. For brevity, it is not shown in the algorithm the case in which the
client executes an abort operation. A read operation by transaction t on variable
k will add k to t.rs. If k belongs to t.ws it means that k has been previously
written and the read operation returns the local value (lines 7, 8). Otherwise
the value has to be read from one server s from the set of servers S (lines
10, 11). If this was the first read of this transaction, the snapshot identifier
returned by the server is stored in t.st. A write operation simply adds locally
to t.ws the value written on the variable. A commit of a read-only transaction
is decided locally. In case of an update transaction, a request for certification of
transaction t is atomically broadcast to all servers and an answer from one of the
servers is awaited. The transaction certification decision is based on the readset
of the transaction and on the writesets of the already committed concurrent
transactions.

Notice that the algorithm does not distinguish between local and non-local
variables: when a variable is read it is added to the readset even if it was initial-
ized with a blind write.

According to the server algorithm, a server has a snapshot counter SC record-
ing the number of committed transactions (line 17) and a writeset for each snap-
shot WS[i] that records the writeset of the transaction committed at snapshot i.
When a read request arrives, if it is the first read of a transaction (line 5) then
the server assigns to the transaction’s snapshot identifier st the current value of
the snapshot counter, that the client will keep for future reads. Then the server
retrieves from the database the most recent value v for variable k before or at
the same snapshot identified by st (line 6). When client c requests a commit

A Formal Model for the Deferred Update Replication Technique 241

Fig. 1. DUR algorithms

(using the atomic broadcast primitive adeliver - line 8) all servers will run the
certification test (line 9) and in case the outcome is commit the writeset is used
to update the database (lines 10, 11). Any outcome is sent to client c (line 12).
The certification of t verifies if any committed transaction concurrent with t
(line 14) updated variables of the readset of t (line 15). In such case t has to be
aborted. Otherwise t is committed, a new snapshot is generated at the server
(line 17) and the server keeps track of the variables updated in the last commit
(line 18).

As one can observe, the certification of a transaction t depends only on
whether the values read (t.rs) are valid upon termination, i.e. if no committed
concurrent transaction has written on a value after it has been read by t.

Certification of read-only transactions is straightforward since all read values
are consistent with the snapshot st of the first read, assuring that no update
happened on the variables until after st - the transaction is considered to happen
atomically at st, reading a consistent state even if snapshot st is in the past.

We can observe that since updates are deferred to the moment of termination,
and actually updates and commit of one transaction are performed atomically,
no updates and commits of different transactions interleave. The database pro-
gresses over states where updates are from a single transaction.

242 A. Corradini et. al.

4 The DUR Algorithm, Formally

We present here a formalization of the behaviour of the server, as described in
the previous section, using a transition system. This will be exploited for a proof
of correctness and completeness of the DUR Server algorithm.

We assume that there is a fixed set of transactions T which includes all
transactions that will ever interact with the server. Since at most a finite number
of transactions can be terminated in each state of the server’s evolution, to
make the formalization easier we assume T to be finite. Notice that the readset
and the writeset of a transaction are built in the client’s code, and are used
by the server only when the transaction is completed. Therefore we consider
them as statically known, and denote them as rs(T) and ws(T), respectively.
Note however that rs(T) denotes the readset as defined in Definition 2, while the
readset of a transaction according to the algorithm of Fig. 1 also includes the
local variables, and could be denoted as rs(T)⊆ loc(T): we will discuss later the
consequences of this assumption.

The snapshot identifier, identifying the snapshot of the database that a trans-
action accesses, is assigned dynamically by the server at the first read operation.
Therefore the state of a server includes, besides the snapshot counter SC and a
vector of committed writesets WS (see lines 2–3 of the server’s code), a function
ST defined on T returning the snapshot identifier, if defined, and ⊥ otherwise.
The state also includes an additional function on transactions, the commit index
CI, which is defined only on terminated transactions and records whether the
transaction is aborted or not, and in case it is not read-only the index of its
committed writeset in vector WS.

The components of a well-formed server state have to satisfy several con-
straints, listed in the next definition, most of which are pretty obvious: as shown
in Theorem 2, well-formedness will guarantee reachability. We just stress that
the commit index of a read-only transaction is set, quite arbitrarily, to its snap-
shot identifier plus 0.5. In this way it is smaller than the commit index of any
transaction that could modify the variables in the readset after being accessed.

Definition 7 (Server State). A server state over a finite set of transactions
T is a four-tuple D = ≤SC,WS,ST,CI⊥, where

– SC is an integer, the snapshot counter;
– WS is a vector of (committed) writesets WS : {0, . . . ,SC} ↔ P(X);
– ST : T ↔ {0, . . . ,SC} ⊆ {⊥} maps each transaction in T to its snapshot

identifier, i.e. an integer ST(T) → SC which is the index of the writeset from
which the first value of T is read, if any, and ⊥ otherwise;

– CI : T ↔ {0.5, 1, 1.5, . . . ,SC,SC + 0.5} ⊆ {⊥, abort} maps each transaction to
its commit index. A transaction T is aborted if CI(T) = abort; it is active
if CI(T) = ⊥ and ST(T) ♦= ⊥; and it is committed if CI(T) ∈ Z. We shall
denote by Comm(D) the set of transactions committed in D, and by RO(D)
its subset of read-only transactions.

A Formal Model for the Deferred Update Replication Technique 243

We will denote by ⊥ the constant function mapping all transactions to ⊥.
A server state is well-formed if the following conditions are satisfied:

1. WS(0) = X, that is, the first writeset of WS includes all variables (it repre-
sents their initial values);

2. every other writeset in WS corresponds to exactly one committed, non-read-
only transaction; formally, CI restricts to a bijection

Comm(D) \ RO(D) ↓ {1, 2, . . . , SC}, and

⇓T ∈ Comm(D) \ RO(D) .WS(CI(T)) = ws(T)

3. if the snapshot identifier of a transaction is defined then its readset is not
empty:

ST(T) ♦= ⊥≈rs(T) ♦= ∅

4. an aborted transaction has a defined snapshot identifier and its readset has
been modified by a committed transaction:

CI(T) = abort≈ST(T) ♦= ⊥ ⇐ (∅i ∈ [ST(T) + 1,SC] .WS(i) ∀ rs(T) ♦= ∅)

5. the snapshot identifier of a non-read-only committed transaction, if defined,
is less than the commit index, and in this case its readset was not modified
before committing:

¬ro(T) ⇐ CI(T) ♦∈ {abort,⊥} ⇐ ST(T) ♦= ⊥≈

0 → ST(T) < CI(T) ⇐ (⇓i ∈ [ST(T) + 1,CI(T) − 1] .WS(i) ∀ rs(T) = ∅)

6. a read-only transaction cannot abort, and if committed its commit index is
one half more than its snapshot identifier:

ro(T)≈(CI(T) ♦= abort) ⇐ (CI(T) ♦= ⊥≈ST(T) ♦= ⊥⇐ CI(T) =ST(T) + 0.5)

The behaviour of the server can be represented as a transition systems where
transitions are triggered by the interactions with the clients. Every client, while
executing a transaction T ∈ T , interacts with the server to read the values of the
variables in its readset and to deliver the values of the variables in its writeset
upon completion. From the server’s side, as described in algorithm DUR Server
(Fig. 1, right), this corresponds to receiving a sequence of receive (briefly rec)
requests, followed by one adeliver (adel) request, which depending on the situa-
tion can cause the transaction to be committed or to abort. The first rec request
is handled in a special way, as it will fix the snapshot of the data repository
which is relevant for transaction T .

For our goals, the concrete values of the variables are irrelevant, as it is the
name of the variable read with a rec request, assuming that it belongs to the
readset of the transaction. We will therefore disregard this information assuming
that rec requests will have only the transaction issuing the request as argument,
exactly as the adel request.

244 A. Corradini et. al.

Definition 8 (Server as Transition System). A server S over a set of trans-
actions T is a transition system having as states the well-formed server states
of Definition 7, as initial state the state D0 = ≤SC0 = 0,WS0 = [0 �↔ X],ST0 =
⊥,CI0 = ⊥]⊥, and where transitions are generated by the following inference
rules (for the sake of readability, the components of states that are not changed
in a rule are represented by an underscore):

[read-→]
ST(T) = →, rs(T) ←= ∅

⊥ , ,ST, ⇒ rec(T)−−−−∅ ⊥ , ,ST[T ∪∅ SC], ⇒

[read]
ST(T) ←= →

⊥ , , , ⇒ rec(T)−−−−∅ ⊥ , , , ⇒
[commit]

CI(T) = →,¬ro(T),¬ (◦x ∧ rs(T), i ∧ {ST(T) + 1, . . . , SC} . x ∧ WS(i))

⊥SC,WS, ,CI⇒ adel(T)−−−−∅ ⊥SC + 1,WS[SC + 1 ∪∅ ws(T)], ,CI[T ∪∅ SC + 1]⇒

[commit-RO]
CI(T) = →, ro(T)

⊥ , , ,CI⇒ adel(T)−−−−∅ ⊥ , , ,CI[T ∪∅ ST(T) + 0.5]⇒

[abort]
CI(T) = →,¬ro(T), (◦x ∧ rs(T), i ∧ {ST(T) + 1, . . . , SC} . x ∧ WS(i))

⊥ , , ,CI⇒ adel(T)−−−−∅ ⊥ , , ,CI[T ∪∅ abort]⇒

Rules [read] -⊥ and [read] encode lines 4–7 of algorithm DUR Server (Fig. 1):
since we abstract from variables values, and variable names are recorded by func-
tions rs and ws, the only visible effect in the server state is the assignment of
a snapshot identifier to a transaction, if missing. Rules [commit] and [abort]
encode lines 8–19 of the algorithm. Note that in the premises of these rules
we used the set rs(T) instead of the larger set rs(T) ⊆ loc(T), as used in the
algorithm in Fig. 1. This means that our model has less abort transitions than
the algorithm would have, and we will show in Theorem4 that our definition
characterises exactly the histories that should be aborted because they would
lead to non-serializable histories. Rule [commit-RO] records the completion of
a read-only transaction, that has no visible effect for the server in the DUR
algorithm, but is necessary in our encoding to keep function CI up to date.

It is worth stressing that we implicitly assume that the server receives a rec(T)
request only if the readset of transaction T is not empty, and that it receives
at most one adel(T) request for each transaction T : condition rs(T) ♦= ∅ in
rule [read−⊥] and condition CI(T) = ⊥ in the last three rules guarantee that
requests violating these conditions will not be processed.

Note that a transaction T may terminate (commit or abort) even if ST(T) is
undefined. The snapshot identifier of T is undefined if and only if the execution
of T never generates a rec(T) transition, i.e. if the readset rs(T) is empty. In this
case, T is not read-only (because transactions without any action are forbidden
by Definition 2) and thus the last premise of rule [commit] is vacuously satisfied,
while the premise of the [abort] rule is vacuously false.

A Formal Model for the Deferred Update Replication Technique 245

We shall often represent transitions by labeling them with both the request of

the client (over the arrow) and with the applied rule (under), as in D
rec(T)−−−−−−↔

[read−≥]
.

Furthermore, we write D≈D≤ if there is a transition from D to D≤ using the
rules of Definition 8.

To conclude this section, we state that the well-formedness of a server state
guarantees its reachability. The lengthy proof is in the appendix.

Theorem 2 (Well-formed server states are reachable). A server state
over a set of transactions T is reachable if and only if it is well-formed.

5 Correctness and Completeness of Deferred Update
Replication

We show now that the server as previously specified guarantees the serializability
of the transactions that it committed. This is a pretty straightforward correctness
result. More interestingly, thanks to the rigorous formalization we are also able
to prove that the server is “complete”, in the sense that it never happens that a
transaction is aborted if it was serializable.

Note that it is sufficient to verify one server, since all servers receive the
actions in the same order, and thus should arrive to the same commit/abort
decision for each transaction since they run the same algorithm. The same order
of actions is guaranteed by an atomic broadcast protocol, that is assumed to
be available in the underlying distributed platform. Also, it is not necessary to
formalize the clients because, besides the mild constraints that they issue a rec
request only if the readset is not empty and at most one adel request for each
transaction, we do not make any further assumption on the order of actions that
can be generated by them. Again, what is important is that the adel actions of
all clients are received in the same order by all servers, and this is provided by
the atomic broadcast protocol. There are many ways to implement this protocol:
for the results of this paper we assume that the distributed platform executing
the DUR technique provides this service.

Since by Theorem 2 all and only the well-formed states are reachable in an
execution of the server, the correctness of the server can be proved by showing
that in any well-formed state, the dependencies among committed transactions
that are recorded in the state are compatible with a history including them only
if the history is serializable. In other words, a non-serializable history could not
be executed by the server.

Therefore let us define when a complete history containing a set of committed
transactions is consistent with a well-formed state of the server.

Definition 9 (History-state consistency). Let D = ≤SC,WS,ST,CI⊥ be a
wellformed server state over a set of transactions T , and ≤H,→H⊥ be a complete
history. Then H and D are consistent if

1. ≤H,→H⊥ is a history over Comm(D), i.e. over the transactions of T which
committed in D;

246 A. Corradini et. al.

2. for each pair T ♦= T ≤ ∈ Comm(D), for each pair of conflicting actions a ∈ T
and b ∈ T ≤, we have:
(a) a <H b implies CI(T) < CI(T ≤);
(b) if x ∈ rs(T ≤) and b = rT′ [x] (and thus a = wT[x]), then wT[x] <H

rT′ [x] if and only if CI(T) → ST(T ≤).

Condition 2(a) states that the causality among conflicting actions belonging
to distinct transactions in H is consistent with the commit ordering of trans-
actions. Condition 2(b) guarantees that the history correctly records the values
read by a transaction for the variables in its readset, imposing that such values
are those available at the database snapshot ST(T). In fact, each read action
in the readset must depend on all and only the write actions for the same vari-
able in transactions that committed not later than the snapshot identifier. Note
that since all pairs of conflicting events have to be causally related in a his-
tory, it follows that rT′ [x] <H wT[x] if and only if ST(T ≤) < CI(T). In this
case, since by 2(a) we also know that CI(T ≤) < CI(T), we can conclude that
ST(T ≤) → CI(T ≤) < CI(T), as ST(T ≤) → CI(T ≤) because D is well-formed.

The next result states the correctness of DUR algorithm.

Proposition 1 (Consistent histories are serializable). Let ≤H,→⊥ be a
complete history consistent with a well-formed server state D = ≤SC,WS,ST,CI⊥.
Then H is serializable.

Proof. Let ↑≤
D be the commit ordering on Comm(D), i.e. T ↑≤

D T ≤ if CI(T) →
CI(T ≤); it is a partial order because two read-only transactions may have the
same commit index. Let ↑D be any total order compatible with ↑≤

D, ordering
such read-only transactions in an arbitrary way. Then by condition 2(a) above
for each pair of conflicting actions aT[x] →H bT′ [x] in H with T ♦= T ≤, we
have T ↑D T ≤. Therefore H is serializable, because it is equivalent to a serial
history where all actions of a transaction T are caused by the commit action of
a transaction T ≤ if and only if T ≤ ↑D T . ��

Viceversa, completeness can be proved by showing that any serializable his-
tory is consistent with a well-formed server state. The following theorem is stated
only for serialisable histories without aborted transactions because a history may
have arbitrary aborts (transactions that deliberately choose to abort - see Def-
inition 2), whereas a DUR-server only has “necessary” aborts - the ones that
happened due to conflicts in concurrent updates.

Theorem 3 (Serializable histories and consistent states). Let H be a
complete serializable history without aborted transactions. Then there is a well-
formed server state D that is consistent with H.

Proof. The proof is by induction on the number of committed transactions in H.
For the base case, the initial state of Definition 8 is clearly consistent with

the empty history since there are no aborted/active transactions in H.
Now suppose we have a complete serializable history Hn+1 with n+ 1 trans-

actions. Let Hn be obtained by removing one transaction, say T , that is maximal

A Formal Model for the Deferred Update Replication Technique 247

with respect to the transaction order induced by →Hn+1 . Hn is a complete seri-
alizable history because Hn+1 is. By induction hypothesis there is a well-formed
server state Dn = ≤SC,WS,ST,CI⊥ that is compatible with Hn. A well-formed
server state Dn+1 can be obtained in the following way. If T is not read-only
and rs(T) ♦= ∅

Dn+1 = ≤SC + 1,WS[T �↔ ws(T)],ST[T �↔ i],CI[T �↔ SC + 1]⊥
where i ∈ [SCU ,SC] and SCU is the last snapshot in which some variable in
rs(T) was updated (SCU = max{CI(Ti) | WS(Ti) ∀ rs(T) ♦= ∅}). This state
clearly satisfies all conditions of Definition 7. If the transaction does not read
any value, ST maps T to ⊥, and also in this case all conditions are satisfied. If
T is read-only, we define the server state as

Dn+1 = ≤SC,WS,ST[T �↔ i],CI[T �↔ i + 0.5]⊥
Again, this state satisfies all conditions of Definition 7. In particular, in this case
T must read some value by point 2 of Definition 2. ��

To conclude, let us exploit the proposed formalization to show that the server
causes a transaction to abort only when allowing it to commit would result in
a non-serializable history. Interestingly, this property would not hold if in the
premise of rule [abort] of Definition 8 we would have used as readset rs(T) ⊆
loc(T) instead of rs(T).

For a given server state, it is possible to define a history corresponding to
the execution of the transactions within this state. This history contains depen-
dencies that enforce an order on the committed transactions according to the CI
order, and otherwise would relate conflicting events of active/committed trans-
actions according to the way they are related in ST and CI. Note that there can
not be any dependency between active transactions because such transactions
only have read actions in D (all write actions of a transaction T are recorded
in the server state implicitly at commit time, when the writeset of T is added
to WS).

Definition 10 (Execution history). Let D be a well-formed server state over
a set of transactions T without aborted transactions. Then we define the execu-
tion history consistent with D, denoted by execHist(D), as ≤H,→H⊥ where

– H contains all actions of committed transactions of D, and only the minimal
read actions from variables in rs(T) of active transactions of D;

– →H is the transitive closure of the relation containing all dependencies of
transactions in T plus the pairs (we consider CI and ST whenever they are
defined):

≤cTi
, cTj

⊥, if CI(Ti) < CI(Tj);
≤cTi

,oTj
[x]⊥, if CI(Ti) < CI(Tj) and oTj

[x] conflicts with an action
wTi

[x];
≤wTi

[x], rTj
[x]⊥ if CI(Ti) → ST(Tj); and

≤rTi
[x],wTj

[x]⊥ if ST(Ti) < CI(Tj).

248 A. Corradini et. al.

The conditions on well-formed states (Definition 7) assure that →H is a partial
order. By construction, if D has no active/aborted transactions, execHist(D) is
strict. The following theorem states that if a transaction T will be aborted at
server state D, then the corresponding history, that is, the history that contains
all committed and active transactions until that moment plus the writeset and
commit of T would not be serializable.

Theorem 4 (Abort is necessary). Given a well-formed server state D with-
out aborted transactions, the corresponding execution history execHist(D) =
≤EH,→EH⊥ and an active transaction T from D. Let ≤H,→H⊥ be defined as

– H = EH ⊆ T ;
– →H is the transitive closure of the relation containing →EH, →T plus the pairs

≤ci,oT⊥, if an action of transaction T conflicts with some action of transaction
Ti ∈ EH.

If rule [abort] is enabled for a transaction T then H is not serializable.

Proof. If rule [abort] is enabled then T is not read-only and its read-set is
not empty. Moreover, there is at least one transaction, say Ti, that commit-
ted in D and that updated a variable x read by T with an action rT[x], with
ST(T) < CI(Ti). Let i = CI(Ti) and let wi[x] be the action of Ti that updated
x. This means that actions wi[x] and rT[x] are in EH and rT[x] →EH wi[x] by
Definition 10. But by definition of H, we must have that ci →H rT[x] and thus
wi[x] →H rT[x] (because all actions of a transaction are related to the commit
of the transaction and →H is transitive). Therefore, since →H includes →EH, →H

induces a cycle T →T
H Ti and Ti →T

H T and is therefore not serializable (actually
→H is not even a history, since →H is not a partial order). ��

The proof of the last result is crucially based on the fact that each variable x
in the readset of T has its initial value set by an action rT[x]: if this value is over-
written by a concurrent transaction that commits before T , then T has to abort
because its addition to the current history would cause a cycle of dependencies.
If in the precondition of rule [abort] we would have used rs(T)⊆ loc(T) (as in
the algorithm of Fig. 1) instead of rs(T), the result would not hold. In fact, if
the variable overwritten by a concurrent transaction that commits before T is a
local one, i.e. it is initialized in T by a blind write wT[x], then the corresponding
action rT[x] would not belong to the execution history EH, and in the resulting
history H it would be larger than any conflicting event in EH, giving rise to a
serializable history. Thus in this situation the algorithm of Fig. 1 would cause an
unnecessary failure of the transaction, that is avoided in our model thanks to a
careful definition of readset.

6 Discussion

In this paper we have analyzed the Deferred Update Replication (DUR) tech-
nique, providing a formal model as a transition system that described the behav-
iour of the algorithm. In the construction of this transition system we used a

A Formal Model for the Deferred Update Replication Technique 249

slightly more permissive premise for committing transactions than the algorithm
presented in [17], allowing transactions to commit even if some update was per-
formed in some of its read variables, as long as the first action on this variable
in the committing transaction was a write (thus, the variable was considered to
be local). We showed that for this model all reachable states correspond to seri-
alisable histories involving the corresponding transactions. Moreover, we showed
that for all serialisable histories, it is possible that the DUR algorithm generates
an execution containing all these transactions. But note that, given a server state
D and a transaction T that is trying to commit, if the algorithm suggest the
abortion, this does not mean that there is no serialisable history containing all
committed transaction plus T , what it means is that it is not possible to find a
serialisation without changing the order of some already committed transaction.
This was stated as a theorem relating abort transitions and strict histories.

Besides being used to show the correctness and completeness of DUR, the for-
mal model can be used as a basis to reason about other extensions of DUR that
have been proposed recently in the literature, for example, considering replicated
database partitions to enhance overall throughput [17], byzantine fault tolerance
[13], and in-memory transaction execution [16]. Such extensions are very much
attractive to modern computational environments (cloud computing; open sys-
tems and untrusted parties; modern architectures) and a formal analysis involv-
ing correctness and completeness is highly desired. In addition to the directly
related family of DUR protocols, the contribution is also relevant to many other
existing systems using replication and optimistic concurrency control, a frequent
combination.

Another interesting line of research would be to check to which extent the
theory of concurrency can be applied in this setting. The serialisability theory
was very well-studied mainly in the 80s and 90s, and to a great extent results are
based on very basic definitions of switching transactions to obtain equivalence
notions over histories. To handle more complex scenarios, like the ones arising
e.g. from unreliable systems, cloud computing or adaptive systems, it might be
necessary to reason using more abstract notions of histories and equivalences.
The use of concurrency models explicitly handling causality like event structures
[10] or asymmetric event structures [2] about database updates in such settings.

7 Appendix

We present here the proof of Theorem 2.

Theorem 5 (Well-formed server states are reachable). A server state
over a set of transactions T is reachable if and only if it is well-formed.

Proof. Only if part We must show that the initial state D0 of Definition 8 is
well-formed, and that if D is well-formed and there is a transition D ≈ D≤, then
D≤ is well-formed as well. Let us consider the six conditions for well-formedness
of Definition 7.

250 A. Corradini et. al.

1. By definition WS0(0) = X holds in D0, and the only rule that modifies
vector WS, that is [commit], changes it at index CI + 1 > 0; therefore the
first condition is satisfied by each reachable state.

2. D0 satisfies the second condition because CI0 = ⊥. The only rule that modifies
WS is [commit], which also changes SC and CI in a way that maintains the
invariant described by the second condition.

3. The only rule that modifies the snapshot identifier ST(T) of a transaction is
[read−⊥]: its second premise guarantees the third condition.

4. Finally, conditions 4, 5 and 6 are clearly satisfied by D0 because CI0 = ⊥,
and they express invariants that are easily checked to be maintained by rules
[abort], [commit] and [commit-RO], respectively.

If part Let D = ≤SCD,WSD,STD,CID⊥ be a well-formed server state over T .
We proceed by induction on the cardinality of Comm(D).

If |Comm(D)| = 0, no transaction of T committed, and therefore we must
have SCD = 0,WSD = [0 �↔ X], and CID = ⊥, as no transaction could have
aborted either, by condition 4 of Definition 7. Furthermore, STD(T) ∈ {⊥, 0}
for all T ∈ T , i.e. some transactions may already have 0 as snapshot identifier.
Let us show that D is reachable, i.e. D0≈→D where D0 is as in Definition 8.
In fact, if {Ti}1↑i↑k = {T | STD(T) = 0}, by condition 3 of Definition 7 we
know that rs(Ti) is not empty for 1 → i → k, and thus there exists a sequence of

transitions D0
rec(T1)−−−−−−↔

[read−≥]
D1

0 · · ·Dk−1
0

rec(Tk)−−−−−−↔
[read−≥]

Dk
0 = D, where for all i ∈ [1, k] it

holds STDi
0
(T) = 0 ⇐≈ T ∈ {T1, . . . , Ti}.

Suppose now that |Comm(D)| = n + 1. We first show that, without loss
of generality, we may assume that no transaction aborted yet in D. In fact, if
{Ti}1↑i↑k = {T | CID(T) = aborted}, then D is reachable from a state D≤ where
those transactions are still active (i.e. CID′(Ti) = ⊥), with a sequence of k [abort]
transitions, one for each element of {Ti}1↑i↑k. The preconditions of such [abort]
transitions are satisfied by condition 4 of 7.

Now, assuming that D has no aborted transactions, let T be one of the
transactions in Comm(D) with maximal commit index. We have two cases: either
T is read-only or not.

If T is read-only, by conditions 6 and 2 of Definition 7 we have CID(T) =
STD(T) + 0.5 = SC + 0.5. Consider the server state D≤ = ≤SC,WS,ST≤,CI≤⊥
where

ST≤(x) =
{

ST(x) if x ♦= T
⊥ if x = T

CI≤(x) =
{

CI(x) if x ♦= T
⊥ if x = T

State D≤ represents a snapshot of the system where all transactions but T are
as in state D, while T did not start yet (its snapshot identifier is ⊥). It is easily
shown that D≤ is well-formed, therefore by inductive hypothesis D≤ is reachable
from D0.

It remains to show that D is reachable from D≤ by accepting all the requests

generated by the execution of T , i.e. D≤ rec(T)−−−−−↔
read−≥

D≤≤ rec(T)−−−−↔
[read]

D≤≤ · · ·D≤≤ adel(T)−−−−−−−−↔
[commit-RO]

D;

A Formal Model for the Deferred Update Replication Technique 251

in fact the first transition sets ST(T) to SC, and the last one sets CI(T) to
SC + 0.5.

If T is not read-only, by condition 2 of Definition 7 we have that CID(T) =
SCD. Let us additionally assume that STD(T) = CID(T)−1. The idea, as in the
case just seen, is to remove T from D obtaining a state D≤ with less committed
transactions. But if there are transactions with STD(T ≤) = SCD = CID(T), the
resulting state would not be well-formed because STD(T ≤) > SCD′ = SCD − 1.

Therefore let us consider state D≤ obtained from D by setting STD′(T) = ⊥
for all transactions in {T}1↑i↑k = {T | STD(T) = CID}. We clearly have

D≤≈→D with a sequence of transitions D≤ rec(T1)−−−−−↔
read−≥

D≤
1 · · ·D≤

k−1

rec(Tk)−−−−−↔
read−≥

D≤
k = D,

which are possible by condition 3 of Definition 7.
Consider now the server state D≤≤ = ≤SC≤≤,WS≤≤,ST≤≤,CI≤≤⊥ where

SC≤≤ = SC≤ − 1, WS≤≤(x) =
{

WS≤(x) if x ♦= SC≤

⊥ if x = SC≤

ST≤≤(x) =
{

ST≤(x) if x ♦= T
⊥ if x = T

CI≤≤(x) =
{

CI≤(x) if x ♦= T
⊥ if x = T

State D≤≤ is the server state before transaction T has started, and it is easily
shown to be well-formed. Therefore by induction hypothesis D≤≤ is reachable from
D0. To show that D≤≤≈→D≤, we consider two cases, depending on the readset of
T .

1. rs(T) = ∅: In this case, the premise of [commit] is satisfied because T is not

read-only, thus D≤≤ adel(T)−−−−−−↔
[commit]

D̂. The resulting state is

D̂ = ≤SC≤≤ + 1,WS≤≤[SC≤≤ + 1 �↔ ws(T)],ST≤≤,CI≤≤[T �↔ SC≤≤ + 1]⊥

and using SC≤≤ = SC≤ − 1, CI≤(T) = SC≤, rs(T) = ∅ we conclude that

D̂ = ≤SC≤,WS≤≤[CI≤(T) �↔ ws(T)],ST≤,CI≤≤[T �↔ SC≤]⊥

and thus D≤ = D̂ is reachable.
2. rs(T) ♦= ∅: Here, analogously to the case of read-only transactions, we may

start by an application of rule [read]−⊥ followed by some applications of rule
[read] until all variables in rs(T) are read, leading to state D̂. Since state D
was well-formed, it is easy to check that rule [commit] is enabled for T in D̂,
and that its application yields state D≤.

It remains to consider the last case, where the transaction with highest com-
mit index in D, say T , is not read-only and where STD(T) < CID(T) − 1. We
argue as follows. Let D≤ be exactly like D, but with STD′(T) = CID(T) − 1.
By the argument just presented we know that D≤ is reachable from D0, i.e.
there is a sequence of transitions D0≈D1 · · ·Dn−1≈Dn = D≤. In this sequence,

252 A. Corradini et. al.

the transition · rec(T)−−−−−↔
read−≥

·, that sets the value of ST(T), must occur after transi-

tion · adel(T ′)−−−−−−↔
[commit]

·, which sets CI(T ≤) = CI(T) − 1. Between the two transitions,

there could be other [read], [read]−⊥ and [commit-RO] transitions only. Now,

it is easy to show that · rec(T)−−−−−↔
read−≥

· can be anticipated by switching it with all

these transitions, without affecting the well-formedness of the states and with-
out changing the final state. Finally, when we have the consecutive transitions

· adel(T ′)−−−−−−↔
[commit]

· rec(T)−−−−−↔
read−≥

·, we can switch them by obtaining · rec(T)−−−−−↔
read−≥

· adel(T ′)−−−−−−↔
[commit]

·.
This is possible, again, because the well-formedness of state D ensures that
ws(T ≤) ∀ rs(T) = ∅. In the resulting final state only the value of ST(T) is
changed, and it is CI(T ≤) = CI(T) − 2. By iterating this transformation of the
sequence of transitions we can show that the original state D is reachable. ��

References

1. Armendáriz-Iñigo, J.E., de Mend́ıvil, J.R.G., Garitagoitia, J.R., Muñoz-Escóı,
F.D.: Correctness proof of a database replication protocol under the perspective
of the I/O automaton model. Acta Inf. 46(4), 297–330 (2009)

2. Baldan, P., Corradini, A., Montanari, U.: Contextual Petri Nets, asymmetric event
structures and processes. Inf. Comput. 171(1), 1–49 (2001)

3. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley, San Diego (1987)

4. Bhargava, B.K.: Concurrency control in database systems. IEEE Trans. Knowl.
Data Eng. 11(1), 3–16 (1999)

5. Budhiraja, N., Marzullo, K., Schneider, F.B., Toueg, S.: The primary-backup app-
roach. Distrib. Syst. 2, 199–216 (1993)

6. Garcia, R., Rodrigues, R., Preguiça, N.M.: Efficient middleware for byzantine fault
tolerant database replication. In: Kirsch, C.M., Heiser, G. (eds.) EuroSys, pp. 107–
122. ACM (2011)

7. Gray, J., Helland, P., O’Neil, P.E., Shasha, D.: The dangers of replication and a
solution. In: Jagadish, H.V., Mumick, I.S. (eds.) SIGMOD Conference. pp. 173–
182, ACM Press (1996)

8. Kemme, B., Alonso, G.: A new approach to developing and implementing eager
database replication protocols. ACM Trans. Datab. Syst. 25(3), 333–379 (2000)

9. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM
Trans. Datab. Syst. (TODS) 6(2), 213–226 (1981)

10. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains,
part I. Theor. Comput. Sci. 13(1), 85–108 (1981)

11. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26(4), 631–653 (1979)

12. Pedone, F., Guerraoui, R., Schiper, A.: Transaction reordering in replicated
databases. In: 16th IEEE Symposium on Reliable Distributed Systems (SRDS),
pp. 175–182. IEEE (1997)

13. Pedone, F., Schiper, N.: Byzantine fault-tolerant deferred update replication. J.
Brazil. Comput. Soc. 18, 3–18 (2012)

A Formal Model for the Deferred Update Replication Technique 253

14. Schmidt, R., Pedone, F.: A Formal Analysis of the Deferred Update Technique.
In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS. LNCS, vol. 4878, pp. 16–30.
Springer, Heidelberg (2007)

15. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: A tutorial. ACM Comput. Surv. (CSUR) 22(4), 299–319 (1990)

16. Sciascia, D., Pedone, F.: RAM-DUR: In-memory deferred update replication. In:
31st IEEE Symposium on Reliable Distributed Systems (SRDS), pp. 81–90. IEEE
(2012)

17. Sciascia, D., Pedone, F., Junqueira, F.: Scalable deferred update replication. In:
42nd Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pp. 1–12. IEEE (2012)

Studying Operational Models
of Relaxed Concurrency

Gustavo Petri(B)

Purdue University, West Lafayette, USA
gpetri@cs.purdue.edu

Abstract. We study two operational semantics for relaxed memory
models. Our first formalization is based on the notion of write-buffers
which is pervasive in the memory models literature. We instantiate the
(Total Store Ordering) TSO and (Partial Store Ordering) PSO memory
models in this framework. Memory models that support more aggres-
sive relaxations (e.g. read-to-read reordering) are not easily described
with write-buffers. Our second framework is based on a general notion of
speculative computation. In particular we allow the prediction of func-
tion arguments, and execution ahead of time (e.g. by branch prediction).
While technically more involved than write-buffers, this model is more
expressive and can encode all the Sparc family of memory models: TSO,
PSO and (Relaxed Memory Ordering) RMO. We validate the adequacy
of our instantiations of TSO and PSO by formally comparing their write-
buffer and speculative formalizations. The use of operational semantics
techniques is paramount for the tractability of these proofs.

1 Introduction

Current trends in multi-core architectures have raised interest in the formaliza-
tion of relaxed memory models. While most works on the area concentrate on
axiomatic definitions of such models [1,13,18] in this work we concentrate on the
operational formalization of such models and the techniques that they enable.

Some recent works – including ours – have addressed the operational seman-
tics of relaxed memory models [4,7,8,10,19], to mention but a few. In [7] we
consider the operational semantics of write-buffering (see [1]). In these models
writes to the memory are delayed in buffers, and are later updated into the mem-
ory. When a write is buffered, the issuing process is able to continue executing
provided that its execution does not conflict with the suspended writes. Buffer-
ing a thread write has, from another thread perspective, the effect of delaying
its execution w.r.t. subsequent actions of that thread. Write buffering is only
one of the many memory order relaxations of common machine architectures
and programming languages [1]. In [8] we consider the semantics of speculative
computation, where actions in a thread can be performed in advance – or in par-
allel – without waiting for prior actions to be completed. Speculations are more

Research supported by NSF 1237923.

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 254–272, 2014.
DOI: 10.1007/978-3-319-05119-2 15, c© Springer International Publishing Switzerland 2014

Studying Operational Models of Relaxed Concurrency 255

[
p := 1 ;
r0 := (!q)

]

→
[

q := 1 ;
r1 := (!p)

]

(a) TSO & PSO: r0 = r1 = 0

[
p := 1 ;
q := 1

]

→
[

r0 := (!q) ;
r1 := (!p)

]

(b) PSO: r0 = 1 & r1 = 0

Fig. 1. TSO and PSO examples

general than write buffering, since more behaviors are possible. This additional
expressivity comes at the cost of a more elaborate formalism. Here we provide
a uniform presentation and a formal comparison of instances of the frameworks
justifying that claim. To do so, we present instances of both frameworks describ-
ing the TSO (Total Store Ordering) and PSO (Partial Store Ordering) memory
models of Sparc [20]. However, the RMO (Relaxed Memory Ordering) model
cannot be encoded with write-buffers.

Let us focus on TSO and PSO. Both models can reorder a read instruction
with respect to a previous write. Figure 1a illustrates this behavior, where we
assume that p and q are pointers in the memory initialized to 0, r0 and r1
refer to local “registers” (private to a thread), and we use the ML syntax (!p)
for dereferencing p. If we execute these threads according to their interleaving
semantics [11] the final result r0 = r1 = 0 is not possible. However, if any of the
reads is allowed to execute before its previous write (since they are on different
references), the result is possible. PSO additionally allows two subsequent writes
to be reordered. The result in Fig. 1b can happen if the write of q takes place
before the one of p. Another relaxation of these models is the capability of a
thread to read its own writes early, according to [1]. Thus a thread can see its
own writes before any other thread in the system.

In this work we formalize TSO and PSO with write buffers and speculations.
For completeness we present a formalization of RMO with speculations. We then
prove the adequacy of our formalizations of TSO and PSO with write-buffers and
speculation. To that end we develop a third calculus, including both, write buffers
and speculations, and prove their equivalence. This proof is based on the same
basic concepts of true concurrency that we use to define the frameworks [7,8],
where we distinguish as particularly important, the equivalence by permutation
of independent steps, first introduced for the α-calculus in [6].

In summary we make the following contributions: (1) We present in a uni-
form language two frameworks to describe relaxed memory models extending the
ideas of [7,8]. (2) We present a speculative semantics that allows for argument
speculation. While this is not our first attempt at speculative semantics [8], this
addition generalizes the calculus presented in that work. In particular, branch
prediction can be considered as a particular case of argument speculation where
the condition is the argument. (3) As an example of the frameworks we instanti-
ate the memory models of Sparc [20], which inspired some of the changes to [8].
(4) Using standard true concurrency techniques we prove the adequacy of the
instantiations with the two frameworks of PSO and TSO. (5) This equivalence
proof enables the reuse of the proof of the fundamental property of memory

256 G. Petri

models, which we proved in [8] for buffered models, in the context of the specu-
lative calculus. While the simulation argument of [8] is not surprising, a similar
argument in the calculus of speculations would require nonstandard techniques
which is leveraged using our adequacy proof.

2 Two Frameworks of Relaxed Memory

To avoid clutter and focus on the memory model related aspects of programming
languages we consider the syntax of a simple imperative call-by-value α-calculus,
extended with constructs for atomic operations and barriers to impose ordering
among actions as typically found in the instruction set of machine architectures.
We remark that the choice of a α-like language constraints in no way the memory
model arguments that follow.

v ∈ Val ::= x | αxe | tt | ff | () values
e ∈ Expr ::= v | (ve) | (ref v) | (! v) | (v0 := v1) expressions

| (cas v) | ≤wr|rd→ | ≤wr|wr→
The memory model relevant instructions are writes to the memory, reads from
the memory, atomic actions that use the memory and ordering instructions, all
of them present in our language. Moreover we consider the language in quasi-
Administrative Normal Form (ANF) [9]1.

Let us briefly discuss the intuitive semantics of the language. Our values are:
α-abstractions, booleans and the value () to represent termination. We adopt the
syntax e0 ; e1 to denote the expression (αxe1e0) where x is not free in e1. The
expression (ref v) allocates a new memory location with the value v returning the
reference where the value was allocated. The expression (!p) reads the memory
retrieving the value at the location p. The expression (p := v) updates the
memory at location p with v. We also have a simple compare-and-swap construct
(cas p) that atomically reads and modifies the reference p. In fact, this is a
very primitive version of a standard read-modify-write construct. It reads the
reference p and if the result of the read is ff it updates the location with value
tt atomically; if the result of the read is tt it leaves the location unmodified.
The returned value signals to the success or failure of the test. One could think
of (cas p) as executing the following code atomically: (if (!p) then ff else (p :=
tt) ; tt). To finish with the language we have the barrier constructs ≤wr|rd→ and
≤wr|wr→ which are used to impose ordering on the evaluation of instructions of
threads. These barrier instructions will not be of interest until the introduction
of the relaxed semantics. We anticipate that the barrier ≤wr|rd→ prevents write
actions previous to the barrier (in the program syntax) from being delayed past
read actions following the barrier. And similarly, the ≤wr|wr→ barrier imposes
constraints on two write instructions.

We present the technical tools that we will use throughout the paper along-
side the standard semantics of this programming language. The operational
1 A more complete language is considered in [15].

Studying Operational Models of Relaxed Concurrency 257

semantics is given in two steps. First we provide rules that allow individual
expressions to execute, where the values obtained from dereferencing a pointer
are predicted (i.e. unconstrained). In a second step, we compose all the expres-
sions (threads) into a single configuration that synchronizes them and interacts
with the memory.

As it is common practice, we decompose expressions into a redex (reducible
expression) and an evaluation context, that is an expression where a subexpres-
sion has been replaced with a hole denoted here by []. To describe the dynamics
of our language we need to include pointers p, q ∈ Ref which are runtime values,
and the runtime expression (αv?e0e1) which we use to decompose the ε-reduction

rule of the α-calculus in two steps: (αxe0v)
βv−⊥ (αv?{x/v}e0v)

β−⊥ {x/v}e0, where
we include labels that will shortly be explained. The extended language is as fol-
lows:

e ::= . . . | (αv?e0 e1) expressions
v ::= . . . | p | (αv?e0) values
r ::= (αxev) | (αv?ev) | (ref v) | (! p) | (p := v) redexes

| (cas p) | ≤wr|rd→ | ≤wr|wr→
E ::= [] | (vE) evaluation contexts

To describe the interaction of several threads and the memory, we label the
transitions with the actions being taken at each step. Actions are sampled from
the syntax:

a ∈ Act ::= εv | ε | σp,v | wrp,v | rdp,v | rdop,v | casp,v | b
b ∈ Bar ::= wr | ww

The meaning of these symbols is better understood by looking at the seman-
tics of single expressions in Fig. 2. As we anticipated, εv and ε are the actions
that result from a function application. Notice how the standard ε-reduction
rule is split into two steps. The actions concerning the memory are: σp,v, which
results from creating a new pointer p with value v, wrp,v for writing on p, and
similarly for rdp,v where the value v is unconstrained. The action casp,v results
from a compare-and-swap and wr and ww result from write-read barriers and a
write-write barriers respectively. The special action rdop,v notifies, in the relaxed
semantics that follows, that the value v has been obtained from a buffer, or
speculated.

The semantics of thread systems is given by means of transitions between
configurations C = (S, T) containing a store S, which represents the memory,

E[(σxev)]
βv−−← E[(σv?{x/v}e v)]

E[(σv?ev)]
β−← E[e]

E[(ref v)]
νp,v−−−← E[p]

E[(p := v)]
wrp,v−−−← E[()]

E[(! p)]
rdp,v−−−← E[v]

E[(cas p)]
casp,v−−−← E[v]

E[(! p)]
rdop,v−−−← E[v]

E[wr|rd]
wr−← E[()]

E[wr|wr]
ww−← E[()]

Fig. 2. Semantics of single expressions

258 G. Petri

e
a−← e′

(S, et→T)
a−← (S′, e′

t→T)
(⊥)

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a = ψp,v ⇒ p /∅ dom(S) & S′ = S ∪ {p ◦← v}
a ∅ {rdp,v, rdop,v} ⇒ S(p) = v

a = wrp,v ⇒ S′ = S[p ∧ v]

a ∅ {casp,tt} ⇒ S(p) = ff & S′ = S[p ∧ tt]

a ∅ {casp,ff } ⇒ S(p) = tt

Fig. 3. Multithreaded semantics (interleaving, or strong)

and is formally a mapping from the set dom(S) ↔ Ref into values, and a thread
system T which is a set of elements et where t ∈ T id is a thread identifier and
e ∈ Expr is the actual code of the thread. Of course, a thread identifier occurs
at most once in T . We denote by (et⊆T) the thread system that contains all the
threads in T as well as the thread et.

The semantics of the full thread system is given in Fig. 3, where we only make
explicit in the constraint (≥) the cases where store changes (i.e. S≥ ∀= S), or where
the action depends on S. We will consider this to be the standard semantics of
our language. We will call this semantics the strong semantics, as opposed to
the ones of the following sections, which we shall call relaxed, or weak.

2.1 Write Buffering Models

To formalize the semantics of TSO and PSO we add write buffers to the strong
semantics. Buffers are FIFO queues of pending memory updates and barriers,
defined by the syntax:

B ::= Σ | B Ψ [p ∅⊥ v] | B Ψ [b]

The empty buffer is denoted by Σ, and nonempty buffers contain pending memory
updates [p ∗ v], or pending barriers [b]. We will use the notation B(p) to denote
the (ordered) sequence of values pending in the buffer B for the reference p,
as well as any pending barriers on that buffer. The auxiliary function B ≡ p
represents the buffer B where the first (in FIFO order) update to the reference
p has been popped. We will also use the notation a ϕ B to represent the buffer
whose first element is a and then continues like B.

We augment the thread systems of the previous section with buffers. In par-
ticular, since we are only concerned with the PSO and TSO memory models
of Sparc there is no need to consider thread creation. The buffers are local to
a thread, meaning that pending updates on buffers cannot be shared among
different threads. Thus, configurations have now the form C = (S, (Bt, et)⊆T)
where Bt is the buffer associated to the thread t. We will use new actions that
result from updates pertaining buffers.

a ∈ Act ::= . . . | bup,v | b̄

The action bup,v corresponds to an update of the memory by a write that was
pending in a buffer, and the action b̄ corresponds to the removal of a barrier

Studying Operational Models of Relaxed Concurrency 259

e
a−← e′

(S, (B, et)→T)
a−←
t

(S′, (B′, e′
t)→T)

(⊥)
B = b θ B′ b ∅ Bar

(S, (B, et)→T)
b−←
t

(S, (B′, et)→T)

B = [p ◦← v] θ B′ S′ = S[p ∧ v]

(S, (B, et)→T)
bup,v−−−←

t
(S′, (B′, et)→T)

TSO
B(p) = wr

n · v · s S′ = S[p ∧ v]

(S, (B, et)→T)
bup,v−−−←

t
(S′, (B≡p, et)→T)

PSO

(⊥)

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a = ψp,v ⇒ p /∅dom(S) &

S′ =S∪{p ◦← v}
a = wrp,v ⇒ B′ = B τ [p ◦← v]

a = rdp,v ⇒ S(p) = v & �B(p)� = α

a = rdop,v ⇒ �B(p)�=v

a ∅ Bar ⇒ B′ = B τ [a]

a = casp,ff ⇒ S(p) = tt & B=α

a = casp,tt ⇒ S(p) = ff & B=α
& S′ = S[p ∧ v]

Fig. 4. PSO & TSO with write buffers

b ∈ Bar from a buffer. We refer to these actions as the commit of a previous
write or barrier that originated the buffer item. We can now present the semantics
of PSO and TSO in Fig. 4. For convenience, we use the following notation on
sequences2 of pending writes and barriers: �s� = Σ if s = wwn; and �s� = v if
s = s≥ · v · wwn; and wr does not occur in s≥, being undefined otherwise.

There are many rules that change from the strong semantics presented previ-
ously. Importantly, write and barrier actions have as their only effect appending
the update or barrier to the end of the buffer. Notice as well that the rules for
actions rdp,v and rdop,v are now different from each other. On the one hand, the
action rdp,v reads the contents from the memory, requiring that the buffer be
empty for the reference p, and moreover, that there are no pending wr barri-
ers. In fact, it is in this way that barrier symbols constrain the execution of
some actions, disallowing particular reorderings. On the other hand, the action
rdop,v retrieves its value from the buffer, or reads its own write. The three new
rules (i.e. the new actions) update the contents of the memory by emptying the
buffers. These rules are nondeterministically triggered and model the asynchro-
nous working of the memory architecture. In the rule for b̄, the barrier symbol
is removed from the buffer only when it reaches its top, that is, when all actions
that were buffered previous to the barrier have been committed. Similarly, for
TSO, a buffered write is updated into the memory upon reaching the top of the
buffer. The only modification necessary to obtain PSO is the rule that updates
the memory (that is the action bup,v), where a buffered write can be committed
into the store even if there are previously buffered writes on different references.
These are the final two rules in Fig. 4.

Let us reconsider the example program of Fig. 1a. The following is a possible
computation that justifies the result r0 = r1 = 0, where we demark the buffers
2 Throughout the paper we use the notations a · b for the concatenation of sequences
a and b, and ≤ for the prefix ordering.

260 G. Petri

with ≤→, and implicitly name the thread to the left t0 and the one to the right t1
(we leave the PSO example Fig. 1b to the reader):

≤Σ→(p := 1 ; (!q))⊆≤Σ→(q := 1 ; (!p))
wrp,1−−−⊥

t0
≤Σ Ψ [p ∅⊥ 1]→(!q)⊆≤Σ→(q := 1 ; (!p))

wrq,1−−−⊥
t1

≤Σ Ψ [p ∅⊥ 1]→(!q)⊆≤Σ Ψ [q ∅⊥ 1]→(!p)
rdq,0−−−⊥
t0

≤Σ Ψ [p ∅⊥ 1]→(0)⊆≤Σ Ψ [q ∅⊥ 1]→(!p)

rdp,0−−−⊥
t1

bup,1−−−⊥
t0

≤Σ→0 ⊆ ≤Σ Ψ [q ∅⊥ 1]→0 buq,1−−−⊥
t1

≤Σ→0 ⊆ ≤Σ→0

Importantly, both these memory models satisfy the fundamental property of
relaxed memory models [2,17]. This property states that programs that are free
of data races in their interleaving semantics only exhibit sequentially consistent
behaviors in their relaxed semantics. We now make these claims precise.

Definition 1 (Data-Race). A configuration C is said to contain a data race
if C =

⎧
S, (E[(p := v)]t ⊆ E≥[r]t′ ⊆ T ≥)

⎪
and r ∈ {(!p), (p := w) | w ∈ Val}.

The definition of data-race can be easily lifted to programs.

Definition 2 (DRF Program). We say a configuration C is data-race free
(DRF for short) if every configuration C ≥ reachable from C by the interleaving
semantics (i.e. C

≤−⊥ C ≥) contains no data-race. A parallel program e0⊆ . . . ⊆en

is data-race free if the configuration (♦, e0⊆ . . . ⊆en) is data-race free.

We can now prove the fundamental property for the models with write
buffers.

Theorem 3 (Fundamental Property). The weak memory models TSO and
PSO implement the interleaving semantics for data-race free programs. More pre-
cisely, the configurations where all buffers are empty (c.f. Fig. 4) reachable from
a DRF regular configuration C in the semantics with write buffers coincide with
the configurations reachable from the same configuration C in the interleaving
semantics (c.f. Fig. 3).

We eschew the proof since it very closely follows the one in [7] with the
simplification that here we do not consider thread creation. Moreover, since we
do not consider locks (we are concerned with architectural models), the only
means to establish ordering between concurrent conflicting accesses is through
the use of cas instructions. Although the DRF result of TSO and PSO is well
known, we emphasize here that our proof is a mostly standard bisimulation,
which we can do due to the operational semantics. Most other proofs of this
result are non-constructive (e.g. [13]).

As we anticipated, write buffers alone are not sufficient to model the read-
read reorderings exhibited by RMO. This is typically illustrated by the IRIW
(Independent Reads Independent Writes) example that follows, where we assume
that p and q are initially 0:

Studying Operational Models of Relaxed Concurrency 261

⎨
r0 := (!p) ;
r1 := (!q)

⎩
⊆

⎨
r2 := (!q) ;
r3 := (!p)

⎩
⊆ p := 1 ⊆ q := 1

RMO: r0 = r2 = 1 & r1 = r3 = 0

It is clear that no write buffer behavior can produce this result since the writing
threads have just one write each, and the reading threads do not use their write
buffers in any way. It is therefore necessary to consider another kind of relaxation
to capture RMO behaviors. If we allow any of the reading threads to speculate
their second read before the first one, the behavior becomes possible (without
recourse to any buffering argument). To see this, imagine that the second reads
of the reading threads are executed first, then the writes of the writing threads,
and finally the first reads of the reading threads. This kind of behavior is typical
of speculative execution models which motivates our next semantics.

2.2 Speculative Models

We now consider the specification of relaxed memory models by means of spec-
ulations. We previously addressed the speculative semantics of programming
languages in [8,15] where we generally discussed about the modeling of relaxed
memory models. Let us briefly introduce a modified framework from [8] and
show how TSO, PSO and RMO3 can be modeled with it.

The two ingredients introduced for the speculative framework are speculation
contexts and the prediction of arguments in applications. Speculation contexts
generalize the evaluation contexts previously defined, by allowing the reduction
of expressions that are otherwise not enabled in the strong semantics of Sect. 2,
and have the following syntax:

Σ ::= [] | (vΣ) | (αxΣe) | (αv?Σe) speculation contexts

Notice that in an expression like (αx(!p)e) one can reduce the redex (!p), by
choosing the speculative context (αx[]e). In particular, this means that one can
execute e1 before e0 in (e0 ; e1). The second ingredient, the prediction of argu-
ments, not present in [8], requires to extend the syntax for redexes with the new
redex (αxe0e1) ∈ r, where the expression e1 is not required to be a value. The
speculative semantics for this redex is then:

Σ[(αxe0e1)]
βv−⊥ Σ[(αv? {x/v}e0 e1)] (1)

The reason why we need this type of speculation can be seen with the expression
(αy p := y (q := 1 ; 0)). If we consider this example under the semantics of PSO
with write buffers (cf. the previous section), it is clear that the write of p can
be updated into the memory before the one of q, since they are on different
references. However, if we are not able to predict that the expression (q := 1 ; 0)

3 Since most proofs in this paper are not concerned with RMO we will just present its
formalization for completeness, but we will otherwise ignore it.

262 G. Petri

invariably returns 0, the write of p cannot proceed until the one of q has been
performed with speculations. To solve this issue we add the possibility to predict
the arguments (the reduction labeled εv), which are later validated in the actual
application (the reduction labeled ε). Then, in the example above we can have:

(αy p := y (q := 1 ; 0))
β0−⊥ (α0? p := 0 (q := 1 ; 0))
wrp,0−−−⊥ (α0?()(q := 1 ; 0)) ≤−⊥ (α0?()0)

β−⊥ ()

modeling the reordering of write buffers. Notice that if an argument is mispre-
dicted, the speculation gets stuck, and therefore the computation is disregarded.

In fact, not all speculations will be considered legitimate. To define which
ones we will regard as valid, we need to identify in the transitions where in the
expression the reduction is taking place. To that end, we shall use occurrences,
defined as sequences of symbols sampled from the set SOcc = Occ ∪ {(α [])}
where Occ = {([])}. An occurrence o ∈ Occ≤ is called normal in contrast with
occurrences in the set SOcc≤/Occ≤ which we shall name speculative. Normal
computations – that is computations that do not speculate – involve only normal
occurrences. We can recover the occurrence @Σ of the hole in a speculation
context Σ by means of the following inductive definition, where z in the last
case can be a variable in Var or a tagged value v?:

@[] = λ @(vΣ) = ([]) · @Σ @(αzΣe) = (α []) · @Σ

We will denote by e@o the subexpression of e whose occurrence is o in case that
is defined. The inductive definition is obvious.

The semantics of expressions is similar to the one given in Fig. 2 with the
evaluation contexts E replaced by a speculation contexts Σ and the occurrence
label (@Σ) in the transitions. For example, the rule for ε-reduction becomes:

Σ[(αv?ev)]
β−−⊥

@Σ
Σ[e]. Only one rule is added, the one we presented in (1) for the

redex (αxe0e1) where e1 is potentially not a proper value. In the example below
one can see that these rules effectively achieve computing in advance w.r.t. the
strong semantics of Sect. 2.

(!q) ; p := tt
wrp,tt−−−⊥ (!q) ;()

rdq,tt−−−⊥ tt ;() ≤−⊥ ()

We can see that the write of p is performed before the read of q although the
program text has them in the reverse order.

The semantics of thread systems is almost identical to the strong semantics
presented in Fig. 3. In fact the configurations are exactly the same, and the only
rule that changes is the one for rdop,v, where the value is speculated at this stage
of the semantics. The intention is that these values will be served by own writes
of the same thread (cf. write buffers). The necessary conditions on this action
will be imposed in the definition of valid computation. The semantics of thread
systems, given in Fig. 5, is almost identical to that of Fig. 3 with the exception

Studying Operational Models of Relaxed Concurrency 263

e
a−←
o

e′

(S, et→T)
a−−←

t,o
(S′, e′

t→T)
(⊥)

{

a ∅ {βv, rdop,v} ⇒ FRef(v) ≤ dom(S)

· · ·

Fig. 5. Speculative semantics

of the rules explicitly mentioned, where FRef(e) is the set of references occurring
in e. The transitions are labeled with the thread identifier, which will be used in
the sequel.

We revisit the example program of Fig. 1a, with a possible speculative com-
putation justifying r0 = r1 = 0 (omitting the occurrences):

(p := 1 ; (!q))⊆(q := 1 ; (!p))
rdq,0−−−⊥
t0

(p := 1 ; 0)⊆(q := 1 ; (!p))
rdp,0−−−⊥

t1

(p := 1 ; 0)⊆(q := 1 ; 0)
wrq,1−−−⊥

t1

wrp,1−−−⊥
t0

≤−⊥ 0⊆0

Validity Condition. The speculative computations presented so far are too per-
missive for our purposes, since the rules do not take into account possible data
dependencies present in the program. The following speculation is an example:

r := (!p) ; p := tt
wrp,tt−−−⊥ r := (!p) ;()

rdp,tt−−−⊥ r := tt ;() ≤−⊥ ()

where we can see that the reordering of the write on p and the read on p causes the
read to see a value that has been put in the memory by a write that should follow
the read in normal (sequential) computations. It is clear that this speculation
violates the programmers intention, and therefore, this speculation should not
be permitted. Intuitively, speculations will be considered valid if they do not
violate the sequential semantics of expressions, and all read own actions have
a preceding write with the same value. To express that a speculation does not
violate the sequential semantics of the original expression we will strongly rely on
the notion of speculations that are similar up to the reordering of independent
steps, a concept borrowed from the early work by Berry and Lévy in the α-
calculus [6].

To define the permutation of steps formally, which is central to our result,
we need to introduce some technical machinery, which might be familiar from
a “true concurrency” perspective. Let us define the residual of an occurrence o≥

after a step with action a at occurrence o in the expression e, which indicates
where a subexpression at o≥ in e remains (if any) after a step a at o:

o≥/e(a, o) �

⎛

⎝

o≥ if o � o≥, or o≥ = o · ([]) · o≥≥ & a = εv

or o≥ = o · (α []) · o≥≥ & a = εv & e@o≥ is a redex
o · o≥≥ if o≥ = o · (α []) · o≥≥ & a = ε

undef otherwise

264 G. Petri

In the following we write o≥/e(a, o) ↓ o≥≥ to mean that the residual of o≥ after
(a, o) is defined, and it is o≥≥. Notice that if o≥/e(a, o) ↓ o≥≥ with o≥ ∈ Occ≤ then
o≥≥ = o≥ and o ∀⇓ o≥.

We now prove that if two consecutive actions are not related by redex creation
(i.e. they have residuals after each other), then reordering their steps in the
speculation leads to the same result. This property is key to the definition of
valid speculations4:

Lemma 4 (Reordering Lemma). If e0
a0−⊥
o0

e
a1−⊥
o1

e1 with o1 ↓ o≥
1/e0(a0, o0)

and o≥
0 ↓ o0/e0(a1, o

≥
1), then there exists e≥ (unique up to ρ-conversion) such that

e0
a1−⊥
o′
1

e≥ a0−⊥
o′
0

e1.

To take into account the dependencies in the program we need a notion of
conflict. We introduce the notations MRdp � {rdp,v, casp,v|v ∈ Val} for the
read actions on reference p that effectively use the memory, and MWrp �
{wrp,v, casp,tt |v ∈ Val} for write actions that modify the memory and define
then the conflict relation.

Definition 5 (Conflicting Actions). We denote by # the following relation
on actions:

�
⎞

p→Ref

(MWrp × MWrp) ∪ (MWrp × MRdp) ∪ (MRdp × MWrp)

Notice that we explicitly have that speculative read actions are not conflicting
with write actions on the same thread. Formally: (wrp,v, rdop,w) /∈ #.

We now define a reordering relation establishing when two speculations cor-
respond to each other up to the reordering of intermediate steps. This definition
is parametric on a dependency relation D. We only require that # ↔ D.

Definition 6 (Reordering Relation). Given a dependency relation D we
define a reordering relation between speculations, called D-reordering, to be the
least preorder ≈D such that if e0

a0−⊥
o0

e
a1−⊥
o1

e1 with o≥
0 ↓ o0/e(a1, o

≥
1) and

o≥
1/e(a0, o0) ↓ o1, and ¬(a0Da1), then σ0 · e0

a1−⊥
o′
1

e≥ a0−⊥
o′
0

e1 · σ1 ≈D σ0 · e0
a0−⊥
o0

e
a1−⊥
o1

e1 · σ1 where e≥ is determined by Reordering Lemma.

A speculation will be considered valid if it is a reordering of a normal spec-
ulation. In other words, if it can be reordered to a speculation where all actions
take place in program order. In addition, we will check that the actions rdop,v

return the last value written to p in the normal speculation, conforming the
semantics of write buffering. To do so, we need to identify steps that represent
the same transition in reordering related speculations. We use the notions of a
step and step family, originally introduced as “redex-with-history” in [6,12].

4 The proof of this and subsequent results can be found in the extended version [16].

Studying Operational Models of Relaxed Concurrency 265

Definition 7 (Step and Step Family). A step is a pair [σ, (a, o)] of a spec-
ulation σ : e

≤−⊥ e≥ and an action a at occurrence o such that e≥ a−⊥
o

e≥≥ for some

expression e≥≥. The binary relation ⇐D on steps, meaning that two steps are in
the same family, is the equivalence relation generated by the rule

∃σ≥≥. σ≥ ≈D σ · σ≥≥ or σ · σ≥≥ ≈D σ≥ & o≥ ↓ o/σ≥≥

[σ, (a, o)] ⇐D [σ≥, (a, o≥)]

We now define the validity of speculations, where we see that rdop,v actions
take their value from the last write on p in the corresponding normal speculation.

Definition 8 (Speculation Validity). A speculation σ is D-valid if there is a

normal speculation σ≥ such that σ ≈D σ≥, and if σ≥ = σ≥
0 · rdop,v−−−⊥

o
· σ≥

1 then there

exists σ≥≥
0 , σ≥≥≥

0 and o≥ such that σ≥
0 = σ≥≥

0 · wrp,v−−−⊥
o′

· σ≥≥≥
0 where σ≥≥≥

0 contains no wrp,

actions. We call the step [σ≥≥
0 , (wrp,v, o≥)] the matching write of [σ≥

0, (rd
o
p,v, o)], and

we denote it match
⎧
[σ≥

0, (rd
o
p,v, o)]

⎪
.

We now specialize the speculative semantics to TSO and PSO, by partic-
ularizing the dependency relations that characterize them. We introduce the
notations Rdp � MRdp ∪ {rdop,v | v ∈ Val} and Wrp � MWrp ∪ {casp,ff } of
read and write actions on location p (not necessarily accessing the memory as
opposed to MRdp and MWrp), and Rd �

⎠
p→Ref Rdp and Wr �

⎠
p→Ref Wrp.

As a step towards the dependencies of TSO, PSO and RMO we define the depen-
dencies induced by barrier actions denoted by �

TSO, �
PSO and �

RMO where
we assume the barrier actions rr and rw generated by the barriers ≤rd|rd→ and
≤rd|wr→ respectively which prevent the reordering of reads with subsequent reads
and writes respectively, wich are allowed by RMO.

�
TSO � (Wr×{wr})∪({wr}×Rd)

�
PSO � �

TSO∪(Wr×{ww})∪({ww}×Wr)
�

RMO � �
PSO∪(Rd×{rr, rw})∪({rw}×Wr)∪({rr}×Rd)

Definition 9 (TSO, PSO and RMO). The TSO, PSO and RMO memory
models are characterized by the following dependency relations:

DRMO � # ∪ �
RMO

DPSO � # ∪ �
PSO ∪ (Rd × Rd) ∪ (Rd × Wr)

DTSO � # ∪ �
TSO ∪ (Rd × Rd) ∪ (Rd × Wr) ∪ (Wr × Wr)

The semantic definition of RMO is here only given for completeness, we shall
not refer to it in the rest of the paper.

Finally, we need a notion of when a write should, or should not, be considered
committed (cf. write buffers). To do that we need to know when two steps in
a speculation are inherently ordered; that is, they are ordered similarly for all
possible valid reorderings of the speculation.

266 G. Petri

Definition 10 (Step Ordering). Given a speculation σ = σ0· a0−⊥
o0

·σ1· a1−⊥
o1

·σ2,

we have [σ0, (a0, o0)]↑σ [σ0· a0−⊥
o0

·σ1, (a1, o1)], iff for all σ≥ with σ≥ ≈D σ then σ≥ =

σ≥
0· a0−⊥

o′
0

·σ≥
1· a1−⊥

o′
1

·σ≥
2 with [σ0, (a0, o0)] ⇐ [σ≥

0, (a0, o
≥
0)] and [σ0· a0−⊥

o0
·σ1, (a1, o1)] ⇐

[σ≥
0· a0−⊥

o′
0

·σ≥
1, (a1, o

≥
1)].

Now we can define when, in a speculative computation, a write has to be
considered committed. We denote by τ|t the projection of thread t over τ.

Definition 11. Given τ = τ0· wrp,v−−−⊥
t,o

·τ1, the step [τ0|t, (wrp,v, o)] is commit-

ted in τ if there are τ≥
1, τ≥≥

1 , t≥, o≥,w such that τ1 = τ≥
1·

rdp,w−−−⊥
t′,o′

·τ≥≥
1 , or τ1 =

τ≥
1·

wrq,w−−−⊥
t,o′

·τ≥≥
1 with [τ0|t, (wrp,v, o)]↑γ|t [τ0· wrp,v−−−⊥

t,o
·τ≥

1|t, (wrq,w, o≥)] and [τ0· wrp,v−−−⊥
t,o

·τ≥
1, (wrp,q, o

≥)] is committed in τ.

To see why we require this condition for validity, consider the following thread
system in PSO where we depict only threads:

⎡
⎢⎢⎣
p := tt ;
∗wr|wr∨ ;
q := tt ;
(!p)

⎤
⎥⎥⎦ →
⎞
(!q)
⎟

wrp,tt−−−←
t0

⎡

⎣
≤wr|wr→ ;
q := tt ;
(!p)

⎤

⎦ ⊆
[
(!q)

]
ww−⊥
t0

⎨
q := tt ;
(!p)

⎩
⊆

[
(!q)

]

wrq,tt−−−⊥
t0

[
(!p)

]
⊆

[
(!q)

]
rdq,tt−−−⊥

t1

[
(!p)

]
⊆

[
tt

]

It is clear that the final read of p by t0 cannot be a rdop,v (that is a read of an
uncommitted write), since the write of q has already been made globally visible,
and there is a ≤wr|wr→ between the write of p and the one of q. This is obvious
in the semantic with write-buffers but has to be required for speculations.

We can now give the definition of validity for TSO and PSO speculative
computations.

Definition 12 (Valid Speculative Computation). A speculative computa-
tion τ is D-valid iff for every thread t we have that τ|t is a D-valid specula-

tion, and additionally, if τ = τ≥ · rdop,v−−−⊥
t,o′

· τ2 where τ≥ = τ0 · wrp,v−−−⊥
t,o

· τ1, and

match([τ≥|t, (rdop,v, o≥)]) ⇐ [τ0|t, (wrp,v, o)] then [τ0|t, (wrp,v, o)] is not committed
in τ≥.

Hence, DTSO-valid speculative computations describe TSO, and similarly
DPSO-valid speculative computations describe PSO. Thus, the examples of Fig. 1
are valid.

3 A Formal Comparison

We prove that both instances of PSO are equivalent by showing how a com-
putation with write buffers can be transformed into an equivalent one with

Studying Operational Models of Relaxed Concurrency 267

speculations, and vice versa. A similar result for TSO is obtained as a corollary
observing that the semantic rules for PSO are a superset of the rules of TSO.

Since the mechanisms used in these formalizations are very different, we
introduce a third calculus incorporating both, write buffers and speculations.
We consider this calculus merely as a tool for the proof. We then show that
computations of PSO with write buffers can be embedded in this third calculus,
and so can computations of PSO with speculations. Our proof of coincidence
amounts to proving that: starting from a computation of the third calculus
embedding a computation with write buffers (or speculations) one can reorder
actions, with an appropriate instance of the reordering equivalence relation, to
get a computation that is an embedding of a speculative (respectively write
buffers) PSO computation. To simplify the results we disregard casp,v observing
that its treatment can be deduced from similar conditions on read and write
actions.

Let us formalize this third calculus, which we call merge. The semantic rules
for single expressions are exactly the same as for the semantics of speculations;
that is, the rules of Fig. 2 with speculation contexts Σ instead of E. For example,
the rule for read in Fig. 2 is translated in the merge calculus to:

Σ[(! p)]
rdp,v−−−⊥ Σ[v]

To cope with speculation we further add the redex (αxe0e1) and its associated
reduction rule presented in Eq. (1).

Configurations, and the rules for thread systems are the same as presented
for the semantics of write buffers in Fig. 4 with the exception of the rule rdop,v

which in merge has no constraints. As we did in the semantics of speculations
the transitions will be labeled with the occurrence and the thread performing
the action. Let us refresh the semantics of Fig. 4, emphasizing the only change
we make:

e
a−⊥
o

e≥

(S, (B, et)⊆T) a−−⊥
t,o

(S≥, (B≥, e≥
t)⊆T)

(≥)

{
a = rdop,v ⇒ S≥ = S & B≥ = B

. . .

where the conditions not mentioned are similar to the ones of (≥) in Fig. 4.
As we have done before, we now define an equivalence by reordering of inde-

pendent steps for merge, which allows us to compare its executions. Importantly
the addition of buffers to the calculus of the previous section makes the defin-
ition of conflict, and hence dependency, change. This is because in merge the
actual memory update is done by the buffer update rule (bup,v) rather than the
write rule (wrp,v). Moreover, memory update only affects reads from the memory
(rdp,v) unlike buffer reads (rdop,v) which are retrieved from the thread local buffer.
The definitions of conflict and dependency for the merge calculus are then:

#MG ={(bup,v, bup,w), (rdp,v, bup,w), (bup,v, rdp,w) | p ∈ Ref , v, w ∈ Val}
DMG � #MG ∪ �

PSO ∪ (Rd × Rd) ∪ (Rd × Wr)

268 G. Petri

It is not hard to see that every computation of a program in the semantics
of PSO with write buffers is strictly included the semantics of that program
in merge. This is obvious since the configurations are the same, and the set of
semantic rules of write buffer PSO is strictly included in the set of rules of merge.
Similarly any computation of PSO with speculation can be trivially embedded
into merge by simply forcing a buffer update (by the bup,v rule) after every
write (wrp,v). We shall denote the merge trace resulting from the speculation
trace τ by this forcing semantics by �τ�. Conversely, a computation τ of the
merge-calculus can be related with PSO speculations by “erasing” all the buffer
update actions that immediately follow its generating write. We shall denote by
�τ� this operation in the sequel. The following remark establishes these trivial
embeddings.

Remark 13. Every computation τ : C
≤−⊥ C ≥ of PSO with write buffers (as in

Fig. 4) is also a legal execution of the merge-calculus. For every valid speculative
computation τ : C

≤−⊥ C ≥ (as in Fig. 5), �τ� : C
≤−⊥ C ≥ is a computation of the

merge-calculus.

This remark provides us with embeddings and projections from, and to, the
merge-calculus for both write buffers and speculations. The rest of the proof
only deals with the reordering of steps in the merge-calculus. To that end, we
reproduce the result of Lemma 4, this time for the merge-calculus.

Lemma 14 (Merge Reordering). If e0
a0−⊥
o0

e
a1−⊥
o′
1

e1, then there exists e≥ such

that e0
a1−⊥
o1

e≥ a0−⊥
o′
0

e1 such that o≥
1 ↓ o1/e0(a0, o0) and o≥

0 ↓ o0/e0(a1, o1).

We can then instantiate the reordering relation (Definition 6) of the previous
section using the merge reordering lemma, and we denote by ≈MG the merge
reordering relation: ≈DMG

.
Much can be said about the merge-calculus equivalence by reordering rela-

tion. However the merge-calculus is just a tool in our proof, with little practical
interest for the memory models we consider in this paper. We point the inter-
ested reader to the extended version of the paper [16, Appendix B] for a detailed
account of the merge-calculus intermediate results. Suffice it to say here that
the equivalence by reordering of merge allows us to transform, by reorderings
independent steps, the embedding in merge of a trace of PSO with write-buffers
(or PSO with speculations) into a an embedding in merge of a trace of PSO
with speculations (or PSO with write-buffers respectively). These are the main
results that we consider next.

From Buffers to Speculations. In the following theorem we show how to transform
the a PSO write-buffers computation (embedded in the merge-calculus) into
an equivalent merge-computation where the buffers have no effect. By this we
mean that each write in the resulting computation is immediately followed by its
update into memory. The resulting computation corresponds to the embedding

Studying Operational Models of Relaxed Concurrency 269

of a PSO speculation in the merge-calculus, and therefore erasing the buffer
updates we obtain a PSO speculative computation.

The intuition behind this proof is that, while writes in the write-buffer cal-
culus are executed in program order – that is, respecting the program text –,
their effects are only visible at the time when the buffer is updated into memory.
Based on this observation we conclude that in the semantics with write buffers,
a write does not affect the behavior of other threads until its buffer update.
Therefore, we can push the write to happen at a later time, by introducing
speculations that execute instructions that follow the write in program order.
In fact, doing so we prove that we can postpone executing the write up to the
point where its buffer update is executed. For a simplified example consider a
trace τ of PSO with write buffers where we stand out an occurrence of a write
and its subsequent corresponding buffer update:

τ = τ0 · wrp,v−−−⊥
t

· τ1 · bup,v−−−⊥
t

· τ2

The following theorem is based on an intermediate result proving that the merge
segment τ1 can be permuted by the merge reordering relation to render an
equivalent trace:

τ ≈MG τ0 · τ≥
1 · wrp,v−−−⊥

t
· bup,v−−−⊥

t
· τ≥≥

1 · τ2

where τ≥
1 · wrp,v−−−⊥

t
· bup,v−−−⊥

t
· τ≥≥

1 has speculative behavior (as permitted by

the merge calculus). Notice that all actions in τ1 by threads other than t are
independent of the write, and for actions on t we show that there is at least one
such write that can be speculated upon (the formalization can be found in [16,
Appendix B]).

The inductive application of the intuition stated above renders a compu-
tation where all writes and barrier actions are immediately followed by their
corresponding commit. The proof is by induction on the number of write and
barrier actions that are not immediately committed.

Theorem 15 (Write Buffers ⇒ Speculations). For any computation τ :
C

≤−⊥ C ≥ of the formalization of PSO with write-buffers there exists a merge
computation τ≥ : C

≤−⊥ C ≥ such that for every thread t, τ≥|t ≈MG τ|t. Moreover,
�τ≥� is a DPSO-valid speculative computation.

From Speculations to Buffers. As the reader might expect, the converse argument
follows the same idea in the opposite direction. As a simplified example, suppose
that we start with a PSO speculative computation of the form

τ = τ0 · wrp,v−−−⊥
t

· τ1

Our embedding of τ into the merge would render:

�τ� = �τ0� · wrp,v−−−⊥
t

· bup,v−−−⊥
t

· �τ1�

270 G. Petri

Moreover, �τ0� can be decomposed to obtain:

�τ� ≈MG �τ≥
0� · wrp,v−−−⊥

t
· �τ≥≥

0 � · bup,v−−−⊥
t

· �τ1�

such that the occurrence of the write wrp,v is no longer speculative – that is,
respects the program order. The details of this construction can be found in the
extended version of the paper [16, Appendix B].

Using this argument inductively we conclude that given a merge calculus
computation where all thread projections are valid, there is a merge computation
with the same initial and final configurations such that the steps are reordered by
pushing write and barrier actions to their normal occurrence – that is, respecting
the program order –, and is therefore a PSO write buffer computation.

Theorem 16 (Speculations ⇒ Write Buffers). Given τ : C
≤−⊥ C ≥ a DPSO-

valid speculative computation of the formalization of PSO with speculations, there
exists a merge computation τ≥ : C

≤−⊥ C such that for all t ∈ T id, �τ�|t ≈MG τ≥|t.
Moreover, τ≥ is a computation of the calculus with buffers.

Notice that although the proofs we provided are stated for PSO, nothing
in the proof themselves is PSO specific. On the contrary, they are stated using
generic notions of conflict/dependency. Therefore the same result holds for TSO.

Corollary 17. The semantics of TSO with write buffers and speculations are
equivalent.

As a final corollary of the proof of equivalence of the semantics we get the
proof of the fundamental property for the speculative semantics of TSO and
PSO, which we did not prove in Sect. 2.2 nor in [8]. This illustrates the power
of these different presentations of the semantics. While the proof of the funda-
mental property for write-buffering semantics was studied in [7], its proof for
the semantics with speculations was missing in [8]. Hence, our equivalence result
establishes the fundamental property for speculations without needing a new
proof strategy.

Corollary 18 (Fundamental Property). The speculative semantics of TSO
and PSO satisfy the fundamental property of relaxed memory models.

The proof is an immediate consequence of Theorems 3, 16 and 15.

4 Related Work and Conclusions

Related Work. Our semantics of TSO and PSO with write buffers instantiates
our framework [7]. In [14] a TSO-like semantics with write buffers is given for x86
architectures. This semantics is very similar to the semantics of TSO we present
here, which results as a natural consequence of instantiating [7]. The speculative
semantics of TSO, PSO and RMO are based on our framework of [8]. However,
although the principle of speculation is the same, value-speculation was not

Studying Operational Models of Relaxed Concurrency 271

considered in [8] which greatly simplifies, and subsumes the technical treatment
of that paper. In that sense, the speculation calculus of this paper supersedes
the framework of [8]. The equivalence between the formalizations of TSO and
PSO in the different frameworks are new to this paper and were developed as
part of the thesis [15] but are otherwise unpublished. Importantly [7,8] focus on
high-level programming languages whereas in this work we focus on architectures
through the use of those frameworks.

There are many formalizations of TSO, PSO and RMO in the literature, each
with a specific goal in mind. Of the axiomatic definitions of these architectures
we distinguish [3,18]. There are as well other operational formalizations, e.g. [4,
5]. Most of these leave the programming language abstract. In particular [4,5]
focus on decidability rather than on the programming language semantics, and
therefore the language is immaterial. Our work is unique in its focus is on a
programming languages semantics and programming languages techniques for
relaxed memory models.

Conclusions. We provided two different formalizations of the TSO and PSO
memory models using different operational frameworks. We prove that these
instantiations are equivalent using standard programming languages techniques
based on the permutation equivalence of [6]. The more sophisticated model of
speculations proves to be more general than the one of write buffers. Our proofs
show the potential of operational formalizations of relaxed memory models to
support technical developments. We speculate that operational models should
also be well suited to support verification techniques.

References

1. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: a tutorial. Com-
puter 29, 66–76 (1996)

2. Adve, S.V., Hill, M.D.: Weak ordering – a new definition. In: ISCA, pp. 2–14.
ACM, New York (1990)

3. Alglave, J.: A shared memory poetics. Ph.D. thesis, Université Paris 7 (2010)
4. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification

problem for weak memory models. In: POPL ’10, pp. 7–18 (2010)
5. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: What’s decidable about

weak memory models? In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 26–46.
Springer, Heidelberg (2012)

6. Berry, G., Lévy, J.-J.: Minimal and optimal computations of recursive programs.
J. ACM 26(1), 148–175 (1979)

7. Boudol, G., Petri, G.: Relaxed memory models: an operational approach. In:
POPL, pp. 392–403. ACM, New York (2009)

8. Boudol, G., Petri, G.: A theory of speculative computation. In: Gordon, A.D. (ed.)
ESOP 2010. LNCS, vol. 6012, pp. 165–184. Springer, Heidelberg (2010)

9. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: PLDI, pp. 237–247. ACM, New York (1993)

10. Jagadeesan, R., Pitcher, C., Riely, J.: Generative operational semantics for relaxed
memory models. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 307–326.
Springer, Heidelberg (2010)

272 G. Petri

11. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess progranm. IEEE Trans. Comput. 28(9), 690–691 (1979)

12. Lévy, J.-J.: Optimal reductions in the lambda calculus. In: Seldin, J.P., Hindley,
J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pp. 159–191. Academic Press, London (1980)

13. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL ’05, pp.
378–391. ACM, New York (2005)

14. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009)

15. Petri, G.: Operational semantics of relaxed memory models. Ph.D. thesis, Nice
(2010). http://www.cs.purdue.edu/homes/gpetri/publis/thesisPetri.pdf

16. Petri, G.: Studying operational models of relaxed concurrency (extended version)
(2013). http://www.cs.purdue.edu/homes/gpetri/publis/opsem-long.pdf

17. Saraswat, V.A., Jagadeesan, R., Michael, M.M., von Praun, C.: A theory of memory
models. In: PPOPP, pp. 161–172 (2007)

18. Sarkar, S., Sewell, P., Nardelli, F.Z., Owens, S., Ridge, T., Braibant, T., Myreen,
M.O., Alglave, J.: The semantics of x86-CC multiprocessor machine code. In:
POPL, pp. 379–391. ACM, New York (2009)

19. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigor-
ous and usable programmer’s model for x86 multiprocessors. CACM 53(7), 89–97
(2010)

20. CORPORATE SPARC Inc.: The SPARC Architecture Manual (version 9).
Prentice-Hall Inc., Upper Saddle River (1994)

http://www.cs.purdue.edu/homes/gpetri/publis/thesisPetri.pdf
http://www.cs.purdue.edu/homes/gpetri/publis/opsem-long.pdf

Certificates and Separation Logic

Martin Nordio1(B), Cristiano Calcagno1,2,3, and Bertrand Meyer1

1 ETH Zurich, Zurich, Switzerland
martin.nordio@inf.ethz.ch

2 Imperial College London, London, UK
3 Monoidics Ltd, London, UK

ccris@doc.ic.ac.uk, bertrand.meyer@inf.ethz.ch

Abstract. Modular and local reasoning about object-oriented programs
has been widely studied for programing languages such as C# and Java.
Once source programs have been proven, the next verification challenge
is to ensure that the code produced by the compiler is correct. Since
verifying a compiler can be extremely complex, this paper uses proof-
transforming compilation, an alternative approach which automatically
generates certificates, a bytecode proof, from proofs in the source lan-
guage. The paper develops a bytecode logic using separation logic, and
proof translation from proofs of object-oriented programs to bytecode.
The translation also handles proofs for concurrent programs. The byte-
code logic and the proof transformation are proven sound.

Keywords: Software verification · Program proofs · Separation logic ·
Proof-carrying code

1 Introduction

Object-oriented programming has been increasingly attractive in the last decades,
however, it has also introduced new verification challenges. Solutions have been
proposed, for example, separation logic [19] has extended Hoare logics to reason
about programs with mutable data structures; ownership [7] has introduced a
technique to reason about the heap structure.

Once the object-oriented programs have been proven correct with respect to
their specifications, the verification process should ensure that the code produced
by the compiler is correct. Since verifying the compiler is complex [11], techniques
such as translation validation [21] have been proposed. In translation validation,
instead of proving that the compiler always generates a correct target code, each
translation is validated showing that the target code correctly implements the
source program. The translation validation approach compares the input and the
output, using an analyzer, independently of how the compiler is implemented.
Together with a source proof, this gives an indirect correctness proof for the
bytecode program.

Expanding the ideas of Proof-Carrying Code [13], Barthe et al. [4]1 and
Nordio et al. [17] have proposed an alternative verification process based on
1 Barthe et al. called this approach preservation of proof obligations.

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 273–293, 2014.
DOI: 10.1007/978-3-319-05119-2 16, c© Springer International Publishing Switzerland 2014

274 M. Nordio et al.

proof-transforming compilation (PTC). The PTC approach consists of trans-
lating proofs of object-oriented programs to bytecode proofs. The verification
process is performed at the level of the source program taking advantage of
already developed verification techniques. Then, a proof-transforming compiler
translates automatically a program and its proof into bytecode representing both
the program and the proof. The main advantage of PTC is that it addresses full
functional correctness as expressed by the original specifications.

Previous work on proof-transforming compilation [1,3,12] has developed the
basics of the technique, using either Hoare-style logics or verification condition
generators. The main limitation of these works lies on the properties that can be
proven in the source program. Those logics cannot prove programs with mutable
data structures, for example the programs presented by Distefano et al. [8], which
include a visitor pattern example. This restriction is produced by the techniques
used to verify the source program.

This paper presents a bytecode logic using separation logic, and proof trans-
formation from Java to bytecode. The translation takes a proof of object-oriented
programs written using Parkinson and Bierman’s logic [20], and produces a byte-
code proof in separation logic style. The bytecode logic introduces dynamic and
static specifications for bytecode methods, and framing for bytecode instructions.
The use of separation logic allows us to handle proofs that previous works [1,3,12]
could not. The definition of the bytecode logic using separation logic makes the
translation feasible. In this paper, we also extend the proof transformation to
handle proofs for concurrent programs.

Outline. Section 2 presents an overview of separation logic. Section 3 describes
the bytecode logic. The proof transformation is developed in Sect. 4. The app-
roach is extended to handle concurrency in Sect. 5. Section 6 shows an example of
the proof-transforming compilation approach; soundness is discussed in Sect. 7.
Sections 8 and 9 describe related work and conclusions respectively.

2 Overview of Separation Logic

Separation logic [19] provides an elegant approach to reasoning about programs
with mutable data structures. It extends Hoare logic with spatial connectives
which allow assertions to define separation between parts of the heap. In this
paper, we use Parkinson and Bierman’s logic [20], which we briefly describe next.

2.1 The Core Language

The programming language used in this paper is a common subset of C# and
Java extended with static and dynamic specifications. The syntax is:

Certificates and Separation Logic 275

L ::= class C [extends C1] { public D f ;A M } Class Definition
A ::= define αC(x) as P Abstract Predicate Family

M ::= public virtual C m(D p) DSspec D x; s; Method Definition

| public override C m(D p) DSspec D x; s;
DSspec ::= dynamic Spec; static Spec Dynamic and Static Spec.
Spec ::= {P}_{Q} | Spec also {P}_{Q} Specification Combination
s ::= x = e | s; s | x = y.f | x.f = e Statements

| x = y.m(e) | x = y.C :: m(e) | x = new C()

Programs are defined as a set of classes, where each class consists of a collec-
tion of methods and field definitions; a class can specify at most one superclass.
The class definition also contains abstract predicates families (APF). A method
declaration includes the method name, parameters with type and name, method
specifications, as well as a method body. Method specifications include a sta-
tic specification and a dynamic specification. Static specifications are used to
verify the implementation of a method and direct method calls (in Java this
would be with a super call); dynamic specifications are used for calls that are
dynamically dispatched. The specifications consist of a sequence of pre- and
postconditions separated by the keyword also: {P1}_{Q1} also {P2}_{Q2} is
defined as {P1 ∈ P2}_{Q1 ∈ Q2}. The return statement is not supported in the
source language; the return value is assigned to a local variable result. The nota-
tion we use is the following: f ranges over field names, m ranges over method
names, x over sequences of variables, p for sequences of method call parameters,
C,C1,D over class names; e denotes a sequence of expressions.

An abstract predicate is defined with a name, a definition, and a scope. The
abstract predicate’s name and its definition can be swapped within the scope;
outside the scope, the abstract predicate is handled atomically, i.e. by its name.
For example, in a class Cell, we define the abstract predicate V alCell(x, y) as
x.val ≤→ y. The scope of the predicate is inside of the class Cell ; in the imple-
mentation of Cell, the predicate V alCell(x, y) and its definition can be swapped;
outside the class, the predicate is handled by its name.

To accommodate inheritance, Parkinson and Bierman [20] introduce abstract
predicates families. Each class can define its own entry predicate for an APF;
this definition allows weakening preconditions, and strengthening postconditions
for method overriding. The relationship between the family and entry is given
by x :C ⊥ (α(x, x) ↔ αc(x, x)) where α is an abstract predicate, and αC is the
definition of the predicate for the class C.

2.2 Separation Logic for the Source Language

Memory Model and Assertion Language. Program states are mappings
from local variables and parameters to values, and from locations to values:
State ⊆ Store × Heap, where Store ⊆ V ar ε V alue, and Heap ⊆ Location ε
V alue. The formulae of assertion language are given by the following grammar:

P, Q := true | false | P ∧ Q | P ∨ Q | P ⇒Q | ∀x.P | ∃x.P | P ∗ Q | e=e | x.f �→e′ | α(e) | αc(e)
e := x | null | e op e

276 M. Nordio et al.

The semantics of formulae is defined as follows:

π, h |= P → Q
def
= ←h0, h1.h0 ⊥ h1 and h0 · h1 = h and π, h0 |= P and π, h1 |= Q

π, h |= e = e′ def
= π(e) = π(e′)

π, h |= x.f ⇒∅ e′ def
= h(π(x)).f = π(e′)

π, h |= ψ(x)
def
= h ∪ (Δ(ψ)(π(x)))

For σ ≥ Store, σ(e) denotes the evaluation of the expression e in the store σ.
For h ≥ Heap, h(e).f denotes the evaluation of the field f of the expression e.
The connectives (∈,∀) and quantifiers (∅,∗) are interpreted in the usual way,
and omitted here. The formula P ≡ Q allows us to assert that two portions of
the heap are disjoint in which P and Q hold respectively. The interpretation of
abstract predicates is given by the function Σ, which maps predicate names to
predicate definitions.

Method and Statement Specifications. Properties of methods are written
as Ψ;ϕ ♦ C.m(x) dynamic {PC}_{QC} static {RC}_{SC} where Ψ is the
environment containing the logical assumptions about APFs that are available
in the scope of the method m, and ϕ is the environment containing the dynamic
and static method specifications. This specification informally means that the
method m in class C can be verified to meet its specification. In particular, ϕ is
used to handle recursion; ϕ is initialized at the beginning of the proof with all
the static and dynamic specifications.

The environments are given by the following grammar

Γ ::= ε | {P}C.m(p){Q}, Γ | {P}C :: m(p){Q}, Γ

∆ ::= ε | ψC
def
= λ(x; x)P, ∆

where dynamic specifications are denoted by {P} C.m(p) {Q}; static specifica-
tion are denoted by {P} C ::m(p) {Q}.

Properties of statements are expressed by Hoare triples of the form Ψ;ϕ ♦
{P} s {Q}. This triple defines the following refined partial correctness prop-
erty [15]: if s’s execution starts in a state satisfying P , then (1) s terminates
normally in a state where Q holds, or (2) s aborts due to errors or actions than
are beyond the semantics of the programming language, e.g., memory problem,
or (3) s runs forever.

2.3 Proof Rules

The proof rules, taken from Parkinson and Bierman’s work [20], for a subset of
the source language is defined as follows:

Field Write
∆; Γ ◦ {x.f ⇒∅ _} x.f := e {x.f ⇒∅ e}

Dynamic Dispatch
C.m(p) : {P} _{Q} ∪ Γ

∆; Γ ◦ {P [x, e/this, p] ∧ this ≡= null} z = x.m(e) {Q[z, x, e/result, this, p]}
where x has a static type C.

Certificates and Separation Logic 277

Direct Method Call
C::m(p) : {R} _{S} ∪ Γ

∆; Γ ◦ {R[x, e/this, p] ∧ this ≡= null} z = x.C ::m(e) {S[z, x, e/result, this, p]}

Method
∆; Γ ◦ {RC} body {SC} (Body verification)

∆ ◦ {RC}_{SC} ⇒ {PC → this :C}_{QC} (Dynamic dispatch)

∆; Γ ◦ public virtual C.m(x) dynamic {PC}_{QC} static {RC}_{SC} body

The rule for field write is standard. The rule for direct method call uses the
static specification; C ::m(p) : {R} _ {S} ≥ ϕ denotes that ϕ contains the
static specification {R}_{S}, which is associated with the method m in class
C. The rule for dynamic dispatch is similar to the direct method call but uses
the dynamic specification; C.m(p) : {P} _ {Q} ≥ ϕ denotes that ϕ contains
the dynamic specification {P}_{Q} that is associated with the method m. The
connection between the method body proofs and the method specifications is
formalized with the Method rule. This rule has two proof obligations showing
that (1) the method body satisfies its static specification; and (2) the use of
the dynamic specification is valid for dynamic dispatch. The implication Ψ ♦
{RC}_{SC} ⊥ {PC ≡ this : C}_{QC} means that the static precondition RC

implies the dynamic precondition PC ≡ this :C, and the dynamic postcondition
QC implies the static postcondition SC . Note that to handle recursion, the logic
does not add any dynamic and static specifications to the environment ϕ ; ϕ
is initialized at the beginning with all these specifications. The logic also has
a rule for overridden methods, which is similar to the Method rule and adds a
proof obligation that shows the new dynamic specification is a valid behavioral
subtype. This rule is omitted here.

To prove a class, the following Class rule is used:

for all Mi in M : Ψ;ϕ ♦ Mi

Ψ;ϕ ♦ class C : D {public T f ;M }
To be able to fold and unfold the definition of an abstract predicate, the

logic has two axioms. These axioms allows folding and unfolding if and only if
the abstract predicate is in scope. The axioms are:

Open: (ψ(x)
def
= P), Δ |= ψ(e) ⇒ P [e/x]

Close: (ψ(x)
def
= P), Δ |= P [e/x] ⇒ ψ(e)

One of the most important rules for separation logic is the Frame rule. This
rule is defined as follows:

Ψ;ϕ ♦ {P} s {Q}
Ψ;ϕ ♦ {P ≡ R} s {Q ≡ R} where Mod(s) ∩ FV (R) = ↓

The expression Mod(s) ∩ FV (R) = ↓ expresses that s does not modify the
free variables of R. The logic also has rules for weakening and elimination of
abstract predicates. Space prevents us from presenting these rules, for a complete
description of the logic see [20].

278 M. Nordio et al.

Fig. 1. Example using static and dynamic specifications.

2.4 Example

Figure 1a shows an example from Parkinson and Bierman [20], which illustrates
the use of static and dynamic specifications, and abstract predicates. The class
Cell implements a single cell with an integer value; the class Recell extends
the implementation of Cell storing the previous value of the cell. Each method
has two specifications: a dynamic specification, that is used for dynamic method
calls, and a static specification, that is used to verify the implementation and
direct method calls. To define the dynamic specification of the method set, the
abstract predicate family V al(x, y) is used; the definition of this predicate for

the class Cell is V alCell(x, y)
def
= x.val ≤→ y. This predicate expresses that the

field val of the object x points to the object y. In the class Recell, the method
set is overridden. Its specification is extended, and the predicate V al takes an
extra argument. The definition is V alRecell(x, y, z)

def
= V alCell(x, y) ≡x.bak ≤→ z.

In this definition, the operator ≡ is used to express non-interference.

Certificates and Separation Logic 279

The proof of the source example consists of a proof for the classes Cell and
Recell. The proof of the class Recell consist of the proof of the method set; these
proofs are constructed applying the Class rule and the Method rule respectively.
A sketch of the proof of the method set is presented in Fig. 1b. It applies the
rules Direct Method Call as well as the Open and Close axioms.

3 A Separation Logic for Bytecode

3.1 The Bytecode Language

The bytecode language consists of classes with methods and fields. Methods
are implemented as method bodies consisting of a sequence of labeled bytecode
instructions. Bytecode instructions operate on the operand stack, local variables
(which also include parameters), and the heap. Each method body ends with a
return instruction, which return the control flow to the caller; a method returns
the value stored in a special local variable result. This language is extended
with dynamic and static specifications. We also introduced abstract predicates
families to the bytecode language. This extension to the bytecode language makes
the translation feasible. The syntax is:

L, A, M, DSspec, Spec ::= as defined in Sect. 2.1

s ::= l : Inst
Inst ::= pop x | push v | goto l′ | nop | return | brtrue l′ |

putfld f | newobj C | invokespecial C::m

This language is similar to Java bytecode. We treat local variables and
method parameters using the same instructions. Instead of using an array of
local variables like in Java Bytecode, we use the name of the source variable. To
simplify the proof translation, we assume the bytecode language has a boolean
type.

The semantics of the instructions is as follows: the instruction pop x removes
the top element of the stack and assigns it to x; push v puts the value v on top
of the stack; goto transfers control the program point l’; nop has no effect; return
returns to caller; brtrue transfers control to the label l≥ if the top of the stack
is true removing this value from the stack; the instruction putfld f updates the
field f ; newobj creates an object of type C. The instruction invokespecial is used
to call private methods and super methods.

3.2 Memory Model

Bytecode program states are a triple consisting of an operand stack, a local store,
and a heap:

State ⊆ Stack × Store × Heap
Stack ⊆ V alue≤

Store ⊆ V ar ε V alue
Heap ⊆ Location ε V alue

280 M. Nordio et al.

The Stack type is defined as a list of values; Store is a mapping from local
variables and parameters to values; Heap is a mapping from locations to values.
In the following section, we present the axiomatic semantics.

3.3 Axiomatic Semantics

Assertion Language. Formulae for the assertion language of bytecode method
specifications are the same as for the source language (described in Sect. 2.2). The
formulae for the assertion language for preconditions of bytecode instructions are
extended because the precondition can refer to the stack. Formulae are defined
as S •P where S is a stack of values, and P is a formula defined as in the source
language. The definition is BytecodePre := S • P where S := e≤, and P and e
are defined as in Sect. 2.2. The formal semantics of formulae is defined as follows:

s, π, h |= S • P
def
= s, π |= S and π, h |= P

(v1, ..., vn), π |= (e1, ...em)
def
= n = m and π(ei) = vi

π, h |= P
def
= as defined in Sect. 2.2

Following, we define the implication operator for bytecode preconditions:

Definition 1. Given the stacks S1 and S2 and the expressions P and Q, then
s, σ, h |= S1 • P ⊥ S2 • Q iff s, σ, h |= S1 • P implies s, σ, h |= S2 • Q. We write
S1 • P ⊥ S2 • Q to mean validity: ∗s, σ, h : s, σ, h |= S1 • P ⊥ S2 • Q.

Proof Rules for Classes. A bytecode proof consists of a list of proofs for the
bytecode classes. To prove the bytecode classes, the logic has the same Class
rule and Frame rule as in the source language.

Proof Rules for Method Specifications. Properties of bytecode methods
are defined as Ψ;ϕ ♦ C.m(x) dynamic {PC}_{QC} static {RC}_{SC}. This
definition is the same as in the source language. In particular the treatment of
recursion is the same as in the source logic: the environment ϕ contains the
static and dynamic specifications, and it is initialized at the beginning of the
proof.

The logic has a similar Method rule and Override rule to the logic for the
source language. The bytecode Method rule is defined as follows:

Δ
 {RC}_{SC} ⇒ {PC ∗ this :C}_{QC} (Dynamic dispatch)
RC ⇒ E1 Ej ⇒ SC body = {E1} 1 : I1, ... {Ej} j : return Ψ = (l1, E1) ... (lj , Ej)

∀i ∈ 1, ...j : Δ;Γ ;Ψ
 {Ei} i : Ii (Bytecode body verification)

Δ;Γ
 public C.m(x) dynamic {PC}_{QC} static {RC}_{SC} body

This rule, besides showing that the use of dynamic dispatch is valid, has
three extra proof obligations: we need to verify that (1) the precondition of the
method implies the precondition of the first bytecode instruction (E1); (2) the
postcondition of the last bytecode instruction (Ej) implies the method postcon-
dition, and (3) all the instruction specifications of the method m hold. Note that
the body of the method m, denoted by body, is a list of bytecode specifications
of the form Ψ;ϕ ;λ ♦ {Ei} i : Ii.

Certificates and Separation Logic 281

ProofRules for InstructionSpecifications. The bytecode logic treats instruc-
tions individually since control can be transferred into the middle of a sequence.
Each instruction at the label l has a precondition El. Bytecode specifications have
the form Ψ;ϕ ;λ ♦ {El} l : inst where Ψ is the environment containing the APF,
ϕ is the environment containing the dynamic and static method specifications (as
in the source logic), and λ is a mapping from labels to preconditions. We use the
environment λ to make explicit the list of successor preconditions. This environ-
ment is used, in particular for the application of the Frame rule.

The semantics of Ψ;ϕ ;λ ♦ {El} l : inst is: if the precondition El holds when
the program counter is at the label l, then the preconditions of the successor
instructions hold after successful execution of instruction inst.

The rules for the bytecode instructions except for the instructions invokespe-
cial are defined as follows:

S • ←x′.x = v[x′/x] ∧ P [x′/x] ⇒ El+1

∆; Γ ; Ψ,(l+1,El+1) ◦ {(S,v)•P} l:pop x

(S, v) • P ⇒ El+1

∆; Γ ; Ψ, (l+1,El+1) ◦ {S•P} l :push v

S • P ⇒ El′

∆; Γ ; Ψ, (l′, El′) ◦ {S • P} l : goto l′
S • P ⇒ El+1

∆; Γ ; Ψ, (l+1, El+1) ◦ {S • P} l :nop

S • P ∧ v = true ⇒ El′ S • P ∧ v = false ⇒ El+1

∆; Γ ; Ψ, (l′, E′
l), (l + 1, El+1) ◦ {(S, v) • P} l : brtrue l′

S • P → (r.f ⇒∅ v) ⇒ El+1

∆; Γ ; Ψ, (l + 1, El+1) ◦ {(S, r, v) •P → r.f ⇒∅ _} l :putfld f

In the rule of the instruction pop, the precondition assumes that the operand
stack is not empty. The implication S • ∅x≥.x = v[x≥/x] ∈ P [x≥/x] ⊥ El+1

expresses that one has to show that the formula S • ∅x≥.x = v[x≥/x] ∈ P [x≥/x]
implies the precondition of the next instruction. In this formula, the operand
stack is S since the value v has been popped and assigned to x. The replacements
are similar to the assignment rule in the source language. The environment
λ, (l + 1, El+1) expresses that the precondition of the instruction at label l + 1
is El+1. The rule for push adds a value v on top of the stack S, then one has
to show that (S, v) • P implies the next instruction’s precondition. The rule for
putfld assigns the value v of to the field r.f .

Below, we present the rule for invokespecial (the rule for invokevirtual is sim-
ilar). Similar to the source logic, this rule uses the static specifications.

C::m(p) : {T}_{R} ∪ Γ (S, v) • R[y/this, z/p, v/result] ⇒ El+1

∆; Γ ; Ψ, (l + 1, El+1) ◦ {(S, y, z) • T [y/this, z/p] ∧ y ≡= null} l : invokespecial C :m

where v is a logical variable.

Frame Rule for Bytecode Instructions. The Frame rule of the logic of the
source language can be applied to both method specifications and instructions.
For example, the Frame rule could be applied to a triple where the instruction

282 M. Nordio et al.

is an assignment. In our bytecode logic, we have developed a Frame rule for
bytecode specifications. This rule is needed to translate the Frame rule from the
source language. The rule is defined as follows:

Δ;Γ ;Ψ
 {S•P} l : inst Ψ ′=Succ(l, Ψ) Ψ =Ψ ′,Ψ ′′

Δ;Γ ; (Ψ ′ ∗ R), Ψ ′′
 {S • P ∗ R} l : inst
where Mod(inst)≤FV (R)=∗

Bytecode specifications can have several successors. For example, the byte-
code branching instruction brtrue l has two successors: the next instruction and
the instruction at label l. The standard Frame rule (in the source logic) strength-
ens both the precondition and the postcondition of the triple. Since bytecode
specifications can have several successors, we need to strengthen all successor
preconditions. The successor instructions are contained in the environment λ ≥.
It is constructed using the function Succ, which yields the environment with
the label l and its precondition, and l’s successors. The environment λ ≥ ≡ R is
obtained from the successor instructions of l in λ ≥, by adding ≡R to each pre-
condition. These separating conjunctions are only added to the preconditions of
l and the successor instructions, so the environment λ ≥≥ is not modified.

Language-Independent Rules. The bytecode logic also has language-
independent rules such as stack-disjointness. In this section, we present the most
important language-independent rules. The following rule is used in the proof
translation to embed a local proof transformation in a wider context, for example
to combine the results of applying the Frame rule to single instructions.

Env-weakening
∆; Γ ; Ψ ◦ {P} l : inst

∆; Γ ; Ψ, Ψ ′ ◦ {P} l : inst

Another language-independent rule is the stack-disjointness rule, which allows
reasoning about stacks that might have different values and sizes. For example,
this rule allows reasoning about a program that might push either a value v1 or a
value v2 into the stack, and therefore, the top of the stack is either v1 or v2. The
rule is defined as:

stack-disjointness
∆; Γ ; Ψ ◦ {(S, v1)

⎡
(S, v2) • P} l : inst

∆; Γ ; Ψ ◦ {(S, (v1
⎡

v2)) • P} l : inst

The semantics of the formulae, denoted as |=, is extended to support stack
disjointness: S1

∨
S2•P , and expression disjointness: x = (v1

∨
v2)2. The seman-

tics is:

s, σ |= S1

∨
S2

def
= (s, σ |= S1 or s, σ |= S2)

(s, e), σ |= (S1, (v1
∨

v2))
def
= (s, σ |= S1 and (e = σ(v1) or e = σ(v2))

s, h |= x = (v1
∨

v2)
def
= s, σ |= (x = v1) ∀ (x = v2)

2 The expression disjointness is used when the value v1
⎡

v2 is popped from the stack
and assigned to a variable x

Certificates and Separation Logic 283

3.4 Examples

This subsection presents two examples illustrating the application of the frame
rule and disjointness rule for bytecode.

Example Applying the Frame Rule. Assume the following valid bytecode
proof:

∆; Γ ; (l2, S2 • P2) ◦ {S1 • P1} l1 : push x
∆; Γ ; (l3, S3 • P3), (l5, S5 • P5) ◦ {S2 • P2} l2 : brtrue l5
∆; Γ ; (l4, S4 • P4) ◦ {S3 • P3} l3 : push y
∆; Γ ; (l5, S5 • P5) ◦ {S4 • P4} l4 : goto l6
∆; Γ ; (l6, S6 • P6) ◦ {S5 • P5} l5 : push z
∆; Γ ; ε ◦ {S6 • P6} l6 : return

where Pi is the precondition at label li. The application of the Frame rule to
the instructions at labels l1...l6 adds ≡R to each precondition. Given that each
instruction specification contains a list of the successors, the rule also adds ≡R
to each precondition in the environment λ . After applying the Frame rule, we
obtain the following proof:

∆; Γ ; (l2, S2 • P2→R) ◦ {S1 • P1→R} l1:push x
∆; Γ ; (l3,S3 • P3→R),(l5,S5 • P5→R) ◦ {S2 • P2→R} l2:brtrue l5
∆; Γ ; (l4, S4 • P4 → R) ◦ {S3 • P3 → R} l3:push y
∆; Γ ; (l6, S6 • P6 → R) ◦ {S4 • P4 → R} l4:goto l6
∆; Γ ; (l6, S6 • P6→R) ◦ {S5 • P5→R} l5:push z
∆; Γ ; ε ◦ {S6 • P6 → R} l6: return

Note that the instruction l2 has two successors: l3 and l5. Thus, the appli-
cation of the frame rule changes the environment (l3, P3), (l5, P5) to (l3, P3 ≡
R), (l5, P5 ≡R). Applying the Env-weakening rule, we obtain the following proof:

∆; Γ ; Ψ ◦ {S1 • P1 → R} l1 : push x
∆; Γ ; Ψ ◦ {S2 • P2 → R} l2 : brtrue l5
∆; Γ ; Ψ ◦ {S3 • P3 → R} l3 : push y
∆; Γ ; Ψ ◦ {S4 • P4 → R} l4 : goto l6
∆; Γ ; Ψ ◦ {S5 • P5 → R} l5 : push z
∆; Γ ; Ψ ◦ {S6 • P6 → R} l6 : return

where Ψ
def
= (l1, P1 → R) ... (l6, P6 → R)

Example Applying the Disjointness Rule. Assume we want to prove the
following program:

l1 : push b
l2 : brtrue l5
l3 : push 0
l4 : goto l6
l5 : push 1
l6 : pop x
l7 : nop

284 M. Nordio et al.

where at the instruction l7 the expression x = 0 ∀ x = 1 holds. To simplify the
proof, the omit the details of the environments Ψ;ϕ ;λ and we write Ψ;ϕ ;λ
without defining the successor instructions in λ . The preconditions for these
instructions are as follows (assuming the stack is S before the execution of this
code):

∆; Γ ; Ψ ◦ {S • True} l1 : push b
∆; Γ ; Ψ ◦ {(S, b) • True} l2 : brtrue l5
∆; Γ ; Ψ ◦ {S • True} l3 : push 0
∆; Γ ; Ψ ◦ {(S, 0) • True} l4 : goto l6
∆; Γ ; Ψ ◦ {S • True} l5 : push 1
∆; Γ ; Ψ ◦ {(S, (0

⎡
1)) • True} l6 : pop x

∆; Γ ; Ψ ◦ {S • x = 0 ∨ x = 1} l7 : nop

The preconditions at labels l1 to l5 hold by applying the push, brtrue, push,
and goto rules. The interesting part of the proof is at labels l6 and l7. Applying
the stack disjointness rule we can prove:

stack-disjointness
∆; Γ ; Ψ ◦ {(S, 0)

⎡
(S, 1) • True} l : inst

∆; Γ ; Ψ ◦ {(S, (0
⎡

1)) • True} l : inst

Now, we need to prove that the instructions at labels l4 and l5 satisfy the
precondition (S, 0)

∨
(S, 1) • True. By definition of (S, 0)

∨
(S, 1) • True, the

precondition {(S, 0) • True} implies (S, 0)
∨

(S, 1) • True, and the precondition
{(S, 1) • True} implies (S, 0)

∨
(S, 1) • True. Then, applying the goto and pop

rules, the instructions at labels l4 and l5 hold.
To prove the instruction of line l7, we apply the pop rule, obtaining:

S • x = (0
∨

1) ∈ True ⊥ S • x = 0 ∀ x = 1
Ψ;ϕ ;λ ♦ {(S, (0

∨
1)) • True}l6 : pop x

The implication holds by definition of x = 0
∨

1 which is defined as x =
0 ∀ x = 1. Therefore, the proof is a valid proof.

4 Proof Transformation for Separation Logic

The proof translation takes a proof in the source language (Sect. 2), and produces
a proof in the bytecode logic (Sect. 3). The proof translation is developed using
the translation functions ⇓C , ⇓M ⇓S , and ⇓E , which translate classes, methods,
instructions, and expressions respectively. The signature of these functions are
as follows:

⇓C : ProofTree → BytecodeProofTree
⇓M : ProofTree → BytecodeProofTree
⇓S : ProofTree → List[BytecodeSpec]
⇓E : Pre × Exp × Post → List[BytecodeSpec]

A ProofTree is a derivation in the logic of the source language. A Bytecode-
ProofTree is a derivation in the bytecode logic; the function ⇓S produces the

Certificates and Separation Logic 285

proof for the body of a bytecode method; it consists of a list of bytecode spec-
ifications. The postcondition in the function ⇓E is used to prove soundness of
the translation. In the following sections, we present the translation for method
specifications, the Frame rule, and statements.

Proof Translation for Method Specifications. A source proof for a class
C consists of a list of method names with a dynamic and static specification,
and proofs for the method bodies. The source logic uses the Class rule to prove
the method bodies. Since the source and the bytecode logic treat the heap in
the same way, use the same abstract predicate definitions, and have the same
method specifications, these environments are not modified by the translation.
To translate classes, the translation applies the Class rule in the bytecode. The
translation is defined as follows:

∇C

(
for all Mi in M : Δ;Γ
 Mi

Δ;Γ
class C:D{public T f ;M}

)
=

for all Mi in M : ∇M (Δ;Γ
 Mi)

Δ;Γ
 class C:D{public T f ;M }

The function ⇓M maps proofs of methods in Java to proofs of methods in
bytecode. Given that the signature of the methods in Java and bytecode are
the same (both use dynamic and static specifications), the translation does not
modify the signature of the methods. The resulting bytecode proof uses the
Method rule in bytecode where the body of the method is produced by the
translation ⇓S . The translation is defined as follows:

∇M

⎛
⎜⎜⎜⎝

Δ;Γ
 {RC} body {SC} (Body verification)
Δ
 {RC}_{SC} ⇒ {PC ∗ this :C}_{QC} (Dynamic dispatch)

Δ;Γ
 public virtual C.m(x)
dynamic {PC}_{QC} static {RC}_{SC} body

⎞
⎟⎟⎟⎠ =

Δ
 {RC}_{SC} ⇒ {PC ∗ this :C}_{QC} (Dynamic dispatch)
RC ⇒ E1 Ej ⇒ SC body_bytecode = ∇S(body) (Bytecode body verification)

Δ;Γ
 public C.m(x) dynamic {PC}_{QC} static {RC}_{SC} body_bytecode

Proof Translation of the Frame Rule. To translate the Frame rule applied
to statements, first we apply the translation ⇓S to the triple Ψ;ϕ ♦ {P} s {Q}
producing the bytecode derivations

Ψ;ϕ ;λ1 ♦ {S1 • P1} l1 : i1 ... Ψ;ϕ ;λn ♦ {Sn • Pn} ln : in
where λk only contains the labels and preconditions relevant to instruction ik

Then, we apply the frame rule for bytecode instructions (p. XXX) to add the
predicate ≡R to the conjunction to the precondition of each derivation, and to
the environment λi. Finally, we use the Env-weakening rule to unify the environ-
ments resulting from the application of the Frame rule into a single environment
for the whole block of instructions. The translation produces the following proof:

∆; Γ ; Ψ ◦ {S1 • P1 → R} l1 : i1 ... ∆; Γ ; Ψ ◦ {Sn • Pn → R} ln : in

where Ψ
def
= Ψ1 → R, Ψ2 → R, ..., Ψk → R

286 M. Nordio et al.

Proof Translation of Statements. In this section, we present the translation
functions for compound and direct method call. The translation of a compound
is defined as:

⇓S

({P}s1{Q} {Q}s2{R}
{P}s1; s2{R}

)
= ⇓S({P}s1{Q}) + ⇓S({Q}s2{R})

The direct method call translation is as follows:

⇓S

(
C.m(p) : {P} _ {Q} ≥ ϕ

Ψ;ϕ ♦ {P ≥} z = x.C ::m(e) {Q[z, x, e/result, this, p]}
)

=

Ψ;ϕ ;λ1 ♦ {ρ • P ≥} LA : push x
⇓E(x • P ≥ , e, (x, e) • P ≥)

Ψ;ϕ ;λ2 ♦ { (x, e) • P ≥} LB : invokespecial C ::m
Ψ;ϕ ;λ3 ♦ { result • Q[x, e/this, p] } LC : pop z

where P ≥ is defined as P [x, e/this, p] ∈ this ≈= null, and λ1, λ2, λ3 only contain
the labels relevant to the instructions at labels LA, LB , and LC respectively.

The translation of direct method call first pushes the target object on top of
the stack; then it translates the list of expressions e using the function ⇓E ; the
method m is invoked using the instruction invokespecial, and finally the result of
the invocation is stored in the variable z.

5 Proof Transformation for Concurrent Programs

This section extends the PTC approach to handle concurrent programs. We
first present the source logic, the bytecode logic and its proof transformation for
disjoint concurrency. Then, we expand the approach to critical regions.

5.1 Basic Concurrency

In Java, concurrency is implemented using the Thread class. This class contains
methods such as start : to execute a thread, and join: to wait for the termination
of a thread. To handle critical regions, the instruction synchronized is used. To
simplify the semantics, we assume an instruction s1 || s2 in the source language,
which runs the instructions s1 and s2 concurrently. This instruction is equivalent
to execute s1.start(); s2.start();s1.join();s2.join(). For the bytecode language,
we also assume the threads are first run and then joined; thus, we assume an
instruction invokeStartJoin.

Concurrency for the Source Logic. In this paper, we use the axiomatic
semantics of the instruction s1 || s2 defined by O’Hearn [18]. The rule, called the
Disjoint Concurrency rule, is defined as follows:

Δ;Γ
 {P1} s1 {Q1} Δ;Γ
 {P2} s2 {Q2}
Δ;Γ
 {P1 ∗ P2} s1 || s2 {Q1 ∗ Q2}

where s1 does not modify any variables
free in P2, s2, Q2, and conversely.

Certificates and Separation Logic 287

Concurrency for the Bytecode Logic. Let C1 :run and C2 :run be byte-
code methods. The instruction invokeStartJoin C1:run C2:run executes the run
methods concurrently and waits for the termination of both. To simplify the
semantics, we assume these methods are procedures. The rule for invokeStartJoin
extends the rule for invokespecial (Sect. 3.3) to concurrency.

Let P ≥
1, P ≥

2, Q≥
1 and Q≥

2 be:

P ≥
1

def
= P1[y1/this] ∈ y1 ≈= null

Q≥
1

def
= Q1[y1/this]

P ≥
2

def
= P2[y2/this] ∈ y2 ≈= null, and

Q≥
2

def
= Q2[y2/this]

The rule is defined as follows:

C1::run : {P1}_{Q1} ∪ Γ C2::run : {P2}_{Q2} ∪ Γ
S • Q′

1 → Q′
2 ⇒ El+1

∆; Γ ; Ψ, (l + 1, El+1) ◦ {(S, y1, y2) • P ′
1 → P ′

2} l : invokeStartJoin C1:run C2:run

where C1:run does not modify any variables free in P2, C2:run, Q2, and conversely.

Proof Transformation. The proof translator takes a proof using the Dis-
joint Concurrency rule, and generates a bytecode proof. To translate it, we first
extend the definition of the translation function ⇓C . This function applies the
translation function ⇓M to all the methods Mi in a class C, and also uses a new
function ⇓P . The function ⇓P produces classes C1 and C2 with a method run
for each use of the instruction s1 || s2. The function ⇓C is defined as follows:

→C

(

forall Mi ::Δ;Γ ↑ Mi

Δ;Γ ↑ {P1} class C:D {public M}

)

=
forall Mi →M (Δ;Γ ↑ Mi);→P (Δ;Γ ↑ Mi)

Δ;Γ ↑{P1} class C:D {public M}

The function ⇓P generates method proofs only when the Disjoint Concur-
rency rule is used. For other rules, this function is applied recursively. The defi-
nition of ⇓P for the case of the Disjoint Concurrency rule is as follows:

∇P

⎢
∆; Γ ◦ {P1} s1 {Q1} ∆; Γ ◦ {P2} s2 {Q2}

∆; Γ ◦ {P1 → P2} s1 || s2 {Q1 → Q2}
⎣

=

b = ∇S(∆; Γ ◦ {P1} s1 {Q1}) (Bytecode body verification)

∆; Γ ◦ public C1.run(p1) dynamic {P1}_{Q1} static {P1}_{Q1} b

b = ∇S(∆; Γ ◦ {P2} s2 {Q2}) (Bytecode body verification)

∆; Γ ◦ public C2.run(p2) dynamic {P2}_{Q2} static {P2}_{Q2} b

The translation function ⇓S is extended to handle concurrency; the
translation first creates two objects of type C1 and C2, and then applies the
invokeStartJoin rule. The translation is:

288 M. Nordio et al.

∇S

⎢
∆; Γ ◦ {P1} s1 {Q1} ∆; Γ ◦ {P2} s2 {Q2}

∆; Γ ◦ {P1 → P2} s1 || s2 {Q1 → Q2}
⎣

=

∆; Γ ; Ψ1 ◦ {ε • P1 → P2} LA : newobj C1

∆; Γ ; Ψ2 ◦ {y1 • P1 → P2} LB : newobj C2

C1::run : {P1}_{Q1} ∪ Γ C2::run : {P2}_{Q2} ∪ Γ
(y1, y2) • Q′

1 → Q′
2 ⇒ ELC+1

∆; Γ ; Ψ3 ◦ {(y1, y2) • P ′
1 → P ′

2} LC : invokeStartJoin C1:run C2:run

where P ′
1

def
= P1[y1/this] ∧ y1 ≡= null P ′

2
def
= P2[y2/this] ∧ y2 ≡= null

Q′
1

def
= Q1[y1/this] Q′

2
def
= Q2[y2/this]

y1 and y2 are fresh objects of type C1 and C2 resp.,
and Ψ1, Ψ2, Ψ3 only contain the labels relevant to the instructions at LA,
LB , LC resp.

5.2 Critical Regions

Critical Regions in the Source Logic. To access a resource in a critical
region, O’Hearn’s work [18] uses a statement with r do s. This statement can
be implemented in Java using synchronized statements. O’Hearn’s rule, adapted
to Java, is defined as follows:

Ψ;ϕ ♦ {P ≡ RIr} s1 {Q ≡ RIr}
Ψ;ϕ ♦ {P} synchronized (r) s1 {Q}

where no other process modifies
variables free in P or Q.

In this rule, the code in the critical region can see the state RIr associated
with the resource r. However, outside this region, reasoning proceeds without
this knowledge. The state RIr is called resource invariant ; it is fixed for each
resource r.

Critical Regions for the Bytecode Logic. To model critical regions, Java
Bytecode provides two instructions: monitorenter and monitorexit to entering and
leaving a critical region. To simplify the semantics and the proof transformation,
we assume these instructions take a given resource r as argument (in Java Byte-
code, these resources are pushed onto the stack). The rules for these instructions
are defined as follows:

S • P ≡ RIr ⊥ El+1

Ψ;ϕ ;λ,(l+1,El+1) ♦ {S • P} l : monitorenter r

S • Q ⊥ El+1

Ψ;ϕ ;λ,(l+1,El+1) ♦ {S • Q ≡ RIr} l : monitorexit r

The first rule adds the resource invariant RIr to the precondition P ; the second
rule removes this resource invariant from the precondition S • Q ≡ RIr.

Certificates and Separation Logic 289

Proof Transformation. The translation of critical regions uses the bytecode
instructions monitorenter and monitorexit. The translation is:

To check the validity of the translation, we need to show the validity of
each generated instruction. Since the precondition of the first instruction of s1 is
P ≡ RIr, then the instruction monitorenter is valid because P ≡ RIr ⊥ P ≡ RIr.
The postcondition of s1 is Q ≡ RIr, which is the precondition of monitorexit. By
the definition of monitorexit, we need to show Q implies the postcondition of s1,
which is Q. Therefore, the translation is valid.

6 Example

Our proof translation takes the proof of the cell example (Fig. 1), and produces
a bytecode proof. The source proof consist of the proof for the classes Cell
and Recell where each proof contains the proof of their methods. The proof
translation is performed in two steps. In the first step, the rules for classes
and method specifications are translated using the functions ⇓C and ⇓M . In
the second step, the method bodies are translated using the function ⇓S . This
function takes the proof of Fig. 1b, and produces the bytecode proof of Fig. 2.

The static and dynamic specifications, highlighted in Fig. 2, express the same
properties as in the source program. The body of the method consists of a
sequence of precondition, label, and instruction. Bytecode preconditions are pairs
S • P where S is a list of expressions representing the stack, and P is a formula
in separation logic. For example, the precondition at label 03 expresses that
the object this is on the top of the stack and that the property V al(this, v) ≡
this.bak ≤→ _holds. The stack grows to the right, e.g. in (this, x) the top element
is x; we denote the empty stack with ρ. The translation function ⇓S first applies
the Open axiom3 generating the bytecode proof at label 01. Then, the triple
for the assignment bak=super.get() is translated, producing the proof at labels
02−05. Then, the triple for the method invocation super.set(x); is translated
producing the proof at labels 05−07. Finally, the Close axiom is translated
producing the proof at label 09. The last instruction of the proof is the return
instruction.
3 The Open axiom allows unfolding the abstract predicate V alRecell(this, v,_) to its

definition V alCell(this, v) → this.bak ⇒∅ _.

290 M. Nordio et al.

Fig. 2. Example of the application of proof-transforming compilation.

7 Soundness of the Proof-Transforming Compiler

In this section, we present the soundness theorems for the proof-transforming
compiler. Soundness informally means that the translation produces valid byte-
code proofs. Soundness is defined with three theorems for the translation of
classes, methods, and instructions.

The following theorem expresses that if the class rule in the source logic is a
valid derivation, then the translation produces a valid derivation in the bytecode
logic.

Theorem 1 (Soundness of the Class Translator).

for all Mi in M : Δ;Γ
 Mi

Δ;Γ
class C:D {public T f ;M }
⇒ ∇C

(
for all Mi in M : Δ;Γ
 Mi

Δ;Γ
class C:D {public T f ;M }

)

The soundness theorem for the method translator expresses that if the proof
of the method m is a valid derivation, then the proof translation produces a
valid bytecode proof. It is defined as follows:

Theorem 2 (Soundness of the Method Translator). Let Tree1 be the
derivation tree of the Method rule. Then,

Tree1

∆; Γ ◦ public virtual C.m(x)
dynamic {PC}_{QC} static {RC}_{SC} body

⇒

∇M

⎤
⎥⎥⎥⎦

Tree1

∆; Γ ◦ public virtual C.m(x)
dynamic {PC}_{QC} static {RC}_{SC} body

⎞
⎟⎟⎟⎠

Certificates and Separation Logic 291

The following theorem, for instruction translation, states that if (1) we have a
valid source proof for the instruction s, and (2) we have a proof translation from
the source proof that produces the instructions Ilstart

...Ilend
, and their respective

preconditions Elstart
...Elend

, and (3) the postcondition in the source logic implies
the next precondition of the last generated instruction (if the last generated
instruction is the last instruction of the method, we use the postcondition in the
source logic), then every bytecode specification holds:Ψ;ϕ ;λ ♦ {El} l :Il. The
theorem is the following:

Theorem 3 (Soundness of the Instruction Translator). Let Tree1 be the
derivation tree used to prove the instruction s. Then,

Tree1
Ψ;ϕ ♦ {P} s {Q} ∈

((Elstart
, Ilstart

)...(Elend
, Ilend

)) = ⇓S

(
Tree1

Ψ;ϕ ♦ {P} s {Q}
)

∈
(
Q ⊥ Elend+1

)

⊥
∗ l ≥ lstart ... lend : Ψ;ϕ ;λ ♦ {El} l : Il

The proof runs by induction on the structure of the derivation tree of

Tree1
Ψ;ϕ ♦ {P} s {Q}

8 Related Work

Bytecode Analysis. Several logics for bytecode have been developed. Stata and
Abadi [23] first introduced a type system for Java bytecode. To verify bytecode
with frame properties, Benton [5] has developed compositional logic for a stack-
based abstract machine. The logic is a separation style logic and uses shifting
operations to reindex stack assertions. Chin et al. [6] also present a heap model
for a bytecode language to support separation logic. Dong et al. [9] develop
a modular reasoning technique for low-level intermediate programs. However,
those works do not support object-oriented features. Bannwart and Müller [1]
present a Hoare-style logic for a bytecode language with object-oriented features
similar to the JVM language. Dynamic and static specifications are treated in
their logic, however, their inter-relationship is not considered.

Proof-Transforming Compilation. There has been several works on proof-
transforming compilation [1,3,12,17,22]. The closest related work to our proof-
transforming compiler are the works by Barthe et al. [3,4] on proof preserving
compilation. They prove the preservation of proof obligations from Java pro-
grams to JVM programs; thus, they show that if the certificate proves the ver-
ification condition in the source, then this certificate can be used to prove the
verification condition in the bytecode. Our bytecode logic and proof transforma-
tion can handle more complex examples that those works cannot; for example,

292 M. Nordio et al.

programs using mutable data structures such as the programs proven by Dis-
tefano et al. [8], which include the factory, observer, and visitor patterns. The
limitation on those works is given by the techniques used to verify the source
program. Our work introduces a bycode logic using separation logic and its proof
transformation, which makes possible to translate the proofs of programs using
mutable data structures.

Kunz [10] presents proof preserving compilation for concurrent programs
using an Owicki/Gries-like proof system. Our work handles non-interference and
concurrent programs using separation logic.

Compared to our earlier effort on proof transformation [12,16,17], this work
has a cleaner treatment of the stack, develops a more powerful bytecode logic,
uses a different and more powerful source code proof system, and supports con-
currency. Barthe et al. [2] implemented an infrastructure for Proof Carrying
Code (PCC). Our current implementation [14] of the PCC infrastructure con-
sist of proof transforming compiler for a Hoare-style logic, and a proof checker
formalized in Isabelle. As future work, we plan to extend this implementation
to handle separation logic.

9 Conclusions

We have developed a separation logic for bytecode; the logic adapts Parkinson
and Bierman’s work on abstract predicates [20] for bytecode. We also present
proof transforming compilation from a separation logic for object-oriented pro-
grams to our bytecode logic. The bytecode logic and the proof transformation
are sound. To prove soundness of the proof translation, we show that the transla-
tion of a valid source proof yields a valid bytecode proof. The use of a separation
logic for bytecode allows us to translate more complex source proofs that previ-
ous works cannot handle, for example, programs using mutable data structures.
The results show that the proof transformation can be extended to handle proofs
of concurrent programs.

Acknowledgements. We thank Stephan van Staden, Sebastian Nanz, Scott West,
and Mei Tang for their insightful comments on drafts of this paper. The research
leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC
Grant agreement no. 291389.

References

1. Bannwart, F.Y., Müller, P.: A program logic for bytecode. In: Spoto, F. (ed.)
BYTECODE. ENTCS, vol. 141(1), pp. 255–273. Elsevier, Amsterdam (2005)

2. Barthe, G., Crégut, P., Grégoire, B., Jensen, T., Pichardie, D.: The MOBIUS
proof carrying code infrastructure. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de
Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 1–24. Springer, Heidelberg
(2008)

Certificates and Separation Logic 293

3. Barthe, G., Grégoire, B., Pavlova, M.I.: Preservation of proof obligations from Java
to the Java virtual machine. In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
IJCAR 2008. LNCS(LNAI), vol. 5195, pp. 83–99. Springer, Heidelberg (2008)

4. Barthe, G., Rezk, T., Saabas, A.: Proof obligations preserving compilation. In:
Third International Workshop on Formal Aspects in Security and Trust, Newcastle,
UK, pp. 112–126 (2005)

5. Benton, N.: A typed, compositional logic for a stack-based abstract machine. In:
Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 364–380. Springer, Heidelberg
(2005)

6. Chin, W., David, C., Nguyen, H., Qin, S.: Enhancing modular OO verification with
separation logic. In: POPL ’08, pp. 87–99. ACM (2008)

7. Clarke, D., Drossopoulou, S.: Ownership, encapsulation and the disjointness of
type and effect. In: OOPSLA ’02, vol. 37. ACM (2002)

8. Distefano, D., Parkinson, M.J.: jStar: towards practical verification for Java. In:
OOPSLA ’08, pp. 213–226 (2008)

9. Dong, Y., Wang, S., Zhang, L., Yang, P.: Modular certification of low-level interme-
diate representation programs. In: ICSAC, pp. 563–570. IEEE Computer Society
(2009)

10. Kunz, C.: Certificate translation for the verification of concurrent programs. In:
Wirsing, M., Hofmann, M., Rauschmayer, A. (eds.) TGC 2010. LNCS, vol. 6084,
pp. 237–252. Springer, Heidelberg (2010)

11. Zhou, Z., Chindaro, S., Deravi, F.: Face recognition using balanced pairwise clas-
sifier training. In: Weerasinghe, D. (ed.) ISDF 2009. LNICST, vol. 41, pp. 42–49.
Springer, Heidelberg (2010)

12. Müller, P., Nordio, M.: Proof-transforming compilation of programs with abrupt
termination. In: SAVCBS ’07, pp. 39–46 (2007)

13. Necula, G.: Compiling with proofs. Ph.D. thesis, School of Computer Science,
Carnegie Mellon University (1998)

14. Nordio, M.: Proofs and proof transformations for object-oriented programs. Ph.D.
thesis, ETH Zurich (2009)

15. Nordio, M., Calcagno, C., Müller, P., Meyer, B.: A sound and complete program
logic for Eiffel. In: Oriol, M., Meyer, B. (eds.) TOOLS EUROPE 2009. LNBIP,
vol. 33, pp. 195–214. Springer, Heidelberg (2009)

16. Nordio, M., Müller, P., Meyer, B.: Formalizing proof-transforming compilation of
Eiffel programs. Technical report 587, ETH Zurich (2008)

17. Nordio, M., Müller, P., Meyer, B.: Proof-transforming compilation of Eiffel pro-
grams. In: Paige, R.F., Meyer, B. (eds.) TOOLS-EUROPE 2008. LNBIP, vol. 11,
pp. 316–335. Springer, Heidelberg (2008)

18. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375, 271–307 (2007)

19. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. In:
POPL ’04, pp. 268–280. ACM (2004)

20. Parkinson, M.J., Bierman, G.M.: Separation logic, abstraction and inheritance. In:
POPL ’08, pp. 75–86. ACM (2008)

21. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)

22. Saabas, A., Uustalu, T.: Program and proof optimizations with type systems. J.
Logic Algebr. Program. 77(1–2), 131–154 (2008)

23. Stata, R., Abadi, M.: A type system for Java bytecode subroutines. In: POPL ’98,
pp. 149–160. ACM (1998)

Quantitative Analysis

On-the-fly Fast Mean-Field Model-Checking

Diego Latella1(B), Michele Loreti2, and Mieke Massink1

1 Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNR, Pisa, Italy
Diego.Latella@isti.cnr.it

2 Università di Firenze, Firenze, Italy

Abstract. A novel, scalable, on-the-fly model-checking procedure is pre-
sented to verify bounded PCTL properties of selected individuals in the
context of very large systems of independent interacting objects. The
proposed procedure combines on-the-fly model checking techniques with
deterministic mean-field approximation in discrete time. The asymptotic
correctness of the procedure is shown and some results of the applica-
tion of a prototype implementation of the FlyFast model-checker are pre-
sented.

Keywords: Probabilistic model-checking · On-the-fly model-checking ·
Mean-field approximation · Discrete time Markov chains

1 Introduction

Model checking has been widely recognised as a powerful approach to the auto-
matic verification of concurrent and distributed systems. It consists of an effcient
procedure that, given an abstract model M of the system, decides whether M
satisfies a logical formula α, typically drawn from a temporal logic. Despite the
success of model-checking procedures, their scalability have always been a con-
cern due to the potential combinatorial explosion of the state space that needs
to be searched.

The main contribution of this paper is a novel model-checking procedure,
based on an original combination of local, on-the-fly model-checking techniques
and mean field approximation in discrete time [26]. The procedure can be used
to verify bounded PCTL [18] properties of selected individuals in the context
of systems consisting of a large number of similar but independent interacting
objects. It is scalable in the sense that it is insensitive to the size of the popu-
lation the system consists of. The asymptotic correctness of the model-checking
procedure is proven and a prototype implementation of the model-checker, Fly-
Fast, is applied to a bench-mark example from computer epidemics that was
also studied extensively in [7], to which we refer for a detailed discussion. To
the best of our knowledge, this is the first implementation of an on-the-fly mean
field model-checker for discrete time, probabilistic, time-synchronous models.

This research has been partially funded by the EU projects ASCENS (nr. 257414)
and QUANTICOL (nr. 600708), and the IT MIUR project CINA.

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 297–314, 2014.
DOI: 10.1007/978-3-319-05119-2 17, c© Springer International Publishing Switzerland 2014

298 D. Latella et al.

Following the approach in [26] we consider a model for interacting objects,
where the evolution of each object is given by a finite state discrete time Markov
chain. The transition matrix of each object may depend on the distribution of
states of all objects in the system. Each object can be in one of its local states
at any point in time and all objects proceed in discrete time and in a clock-
synchronous fashion. When the number of objects is large, the overall behaviour
of the system in terms of its ‘occupancy measure’, i.e. the fraction of objects
that are in a particular local state at a particular time, can be approximated
by the (deterministic) solution of a difference equation which is called the ‘mean
field’1. This convergence result has been extended in [26] to obtain a ‘fast’ way
to stochastically simulate the evolution of a selected, limited number of specific
objects in the context of the overall behaviour of the population.

We show that the deterministic iterative procedure of [26], to compute the
average overall behaviour of the system and that of individual objects in the con-
text of the overall system, combines well with an on-the-fly probabilistic model-
checking procedure for the verification of bounded PCTL formulas addressing
selected objects of interest2. An on-the-fly recursive approach also provides a
natural way to address nested path formulae and time-varying truth values of
such formulae. The algorithm presented in this paper is parametric w.r.t. the
semantic interpretation of the language. In particular we present two diffierent
interpretations; one based on the standard, exact probabilistic semantics of a
simple probabilistic population description language, and the other one on the
mean-field approximation in discrete time of such a semantics. The latter is
the main contribution of the current paper. The considered PCTL formulae can
be extended along the lines proposed in [21,22] with properties that address the
overall status of the system. We show a simple instance of that.

The models we consider are also known as SIO-models (System of Inde-
pendent Objects) [7]. These are time-synchronous models in which each object
performs a probabilistic step in each discrete time unit, possibly looping to the
same state. This is a class of models that is frequently encountered in various
research disciplines ranging from telecommunication to computational biology.
The objects interact in an indirect way via the global state of the overall system.

2 Related Work

Traditionally, model checking approaches are divided into two broad categories:
global approaches that determine the set of all states in M that satisfy α, and
local approaches that, given a state s in M, determine whether s satisfies α [5,11].

1 The term ‘mean field’ has its origin in statistical physics and is sometimes used with
slightly different meaning in the literature. Here we intend the meaning as defined
in [26].

2 Note that the transition probabilities of these selected objects at time t may depend
on the occupancy measure of the system at t and therefore also the truth-values of
the formulas may vary with time.

On-the-fly Fast Mean-Field Model-Checking 299

Global symbolic model checking algorithms are popular because of their com-
putational effciency and can be found in many model checkers, both in a quali-
tative (see e.g. [10]) and in a stochastic setting (see e.g. [2,23]). The set of states
that satisfy a formula is constructed recursively in a bottom-up fashion following
the syntactic structure of the formula. Depending on the particular formula to
verify, usually the underlying model can be reduced to fewer states before the
algorithm is applied. Moreover, as is shown e.g. in [2] for stochastic model check-
ing, the model checking algorithm can be reduced to combinations of existing
well-known and optimised algorithms for CTMCs such as transient analysis.

Local model checking algorithms have been proposed to mitigate the state
space explosion problem using a so called ‘on-the-fly’ approach (see e.g. [5,11,
15,20]). On-the-fly algorithms are following a top-down approach that does not
require global knowledge of the complete state space. For each state that is
encountered, starting from a given state, the outgoing transitions are followed
to adjacent states, constructing step by step local knowledge of the state space
until it is possible to decide whether the given state satisfies the formula. For
qualitative model checking, local model-checking algorithms have been shown
to have the same worst-case complexity as the best existing global procedures
for the above mentioned logics. However, in practice, they have better perfor-
mance when only a subset of the system states need to be analysed to determine
whether a system satisfies a formula. Furthermore, local model-checking may
still provide some results in case of systems with a very large or even infinite
state space where global model checking approaches would be impossible to use.
In the context of stochastic model checking several on-the-fly approaches have
been proposed, among which [13] and [17]. The former is a probabilistic model
checker for bounded PCTL formulas. The latter uses an on-the-fly approach
to detect a maximal relevant search depth in an infinite state space and then
uses a global model-checking approach to verify bounded CSL [1,2] formulas in
a continuous time setting on the selected subset of states. An on-the-fly app-
roach by itself however, does not solve the challenging scalability problems that
arise in truly large parallel systems, such as collective adaptive systems, e.g.,
gossip protocols [9], self-organised collective decision making [28], computer epi-
demics [8] and foreseen smart urban transportation systems and decentralised
control strategies for smart grids.

To address this type of scalability challenges in probabilistic model-checking,
recently, several approaches have been proposed. In [16,19] approximate proba-
bilistic model-checking is introduced. This is a form of statistical model-checking
that consists in the generation of random executions of an a priori established
maximal length. On each execution the property of interest is checked and sta-
tistics are performed over the outcomes. The number of executions required for
a reliable result depends on the maximal error-margin of interest. The approach
relies on the analysis of individual execution traces rather than a full state space
exploration and is therefore memory-effcient. However, the number of execu-
tion traces that may be required to reach a desired accuracy may be large and

300 D. Latella et al.

therefore time-consuming. The approach works for general models, i.e., not nec-
essarily populations of similar objects, but is not independent of the number of
objects involved.

To analyse properties of large scale mobile communication networks mean
field approximations in discrete time have also been used e.g., in Bakshi et al. [3].
In that work an automatised method is proposed and applied to the analysis
of dynamic gossip networks. A general convergence result to a deterministic
diffierence equation is used, similar to that in [26], but not its extension to analyse
individual behaviour in the context of a large population, nor its exploitation in
model-checking algorithms.

In Chaintreau et al. [9], mean field convergence in continuous time is used
to analyse the distribution of the age of information that objects possess when
using a mix of gossip and broadcast for information distribution in situations
where objects are not homogeneously distributed in space. An overview of mean
field interaction models for computer and communication systems by Benäım et
al. can be found in [4].

Preliminary ideas on the exploitation of mean field convergence in continuous
time for model-checking mean field models, and in particular for an extension
of the logic CSL, were informally sketched in a presentation at QAPL 2012 [21],
but no model-checking algorithms were presented. Follow-up work on the above
mentioned approach can be found in [22] which relies on earlier results on fluid
model checking by Bortolussi and Hillston [6]. In the latter a global CSL model-
checking procedure is proposed for the verification of properties of a selection
of individuals in a population. This work is perhaps the most closely related
to our work, however their procedure exploits mean field convergence and fast
simulation [12,14] in a continuous time setting rather than in a discrete time
setting and is based on an interleaving model of computation, rather than a
clock-synchronous one; furthermore, a global model-checking approach, rather
than an on-the-fly approach, is followed. The modelling language used in [6] is
PEPA. Earlier work by Stefanek et al. [29] on the use of mean field convergence
in continuous time for grouped PEPA has investigated the quality of the conver-
gence results when the related diffierential equations are derived directly from the
process algebraic model. Potential issues with accuracy were found concerning
the parallel composition operator of PEPA that involves a (non-linear) mini-
mum function applied to rates originating from synchronising populations. This
could, in some circumstances, give rise to inaccuracies in the approximation. It
is however possible to detect such situations.

3 Time Bounded PCTL and On-the-fly Model-Checking

In this section we recall the definition of the time bounded fragment of PCTL3

and we present an on-the-fly model-checking algorithm. The algorithm is para-
metric in the sense that it can be used for diffierent languages and semantic
3 For notational simplicity we call the fragment PCTL as well.

On-the-fly Fast Mean-Field Model-Checking 301

Table 1. Satisfaction relation for Time Bounded PCTL.

s |=M a iff a → σ(s)

s |=M ¬ψ iff not s |=M ψ

s |=M ψ1 ← ψ2 iff s |=M ψ1 or s |=M ψ2

s |=M Pδγp(θ) iff P{τ → PathsM(s) | τ |=M θ} αβ p

τ |=M X ψ iff τ[1] |=M ψ

τ |=M ψ1 U≤k ψ2 iff ⊥ 0 ⇒ h ⇒ k s.t. τ[h] |=M ψ2 ∅ ∪ 0 ⇒ i < h . τ[i] |=M ψ1

interpretations. In this paper we use two instantiations of the algorithm; one is
on a DTMC semantics of a simple language of object populations (Sect. 4) and
the other is on a mean-field approximation semantics of the same language, for
“fast model-checking” (Sect. 5). For the sake of readability, we present only a
schema of the algorithm for time bounded PCTL, that is the same as that pro-
posed in [13]. The interested reader is referred to [25] where a novel algorithm
is defined and implemented for the full logic.

3.1 Time Bounded PCTL

Given a set P of atomic propositions, the syntax of PCTL is defined below,
where a ∈ P, k ≤ 0 and εσ∈ {≤, >,→, <}:

α:: = a | ¬α | α ⊥ α | Pαωp(Σ) where Σ:: = X α | αU≥k α.

PCTL formulae are interpreted over state labelled DTMCs. A state labelled
DTMC is a pair ↔M, Ψ⊆ where M is a DTMC with state set S and Ψ:S ≥ 2P

associates each state with a set of atomic propositions; for each state s ∈ S, Ψ(s)
is the set of atomic propositions true in s. In the following, we assume P be the
one step probability matrix for M; we abbreviate ↔M, Ψ⊆ with M, when no con-
fusion can arise. A path ϕ over M is a non-empty sequence of states s0, s1, · · ·
where Psi,si+1 > 0 for all i ≤ 0. We let PathsM(s) denote the set of all infinite
paths over M starting from state s. By ϕ[i] we denote the i-th element si of
path ϕ. Finally, in the sequel we will consider DTMCs equipped with an initial
state s0, i.e. the probability mass is initially all in s0. For any such a DTMC M,
and for all t ∈ N we let the set LM(t) = {ϕ[t] | ϕ ∈ PathsM(s0)}.

We define the satisfaction relation on M and the logic in Table 1.

3.2 On-the-fly PCTL Model-Checking Algorithm

In this section we introduce a local on-the-fly model-checking algorithm for time-
bounded PCTL formulae. The basic idea of an on-the-fly algorithm is simple:
while the state space is generated in a stepwise fashion from a term s of the lan-
guage, the algorithm considers only the relevant prefixes of the paths while they

302 D. Latella et al.

Table 2. Function Check

1 Check(s : proc, ψ : formula)=
2 match ψ
3 with
4 | a ◦ (lab eval s a)
5 | ¬ψ1 ◦ ¬Check(s, ψ1)
6 | ψ1 ← ψ2 ◦ Check(s, φ1) ← Check(s, ψ2)
7 | P∅relop∼p

(θ) ◦ CheckPath(s, θ)∧relop≡p

are generated. For each of them it updates the information about the satisfaction
of the formula that is checked. In this way, only that part of the state space is
generated that can provide information on the satisfaction of the formula and
irrelevant parts are not taken into consideration.

In the case of probabilistic process population languages, for large popula-
tions, a mean-field approximated semantics can be defined. In Sect. 5 we show
how a drastic reduction of the state space can be obtained, by using the same
algorithm on such semantic models. We call such a combined use of on-the-
fly model-checking and mean-field semantics “Fast model-checking” after “Fast
simulation”, introduced in [26].

The algorithm abstracts from any specific language and diffierent semantic
interpretations of a language. We only assume an abstract interpreter function
that, given a generic process term, returns a probability distribution over the set
of terms. Below, we let proc be the (generic) type of probabilistic process terms
while we let formula and path formula be the types of state- and path- PCTL
formulae. Finally, we use lab to denote the type of atomic propositions.

The abstract interpreter can be modelled by means of two functions: next and
lab eval. Function next associates a list of pairs (proc, float) to each element of
type proc. The list of pairs gives the terms, i.e. states, that can be reached in one
step from the given state and their one-step transition probability. We require
that for each s of type proc it holds that 0 < p≤ → 1, for all (s≤, p≤) ∈ next(s)
and

⎧
(s′,p′)→next(s) p≤ = 1. Function lab eval returns for each element of type

proc a function associating a bool to each atomic proposition a in lab. Each
instantiation of the algorithm consists in the appropriate definition of next and
lab eval, depending on the language at hand and its semantics.

The local model-checking algorithm is defined as a function, Check, shown
in Table 2. On atomic state-formulae, the function returns the value of lab eval;
when given a non-atomic state-formula, Check calls itself recursively on sub-
formulae, in case they are state-formulae, whereas it calls function CheckPath,
in case the sub-formula is a path-formula. In both cases the result is a Boolean
value that indicates whether the state satisfies the formula.

Function CheckPath, shown in Table 3, takes a state s ∈ proc and a PCTL
path-formula Σ ∈ path formula as input. As a result, it produces the probability
measure of the set of paths, starting in state s, which satisfy path-formula Σ.

On-the-fly Fast Mean-Field Model-Checking 303

Table 3. Function CheckPath

1 CheckPath(s : proc , θ : path formula)=
2 match θ with
3 | X ψ ◦ let p = 0.0 and lst = next(s) in
4 for (s′, p′) → lst do i f Check(s′, ψ) then p ← p + p′

5 done ;
6 p

7 | ψ1 U≤k ψ2 ◦ i f Check(s, ψ2) then 1 .0
8 else i f Check(s, ¬ψ1) then 0 .0
9 else i f k > 0 then

10 begin
11 let p = 0.0 and lst = next(s) in
12 for (s′, p′) → lst do

13 p ← p + p′ ≤ CheckPath(s′, ψ1 U≤k−1 ψ2)
14 done ;
15 p
16 end
17 else 0 .0

Following the definition of the formal semantics of PCTL, two diffierent cases
can be distinguished. If Σ has the form X α then the result is the sum of the
probabilities of the transitions from s to those next states s≤ that satisfy α.
To verify the latter, function Check is recursively invoked on such states. If Σ
has the form α1 U≥k α2 then we first check if s satisfies α2, then 1 is returned,
since Σ is trivially satisfied. If s does not satisfy α1 then 0 is returned, since
Σ is trivially violated. For the remaining case we need to recursively invoke
CheckPath for the states reachable in one step from s, i.e. the states in the set
{s≤|∀p≤ : (s≤, p≤) ∈ next(s)}. Note that these invocations of CheckPath are made
on Σ≤ = α1 U≥k−1 α2 if k > 0. If k → 0 then the formula is trivially not satisfied
by s and the value 0 is returned.

Let s be a term of a probabilistic process language and M the complete
discrete time stochastic process associated with s by the formal semantics of the
language. The following theorem is easily proved by induction on α [25].

Theorem 1. s |=M α if and only if Check(s, α) = true. •

4 Modelling Language

In this section we define a simple population description language. The language
is essentially a textual version of the graphical notation used in [26]. A system
is defined as a population of N identical interacting processes or objects4. At
any point in time, each object can be in any of its finitely many states and the
evolution of the system proceeds in a clock-synchronous fashion: at each clock
4 In [26] object is used instead of process. We consider the two terms synonyms here.

304 D. Latella et al.

tick each member of the population must either execute one of the transitions
that are enabled in its current state, or remain in such a state.5

Syntax. Let A be a denumerable non-empty set of actions, ranged over by
a, a≤, a1, . . . and S be a denumerable non-empty set of state constants, ranged
over by C,C ≤, C1, . . . An object specification λ is a set {Di}i→I , for finite index
set I, where each state definition Di has the form Ci :=

⎧
j→Ji

aij .Cij , with
Ji a finite index set, states Ci, Cij ∈ S, and aij ∈ A, for i ∈ I and j ∈ Ji.
Intuitively, the notation

⎧
j→Ji

aij .Cij is to be intended as the n-ary extension
of the standard process algebraic binary non-deterministic choice operator. We
require that aij ∅= aij′ , for j ∅= j≤ and that for each state constant Cij occurring
in the r.h.s. of a state definition Di of λ there is a unique k ∈ I such that Cij is
the l.h.s. of Dk.

Example 1 (An epidemic model [7]). We consider a network of computers that
can be infected by a worm. Each node in the network can acquire infection from
two sources, i.e. by the activity of a worm of an infected node (inf sus) or by
an external source (inf ext). Once a computer is infected, the worm remains
latent for a while, and then activates (activate). When the worm is active, it
tries to propagate over the network by sending messages to other nodes. After
some time, an infected computer can be patched (patch), so that the infection
is recovered. New versions of the worm can appear; for this reason, recovered
computers can become susceptible to infection again, after a while (loss). The
object specification of the epidemic model is the following:

S := inf ext.E + inf sus.E
E := activate.I
I := patch.R
R := loss.S

The set of all actions occurring in object specification λ is denoted by
Aν. Similarly, the set of states is denoted by Sν, ranged over by c, c≤, c1 · · · .
In Example 1, we have AEM = {inf ext, inf sus, activate, patch, loss} and
SEM = {S, E, I, R}. A system is assumed composed of N interacting instances of
an object. Interaction among objects is modelled probabilistically, as described
below. Each action in Aν is assigned a probability value, that may depend on
the global state of the system. This is achieved by means of a probability func-
tion definition, that takes the following form: a::E, where a ∈ Aν and E is an
expression, i.e. an element of Exp, defined according to the following grammar:

E:: = v | frcC | ↔uop⊆E |E ↔bop⊆E | (E)

where v ∈ [0, 1] and for each state C, frcC denotes the fraction of objects, over
the total number of objects N , in the system, that are currently in state C.
Operators ↔uop⊆ and ↔bop⊆ are standard arithmetic unary and binary operators.

Example 2 (Probability function definitions). For the epidemic model of Exam-
ple 1 we assign the following probability function definitions:
5 For the purpose of the present paper, language expressivity is not a main concern.

On-the-fly Fast Mean-Field Model-Checking 305

inf ext :: ρe;
inf sus :: ρi ∗ (frc I);
activate :: ρa;
patch :: ρr;
loss :: ρs;

where ρe, ρi, ρa, ρr and ρs are model parameters in [0, 1], with ρe + ρi → 1.

A system specification is a triple ↔λ,A,C0⊆(N) where λ is an object specification,
A is a set of probability function definitions containing exactly one definition for
each a ∈ Aν, and C0 = ↔c01 , . . . , c0N ⊆ is the initial system state, with c0n ∈ Sν,
for n = 1 . . . N ; we say that N is the population size6; in the sequel, we will omit
the explicit indication of the size N in ↔λ,A,C0⊆(N), and elements thereof or
related functions, writing simply ↔λ,A,C0⊆, when this cannot cause confusion.

Semantics. Let ↔λ,A,C0⊆ be a system specification. We associate with λ the
Labelled Transition System (LTS) ↔Sν,Aν,�⊆, where Sν and Aν are the states
and labels of the LTS, respectively, and the transition relation �≡ Sν×Aν×Sν

is the smallest relation induced by rule (1).

C :=
⎧

j→J aj .Cj k ∈ J

C
ak� Ck

(1)

In the following we let US = {m ∈ [0, 1]S |⎧S
i=1 m[i] = 1} be the unit

simplex of dimension S; furthermore, we let c, c≤, C, C ≤ . . . range over Sν and for
generic vector v = ↔v1, . . . , vr⊆ we let v[j] denote the j-th component vj of v, for
j = 1, . . . , r. A (system) global state is a tuple C(N) ∈ SN

ν . W.l.g., we assume
that Sν = {C1, . . . , CS} and that a total order is defined on state constants
C1, . . . , CS so that we can unambiguously associate each component of a vector
m = ↔m1, . . . , mS⊆ ∈ US with a distinct element of {C1, . . . , CS}. With each
global state C(N) an occupancy measure vector M(N)(C(N)) ∈ US is associated
where M(N)(C(N)) = ↔M (N)

1 , . . . , M
(N)
S ⊆ with

M
(N)
i =

1
N

N⎪

n=1

1{C(N)
[n] =Ci}

for i = 1, . . . , S, and the value of 1{Σ=β} is 1, if ρ = β, and 0 otherwise.
A probability function definition a::E associates a real value to action a by

evaluating E in the current global state, via the interpretation function E . In
practice the occupancy measure representation of the state is used in E .

The expressions interpretation function E : Exp ≥ US ≥ R is defined as
usual:

E [[v]]m = v
E [[frcCi]]m = m[i]

6 Appropriate syntactical shorthands can be introduced for describing the initial state,
e.g. ∧S[2000], E[100], I[200], R[0]≡ for 2000 objects initially in state S etc.

306 D. Latella et al.

E [[↔uop⊆E]]m = ↔uop⊆ (E [[E]]m)
E [[E1 ↔bop⊆E2]]m = (E [[E1]]m) ↔bop⊆ (E [[E2]]m)
E [[(E)]]m = (E [[(E)]]m)

The set A of probability function definitions characterises a function τ with type
US ≥ Aν ≥ R as follows: for each a::E in A, we have τ(m, a) = E [[E]]m.

For a system specification of size N , we define the object transition matrix
as follows: K(N) : US × Sν × Sν ≥ R, with

K(N)(m)c,c′ =
⎨⎧

a:c
a�c′ τ(m, a), if c ∅= c≤,

1 − ⎧
a→I(c) τ(m, a), if c = c≤. (2)

where I(c) = {a ∈ Aν|∀c≤ ∈ Sν : c
a� c≤ ∅= c}. We say that a state c ∈ Sν

is probabilistic in m if 0 → ⎧
a→I∗(c) τ(m, a) → 1 where set I↑(c) is defined as

follows: I↑(c) = I(c) ♦ {a ∈ Aν|c a� c}. Note that whenever all states in Sν are
probabilistic in m, matrix K(N)(m) is a one step transition probability matrix.
We define the (system) global state transition matrix S(N) : US ×SN

ν ×SN
ν ≥ R,

as
S(N)(m)C,C′ = ΠN

n=1K
(N)(m)C[n],C

′
[n]

.

Note that whenever all states in Sν are probabilistic in m, matrix SN (m) is a one
step transition probability matrix modelling a possible single step of the system
as result of the parallel execution of a single step of each of the N instances of
the object. In this case, the SN × SN matrix P(N) with

P(N)
C,C′ = S(N)(M(N)(C))C,C′ (3)

is the one-step transition matrix of a (finite state) DTMC, namely the DTMC of
the system composed on N objects specified by λ. In this case, we let X(N)(t)
denote the Markov process with transition probability matrix P(N) as above and
X(N)(0) = C(N)

0 , i.e. with initial probability distribution δ
C

(N)
0

, where C(N)
0 is

the initial system state and δ
C

(N)
0

is the Dirac distribution with the total mass

on C(N)
0 . With a little bit of notational overloading, we define the ‘occupancy

measure DTMC’ as M(N)(t) = M(N)(X(N)(t)); for m = M(N)(C), for some
state C of DTMC X(t), we have:

P{M(N)(t + 1) = m≤ | M(N)(t) = m} =
⎪

C′:M(N)(C′)=m′

P(N)
C,C′ (4)

Note that the above definition is a good definition; in fact, if M(N)(C) =
M(N)(C≤≤), then C and C≤≤ are just two permutations of the same local states.
This implies that for all C≤ we have P(N)

C,C′ = P(N)
C′′,C′ .

PCTL local Model-checking. For the purpose of expressing system properties
in PCTL, we partition the set of atomic propositions P into sets P1and Pg.
Given system specification ↔λ,A,C(N)

0 ⊆(N), we extend it with a state labelling
function definition that associates each state c ∈ Sν with a (possibly empty)

On-the-fly Fast Mean-Field Model-Checking 307

finite set Ψ1(c) of propositions from P1. We extend Ψ1 to global states with
Ψ1(↔c1, . . . , cN ⊆) = Ψ1(c1); this way, we can express local properties of the first
object in the system, in the context of the complete population7. In order to
express also (a limited class of) global properties of the population, we use set Pg.
The system specification is further enriched by associating labels a ∈ Pg with
expressions bexp in the class BExp of restricted boolean expressions. We assume
a sublanguage of function specifications be given8 and for function symbol F ,
E [[F]]m : [0, 1]q �≥ R continuous in [0, 1]q, with E [[F]]m = E [[F]]m′ for all m,m≤ ∈
US ; then BExp is the set of expressions of the form F (E1, . . . , Eq) ↔relop⊆ r, where
each Ej is of the form frcC, ↔relop⊆ ∈ {>,<}, r ∈ R and E [[F (E1, . . . , Eq)]]m =
E [[F]]m(E [[E1]]m, . . . ,E [[Eq]]m).

We define the state global labelling function Ψg as

Ψg(↔c1, . . . , cN ⊆) = {a ∈ Pg | E [[bexpa]]M(N)(∈c1,...,cN ∀) = tt}.

We obtain the state labelled DTMC D(N)(t) from X(N)(t), with transition
matrix P(N) above, by enriching it with labelling function ΨD(N) such that
ΨD(N)(C) = Ψ1(C) ♦ Ψg(C).

The definition of PathsD(N)(C(N)) as well as that of the satisfaction relation
|=D(N) are obtained by instantiating those given in Sect. 3.1 to D(N). For ϕ ∈
PathsD(N)(C(N)), ϕ[j][n] denotes the n-th local state of global state ϕ[j].
For model-checking a system specification ↔λ,A,C(N)

0 ⊆(N) we instantiate proc
with9 SN

ν and lab with P1 ♦ Pg. Function next is instantiated to the function
nextD(N) , where

nextD(N)(C) = [(C≤, p≤) | P(N)
C,C′ = p≤ > 0].

Given a vector C, nextD(N)(C) computes a list corresponding to the positive
elements of the row of matrix P(N) associated with C. Of course, only those
elements of P(N) that are necessary for nextD(N) are actually computed. Function
lab eval is instantiated with the function lab evalD(N) : SN

ν × Aν ≥ B with
lab evalD(N)(C, a) = a ∈ ΨD(N)(C).

Example 3 (Properties). For the epidemic model of Example 1 we can consider
the following properties, where i, e, r ∈ P1 are labelling states I, E and R,
respectively, and LowInf ∈ Pg is defined as (frc I) < 0.25:

7 Of course, the choice of the first object is purely conventional. Furthermore, all the
results which in the present paper are stated w.r.t. the first object of a system, are
easily extended to finite subsets of objects in the system. For the sake of notation,
in the rest of the paper, we stick to the first object convention.

8 The specific features of the sublanguage are not relevant for the purposes of the
present paper and we leave their treatment out for the sake of simplicity.

9 Strictly speaking, the relevant components of the algorithm are instantiated to repre-
sentations of the terms, sets and functions mentioned in this section. For the sake of
notational simplicity, we often use the same notation both for mathematical objects
and for their representations.

308 D. Latella et al.

0 20 40 60

Time bound (k)

0

0.2

0.4

0.6

0.8

1

P
at

h
se

t p
ro

ba
bi

lit
y

P1
P2
P3

PRISM Exact on-the-fly

P1 108.479s 29.587s
P2 51.816s 3.409s
P3 216.952s 85.579s

Model parameter values:
αe = 0.1, αi = 0.2, αr = 0.2
αa = 0.4, αs = 0.1

Fig. 1. Exact model-checking results (left) and verification time (right).

P1 the worm will be active in the first component within k steps with a proba-
bility that is at most p: P≥p(true U≥k i);

P2 the probability that the first component is infected, but latent, in the next
k steps while the worm is active on less then 25% of the components is at
most p: P≥p(LowInf U≥k e);

P3 the probability to reach, within k steps, a configuration where the first com-
ponent is not infected but the worm will be activated with probability greater
than 0.3 within 5 steps is at most p:

P≥p(true U≥k (!e↓!i ↓ P>0.3(true U≥5 i))).

In Fig. 1 the result of exact PCTL model-checking of Example 1 is reported. On
the left the probability of the set of paths that satisfy the path-formulae used in
the three formulae above is shown for a system composed of eight objects each
in initial state S, for k from 0 to 70. On the right the time needed to perform the
analysis using PRISM [23] and using exact on-the-fly PCTL model checking are
presented10, showing that the latter has comparable performance. Worst-case
complexity of both algorithms are also comparable. The local model-checker has
been instantiated with the model defined by the (exact) operational semantics
of the language, where each state C ∈ SN

ν is a global system state. In Sect. 5 we
instantiate the procedure with the mean-field, approximated, semantics of the
language, leading to a scalable, ‘fast’, model-checker, insensitive to the popula-
tion size.

5 Fast Mean-Field Model-Checking

Given a system specification ↔λ,A,C(N)
0 ⊆(N) with initial state C0, we want to

focus on the behaviour of the first object, starting in the initial state C0[1],

10 We use a 1.86GHz Intel Core 2 Duo with 4 GB. State space generation time of
PRISM is not counted. The experiments are available at http://rap.dsi.unifi.it/
∼loreti/OFPMC/).

http://rap.dsi.unifi.it/~loreti/OFPMC/
http://rap.dsi.unifi.it/~loreti/OFPMC/

On-the-fly Fast Mean-Field Model-Checking 309

when in execution with all the other objects for (very) large population size
N . We define a mapping H(N) : SN

ν ≥ (Sν × US) such that H(N)(C(N)) =
↔C(N)

[1] ,M(N)(C(N))⊆. Note that H(N) and D(N)(t) together define a state labelled
DTMC, denoted HD(N)(t), and defined as H(N)(X(N)(t)), with Ψ1(↔c,m⊆) =
Ψ1(c), Ψg(↔c,m⊆) = {a ∈ Pg | E [[bexpa]]m = tt}, and ΨHD(N)(↔c,m⊆) defined as
Ψ1(↔c,m⊆) ♦ Ψg(↔c,m⊆), where P1,Pg and bexpa are defined in a similar way
as in Sect. 4. The one-step matrix of HD(N)(t) is:

H(N)
∈c,m∀,∈c′,m′∀ =

⎪

C′:H(N)(C′)=∈c′,m′∀
P(N)

C,C′ (5)

where C is such that H(N)(C) = ↔c,m⊆.11 The definitions of paths for state
↔c,m⊆ of HD(N), PathsHD(N)(↔c,m⊆), of LHD(N)(t) and of the satisfaction rela-
tion |=HD(N) of PCTL formulas against HD(N)(t), are obtained by instantiating
the relevant definitions of Sect. 3.1 to the model HD(N)(t). Furthermore, we let
LHD(N)(t, c) = {↔c≤,m≤⊆ ∈ �LHD(N)(t) | c≤ = c}.

We extend mapping H(N) to sets and paths in the obvious way: for set X
of states, let H(N)(X) = {H(N)(x) | x ∈ X}, and for ϕ ∈ PathsD(N)(C(N)), let
H(N)(ϕ) = H(N)(ϕ[0])H(N)(ϕ[1])H(N)(ϕ[2]) · · ·

The following lemma relates the two interpretations of the logic, and can be
easily proved by induction on formulae α [24].

Lemma 1. For all N > 0, states C(N) and formulas α the following holds:
C(N) |=D(N) α iff H(N)(C(N)) |=HD(N) α. •

We now consider the stochastic process HD(t) defined below, for c0, c, c
≤ ∈

Sν, μ0,m,m≤ ∈ US and function K(m)c,c′ , continuous in m:

P{HD(0) = ↔c,m⊆} = δ∈c0,µ0∀(↔c,m⊆),
P{HD(t + 1)=↔c≤,m≤⊆ |HD(t) = ↔c,m⊆}=

⎨
K(m)c,c′ , if m≤ = m · K(m)
0, otherwise.

(6)

The definition of the labeling function ΨHD is the same as that of ΨHD(N) . Note
that HD is a DTMC with initial state ↔c0,μ0⊆; memoryless-ness as well as time
homogeneity directly follow from the definition of the process (6). The definitions
of paths for state ↔c,m⊆ of HD, PathsHD(↔c,m⊆), of LHD(t) and of the satisfac-
tion relation |=HD of PCTL formulas against HD(t) are obtained by instantiat-
ing the relevant definitions of Sect. 3.1 to the model HD(t). Furthermore, define
function μ(t) as follows: μ(0) = μ0 and μ(t+1) = μ(t) ·K(μ(t)); then, for t ≤ 0
and for ↔c,m⊆ ∈ LHD(t) we have m = μ(t).

In the following we use the fundamental result stated below, due to Le Boudec
et al. [26].

Theorem 4.1 of [26] Assume that for all c, c≤ ∈ Sν, there exists function
K(m)c,c′ , continuous in m, such that, for N ≥ ⇓, K(N)(m)c,c′ converges

11 With a similar argument as for definition (4), noting that M(N)(C) = M(N)(C′′)
and C[1] = C′′

[1], it can be easily seen that also definition (5) is a good definition.

310 D. Latella et al.

uniformly in m to K(m)c,c′ . Assume, furthermore, that there exists
μ0 ∈ US such that M(N)(C(N)

0) converges almost surely to μ0. Define
function μ(t) of t as follows: μ(0) = μ0 and μ(t + 1) = μ(t) · K(μ(t)).
Then, for any fixed t, almost surely limN∼∞ M(N)(t) = μ(t). •

Remark 1. We observe that, as direct consequence of Theorem 4.1 of [26] and
of the restrictions on the definition of BExp, for any fixed t and for all ω > 0,
there exists N̄ such that, for all N ≤ N̄ , almost surely

| E [[bexp]]m − E [[bexp]]µ(t) |< ω

for all ↔c,m⊆ ∈ LHD(N)(t) and bexp ∈ BExp. In other words, for N large
enough and ↔c,m⊆ ∈ LHD(N)(t), Ψg(↔c,m⊆) = Ψg(↔c,μ(t)⊆), and, consequently,
Ψ(↔c,m⊆) = Ψ(↔c,μ(t)⊆). •
In the rest of the paper we will focus on sequences

⎩↔λ,A,C0⊆(N)
)
N≥N0

of system
specifications, for some N0 > 0. In particular, we will consider only sequences⎩HD(N)(t)

)
N≥N0

such that for all N ≤ N0, C0
(N)
[1] = C0

(N0)
[1] ; in other words we

want the population size increase with N , while the (initial state of the) first
object of the system is left unchanged.

Let us now go back to process HD(t), where, in Eq. (6) we use function
K(m)c,c′ of the hypothesis of the theorem recalled above; similarly, for the initial
distribution we use δ∈C(N)

0[1] ,µ(0)∀.

The following is a corollary of Theorem 4.1 and Theorem 5.1 (Fast simulation)
presented in [26], when considering sequences

⎩HD(N)(t)
)
N≥N0

as above (see also
Remark 1):

Corollary 1. Under the assumptions of Theorem 4.1 of [26], for any fixed t,
almost surely, limN∼∞ HD(N)(t) = HD(t). •
Remark 2. A consequence of Corollary 1 is that, under the assumptions of The-
orem 4.1 of [26], for any fixed t, almost surely, for N to ⇓, we have that,
for all ↔c,m⊆ ∈ LHD(N)(t, c) and c≤ ∈ Sν,

⎧
∈c′,m′∀:LHD(N) (t+1,c′) H

(N)
∈c,m∀,∈c′,m′∀

approaches K(μ(t))c,c′ , i.e. for all ω > 0 there exists N0 s.t. for all N ≤ N0

∣∣∣∣∣∣

⎛

⎝
⎪

∈c′,m′∀:LHD(N) (t+1,c′)

H(N)
∈c,m∀,∈c′,m′∀

⎞

⎠ − K(μ(t))c,c′

∣∣∣∣∣∣
< ω

•
In the sequel we state the main theorem of the present paper, that relies on

the notion of formulae safety, with w.r.t. HD(t): a formula α is safe for a model
M iffi for all sub-formulae α≤ of α and states s of M, if α≤ is of the form Pαωp(Σ)
then P{φ ∈ PathsM(s) | φ |=M Σ} ∅= p.

The theorem, together with Theorem 1 and Lemma 1, establishes the for-
mal relationship between the satisfaction relation on the exact semantics of the

On-the-fly Fast Mean-Field Model-Checking 311

language and that on its mean-field approximation, thus justifying the fast local
model-checking instantiation we will show in the sequel.

Theorem 2. Under the assumptions of Theorem 4.1 of [26], for all safe formu-
las α, for any fixed t and H(N)(C

(N)
) ∈ LHD(N)(t), almost surely, for N large

enough, H(N)(C
(N)

) |=HD(N) α iff ↔C(N)

[1] ,μ(t)⊆ |=HD α. •
Proof. The proof is carried out by induction on α; in the proof we write C
instead of C(N) for the sake of readability.

For brevity, we show only the case for Pαωp(X α); for the complete proof we refer
to [24]. By definition of |=HD(N) and |=HD, we have to show that, for any fixed
t and H(N)(C) ∈ LHD(N)(t), a.s., for N large enough,

P{ρ ∈ PathsHD(N)(H(N)(C)) | ρ |=HD(N) X α} εσ p

iffi
P{φ ∈ PathsHD(↔C[1],μ(t)⊆) | φ |=HD X α} εσ p.

Below, we actually prove that, for any fixed t and H(N)(C) ∈ LHD(N)(t), a.s.,
for N large enough, the probabilities of the two sets of paths are approaching
each other, which implies the assert.

P{ρ ∈ PathsHD(N)(H(N)(C)) | ρ |=HD(N) X α} is defined as

p
(N)
H =

⎪

H(N)(C′):H(N)(C′)|=HD(N)ρ

H(N)

H(N)(C),H(N)(C′) (7)

and P{φ ∈ PathsHD(↔C[1],μ(t)⊆) | φ |=HD X α} is defined as

p(t)K =
⎪

C′
[1]:∈C′

[1],µ(t+1)∀|=HDρ

K(μ(t))C[1],C
′
[1]

. (8)

The I.H. ensures that, a.s., for N ≤ N̄C′ , H(N)(C≤) |=HD(N) α if and only if
↔C≤

[1],μ(t + 1)⊆ |=HD α, with H(N)(C≤) ∈ LHD(N)(t + 1). In particular, it holds
that, for any specific value c̄ of C≤

[1] above and H(N)(C≤) ∈ LHD(N)(t + 1, c̄),
H(N)(C≤) |=HD(N) α if and only if ↔c̄,μ(t+1)⊆ |=HD α, that is: either all elements
of LHD(N)(t + 1, c̄) satisfy α or none of them does it. Furthermore, for such c̄,
by Corollary 1, for all ωc̄ > 0 there exists Nc̄ s.t. for all N ≤ Nc̄

∣∣∣∣∣∣

⎛

⎝
⎪

∈c̄,m∀:LHD(N) (t+1,c̄)

H(N)

H(N)(C),∈c̄,m∀

⎞

⎠ − K(μ(t))C[1],c̄

∣∣∣∣∣∣
< ωc̄

(see Remark 2). So, for any ω > 0 there exists an N̂ larger than any of such N̄C′

and Nc̄, such that for all N ≤ N̂
∣∣∣p(N)

H − p(t)K
∣∣∣ < ω i.e. the value p

(N)
H of sum (7)

312 D. Latella et al.

approaches the value p(t)K of sum (8). Finally, safety of Pαωp(X α), implies that
the value p(t)K of (8) is diffierent from p. If p(t)K > p then we can choose ω small
enough that also p

(N)
H > p and, similarly, if p(t)K < p, we get also p

(N)
H < p,

which proves the assert. �

Finally, using Lemma 1 we get the following

Corollary 2. Under the assumptions of Theorem 4.1 of [26], for all safe for-
mulas α, for any fixed t and C

(N) ∈ LD(N)(t), almost surely, for N large enough
C

(N) |=D(N) α iff ↔C(N)

[1] ,μ(t)⊆ |=HD α. •
Fast local model-checking. On-the-fly fast PCTL model-checking on the limit
DTMC HD(t) is obtained by instantiating proc with Sν × US and lab with
P1 ♦ Pg; next is instantiated with nextHD defined as follows:

nextHD(↔c,m⊆) = [(↔c≤,m · K(m)⊆, p≤) | K(m)c,c′ = p≤ > 0],

with K(m)c,c′ as in Theorem 4.1 of [26]; lab eval is instantiated as expected:
lab evalHD(↔c,m⊆, a) = a ∈ ΨHD(↔c,m⊆). The instantiation is implemented in
FlyFast.

Remark 3. Although in the hypothesis of the theorem we require formulae safety,
for all practical purposes, it is actually suffcient to require that

P{φ ∈ PathsHD(s≤) | φ |=HD Σ} ∅= p

for all formulae Pαωp(Σ) and states s≤ such that CheckPath(s≤, Σ) is computed
during the execution of Check(s, α) (see Table 2). This (weaker) safety check is
readily added to the algorithm. •
Example 4 (FlyFast results). Figure 2 shows the result of FlyFast on the model of
Example 1 for the first object of a large population of objects, each initially in
state S. In Fig. 2 (left) the same properties are considered as in Example 3. The
analysis takes less than a second and is insensitive to the total population size.
Fig. 2 (right) shows how the probability measure of the set of paths satisfying
formula true U≥k (!e↓!i↓P>0.3(true U≥5 i)) of property P3 on page 12, (for
k = 3), changes for initial time t0 varying from 0 to 10.

0 20 40 60
Time bound (k)

0

0.2

0.4

0.6

0.8

1

P
at

h
se

t p
ro

ba
bi

lit
y

P1
P2
P3

0 2 4 6 8 10
Starting time (t0)

0

0.2

0.4

0.6

0.8

1

S
at

is
fa

ct
io

n
P

ro
ba

bi
lit

y

Fig. 2. Fast model-checking results.

On-the-fly Fast Mean-Field Model-Checking 313

6 Conclusions and Future Work

In this paper we have presented a fast PCTL model-checking approach that
builds upon local, on-the-fly model-checking and mean-field approximation, allow-
ing for scalable analysis of selected objects in the context of very large systems.
The model-checking algorithm is parametric w.r.t. the specific semantic model of
interest. We presented related correctness results, an example of application of a
prototype implementation and briefly discussed complexity of the algorithm. The
results can be trivially extended in order to consider multiple selected objects.
Following approaches similar to those presented in [26], we plan to extend our
work to heterogeneous systems and systems with memory. We are interested in
extensions that address spatial distribution of objects as well as more expressive
logics, combining local and global properties, and languages (e.g. [22,27]) and to
study the exact relation between mean field convergence results for continuous
interleaving models and discrete, time-synchronous ones.

References

1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking continuous time
Markov chains. ACM Trans. Comput. Logic 1(1), 162–170 (2000)

2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541
(2003). IEEE CS

3. Bakhshi, R., Endrullis, J., Endrullis, S., Fokkink, W., Haverkort, B.: Automating
the mean-field method for large dynamic gossip networks. In: QEST 2010, pp.
241–250. IEEE Computer Society (2010)

4. Benäım, M., Le Boudec, J.Y.: A class of mean field interaction models for computer
and communication systems. Perform. Eval. 65(11–12), 823–838 (2008)

5. Bhat, G., Cleaveland, R., Grumberg, O.: Efficient on-the-fly model checking for
CTL*. In: LICS, pp. 388–397. IEEE Computer Society (1995)

6. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I.
(eds.) CONCUR. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012)

7. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation
of collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013).
http://www.sciencedirect.com/science/article/pii/S0166531613000023

8. Bradley, J.T., Gilmore, S.T., Hillston, J.: Analysing distributed internet worm
attacks using continuous state-space approximation of process algebra models. J.
Comput. Syst. Sci. 74(6), 1013–1032 (2008)

9. Chaintreau, A., Le Boudec, J.Y., Ristanovic, N.: The age of gossip: spatial mean
field regime. In: Douceur, J.R., Greenberg, A.G., Bonald, T., Nieh, J. (eds.) SIG-
METRICS/Performance, pp. 109–120. ACM, Seattle (2009)

10. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986)

11. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Form. Methods Syst. Des. 1(2–3),
275–288 (1992)

http://www.sciencedirect.com/science/article/pii/S0166531613000023

314 D. Latella et al.

12. Darling, R., Norris, J.: Differential equation approximations for Markov chains.
Probab. Surv. 5, 37–79 (2008)

13. Della Penna, G., Intrigila, B., Melatti, I., Tronci, E., Zilli, M.V.: Bounded prob-
abilistic model checking with the murϕ verifier. In: Hu, A.J., Martin, A.K. (eds.)
FMCAD 2004. LNCS, vol. 3312, pp. 214–229. Springer, Heidelberg (2004)

14. Gast, N., Gaujal, B.: A mean field model of work stealing in large-scale systems.
In: Misra, V., Barford, P., Squillante, M.S. (eds.) SIGMETRICS. pp. 13–24. ACM
(2010)

15. Gnesi, S., Mazzanti, F.: An abstract, on the fly framework for the verification of
service-oriented systems. In: Wirsing, M., Hölzl, M. (eds.) SENSORIA. LNCS, vol.
6582, pp. 390–407. Springer, Heidelberg (2011)

16. Guirado, G., Hérault, T., Lassaigne, R., Peyronnet, S.: Distribution, approximation
and probabilistic model checking. Electr. Notes Theor. Comput. Sci. 135(2), 19–30
(2006). http://dx.doi.org/10.1016/j.entcs.2005.10.016

17. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: INFAMY: an infinite-state
Markov model checker. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 641–647. Springer, Heidelberg (2009)

18. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6, 512–535 (1994)

19. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004)

20. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Reading (2004)

21. Kolesnichenko, A., Remke, A., de Boer, P.T.: A logic for model-checking of mean-
field models. Technical report TR-CTIT-12-11. http://doc.utwente.nl/80267/
(2012)

22. Kolesnichenko, A., Remke, A., de Boer, P.T.: A logic for model-checking of mean-
field models. In: Dependable Systems and Networks DSN13 (2013)

23. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking
using PRISM: a Hybrid approach. STTT 6(2), 128–142 (2004)

24. Latella, D., Loreti, M., Massink, M.: On-the-fly fast mean-field model-checking:
full version. Technical report. http://arxiv.org/abs/1312.3416 (2013)

25. Latella, D., Loreti, M., Massink, M.: On-the-fly probabilistic model-checking: full
version. Technical report. http://goo.gl/uVkPP6/ (2013)

26. Le Boudec, J.Y., McDonald, D., Mundinger, J.: A generic mean field convergence
result for systems of interacting objects. In: QEST07. pp. 3–18. IEEE Computer
Society Press (2007). ISBN 978-0-7695-2883-0

27. McCaig, C., Norman, R., Shankland, C.: From individuals to populations: a mean
field semantics for process algebra. Theor. Comput. Sci. 412(17), 1557–1580 (2011)

28. Montes de Oca, M.A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M.,
Dorigo, M.: Majority-rule opinion dynamics with differential latency: a mecha-
nism for self-organized collective decision-making. Swarm Intell. 5(3–4), 305–327
(2011)

29. Stefanek, A., Hayden, R.A., Bradley, J.T.: A new tool for the performance analysis
of massively parallel computer systems. In: QAPL 2010. EPTCS, vol. 28. pp. 159–
181 (2010)

http://dx.doi.org/10.1016/j.entcs.2005.10.016
http://doc.utwente.nl/80267/
http://arxiv.org/abs/1312.3416
http://goo.gl/uVkPP6/

Group-by-Group Probabilistic Bisimilarities
and Their Logical Characterizations

Marco Bernardo1, Rocco De Nicola2, and Michele Loreti3(B)

1 Dipartimento di Scienze di Base e Fondamenti, Università di Urbino, Urbino, Italy
2 IMT, Institute for Advanced Studies Lucca, Lucca, Italy

3 Dipartimento di Statistica, Informatica, Applicazioni, Università di Firenze,
Firenze, Italy

michele.loreti@unifi.it

Abstract. We provide two interpretations, over nondeterministic and
probabilistic processes, of PML, the probabilistic version of Hennessy-
Milner logic used by Larsen and Skou to characterize bisimilarity of
probabilistic processes without internal nondeterminism. We also exhibit
two new bisimulation-based equivalences, which are in full agreement
with the two different interpretations of PML. The new equivalences
are coarser than the bisimilarity for nondeterministic and probabilistic
processes proposed by Segala and Lynch, which instead is in agreement
with a version of Hennessy-Milner logic extended with an additional
probabilistic operator interpreted over state distributions rather than
over individual states. The modal logic characterizations provided for
the new equivalences thus offer a uniform framework for reasoning on
purely nondeterministic processes, reactive probabilistic processes, and
nondeterministic and probabilistic processes.

1 Introduction

Modal logics and behavioral equivalences play a key rôle in the specification and
verification of concurrent systems. The former are useful for model checking,
in that they can be employed for specifying the properties to be verified. The
latter are ancillary to the former, in the sense that they enable the transforma-
tion/minimization of the models to be checked while guaranteeing that specific
properties are preserved.

Because of this, whenever a new behavioral relation is proposed, the quest
starts for the associated modal logic, i.e., for a logic such that two systems are
behaviorally equivalent if and only if they satisfy the same logical formulae. The
first result along this line is due to Hennessy and Milner [13]. They showed that
bisimilarity over fully nondeterministic processes, modeled as a labeled transition
system (LTS) [16], is in full agreement with a very simple modal logic, now known
as HML. This logic has only four operators: true, · ∈ ·, ¬·, and ≤a→·, the last one

Work partially supported by the FP7-IST-FET Project ASCENS, grant no. 257414,
and the MIUR-PRIN Project CINA.

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 315–330, 2014.
DOI: 10.1007/978-3-319-05119-2 18, c© Springer International Publishing Switzerland 2014

316 M. Bernardo et al.

called diamond and used to describe the existence of a-labeled transitions. After
this result, whenever any of the many quantitative variants of process description
languages and process models has been introduced, other behavioral equivalences
and modal logics have been defined and analogous results have been established
to handle features such as probability and time.

Most of the works along the lines outlined above take as starting point a
behavioral equivalence and then look for the logic in agreement with it. Obvi-
ously, it is also interesting, once one has fixed a model and a logic to reason about
it, to find out the “right” behavioral relation. A first work in this direction was [5];
it showed that bisimilarity and stuttering bisimilarity are, respectively, in full
agreement with the logical equivalences induced by CTL* and by CTL* without
the next-time operator when interpreted over Kripke structures (state-labeled
transition systems) [6]. In a subsequent work, it was shown that the equivalence
induced by the probabilistic temporal logic PCTL*, interpreted over probabilis-
tic Kripke structures, coincides with probabilistic bisimilarity [1]. A more recent
work is [26], which introduces new probabilistic bisimilarities that are in full
agreement with the logical equivalences induced by PCTL, PCTL*, and their
variants without the next-time operator interpreted over nondeterministic and
probabilistic Kripke structures [4].

In this paper, we concentrate on the results obtained for extended LTS mod-
els that have been developed to deal with probabilistic systems. We look for
bisimilarities that are in agreement with a probabilistic variant of HML known
as PML [17,18]. This logic is obtained by simply decorating the diamond opera-
tor with a probability bound. Formula ≤a→pα is satisfied by state s if an a-labeled
transition is possible from s after which a set of states satisfying α is reached
with probability at least p.

Modal logic characterizations for probabilistic bisimilarities have been stud-
ied for the first time by Larsen and Skou [17,18]. They introduced a prob-
abilistic bisimilarity for reactive probabilistic processes [28] and showed that
the considered probabilistic bisimilarity is in full agreement with PML. Sub-
sequently, Desharnais et al. [10] showed that PML without negation is sufficient
to characterize probabilistic bisimilarity for the same class of processes. Reactive
probabilistic processes being LTS-based models where (i) every action-labeled
transition reaches a probability distribution over states and (ii) the actions label-
ing transitions departing from the same state are all different from each other.

Segala and Lynch [23] defined, instead, a probabilistic bisimilarity for a more
expressive model that also admits internal nondeterminism, i.e., the possibility for
a state to have several outgoing transitions labeled with the same action. For this
probabilistic bisimilarity over nondeterministic and probabilistic processes, Segala
and collaborators [14,19] exhibited a logical characterization in terms of an exten-
sion of HML, in which formulae satisfaction is defined over probability distributions
on states rather than over single states. The logic is obtained from HML by giving
the diamond operator a universal interpretation (all states in the support of a dis-
tribution must satisfy the formula) and by adding a unary operator [·]p such that
[α]p is true on a state distribution whenever the probability of the set of states that

Group-by-Group Probabilistic Bisimilarities 317

satisfy formula α is at least p. Recently, Crafa and Ranzato [7] showed an equiva-
lent formulation of the logic that retrieves the HML interpretation of the diamond
operator by lifting the transition relation to state distributions. Following a sim-
ilar lifting, Hennessy [12] proposed an alternative logical characterization based
on what he calls pHML, where a binary operator · ⊥p · is added to HML (instead
of the unary operator [·]p) such that α1 ⊥p α2 asserts decomposability of a state
distribution to satisfy the two subformulae.

Now, the difference between PML and the two probabilistic extensions of
HML in [19] and [12] is quite striking. It is thus interesting to understand whether
such a difference is due to the different expressive power of the models in [17]
and [23] – i.e., the absence or the presence of internal nondeterminism – or to the
way probabilistic bisimilarity was defined on those two models. Since in [19] it
was shown that PML characterizes the probabilistic bisimilarity over processes
alternating nondeterminism and probability defined in [11,20], we feel it is worth
exploring alternative definitions of probabilistic bisimilarity rather than alterna-
tive models.

The aim of this paper is to show that it is possible to define new probabilistic
bisimilarities for non-alternating nondeterministic and probabilistic processes [22]
that are characterized by PML. Our result is somehow similar to the one estab-
lished in [26], where new probabilistic bisimilarities over nondeterministic and
probabilistic Kripke structures were exhibited that are characterized by PCTL
and its variants. In both cases, the starting point for defining the new probabilis-
tic bisimilarities is the consideration (see also [8]) that sometimes the definition
of Segala and Lynch [23] might be over discriminating and thus differentiate
processes that, according to intuition, should be identified.

Indeed, to compare systems where both nondeterminism and probabilistic
choices coexist, in [22,23] the notion of scheduler (or adversary) is used to resolve
internal nondeterminism. A scheduler can be viewed as an external entity that
selects the next action to perform according to the current state and the past
history. When a scheduler is applied to a system, a fully probabilistic model
called a resolution is obtained. The basic idea is deeming equivalent two systems
if and only if for each resolution of one system (the challenger) there exists a res-
olution of the other (the defender) such that the two resolutions are probabilistic
bisimilar in the sense of [17] (fully matching resolutions).

Let us consider two scenarios modeling the offer to Player1 and Player2 of
three differently biased dice. The game is conceived in such a way that if the
outcome of a throw gives 1 or 2 then Player1 wins, while if the outcome is 5
or 6 Player2 wins. In case of 3 or 4, the result is a draw. The two scenarios are
reported in Fig. 1. For instance, with the biased die associated with the leftmost
branch of the first scenario, it happens that 3 or 4 (draw) will appear with
probability 0.4, while 1 or 2 (Player1 wins) will appear with probability 0.6.
Numbers 5 and 6 will never appear (no chance for Player2 to win).

The probabilistic bisimilarity proposed in [23] differentiates the models in
Fig. 1 even if in both scenarios each player has the same set of probabilities of
winning/drawing/losing, which is {0.6, 0.4, 0}. To identify these systems, from a

318 M. Bernardo et al.

s1 s2

0.6 0.40.4 0.6 0.4 0.6

1niw warddraw win2 win2win1

offer
offeroffer

0.4 0.60.6 0.4 0.6 0.4

1niw warddraw win2 win2win1

offer
offeroffer

Fig. 1. Two games guaranteeing the same winning probabilities (→PB,gbg,=).

s1 s2

0.5 0.57.0 3.0 0.3 0.7

head tail head tail

offer
offer offer

head tail

7.0 3.0 0.3 0.7

offer offer

head tail head tail

Fig. 2. Two games guaranteeing the same extremal head/tail probabilities (→PB,gbg,≤).

bisimulation perspective it is needed to weaken the impact of schedulers. Indeed,
while in [23] the challenger and the defender must stepwise behave the same
along two fully matching resolutions, here, in the same vein as [27], we admit
bisimulation games with partially matching resolutions.

Other two systems differentiated (under deterministic schedulers) by the
probabilistic bisimilarity in [23] are those in Fig. 2. In the first scenario, the
two players are offered a choice among a fair coin and two biased ones. In the
second scenario, the players can simply choose between the two biased coins of
the former scenario. In both scenarios, Player1 wins with head while Player2
wins with tail. In our view, the two scenarios could be identified if what matters
is that in both of them each player has exactly the same extremal – i.e., minimal
and maximal – probabilities of winning (0.3 and 0.7).

The first probabilistic bisimilarity we will introduce – denoted by ↔PB,gbg,=

– identifies the two systems in Fig. 1, but distinguishes those in Fig. 2. Our sec-
ond probabilistic bisimilarity – denoted by ↔PB,gbg,≥ – instead identifies both
the two systems in Fig. 1 and the two systems in Fig. 2. Notably, the same iden-
tifications are induced by one of the probabilistic bisimilarities in [26]. Indeed,
once the appropriate transformations (eliminating actions from transitions and
labeling each state with the set of possible next-actions) are applied to get non-
deterministic and probabilistic Kripke structures from the four systems in Figs. 1
and 2, we have that no PCTL* formula distinguishes the two systems in Fig. 1
and the two systems in Fig. 2. However, it is worth pointing out that neither
↔PB,gbg,= nor ↔PB,gbg,≥ coincides with the probabilistic bisimilarities in [26].

We shall show that ↔PB,gbg,≥ is precisely characterized by the original PML
as defined by Larsen and Skou [17,18], with the original interpretation of the
diamond operator: state s satisfies ≤a→pα if s has an a-transition that reaches
with probability at least p a set of states satisfying α. In contrast, ↔PB,gbg,= is
characterized by a variant of PML having an interval-based operator ≤a→[p1,p2]·
instead of ≤a→p·: state s satisfies ≤a→[p1,p2]α if s has an a-transition that reaches
with probability between p1 and p2 a set of states satisfying α. We shall refer

Group-by-Group Probabilistic Bisimilarities 319

to the interpretation of these two diamond operators as existential because it
simply requires that there exists a way to resolve internal nondeterminism that
guarantees satisfaction of formula α within a certain probability range.

For both logics, we shall also provide an alternative interpretation of the dia-
mond operator, which is inspired by the actual interpretation of PCTL* in [4].
We shall call universal this interpretation that might appear more appropriate
in a nondeterministic and probabilistic setting. With this interpretation, state
s satisfies ≤a→pα (resp. ≤a→[p1,p2]α) if it has an a-transition that enjoys the same
property as before and each a-transition departing from s enjoys that property,
meaning that the formula is satisfied by s no matter how internal nondeter-
minism is resolved. We shall see that both universally interpreted variants of
the logic lead to the same equivalence as the one characterized by the origi-
nal interpretation of the original PML. Indeed, ↔PB,gbg,≥ has also many other
characterizations (see [3]), and this leads us to the convincement that it is an
interesting behavioral relation for nondeterministic and probabilistic processes.

The rest of the paper is organized as follows. In Sect. 2, we provide the nec-
essary background. The interpretations of PML over the non-alternating model
are introduced in Sect. 3 and the new probabilistic bisimilarities that they char-
acterize are presented in Sect. 4. Finally, Sect. 5 draws some conclusions. Due to
space limitation, all proofs are omitted; they can be found in [3].

2 Background

In this section, we define a model for nondeterministic and probabilistic processes.
Then, we recast in this general model the bisimilarity in [13] and the probabilistic
bimilarity in [17], together with their HML and PML characterizations. Finally,
we recall the probabilistic bisimilarity in [23] and its modal logic characterization
for both the non-alternating case and the alternating case.

2.1 The NPLTS Model

Processes combining nondeterminism and probability are typically described by
means of extensions of the LTS model, in which every action-labeled transition
goes from a source state to a probability distribution over target states rather
than to a single target state. The resulting processes are essentially Markov
decision processes [9] and are representative of a number of slightly different
probabilistic computational models including internal nondeterminism such as,
e.g., concurrent Markov chains [29], strictly alternating models [11], probabilistic
automata in the sense of [22], and the denotational probabilistic models in [15]
(see [25] for an overview). We formalize them as a variant of simple probabilistic
automata [22].

Definition 1. A nondeterministic and probabilistic labeled transition system,
NPLTS for short, is a triple (S,A,−−⊆) where:

320 M. Bernardo et al.

– S is an at most countable set of states.
– A is a countable set of transition-labeling actions.
– −−⊆ ≥ S × A × Distr (S) is a transition relation, where Distr (S) is the set of

probability distributions over S. �

A transition (s, a,D) is written s
a−−⊆ D. We say that s≤ ∀ S is not reachable

from s via that a-transition if D(s≤) = 0, otherwise we say that it is reachable
with probability p = D(s≤). The reachable states form the support of D, i.e.,

supp (D) = {s≤ ∀ S | D(s≤) > 0}. We write s
a−−⊆ to indicate that s has an

a-transition. The choice among all the transitions departing from s is external
and nondeterministic, while the choice of the target state for a specific transition
is internal and probabilistic.

The notion of NPLTS yields a non-alternating model [22] and embeds the
following restricted models:

– Fully nondeterministic processes: every transition is Dirac, i.e., it leads to a
distribution that concentrates all the probability mass into one target state.

– Fully probabilistic processes: every state has at most one outgoing transition.
– Reactive probabilistic processes: no state has two or more outgoing transitions

labeled with the same action [28]. These processes include the probabilistic
automata in the sense of [21].

– Alternating processes: every state that enables a non-Dirac transition enables
only that transition. Similar to [20,30], these processes consist of a non-strict
alternation of fully nondeterministic states and fully probabilistic states, with
the addition that transitions departing from fully probabilistic states are
labeled with actions.

An NPLTS can be depicted as a directed graph-like structure in which ver-
tices represent states and action-labeled edges represent action-labeled transi-
tions. Given a transition s

a−−⊆ D, the corresponding a-labeled edge goes from
the vertex representing state s to a set of vertices linked by a dashed line, each of
which represents a state s≤ ∀ supp (D) and is labeled with D(s≤) – label omitted
if D(s≤) = 1. Four NPLTS models are shown in Figs. 1 and 2.

We say that an NPLTS (S,A,−−⊆) is image finite iff for all s ∀ S and

a ∀ A the set {D ∀ Distr (S) | s
a−−⊆ D} is finite. Following [17], we say that it

satisfies the minimal probability assumption iff there exists ε ∀ R>0 such that,
whenever s

a−−⊆ D, then for all s≤ ∀ S either D(s≤) = 0 or D(s≤) ∅ ε; this implies
that supp (D) is finite because it can have at most ∗1/ε≡ elements. If D(s≤) is
a multiple of ε for all s≤ ∀ S, then the minimal deviation assumption is also
satisfied.

Sometimes, instead of ordinary transitions, we will consider combined tran-
sitions [23], each being a convex combination of equally labeled transitions.
Given an NPLTS (S,A,−−⊆), s ∀ S, a ∀ A, and D ∀ Distr (S), in the follow-

ing we write s
a−−⊆c D iff there exist n ∀ N>0, {pi ∀ R]0,1] | 1 ♦ i ♦ n}, and

{s
a−−⊆ Di | 1 ♦ i ♦ n} such that

∑n
i=1 pi = 1 and

∑n
i=1 pi · Di = D.

Group-by-Group Probabilistic Bisimilarities 321

2.2 Bisimilarity for Fully Nondeterministic Processes

We recast in the NPLTS model the definition of bisimilarity for fully nondeter-
ministic processes in [13]. In this case, the target of each transition is a Dirac
distribution σs for s ∀ S, i.e., σs(s) = 1 and σs(s≤) = 0 for all s≤ ∀ S \ {s}.

Definition 2. Let (S,A,−−⊆) be an NPLTS in which the target of each transi-
tion is a Dirac distribution. A relation B over S is a bisimulation iff, whenever
(s1, s2) ∀ B, then for all actions a ∀ A it holds that:

– For each s1
a−−⊆ σs′

1
there exists s2

a−−⊆ σs′
2

such that (s≤
1, s

≤
2) ∀ B.

– For each s2
a−−⊆ σs′

2
there exists s1

a−−⊆ σs′
1

such that (s≤
1, s

≤
2) ∀ B.

We denote by ↔B the largest bisimulation. �

Given an image-finite NPLTS (S,A,−−⊆) in which the target of each tran-
sition is a Dirac distribution, the relation ↔B is characterized by the so-called
Hennessy-Milner logic (HML) [13]. The set FHML of its formulae is generated by
the following grammar (a ∀ A):

α ::= true | ¬α | α ∈ α | ≤a→α

The semantics of HML can be defined through an interpretation function MHML

that associates with any formula in FHML the set of states satisfying the formula:

MHML[[true]] = S

MHML[[¬α]] = S \ MHML[[α]]
MHML[[α1 ∈ α2]] = MHML[[α1]] ∩ MHML[[α2]]

MHML[[≤a→α]] = {s ∀ S | ↓s≤ ∀ MHML[[α]].s a−⊆ σs′}

2.3 Bisimilarity for Reactive Probabilistic Processes

We recast in the NPLTS model also the definition of probabilistic bisimilarity
for reactive probabilistic processes in [17]. In the following, we let D(S≤) =∑

s′→S′ D(s≤) for D ∀ Distr (S) and S≤ ≥ S.

Definition 3. Let (S,A,−−⊆) be an NPLTS in which the transitions of each
state have different labels. An equivalence relation B over S is a probabilistic
bisimulation iff, whenever (s1, s2) ∀ B, then for all actions a ∀ A and equivalence

classes C ∀ S/B it holds that for each s1
a−−⊆ D1 there exists s2

a−−⊆ D2 such that
D1(C) = D2(C). We denote by ↔PB the largest probabilistic bisimulation. �

Given an NPLTS (S,A,−−⊆) satisfying the minimal deviation assumption
in which the transitions of each state have different labels, the relation ↔PB is

322 M. Bernardo et al.

characterized by PML [17,18]. The set FPML of its formulae is generated by the
following grammar (a ∀ A, p ∀ R[0,1]):

α ::= true | ¬α | α ∈ α | ≤a→pα

The semantics of PML can be defined through an interpretation function MPML

that differs from MHML only for the last clause, which becomes as follows:

MPML[[≤a→pα]] = {s ∀ S | ↓D ∀ Distr (S).s
a−−⊆ D ∈ D(MPML[[α]]) ∅ p}

Note that, in this reactive setting, if an a-labeled transition exists that goes from
s to D, then it is the only a-labeled transition departing from s, and hence D
is unique. In [10], it was subsequently shown that probabilistic bisimilarity for
reactive probabilistic processes can be characterized by PML without negation
and that the existence of neither a minimal deviation nor a minimal probability
needs to be assumed to achieve the characterization result.

2.4 Bisimilarity for Non-Alternating and Alternating Processes

For NPLTS models in their full generality, we now recall two probabilistic bisim-
ulation equivalences defined in [23]. Both of them check whether the probabilities
of all classes of equivalent states – i.e., the class distributions – reached by the
two transitions considered in the bisimulation game are equal.

The first equivalence relies on deterministic schedulers for resolving nondeter-
minism. This means that, when responding to an a-transition of the challenger,
the defender can only select a single a-transition (if any).

Definition 4. Let (S,A,−−⊆) be an NPLTS. An equivalence relation B over S
is a class-distribution probabilistic bisimulation iff, whenever (s1, s2) ∀ B, then

for all actions a ∀ A it holds that for each s1
a−−⊆ D1 there exists s2

a−−⊆ D2 such
that, for all equivalence classes C ∀ S/B, D1(C) = D2(C). We denote by ↔PB,dis

the largest class-distribution probabilistic bisimulation. �

While in Def. 3 the quantification over C ∀ S/B can be placed before or after
the transitions because s1 and s2 can have at most one outgoing a-transition
each, in Def. 4 it is important for the quantification to be after the transitions.

The second equivalence relies instead on randomized schedulers. This means
that, when responding to an a-transition of the challenger, the defender can select
a convex combination of a-transitions (if any). In the following, the acronym ct
stands for “based on combined transitions”.

Definition 5. Let (S,A,−−⊆) be an NPLTS. An equivalence relation B over S
is a class-distribution ct-probabilistic bisimulation iff, whenever (s1, s2) ∀ B,

then for all actions a ∀ A it holds that for each s1
a−−⊆ D1 there exists s2

a−−⊆c D2

such that, for all equivalence classes C ∀ S/B, D1(C) = D2(C). We denote by
↔ct

PB,dis the largest class-distribution ct-probabilistic bisimulation. �

Group-by-Group Probabilistic Bisimilarities 323

In order to obtain a modal logic characterization for ↔PB,dis and ↔ct
PB,dis,

in [14,19] an extension of HML much richer than PML was defined. The main
differences are that (i) formulae are interpreted over probability distribution on
states rather than over single states and (ii) the modal operator ≤a→p· is split
into the original modal operator ≤a→· of HML and an additional unary operator
[·]p such that state distribution D satisfies [α]p if D associates with the set of
states satisfying α a probability that is at least p.

In [12], the same equivalences (lifted to state distributions) were differently
characterized by adding to HML a binary operator ·⊥p ·, where α1 ⊥p α2 asserts
decomposability of a state distribution to satisfy the two subformulae.

For alternating processes, i.e., NPLTS models in which every state that
enables a non-Dirac transition enables only that transition, the following holds:

– ↔PB,dis and ↔ct
PB,dis collapse into a single equivalence that coincides with those

defined in [11,20] for alternating processes, as shown in [24].
– ↔PB,dis is again characterized by the original PML, as shown in [19].

3 Interpreting PML over NPLTS Models

PML was originally interpreted in [17,18] on reactive probabilistic processes and
then in [19] on alternating processes. The same interpretation can be applied
to general NPLTS models by establishing that state s satisfies formula ≤a→pα iff
there exists a resolution of internal nondeterminism such that s can perform an
a-transition and afterwards reaches with probability at least p a set of states
that satisfy α. This existential interpretation only provides a weak guarantee of
fulfilling properties, as it depends on how internal nondeterminism is resolved.

A different interpretation can be adopted by following [4]: s satisfies ≤a→pα
iff, for each resolution of internal nondeterminism, s can perform an a-transition
and afterwards reaches with probability at least p a set of states that satisfy α.
The resulting universal interpretation provides a strong guarantee of fulfilling
properties because, no matter how internal nondeterminism is resolved, a certain
behavior is ensured.

We denote by PML↑,∈ and PML∀,∈ the logics resulting from the two different
interpretations of the diamond operator, which we formalize as follows:

MPML∗,≥ [[≤a→pα]] = {s ∀ S | ↓D.s
a−−⊆ D ∈ D(MPML∗,≥ [[α]]) ∅ p}

MPML∀,≥ [[≤a→pα]] = {s ∀ S | s
a−−⊆ ∈ ⇓D.s

a−−⊆ D =≈ D(MPML∀,≥ [[α]]) ∅ p}

Finally, we denote by PML↑,I and PML∀,I two further variants generalizing
the previous two logics, in which the probability value p is replaced by a prob-
ability interval [p1, p2] – where p1, p2 ∀ R[0,1] are such that p1 ♦ p2 – and the
resulting diamond operator is interpreted as follows:

324 M. Bernardo et al.

MPML∗,I [[←a⊥[p1,p2]φ]] = {s ⇒ S | ∅D.s
a−−∪ D ◦ p1 ∧ D(MPML∗,I [[φ]]) ∧ p2}

MPML∀,I [[←a⊥[p1,p2]φ]] = {s ⇒ S | s
a−−∪ ◦ ≡D.s

a−−∪ D =⇒ p1 ∧ D(MPML∀,I [[φ]]) ∧ p2}

Note that ≤a→pα can be encoded as ≤a→[p,1]α because p is a lower bound.
In the following, if L is one of the above variants of PML, then we denote

by FL(s) the set of formulae in FL satisfied by state s and we let s1 ↔L s2 iff
FL(s1) = FL(s2). Interestingly enough, the equivalences induced by the univer-
sally interpreted variants are the same and coincide with the equivalence induced
by the existentially interpreted variant with probabilistic bound. In contrast, the
equivalence induced by PML↑,I is finer (see [3]).

4 Bisimilarities Characterized by PML

In this section, we introduce the probabilistic bisimilarities for NPLTS models
that are characterized by PML as interpreted in the previous section. Before
presenting their definition, we highlight the differences with respect to ↔PB,dis.

Firstly, instead of comparing the probability distributions over all classes of
equivalent states reached by the transitions considered in the bisimulation game,
the new equivalences focus on a single equivalence class at a time. Therefore,
similar to [27], given an action a the probability distribution over all classes
of equivalent states reached by an a-transition of the challenger can now be
matched by means of several (not just by one) a-transitions of the defender,
each taking care of a different class.

Secondly, the new equivalences take into account the probability of reaching
groups of equivalence classes rather than individual classes. This would make
no difference in the case of ↔PB,dis, while here it significantly changes the dis-
criminating power (see [3]). Due to the previous and the current difference with
respect to ↔PB,dis, we call these equivalences group-by-group probabilistic bisim-
ilarities.

Thirdly, the new equivalences come in several variants depending on whether,
in the bisimulation game, the probabilities of reaching a certain group of classes
of equivalent states are compared based on = or ♦. Again, this would make no
difference in the case of ↔PB,dis.

In the following, we let
⋃ G =

⋃
C→G C when G ∀ 2S/B is a group of equiva-

lence classes with respect to an equivalence relation B over S.

Definition 6. Let (S,A,−−⊆) be an NPLTS and the relational operator ΣΨ∀
{=,♦}. An equivalence relation B over S is a ΣΨ-group-by-group probabilistic
bisimulation iff, whenever (s1, s2) ∀ B, then for all actions a ∀ A and groups

of equivalence classes G ∀ 2S/B it holds that for each s1
a−−⊆ D1 there exists

s2
a−−⊆ D2 such that D1(

⋃ G) ΣΨ D2(
⋃ G). We denote by ↔PB,gbg,αω the largest

ΣΨ-group-by-group probabilistic bisimulation. �

Group-by-Group Probabilistic Bisimilarities 325

The definition of ↔PB,gbg,αω assumes the use of deterministic schedulers, but
it can be easily extended to the case of randomized schedulers by analogy with
↔ct

PB,dis, thus yielding ↔ct
PB,gbg,αω.

Note that, while in Def. 4 the quantification over C ∀ S/B is after the
transitions, in Def. 6 the quantification over G ∀ 2S/B is before the transitions
thus allowing a transition of the challenger to be matched by several transitions
of the defender depending on the target groups.

The relation ↔PB,gbg,= identifies the two systems in Fig. 1, whilst the relation
↔PB,gbg,≥ also identifies the two systems in Fig. 2. The following theorem shows
that ↔PB,dis is finer than ↔PB,gbg,= and that the latter is finer than ↔PB,gbg,≥.

Theorem 1. Let (S,A,−−⊆) be an NPLTS and s1, s2 ∀ S. Then:

1. s1 ↔PB,dis s2 =≈ s1 ↔PB,gbg,= s2.
2. s1 ↔PB,gbg,= s2 =≈ s1 ↔PB,gbg,≥ s2. �

The two implications above cannot be reversed: Fig. 1 shows that ↔PB,dis

is strictly finer than ↔PB,gbg,= and Fig. 2 shows that ↔PB,gbg,= is strictly finer
than ↔PB,gbg,≥.

In [23], it is also shown that ↔ct
PB,dis, the variant of ↔PB,dis that relies on

randomized schedulers (see Def. 5), is strictly finer than ↔PB,dis. On the contrary,
we have that ↔PB,gbg,≥ coincides with its ct-variant, and hence it is insensitive
to the choice between deterministic or randomized schedulers used to resolve
nondeterminism. This is not the case for ↔PB,gbg,=. Indeed, the ct-variants of
↔PB,gbg,= coincides with ↔PB,gbg,≥, meaning that, in the bisimulation game,
randomized schedulers reduce the discriminating power of the =-comparison of
probabilities to that of the ♦-comparison. As expected, the ct-variant of ↔PB,dis

is coarser than that of ↔PB,gbg,=, and thus also coarser than ↔PB,gbg,≥ and
↔ct

PB,gbg,≥.

Theorem 2. Let U = (S,A,−−⊆) be an NPLTS and s1, s2 ∀ S. Then:

1. s1 ↔PB,gbg,= s2 =≈ s1 ↔ct
PB,gbg,= s2.

2. s1 ↔ct
PB,dis s2 =≈ s1 ↔ct

PB,gbg,= s2.
3. s1 ↔PB,gbg,≥ s2 ⇐≈ s1 ↔ct

PB,gbg,≥ s2 ⇐≈ s1 ↔ct
PB,gbg,= s2 when U is

image-finite. �

The inclusions of ↔PB,gbg,= in ↔ct
PB,gbg,= is strict. This can be proved by using

the systems in Fig. 2. Indeed, s1 �↔PB,gbg,= s2 while s1 ↔ct
PB,gbg,= s2; the latter

holds because the central offer-transition of s1 can be matched by a convex com-
bination of the two offer-transitions of s2 both weighted by 0.5. Also the inclusion
of ↔ct

PB,dis in ↔PB,gbg,≥ is strict. This is evidenced by the systems in Fig. 1; no
transition of s1 can be obtained as the convex combination of transitions of s2
and thus s1 �↔ct

PB,dis s2. Finally, it also holds that ↔ct
PB,dis and ↔PB,gbg,= are

incomparable. Indeed, the two systems in Fig. 1 are equated by ↔PB,gbg,= and
distinguished by ↔ct

PB,dis, while the two systems in Fig. 2 are distinguished by
↔PB,gbg,= and equated by ↔ct

PB,dis. These results are summarized in Fig. 3.

326 M. Bernardo et al.

~PB,dis

~PB,dis
ct

~PB,gbg,

~PB,gbg,=

Fig. 3. Relating group-by-group and distribution-based probabilistic bisimilarities

For the new probabilistic bisimilarities, different alternative definitions can
be obtained by varying the requirements on the comparison between sets of
probabilities by considering not only = and ♦ but also ∅, or by comparing only
extremal probabilities (↑ and/or �). Quite surprisingly, all relations but the one
based on = do collapse. Due to lack of space, we do not consider these variants
in the present paper (see [3]).

Before moving to the modal logic characterization results, we show that
the two group-by-group probabilistic bisimilarities and their ct-variants collapse
on existing bisimilarities when one considers NPLTS models with a restricted
interplay between probabilistic and non-determinism. In particular they coin-
cide with: (i) the bisimilarity in [13] for fully nondeterministic processes (see
Definition 2); (ii) the probabilistic bisimilarity in [17] for reactive probabilistic
processes (see Definition 3); (iii) the probabilistic bisimilarities in [23] when alter-
nating processes are considered. These results provide additional evidences that
PML can be a uniform framework for reasoning on different classes of processes
including probability and various degrees of nondeterminism.

Theorem 3. Let (S,A,−−⊆) be an NPLTS in which the target of each transition
is a Dirac distribution. Let s1, s2 ∀ S and ΣΨ∀ {=,♦}. Then:

s1 ↔PB,gbg,αω s2 ⇐≈ s1 ↔ct
PB,gbg,αω s2 ⇐≈ s1 ↔B s2 �

Theorem 4. Let (S,A,−−⊆) be an NPLTS in which the transitions of each state
have different labels. Let s1, s2 ∀ S and ΣΨ∀ {=,♦}. Then:

s1 ↔PB,gbg,αω s2 ⇐≈ s1 ↔ct
PB,gbg,αω s2 ⇐≈ s1 ↔PB s2 �

Theorem 5. Let (S,A,−−⊆) be an NPLTS in which every state that enables a
non-Dirac transition enables only that transition. If s1, s2 ∀ S and ΣΨ∀ {=,♦}
then:

s1 ↔PB,gbg,αω s2 ⇐≈ s1 ↔PB,dis s2

s1 ↔ct
PB,gbg,αω s2 ⇐≈ s1 ↔ct

PB,dis s2 �

We are now ready to establish our logical characterization results and to show
that ↔PB,gbg,= is characterized by PML↑,I while ↔PB,gbg,≥ is characterized by
PML↑,∈, under the image finiteness and minimal probability assumptions.

Group-by-Group Probabilistic Bisimilarities 327

Theorem 6. Let (S,A,−−⊆) be an image-finite NPLTS satisfying the minimal
probability assumption. Let s1, s2 ∀ S. Then:

s1 ↔PB,gbg,= s2 ⇐≈ s1 ↔PML∗,I s2 �
Theorem 7. Let (S,A,−−⊆) be an image-finite NPLTS satisfying the minimal
probability assumption. Let s1, s2 ∀ S. Then:

s1 ↔PB,gbg,≥ s2 ⇐≈ s1 ↔PML∗,≥ s2 �
Given the importance of these results in the economy of the paper, below we

sketch the proof of Thm. 6; the one for Thm. 7 follows the same pattern. First,
we need to provide an alternative characterization of ↔PB,gbg,= as the limit of a
sequence of equivalence relations ↔i

PB,gbg,=.
For an NPLTS (S,A,−−⊆), the family {↔i

PB,gbg,= | i ∀ N} of equivalence
relations over S is inductively defined as follows:

– ↔0
PB,gbg,= = S × S.

– ↔i+1
PB,gbg,= is the set of all pairs (s1, s2) ∀ ↔i

PB,gbg,= such that for all actions

a ∀ A and groups of equivalence classes G ∀ 2S/∼i
PB,gbg,= it holds that for each

s1
a−−⊆ D1 there exists s2

a−−⊆ D2 such that D1(
⋃ G) = D2(

⋃ G).

Each equivalence relation ↔i
PB,gbg,= identifies those states that cannot be

distinguished within i steps of computation. The following lemma guarantees
that two states of an image-finite NPLTS are equivalent according to ↔PB,gbg,=

iff they are equivalent according to all the relations ↔i
PB,gbg,=.

Lemma 1. Let (S,A,−−⊆) be an image-finite NPLTS. Then:

↔PB,gbg,= =
⋂

i→N

↔i
PB,gbg,=

�
The second step of the proof is to show that two states are equated by

↔i
PB,gbg,= iff they satisfy the same formulae in F

i
PML∗,I

, which is the set of
formulae in FPML∗,I whose maximum number of nested diamond operators is at
most i.

Lemma 2. Let (S,A,−−⊆) be an image-finite NPLTS satisfying the minimal
probability assumption. Let s1, s2 ∀ S. Then for all i ∀ N:

s1 ↔i
PB,gbg,= s2 ⇐≈ F i

PML∗,I
(s1) = F i

PML∗,I
(s2) �

Now Theorem 6 directly follows from Lemma 1 and Lemma 2. The same
result would not hold if PML↑,∈ was used. For instance, the two states s1 and s2
in Fig. 2, which are not related by ↔PB,gbg,= as can be seen by considering
the PML↑,I formula ≤offer→[0.5,0.5]≤head→[1,1]true, cannot be distinguished by any
PML↑,∈ formula.

It is easy to see that ↔ct
PB,gbg,= and ↔ct

PB,gbg,≥ are respectively characterized
by PMLct

↑,I and PMLct
↑,∈, in which the interpretation of the diamond operator

relies on combined transitions instead of ordinary ones.

328 M. Bernardo et al.

5 Conclusion

We have addressed the problem of defining behavioral relations for nondetermin-
istic and probabilistic processes that are characterized by modal logics as close as
possible to PML, the natural probabilistic version of the by now standard HML
for fully nondeterministic processes. We have introduced two new probabilistic
bisimilarities (↔PB,gbg,≥ and ↔PB,gbg,=) following a group-by-group approach
and studied their relationships with an existential and a universal interpretation
of two variants of PML, in which the diamond is respectively decorated with
a probability lower bound and a probability interval. All the resulting logical
equivalences, except the one based on existential interpretation and probability
intervals, do coincide with ↔PB,gbg,≥. Interestingly enough, ↔PB,gbg,=, which is
finer than ↔PB,gbg,≥, has naturally emerged in a framework recently developed
to provide a uniform model and uniformly defined behavioral equivalences for
different classes of (nondeterministic, stochastic, probabilitic) processes [2].

These results, together with backward compatibility of our equivalences with
those already defined for models with a restricted interplay between probability
and nondeterminism, provide additional evidences that PML can be a uniform
framework for reasoning on different classes of processes including probability
and various degrees of nondeterminism.

We have also considered variants of our equivalences that rely on combined
transitions and have proved that all such variants collapse on ↔PB,gbg,≥. This
suggests that, in the group-by-group approach, resolving nondeterminism with
deterministic or randomized schedulers leads to the same identifications except
when checking for equality of probabilities.

Our work has some interesting points in common with [26], where new prob-
abilistic bisimilarities over nondeterministic and probabilistic Kripke structures
have been defined that are in full agreement with PCTL, PCTL*, and their
variants without the next-time operator. Indeed, both [26] and our work witness
that, in order to characterize the equivalences induced by PCTL/PCTL*/PML
in a nondeterministic and probabilistic setting, it is necessary to: (1) Anticipate
the quantification over the sets of equivalent states to be reached in the bisimu-
lation game, as done in [27]; (2) Consider groups of classes of equivalent states
rather than only classes; (3) Compare for equality only the extremal probabilities
of reaching certain sets of states rather than all the probabilities.

It is, however, worth noting that both our equivalences differ from those
of [26]. There, to define probabilistic bisimilarities a multistep and inductive
approach has been used and only their strong multistep 1-depth bisimulation is
strongly related to ↔PB,gbg,≥. In contrast, the general probabilistic bisimilarity
of [26], obtained as the limit of the chain of n-depth bisimulations, is provably
finer than both our group-by-group probabilistic bisimilarities once the appro-
priate model transformation from Kripke structures to NPLTS is performed.

Our results and those in [26] also show that, in the case of nondeterminis-
tic and probabilistic processes, it is not possible to define a single probabilistic
bisimilarity that is characterized by both PML – as interpreted in this paper –
and PCTL* – as interpreted in [4]. Thus, for nondeterministic and probabilistic

Group-by-Group Probabilistic Bisimilarities 329

processes the situation is quite different from the case of fully nondeterministic
processes, where probabilistic bisimilarity is characterized by both HML [13] and
CTL* [5], and from the case of reactive probabilistic processes, where probabilis-
tic bisimilarity is characterized by both PML [17,18] and PCTL* [1].

References

1. Aziz, A., Singhal, V., Balarin, F., Brayton, R., Sangiovanni-Vincentelli, A.: It usu-
ally works: the temporal logic of stochastic systems. In: Wolper, P. (ed.) CAV 1995.
LNCS, vol. 939, pp. 155–165. Springer, Heidelberg (1995)

2. Bernardo, M., De Nicola, R., Loreti, M.: A uniform framework for modeling non-
deterministic, probabilistic, stochastic, or mixed processes and their behavioral
equivalences. Inf. Comput. 225, 29–82 (2013)

3. Bernardo, M., De Nicola, R., Loreti, M.: Revisiting bisimilarity and its modal logic
for nondeterministic and probabilistic processes. Technical report 06/2013, IMT
Institute for Advanced Studies Lucca (2013). http://eprints.imtlucca.it/1553/

4. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995)

5. Browne, M., Clarke, E., Grümberg, O.: Characterizing finite Kripke structures in
propositional temporal logic. Theor. Comput. Sci. 59, 115–131 (1988)

6. Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8,
244–263 (1986)

7. Crafa, S., Ranzato, F.: A spectrum of behavioral relations over LTSs on probability
distributions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901,
pp. 124–139. Springer, Heidelberg (2011)

8. de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game refinement relations
and metrics. Logical Meth. Comput. Sci. 4(3–7), 1–28 (2008)

9. Derman, C.: Finite State Markovian Decision Processes. Academic Press, New
York (1970)

10. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov
processes. Inf. Comput. 179, 163–193 (2002)

11. Hansson, H., Jonsson, B.: A calculus for communicating systems with time and
probabilities. In: Proceedings of RTSS 1990, pp. 278–287. IEEE-CS Press (1990)

12. Hennessy, M.: Exploring probabilistic bisimulations, part I. Formal Aspects Com-
put. 24, 749–768 (2012)

13. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32, 137–162 (1985)

14. Hermanns, H., Parma, A., Segala, R., Wachter, B., Zhang, L.: Probabilistic logical
characterization. Inf. Comput. 209, 154–172 (2011)

15. Jifeng, H., Seidel, K., McIver, A.: Probabilistic models for the guarded command
language. Sci. Comput. Program. 28, 171–192 (1997)

16. Keller, R.: Formal verification of parallel programs. Commun. ACM 19, 371–384
(1976)

17. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94,
1–28 (1991)

18. Larsen, K., Skou, A.: Compositional verification of probabilistic processes. In:
Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 456–471. Springer,
Heidelberg (1992)

http://eprints.imtlucca.it/1553/

330 M. Bernardo et al.

19. Parma, A., Segala, R.: Logical characterizations of bisimulations for discrete prob-
abilistic systems. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 287–301.
Springer, Heidelberg (2007)

20. Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic systems.
In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer,
Heidelberg (2000)

21. Rabin, M.: Probabilistic automata. Inf. Control 6, 230–245 (1963)
22. Segala, R.: Modeling and verification of randomized distributed real-time systems.

Ph.D. thesis (1995)
23. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jon-

sson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer,
Heidelberg (1994)

24. Segala, R., Turrini, A.: Comparative analysis of bisimulation relations on alternat-
ing and non-alternating probabilistic models. In: Proceedings of QEST 2005, pp.
44–53. IEEE-CS Press (2005)

25. Sokolova, A., de Vink, E.: Probabilistic automata: system types, parallel composi-
tion and comparison. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.,
Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 1–43.
Springer, Heidelberg (2004)

26. Song, L., Zhang, L., Godskesen, J.C.: Bisimulations meet PCTL equivalences for
probabilistic automata. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS,
vol. 6901, pp. 108–123. Springer, Heidelberg (2011)

27. Tracol, M., Desharnais, J., Zhioua, A.: Computing distances between probabilistic
automata. In: Proceedings of QAPL 2011. EPTCS, vol. 57, pp. 148–162 (2011)

28. van Glabbeek, R., Smolka, S., Steffen, B.: Reactive, generative and stratified models
of probabilistic processes. Inf. Comput. 121, 59–80 (1995)

29. Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs.
In: Proceedings of FOCS 1985, pp. 327–338. IEEE-CS Press (1985)

30. Yi, W., Larsen, K.: Testing probabilistic and nondeterministic processes. In: Pro-
ceedings of PSTV 1992, pp. 47–61. North-Holland (1992)

Author Index

Adler, Bo 3
Åman Pohjola, Johannes 103
Attar, Pejman 159

Batten, Ian 45
Bernardo, Marco 315
Borgström, Johannes 103
Buiras, Pablo 199

Caires, Luís 180
Calcagno, Cristiano 273
Castellani, Ilaria 159
Corradini, Andrea 235

de Alfaro, Luca 3
De Nicola, Rocco 315
Dotti, Fernando Luís 235
Duggan, Dominic 64

Giunti, Marco 136
Gupta, Gopal 119
Gutkovas, Ramūnas 103

Haddad, Serge 219
Hennicker, Rolf 219
Hillston, Jane 14
Hu, Raymond 22
Hüttel, Hans 83

Latella, Diego 297
Levy, Amit 199
Loreti, Michele 297, 315
Lourenço, Luísa 180

Massink, Mieke 297
Mazières, David 199
Mendizabal, Odorico 235
Meyer, Bertrand 273
Møller, Mikael H. 219

Neykova, Rumyana 22
Ng, Nicholas 22
Nordio, Martin 273

Parrow, Joachim 103
Petri, Gustavo 254

Ravara, António 136
Ribeiro, Leila 235
Russo, Alejandro 199
Ryan, Mark 45

Saeedloei, Neda 119
Stefan, Deian 199

Victor, Björn 103

Wu, Ye 64

Xu, Shiwei 45

Yoshida, Nobuko 22

	Preface
	Organization
	Steering Committee
	Program Committee Chairs
	Program Committee
	Additional Reviewers
	Contents
	Invited Papers
	Content-Driven Reputation for Collaborative Systems
	1 Introduction
	2 Collaborative Editing Systems
	3 Measuring the Quality of Contributions
	4 Content-Driven Reputation
	4.1 Truthfulness
	4.2 Resistance to Attacks and Dark Corners in Collaboration

	5 Conclusions
	References

	Challenges for Quantitative Analysis of Collective Adaptive Systems
	1 Introduction
	2 Progress in Recent Years
	3 Remaining Challenges
	3.1 Modelling Space
	3.2 Richer Forms of Interaction and Adaptation
	3.3 Extending Model Checking Capabilities

	4 Conclusions
	References

	The Scribble Protocol Language
	1 Introduction
	2 Preamble of the First Scribble Document
	2.1 Conversations and Protocols
	2.2 Applications
	2.3 Remarks on the Preamble

	3 Scribble
	3.1 The Scribble Framework
	3.2 Development Challenges of Scribble
	3.3 Online Travel Agency Example
	3.4 Scribble Projection and Verification
	3.5 Conversation API

	4 Extensions of Scribble: Subprotocols and Interrupts
	5 Extensions of Scribble: Parameterised Scribble
	6 Future Work
	7 Conclusion
	References

	Security
	Dynamic Measurement and Protected Execution: Model and Analysis
	1 Introduction
	1.1 Contribution
	1.2 Attacker Model
	1.3 Related Work

	2 Background to Trusted Computing
	3 A Model of Protected Execution
	3.1 Simplifications and Abstractions
	3.2 An Introductory Example
	3.3 Trusted Execution Modelling Language

	4 Case Study: Password Authentication for SSH
	5 Case Study: A Certification Authority
	6 Conclusion
	A Proof of Theorem 1
	References

	Security Correctness for Secure Nested Transactions
	1 Introduction
	2 Logs for Transactional State
	3 Constrained Operational Semantics
	4 Noninterference
	5 Related Work and Conclusions
	References

	pi-Calculus
	Types for Resources in -calculi
	1 Introduction
	2 -calculi
	2.1 Nominal Datatypes
	2.2 Syntax
	2.3 Operational Semantics

	3 A Type System
	3.1 Types and Type Environments
	3.2 Typing Assertions, Conditions and Terms
	3.3 Criteria for Type Rules
	3.4 Type Rules for Processes

	4 Safety Results for the Type System
	4.1 A Subject Reduction Result

	5 Instances of the Type System
	5.1 Linear Channels
	5.2 Control in the -calculus
	5.3 A Type System for Value-Passing
	5.4 A -calculus for Allocation and Deallocation

	6 Conclusions and Further Work
	References

	A Sorted Semantic Framework for Applied Process Calculi (Extended Abstract)
	1 Introduction
	1.1 Background: Psi-calculi
	1.2 Extension: Generalized Pattern Matching
	1.3 Extension: Sorting
	1.4 Related Work
	1.5 Results and Outline

	2 Definitions
	2.1 Original Psi-calculi Parameters
	2.2 New Parameters for Generalized Pattern-Matching
	2.3 New Parameters for Sorting
	2.4 Substitution and Matching
	2.5 Agents
	2.6 Semantics and Bisimulation

	3 Examples
	4 Conclusions and Further Work
	References

	Timed -Calculus
	1 Introduction
	2 Timed -Calculus
	2.1 Design Decisions
	2.2 Clock Operations and Clock Interpretations
	2.3 Syntax
	2.4 Operational Semantics
	2.5 Passing Clocks and Channels
	2.6 Structural Congruence
	2.7 Timed Bisimulation

	3 Example: The Railroad Crossing Problem
	4 Discussions
	5 Conclusions and Related Work
	References

	Towards Static Deadlock Resolution in the -Calculus
	1 Introduction
	2 The Source Language: -Calculus with Session Types
	3 Resource-Holding Deadlocks
	4 The Target Language: Decorated -Calculus
	5 Deadlock Resolution Algorithm
	6 Conclusions
	References

	Information Flow
	Fine-Grained and Coarse-Grained Reactive Noninterference
	1 Introduction
	2 Syntax
	3 Semantics
	4 Reactivity
	5 Fine-Grained and Coarse-Grained Bisimilarity
	6 Security Property
	7 Type System
	8 Conclusion and Related Work
	References

	Information Flow Analysis for Valued-Indexed Data Security Compartments
	1 Introduction
	2 Programming Language
	3 Type System
	4 Type Preservation and Non-Interference
	5 Related Work
	6 Concluding Remarks
	References

	A Library for Removing Cache-Based Attacks in Concurrent Information Flow Systems
	1 Introduction
	2 Cache Attacks on Concurrent IFC Systems
	3 Modeling Concurrency with Resumptions
	4 Extending Resumptions with State and Exceptions
	5 Performance Tuning
	6 Soundness
	7 Case Study: Classifying Location Data
	8 Related work
	9 Conclusion
	References

	Models, Specifications,and Proofs
	Specification of Asynchronous Component Systems with Modal I/O-Petri Nets
	1 Introduction
	2 Illustrating Example
	3 Modal Asynchronous I/O-Petri Nets
	3.1 Modal Petri Nets and Modal Transition Systems
	3.2 Modal Asynchronous I/O-Petri Nets, Composition and Hiding
	3.3 Semantics: Modal Asynchronous I/O-Transition Systems

	4 Modal Refinement
	5 Message Consuming Systems
	6 Conclusion and Future Work
	References

	A Formal Model for the Deferred Update Replication Technique
	1 Introduction
	2 Serializability Theory
	3 The Deferred Update Replication
	4 The DUR Algorithm, Formally
	5 Correctness and Completeness of Deferred Update Replication
	6 Discussion
	7 Appendix
	References

	Studying Operational Models of Relaxed Concurrency
	1 Introduction
	2 Two Frameworks of Relaxed Memory
	2.1 Write Buffering Models
	2.2 Speculative Models

	3 A Formal Comparison
	4 Related Work and Conclusions
	References

	Certificates and Separation Logic
	1 Introduction
	2 Overview of Separation Logic
	2.1 The Core Language
	2.2 Separation Logic for the Source Language
	2.3 Proof Rules
	2.4 Example

	3 A Separation Logic for Bytecode
	3.1 The Bytecode Language
	3.2 Memory Model
	3.3 Axiomatic Semantics
	3.4 Examples

	4 Proof Transformation for Separation Logic
	5 Proof Transformation for Concurrent Programs
	5.1 Basic Concurrency
	5.2 Critical Regions

	6 Example
	7 Soundness of the Proof-Transforming Compiler
	8 Related Work
	9 Conclusions
	References

	Quantitative Analysis
	On-the-fly Fast Mean-Field Model-Checking
	1 Introduction
	2 Related Work
	3 Time Bounded PCTL and On-the-fly Model-Checking
	3.1 Time Bounded PCTL
	3.2 On-the-fly PCTL Model-Checking Algorithm

	4 Modelling Language
	5 Fast Mean-Field Model-Checking
	6 Conclusions and Future Work
	References

	Group-by-Group Probabilistic Bisimilarities and Their Logical Characterizations
	1 Introduction
	2 Background
	2.1 The NPLTS Model
	2.2 Bisimilarity for Fully Nondeterministic Processes
	2.3 Bisimilarity for Reactive Probabilistic Processes
	2.4 Bisimilarity for Non-Alternating and Alternating Processes

	3 Interpreting PML over NPLTS Models
	4 Bisimilarities Characterized by PML
	5 Conclusion
	References

	Author Index

